WO2016006994A1 - Dispositivo electrónico para monitoreo en línea de la humedad en el papel de un transformador de potencia sometido a sobrecarga y diagnóstico del tiempo seguro de operación en el mismo, y proceso - Google Patents

Dispositivo electrónico para monitoreo en línea de la humedad en el papel de un transformador de potencia sometido a sobrecarga y diagnóstico del tiempo seguro de operación en el mismo, y proceso Download PDF

Info

Publication number
WO2016006994A1
WO2016006994A1 PCT/MX2015/000100 MX2015000100W WO2016006994A1 WO 2016006994 A1 WO2016006994 A1 WO 2016006994A1 MX 2015000100 W MX2015000100 W MX 2015000100W WO 2016006994 A1 WO2016006994 A1 WO 2016006994A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
electronic device
paper
temperature
oil
Prior art date
Application number
PCT/MX2015/000100
Other languages
English (en)
French (fr)
Inventor
Berenice BAHENA DE LEÓN
Enrique BETANCOURT RAMÍREZ
Alberth PASCACIO DE LOS SANTOS
David PONCE DE NOYOLA
Original Assignee
Prolec Ge Internacional, S. De R.L. De C.V.
Instituto De Investigaciones Eléctricas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prolec Ge Internacional, S. De R.L. De C.V., Instituto De Investigaciones Eléctricas filed Critical Prolec Ge Internacional, S. De R.L. De C.V.
Publication of WO2016006994A1 publication Critical patent/WO2016006994A1/es

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention is located in the field of electronics. Specifically, the present invention relates to an electronic device designed to monitor and determine in line, the humidity in the role of a power transformer, preferably columns type, and diagnose the safe operating time, in which the transformer can be subjected at an overload, without the risk of generating water vapor bubbles inside the transformer;
  • the electronic device also has two microcontrollers where two mathematical models are implemented to determine the percentage of moisture in the paper and the temperature of bubble generation, in addition to a third model with which the percentage of life loss of the transformer is estimated and the maximum Hot Spot temperature reached during the application of the overload.
  • the insulating system (paper and oil) degrades over time, this process depends on the thermal and electrical conditions to which it is subjected, as well as factors such as water or oxygen that can be introduced into the system accelerating its aging process.
  • changes in temperature cause the migration of moisture between the paper and the oil.
  • the humidity migrates from the paper to the oil and when the temperature drops, the humidity returns to the paper.
  • This phenomenon modifies the dielectric properties of insulating paper and produces accelerated paper aging, increasing the risk of transformer failure conditions.
  • US Patent 8, 149, 003 describes a system that allows determining the moisture content of a transformer, said system comprises the steps of measuring the dielectric properties and the insulation temperature depending on the frequency of a voltage which is applied to the transformer; apply different dielectric responses; and apply a formula by which dielectric responses and / or dielectric properties are determined, however this measurement is performed offline.
  • US 7,516,651 refers to a method for determining the water content of a solid insulator in a specific place within a transformer, said method comprising determining the temperature of a solid insulator, calculating the relative humidity saturation of the oil, calculate the last water content and calculate the recent water content, said measurement is done online.
  • Patent OS 6, 779, 385 shows a device for monitoring the moisture content of a solid dielectric material within an enclosure, said material immersed in a dielectric fluid; the device comprises means for measuring humidity, means for measuring temperature and electronic circuit means for capturing data regarding the level of humidity, in this case the calculation is made based on the variation of the solubility of the water with respect to the temperature, the humidity in the oil and the temperature of the oil.
  • the international application WO / 2007/038845 describes a system for measuring and monitoring the amount of moisture of insulating oil in transformers, said system comprises a sensor module that is in contact with the oil and an interface of the module, which allow the measurement and Oil moisture monitoring, the system allows you to program limit values so that when these are exceeded a series of alarms is activated, the measurement is done online.
  • EP 2, 348, 307 refers to a device and method for in-line diagnostics and control of the dielectric behavior of transformers using an online reader of the relative humidity of the oil and its temperature, which determines the dielectric strength of the oil which allows a change in the operating regime of a transformer to effectively prevent any decrease in the dielectric strength of the oil below the limits required by the standard.
  • an objective of the present invention is to provide an electronic device to determine the ability to safely hold the temporary overload conditions and their application time in a power transformer, in addition to a timely diagnosis for the prevention of failures already which determines the moisture content in insulating paper of the coils, without the need to take out the operating transformer, as well as the temperature of bubble generation, which minimizes the risk of a Possible catastrophic damage to the equipment.
  • a further objective of the present invention is to provide an electronic device that uses a second mathematical model by means of which, with the result of the percentage of humidity determined by the previous model, it can estimate the time limit in which a transformer can be subjected to an overload before it exceeds the temperature threshold for generating water vapor bubbles.
  • processing unit in which the mathematical models with which calculations are made to estimate the percentage of moisture content in the paper are implemented.
  • the mathematical models with which calculations are made to estimate the percentage of moisture content in the paper are implemented.
  • the distribution of humidity in the axial height of the coils in addition to the calculation of the bubble generation temperature and the estimation of the loss of life thanks to the maximum Hot Spot temperature which is also calculated in the processing unit; the other, exclusively carries out communication processes, protocols and storage in memory.
  • an objective of the present invention is to provide an electronic device that uses a graphical interface where the maximum overload time applied to a power transformer can be evaluated, without exceeding the temperature where the generation of steam bubbles will begin of water due to the moisture content in the insulating paper of the coils, as well as estimating the percentage of loss of life and the maximum hot spot temperature reached in the overload.
  • Figure 1 refers to the variables introduced in real time to the microcontroller through analog signals.
  • Figure 2 shows a block diagram of the electronic conceptual design of the device
  • Figure 3 shows a block diagram that indicates the logical sequence that the microcontroller follows to execute the mathematical algorithms of the models.
  • Figure 4 shows a block diagram with respect to the input variables used by the mathematical model to calculate the maximum hot spot temperature and the percentage of life loss of the transformer.
  • Figure 5 shows a block diagram with respect to the input variables to the mathematical algorithm and the flow chart executed by the microcontroller to calculate the percentage of paper humidity of the coils and the humidity in the paper in 4 thermal zones distributed equidistantly at the height of the winding.
  • Figure 6 shows the input variables of the mathematical model that estimates the bubble generation temperature as well as the block diagram of the execution process of the instructions programmed in the microcontroller
  • the present invention relates to an electronic device designed to determine in line, the moisture content in the paper of the winding and the distribution of moisture in the paper in 4 thermal zones distributed equally in the height of the winding of a power transformer type columns .
  • the device has the ability to estimate in line, the temperature of the generation of water vapor bubbles, the maximum hot spot temperature and the percentage of loss of life in the conditions under which the transformer is operating.
  • the electronic device of the present invention uses a graphical interface that allows to evaluate the safe operating time, in which a power transformer, preferably columns type, can be subjected to an overload, without the risk of generating Water vapor bubbles inside the transformer.
  • the device is limited to column type transformers.
  • the electronic device acquires four analog input signals which are sent to a conditioning module to be processed for digital conversion;
  • the first signal is for the oil temperature, which is taken by a temperature indicator (1) installed on the top of the transformer, which sends the measurement to the input module of the device through a 4-20 mA signal ;
  • the second input is used to measure the moisture content of the oil using a specialized device to determine the humidity (2) in the oil in ppm, the measurement result is sent to the input module by a 4-20 mA signal;
  • the third analog input is used to collect the values of the transformer load current, for which a core type current transformer (3) is used, with which the current in the line of one of the current transformers is measured installed in the transformer, this measurement is sent via an analog 4-20 mA signal to the input module;
  • the fourth input of the analog module is used for the acquisition of the ambient temperature value, which is measured with a resistive temperature detector (RTD) (4).
  • RTD resistive temperature detector
  • the analog signals are sent to the conditioning module to be conditioned and subsequently transmitted to the conversion module where the analog to digital signals will be changed, these are sent digitally to a microcontroller.
  • a microcontroller which works as a processing unit, where the three mathematical models that carry out the online diagnosis are implemented, the The microcontroller is in charge of executing the algorithms of the models and interpreting the instructions contained in the program and processing the data, the device also has another raro-controller that performs functions exclusively of communication processes, protocol management and memory storage, the device Electronic also has a unit dedicated to the storage of information, Figure 2 shows the conceptual electronic design of the present invention.
  • FIG. 1 shows the installation of the instruments that perform the online measurement of the analog variables used by the mathematical algorithms programmed in the microcontroller principal.
  • Figure 3 shows the sequence that the microcontroller follows to run the models, First the thermal model that estimates the maximum hot spot temperature that will be reached during a certain period of time is executed, then the model is run to determine the moisture content in the paper, the results of this moisture calculation are used by the bubble generation temperature model, which is the last model to be executed, once the three models have been executed, the microcontroller has implemented the necessary programming to perform the evaluation of the maximum hot spot temperature and the bubble generation temperature with that will evaluate the period of time in which there will be no risk of bubble generation and l percentage of transformer life loss.
  • the first model that is run is based on the standard of IEEE C57.91-1995 this calculates the maximum hot spot temperature that will be reached in an overload and the percentage of life loss of the transformer due to the temperature, the microcontroller uses the parameters of mechanical, electrical and thermal design previously programmed in the device and the digitally conditioned and converted data that were taken by the sensors installed in the transformer to perform the online diagnosis,
  • Figure 4 shows a block diagram of the process that the microcontroller follows to perform the calculation model execution of hot spot and percentage of loss of life, after executing the previous model the microcontroller runs the algorithm to estimate the percentage of moisture contained in the paper of the coils, to perform this calculation the model uses the parameter programmed offline of the acidity in the oil and the digital values of the variables measured in line of the content of humidity in the oil and the temperature of the oil industry
  • Figure 5 shows the variables that the microcontroller uses to execute the mathematical model that determines the percentage of moisture content in the paper and the distribution of moisture throughout the winding, it should be noted that the algorithm Mathematical to determine the humidity
  • the algorithm After calculating the percentage of moisture in the paper by the second model, this result will be used as input of the third mathematical model to estimate the temperature of water vapor bubble generation, the algorithm also uses the digital values taken in line of the oil temperature sensor (1), the ambient temperature (4) and the percentage of load (3), as well as the data programmed in the microcontroller of the atmospheric pressure and the degree of polymerization, Figure 6 It shows the block diagram of the model execution process and the input variables for estimating the bubble generation temperature.
  • the graphical interface will allow the user to evaluate online if the transformer is in a position to accept an overload.
  • the graphical interface uses three types of input data to be able to execute the mathematical algorithms, the first are the fixed values , which are the parameters of the specific mechanical, electrical and thermal design of the transformer, these values will not change once programmed in the software, the seconds are the reprogrammable values that are the parameters of the condition of the paper-oil insulating system, these values are obtained through physicochemical tests of the oil and must be periodically updated in the programming, the third parties are the online values, these parameters determine the current operating condition of the transformer, and are obtained by means of the sensors installed in the transformer that measure in time actual oil temperature parameters, temperature ura environment, transformer load and the percentage of moisture in the oil, these values will be changing over time according to the operation of the transformer.
  • the interface uses all input parameters to estimate online; the moisture content in the paper of the coils, the distribution of moisture in the paper along the axial height of the winding, the generation temperature of water vapor bubbles, the maximum hot spot temperature and loss of life in the current conditions under which the transformer is operated.
  • the graphical interface has a module to estimate offline the evolution of the generation of water vapor bubbles when a power transformer is subjected to a temporary overload
  • the software uses as input values, the level of overload, the time of application of the overload, the humidity in the paper, the temperature of the oil, the ambient temperature and the atmospheric pressure, with these parameters the graphical interface can estimate the maximum time to which a transformer can be subjected to an overload, without the risk of generating water vapor bubbles inside is presented, in addition the software will allow to know the maximum hot spot temperature to which the transformer will be subjected during the temporary overload and its consequent loss of life due to the hot spot temperature reached during overload.
  • the interface can also estimate the moisture content in the transformer winding off-line, in order to perform the calculation the humidity input variables in the oil, acidity in the oil and oil temperature must be entered, with these three input parameters
  • the software determines the percentage of humidity in the paper of the reels and the axial distribution of the humidity in the paper, in 4 thermal zones distributed equally in the height of the winding. The software allows to know online the humidity conditions of the insulating paper without the need to remove the operating transformer.
  • the graphical interface has numerical indicators and graphs of the device's outputs, numerical indicators and graphs of historical values of the device's outputs, configuration operating in the mode of Ethernet TCP / IP and RS-232 communication, however it is possible to use an adapter for a Modbus or DNP communication.3.
  • the software was developed for monitoring up to 32 devices connected to the same Ethernet network where the equipment is operating, the software has a module where the IP address to which another electronic device is connected is assigned, once the IP address of the device is programmed another device the software can automatically display on the main screen the results of the online diagnosis of the added transformers.
  • the software has two modes of operation one to allow the user to monitor and another to configure (Hardware).
  • the monitoring mode brings the information stored in the electronic device to the user PC and displays the results of the calculation of the models and the configuration mode sends the configuration information to the device and the offline parameters that will be programmed in the unit of central processing of the device to perform the calculations of the mathematical algorithms.
  • the computational tool has an additional module that allows estimations of the percentage of overload and the application time, to which it can be subjected to a transformer in operation, without this presenting a risk of generating water vapor bubbles, the interface also determines the maximum hot spot temperature that will occur due to the overload and the percentage of life loss of the transformer as a result of it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

La presente invención se refiere a un dispositivo electrónico diseñado para determinar en línea, el contenido de humedad en el papel, la temperatura de generación de burbujas y el porcentaje de pérdida de vida de los transformadores de potencia tipo columnas. El diagnóstico es realizado a través de datos de entrada que combinan la información tomada en tiempo real del estado actual del transformador y la información programada fuera de línea de las características específicas de diseño del transformador y la condición del sistema aislante papel aceite. El dispositivo cuenta con un software de comunicación que permite visualizar desde una computadora remota todos los valores de diagnóstico en tiempo real, además de una interfaz gráfica que cuenta con un módulo de diagnóstico adicional, diseñado para ser utilizado como herramienta de ayuda en la toma de decisiones para la administración de la carga del transformador, el cual utiliza 3 modelos matemáticos obtenidos de forma experimental semejando las condiciones térmicas y dimensionales de un transformador de potencia, logrando una estimación dinámica de la migración de la humedad, más precisa que las curvas de equilibrio estático, los modelos programados en el microcontrolador efectúan estimaciones del nivel de sobrecarga y el tiempo de su aplicación para continuar con la operación segura del transformador bajo condiciones de sobrecarga, asimismo la herramienta computacional estima la temperatura máxima de hot spot que se alcanzara durante el periodo de tiempo que el transformador permanecerá en sobrecarga y calcula el porcentaje de pérdida de vida ocasionado por la elevación de temperatura.

Description

DISPOSITIVO ELECTRÓNICO PARA MONITOREO EN LÍNEA DE LA HUMEDAD)
EN EL PAPEL DE UN TRANSFORMADOR DE POTENCIA SOMETIDO A SOBRECARGA T DIAGNÓSTICO DEL TIEMPO SEGURO DE OPERACIÓN EN EL
MISMO, Y PROCESO
CAMPO DE LA INVENCIÓN
La presente invención se ubica en el campo de la electrónica. Específicamente, la presente invención se refiere a un dispositivo electrónico diseñado para monitorear y determinar en linea, la humedad en el papel de un transformador de potencia, preferentemente tipo columnas, y diagnosticar el tiempo seguro de operación, en el cual el transformador puede ser sometido a una sobrecarga , sin que se presente el riesgo de generación de burbujas de vapor de agua en el interior del transformador; asimismo el dispositivo electrónico cuenta con dos microcontroladores en donde están implementados dos modelos matemáticos para determinar el porcentaje de humedad en el papel y la temperatura de generación de burbujas, además de un tercer modelo con el que se estima el porcentaje de perdida de vida del transformador y la temperatura máxima de Hot Spot alcanzada durante la aplicación de la sobrecarga. ANTECEDENTES DE LA INVENCIÓN
La problemática más importante que genera desgaste y reduce la vida de los transformadores de potencia tipo columnas está relacionada con su proceso de envejecimiento. El sistema aislante (papel y aceite) se degrada a través del tiempo, este proceso depende de las condiciones térmicas y eléctricas a las cuales es sometido, asi como factores tales como agua u oxigeno que puedan introducirse al sistema acelerando su proceso de envejecimiento.
La presencia de humedad en el interior del transformador influye en el deterioro de las propiedades dieléctricas del sistema aislante (papel/aceite) , además produce el envejecimiento acelerado del papel, y la emisión de burbujas de vapor de agua a elevadas temperaturas. Durante la operación del transformador, los cambios en la temperatura provocan la migración de humedad entre el papel y el aceite. Cuando se incrementa la temperatura dentro del transformador, la humedad migra del papel hacia el aceite y cuando la temperatura desciende, la humedad regresa al papel.
Este fenómeno modifica las propiedades dieléctricas del papel aislante y produce el envejecimiento acelerado del papel, aumentando el riesgo de condiciones de falla en el transformador.
Cuando un trasformador es sometido a una sobrecarga, se produce un incremento en la temperatura del sistema aislante papel/aceite en un corto periodo de tiempo, la presencia de humedad en el papel provoca migración súbita de la humedad desde el papel hacia el aceite, con lo que la posibilidad de que se presente el fenómeno de generación de burbujas a causa de esta migración de humedad es muy alta.
La humedad del ambiente entra en los transformadores por fallas en los empaques o fugas. Un pequeño aumento en el porcentaje de humedad, reduce en gran medida la expectativa de vida del aislamiento, ya que al elevarse la temperatura y la presión durante una sobrecarga, esta humedad puede convertirse en burbujas de vapor de agua en el interior del transformador, debido a que la rigidez dieléctrica de los gases es mucho menor que la resistencia dieléctrica del aceite o el aislamiento de celulosa puede producirse una falla en el equipo y una reducción de vida de este. Por lo tanto, evaluar el contenido de humedad en el aislamiento y la temperatura de formación de burbujas es un factor fundamental para garantizar la fiabilidad y longevidad del transformador.
Actualmente los dispositivos desarrollados para determinar el contenido de la humedad en el papel aislante de las bobinas en trasformadores de potencia, están basados en métodos y técnicas de diagnóstico que solo permiten realizar esta estimación cuando el transformador esta fuera de operación (fuera de linea) .
De la misma manera/ si bien existen algunos dispositivos electrónicos capaces de determinar en linea el contenido de humedad en el papel y la temperatura de generación de burbujas en transformadores de potencia, dichos dispositivos utilizan modelos matemáticos que fueron desarrollados asumiendo que la humedad es uniforme en todo el transformador, lo cual no es representativo de la condición real de operación, ya que el fenómeno de migración de humedad es dependiente del perfil térmico axial.
En este sentido la patente US 8, 149, 003 describe un sistema que permite determinar el contenido de humedad de un transformador, dicho sistema comprende las etapas de medir las propiedades dieléctricas y la temperatura de aislamiento dependiendo de la frecuencia de un voltaje el cual es aplicado al transformador; aplicar diferentes respuestas dieléctricas; y aplicar una fórmula mediante la cual se determinan respuestas dieléctricas y/o propiedades dieléctricas, no obstante está medición se realiza fuera de linea.
La patente US 7, 516, 651 se refiere a un método para determinar el contenido de agua de un aislante sólido en un lugar especifico dentro de un transformador, dicho método comprende determinar la temperatura de un aislante sólido, calcular la saturación de humedad relativa del aceite, calcular el último contenido de agua y calcular el contenido de agua reciente, dicha medición se realiza en linea.
La patente OS 6, 779, 385 muestra un dispositivo para monitorear el contenido de humedad de un material dieléctrico sólido dentro de un recinto, dicho material sumergido en un fluido dieléctrico; el dispositivo comprende medios para medir la humedad, medios para medir la temperatura y medios de circuito electrónico para capturar los datos respecto al nivel de humedad, en este caso el cálculo se realiza con base a la variación de la solubilidad del agua respecto a la temperatura, la humedad en el aceite y la temperatura del aceite.
La solicitud internacional WO/2007/038845 describe un sistema para medir y monitorear la cantidad de humedad de aceite aislante en transformadores, dicho sistema comprende un módulo sensor que está en contacto con el aceite y una interfaz del módulo, ios cuales permiten la medición y monitoreo de humedad en el aceite, el sistema permite programar valores limites de manera que cuando estos son rebasados se active una serie de alarmas, la medición se realiza en linea.
La patente EP 2, 348, 307 se refiere a un dispositivo y método para diagnósticos en línea y el control del comportamiento dieléctrico de transformadores utilizando un lector en línea de la humedad relativa del aceite y su temperatura, lo cual determina la fuerza dieléctrica del aceite lo que permite un cambio del régimen operacionai de un transformador para prevenir efectivamente cualquier decremento de la fuerza dieléctrica del aceite por debajo de los límites requeridos por la norma.
SUMARIO DE LE INVENCIÓN
Por lo tanto, un objetivo de la presente invención es brindar un dispositivo electrónico para determinar la capacidad de sostener con seguridad las condiciones de sobrecarga temporal y su tiempo de aplicación en un transformador de potencia, además de un diagnóstico oportuno para la prevención de fallas ya que determina el contenido de humedad en papel aislante de las bobinas, sin necesidad de sacar el trasformador de operación, así como la temperatura de generación de burbujas, lo que minimiza el riesgo de un posible daño catastrófico del equipo.
Es un objetivo más de la presente invención, brindar un dispositivo electrónico con la capacidad de estimar en tiempo real, el contenido de humedad en el papel aislante y la distribución axial de la humedad en el papel, en 4 zonas térmicas distribuidas equidistantemente en la altura del devanado, esto es realizado con base a un modelo matemático desarrollado experimentalmente en función de un perfil térmico, parámetros de diseño y condiciones de operación en linea, además el modelo también toma en consideración el envejecimiento del sistema aislante papel-aceite, por lo que la estimación de dinámica de la migración de humedad es más precisa que las curvas de equilibrio estático que utilizan los modelos convencionales.
Asimismo, un objetivo más de la presente invención es brindar un dispositivo electrónico que utiliza un segundo modelo matemático mediante el cual, con el resultado del porcentaje de humedad determinado por el modelo anterior, puede estimar el limite de tiempo en el que un transformador puede ser sometido a una sobrecarga antes de que éste sobrepase el umbral de temperatura de generación de burbujas de vapor de agua.
De igual forma, es un objetivo más de la presente invención brindar un dispositivo electrónico que utiliza un tercer modelo matemático basado en la norma C.57.91-1995 con el cual es posible estimar la temperatura máxima del Hot spot que será alcanzada durante el tiempo de aplicación de la sobrecarga y el porcentaje de pérdida de vida que sufrirá el equipo, debido al incremento de la temperatura durante este periodo.
Es además un objetivo de la presente invención, brindar un dispositivo electrónico el cual comprende 2 microcontroladores principales, en donde uno de ellos realiza la función de unidad de procesamiento en el cual se encuentran implementados los modelos matemáticos con los que se realizan los cálculos para la estimación del porcentaje del contenido de humedad en el papel asi como la distribución de humedad en la altura axial de las bobinas, además del cálculo de la temperatura de generación de burbujas y la estimación de la pérdida de vida gracias a la máxima temperatura de Hot Spot la cual también se calcula en la unidad de procesamiento; el otro, lleva a cabo exclusivamente procesos de comunicación, protocolos y almacenamiento en memoria.
Más aún, un objetivo de la presente invención es brindar un dispositivo electrónico que utiliza una interfaz gráfica en donde se puede evaluar el tiempo máximo de sobrecarga aplicada a un transformador de potencia, sin que éste exceda la temperatura donde iniciará la generación de burbujas de vapor de agua a causa del contenido de humedad en el papel aislante de las bobinas, asi como estimar el porcentaje de perdida de vida y la temperatura máxima de hot spot alcanzada en la sobrecarga.
BREVE DESCRIPCIÓN DE LAS FIGURAS DE LA INVENCION
La Figura 1 se refiere a las variables introducidas en tiempo real al microcontrolador a través de señales analógicas. La Figura 2 muestra un diagrama a bloques del diseño conceptual electrónico del dispositivo
La Figura 3 muestra un diagrama de bloques que indica la secuencia lógica que sigue el microcontrolador para ejecutar los algoritmos matemáticos de los modelos. La Figura 4 muestra un diagrama de bloques respecto a las variables de entrada que utiliza el modelo matemático para calcular la temperatura máxima de hot spot y el porcentaje de perdida de vida del transformador.
La Figura 5 muestra un diagrama de bloques respecto a las variables de entrada al algoritmo matemático y el diagrama de flujo que ejecuta el microcontrolador para calcular el porcentaje de humedad en el papel de las bobinas y la humedad en el papel en 4 zonas térmicas distribuidas equidistantemente en la altura del devanado.
La Figura 6 muestra las variables de entrada del modelo matemático que estima la temperatura de generación de burbujas asi como el diagrama a bloques del proceso de ejecución de las instrucciones programadas en el microcontrolador
DESCRIPCION DETALLADA DE LA INVENCION
La presente invención se refiere a un dispositivo electrónico diseñado para determinar en linea, el contenido de humedad en el papel del devanado y la distribución de humedad en el papel en 4 zonas térmicas distribuidas equidistantemente en la altura del devanado de un transformador de potencia tipo columnas. Además el dispositivo tiene la capacidad de estimar en linea, la temperatura de generación de burbujas de vapor de agua, la temperatura máxima de hot spot y el porcentaje de pérdida de vida en las condiciones a las cuales este está operando el transformador.
El dispositivo electrónico de la presente invención utiliza una interfaz gráfica que permite evaluar el tiempo seguro de operación, en el cual un transformador de potencia, preferentemente tipo columnas, puede ser sometido a una sobrecarga, sin que se presente el riesgo de generación de burbujas de vapor de agua en el interior del transformador.
En el contexto de la presente invención, el dispositivo se limita a transformadores tipo columnas. De acuerdo con la presente invención, el dispositivo electrónico adquiere cuatro señales analógicas de entrada las cuales son enviadas a un módulo de acondicionamiento para ser procesadas para su conversión digital; la primera señal es para la temperatura del aceite, que es tomada por un indicador de temperatura (1) instalado en la parte superior del transformador, el cual envia la medición al módulo de entrada del dispositivo a través de una señal de 4-20 mA; la segunda entrada se utiliza para medir el contenido de humedad del aceite utilizando un dispositivo especializado para determinar la humedad (2) en el aceite en ppm, el resultado de la medición es enviado al módulo de entrada por una señal de 4-20 mA; la tercera entrada analógica es utilizada para recopilar los valores de la corriente de carga del transformador, para lo que se usa un transformador de corriente tipo core (3), con el que se mide la corriente en la linea de uno de los transformadores de corriente instalados en el transformador, esta medición es enviada a través de una señal analógica de 4-20 mA al módulo de entrada; la cuarta entrada del módulo analógico es utilizada para la adquisición del valor de temperatura ambiente, la cual es medida con un detector de temperatura resistivo (RTD) (4). La Figura 1 muestra los sensores instalados en el transformador para realizar la medición en linea.
Una vez recolectadas las señales analógicas en el módulo de entrada estas son enviadas al módulo de acondicionamiento para ser acondicionadas y posteriormente transmitidas al módulo de conversión en donde se realizara el cambio de señales analógicas a digitales, estas son enviadas de forma digital a un microcontrolador el cual funciona como unidad de procesamiento, en donde se encuentran implementados los tres modelos matemáticos que realizan el diagnostico en linea, el microcontrolador es el encargado de ejecutar los algoritmos de los modelos e interpretar las instrucciones contenidas en el programa y procesar los datos, asimismo el dispositivo cuenta con otro raicrocontrolador que cumple funciones exclusivamente de procesos de comunicación, manejo de protocolos y almacenamiento en memoria, el dispositivo electrónico también tiene una unidad dedicada al almacenamiento de la información, la Figura 2 muestra el diseño electrónico conceptual de la presente invención.
El microcontrolador de la unidad de procesamiento utiliza variables medidas en tiempo real y enviadas al dispositivo electrónico de manera analógica, la Figura 1 muestra la instalación de los instrumentos que realizan la medición en linea de las variables analógicas utilizadas por los algoritmos matemáticos programados en el microcontrolador principal.
De esta forma, las señales analógicas son convertidas de manera digital para ser utilizadas por el algoritmo matemático programado en el microcontrolador, la ejecución de los modelos se realiza en tres etapas, la Figura 3 muestra la secuencia que sigue el microcontrolador para correr los modelos, primero se ejecuta el modelo térmico que estima la temperatura máxima de hot spot que será alcanzada durante un determinado periodo de tiempo, después se corre el modelo para determinar el contenido de humedad en el papel, los resultados de este cálculo de humedad son utilizados por el modelo de temperatura de generación de burbujas, que es el último modelo en ejecutarse, una vez ejecutados los tres modelos, el microcontrolador tiene implementada la programación necesaria para realizar la evaluación de la temperatura de hot spot máxima y la temperatura de generación de burbujas con lo que evaluara el periodo de tiempo en el cual no existirá riesgo de generación de burbujas y el porcentaje de perdida de vida del transformador.
El primer modelo que se corre está basado en el estándar de IEEE C57.91-1995 éste calcula la temperatura de hot spot máxima que se alcanzará en una sobrecarga y el porcentaje de perdida de vida del transformador debido a la temperatura, el microcontrolador utiliza los parámetros de diseño mecánico, eléctrico y térmico programados previamente en el dispositivo y los datos acondicionados y convertidos de forma digital que fueron tomados por los sensores instalados en el transformador para realizar el diagnostico en linea, la Figura 4 muestra un diagrama de bloques del proceso que sigue el microcontrolador para realizar la ejecución del modelo de cálculo de hot spot y porcentaje de perdida de vida, después de ejecutar el modelo anterior el microcontrolador corre el algoritmo para estimar el porcentaje de humedad contenida en el papel de las bobinas, para efectuar este cálculo el modelo utiliza el parámetro programado fuera de linea de la acidez en el aceite y los valores digitales de las variables medidas en linea del contenido de humedad en el aceite y la temperatura del aceitería Figura 5 muestra las variables que utiliza el microcontrolador para ejecutar el modelo matemático que determina el porcentaje de contenido de humedad en el papel y la distribución de humedad a lo largo del devanado, cabe destacar que el algoritmo matemático para determinar la humedad en el papel fue desarrollado recreando el fenómeno de migración de humedad que ocurre en el interior del transformador, utilizando un set experimental en el cual se reprodujo el perfil térmico axial de las bobinas.
Después realizar el cálculo del porcentaje de humedad en el papel por el segundo modelo, este resultado será utilizado como dato de entrada del tercer modelo matemático para estimar la temperatura de generación de burbujas de vapor de agua, el algoritmo también utiliza los valores digitales tomados en linea del sensor de temperatura del aceite (1) , la temperatura ambiente (4) y el porcentaje de carga (3), asi como los datos programados en el microcontrolador de la presión atmosférica y el grado de polimerización, la Figura 6 muestra el diagrama a bloques del proceso de ejecución del modelo y las variables de entrada para realizar la estimación de la temperatura de generación de burbujas. Una vez que son ejecutados los modelos de diagnóstico en la unidad de procesamiento central estos son enviados al microcontrolador dedicado a la transmisión de información. El almacenamiento de la información se realiza en primer estancia en la computadora que tiene instalada la interfaz, adicionalmente el dispositivo cuenta con una unidad de almacenamiento de información hasta 3 meses .
De acuerdo con la presente invención, la interfaz gráfica permitirá al usuario evaluar en linea si el transformador está en condiciones de aceptar una sobrecarga, La interfaz gráfica utiliza tres tipos de datos de entrada para poder ejecutar los algoritmos matemáticos, los primeros son los valores fijos, que son los parámetros del diseño mecánico, eléctrico y térmico especificos del transformador, estos valores no cambiaran una vez programados en el software, los segundos son ios valores reprogramables que son los parámetros de la condición del sistema aislante papel-aceite, estos valores son obtenidos a través de pruebas fisicoquímicas del aceite y deben ser actualizados en la programación periódicamente, los terceros son los valores en linea, estos parámetros determinan la condición actual de operación del transformador, y son obtenidos mediante los sensores instalados en el transformador que miden en tiempo real los parámetros de temperatura del aceite, temperatura ambiente, carga del transformador y el porcentaje de humedad en el aceite, estos valores estarán cambiando en el tiempo de acuerdo a la operación del transformador.
La interfaz utiliza todos los parámetros de entrada para estimar en linea; el contenido de humedad en el papel de las bobinas, la distribución de humedad en el papel a lo largo de la altura axial del devanado, la temperatura de generación de burbujas de vapor de agua, la temperatura máxima de hot spot y la pérdida de vida en las condiciones actuales a cuales esta operado el transformador. Adicionalmente la interfaz gráfica cuenta con un módulo para estimar fuera de linea la evolución de la generación de burbujas de vapor de agua cuando un transformador de potencia es sometido a una sobrecarga temporal, el software utiliza como valores de entrada, el nivel de sobrecarga, el tiempo de aplicación de la sobrecarga, la humedad en el papel, la temperatura del aceite, la temperatura ambiente y la presión atmosférica, con estos parámetros la interfaz gráfica puede estimar el tiempo máximo al cual podrá ser sometido un transformador a una sobrecarga, sin que se presente el riesgo de generación de burbujas de vapor de agua en el interior, además el software permitirá conocer la temperatura máxima de hot spot a la cual estará sometido el transformador durante la sobrecarga temporal y su consecuente pérdida de vida por la temperatura de hot spot alcanzada durante la sobrecarga. La interfaz también puede estimar fuera de linea el contenido de humedad en el devanado del transformador, para realizar el cálculo deberán ser introducidas las variables de entrada de humedad en el aceite, acidez en al aceite y temperatura del aceite, con estos tres parámetros de entrada el software determina el porcentaje de humedad en el papel de las bobinas y la distribución axial de la humedad en el papel, en 4 zonas térmicas distribuidas equidistantemente en la altura del devanado. El software permite conocer en linea las condiciones de humedad del papel aislante sin necesidad de sacar el transformador de operación.
Adicionalmente la interfaz gráfica cuenta con indicadores numéricos y gráficos de las salidas del dispositivo, indicadores numéricos y gráficos de valores históricos de las salidas del dispositivo, configuración operando en modo de comunicación Ethernet TCP/IP y RS-232, sin embargo es posible utilizar un adaptador para una comunicación Modbus o DNP.3. El software fue desarrollado para monitoreo de hasta 32 dispositivos conectados a la misma red Ethernet donde está operando el equipo, el software cuenta con una módulo donde se asigna la dirección IP a la cual está conectado otro dispositivo electrónico, una vez programada la dirección IP del otro dispositivo el software automáticamente puede mostrar en la pantalla principal los resultados del diagnóstico en línea de los transformadores agregados. El software tiene dos modos de operación una para permitir al usuario monitorear y otro para configurar (Hardware) . El modo de monitoreo trae la información almacenada en el dispositivo electrónico a la PC de usuario y despliega los resultados del cálculo de ios modelos y el modo de configuración envía la información de configuración al dispositivo y los parámetros fuera de linea que serán programados en la unidad de procesamiento central del dispositivo para efectuar los cálculos de los algoritmos matemáticos.
La herramienta computacional cuenta con un módulo adicional que permite realizar estimaciones del porcentaje de sobrecarga y el tiempo aplicación, al que puede ser sometido a un transformador en operación, sin que éste presente riesgo de generación de burbujas de vapor de agua, la interfaz también determina la temperatura máxima de hot spot que se presentara a causa de la sobrecarga y el porcentaje de perdida de vida del transformador a consecuencia de la misma.

Claims

REIVINDICACIONES Habiéndose descrito la invención, se reclama como propiedad lo contenido en las siguientes reivindicaciones:
1. - Un dispositivo electrónico caracterizado porque permite monitorear y determinar en línea la humedad en el sistema aislante papel-aceite del devanado de un transformador de potencia, la distribución de humedad en el papel en cuatro zonas térmicas distribuidas equidistantemente en la altura del devanado y diagnosticar el tiempo seguro de operación en el cual el transformador puede ser sometido a una sobrecarga sin que se presente el riesgo de generación de burbujas de vapor de agua en el interior del mismo; y porque
comprende un primer módulo, de entrada el cual recibe cuatro señales analógicas de entrada,
un segundo módulo, de acondicionamiento que acondiciona las cuatro señales analógicas de entrada,
un tercer módulo de conversión que realiza el cambio de señales analógicas a digitales,
un primer microcontroiador el cual es una unidad de procesamiento que utiliza una serie de tres modelos matemáticos obtenidos de forma experimental semejando las condiciones térmicas y dimensionales de un transformador de potencia, logrando una estimación dinámica de la migración de la humedad, más preciso que las curvas de equilibrio estático, para diagnóstico en linea,
un segundo microcontroiador que realiza funciones exclusivas de comunicación, manejo de protocolos y almacenamiento en memoria, y
una unidad de almacenamiento de información.
2. ~ El dispositivo electrónico de acuerdo con la reivindicación 1, en donde la primera señal analógica corresponde a los valores de temperatura del aceite, los cuales son medidos por un indicador de temperatura (1) instalado en la parte superior del transformador, que además envia la medición al módulo de entrada a través de una señal de 4 a 20 mA.
3. - El dispositivo electrónico de acuerdo con la reivindicación 1, en donde la segunda señal analógica corresponde a los valores de humedad del aceite, los cuales son medidos por un dispositivo especializado para determinar la humedad (2) en el aceite en ppm, que además envía la medición al módulo de entrada por una señal de 4-20 mA.
4. - El dispositivo electrónico de acuerdo con la reivindicación 1, en donde la tercera señal analógica corresponde a la recopilación de los valores de la corriente de carga del transformador mediante un transformador de corriente tipo core (3), con el que se mide la corriente en la línea de uno de los transformadores de corriente instalados en el transformador, dichos valores son enviados a través de una señal de 4-20 mA.
5. - El dispositivo electrónico de acuerdo con la reivindicación 1, en donde la cuarta señal analógica corresponde a los valores de temperatura ambiente, los cuales son medidos con un detector de temperatura resistivo (4).
6. - El dispositivo electrónico de acuerdo con la reivindicación 1, en donde el primer microcontrolador comprende tres modelos de diagnóstico en línea, dicho primer microcontrolador ejecuta los algoritmos de los modelos, interpreta las instrucciones y procesa los datos utilizando variables medidas en tiempo real y enviadas al dispositivo electrónico (1) de manera analógica.
7.- El dispositivo electrónico de acuerdo con la reivindicación 6, en donde el primer modelo de diagnóstico calcula la temperatura de hot spot máxima que se alcanzará en una sobrecarga y el porcentaje de pérdida de vida del transformador debido a la temperatura, utilizando los parámetros de diseño mecánico, eléctrico y térmico programados previamente en el dispositivo electrónico (1) y utilizando los datos acondicionados y convertidos que fueron tomados por los sensores instalados en el transformador.
8.- El dispositivo electrónico de acuerdo con la reivindicación 6, en donde posterior al primer modelo de diagnóstico, el primer microcontrolador corre el segundo modelo de diagnóstico el cual calcula el porcentaje de humedad contenida en el papel de las bobinas y la distribución de humedad a lo largo del devanado, utilizando el parámetro programado de la acidez en el aceite y los valores digitales de las variables medidas en linea del contenido de humedad en el aceite y la temperatura de aceite.
9.- El dispositivo de electrónico de acuerdo con la reivindicación 6, en donde el tercer modelo de diagnóstico utiliza el resultado obtenido por el segundo modelo de diagnóstico como dato de entrada para estimar la temperatura de generación de burbujas de vapor de agua, además utiliza los valores digitales tomados en linea del sensor de temperatura del aceite, la temperatura ambiente y el porcentaje de carga, y los datos programados en el primer microcontrolador de la presión atmosférica y el grado de polimerización.
10.- El dispositivo electrónico de acuerdo con la reivindicación 1, en donde el dispositivo utiliza además una interfaz gráfica de forma externa la cual permite al usuario evaluar en linea si el transformador está en condiciones de aceptar una sobrecarga;
en donde la interfaz gráfica utiliza tres tipos de datos de entrada para poder ejecutar e interpretar los modelos de diagnóstico,
dichos datos comprenden en primer lugar valores fijos que corresponden a los parámetros del diseño mecánico, eléctrico y térmico específicos del transformador, los cuales permanecen sin cambios una vez programados,
en segundo lugar los datos comprenden los valores reprogramables que son los parámetros de la condición del sistema aislante papel-aceite, los cuales deben ser actualizados periódicamente,
en tercer lugar los datos comprenden los valores en línea, que determinan la condición actual de operación del transformador y que son obtenidos mediante los sensores instalados en el transformador que miden en tiempo real los parámetros de temperatura del aceite, temperatura ambiente, carga del transformador y el porcentaje de humedad en el aceite, dichos valores cambiarán de acuerdo a la operación del transformador;
en donde la interfaz gráfica comprende además un módulo para estimar fuera de línea la evolución de la generación de burbujas de vapor de agua cuando un transformador de potencia es sometido a una sobrecarga temporal utilizando los valores de entrada, el nivel de sobrecarga, el tiempo de aplicación de la sobrecarga, la humedad en el papel, la temperatura del aceite, la temperatura ambiente y la presión atmosférica; y
en donde la interfaz gráfica comprende indicadores numéricos y gráficos de las salidas del dispositivo, indicadores numéricos y gráficos de valores históricos de las salidas del dispositivo, y una configuración operando en modo de medios de comunicación.
11.- El dispositivo electrónico de acuerdo con la reivindicación 10, en donde los medios de comunicación pueden ser Ethernet TCP/IP y RS-232 o comunicación Modbus o DNP 3.
12. - Un proceso caracterizado porque permite monitorear y determinar en linea la humedad en el sistema aislante papel- aceite del devanado de un transformador de potencia, la distribución de humedad en el papel en cuatro zonas térmicas distribuidas equidistantemente en la altura del devanado y diagnosticar el tiempo seguro de operación en el cual el transformador puede ser sometido a una sobrecarga sin que se presente el riesgo de generación de burbujas de vapor de agua en el interior del mismo, utilizando el dispositivo electrónico (1) de acuerdo con las reivindicaciones 1 a 11; y porque comprende las etapas de:
- adquirir cuatro señales analógicas de entrada las cuales son enviadas a un módulo de acondicionamiento para ser acondicionadas y posteriormente trasmitidas ai módulo de conversión en donde se realiza el cambio de señales analógicas a digitales,
- enviar las señales digitales al primer microcontroiador el cual funciona como unidad de procesamiento y en donde se encuentran implementados los tres modelos de diagnóstico que realizan el diagnóstico en linea,
- ejecutar los modelos de diagnóstico en tres etapas,
- una vez ejecutados los modelos de diagnóstico en el primer microcontroiador, enviar loa datos al segundo microcontroiador el cual trasmite la información,
- recibir la información y almacenarla en la interfaz gráfica y en la unidad de almacenamiento del dispositivo (1) la cual tiene capacidad de almacenamiento de información de hasta tres meses, y
- evaluar en línea, por el usuario, si el transformador está en condiciones de aceptar una sobrecarga y estimar fuera de línea la evolución de la generación de burbujas de vapor de agua cuando el transformador de potencia es sometido a una sobrecarga temporal.
13. - El dispositivo electrónico (1) de acuerdo con cualquiera de las reivindicaciones anteriores, en donde transformador de potencia es un transformador tipo columnas.
PCT/MX2015/000100 2014-07-10 2015-07-10 Dispositivo electrónico para monitoreo en línea de la humedad en el papel de un transformador de potencia sometido a sobrecarga y diagnóstico del tiempo seguro de operación en el mismo, y proceso WO2016006994A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXMX/A/2014/008448 2014-07-10
MX2014008448A MX2014008448A (es) 2014-07-10 2014-07-10 Dispositivo electronico para monitoreo en linea de la humedad en el papel de un tranformador de potencia sometido a sobrecarga y diagnostico del tiempo seguro de operacion en el mismo, y proceso.

Publications (1)

Publication Number Publication Date
WO2016006994A1 true WO2016006994A1 (es) 2016-01-14

Family

ID=55064535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2015/000100 WO2016006994A1 (es) 2014-07-10 2015-07-10 Dispositivo electrónico para monitoreo en línea de la humedad en el papel de un transformador de potencia sometido a sobrecarga y diagnóstico del tiempo seguro de operación en el mismo, y proceso

Country Status (2)

Country Link
MX (1) MX2014008448A (es)
WO (1) WO2016006994A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106951663A (zh) * 2017-04-17 2017-07-14 海南电力技术研究院 变压器关键点温度计算方法
CN111222085A (zh) * 2020-04-15 2020-06-02 广东电网有限责任公司佛山供电局 一种电容式电压互感器健康状态实时评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050273183A1 (en) * 2003-10-06 2005-12-08 Walter Curt System and method for providing for remote monitoring and controlling of voltage power transmission and distribution devices
WO2012142355A1 (en) * 2011-04-15 2012-10-18 Abb Technology Ag Dynamic assessment system for high-voltage electrical components
MX2011006933A (es) * 2011-06-24 2012-12-24 Prolec Ge Ind S A De C V Metodo para vigilar una distribucion de contenido de humedad en un material aislante solido y aparato para llevarlo a cabo.
MX2011007836A (es) * 2011-07-22 2013-01-23 Prolec Ge Ind S A De C V Metodo para prever fallas por formación de búrbujas en equipos eléctricos y aparato para llevarlo a cabo.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050273183A1 (en) * 2003-10-06 2005-12-08 Walter Curt System and method for providing for remote monitoring and controlling of voltage power transmission and distribution devices
WO2012142355A1 (en) * 2011-04-15 2012-10-18 Abb Technology Ag Dynamic assessment system for high-voltage electrical components
MX2011006933A (es) * 2011-06-24 2012-12-24 Prolec Ge Ind S A De C V Metodo para vigilar una distribucion de contenido de humedad en un material aislante solido y aparato para llevarlo a cabo.
MX2011007836A (es) * 2011-07-22 2013-01-23 Prolec Ge Ind S A De C V Metodo para prever fallas por formación de búrbujas en equipos eléctricos y aparato para llevarlo a cabo.

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE STD C57.91-1995 GUIDE FOR LOADING MINERAL-OIL-IMMERSED TRANSFORMERS, 1996, pages iii, XP055251155, ISBN: 1-55937-569-8 *
LINAN ROBERTO ET AL.: "Optimized models for overload monitoring of power transformers in real time moisture migration model.", IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, vol. 20, no. 6, 1 December 2013 (2013-12-01), PISCATAWAY, NJ, US, pages 1977 - 1983, XP011533680, ISSN: 1070-9878 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106951663A (zh) * 2017-04-17 2017-07-14 海南电力技术研究院 变压器关键点温度计算方法
CN111222085A (zh) * 2020-04-15 2020-06-02 广东电网有限责任公司佛山供电局 一种电容式电压互感器健康状态实时评价方法

Also Published As

Publication number Publication date
MX2014008448A (es) 2016-01-11

Similar Documents

Publication Publication Date Title
US6446027B1 (en) Intelligent analysis system and method for fluid-filled electrical equipment
US10001518B2 (en) System and method for power transmission and distribution asset condition prediction and diagnosis
RU2449397C1 (ru) Способ и устройство для определения относительной влажности электрического устройства, заполненного изолирующей жидкостью
EP1085635A2 (en) Fluid-filled electrical equipment intelligent analysis system and method
US9709544B2 (en) Solid state gas detection sensor diagnostic
CN106908656A (zh) 具有增强的温度测量功能的电流互感器
CN107430161A (zh) 一种用于监测变压器套管的方法及其***
JP2019102694A (ja) 変圧器の診断システム、変圧器の診断方法、及び変圧器
JP2016057135A (ja) ガスリーク検知装置およびガスリーク検査方法
WO2016006994A1 (es) Dispositivo electrónico para monitoreo en línea de la humedad en el papel de un transformador de potencia sometido a sobrecarga y diagnóstico del tiempo seguro de operación en el mismo, y proceso
CN114994460A (zh) 一种电缆绝缘性能预测装置及方法
CN116171389A (zh) 用于求取针对变压器部件的故障概率值的装置以及具有这种装置的***
US20160018372A1 (en) Method for operating a measuring site
CN111562450B (zh) 一种用于监测电抗器寿命的***及方法
CN205749757U (zh) 电缆老化诊断***
CN105571795B (zh) 一种gis漏气故障诊断***及方法
CN110263433B (zh) 一种熔断器故障报警方法和***
CN114152290A (zh) 换流站交流滤波器开关诊断方法
CN109540404A (zh) 液体泄漏检测设备、方法及电池***
WO2020223776A1 (pt) Sistema, método e dispositivo de monitoração de selagem de equipamentos elétricos e equipamento elétrico com selagem monitorada
JPH07129870A (ja) ガス絶縁開閉装置のガス漏れ検出装置
CN106290123A (zh) 使用多变量传感器的腐蚀速率测量
JP2016138751A (ja) 腐食状態の判定方法および環境クラスの表示方法
US20180209451A1 (en) Systems and methods for maintaining hydraulic accumulators
US9218733B2 (en) Method for early detection of cooling-loss events

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819330

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15819330

Country of ref document: EP

Kind code of ref document: A1