WO2016006787A1 - Complex light annealing and sintering method for semiconductor oxide, using intense pulsed light, near infrared ray and far ultraviolet ray - Google Patents

Complex light annealing and sintering method for semiconductor oxide, using intense pulsed light, near infrared ray and far ultraviolet ray Download PDF

Info

Publication number
WO2016006787A1
WO2016006787A1 PCT/KR2015/001550 KR2015001550W WO2016006787A1 WO 2016006787 A1 WO2016006787 A1 WO 2016006787A1 KR 2015001550 W KR2015001550 W KR 2015001550W WO 2016006787 A1 WO2016006787 A1 WO 2016006787A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor oxide
titanium
sintering
irradiated
ink
Prior art date
Application number
PCT/KR2015/001550
Other languages
French (fr)
Korean (ko)
Inventor
김학성
황현준
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2016006787A1 publication Critical patent/WO2016006787A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • Various types of digital terminals such as mobile phones, navigation, digital information displays (DIDs), and tablets that are being released on the market today provide a touch interface.
  • a recently emerging technology is a haptic technology that provides a touch.
  • Haptic technology can provide a more realistic user interface by generating various types of tactile sensations when a user interacts with a digital object, thereby providing feedback to the user in a fusion of visual and tactile forms.
  • a motor method As a conventional method for providing a touch, a motor method is the most common. Motor systems have been used in a variety of mobile devices because of their fast response speed, low power and ease of tactile output control. However, in the case of providing the tactile feeling by the motor method, there is a difficulty in arranging the module due to the size of the tactile module, and the thickness of the mechanism itself is thick. In particular, the conventional technique using the motor method is a structure in which vibration propagates through the entire apparatus, so it is difficult to provide a localized haptic sense only in the place where the user can reach it locally, so it is applied to navigation, DID, monitor, etc., rather than a portable electronic device. It's hard to do.
  • the main requirements are to secure the powder particle control technology (100 nm or less), and to develop ultra-thin sheet molding technology, binder composition technology, electrode printing technology, atmosphere firing technology and advanced characterization technology. It is currently used at about 0.8 levels, but research is being conducted for forming thinner layers. As a material technology, it has high capacitance and insulation characteristics and wants to add (Sr, Ba) TiO 3 manufacturing technology and (Sr, Ba) TiO 3 which are used as main materials of capacitive touch panel.
  • the composition technology showing the dielectric properties is a key technology.
  • Dielectric properties of semiconductor oxides require annealing and sintering processes to crystallize the thin film.
  • a high temperature thermal sintering process of 600 ° C. or more has been required to anneal to achieve crystallization through a sol-gel process or to sinter nano-based ink.
  • laser sintering methods for sintering small areas with strong light, microwave sintering methods using microwaves, and plasma sintering methods for sintering by applying pressure, low voltage and convection to powder materials have been invented and used.
  • Patent Document 2 Republic of Korea Patent No. 1,359,663
  • Patent Document 3 Taiwan Hinguk Registration No. 1,025,701
  • Patent Document 4 Republic of Korea Patent Publication No. 10-2013-0062478
  • Another object of the present invention is to provide a composite light sintering method using the semiconductor oxide ink for composite light sintering.
  • the microwave white light irradiated under the irradiation conditions of 5 to 15 J / cm2 and a pulse width of 5 to 30 ms; Near-infrared rays irradiated for 150 to 200 seconds at an intensity of 400 to 600 W / cm 2 and far-ultraviolet rays irradiated at an intensity of 20 to 90 mW / cm 2 may be irradiated together.
  • the semiconductor oxide may include a semiconductor oxide precursor, and the semiconductor oxide precursor may include any one or a mixture thereof selected from a strontium precursor and a barium precursor, an acetic acid, and a titanium precursor.
  • the strontium precursor may be any one or two or more selected from strontium acetate, strontium nitrate, strontium chloride hexahydrate
  • the barium precursor is any one or two selected from barium acetate, barium nitrate, barium chloride hexahydrate.
  • the titanium precursor may be titanium tetrachlorite, titanium tetraethoxide, titanium tetraisopropoxide, titanium (isopropoxide) 2 (2,2,6,6, -tetramethylheptanedionate) 2 , Titanium (dimethylaminoethoxide) 4 and titanium (methylpentanediol) (2,2,6,6, -tetramethylheptanedionate) 2 or a mixture of two or more thereof.
  • the dispersion stabilizer is ethylene glycol, ethanolamine, ethyl diethanolamine, hexanolamine, n-methylpiperidine, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate. It may be any one or two or more selected from the group consisting of dextran, azobis, and sodium dodecylbenzene sulfate, and may be included in a ratio of 0.1 to 0.4 mol of a dispersion stabilizer based on 1 mol of semiconductor oxide.
  • the semiconductor oxide ink for composite light sintering of the present invention for achieving the above another object may be composite light sintered by a method comprising the following steps.
  • a semiconductor oxide ink for photo-sintering comprising a semiconductor oxide and a dispersion stabilizer selected from strontium titanium oxide (SrTiO 3), barium titanium oxide (BaTiO 3), or a mixture thereof;
  • the microwave white light is irradiated from a xenon flash lamp, and the irradiation conditions are 0.1 to 100 ms in pulse width, 1 to 100 pulses, 0.1 to 50 J / cm 2, and 0.1 to 20 ms in pulse gap. May be investigated,
  • the near infrared ray may be irradiated for 0 to 300 seconds at an intensity of 0 to 1000 W / cm 2
  • the far infrared ray may be irradiated for 0 to 300 seconds at an intensity of 0 to 500 mW / cm 2.
  • the substrate is coated with a conductive material may be selected from the group consisting of polyethylene naphthalate (PEN), polyethylene (PT), polyimide (PI), polyester (PET), BT epoxy / glass fiber and photopaper,
  • a conductive material may be selected from the group consisting of polyethylene naphthalate (PEN), polyethylene (PT), polyimide (PI), polyester (PET), BT epoxy / glass fiber and photopaper,
  • PEN polyethylene naphthalate
  • PT polyethylene
  • PI polyimide
  • PET polyester
  • BT epoxy / glass fiber and photopaper BT epoxy / glass fiber and photopaper
  • the sintering method of the semiconductor oxide using the complex light sintering method of irradiating microwave white light or microwave white light and at least one light source selected from near infrared light and far infrared light according to the present invention is instantaneously irradiated with a strong light in a wide area, and the ambient temperature and the atmosphere. Since sintering is possible in a state, large area and selective sintering are possible, and it does not cause damage to a polymer substrate. In addition, there is no need for a separate vacuum equipment or a large chamber, so the manufacturing cost can be greatly reduced in capacitive touch panel manufacturing.
  • This composite light sintering method enables the implementation of a flexible touch screen with a haptic function, which can be usefully applied to the display industry.
  • FIG. 1 is a process flowchart showing a process of sintering a semiconductor oxide ink using a composite light source according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a composite light sintering apparatus and a sintering process according to the present invention.
  • FIG. 3 is a graph of short pulse white light of a xenon lamp according to the present invention.
  • FIG 4 is a graph showing a change in dielectric constant of semiconductor oxide (SrTiO 3 ) according to a change in microwave white light irradiation energy emitted from a xenon lamp according to the present invention.
  • FIG. 6 is an electron scanning microscope image of the surface of semiconductor oxide (SrTiO 3 ) according to the irradiation time of the near infrared irradiation time and the microwave white light when the composite light sintering using the near infrared and microwave white light according to the present invention.
  • FIG. 7 is a graph showing the change of dielectric constant of semiconductor oxide (SrTiO 3 ) according to far-infrared irradiation energy when sintering composite light using near-infrared, microwave white light and far-ultraviolet radiation according to the present invention.
  • FIG. 13 is an electron scanning microscope image of the surface of semiconductor oxide (SrTiO3) according to the change of far-infrared irradiation energy when sintering composite light using microwave white light and ultra-violet rays in a semiconductor oxide thin film treated at 80 ° C. according to the present invention.
  • FIG. 14 is an electron scanning microscope image of the surface of semiconductor oxide (SrTiO3) according to the change of far-infrared irradiation energy when sintering composite light using microwave white light and ultra-violet rays in a semiconductor oxide thin film treated at 150 ° C. according to the present invention.
  • FIG. 15 is an electron scanning microscope image of the surface of semiconductor oxide (SrTiO3) according to the change of far-infrared irradiation energy when sintering composite light using microwave white light and ultra-violet rays in the unheat-treated semiconductor oxide thin film according to the present invention.
  • the semiconductor oxide ink for composite light sintering of the present invention may include a semiconductor oxide and a dispersion stabilizer selected from strontium titanium oxide (SrTiO 3 ), barium titanium oxide (BaTiO 3 ), or a mixture thereof.
  • the condition under which the near-infrared or far-ultraviolet rays are irradiated for 0 seconds means that the light source is not irradiated. That is, the light irradiation according to the present invention may be a single irradiation of microwave white light, a combination of microwave white light and near-infrared light, a combination of microwave white light and far-infrared light, and a combination of microwave white light, near-infrared and far infrared light. have.
  • the optimum conditions of the light sintering conditions may vary depending on the setting conditions of the microwave white light, near infrared rays and far infrared rays.
  • the optimum light sintering condition of the semiconductor oxide ink for composite light irradiation according to the present invention is an irradiation condition of 5 to 15 J / intensity and a pulse width of 5 to 30 ms when the number of pulses of the xenon flash lamp is 1;
  • Ultraviolet white light irradiated with and near-infrared rays irradiated for 150 to 200 seconds at an intensity of 400 to 600 W / and ultraviolet rays irradiated at an intensity of 20 to 90 mW / may be irradiated together, but is not limited thereto.
  • the microwave white light, near infrared ray and far infrared ray may be irradiated at the same time, but may be irradiated sequentially.
  • the near infrared ray is irradiated first, and then the microwave white ray and ultraviolet ray may be irradiated.
  • the near-infrared ray is first irradiated, and then the microwave white light and the far-ultraviolet ray are simultaneously irradiated.
  • the strontium precursor may be any one or two or more selected from strontium acetate, strontium nitrate, strontium chloride hexahydrate
  • the barium precursor is any one or two selected from barium acetate, barium nitrate, barium chloride hexahydrate.
  • the present invention relates to a sintering method of increasing the dielectric properties by sintering the semiconductor oxide ink for complex light irradiation for manufacturing a capacitive touch panel.
  • a semiconductor oxide ink for sintering including a semiconductor oxide and a dispersion stabilizer selected from strontium titanium oxide (SrTiO3), barium titanium oxide (BaTiO3), or a mixture thereof is prepared as described above. .
  • the semiconductor oxide may include a semiconductor oxide precursor.
  • the semiconductor oxide precursor is any one selected from strontium precursor and barium precursor or a mixture thereof; Acetic acid; And a titanium precursor.
  • the substrate is coated with a conductive material may be selected from the group consisting of polyethylene naphthalate (PEN), polyethylene (PT), polyimide (PI), polyester (PET), BT epoxy / glass fiber and photopaper,
  • PEN polyethylene naphthalate
  • PT polyethylene
  • PI polyimide
  • PET polyester
  • BT epoxy / glass fiber and photopaper The substrate may be applied to a substrate by a method such as screen printing, inkjet printing, graving, spin coating, or the like.
  • the conductive material may be indium tin oxide (ITO), but is not limited thereto. Any conductive material may be used for the flexible transparent substrate.
  • ITO indium tin oxide
  • the step (S3) may use any one or both selected from near-infrared and far-ultraviolet in addition to the microwave white light.
  • the light sources When the light sources are used together, they may be irradiated at the same time, but may be irradiated one by one, or may be irradiated with the other two simultaneously after irradiating one light source.
  • the complex light irradiation condition may be performed by dividing into two or three stages.
  • drying of the solvent of the ink applied before the sintering step it is preferable to dry the solvent of the ink applied before the sintering step.
  • the sintering may not be performed properly because the ink consumes a lot of energy in the phase change from the liquid phase to the solid phase when irradiating the composite light.
  • the drying method may be dried by using a hot air fan, a hot plate, or the like at a temperature of 70 to 120 ° C.
  • drying of the applied ink may be achieved by adjusting the complex light irradiation conditions according to the present invention. Preheating may be achieved by adjusting the conditions of complex light irradiation to achieve densification of the compound.
  • the semiconductor oxide ink can be completely dried and sintered for a very short time of about 0.1 to 100 ms at room temperature and atmospheric pressure.
  • the general structure of the composite optical sintering apparatus according to the present invention is shown in FIG.
  • the left side is an optical sintering apparatus using microwave white light using a xenon lamp
  • the right side is a composite optical sintering apparatus using near-infrared, microwave white light, and far infrared rays.
  • the composite optical sintering apparatus enables selective sintering and large area sintering without damaging the polymer substrate.
  • the sintering using the microwave white light may be irradiated with a pulse width of 0.1 to 100 ms, a pulse number of 1 to 100, an intensity of 0.1 to 50 J / cm 2, and a pulse gap of 0.1 to 20 ms.
  • the pulse width is greater than 100 ms, the incident energy per unit time is reduced, which may lower the efficiency of sintering.
  • the pulse gap is greater than 20 ms or the number of pulses is greater than 100 times, the semiconductor oxide ink cannot be sintered due to too low energy even if the intensity is less than 0.1 J / cm 2, and the pulse gap is less than 0.01 ms or the intensity is If the size is greater than 50 J / cm 2, there is a problem that the life of the equipment and lamp is rapidly reduced because the equipment and the lamp are exerted.
  • the light sintering condition is changed according to the change in pulse width (0.1 to 100 ms), pulse gap (0.1 to 20 ms), number of pulses (1 to 100 times), and intensity (0.1 J / cm 2 to 50 J / cm 2).
  • pulse width 0.1 to 100 ms
  • pulse gap 0.1 to 20 ms
  • number of pulses (1 to 100 times
  • intensity 0.1 J / cm 2 to 50 J / cm 2.
  • PI 5 ⁇ 50J
  • photo paper 3 ⁇ 15J
  • the graph of the short pulse white light of the xenon lamp is shown in FIG. 3 for better understanding, and the dielectric constant change of the semiconductor oxide (SrTiO 3 ) according to the change of the microwave white light irradiation energy during the microwave sintering is shown in FIG. 4. It was. If the microwave white light irradiation energy is less than 10 J / cm2 the irradiation energy is not enough, the dielectric constant was hardly measured, it can be seen that the dielectric constant increases as the irradiation energy increases to 15 J / cm2. However, when irradiated with white light of 20 J / cm2 or more, it can be seen that the dielectric constant is reduced again due to damage to the film due to excessive energy irradiation. This effect may vary depending on the thickness of the film, the size of the particles, the type of dispersion stabilizer and the type and thickness of the substrate.
  • the crystallization of the semiconductor oxide precursor ink film is performed at a high temperature of 600 ° C. or higher, and crystallization is performed well with higher temperature.
  • crystallization and dielectric constant of the semiconductor oxide can be improved by complex light irradiation using near-infrared light and microwave white light.
  • the near-infrared and microwave white light may be irradiated at the same time.
  • sintering may be performed at a high temperature of the film, and thus crystallization is excellent, and dielectric constant of semiconductor oxide is further improved. It is preferable to make it possible.
  • the white light irradiation energy and the near infrared energy increase, sintering does not occur effectively unconditionally.
  • the near infrared ray may be irradiated for 0 to 300 seconds at an intensity of 0 to 1000 W / cm 2, and the near infrared ray is irradiated at an intensity of 0 W / cm 2 or 0 seconds, which means that it is not irradiated with near infrared rays.
  • it is irradiated with an intensity of 400 to 700 W / cm 2. If the irradiation is less than 400 W / cm2 it takes a long time to increase the temperature of the film coated with a semiconductor oxide, if the irradiation is more than 700 W / cm2 may be too high temperature of the film in a short time Needs attention.
  • the near infrared ray may be a light source having a wavelength of 0.75 to 1.5 ⁇ m.
  • 5 and 6 show graphs of dielectric constant changes of semiconductor oxides (SrTiO 3 ) according to the irradiation time of near-infrared irradiation time and the irradiation energy of microwave-short white light when composite light sintering using near-infrared and microwave white light, respectively. Status was shown.
  • ultraviolet light in order to improve the dielectric constant of the semiconductor oxide, ultraviolet light can be irradiated with white light.
  • the white light and far ultraviolet rays may be irradiated sequentially, respectively, or may be irradiated simultaneously.
  • Strontium titanium oxide and barium titanium oxide which are semiconductor oxides according to the present invention, have a property of absorbing light of 100 to 380 nm, which is an far-infrared wavelength band, and thus 100 to 280 nm according to the present invention together with white light when the semiconductor oxide is sintered. Irradiation with ultraviolet rays of a wavelength is preferable because crystallization of the semiconductor oxide is well performed, surface quality of the film can be improved, and dielectric properties of the semiconductor oxide can be further improved.
  • the far ultraviolet rays may be irradiated at an intensity of 0 to 500 mW / cm 2 for 0 to 300 seconds, and preferably at 20 to 100 mW / cm 2.
  • FIG. 7 is a graph showing the change in dielectric constant of semiconductor oxide (SrTiO 3 ) according to the irradiation energy of far infrared rays when the composite light sintering using near-infrared, microwave white light and far infrared rays, and FIG.
  • the film surface state of the oxide (SrTiO 3 ) was photographed by an electron scanning microscope.
  • the light sintering step may be performed in a single-step or multi-step.
  • Step 1 Titanium (IV) isopropoxide solution was added to 0.75 M solution of strontium acetate and acetic acid, followed by mixing for 30 minutes. It was stabilized by adding 0.25 M of ethylene glycol. Then, by heating to 90 °C for 1 hour to prepare a precursor solution of strontium titanium oxide semiconductor oxide.
  • Step 2 The prepared solution was applied by spin coating (500 rpm, 30 sec) on an ITO-coated PEN film, and then dried for 20 minutes on a hot plate at 80 ° C.
  • Step 3 The prepared strontium titanium oxide semiconductor oxide thin film was irradiated with microwave white light under an intensity condition of 15 J / cm 2, pulse width 20 ms, and pulse number 1 using a xenon lamp.
  • Example 1 Except for using strontium acetate and strontium acetate instead of strontium acetate, the method of Example 1 was irradiated with microwave white light and sintered.
  • Example 1 Except for irradiating 500 W of near-infrared light for 180 seconds to the semiconductor oxide thin film before irradiating microwave white light in step 3 of Example 1, the method of Example 1 was sintered by composite light irradiation.
  • the semiconductor oxide thin film prepared by using barium acetate instead of strontium acetate was further added to irradiate the semiconductor oxide thin film with 180 W for 180 seconds before irradiating the microwave white light in the third step of Example 1. Then, the composite was irradiated and sintered by the method of Example 1.
  • Example 1 To the semiconductor oxide thin film prepared by mixing strontium acetate and barium acetate instead of strontium acetate, further irradiating the semiconductor oxide thin film with 180 W for 180 seconds before irradiating microwave white light in the third step of Example 1 Except for that, composite light irradiation and sintering were carried out by the method of Example 1.
  • the semiconductor oxide thin film was first irradiated with 500 W of near infrared rays for 180 seconds, and then, using a xenon lamp, intensity of 15 J / cm 2, pulse width of 20 ms, and number of pulses were irradiated with microwave white light and 90 Except for irradiating mW / cm 2 of far ultraviolet rays together, the composite was irradiated and sintered by the method of Example 1.
  • the semiconductor oxide thin film manufactured by using barium acetate instead of strontium acetate was first irradiated with 500 W of near infrared ray for 180 seconds, and then subjected to xenon lamp for 15 J / cm 2, pulse width 20 ms, and pulse number 1 irradiation Except that the wave white light and 90 mW / cm2 far ultraviolet rays were irradiated together, and sintered by composite light irradiation in the method of Example 1.
  • the irradiation intensity is 10 J / cm 2 or less
  • the sintering of the semiconductor oxide is not performed well.
  • the irradiation intensity is 20 J / cm 2 or more
  • the film is damaged due to excessive energy irradiation.
  • the pulse width is narrowed, as shown in FIG. 10, the film is damaged due to excessive energy irradiation.
  • the drop in dielectric constant is due to this film damage.
  • such effects may vary depending on the thickness of the film, the size of the particles, the type of dispersion stabilizer and the type and thickness of the substrate.
  • the semiconductor oxide thin film manufactured in Step 2 of Example 1 was irradiated with different near-infrared irradiation time and irradiated with microwave white light to confirm the change of dielectric constant.
  • the dielectric constant of the semiconductor oxide increases as the NIR irradiation time increases.
  • the dielectric constant was maximum when the white light irradiation energy was 15 J / cm 2, but when the irradiation energy increased to 20 J / cm 2, the dielectric constant decreased, resulting from damage to the film. to be.
  • the temperature of the semiconductor oxide thin film was raised to irradiate the microwave white light and the dielectric constant was measured, which is shown in Table 2 below.
  • the semiconductor oxide thin film prepared in Step 2 of Example 1 was irradiated for 180 seconds at 500 W, which is the optimum near infrared irradiation condition set in Test Example 2, and then set in Test Example 1
  • One optimum microwave white light irradiation condition of 15 J / cm2 and far ultraviolet rays were irradiated with varying the intensity of the far ultraviolet rays and the dielectric constant was measured and shown in FIG. 7, the film surface state is shown in FIG. It was.
  • the intensity of the far ultraviolet rays was increased at 30 and 90 mW / cm 2, and low dielectric constant at 60 mW / cm 2. Meanwhile, referring to FIG. 8, it was found that the crystallization of the semiconductor oxide is excellent when the intensity of far ultraviolet rays is 90 mW / cm 2.
  • FIGS. 13 when the temperature of the substrate is 80 ° C.
  • FIG. 14 when the temperature of the substrate is 150 ° C.
  • FIG. 15 without heat treatment and near-infrared treatment are used to increase the temperature of the substrate by applying heat instead of near infrared rays.
  • the crystallization was not as well performed as compared to the case of irradiation, and the surface state of the film was poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thin Film Transistor (AREA)

Abstract

The present invention relates to a method for light sintering a semiconductor oxide ink by a complex light source using intense pulsed light, a near infrared ray and a far ultraviolet ray, the method being capable of annealing and sintering a semiconductor oxide ink for complex light sintering, selectively or for a large area, at room temperature and under atmospheric conditions for a short time of 1 to 100 ms, the semiconductor oxide ink for complex light sintering comprising: a semiconductor oxide selected from strontium titanium oxide (SrTiO3), barium titanium oxide (BaTiO3) or a mixture thereof; and a dispersion stabilizer.

Description

극단파 백색광, 근적외선 및 원자외선을 이용한 반도체 산화물의 복합 광 어닐링 및 소결 방법Composite light annealing and sintering method of semiconductor oxide using microwave white light, near infrared ray and far infrared ray
본 발명은 극단파 백색광, 근적외선 및 원자외선을 이용한 복합 광원으로 광조사하여 소결할 수 있는 복합 광 소결용 반도체 산화물 잉크 및 이를 이용한 광소결 방법에 관한 것이다.The present invention relates to a semiconductor oxide ink for composite light sintering which can be sintered by light irradiation with a composite light source using microwave white light, near infrared light and far infrared light, and a light sintering method using the same.
현대 출시되고 있는 휴대폰, 네비게이션, DID(Digital Information Display), 태블릿(Tablet) 등 다양한 형태의 디지털 단말기들은 터치 인터페이스(Touch interface)를 기본적으로 제공하고 있다. 터치 인터페이스와 연동하여 사용자 경험을 증강시키기 위한 방법으로 최근에 부각되는 기술이 촉감을 제공하는 햅틱(Haptic) 기술이다. 햅틱 기술을 이용하면 사용자가 디지털 객체와 상호작용할 때 다양한 형태의 촉감을 발생시켜 사용자에게 시각과 촉각이 융합된 형태의 피드백을 제공함으로써 보다 실감 있는 사용자 인터페이스를 제공할 수 있다.Various types of digital terminals such as mobile phones, navigation, digital information displays (DIDs), and tablets that are being released on the market today provide a touch interface. As a method for enhancing the user experience by interworking with the touch interface, a recently emerging technology is a haptic technology that provides a touch. Haptic technology can provide a more realistic user interface by generating various types of tactile sensations when a user interacts with a digital object, thereby providing feedback to the user in a fusion of visual and tactile forms.
촉감을 제공하기 위한 종래 방식으로는 모터 방식이 가장 일반적이다. 모터 방식은 빠른 반응속도, 저전력 및 촉감 출력 제어의 용이성으로 인해 모바일 장치에서 다양하게 활용되어 왔다. 그러나 모터 방식으로 촉감을 제공할 경우, 촉각 모듈의 크기로 인해 모듈 배치의 어려움이 있고, 기구 자체의 두께가 두꺼워지는 단점이 있다. 특히 모터 방식을 사용하는 종래 기술은 기구 전체로 진동이 전파되는 구조이기 때문에, 국부적으로 사용자 손이 닿는 곳에서만 촉감(Localized Haptic Sense)을 제공하기 어려워 휴대용 전자기기가 아닌 네비게이션, DID, 모니터 등에 적용하기는 어렵다.As a conventional method for providing a touch, a motor method is the most common. Motor systems have been used in a variety of mobile devices because of their fast response speed, low power and ease of tactile output control. However, in the case of providing the tactile feeling by the motor method, there is a difficulty in arranging the module due to the size of the tactile module, and the thickness of the mechanism itself is thick. In particular, the conventional technique using the motor method is a structure in which vibration propagates through the entire apparatus, so it is difficult to provide a localized haptic sense only in the place where the user can reach it locally, so it is applied to navigation, DID, monitor, etc., rather than a portable electronic device. It's hard to do.
이러한 단점을 극복하기 위해 최근에는 디스플레이 패널 위에 장착할 수 있는 필름형 촉각 모듈 기술이 등장하였다. 필름형 촉각 모듈은 터치패널의 구현방식에 따라 저항막(Resistive) 방식, 정전용량(Capacitive) 방식, SAW(Surface Accoustic Wave; 초음파) 방식, IR(Infrared; 적외선) 방식 등으로 구분되며 저항막 방식과 정전용량 방식이 주로 사용된다. 저항막 방식은 투명전극이 코팅되어 있는 두 장의 기판을 합착시킨 구조로써 손가락이나 펜으로 압력을 가해 상부와 하부의 전극층이 접촉되면 전기적 신호가 발생되어 위치를 인지하는 방식이다. 저항막 방식의 경우 가격이 싸고 정확도가 높으며 소형화에 유리하나 물리적으로 두 장의 기판이 접촉되어야 터치를 인식하기 때문에 견고하게 제작되는데 어려움이 있다.In order to overcome these disadvantages, a film type tactile module technology that can be mounted on a display panel has recently emerged. The film type tactile module is classified into resistive method, capacitive method, surface accoustic wave (SAW) method, IR (infrared (infrared) method), etc. according to the implementation method of the touch panel. Overcapacity is mainly used. The resistive film is a structure in which two substrates coated with a transparent electrode are bonded to each other. An electric signal is generated when the upper and lower electrode layers contact each other by applying pressure with a finger or a pen to recognize a position. In the case of the resistive film type, the price is low, the accuracy is high, and it is advantageous for the miniaturization, but it is difficult to manufacture it firmly because the touch is recognized when two substrates are physically in contact.
한편, 정전용량 방식은 사람의 몸에서 발생하는 정전기를 감지해 구동하는 방식으로서 내구성이 강하고 반응시간이 짧으며 투과성이 좋은 반면, 가격이 높고 펜을 이용하거나 장갑을 낀 손 등에는 동작하지 않는 단점을 가지고 있다. 일부 산업용이나 카지노 게임기 중에 사용되었으며, 최근 휴대폰에 채택되기 시작하고 있다. 그 밖의 SAW 방식은 방출된 초음파가 장애물로 만나 파동의 크기(Amplitude)가 줄어든 것을 감지하는 방식으로 빛 투과율이 좋은 반면 센서의 오염과 액체에 약한 단점이 있다. 터치스크린 패널이 대형화 됨에 따라 박막의 저 저항이 요구되며, 우수한 Etching 특성과 저저항 특성을 가지는 ITO 조성 개발이 활발히 이루어지고 있다.On the other hand, the capacitive method is a method of sensing and driving static electricity generated by a human body, which is durable, short in response time, and good in permeability, but high in price, and does not work on a pen or a gloved hand. Have It has been used in some industrial and casino game consoles and has recently begun to be adopted in mobile phones. The other SAW method detects that the emitted ultrasonic wave encounters an obstacle and reduces the amplitude of the wave. The SAW method has a good light transmittance, but has a weak point in contamination of the sensor and liquid. As touch screen panels become larger, low resistance of thin films is required, and development of ITO composition having excellent etching characteristics and low resistance characteristics is being actively performed.
상술한 종래 기술들의 경우 터치에 의한 위치 인식과 촉감 피드백을 동시에 제공하기 위해서는 기존 터치 패털의 위나 아래에 추가로 여러 개의 기판, 전극층, 절연층 등을 삽입해야 한다. 그러나 터치 스크린에 이러한 구조를 삽입할 경우 제품의 수율 하락, 단가 상승, 그리고 광 투과율이 저하되는 문제점이 있어 실제 제품에 적용되기는 매우 어렵다.In the above-described prior arts, in order to simultaneously provide location recognition and tactile feedback by touch, a plurality of substrates, electrode layers, and insulating layers must be inserted above or below the existing touch panel. However, when such a structure is inserted into the touch screen, there is a problem in that the yield of the product is lowered, the unit price is increased, and the light transmittance is lowered.
주요 요구기술로는 분말 입자 제어기술 (100 ㎚ 이하) 확보가 우선이며, 초박형 Sheet 성형기술, 바인더 조성기술, 전극 프린팅 기술, 분위기 소성기술 및 고도의 특성 분석 기술개발이 있으며 성형기술은 테이프 캐스팅법이 사용되는데 현재 약 0.8 수준에 있으나 더 박층의 성형을 위한 연구가 진행되고 있다. 소재기술로는 높은 정전용량과 절연특성을 가지고 있어 정전용량 형 터치패널의 주재료로 사용되고 있는 (Sr, Ba)TiO3 제조기술과 (Sr, Ba)TiO3에 여러 가지의 성분을 첨가하여 원하고자 하는 유전특성을 나타내는 조성기술이 핵심기술이다.The main requirements are to secure the powder particle control technology (100 nm or less), and to develop ultra-thin sheet molding technology, binder composition technology, electrode printing technology, atmosphere firing technology and advanced characterization technology. It is currently used at about 0.8 levels, but research is being conducted for forming thinner layers. As a material technology, it has high capacitance and insulation characteristics and wants to add (Sr, Ba) TiO 3 manufacturing technology and (Sr, Ba) TiO 3 which are used as main materials of capacitive touch panel. The composition technology showing the dielectric properties is a key technology.
반도체 산화물의 유전특성을 위해서는 박막을 결정화를 위한 어닐링 및 소결 공정이 필요하다. 현재까지는 졸겔 공정을 통해 결정화를 이루기 위해 어닐링을 하거나, 나노 입자 기반의 잉크를 소결하기 위하여 600 ℃ 이상의 고온 열 소결 공정이 요구되어 왔다. 또한, 강한 빛으로 작은 면적을 소결하는 레이저 소결법, 마이크로파를 이용한 마이크로웨이브 소결법, 분체 재료에 압력과 저전압 및 대류를 걸어서 소결하는 플라즈마 소결법이 발명되어 사용되고 있다.Dielectric properties of semiconductor oxides require annealing and sintering processes to crystallize the thin film. Until now, a high temperature thermal sintering process of 600 ° C. or more has been required to anneal to achieve crystallization through a sol-gel process or to sinter nano-based ink. In addition, laser sintering methods for sintering small areas with strong light, microwave sintering methods using microwaves, and plasma sintering methods for sintering by applying pressure, low voltage and convection to powder materials have been invented and used.
그러나, 종래의 열 소결 공정은 폴리머 기판 사용에 제한이 있기 때문에 플렉서블 터치패널 구현이 불가능하다. 이를 위해 폴리머 기판이 손상을 입지 않는 저온 소결 공정의 필요성이 대두되어 왔다. 하지만, 대안으로 제시되고 있는 레이저 소결법은 조사면적이 매우 좁아 국부적인 소결만이 가능하여 대량생산에 한계가 있고, 플라즈마 소결법은 비활성 기체의 상태 유지를 위한 고가의 챔버와 같이 정교하고 복잡한 장비를 요구하기 때문에 산업화에 적합하지 않다.However, the conventional thermal sintering process is limited in the use of a polymer substrate, it is impossible to implement a flexible touch panel. For this purpose, there has been a need for a low temperature sintering process in which the polymer substrate is not damaged. However, the proposed laser sintering method has a very small irradiation area, so that only local sintering is possible, and thus there is a limitation in mass production. The plasma sintering method requires sophisticated and complicated equipment such as an expensive chamber for maintaining inert gas. It is not suitable for industrialization.
<선행기술문헌><Preceding technical literature>
특허문헌 1. 대한민국 등록특허 제1,305,119호 Patent Documents 1. Republic of Korea Patent No. 1,305,119
특허문헌 2. 대한민국 등록특허 제1,359,663호 Patent Document 2. Republic of Korea Patent No. 1,359,663
특허문헌 3. 대만힌국 등록특허 제1,025,701호 Patent Document 3. Taiwan Hinguk Registration No. 1,025,701
특허문헌 4. 대한민국 공개특허 제10-2013-0062478호 Patent Document 4. Republic of Korea Patent Publication No. 10-2013-0062478
본 발명의 목적은 유전특성을 향상시킬 수 있도록 복합 광원을 이용하여 상온/대기 조건과 매우 짧은 시간에 어닐링 및 소결을 할 수 있는 복합 광 소결용 반도체 산화물 잉크를 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor oxide ink for composite light sintering that can be annealed and sintered at room temperature / atmosphere and in a very short time by using a composite light source to improve dielectric properties.
본 발명의 다른 목적은 상기 복합 광 소결용 반도체 산화물 잉크를 이용한 복합 광 소결 방법을 제공하는데 있다. Another object of the present invention is to provide a composite light sintering method using the semiconductor oxide ink for composite light sintering.
상기한 목적을 달성하기 위한 본 발명의 복합 광 소결용 반도체 산화물 잉크는 스트론튬 티타늄 옥사이드(SrTiO3), 바륨 티타늄 옥사이드(BaTiO3) 또는 이들의 혼합물 중에서 선택되는 반도체 산화물 및 분산안정제를 포함할 수 있다.The semiconductor oxide ink for composite light sintering of the present invention for achieving the above object may include a semiconductor oxide and a dispersion stabilizer selected from strontium titanium oxide (SrTiO 3 ), barium titanium oxide (BaTiO 3 ) or a mixture thereof. .
상기 복합 광 소결용 반도체 산화물 잉크는 광소결 조건이 제논 플래쉬 램프의 펄스 수가 1 내지 100일 때, 강도가 0.1 내지 50 J/㎠이고, 펄스 폭이 0.1 내지 100 ms이며, 펄스 갭이 0.1 내지 20 ms의 조사 조건으로 조사되는 극단파 백색광; 0 내지 1000 W/㎠의 세기로 0 내지 300초간 조사되는 근적외선 및 0 내지 500 mW/㎠의 세기로 0 내지 300초간 조사되는 원자외선이 함께 조사되는 것일 수 있다.The semiconductor oxide ink for composite light sintering has an intensity of 0.1 to 50 J / cm 2, a pulse width of 0.1 to 100 ms, and a pulse gap of 0.1 to 20 when light sintering conditions are 1 to 100 pulses of the xenon flash lamp. microwave white light irradiated with an irradiation condition of ms; Near-infrared rays irradiated for 0 to 300 seconds at an intensity of 0 to 1000 W / cm 2 and far ultraviolet rays irradiated for 0 to 300 seconds at an intensity of 0 to 500 mW / cm 2 may be irradiated together.
또한, 광소결 조건이 제논 플래쉬 램프의 펄스 수가 1 일 때, 강도가 5 내지 15 J/㎠이고, 펄스 폭이 5 내지 30 ms의 조사 조건으로 조사되는 극단파 백색광; 400 내지 600 W/㎠의 세기로 150 내지 200 초간 조사되는 근적외선 및 20 내지 90 mW/㎠의 세기로 조사되는 원자외선이 함께 조사되는 것일 수 있다.Further, when the light sintering condition is the number of pulses of the xenon flash lamp is 1, the microwave white light irradiated under the irradiation conditions of 5 to 15 J / ㎠ and a pulse width of 5 to 30 ms; Near-infrared rays irradiated for 150 to 200 seconds at an intensity of 400 to 600 W / cm 2 and far-ultraviolet rays irradiated at an intensity of 20 to 90 mW / cm 2 may be irradiated together.
본 발명에 의하면, 상기 광소결은 극단파 백색광, 근적외선 및 원자외선이 동시에 조사될 수도 있으나, 순차적으로 조사될 수도 있다.According to the present invention, the optical sintering may be irradiated with microwave white light, near infrared ray and far infrared ray at the same time, or may be irradiated sequentially.
또한, 조사 순서의 제한은 없으며, 예를 들어 근적외선 선조사 후 극단파 백색광과 원자외선을 동시에 조사할 수도 있고, 근적외선-극단파 백색광-원자외선 순으로 조사할 수도 있다.In addition, there is no restriction | limiting in the irradiation order, For example, after near-infrared ray irradiation, you may irradiate with extreme white light and far infrared rays simultaneously, and you may irradiate with near-infrared-extreme white light-ultraviolet.
상기 반도체 산화물은 반도체 산화물 전구체를 포함하는 것일 수 있는데, 상기 반도체 산화물 전구체는 스트론튬 전구체 및 바륨 전구체 중에서 선택되는 어느 하나 또는 이들의 혼합물, 아세트산 및 티타늄 전구체를 포함하는 것일 수 있다.The semiconductor oxide may include a semiconductor oxide precursor, and the semiconductor oxide precursor may include any one or a mixture thereof selected from a strontium precursor and a barium precursor, an acetic acid, and a titanium precursor.
본 발명에 의하면, 상기 스트론튬 전구체는 스트론튬 아세테이트, 질산 스트론튬, 스트론튬 클로라이드 헥사 하이드레이트 중에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바륨 전구체는 바륨 아세테이트, 질산 바륨, 바륨 클로라이드 헥사 하이드레이트 중에서 선택되는 어느 하나 또는 둘 이상일 수 있고, 상기 티타늄 전구체는 티타늄 테트라클로라이트, 티타늄 테트라에톡사이드, 티타늄 테트라이소프로포사이드, 티타튬(이소프로포사이드)2(2,2,6,6,-테트라메틸헵단디오네이트)2, 티타늄(디메틸아미노에톡사이드)4 및 티타늄(메틸펜탄디올)(2,2,6,6,-테트라메틸헵단디오네이트)2 중에서 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있다. According to the present invention, the strontium precursor may be any one or two or more selected from strontium acetate, strontium nitrate, strontium chloride hexahydrate, and the barium precursor is any one or two selected from barium acetate, barium nitrate, barium chloride hexahydrate. The titanium precursor may be titanium tetrachlorite, titanium tetraethoxide, titanium tetraisopropoxide, titanium (isopropoxide) 2 (2,2,6,6, -tetramethylheptanedionate) 2 , Titanium (dimethylaminoethoxide) 4 and titanium (methylpentanediol) (2,2,6,6, -tetramethylheptanedionate) 2 or a mixture of two or more thereof.
본 발명에 의하면 상기 분산안정제는 에틸렌 글리콜, 에탄올아민, 에틸디에탄올아민, 헥사놀아민, n-메틸피페리딘, 폴리비닐피롤리돈, 폴리비닐알콜, 폴리비닐부티랄, 폴리메틸메타크릴레이트, 덱스트란, 아조비스 및 도데실벤젠황산나트륨으로 이루어진 군 중에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 반도체 산화물 1 몰에 대하여 분산안정제 0.1 내지 0.4 몰의 비율로 포함될 수 있다. According to the present invention, the dispersion stabilizer is ethylene glycol, ethanolamine, ethyl diethanolamine, hexanolamine, n-methylpiperidine, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate. It may be any one or two or more selected from the group consisting of dextran, azobis, and sodium dodecylbenzene sulfate, and may be included in a ratio of 0.1 to 0.4 mol of a dispersion stabilizer based on 1 mol of semiconductor oxide.
본 발명에 의하면, 상기 반도체 산화물은 입자의 크기가 직경이 1 내지 999 ㎚인 나노입자 및 직경이 1 내지 10 ㎛인 마이크로입자 중에서 선택되는 어느 하나 또는 이들의 혼합물로 이루어진 것일 수 있다.According to the present invention, the semiconductor oxide may be composed of any one or a mixture thereof selected from nanoparticles having a particle size of 1 to 999 nm in diameter and microparticles having a diameter of 1 to 10 μm.
또한, 상기한 다른 목적을 달성하기 위한 본 발명의 복합 광 소결용 반도체 산화물 잉크는 하기의 단계를 포함하는 방법을 통해 복합 광 소결될 수 있다.In addition, the semiconductor oxide ink for composite light sintering of the present invention for achieving the above another object may be composite light sintered by a method comprising the following steps.
1) 스트론튬 티타늄 옥사이드(SrTiO3), 바륨 티타늄 옥사이드(BaTiO3) 또는 이들의 혼합물 중에서 선택되는 반도체 산화물 및 분산안정제를 포함하는 광소결용 반도체 산화물 잉크를 제조하는 단계,1) preparing a semiconductor oxide ink for photo-sintering comprising a semiconductor oxide and a dispersion stabilizer selected from strontium titanium oxide (SrTiO 3), barium titanium oxide (BaTiO 3), or a mixture thereof;
2) 상기 광소결용 반도체 산화물 잉크를 기판상에 코팅하는 단계,2) coating the photosintering semiconductor oxide ink on a substrate;
3) 상기 광소결용 반도체 산화물 잉크가 코팅된 기판을 상온 조건에서 극단파 백색광을 조사하여 광소결 하는 단계.3) photosintering the substrate coated with the semiconductor oxide ink for photosintering by irradiating microwave white light at room temperature.
본 발명에 의하면, 상기 3) 단계는 근적외선 및 원자외선 중에서 선택되는 어느 하나 또는 둘이 함께 조사되는 것일 수 있다.According to the present invention, the step 3) may be one or two selected from near-infrared and far-infrared are irradiated together.
상기 극단파 백색광은 제논 플래쉬 램프로부터 조사되는 것으로, 조사 조건이 펄스 폭이 0.1 내지 100 ms이며, 펄스 수가 1 내지 100이고, 강도가 0.1 내지 50 J/㎠이며, 펄스 갭이 0.1 내지 20 ms으로 조사되는 것일 수 있으며,The microwave white light is irradiated from a xenon flash lamp, and the irradiation conditions are 0.1 to 100 ms in pulse width, 1 to 100 pulses, 0.1 to 50 J / cm 2, and 0.1 to 20 ms in pulse gap. May be investigated,
상기 근적외선은 0 내지 1000 W/㎠의 세기로 0 내지 300 초간 조사되는 것 일 수 있고, 상기 원자외선은 0 내지 500 mW/㎠의 세기로 0 내지 300 초간 조사되는 것 일 수 있다.The near infrared ray may be irradiated for 0 to 300 seconds at an intensity of 0 to 1000 W / cm 2, and the far infrared ray may be irradiated for 0 to 300 seconds at an intensity of 0 to 500 mW / cm 2.
상기 기판은 전도성 물질이 코팅된 것으로 폴리에틸렌 나프탈레이트(PEN), 폴리에틸렌(PT), 폴리이미드(PI), 폴리에스터(PET), BT 에폭시/유리 섬유 및 포토페이퍼로 이루어진 군에서 선택될 수 있으며, 상기 광소결 단계는 일 단계(single-step) 또는 다 단계(multi-step)으로 수행될 수 있다. The substrate is coated with a conductive material may be selected from the group consisting of polyethylene naphthalate (PEN), polyethylene (PT), polyimide (PI), polyester (PET), BT epoxy / glass fiber and photopaper, The light sintering step may be performed in a single-step or multi-step.
본 발명에 따른 극단파 백색광 또는 극단파 백색광과 근적외선 및 원적외선 중에서 선택되는 1 종 이상의 광원을 조사하는 복합 광 소결방법을 이용한 반도체 산화물의 소결 방법은 순간적으로 넓은 영역에 강한 빛을 조사하여 상온 및 대기 상태에서 소결이 가능하므로 대면적 및 선택적 소결이 가능하고, 폴리머 기판의 손상을 야기하지 않는다. 또한 별도의 진공 장비나 대형 챔버가 필요하지 않아 정전용량 형 터치패널 제작에 있어 공정비용을 크게 줄일 수 있어 경제적이다. 이러한 복합 광 소결 방법을 이용하면 햅틱 기능을 갖춘 플렉서블 터치 스크린의 구현이 가능하여 디스플레이 산업에 유용하게 적용할 수 있다. The sintering method of the semiconductor oxide using the complex light sintering method of irradiating microwave white light or microwave white light and at least one light source selected from near infrared light and far infrared light according to the present invention is instantaneously irradiated with a strong light in a wide area, and the ambient temperature and the atmosphere. Since sintering is possible in a state, large area and selective sintering are possible, and it does not cause damage to a polymer substrate. In addition, there is no need for a separate vacuum equipment or a large chamber, so the manufacturing cost can be greatly reduced in capacitive touch panel manufacturing. This composite light sintering method enables the implementation of a flexible touch screen with a haptic function, which can be usefully applied to the display industry.
도 1은 본 발명의 일 실시예에 따라 복합 광원을 이용하여 반도체 산화물 잉크를 소결하는 과정을 나타내는 공정순서도이다. 1 is a process flowchart showing a process of sintering a semiconductor oxide ink using a composite light source according to an embodiment of the present invention.
도 2는 본 발명에 따른 복합광 소결 장치 및 소결하는 과정을 보여주는 모식도이다.2 is a schematic diagram showing a composite light sintering apparatus and a sintering process according to the present invention.
도 3은 본 발명에 따른 제논 램프의 단펄스 백색광에 대한 그래프이다.3 is a graph of short pulse white light of a xenon lamp according to the present invention.
도 4는 본 발명에 따른 제논 램프에서 조사되는 극단파 백색광 조사 에너지의 변화에 따른 반도체 산화물(SrTiO3)의 유전상수 변화 그래프이다.4 is a graph showing a change in dielectric constant of semiconductor oxide (SrTiO 3 ) according to a change in microwave white light irradiation energy emitted from a xenon lamp according to the present invention.
도 5는 본 발명에 따른 근적외선과 극단파 백색광을 이용한 복합 광 소결 시 근적외선 조사시간 및 극단파 백색광의 조사에너지에 따른 반도체 산화물(SrTiO3)의 유전상수 변화 그래프이다.FIG. 5 is a graph of dielectric constant change of semiconductor oxide (SrTiO 3 ) according to irradiation time of near-infrared irradiation time and microwave white light when sintering composite light using near-infrared and microwave white light according to the present invention.
도 6은 본 발명에 따른 근적외선과 극단파 백색광을 이용한 복합 광 소결 시 근적외선 조사시간 및 극단파 백색광의 조사에너지에 따른 반도체 산화물(SrTiO3) 표면의 전자주사현미경 이미지이다.6 is an electron scanning microscope image of the surface of semiconductor oxide (SrTiO 3 ) according to the irradiation time of the near infrared irradiation time and the microwave white light when the composite light sintering using the near infrared and microwave white light according to the present invention.
도 7은 본 발명에 따른 근적외선, 극단파 백색광 및 원자외선을 이용한 복합 광 소결 시 원자외선 조사에너지에 따른 반도체 산화물(SrTiO3)의 유전상수 변화 그래프이다.FIG. 7 is a graph showing the change of dielectric constant of semiconductor oxide (SrTiO 3 ) according to far-infrared irradiation energy when sintering composite light using near-infrared, microwave white light and far-ultraviolet radiation according to the present invention.
도 8은 본 발명에 따른 근적외선, 극단파 백색광 및 원자외선을 이용한 복합 광 소결 시 원자외선 조사에너지에 따른 반도체 산화물(SrTiO3) 표면의 전자주사현미경 이미지이다.FIG. 8 is an electron scanning microscope image of a surface of semiconductor oxide (SrTiO 3 ) according to far-infrared irradiation energy when sintering composite light using near infrared light, microwave white light, and far ultraviolet light according to the present invention.
도 9는 본 발명에 따른 극단파 백색광의 조사 조건에 따른 반도체 산화물(SrTiO3) 표면의 전자주사현미경 이미지이다.9 is an electron scanning microscope image of the surface of the semiconductor oxide (SrTiO 3 ) according to the irradiation conditions of microwave white light according to the present invention.
도 10은 본 발명에 따른 극단파 백색광의 펄스 폭 변화에 따른 반도체 산화물(SrTiO3) 표면의 전자주사현미경 이미지이다.10 is an electron scanning microscope image of the surface of the semiconductor oxide (SrTiO 3 ) according to the pulse width change of the microwave white light according to the present invention.
도 11은 본 발명에 따른 80 ℃로 처리한 반도체 산화물 박막의 단파 백색광의 펄스 폭 변화에 따른 반도체 산화물(SrTiO3) 표면의 전자주사현미경 이미지이다.11 is an electron scanning microscope image of the surface of the semiconductor oxide (SrTiO 3 ) according to the pulse width change of the short-wave white light of the semiconductor oxide thin film treated at 80 ℃ according to the present invention.
도 12는 본 발명에 따른 150 ℃로 처리한 반도체 산화물 박막의 단파 백색광의 펄스 폭 변화에 따른 반도체 산화물(SrTiO3) 표면의 전자주사현미경 이미지이다.12 is an electron scanning microscope image of the surface of the semiconductor oxide (SrTiO 3 ) according to the pulse width change of the short-wave white light of the semiconductor oxide thin film treated at 150 ℃ according to the present invention.
도 13은 본 발명에 따른 80 ℃로 처리한 반도체 산화물 박막에 극단파 백색광 및 원자외선을 이용한 복합 광 소결 시 원자외선 조사에너지 변화에 따른 반도체 산화물(SrTiO3) 표면의 전자주사현미경 이미지이다.FIG. 13 is an electron scanning microscope image of the surface of semiconductor oxide (SrTiO3) according to the change of far-infrared irradiation energy when sintering composite light using microwave white light and ultra-violet rays in a semiconductor oxide thin film treated at 80 ° C. according to the present invention.
도 14는 본 발명에 따른 150 ℃로 처리한 반도체 산화물 박막에 극단파 백색광 및 원자외선을 이용한 복합 광 소결 시 원자외선 조사에너지 변화에 따른 반도체 산화물(SrTiO3) 표면의 전자주사현미경 이미지이다.FIG. 14 is an electron scanning microscope image of the surface of semiconductor oxide (SrTiO3) according to the change of far-infrared irradiation energy when sintering composite light using microwave white light and ultra-violet rays in a semiconductor oxide thin film treated at 150 ° C. according to the present invention.
도 15는 본 발명에 따른 열처리 하지 않은 반도체 산화물 박막에 극단파 백색광 및 원자외선을 이용한 복합 광 소결 시 원자외선 조사에너지 변화에 따른 반도체 산화물(SrTiO3) 표면의 전자주사현미경 이미지이다.FIG. 15 is an electron scanning microscope image of the surface of semiconductor oxide (SrTiO3) according to the change of far-infrared irradiation energy when sintering composite light using microwave white light and ultra-violet rays in the unheat-treated semiconductor oxide thin film according to the present invention.
이하, 본 발명을 보다 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.
본 발명의 복합 광 소결용 반도체 산화물 잉크는 스트론튬 티타늄 옥사이드(SrTiO3), 바륨 티타늄 옥사이드(BaTiO3) 또는 이들의 혼합물 중에서 선택되는 반도체 산화물 및 분산안정제를 포함할 수 있다. The semiconductor oxide ink for composite light sintering of the present invention may include a semiconductor oxide and a dispersion stabilizer selected from strontium titanium oxide (SrTiO 3 ), barium titanium oxide (BaTiO 3 ), or a mixture thereof.
본 발명에 따른 복합 광 소결용 반도체 산화물 잉크는 광소결 조건이 제논 플래쉬 램프의 펄스 수가 1 내지 100일 때, 강도가 0.1 내지 50 J/㎠이고, 펄스 폭이 0.1 내지 100 ms이며, 펄스 갭이 0.1 내지 20 ms의 조사 조건으로 조사되는 극단파 백색광; 0 내지 1000 W/㎠의 세기로 0 내지 300초간 조사되는 근적외선 및 0 내지 500 mW/㎠의 세기로 0 내지 300초간 조사되는 원자외선이 함께 조사되는 것일 수 있다.The semiconductor oxide ink for composite light sintering according to the present invention has an intensity of 0.1 to 50 J / cm 2, a pulse width of 0.1 to 100 ms, and a pulse gap when the light sintering condition is 1 to 100 pulses of the xenon flash lamp. Microwave white light irradiated with irradiation conditions of 0.1 to 20 ms; Near-infrared rays irradiated for 0 to 300 seconds at an intensity of 0 to 1000 W / cm 2 and far ultraviolet rays irradiated for 0 to 300 seconds at an intensity of 0 to 500 mW / cm 2 may be irradiated together.
본 발명에 있어서, 상기 근적외선 또는 원자외선이 0 초간 조사되는 조건은 상기 광원을 조사하지 않는다는 의미이다. 즉, 본 발명에 따른 광 조사는 극단파 백색광을 단독 조사, 극단파 백색광 및 근적외선을 복합조사, 극단파 백색광 및 원자외선을 복합조사 및 극단파 백색광, 근적외선 및 원자외선을 복합조사하는 것 일 수 있다.In the present invention, the condition under which the near-infrared or far-ultraviolet rays are irradiated for 0 seconds means that the light source is not irradiated. That is, the light irradiation according to the present invention may be a single irradiation of microwave white light, a combination of microwave white light and near-infrared light, a combination of microwave white light and far-infrared light, and a combination of microwave white light, near-infrared and far infrared light. have.
또한, 상기 광소결 조건의 최적 조건은 극단파 백색광, 근적외선 및 원자외선의 설정 조건에 따라 달라질 수 있다. 예를 들어, 본 발명에 따른 복합 광 조사용 반도체 산화물 잉크의 최적 광소결 조건은 제논 플래쉬 램프의 펄스 수가 1 일 때, 강도가 5 내지 15 J/이고, 펄스 폭이 5 내지 30 ms의 조사 조건으로 조사되는 극단파 백색광과 400 내지 600 W/의 세기로 150 내지 200 초간 조사되는 근적외선 및 20 내지 90 mW/의 세기로 조사되는 원자외선이 함께 조사되는 것일 수 있으나 이에 제한되는 것은 아니다.In addition, the optimum conditions of the light sintering conditions may vary depending on the setting conditions of the microwave white light, near infrared rays and far infrared rays. For example, the optimum light sintering condition of the semiconductor oxide ink for composite light irradiation according to the present invention is an irradiation condition of 5 to 15 J / intensity and a pulse width of 5 to 30 ms when the number of pulses of the xenon flash lamp is 1; Ultraviolet white light irradiated with and near-infrared rays irradiated for 150 to 200 seconds at an intensity of 400 to 600 W / and ultraviolet rays irradiated at an intensity of 20 to 90 mW / may be irradiated together, but is not limited thereto.
상기 극단파 백색광, 근적외선 및 원자외선은 동시에 조사될 수도 있으나, 순차적으로 조사될 수도 있으며, 이 경우 조사순서의 제한은 없으나 바람직하게는 근적외선이 먼저 조사된 후, 극단파 백색광과 원자외선이 조사될 수 있으며, 가장 바람직하게는 근적외선이 먼저 조사된 후, 극단파 백색광과 원자외선이 동시 조사되는 것일 수 있다.The microwave white light, near infrared ray and far infrared ray may be irradiated at the same time, but may be irradiated sequentially. In this case, there is no limitation in the order of irradiation, but preferably the near infrared ray is irradiated first, and then the microwave white ray and ultraviolet ray may be irradiated. Most preferably, the near-infrared ray is first irradiated, and then the microwave white light and the far-ultraviolet ray are simultaneously irradiated.
본 발명에 의하면, 본 발명에 사용되는 반도체 산화물은 반도체 산화물 전구체를 포함할 수 있다.According to the present invention, the semiconductor oxide used in the present invention may include a semiconductor oxide precursor.
상기 반도체 산화물 전구체는 스트론튬 전구체 및 바륨 전구체 중에서 선택되는 어느 하나 또는 이들의 혼합물; 아세트산; 및 티타늄 전구체;를 포함하는 것일 수 있다.The semiconductor oxide precursor is any one selected from strontium precursor and barium precursor or a mixture thereof; Acetic acid; And titanium precursor; may be to include.
본 발명에 의하면, 상기 스트론튬 전구체는 스트론튬 아세테이트, 질산 스트론튬, 스트론튬 클로라이드 헥사 하이드레이트 중에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 바륨 전구체는 바륨 아세테이트, 질산 바륨, 바륨 클로라이드 헥사 하이드레이트 중에서 선택되는 어느 하나 또는 둘 이상일 수 있고, 상기 티타늄 전구체는 티타늄 테트라클로라이트, 티타늄 테트라에톡사이드, 티타늄 테트라이소프로포사이드, 티타튬(이소프로포사이드)2(2,2,6,6,-테트라메틸헵단디오네이트)2, 티타늄(디메틸아미노에톡사이드)4 및 티타늄(메틸펜탄디올)(2,2,6,6,-테트라메틸헵단디오네이트)2 중에서 선택되는 어느 하나 또는 둘 이상일 수 있다.According to the present invention, the strontium precursor may be any one or two or more selected from strontium acetate, strontium nitrate, strontium chloride hexahydrate, and the barium precursor is any one or two selected from barium acetate, barium nitrate, barium chloride hexahydrate. The titanium precursor may be titanium tetrachlorite, titanium tetraethoxide, titanium tetraisopropoxide, titanium (isopropoxide) 2 (2,2,6,6, -tetramethylheptanedionate) 2 , Titanium (dimethylaminoethoxide) 4 and titanium (methylpentanediol) (2,2,6,6, -tetramethylheptanedionate) 2 , or any one or two or more thereof.
본 발명에 있어서 상기 분산안정제는 에틸렌 글리콜, 에탄올아민, 에틸디에탄올아민, 헥사놀아민, n-메틸피페리딘, 폴리비닐피롤리돈, 폴리비닐알콜, 폴리비닐부티랄, 폴리메틸메타크릴레이트, 덱스트란, 아조비스 및 도데실벤젠황산나트륨으로 이루어진 군 중에서 선택되는 어느 하나 또는 둘 이상일 수 있으며, 반도체 산화물 1 몰에 대하여 분산안정제 0.1 내지 0.4의 비율로 포함될 수 있다. 상기 분산안정제의 함량이 상기 하한치 미만이면 반도체 산화물의 분산이 용이하지 않아 인쇄 후 건조가 이루어지는 동안 패턴을 유지할 수 없으며, 상기 상한치를 초과하는 경우에는 반도체 산화물 잉크의 인쇄력이 저하될 수 있다. In the present invention, the dispersion stabilizer is ethylene glycol, ethanolamine, ethyl diethanolamine, hexanolamine, n-methylpiperidine, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate It may be any one or two or more selected from the group consisting of dextran, azobis and sodium dodecylbenzene sulfate, and may be included in a ratio of 0.1 to 0.4 as a dispersion stabilizer based on 1 mole of semiconductor oxide. When the content of the dispersion stabilizer is less than the lower limit, the dispersion of the semiconductor oxide is not easy, so that the pattern cannot be maintained during drying after printing, and when the upper limit is exceeded, the printing power of the semiconductor oxide ink may be lowered.
본 발명에 사용되는 상기 반도체 산화물은 입자의 크기가 직경이 1 내지 999 ㎚인 나노입자 또는 직경이 1 내지 10 ㎛인 마이크로입자를 사용할 수도 있으나 이를 혼합하여 사용할 수도 있다. 서로 다른 크기의 입자를 혼합하여 사용하면 나노입자와 마이크로 입자 간에 네킹이 형성되고 공극이 줄어들어 유전상수를 증가시킬 수 있어 바람직하다.The semiconductor oxide used in the present invention may be nanoparticles having a particle size of 1 to 999 nm or microparticles having a diameter of 1 to 10 μm, but may be used by mixing them. Mixing particles of different sizes is desirable because necking is formed between the nanoparticles and the microparticles, and the voids are reduced to increase the dielectric constant.
본 발명에 따른 복합 광 조사용 반도체 산화물은 연료감응형 태양전지 전극 또는 다른 에너지 소자, 전자 소자, 센서 및 정전용량 형 터치패널 등에 광범위하게 사용될 수 있다. The semiconductor oxide for complex light irradiation according to the present invention can be widely used for fuel-sensitized solar cell electrodes or other energy devices, electronic devices, sensors, and capacitive touch panels.
또한, 본 발명은 정전용량 형 터치패널 제작을 위해 상기 복합 광 조사용 반도체 산화물 잉크를 소결하여 유전 특성을 높이는 소결방법에 관한 것이다.In addition, the present invention relates to a sintering method of increasing the dielectric properties by sintering the semiconductor oxide ink for complex light irradiation for manufacturing a capacitive touch panel.
도 1에 도시된 바와 같이, 본 발명의 복합 광 소결용 반도체 산화물 잉크를 이용하여 반도체 산화물을 복합 광 소결하는 과정은 하기 단계를 포함한다. As shown in FIG. 1, the process of composite light sintering a semiconductor oxide using the semiconductor oxide ink for composite light sintering of the present invention includes the following steps.
1) 스트론튬 티타늄 옥사이드(SrTiO3), 바륨 티타늄 옥사이드(BaTiO3) 또는 이들의 혼합물 중에서 선택되는 반도체 산화물 및 분산안정제를 포함하는 광소결용 반도체 산화물 잉크를 제조하는 단계(S1),1) preparing a semiconductor oxide ink for photo-sintering comprising a semiconductor oxide and a dispersion stabilizer selected from strontium titanium oxide (SrTiO 3), barium titanium oxide (BaTiO 3), or mixtures thereof (S1),
2) 상기 광소결용 반도체 산화물 잉크를 기판상에 코팅하는 단계(S2),2) coating the photo-sintered semiconductor oxide ink on a substrate (S2),
3) 상기 광소결용 반도체 산화물 잉크가 코팅된 기판을 상온 조건에서 극단파 백색광을 조사하여 광소결 하는 단계(S3).3) photosintering the substrate coated with the semiconductor oxide ink for photosintering by irradiating microwave white light at room temperature (S3).
먼저, 상기 (S1)에서는 상기 기재에 된 바에 따라 스트론튬 티타늄 옥사이드(SrTiO3), 바륨 티타늄 옥사이드(BaTiO3) 또는 이들의 혼합물 중에서 선택되는 반도체 산화물 및 분산안정제를 포함하는 광소결용 반도체 산화물 잉크를 제조한다.First, in (S1), a semiconductor oxide ink for sintering including a semiconductor oxide and a dispersion stabilizer selected from strontium titanium oxide (SrTiO3), barium titanium oxide (BaTiO3), or a mixture thereof is prepared as described above. .
본 발명에 있어서, 상기 반도체 산화물은 반도체 산화물 전구체를 포함할 수 있다. 상기 반도체 산화물 전구체는 스트론튬 전구체 및 바륨 전구체 중에서 선택되는 어느 하나 또는 이들의 혼합물; 아세트산; 및 티타늄 전구체;를 포함할 수 있다.In the present invention, the semiconductor oxide may include a semiconductor oxide precursor. The semiconductor oxide precursor is any one selected from strontium precursor and barium precursor or a mixture thereof; Acetic acid; And a titanium precursor.
상기 스트론튬 전구체, 바륨전구체, 티타늄 전구체 및 분산안정제는 앞에서 정의한 바와 같다.The strontium precursor, barium precursor, titanium precursor and dispersion stabilizer are as defined above.
상기 반도체 산화물 잉크 제조시 용이한 분산을 위하여 초음파 분산기, 교반기, 볼밀 및 3롤밀 중에서 선택되는 1종 또는 2종 이상으로 분산하는 단계 및 탈포하는 단계를 더 포함하여 수행할 수 있으며, 분산방법이 이에 제한되는 것은 아니다.In order to easily disperse the semiconductor oxide ink, the method may further include dispersing and degassing at least one selected from an ultrasonic disperser, a stirrer, a ball mill, and a three-roll mill, and dispersing the method. It is not limited.
다음으로 (S2)에서는 제조된 복합 광 소결용 반도체 산화물 잉크를 기판에 코팅한다.Next, in (S2), the prepared semiconductor oxide ink for composite light sintering is coated on a substrate.
상기 기판은 전도성 물질이 코팅된 것으로 폴리에틸렌 나프탈레이트(PEN), 폴리에틸렌(PT), 폴리이미드(PI), 폴리에스터(PET), BT 에폭시/유리 섬유 및 포토페이퍼로 이루어진 군 중에서 선택될 수 있으며, 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing), 그라뷰어링(Gravuring) 및 스핀코팅(Spin coating) 등의 방법에 의해 기판에 도포될 수 있다.The substrate is coated with a conductive material may be selected from the group consisting of polyethylene naphthalate (PEN), polyethylene (PT), polyimide (PI), polyester (PET), BT epoxy / glass fiber and photopaper, The substrate may be applied to a substrate by a method such as screen printing, inkjet printing, graving, spin coating, or the like.
상기 전도성 물질은 ITO(Indium tin Oxide)일 수 있으나 이에 제한되는 것은 아니며, 플렉서블 투명기판에 이용할 수 있는 전도성 물질이면 가능하다.The conductive material may be indium tin oxide (ITO), but is not limited thereto. Any conductive material may be used for the flexible transparent substrate.
다음으로 (S3)에서는 기판에 코팅된 반도체 산화물 잉크를 제논 플래쉬 램프로부터 조사된 백색광을 이용하여 광소결한다.Next, in S3, the semiconductor oxide ink coated on the substrate is photosintered using white light irradiated from the xenon flash lamp.
또한, 상기 (S3) 단계는 극단파 백색광 이외에 근적외선 및 원자외선 중에서 선택되는 어느 하나 또는 이들 모두를 함께 이용할 수도 있다.In addition, the step (S3) may use any one or both selected from near-infrared and far-ultraviolet in addition to the microwave white light.
상기 광원들을 함께 이용하는 경우에는 동시에 조사할 수도 있으나 광원을 하나씩 조사할 수도 있고, 하나의 광원을 조사한 후 나머지 두 개를 동시에 조사하는 것도 무방하다. 이러한 경우 복합 광 조사 조건은 2단계 혹은 3단계로 나누어 수행될 수 있다.When the light sources are used together, they may be irradiated at the same time, but may be irradiated one by one, or may be irradiated with the other two simultaneously after irradiating one light source. In this case, the complex light irradiation condition may be performed by dividing into two or three stages.
또한, 상기 소결단계 전에 도포된 잉크의 용매를 건조하는 것이 바람직하다. 이때 건조가 제대로 이루어지지 않으면 복합 광 조사시 잉크가 액상에서 고상으로 상변화하는데 에너지를 많이 소모하므로 소결이 제대로 이루어지지 않을 수 있다. 상기 건조 방법으로, 70 내지 120 ℃ 온도의 열풍기, 핫플레이트 등을 이용하여 건조시킬 수도 있지만, 한편으로 도포된 잉크의 건조를 본 발명에 의한 복합 광 조사 조건을 조절하여 달성할 수도 있을 것이며, 조직의 치밀화를 이루기 위해 복합 광 조사 조건을 조절하여 예열할 수도 있다.In addition, it is preferable to dry the solvent of the ink applied before the sintering step. In this case, if the drying is not properly performed, the sintering may not be performed properly because the ink consumes a lot of energy in the phase change from the liquid phase to the solid phase when irradiating the composite light. The drying method may be dried by using a hot air fan, a hot plate, or the like at a temperature of 70 to 120 ° C. On the other hand, drying of the applied ink may be achieved by adjusting the complex light irradiation conditions according to the present invention. Preheating may be achieved by adjusting the conditions of complex light irradiation to achieve densification of the compound.
본 발명에 의하면, 상기 반도체 산화물 잉크는 상온 대기압의 조건에서 약 0.1 내지 100 ms 정도의 매우 짧은 시간 동안 완전한 건조 및 소결이 가능하다. 본 발명에 다른 복합 광 소결 장치의 일반적인 구조를 도 2에 나타내었다.According to the present invention, the semiconductor oxide ink can be completely dried and sintered for a very short time of about 0.1 to 100 ms at room temperature and atmospheric pressure. The general structure of the composite optical sintering apparatus according to the present invention is shown in FIG.
왼쪽은 제논 램프를 이용한 극단파 백색광을 이용한 광 소결 장치이며, 오른쪽은 근적외선, 극단파 백색광 및 원자외선을 이용한 복합 광 소결 장치이다.The left side is an optical sintering apparatus using microwave white light using a xenon lamp, and the right side is a composite optical sintering apparatus using near-infrared, microwave white light, and far infrared rays.
본 발명에 따른 복합 광 소결장치를 이용하면 폴리머 기판에 손상을 입히지 않는 선택적 소결 및 대면적 소결이 가능하다.The composite optical sintering apparatus according to the present invention enables selective sintering and large area sintering without damaging the polymer substrate.
극단파 백색광을 이용한 소결은 조사 조건이 펄스 폭이 0.1 내지 100 ms이며, 펄스 수가 1 내지 100이고, 강도가 0.1 내지 50 J/㎠이며, 펄스 갭이 0.1 내지 20 ms으로 조사되는 것일 수 있다. 상기 펄스 폭이 100 ms보다 클 경우에는 단위 시간당 입사 에너지가 줄어들어 소결의 효율이 저하될 수 있으므로 비경제적이다. 펄스 갭이 20 ms보다 크거나 펄스 수가 100번보다 큰 경우, 강도가 0.1 J/㎠보다 작은 경우에도 너무 낮은 에너지로 인해 반도체 산화물 잉크가 소결될 수 없으며, 펄스 갭이 0.01 ms 보다 작거나 강도가 50 J/㎠보다 큰 경우에는 장비와 램프에 무리가 가해지기 때문에 장비와 램프의 수명이 급속하게 줄어드는 문제점이 있다.The sintering using the microwave white light may be irradiated with a pulse width of 0.1 to 100 ms, a pulse number of 1 to 100, an intensity of 0.1 to 50 J / cm 2, and a pulse gap of 0.1 to 20 ms. When the pulse width is greater than 100 ms, the incident energy per unit time is reduced, which may lower the efficiency of sintering. If the pulse gap is greater than 20 ms or the number of pulses is greater than 100 times, the semiconductor oxide ink cannot be sintered due to too low energy even if the intensity is less than 0.1 J / cm 2, and the pulse gap is less than 0.01 ms or the intensity is If the size is greater than 50 J / cm 2, there is a problem that the life of the equipment and lamp is rapidly reduced because the equipment and the lamp are exerted.
본 발명에서 펄스 폭(0.1 내지 100 ms), 펄스 갭(0.1 내지 20 ms), 펄스 수(1 내지 100번), 강도(0.1 J/㎠ 내지 50 J/㎠)의 변화에 따라 광소결 조건이 달라지며 그에 따라 총 광에너지가 최대 50 J/㎠까지 방출하게 된다. 이때 충분한 빛 에너지가 조사되어야만 소결이 가능하며, 소결을 위한 에너지 범위는 기판에 따라 상이할 수 있는데, 예를 들어 PI(5 ~ 50J), 포토페이퍼(3 ~ 15J), BT(10 ~ 25J) 일 수 있다.In the present invention, the light sintering condition is changed according to the change in pulse width (0.1 to 100 ms), pulse gap (0.1 to 20 ms), number of pulses (1 to 100 times), and intensity (0.1 J / cm 2 to 50 J / cm 2). This results in a total light energy emission of up to 50 J / cm 2. At this time, sufficient light energy should be irradiated for sintering, and the energy range for sintering may be different depending on the substrate. For example, PI (5 ~ 50J), photo paper (3 ~ 15J), BT (10 ~ 25J) Can be.
이해를 돕기 위해 제논 램프의 단 펄스 백색광에 대한 그래프가 도 3에 도시되어 있으며, 극단파 광 소결시 극단파 백색광 조사 에너지의 변화에 따른 반도체 산화물(SrTiO3)의 유전상수 변화를 도 4에 나타내었다. 극단파 백색광 조사 에너지가 10 J/㎠보다 작으면 조사에너지가 충분하지 않아 유전상수가 거의 측정되지 않았으며, 조사에너지가 15 J/㎠까지 증가함에 따라 유전상수가 증가하는 것을 확인할 수 있다. 그러나 20 J/㎠이상의 백색광을 조사하면 과도한 에너지 조사로 인해 필름의 손상이 생겨 유전상수가 다시 감소하는 것을 확인할 수 있다. 이러한 효과는 필름의 두께, 입자의 크기, 분산안정제의 종류 및 기판의 종류와 두께에 따라서 달라질 수 있다.The graph of the short pulse white light of the xenon lamp is shown in FIG. 3 for better understanding, and the dielectric constant change of the semiconductor oxide (SrTiO 3 ) according to the change of the microwave white light irradiation energy during the microwave sintering is shown in FIG. 4. It was. If the microwave white light irradiation energy is less than 10 J / ㎠ the irradiation energy is not enough, the dielectric constant was hardly measured, it can be seen that the dielectric constant increases as the irradiation energy increases to 15 J / ㎠. However, when irradiated with white light of 20 J / ㎠ or more, it can be seen that the dielectric constant is reduced again due to damage to the film due to excessive energy irradiation. This effect may vary depending on the thickness of the film, the size of the particles, the type of dispersion stabilizer and the type and thickness of the substrate.
반도체 산화물 전구체 잉크 필름은 600 ℃ 이상의 높은 온도에서 결정화(Crystallization)가 이루어지고, 온도가 높아질수록 결정화가 잘 이루어진다. 본 발명에서는 광 조사시 필름의 온도를 향상시킬 수 있으면서 반도체 산화물의 유전상수를 향상시키기 위하여 본 발명에서는 근적외선과 극단파 백색광 이용하여 복합 광 조사함으로써 반도체 산화물의 결정화 및 유전상수를 향상시킬 수 있다.The crystallization of the semiconductor oxide precursor ink film is performed at a high temperature of 600 ° C. or higher, and crystallization is performed well with higher temperature. In the present invention, in order to improve the dielectric constant of the semiconductor oxide while improving the temperature of the film during light irradiation, in the present invention, crystallization and dielectric constant of the semiconductor oxide can be improved by complex light irradiation using near-infrared light and microwave white light.
상기 근적외선과 극단파 백색광은 동시에 조사될 수도 있으나, 상기 근적외선을 조사한 후 극단파 백색광을 조사하면 필름의 온도가 높아진 상태에서 소결을 수행할 수 있으므로 결정화가 우수하며, 반도체 산화물의 유전상수를 더욱 향상시킬 수 있어 바람직하다. 하지만, 백색광 조사에너지 및 근적외선 에너지가 커질 수록 무조건적으로 소결이 효과적으로 일어나는 것은 아니다.The near-infrared and microwave white light may be irradiated at the same time. However, when the near-infrared white light is irradiated after the near-infrared radiation, sintering may be performed at a high temperature of the film, and thus crystallization is excellent, and dielectric constant of semiconductor oxide is further improved. It is preferable to make it possible. However, as the white light irradiation energy and the near infrared energy increase, sintering does not occur effectively unconditionally.
본 발명에 의하면, 상기 근적외선은 0 내지 1000 W/㎠의 세기로 0 내지 300초간 조사될 수 있는데, 상기 근적외선이 0 W/㎠의 세기 또는 0 초간 조사된다는 것은 근적외선을 조사하지 않는다는 의미이고, 바람직하게는 400 내지 700 W/㎠의 세기로 조사되는 것이 바람직하다. 상기 400 W/㎠ 미만으로 조사되는 경우에는 반도체 산화물이 코팅된 필름의 온도를 높이는데 오랜 시간이 소요되며, 상기 700 W/㎠를 초과하여 조사하는 경우에는 단시간에 필름의 온도가 너무 높아질 수 있어 주의를 필요로 한다.According to the present invention, the near infrared ray may be irradiated for 0 to 300 seconds at an intensity of 0 to 1000 W / cm 2, and the near infrared ray is irradiated at an intensity of 0 W / cm 2 or 0 seconds, which means that it is not irradiated with near infrared rays. Preferably it is irradiated with an intensity of 400 to 700 W / cm 2. If the irradiation is less than 400 W / ㎠ it takes a long time to increase the temperature of the film coated with a semiconductor oxide, if the irradiation is more than 700 W / ㎠ may be too high temperature of the film in a short time Needs attention.
또한, 상기 근적외선은 0.75 내지 1.5 ㎛의 파장의 광원일 수 있다.In addition, the near infrared ray may be a light source having a wavelength of 0.75 to 1.5 ㎛.
도 5 및 도 6에는 각각 근적외선과 극단파 백색광을 이용한 복합 광 소결 시 근적외선 조사시간 및 극단파 백색광의 조사에너지에 따른 반도체 산화물(SrTiO3)의 유전상수 변화 그래프와 전자 주사 현미경으로 촬영한 필름의 상태를 나타내었다. 5 and 6 show graphs of dielectric constant changes of semiconductor oxides (SrTiO 3 ) according to the irradiation time of near-infrared irradiation time and the irradiation energy of microwave-short white light when composite light sintering using near-infrared and microwave white light, respectively. Status was shown.
또한, 본 발명에서는 반도체 산화물의 유전상수를 향상시키기 위하여 백색광과 함께 원자외선을 조사할 수 있다. 상기 백색광과 원자외선은 각각 순차적으로 조사할 수도 있으나, 동시에 조사할 수도 있다.In addition, in the present invention, in order to improve the dielectric constant of the semiconductor oxide, ultraviolet light can be irradiated with white light. The white light and far ultraviolet rays may be irradiated sequentially, respectively, or may be irradiated simultaneously.
본 발명에 따른 반도체 산화물인 스트론튬 티타늄 옥사이드 및 바륨 티타늄 옥사이드는 원자외선 파장대인 100 내지 380 ㎚의 빛을 잘 흡수하는 특성을 가지고 있어 반도체 산화물의 광소결 시 백색광과 함께 본 발명에 따른 100 내지 280 ㎚ 파장의 원자외선으로 광조사하면 반도체 산화물의 결정화가 잘 이루어지며, 필름의 표면 계질이 향상되고 반도체 산화물의 유전특성을 더욱 향상시킬 수 있어 바람직하다.Strontium titanium oxide and barium titanium oxide, which are semiconductor oxides according to the present invention, have a property of absorbing light of 100 to 380 nm, which is an far-infrared wavelength band, and thus 100 to 280 nm according to the present invention together with white light when the semiconductor oxide is sintered. Irradiation with ultraviolet rays of a wavelength is preferable because crystallization of the semiconductor oxide is well performed, surface quality of the film can be improved, and dielectric properties of the semiconductor oxide can be further improved.
상기 원자외선은 0 내지 500 mW/㎠의 세기로 0 내지 300초간 조사될 수 있으며, 바람직하게는 20 내지 100 mW/㎠의 세기로 조사되는 것일 수 있다.The far ultraviolet rays may be irradiated at an intensity of 0 to 500 mW / cm 2 for 0 to 300 seconds, and preferably at 20 to 100 mW / cm 2.
도 7에는 근적외선, 극단파 백색광 및 원자외선을 이용한 복합 광 소결 시 원자외선의 조사 에너지에 따른 반도체 산화물(SrTiO3)의 유전상수 변화 그래프를 나타내었으며, 도 8에는 원자외선의 조사 에너지에 따른 반도체 산화물(SrTiO3)의 필름 표면 상태를 전자주사 현미경으로 촬영하여 나타내었다.7 is a graph showing the change in dielectric constant of semiconductor oxide (SrTiO 3 ) according to the irradiation energy of far infrared rays when the composite light sintering using near-infrared, microwave white light and far infrared rays, and FIG. The film surface state of the oxide (SrTiO 3 ) was photographed by an electron scanning microscope.
본 발명에 의하면 상기 광소결 단계는 일 단계(single-step) 또는 다 단계(multi-step)로 수행될 수도 있다.According to the present invention, the light sintering step may be performed in a single-step or multi-step.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.
실시예 Example
실시예 1.Example 1.
1 단계: 스트론튬 아세테이트와 아세트산 각각 0.75 M 용액에 티타늄(IV) 이소프로포사이드 용액을 첨가하여 30분 동안 교반하여 혼합하였다. 에틸렌 글리콜을 0.25 M 첨가하여 안정화시켰다. 이후, 1 시간 동안 90 ℃로 가열하여 스트론튬 티타늄 옥사이드 반도체 산화물의 전구체 용액을 준비하였다.Step 1: Titanium (IV) isopropoxide solution was added to 0.75 M solution of strontium acetate and acetic acid, followed by mixing for 30 minutes. It was stabilized by adding 0.25 M of ethylene glycol. Then, by heating to 90 ℃ for 1 hour to prepare a precursor solution of strontium titanium oxide semiconductor oxide.
2 단계: 상기 준비된 용액을 ITO가 코팅된 PEN 필름 위에 스핀 코팅(500 rpm, 30 sec) 방법으로 도포한 후, 80 ℃의 핫플레이트에서 20 분 동안 건조시켰다.Step 2: The prepared solution was applied by spin coating (500 rpm, 30 sec) on an ITO-coated PEN film, and then dried for 20 minutes on a hot plate at 80 ° C.
3단계: 준비된 스트론튬 티타늄 옥사이드 반도체 산화물 박막에 제논 램프를 이용하여 강도 15 J/㎠, 펄스 폭 20 ms, 펄스 수 1번 조사조건으로 극단파 백색광을 조사하여 소결하였다.Step 3: The prepared strontium titanium oxide semiconductor oxide thin film was irradiated with microwave white light under an intensity condition of 15 J / cm 2, pulse width 20 ms, and pulse number 1 using a xenon lamp.
실시예 2.Example 2.
스트론튬 아세테이트 대신에 바륨 아세테이트를 이용한 것을 제외하고는 실시예 1의 방법으로 극단파 백색광을 조사하여 소결하였다. Except for using barium acetate instead of strontium acetate sintered by irradiation with microwave white light by the method of Example 1.
실시예 3.Example 3.
스트론튬 아세테이트 대신에 스트론튬 아세테이트와 스트론튬 아세테이트를 혼합하여 이용한 것을 제외하고는 실시예 1의 방법으로 극단파 백색광을 조사하여 소결하였다.Except for using strontium acetate and strontium acetate instead of strontium acetate, the method of Example 1 was irradiated with microwave white light and sintered.
실시예 4.Example 4.
실시예 1의 3 단계에서 극단파 백색광을 조사하기 전에 반도체 산화물 박막에 500 W의 근적외선을 180초간 조사하는 단계를 더 추가하는 것을 제외하고는 실시예 1의 방법으로 복합 광 조사하여 소결하였다. Except for irradiating 500 W of near-infrared light for 180 seconds to the semiconductor oxide thin film before irradiating microwave white light in step 3 of Example 1, the method of Example 1 was sintered by composite light irradiation.
실시예 5.Example 5.
스트론튬 아세테이트 대신에 바륨 아세테이트를 이용하여 제조된 반도체 산화물 박막에, 실시예 1의 3 단계에서 극단파 백색광을 조사하기 전에 반도체 산화물 박막에 500 W의 근적외선을 180초간 조사하는 단계를 더 추가하는 것을 제외하고는 실시예 1의 방법으로 복합 광 조사하여 소결하였다. The semiconductor oxide thin film prepared by using barium acetate instead of strontium acetate was further added to irradiate the semiconductor oxide thin film with 180 W for 180 seconds before irradiating the microwave white light in the third step of Example 1. Then, the composite was irradiated and sintered by the method of Example 1.
실시예 6.Example 6.
스트론튬 아세테이트 대신에 스트론튬 아세테이트와 바륨 아세테이트를 혼합하여 제조된 반도체 산화물 박막에, 실시예 1의 3 단계에서 극단파 백색광을 조사하기 전에 반도체 산화물 박막에 500 W의 근적외선을 180초간 조사하는 단계를 더 추가하는 것을 제외하고는 실시예 1의 방법으로 복합 광 조사하여 소결하였다. To the semiconductor oxide thin film prepared by mixing strontium acetate and barium acetate instead of strontium acetate, further irradiating the semiconductor oxide thin film with 180 W for 180 seconds before irradiating microwave white light in the third step of Example 1 Except for that, composite light irradiation and sintering were carried out by the method of Example 1.
실시예 7.Example 7.
실시예 1의 3 단계에서 반도체 산화물 박막에 500 W의 근적외선을 180 초간 먼저 조사한 후, 제논 램프를 이용하여 강도 15 J/㎠, 펄스 폭 20 ms, 펄스 수 1번 조사조건으로 극단파 백색광과 90 mW/㎠의 원자외선을 함께 조사한 것을 제외하고는 실시예 1의 방법으로 복합 광 조사하여 소결하였다. In the first step of Example 1, the semiconductor oxide thin film was first irradiated with 500 W of near infrared rays for 180 seconds, and then, using a xenon lamp, intensity of 15 J / cm 2, pulse width of 20 ms, and number of pulses were irradiated with microwave white light and 90 Except for irradiating mW / cm 2 of far ultraviolet rays together, the composite was irradiated and sintered by the method of Example 1.
실시예 8.Example 8.
스트론튬 아세테이트 대신에 바륨 아세테이트를 이용하여 제조된 반도체 산화물 박막에 500 W의 근적외선을 180 초간 먼저 조사한 후, 제논 램프를 이용하여 강도 15 J/㎠, 펄스 폭 20 ms, 펄스 수 1번 조사조건으로 극단파 백색광과 90 mW/㎠의 원자외선을 함께 조사한 것을 제외하고는 실시예 1의 방법으로 복합 광 조사하여 소결하였다. The semiconductor oxide thin film manufactured by using barium acetate instead of strontium acetate was first irradiated with 500 W of near infrared ray for 180 seconds, and then subjected to xenon lamp for 15 J / cm 2, pulse width 20 ms, and pulse number 1 irradiation Except that the wave white light and 90 mW / ㎠ far ultraviolet rays were irradiated together, and sintered by composite light irradiation in the method of Example 1.
실시예 9.Example 9.
스트론튬 아세테이트 대신에 스트론튬 아세테이트와 바륨 아세테이트를 혼합하여 제조된 반도체 산화물 박막에 500 W의 근적외선을 180 초간 먼저 조사한 후, 제논 램프를 이용하여 강도 15 J/㎠, 펄스 폭 20 ms, 펄스 수 1번 조사조건으로 극단파 백색광과 90 mW/㎠의 원자외선을 함께 조사한 것을 제외하고는 실시예 1의 방법으로 복합 광 조사하여 소결하였다. After irradiating 500 W of near-infrared light for 180 seconds to a semiconductor oxide thin film prepared by mixing strontium acetate and barium acetate instead of strontium acetate for 180 seconds, an intensity of 15 J / cm 2, pulse width 20 ms, and number of pulses were irradiated with a xenon lamp. The composite light was sintered by the method of Example 1, except that both microwave white light and 90 mW / cm 2 deep ultraviolet were irradiated under the conditions.
시험예 1: 광소결 조건 설정Test Example 1: Setting Light Sintering Conditions
극단파 백색광 조사 조건을 최적화하기 위하여 실시예 1의 2 단계에서 제조한 반도체 산화물 박막에 조사 에너지에 따른 유전상수 변화를 측정하였으며, 이를 표 1 및 도 9에 나타내었다. In order to optimize the microwave white light irradiation conditions, the dielectric constant change according to the irradiation energy of the semiconductor oxide thin film prepared in Step 2 of Example 1 was measured, and the results are shown in Table 1 and FIG. 9.
표 1
샘플번호 제논 램프 유전상수
강도 (J/㎠) 펄스 수 펄스 폭(ms)
1 0 1 20 0.002482
2 5 1 20 0.000513
3 10 1 20 3.940786
4 15 1 20 5.278080
5 20 1 20 3.686807
6 25 1 20 3.288701
7 15 2 20 4.299983
8 15 3 20 4.075613
9 15 1 15 3.685717
10 15 1 10 3.410707
Table 1
Sample number Xenon lamp Dielectric constant
Strength (J / ㎠) Pulse number Pulse width (ms)
One 0 One 20 0.002482
2 5 One 20 0.000513
3 10 One 20 3.940786
4 15 One 20 5.278080
5 20 One 20 3.686807
6 25 One 20 3.288701
7 15 2 20 4.299983
8 15 3 20 4.075613
9 15 One 15 3.685717
10 15 One 10 3.410707
상기 표 1에 나타낸 바와 같이, 극단파 백색광은 제논 램프의 펄스 수가 1이고, 펄스 폭이 20 ms이며, 조사강도가 15 J/㎠인 경우에서 유전상수가 가장 우수한 것을 확인하였다. 또한, 이러한 결과는 실시예 2 및 3에서 제조한 반도체 산화물 박막을 이용한 경우에서도 동일하게 나타났다. As shown in Table 1, it was confirmed that the microwave white light had the best dielectric constant when the number of pulses of the xenon lamp was 1, the pulse width was 20 ms, and the irradiation intensity was 15 J / cm 2. In addition, these results were also the same when using the semiconductor oxide thin films prepared in Examples 2 and 3.
도 9를 참고로 하면, 조사 강도가 10 J/㎠ 이하에서는 반도체 산화물의 소결이 잘 이루어지지 않았으며, 조사 강도가 20 J/㎠ 이상의 경우에는 과도한 에너지 조사로 인해 필름이 손상되었다. 또한, 도 10에 나타낸 바와 같이 펄스 폭이 좁아지는 경우에도 과도한 에너지의 조사로 인해 필름이 손상되었다. Referring to FIG. 9, when the irradiation intensity is 10 J / cm 2 or less, the sintering of the semiconductor oxide is not performed well. When the irradiation intensity is 20 J / cm 2 or more, the film is damaged due to excessive energy irradiation. In addition, even when the pulse width is narrowed, as shown in FIG. 10, the film is damaged due to excessive energy irradiation.
유전상수의 하락이 이러한 필름 손상에 기인하는 것이라 할 수 있다. 한편, 이러한 효과는 필름의 두께, 입자의 크기, 분산안정제의 종류 및 기판의 종류와 두께에 따라서 달라질 수 있다. The drop in dielectric constant is due to this film damage. On the other hand, such effects may vary depending on the thickness of the film, the size of the particles, the type of dispersion stabilizer and the type and thickness of the substrate.
시험예 2. 근적외선 조사에 따른 광소결 조건Test Example 2 Photosintering Conditions by Near-infrared Irradiation
근적외선 조사에 따른 최적 광소결 조건을 설정하기 위하여 실시예 1의 2단계에서 제조한 반도체 산화물 박막에 근적외선 조사시간을 달리하여 조사한 뒤 극단파 백색광을 조사하여 유전상수 변화를 확인하였다. In order to set the optimum light sintering condition according to near-infrared irradiation, the semiconductor oxide thin film manufactured in Step 2 of Example 1 was irradiated with different near-infrared irradiation time and irradiated with microwave white light to confirm the change of dielectric constant.
도 5에 나타낸 바와 같이 극단파 백색광의 조사 에너지 량이 동일할 때, 근적외선 조사시간이 증가함에 따라 반도체 산화물의 유전상수가 증가하는 것을 확인할 수 있다. 또한, 근적외선 조사시간이 180초일 때, 백색광 조사에너지가 15 J/㎠일 때는 유전상수가 최대치였으나, 조사에너지가 20 J/㎠로 증가하였을 때는 유전상수가 감소하였는데, 필름의 손상에 기인한 결과이다. As shown in FIG. 5, when the amount of irradiation energy of the microwave white light is the same, it can be seen that the dielectric constant of the semiconductor oxide increases as the NIR irradiation time increases. In addition, when the near-infrared irradiation time was 180 seconds, the dielectric constant was maximum when the white light irradiation energy was 15 J / cm 2, but when the irradiation energy increased to 20 J / cm 2, the dielectric constant decreased, resulting from damage to the film. to be.
이러한 결과는 실시예 5 및 6에서 제조한 반도체 산화물 박막을 이용한 경우에서도 동일하게 나타났다. These results were also the same when using the semiconductor oxide thin films prepared in Examples 5 and 6.
비교예로서 극단파 백색광을 조사하기 전에 반도체 산화물 박막의 온도를 상승시켜 극단파 백색광을 조사하고 유전상수를 측정하였으며, 이를 하기 표 2에 나타내었다. As a comparative example, before irradiating the microwave white light, the temperature of the semiconductor oxide thin film was raised to irradiate the microwave white light and the dielectric constant was measured, which is shown in Table 2 below.
표 2
샘플번호 제논 램프 기판온도(℃) 유전상수
강도 (J/㎠) 펄스 수 펄스 폭(ms)
11 5 1 20 80 3.083039
12 10 1 20 1.987760
13 15 1 20 1.567716
14 20 1 20 -
15 5 1 20 150 5.351904
16 10 1 20 4.663406
17 15 1 20 4.819317
TABLE 2
Sample number Xenon lamp Substrate temperature (℃) Dielectric constant
Strength (J / ㎠) Pulse number Pulse width (ms)
11 5 One 20 80 3.083039
12 10 One 20 1.987760
13 15 One 20 1.567716
14 20 One 20 -
15 5 One 20 150 5.351904
16 10 One 20 4.663406
17 15 One 20 4.819317
상기 표 2에 나타낸 바와 같이, 기판의 온도가 80 ℃인 경우 유전상수는 낮아지는 결과를 나타내었으며, 기판의 온도가 150 ℃로 증가시킨 경우에는 80 ℃인 경우 보다 유전상수가 증가하였으나 제논 램프의 강도가 증가에 따라 유전상수는 하락하였다. 또한, 기판을 가열하는 경우에는 도 11(기판의 온도가 80 ℃인 경우) 및 도 12(기판의 온도가 150 ℃인 경우)에 나타낸 바와 같이, 근적외선을 조사하는 경우에 비하여 결정화가 잘 이루어지지 않았으며, 필름의 표면상태가 좋지 않은 결과를 나타내었다. As shown in Table 2, when the temperature of the substrate is 80 ℃, the dielectric constant was lowered, and when the temperature of the substrate was increased to 150 ℃, the dielectric constant was increased than at 80 ℃, but the As the intensity increased, the dielectric constant dropped. In the case of heating the substrate, as shown in FIG. 11 (when the temperature of the substrate is 80 ° C.) and FIG. 12 (when the temperature of the substrate is 150 ° C.), crystallization is less performed than when irradiating near infrared rays. The film was in poor surface condition.
시험예 3. 원자외선 조사에 따른 광소결 조건Test Example 3 Photo-sintering Conditions by Infrared Irradiation
원자외선 조사에 따른 최적 광소결 조건을 설정하기 위하여 실시예 1의 2단계에서 제조한 반도체 산화물 박막에 시험예 2에서 설정한 최적 근적외선 조사 조건인 500 W로 180 초간 조사한 후, 시험예 1에서 설정한 최적 극단파 백색광 조사조건인 15 J/㎠과 원자외선을 조사하되 원자외선 조사세기를 변화시켜가며 조사하였으며 유전상수를 측정하여 이를 도 7에 나타내었고, 필름 표면상태를 촬영하여 도 8에 나타내었다. In order to set the optimum light sintering condition according to the far infrared ray irradiation, the semiconductor oxide thin film prepared in Step 2 of Example 1 was irradiated for 180 seconds at 500 W, which is the optimum near infrared irradiation condition set in Test Example 2, and then set in Test Example 1 One optimum microwave white light irradiation condition of 15 J / ㎠ and far ultraviolet rays were irradiated with varying the intensity of the far ultraviolet rays and the dielectric constant was measured and shown in FIG. 7, the film surface state is shown in FIG. It was.
도 7을 참조로 하면, 원자외선의 세기가 30 및 90 mW/㎠에서 유전상수가 증가되었으며, 60 mW/㎠에서는 낮은 유전상수를 나타내었다. 한편 도 8을 참조로 하면 원자외선의 세기가 90 mW/㎠인 경우가 반도체 산화물의 결정화가 우수하게 이루어지는 것으로 나타났다.Referring to FIG. 7, the intensity of the far ultraviolet rays was increased at 30 and 90 mW / cm 2, and low dielectric constant at 60 mW / cm 2. Meanwhile, referring to FIG. 8, it was found that the crystallization of the semiconductor oxide is excellent when the intensity of far ultraviolet rays is 90 mW / cm 2.
한편, 근적외선 대신에 열을 가하여 기판의 온도를 높인 도 13(기판의 온도가 80 ℃인 경우) 및 도 14(기판의 온도가 150 ℃인 경우)과 열처리 및 근적외선 처리를 하지 않은 도 15는 근적외선을 조사하는 경우에 비하여 결정화가 잘 이루어지지 않았으며, 필름의 표면상태가 좋지 않은 결과를 나타내었다.Meanwhile, FIGS. 13 (when the temperature of the substrate is 80 ° C.) and FIG. 14 (when the temperature of the substrate is 150 ° C.) and FIG. 15 without heat treatment and near-infrared treatment are used to increase the temperature of the substrate by applying heat instead of near infrared rays. The crystallization was not as well performed as compared to the case of irradiation, and the surface state of the film was poor.

Claims (16)

  1. 스트론튬 티타늄 옥사이드(SrTiO3), 바륨 티타늄 옥사이드(BaTiO3) 및 이들의 혼합물 중에서 선택되는 반도체 산화물; 및 분산안정제;를 포함하는 복합 광 소결용 반도체 산화물 잉크.Semiconductor oxides selected from strontium titanium oxide (SrTiO 3 ), barium titanium oxide (BaTiO 3 ), and mixtures thereof; And a dispersion stabilizer; a semiconductor oxide ink for composite light sintering.
  2. 제1항에 있어서,The method of claim 1,
    광소결 조건은 제논 플래쉬 램프의 펄스 수가 1 내지 100일 때, 강도가 0.1 내지 50 J/㎠이고, 펄스 폭이 0.1 내지 100 ms이며, 펄스 갭이 0.1 내지 20 ms의 조사 조건으로 조사되는 극단파 백색광;The light sintering conditions are microwaves irradiated under irradiation conditions of 0.1 to 50 J / cm 2, pulse width of 0.1 to 100 ms, and pulse gap of 0.1 to 20 ms when the number of pulses of the xenon flash lamp is 1 to 100. white light;
    0.1 내지 1000 W/㎠의 세기로 0.1 내지 300초간 조사되는 근적외선; 및Near infrared rays irradiated for 0.1 to 300 seconds at an intensity of 0.1 to 1000 W / cm 2; And
    0.1 내지 500 mW/㎠의 세기로 0.1 내지 300초간 조사되는 원자외선;이 함께 조사되는 것임을 특징으로 하는 복합 광 소결용 반도체 산화물 잉크.Ultraviolet rays irradiated for 0.1 to 300 seconds at an intensity of 0.1 to 500 mW / ㎠; semiconductor oxide ink for composite light sintering characterized in that the irradiated together.
  3. 제1항에 있어서, The method of claim 1,
    상기 반도체 산화물은 반도체 산화물 전구체를 포함하는 것을 특징으로 하는 복합 광 소결용 반도체 산화물 잉크. The semiconductor oxide ink for a composite light sintering characterized in that it comprises a semiconductor oxide precursor.
  4. 제3항에 있어서, The method of claim 3,
    상기 반도체 산화물 전구체는 스트론튬 전구체, 바륨 전구체 및 이들의 혼합물 중에서 선택되는 어느 하나; 아세트산; 및 티타늄 전구체;를 포함하는 것을 특징으로 하는 복합 광 소결용 반도체 산화물 잉크. The semiconductor oxide precursor is any one selected from strontium precursor, barium precursor and mixtures thereof; Acetic acid; And titanium precursor; and a semiconductor oxide ink for composite light sintering.
  5. 제4항에 있어서, The method of claim 4, wherein
    상기 티타늄 전구체는 티타늄 테트라클로라이트, 티타늄 테트라에톡사이드, 티타늄 테트라이소프로포사이드, 티타튬(이소프로포사이드)2(2,2,6,6,-테트라메틸헵단디오네이트)2, 티타늄(디메틸아미노에톡사이드)4 및 티타늄(메틸펜탄디올)(2,2,6,6,-테트라메틸헵단디오네이트)2 중에서 선택되는 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 복합 광 소결용 반도체 산화물 잉크.The titanium precursor is titanium tetrachlorite, titanium tetraethoxide, titanium tetraisopropoxide, titanium (isopropoxide) 2 (2,2,6,6, -tetramethylheptanedionate) 2 , titanium (dimethyl Amino ethoxide) 4 and titanium (methylpentanediol) (2,2,6,6, -tetramethylheptanedionate) 2 , any one or a mixture of two or more selected from the semiconductor oxide ink.
  6. 제1항에 있어서, The method of claim 1,
    상기 분산안정제는 에틸렌 글리콜, 에탄올아민, 에틸디에탄올아민, 헥사놀아민, n-메틸피페리딘, 폴리비닐피롤리돈, 폴리비닐알콜, 폴리비닐부티랄, 폴리메틸메타크릴레이트, 덱스트란, 아조비스 및 도데실벤젠황산나트륨으로 이루어진 군 중에서 선택되는 1종 이상일 수 있으며, The dispersion stabilizer is ethylene glycol, ethanolamine, ethyl diethanolamine, hexanolamine, n-methylpiperidine, polyvinylpyrrolidone, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, dextran, It may be at least one selected from the group consisting of azobis and sodium dodecylbenzene sulfate,
    반도체 산화물 1 몰에 대하여 분산안정제 0.1 내지 0.4 몰의 비율로 포함되는 것을 특징으로 하는 복합 광 소결용 반도체 산화물 잉크.A semiconductor oxide ink for composite light sintering, characterized in that it is contained in a ratio of 0.1 to 0.4 mol of a dispersion stabilizer per 1 mol of semiconductor oxide.
  7. 제1항에 있어서, The method of claim 1,
    상기 반도체 산화물은 입자의 크기가 직경이 1 내지 999 ㎚인 나노입자 및 직경이 1 내지 10 ㎛인 마이크로입자 중에서 선택되는 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 복합 광 소결용 반도체 산화물 잉크.The semiconductor oxide is a semiconductor oxide ink for a composite light sintering, characterized in that any one or a mixture thereof selected from nanoparticles having a particle size of 1 to 999 nm in diameter and microparticles having a diameter of 1 to 10 μm.
  8. 1) 스트론튬 티타늄 옥사이드(SrTiO3), 바륨 티타늄 옥사이드(BaTiO3) 및 이들의 혼합물 중에서 선택되는 반도체 산화물 및 분산안정제를 포함하는 광소결용 반도체 산화물 잉크를 제조하는 단계;1) preparing a semiconductor oxide ink for photo-sintering comprising a semiconductor oxide and a dispersion stabilizer selected from strontium titanium oxide (SrTiO 3 ), barium titanium oxide (BaTiO 3 ), and mixtures thereof;
    2) 상기 광소결용 반도체 산화물 잉크를 기판상에 코팅하는 단계; 및2) coating the photosintering semiconductor oxide ink on a substrate; And
    3) 상기 광소결용 반도체 산화물 잉크가 코팅된 기판을 상온 조건에서 극단파 백색광을 조사하여 광소결 하는 단계;를 포함하는 반도체 산화물 잉크의 복합 광 소결 방법.3) irradiating microwave white light on the substrate coated with the semiconductor sintering ink for photosintering at room temperature to photosinter the optical sintering method.
  9. 제8항에 있어서, The method of claim 8,
    상기 3) 단계는 근적외선 및 원자외선 중에서 선택되는 어느 하나 또는 둘이 함께 조사되는 것을 특징으로 하는 반도체 산화물 잉크의 복합 광 소결 방법.In step 3), any one or two selected from near-infrared and far-infrared rays are irradiated together.
  10. 제8항에 있어서,The method of claim 8,
    상기 극단파 백색광은 제논 플래쉬 램프로부터 조사되는 것으로, 펄스 폭이 0.1 내지 100 ms이며, 펄스 수가 1 내지 100이고, 강도가 0.1 내지 50 J/㎠이며, 펄스 갭이 0.1 내지 20 ms인 것을 특징으로 하는 반도체 산화물 잉크의 복합 광 소결방법.The microwave white light is irradiated from a xenon flash lamp, and has a pulse width of 0.1 to 100 ms, a pulse number of 1 to 100, an intensity of 0.1 to 50 J / cm 2, and a pulse gap of 0.1 to 20 ms. Composite light sintering method of a semiconductor oxide ink.
  11. 제9항에 있어서, The method of claim 9,
    상기 근적외선은 0 내지 1000 W/㎠의 세기로 0 내지 300초간 조사되며, 상기 원자외선은 0 내지 500 mW/㎠의 세기로 0 내지 300초간 조사되는 것을 특징으로 하는 반도체 산화물 잉크의 복합 광 소결방법.The near-infrared ray is irradiated for 0 to 300 seconds at an intensity of 0 to 1000 W / cm 2, and the far infrared ray is irradiated for 0 to 300 seconds at an intensity of 0 to 500 mW / cm 2. .
  12. 제8항에 있어서,The method of claim 8,
    상기 반도체 산화물은 입자의 크기가 직경이 1 내지 999 ㎚인 나노입자 및 직경이 1 내지 10 ㎛인 마이크로입자 중에서 선택되는 어느 하나 또는 이들의 혼합물로 이루어진 것을 특징으로 하는 반도체 산화물 잉크의 복합 광 소결방법The semiconductor oxide is a composite light sintering method of a semiconductor oxide ink, characterized in that the particle size of any one or a mixture thereof selected from nanoparticles having a diameter of 1 to 999 nm and microparticles having a diameter of 1 to 10 ㎛
  13. 제8항에 있어서,The method of claim 8,
    상기 반도체 산화물은 반도체 산화물 전구체를 포함하는 것으로, 상기 반도체 산화물 전구체는 스트론튬 아세테이트 및 바륨아세테이트 중에서 선택되는 어느 하나 또는 이들의 혼합물; 아세트산; 및 티타늄 전구체;를 포함하는 것을 특징으로 하는 반도체 산화물 잉크의 복합 광 소결방법.The semiconductor oxide comprises a semiconductor oxide precursor, the semiconductor oxide precursor is any one or a mixture thereof selected from strontium acetate and barium acetate; Acetic acid; And a titanium precursor.
  14. 제13항에 있어서,The method of claim 13,
    상기 티타늄 전구체는 티타늄 테트라이소프로포사이드, 티타튬(이소프로포사이드)2(2,2,6,6,-테트라메틸헵단디오네이트)2, 티타늄(디메틸아미노에톡사이드)4 및 티타늄(메틸펜탄디올)(2,2,6,6,-테트라메틸헵단디오네이트)2 중에서 선택되는 어느 하나 또는 둘 이상의 혼합물 중에서 선택되는 것을 특징으로 하는 반도체 산화물 잉크의 복합 광 소결방법. The titanium precursor is titanium tetraisopropoxide, titanium (isopropoxide) 2 (2, 2, 6, 6, tetramethylheptanedionate) 2, titanium (dimethylaminoethoxide) 4 and titanium (methylpentane). Diol) (2,2,6,6, -tetramethylheptanedionate) 2, or a mixture of two or more selected from the above.
  15. 제8항에 있어서, The method of claim 8,
    상기 기판은 전도성 물질이 코팅된 것으로 폴리에틸렌 나프탈레이트(PEN), 폴리에틸렌(PT), 폴리이미드(PI), 폴리에스터(PET), BT 에폭시/유리 섬유 및 포토페이퍼로 이루어진 군에서 선택되는 것을 특징으로 하는 반도체 산화물 잉크의 복합 광 소결방법. The substrate is coated with a conductive material, characterized in that selected from the group consisting of polyethylene naphthalate (PEN), polyethylene (PT), polyimide (PI), polyester (PET), BT epoxy / glass fiber and photo paper Composite light sintering method of a semiconductor oxide ink.
  16. 제8항에 있어서,The method of claim 8,
    상기 광소결 단계는 일 단계(single-step) 또는 다 단계(multi-step)으로 수행되는 것을 특징으로 하는 반도체 산화물 잉크의 복합 광 소결방법.The light sintering step is a composite light sintering method of a semiconductor oxide ink, characterized in that performed in a single-step (multi-step) or multi-step (multi-step).
PCT/KR2015/001550 2014-07-09 2015-02-16 Complex light annealing and sintering method for semiconductor oxide, using intense pulsed light, near infrared ray and far ultraviolet ray WO2016006787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140086192A KR101600690B1 (en) 2014-07-09 2014-07-09 Multi-photonic annealing and sintering of semiconductor oxide using intense pulsed white light, near infrared ray and deep ultraviolet
KR10-2014-0086192 2014-07-09

Publications (1)

Publication Number Publication Date
WO2016006787A1 true WO2016006787A1 (en) 2016-01-14

Family

ID=55064393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001550 WO2016006787A1 (en) 2014-07-09 2015-02-16 Complex light annealing and sintering method for semiconductor oxide, using intense pulsed light, near infrared ray and far ultraviolet ray

Country Status (2)

Country Link
KR (1) KR101600690B1 (en)
WO (1) WO2016006787A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704963B1 (en) * 2016-03-25 2017-03-13 (주)쎄미시스코 Apparatus for intense pulsed light sintering
KR101704962B1 (en) * 2016-03-25 2017-02-27 (주)쎄미시스코 Apparatus for intense pulsed light sintering
CN206870630U (en) * 2016-03-10 2018-01-12 塞米西斯科株式会社 Light sintering equipment
KR101882576B1 (en) * 2016-06-02 2018-07-27 한양대학교 산학협력단 Light sintering device having protecting damage to substrate
KR102383317B1 (en) * 2016-10-31 2022-04-07 메타솔 주식회사 Apparatus for intense pulsed light sintering
KR102083089B1 (en) * 2018-09-18 2020-02-28 한양대학교 산학협력단 Photonic annealing method of semiconductor oxide
KR102441932B1 (en) * 2019-12-04 2022-09-08 한양대학교 산학협력단 Light sintering apparatus and light sintering method using thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060063361A (en) * 2004-12-07 2006-06-12 삼성전기주식회사 Sol composition for dielectric ceramic, and dielectric ceramic and multilayered ceramic capacitor using it
KR20120020938A (en) * 2010-08-31 2012-03-08 인제대학교 산학협력단 Photo electrode for dye-sensitized solar cell, manufacturing method of the same and dye-sensitized solar cell including the same
KR20120023571A (en) * 2010-09-02 2012-03-13 미쓰비시 마테리알 가부시키가이샤 Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
KR20120129247A (en) * 2011-05-19 2012-11-28 한양대학교 산학협력단 Sintering method of semiconductor oxide by using intense pulsed light
KR20120140485A (en) * 2011-06-21 2012-12-31 한국과학기술연구원 Method for forming pattern of metal oxide and method for manufacturing thin film transistor using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1305119A (en) 1919-05-27 Window construction
US1025701A (en) 1911-11-25 1912-05-07 Henry F Kunicki Telephone and telegraph contact for movable bodies.
US1359663A (en) 1919-12-01 1920-11-23 Moline Plow Co Quick-detachable plowshare
KR101415089B1 (en) 2011-12-05 2014-07-07 한국화학연구원 Metal-oxide semiconductor ink composition and manufacturing method of thin film transistor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060063361A (en) * 2004-12-07 2006-06-12 삼성전기주식회사 Sol composition for dielectric ceramic, and dielectric ceramic and multilayered ceramic capacitor using it
KR20120020938A (en) * 2010-08-31 2012-03-08 인제대학교 산학협력단 Photo electrode for dye-sensitized solar cell, manufacturing method of the same and dye-sensitized solar cell including the same
KR20120023571A (en) * 2010-09-02 2012-03-13 미쓰비시 마테리알 가부시키가이샤 Dielectric-thin-film forming composition, method of forming dielectric thin film, and dielectric thin film formed by the method
KR20120129247A (en) * 2011-05-19 2012-11-28 한양대학교 산학협력단 Sintering method of semiconductor oxide by using intense pulsed light
KR20120140485A (en) * 2011-06-21 2012-12-31 한국과학기술연구원 Method for forming pattern of metal oxide and method for manufacturing thin film transistor using the same

Also Published As

Publication number Publication date
KR20160006511A (en) 2016-01-19
KR101600690B1 (en) 2016-03-07

Similar Documents

Publication Publication Date Title
WO2016006787A1 (en) Complex light annealing and sintering method for semiconductor oxide, using intense pulsed light, near infrared ray and far ultraviolet ray
WO2016108656A1 (en) Transparent sheet heater
CN105024017B (en) A kind of flexible base board, flexible display and preparation method thereof
WO2013100557A1 (en) Plastic substrate
CN103069369B (en) Input unit
WO2015109464A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
WO2010120087A1 (en) Data security screen and a production method for the same
WO2020218725A1 (en) Eco-friendly heat-shielding film using non-radioactive stable isotope and manufacturing method therefor
WO2015152559A1 (en) Low refractive composition, preparation method therefor, and transparent conductive film
WO2015080422A1 (en) Method for manufacturing substrate, substrate, method for manufacturing organic electroluminescence device, and organic electroluminescence device
WO2015080496A1 (en) Conductive structure precursor, conductive structure and manufacturing method therefor
KR101554847B1 (en) Multilayer film, film roll of same, light-transmitting conductive film obtained from same, and touch panel utilizing said light-transmitting conductive film
US20210047533A1 (en) Photonic sintered nanoink, photonic sintering method, and conductive nanostructure
WO2022270704A1 (en) Antibacterial coating composition, and method for manufacturing optical film including antibacterial nanoparticles
KR20190067199A (en) METHOD AND APPARATUS FOR MANUFACTURING A LIGHT SOURCE SUBSTRATE FOR ORGANIC LED
WO2014175544A1 (en) Transparent electrode and manufacturing method therefor
JP5592889B2 (en) Coated polymer substrate
WO2023008961A1 (en) Shatterproof heat shield sheet
TW202012157A (en) Conductive film and conductive film roll, electronic paper, touch panel, and flat panel display using same
WO2019160296A1 (en) Flexible touch sensor having color filter integrated therein, and manufacturing method therefor
WO2016129937A9 (en) Conducive structure and manufacturing method thereof
WO2019212218A1 (en) Photonic sintered nanoink, photonic sintering method, and conductive nanostructure
TWI821513B (en) Thin flexible double sided structures with transparent conductive layers
WO2017047885A1 (en) Gas barrier film and coating-solution production
WO2014115996A1 (en) Transparent conductive film coating composition, transparent conductive film, and method for manufacturing transparent conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819361

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15819361

Country of ref document: EP

Kind code of ref document: A1