WO2016006325A1 - Driving mechanism - Google Patents

Driving mechanism Download PDF

Info

Publication number
WO2016006325A1
WO2016006325A1 PCT/JP2015/064407 JP2015064407W WO2016006325A1 WO 2016006325 A1 WO2016006325 A1 WO 2016006325A1 JP 2015064407 W JP2015064407 W JP 2015064407W WO 2016006325 A1 WO2016006325 A1 WO 2016006325A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
motor
oil pump
power transmission
sprocket
Prior art date
Application number
PCT/JP2015/064407
Other languages
French (fr)
Japanese (ja)
Inventor
隆之 奥田
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2016006325A1 publication Critical patent/WO2016006325A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/383One-way clutches or freewheel devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a drive mechanism having a speed change mechanism, and particularly to a drive mechanism suitable for use in a mechanism for driving a vehicle (vehicle drive mechanism).
  • Japanese Patent Application Laid-Open No. 2004-228561 describes a technique in which an oil pump for supplying hydraulic oil to an automatic transmission can be driven by an engine or an electric motor in a hybrid vehicle driving device including an engine and an electric motor.
  • This patent document 1 discloses a vehicle having an engine, an electric motor, a first one-way clutch, a second one-way clutch, a continuously variable transmission mechanism, an oil pump and a drive wheel, and the engine is oiled via the first one-way clutch. Power can be transmitted to the pump, and the electric motor can transmit power to the oil pump via the second one-way clutch.
  • Patent Document 1 does not discuss the idling stop. However, if an attempt is made to perform idling stop in the vehicle described in Patent Document 1, the engine is stopped at idling stop (when the vehicle is stopped and the engine is stopped). The oil pump cannot be driven by the engine or the electric motor, and no hydraulic pressure is supplied to the continuously variable transmission mechanism.
  • the present invention has been devised in view of such problems, and provides a drive mechanism that is more multifunctional than before by expanding the usage of the motor and allowing the oil pump to be driven in various modes. It is the purpose.
  • the drive mechanism of the present invention has an input shaft, an output shaft, a power transmission path for transmitting the power of the input shaft to the output shaft, and the power transmission.
  • a first power interruption mechanism in the path; a second power interruption mechanism outside the power transmission path; a third power interruption mechanism outside the power transmission path; And an oil pump outside the power transmission path, and the power of the input shaft can be transmitted to the output shaft via the first power interrupting mechanism.
  • the power can be transmitted to the motor and the oil pump via the second power interrupt mechanism without passing through the first power interrupt mechanism, and the power of the output shaft can be transmitted to the first power interrupt mechanism.
  • the motor and And can be transmitted to the serial oil pump, the motor is characterized by having a power generation function.
  • the oil pump can be driven by the rotation of the motor in a state where the second power interrupting mechanism and the third power interrupting mechanism are in a power interrupting state. It is preferable.
  • the motor and the oil pump can be driven by rotation of the output shaft while the third power interrupting mechanism is in a power transmission state.
  • the power transmission path has a speed ratio adjusting mechanism, and the rotation of the output shaft can be transmitted to the motor and the oil pump via the speed ratio adjusting mechanism and the third power interrupting mechanism. preferable.
  • the power transmission path has a gear ratio adjustment mechanism, and when the input shaft rotates at a predetermined rotational speed or less, the second power interrupt mechanism and the third power interrupt mechanism are in a power interrupt state, It is preferable that the gear ratio adjusting mechanism is shifted by driving the oil pump by rotation of a motor.
  • the second power interrupting mechanism and the third power interrupting mechanism are set in a power shut-off state, and the oil pump is driven by the rotation of the motor to thereby change the speed change. It is preferable to shift the ratio adjustment mechanism.
  • a first power transmission mechanism having a first rotating member, a second rotating member, and a first endless member spanned between the first rotating member and the second rotating member, the motor and the It is preferable that the oil pump is connected via the first power transmission mechanism.
  • a second power transmission mechanism having a third rotating member, a fourth rotating member, and a second endless member stretched over the third rotating member and the fourth rotating member, and the input shaft It is preferable that at least one of the motor and the oil pump is connected via the second power transmission mechanism.
  • the second power interrupting mechanism preferably has a one-way clutch located on the inner periphery of the third rotating member or the fourth rotating member.
  • At least one of the second power interrupt mechanism and the third power interrupt mechanism has a one-way clutch.
  • a vehicle according to the present invention includes a drive source, a drive wheel, the drive mechanism, and the input shaft is input with power of the drive source.
  • the wheel is characterized in that the power of the output shaft is output.
  • the “power intermittent mechanism” has a first member and a second member.
  • Power interrupting mechanism means a mechanism capable of interrupting the power between the first member and the second member.
  • the “power interruption mechanism” has at least a function of transmitting power from one of the first member or the second member to the other of the first member or the second member.
  • the power input to one of the first member or the second member can be transmitted to the other of the first member or the second member via the power interrupting mechanism.
  • the first power interrupt mechanism has a function of transmitting power from at least the first member to the second member.
  • the first power interrupt mechanism can have a function of transmitting power from the second member to the first member.
  • the first power interrupt mechanism has a first member on the input shaft side.
  • the first power interrupting mechanism has a second member on the output shaft side.
  • the power of the input shaft can be transmitted to the output shaft through the first power interrupting mechanism.
  • the power of the input shaft is transmitted to the output shaft without passing through the second power interrupt mechanism and the third power interrupt mechanism.
  • the second power interrupt mechanism has a function of transmitting power from at least the first member to the second member.
  • the second power interrupting mechanism can have a function of transmitting power from the second member to the first member.
  • the second power interrupting mechanism has a first member on the input shaft side.
  • the second power interrupting mechanism has a second member on the oil pump side and the motor side.
  • the power of the input shaft can be transmitted to the motor and the oil pump via the second power interrupting mechanism and not via the first power interrupting mechanism.
  • the third power interrupting mechanism has a function of transmitting power from at least the first member to the second member.
  • the third power interrupting mechanism can have a function of transmitting power from the second member to the first member.
  • the third power interrupting mechanism has a first member on the output shaft side.
  • the third power interrupting mechanism has a second member on the oil pump side and the motor side.
  • the power of the output shaft can be transmitted to the motor and the oil pump via the third power interrupting mechanism and not via the first power interrupting mechanism.
  • the first power interrupting mechanism is disposed in a power transmission path that transmits the power of the input shaft to the output shaft (arranged on the power transmission path).
  • the second power interrupt mechanism is disposed outside the power transmission path for transmitting the power of the input shaft to the output shaft (not disposed on the power transmission path).
  • the third power interrupting mechanism is disposed outside the power transmission path that transmits the power of the input shaft to the output shaft (not disposed on the power transmission path).
  • the oil pump is driven by any one of the power of the input shaft transmitted through the second power interrupting mechanism, the power of the output shaft transmitted through the third power interrupting mechanism, or the power of the motor. Is done.
  • the oil pump may be driven by the power of the input shaft transmitted via the first power interrupt mechanism and the third power interrupt mechanism.
  • a forward / reverse switching mechanism that is disposed on the input shaft side and includes a forward clutch and a reverse brake; and a continuously variable transmission mechanism interposed between an output side of the forward / backward switching mechanism and the output shaft; It is preferable that the forward clutch and the reverse brake constitute the first power interrupting mechanism, and the continuously variable transmission mechanism constitutes the speed ratio adjusting mechanism.
  • the second power interrupting mechanism includes the first release means for interrupting power transmission from the motor or the oil pump side to the input shaft side, and the power from the input shaft side to the motor or the oil pump side.
  • the third power interrupting mechanism includes the second release means for interrupting power transmission from the motor or the oil pump side to the output shaft side, from the output shaft side.
  • a one-way clutch that can only transmit power to the motor or the oil pump is preferable.
  • the second power interrupt mechanism and the third power interrupt mechanism are intermittently controlled by an electric signal, and have an input shaft rotation detecting means for detecting the rotation of the input shaft, and an output shaft rotation for detecting the rotation of the output shaft.
  • Control means for controlling the second power interrupting mechanism, the third power interrupting mechanism, and the motor based on the detection results of the input shaft rotation detecting means and the output shaft rotation detecting means.
  • the control means preferably has functions of the first release means and the second release means.
  • Motor control that has pump rotation detection means for detecting rotation of the oil pump and controls the motor so that the rotation speed of the oil pump is within a set rotation speed range based on the detection result of the pump rotation detection means It is preferable to have a means.
  • the motor control means preferably operates the motor as an electric motor when the rotation speed of the oil pump is not more than the set rotation speed range.
  • a gear ratio control means for controlling the gear ratio adjustment mechanism using hydraulic oil discharged from the oil pump, wherein the gear ratio control means is driven by rotation of the output shaft; In addition, it is preferable to control the speed ratio of the speed ratio adjusting mechanism so that the rotational speed of the oil pump is within the set rotational speed range.
  • the use application of the motor can be expanded and the oil pump can be driven in various modes, so that a multi-function drive mechanism can be provided.
  • the oil pump can be assisted by the motor.
  • the oil pump can be driven by the input to the output shaft.
  • the oil pump can be driven by the motor by performing a power running operation of the motor. it can.
  • oil pressure can be generated by operating the oil pump even when the vehicle is idle stopped, and when the vehicle is restarted from the vehicle idle stop, the required amount of hydraulic oil can be supplied quickly. Therefore, it is possible to prevent the occurrence of a time lag when starting.
  • the power transmission path has a gear ratio adjustment mechanism and the rotation of the output shaft is transmitted to the motor and the oil pump via the gear ratio adjustment mechanism and the third power interrupt mechanism, the motor and the oil pump Since it is connected to the output shaft via the ratio adjustment mechanism, during regeneration, that is, when the motor and the oil pump are driven by the rotational torque input to the output shaft, the rotation from the output shaft is changed through the transmission ratio adjustment mechanism. Therefore, the rotation speed of the oil pump can be increased and the pump discharge amount can be increased.
  • the power generation efficiency of the motor changes according to the rotational speed of the motor, and the rotational speed of the output shaft gradually decreases when the vehicle is coasting, but the transmission ratio from the output shaft to the motor is adjusted. Since the rotation speed with good power generation efficiency can be maintained by the mechanism, power can be generated with high efficiency by the motor when the vehicle is coasting.
  • the motor can drive the oil pump at a higher speed than that driven by the input shaft.
  • a required amount of hydraulic fluid can be generated in a necessary amount, and the gear ratio adjustment mechanism can be shifted.
  • the intermittent control and the facilities necessary for the intermittent control are not required as compared with the case of using the power intermittent mechanism that is controlled by electrical signals.
  • the power transmission mechanism is configured by including the first rotating member, the second rotating member, and the first endless member spanned between the first rotating member and the second rotating member
  • the third power member If the second power transmission mechanism is configured by including the rotation member, the fourth rotation member, the third rotation member, and the second endless member spanned over the fourth rotation member, the power transmission mechanism is configured by a gear. Compared with the case where the motor, the oil pump, the input shaft, and the output shaft can be set more freely and the overall length of the drive mechanism can be shortened. Therefore, the width of the rotating member can be reduced.
  • the driving mechanism can be made more compact than arranging the one-way clutch separately from the rotating member. It becomes.
  • a vehicle equipped with the drive mechanism of the present invention is an automobile, and a transmission (including a gear ratio adjusting mechanism) according to the drive mechanism of the present invention is a continuously variable transmission.
  • the drive mechanism of the present embodiment is mounted on a drive system of an automobile and is connected to a prime mover (hereinafter also referred to as an engine) 1 as a power source.
  • An input shaft (input shaft according to the present invention) 10 that is input, an output shaft 4 that is connected to the drive wheel 5 and outputs rotational torque to the drive wheel 5, and is connected to the input shaft 10, and at least forward, reverse, and A neutral gear stage can be achieved, and a transmission 100 that shifts the rotation of the input shaft 10 and sends it to the output shaft 4 is provided.
  • the transmission 100 includes a torque converter 2, a transmission mechanism 3 having a variator 32 as a transmission ratio adjusting mechanism, a motor (motor generator) 6 having a power generation function, and oil connected to the motor 6 in a power transmission state.
  • a clutch 83 serving as a three-power intermittent mechanism and a control device (control means) 200 using a computer are provided.
  • “connected to a power transmission state” means that power is transmitted directly or via a power transmission path in one direction or in both directions between one component and another component. For example, when power is transmitted from one component to another component, the power is transmitted between the one component and the other component. It will be connected to.
  • the first power interrupting mechanism 81, the clutch 82 as the second power interrupting mechanism, and the clutch 83 as the third power interrupting mechanism will be further described.
  • the first power interrupting mechanism 81 has a first member and a second member, and is a mechanism capable of interrupting power transmission between the first member and the second member.
  • the clutch 82 as the second power interrupting mechanism has a first member and a second member, and is a mechanism capable of interrupting power transmission between the first member and the second member.
  • the clutch 83 as the third power interrupting mechanism has a first member and a second member, and is a mechanism capable of interrupting power transmission between the first member and the second member.
  • the first power interrupting mechanism 81 is provided in the power transmission path 303 between the input shaft 10 and the output shaft 4, and the input side of the first power interrupting mechanism 81 is directly or indirectly connected to the input shaft 10.
  • the output side of the first power interrupt mechanism 81 is directly or indirectly connected to the output shaft 4.
  • directly connected means connecting by connecting a power transmission path composed of gears, pulleys, etc. between the connected ones.
  • the clutch 82 as the second power interrupting mechanism is provided outside the power transmission path 303 and is disposed in the power transmission path 301 between the motor 6 and the oil pump 7 and the engine 1 (input shaft 10). (Disposed on the power transmission path 301).
  • the clutch 83 as the third power interrupting mechanism is provided outside the power transmission path 303 and is disposed in the power transmission path 302 between the motor 6 and the drive wheel 5 (output shaft 4) (power). Arranged on the transmission path 302).
  • the power transmission path 302 is formed so that the rotational torque from the drive wheels 5 can be transmitted to the motor 6 via the variator 32.
  • the motor 6 is provided outside the power transmission path 303, and the oil pump 7 is provided outside the power transmission path 303.
  • the motor 6 and the oil pump 7 can be driven by the rotational torque input from the engine 1 using the power transmission path 301. If the clutch 83 is connected, the power transmission path 302 is connected. The motor 6 and the oil pump 7 can be driven by the rotational torque (backflow torque) input from the drive wheel 5 using.
  • the oil from the oil pump 7 is supplied to each part of the transmission 100 after being controlled to an appropriate pressure by the hydraulic control circuit 7a.
  • the clutch 82 and the clutch 83 are constituted by hydraulically operated clutches
  • the oil from the oil pump 7 is adjusted to an appropriate pressure by the hydraulic control circuit 7a as shown by a two-dot chain line, and then the clutch 82. And is supplied to the clutch 83.
  • the drive mechanism also includes an input shaft rotation sensor (input shaft rotation detection means) 201 that detects the rotation of the input shaft 10 and an output shaft rotation sensor (output shaft rotation detection means) that detects the rotation of the output shaft 4. ) 202 and a pump rotation sensor (pump rotation detection means) 203 that detects the rotation of the oil pump 7.
  • the detection signals of the input shaft rotation sensor 201, the output shaft rotation sensor 202, and the pump rotation sensor 203 are as follows.
  • the control device 200 controls the operation of the motor 6 and the first power interrupting mechanism 81 based on these detection signals, and the clutch 82 and the clutch 83 are electronically controlled hydraulically operated clutches. In this case, the operation of the clutch 82 and the clutch 83 is controlled.
  • the drive mechanism of the present embodiment includes, for example, a transmission 100 having an input shaft 10, an output shaft 4, a power transmission mechanism 5a, in the order of the output transmission direction from the engine 1, as shown in FIG. And at least a drive wheel 5.
  • the transmission 100 includes a torque converter 2, a forward / reverse switching mechanism 31 having a first power interrupting mechanism 81, a variator (speed ratio adjusting mechanism, continuously variable transmission mechanism).
  • 32 transmission mechanism 3 oil pump 7, hydraulic control circuit 7 a, oil pump 7, double-shaft motor 6 having a power generation function, clutch 82 as a second power interrupting mechanism, clutch as a third power interrupting mechanism 83 and the control device 200, where the clutch 82 and the clutch 83 are both one-way clutches.
  • the oil pump 7 is driven by the engine 1, the drive wheel 5, or the motor 6 (hereinafter, driving the oil pump 7 by the engine 1 is referred to as “engine drive, motor 6”). (It is also called motor drive).
  • a battery (not shown) is connected to the motor 6, and when the motor 6 is powered, the battery power is used. When the motor 6 generates power, the generated power is charged to the battery. Is done.
  • the torque converter 2 includes a torque converter input shaft 21 connected to the output shaft of the engine 1, a pump impeller 23 fixed to the torque converter input shaft 21, an input shaft of the forward / reverse switching mechanism 31, that is, a speed change mechanism input shaft 31a and a turbine shaft. And an output of the engine 1 input via the pump impeller 23 is transmitted to the turbine runner 24 and transmitted to the transmission mechanism 3.
  • the input shaft 10 includes a torque converter input shaft 21, a front cover 22, a pump impeller 23, and a hollow shaft 11 fixed to the pump impeller 23.
  • the torque converter 2 is provided with a lockup clutch 26 that directly connects the front cover 22 and the turbine runner 24.
  • the forward / reverse switching mechanism 31 includes a planetary gear mechanism 31b, a forward clutch 31c that achieves a forward shift stage when engaged, and a reverse brake 31d that achieves a reverse shift stage when engaged,
  • the first power interrupting mechanism 81 is configured from the reverse brake 31d, and the first power interrupting mechanism 81 is released, thereby achieving neutrality that is a power interrupting state.
  • the forward clutch 31c connects the ring gear of the planetary gear mechanism 31b and the sun gear to make the output rotation (sun gear rotation) forward, and the reverse brake 31d fastens the carrier of the planetary gear mechanism 31b to the case side.
  • the output rotation is the reverse rotation.
  • the turbine shaft 25 and the transmission mechanism input shaft 31a are disposed in the power transmission path 303, and the rotational torque (power) input from the engine 1 to the input shaft 10 is converted into the first power interrupting mechanism 81 ( It can be transmitted to the output shaft 4 via the power transmission path 303 via the forward clutch 31c and the reverse brake 31d).
  • the variator 32 has a primary pulley 32b, a secondary pulley 32c, and a belt 32d wound around the pulley 32b and the pulley 32c, and one end side of an input shaft 32a provided to protrude from both sides of the primary pulley 32b is provided. It is connected to the output side of the forward / reverse switching mechanism 31 and adjusts the wrapping diameter (effective pulley radius) of the belt 32d around each of the pulley 32b and the pulley 32c to change the gear ratio.
  • the forward clutch 31c is fastened by being supplied with hydraulic pressure during travel in which a forward travel range such as a drive (D) range is selected by a select bar (not shown).
  • a forward travel range such as a drive (D) range is selected by a select bar (not shown).
  • the reverse brake 31d is supplied with hydraulic pressure and is engaged during reverse travel in which a reverse (R) range (reverse travel range) is selected.
  • R reverse travel range
  • the reverse pulley 31b is connected to the transmission mechanism input shaft 31a.
  • the input shaft 32a rotates in the reverse direction.
  • the forward clutch 31c and the reverse brake 31d are engaged exclusively with each other, and when the forward clutch 31c is engaged, the reverse brake 31d is released and the reverse brake is released. When 31d is engaged, the forward clutch 31c is released.
  • both the forward clutch 31c and the reverse brake 31d are neutral.
  • forward / reverse switching mechanism does not change the gear ratio for both forward and reverse, but instead of this forward / reverse switching mechanism, a sub-transmission mechanism (forward / reverse switching mechanism) having a forward / reverse switching mechanism is provided.
  • a mechanism capable of changing the gear ratio for at least one of them may be used, or a sub-transmission mechanism may be provided in addition to the forward / reverse switching mechanism.
  • the output side of the speed change mechanism 3 is connected to the output shaft 4, and the output shaft 4 is connected to the drive wheels 5 via a power transmission mechanism 5a having a final reduction gear, a differential, a drive shaft, and the like.
  • the hydraulic oil (oil) pumped from the oil pump 7 is supplied to the first power interrupting mechanism 81 and the variator 32 via the hydraulic control circuit 7a.
  • the hydraulic control circuit 7a has a plurality of solenoid valves (not shown), and the hydraulic oil controlled to a predetermined pressure from these solenoid valves according to a command from the control device 200 is supplied to the primary pulley 32b, The secondary pulley 32c, the forward clutch 31c, and the reverse brake 31d are supplied.
  • the effective radius of each pulley is adjusted as described above according to the hydraulic pressure (operating pressure) of the hydraulic oil supplied to the primary pulley 32b and the secondary pulley 32c.
  • the operation of the forward / reverse switching mechanism 31 is controlled by controlling the supply and discharge of the operating pressure to the forward clutch 31c and the reverse brake 31d.
  • a sprocket (rotating member) 91 is attached to the input shaft 10 via a clutch 82 that is a one-way clutch, and the clutch 82 is incorporated on the inner peripheral side of the sprocket 91.
  • One chain 92 is wound around the sprocket 91 and a sprocket (rotating member) 94 mounted on one end side 62 of the motor rotating shaft 61, and the other chain 93 includes the sprocket 91 and the oil pump rotating shaft. It is wound around a sprocket (rotating member) 95 attached to 71.
  • the sprocket 91, the chain 92 and the chain 93, the sprocket 94 and the sprocket 95, the motor rotating shaft 61 and the pump rotating shaft 71 are arranged in the power transmission path 301.
  • the power transmission mechanism between the input shaft 10 and the motor 6 is configured by the sprocket 91, the chain 92, and the sprocket 94, and the input shaft 10 and the pump rotating shaft 71 are configured by the sprocket 91, the chain 93, and the sprocket 95.
  • a power transmission mechanism between the two is configured.
  • the other end 63 of the motor rotating shaft 61 is connected to a rotating shaft 96 of a sprocket 97 via a clutch 83 which is a one-way clutch.
  • the sprocket 97 and a sprocket mounted on the rotating shaft 32a of the primary pulley 32b.
  • a chain (endless member) 98 is looped around 99.
  • the power transmission mechanism including the sprocket 99, the chain 98, and the sprocket 97, the rotary shaft 96, and the motor rotary shaft 61 are disposed in the power transmission path 302.
  • the sprocket 94, the chain 92, the sprocket 91, the chain 93, and the sprocket 95 constitute a power transmission mechanism between the motor 6 and the oil pump 7.
  • the clutch 82 is a one-way clutch as described above, and the power from the input shaft 10 can be transmitted to the motor 6 and the oil pump 7 via the clutch 82 without passing through the power interrupting mechanism 81. , Only the power directed from the input shaft 10 to the motor 6 and the oil pump 7 can be transmitted.
  • the clutch 82 is in a released state (power cutoff state).
  • the clutch 83 is a one-way clutch as described above, and the power from the output shaft 4 (rotating shaft 96) side does not pass through the power interrupting mechanism 81 and passes through the clutch 83 to the motor rotating shaft 61.
  • the power transmission is possible, and only the power from the output shaft 4 toward the motor rotation shaft 61 can be transmitted.
  • the clutch 83 that is a one-way clutch is in an engaged state. It becomes.
  • the clutch 83 which is a one-way clutch is in a released state (power cut-off state).
  • the clutch 83 only needs to be disposed outside the power transmission path 303 and interposed between the motor 6 and the output shaft 4 on the power transmission path 302, as shown by a two-dot chain line in FIG. It may be installed between the sprocket 99 and the variator 32 or on the inner peripheral side of the sprocket 99 or the sprocket 97 in the same manner as the clutch 82.
  • intervening means to be provided between the members, but in the present invention, the space between the members is not limited to the members on the physical arrangement.
  • between members is not limited to a space formed between one member and another member in an actual arrangement.
  • the clutch 83 only needs to be interposed on the power transmission path between the motor 6 and the output shaft 4” means that the clutch 83 is between the motor 6 and the output shaft 4. It is only necessary to be disposed in the power transmission path formed in the above, and it is not necessary to be disposed in the space between the motor 6 and the output shaft 4.
  • the drive mechanism of the present embodiment includes the control device 200, the input shaft rotation sensor 201, the output shaft rotation sensor 202, and the pump rotation sensor that detects the rotation speed (pump rotation speed) of the pump rotation shaft 71. 203, and the control device 200 includes clutch control means 200A, motor control means 200B, and gear ratio control means 200C.
  • the clutch control means 200A, the motor control means 200B, and the gear ratio control means 200C may be configured by separate hardware (control device).
  • the clutch control means 200A controls the supply and discharge of oil to and from the first power interrupting mechanism 81 (forward clutch 31c, reverse brake 31d) via the hydraulic control circuit 7a according to the drive range and the like.
  • the shift state of the switching mechanism 31 is controlled.
  • the clutch control means 200A when coasting with the accelerator off, the clutch control means 200A, if the vehicle speed is equal to or higher than the first predetermined speed, moves the forward clutch 31c and the reverse brake until the vehicle speed drops below a second predetermined speed lower than the first predetermined speed. All of 31d are released, and sailing control is performed to place the transmission 100 in the neutral state.
  • the fuel consumption can be improved by stopping the engine 1, but the control device 200 displays a reverse flow state of torque in which rotational torque is input from the drive wheels 5 to the output shaft 4 during the sailing control.
  • the oil pump 7 is driven using this.
  • the motor 6 generates power.
  • the power generation load by the motor 6 can be used as a regenerative braking force, so that the motor 6 generates power so as to obtain a predetermined braking force (power generation load of the motor 6).
  • the forward clutch 31c may be engaged in the fuel cut state, and the braking force may be applied by the engine brake.
  • the motor control means 200B controls the motor 6 to any state of an electric motor, no load, and a generator, and when operating the motor 6 as an electric motor, the engine rotation speed detected by the input shaft rotation sensor 201. Is less than a predetermined rotational speed, the motor 6 is operated because there is a possibility that the output of the oil pump 7 may be insufficient when the engine is driven.
  • the motor control means 200B may control the operation of the motor 6 based on the pump rotation speed detected by the pump rotation sensor 203.
  • the motor control means 200B operates the motor 6 as an electric motor to drive the oil pump 7 and set the pump rotation speed within the set rotation speed range. Just go in.
  • the sprocket 91 can be rotated at a speed higher than the engine rotation speed (that is, the rotation speed of the input shaft 10).
  • the rotational torque of the motor 6 is transmitted to the oil pump 7 in place of the rotational torque of the engine 1 by the action of the clutch 82 which is a one-way clutch, and the oil pump 7 can be rotated in the set rotational speed range. .
  • the pump rotation shaft 71 and the motor rotation shaft 61 are connected in a power transmission state, there is a correlation between the pump rotation speed and the motor rotation speed, so the rotation speed of the motor rotation shaft 61 (motor rotation speed).
  • the motor 6 may be controlled based on the motor rotation speed detected by the motor rotation sensor instead of the pump rotation speed.
  • the motor control unit 200B operates the motor 6 as an electric motor to drive the oil pump 7 to set the pump rotation speed to the above set rotation. It only has to be within the speed range.
  • the motor control unit 200B operates the motor 6 as a generator when the SOC of the battery is lower than a predetermined value, and drives the motor 6 with the engine 1 to generate electric power on condition that the required engine load can be satisfied during normal traveling. As described above, during coasting, the motor 6 is appropriately driven by drive wheels to generate power.
  • the oil pump 7 is driven by the motor even when the stop idling stop is performed and the oil pump 7 is not driven by the rotational torque from the engine 1 or the drive wheels 5.
  • the required amount of oil and the required pressure can be supplied to the transmission 100 even when the vehicle is stopped idle.
  • the motor 6 is operated by the motor control means 200B even when the oil pump 7 can be driven in the set rotational speed range by the engine drive on the condition that the SOC of the battery is higher than a predetermined value.
  • the engine load may be reduced.
  • the gear ratio control means 200C supplies and discharges the adjusted hydraulic pressure oil to the primary pulley 32b and the secondary pulley 32c via the hydraulic control circuit 7a, and controls the effective radius of the pulley and thus the gear ratio.
  • the oil pump 7 and the motor 6 can be driven by the engine without affecting the operation of the variator 32, the drive wheel 5, and the like.
  • the motor 6 is operated to generate electricity, the kinetic energy can be converted into electric energy with a part of the rotational torque input to the input shaft 10, and the battery is charged and electric power is supplied to the electrical components. Can do.
  • the motor 6 when the engine rotation speed is lower than the set rotation speed range or when the pump rotation speed is lower than the set rotation speed range, the motor 6 is operated in a powering manner. If the required amount cannot be generated, the oil pump 7 can be driven by a motor to generate the required amount of hydraulic oil.
  • the oil pump 7 can supply the operating pressure necessary for the variator 32 and the shift can be performed quickly.
  • Step-down downshift is determined, and step-down is executed.
  • the oil pump 7 is driven by the motor 6 and the step-down is executed.
  • kickdown is a subordinate concept of stepping down, and a downshift that is executed when the accelerator pedal is fully depressed (when the accelerator opening is maximum) is called kickdown.
  • the motor control means 200B operates the motor 6 as an electric motor to operate the oil pump 7 when the engine rotational speed is below the set rotational speed range or when the pump rotational speed is below the set rotational speed range. Since it is driven, the oil pump 7 can be driven by the motor 6 when the vehicle is stopped idle.
  • the input shaft 10 and the output shaft 4 are stopped during the idling stop, and when the oil pump 7 is driven by the motor 6 when the input shaft 10 and the output shaft 4 are stopped as described above, it is a one-way clutch. Since the clutch 82 and the clutch 83, which is a one-way clutch, are respectively released, the motor 6 is powered off from the engine side and the drive wheel side.
  • the oil pump 7 can be driven by the motor 6 without causing the engine 1 to become a load and driving the driving wheel to drive the vehicle.
  • the rotational torque of the drive wheel 5 is transmitted to the motor rotational shaft 61 of the power transmission path 302 to drive the motor 6, and the rotational torque transmitted to the motor rotational shaft 61 is further sprocket 94, chain 92, sprocket. 91, the oil pump 7 is driven by being transmitted to the pump rotating shaft 71 through a power transmission path in which the chain 93 and the sprocket 95 are arranged.
  • the rotational torque is transmitted from the motor rotating shaft 61 to the sprocket 91, but this rotating torque is not transmitted to the input shaft 10 or the engine 1 by the action of the clutch 82 which is a one-way clutch (in other words, the engine 1 is It is maintained in a state where it is dynamically disconnected from the drive wheel 5 and does not hinder coasting).
  • the gear ratio can be controlled by the gear ratio control means 200C so that the motor rotational speed becomes a rotational speed with good power generation efficiency.
  • the power generation efficiency changes according to the motor rotation speed. For example, during coasting, the rotation speed of the output shaft 4 gradually decreases, but if the gear ratio of the variator 32 is shifted to the low side, the motor rotation speed is reduced. Since the speed can be changed to a rotational speed with good power generation efficiency, the motor 6 can generate power with high efficiency.
  • the gear ratio can be controlled according to the detection result of the pump rotational sensor 203 (of course, the motor rotational speed is directly detected).
  • a sensor may be provided).
  • a power transmission mechanism between the oil pump and the output shaft 4 includes a rotating member (a sprocket in the present embodiment) and an endless member (a chain in the present embodiment) spanned around these rotating members. Therefore, the degree of freedom in setting the positional relationship among the motor 6, the oil pump 7, the input shaft 10, and the output shaft 4 is increased as compared with the case where the power transmission mechanism is configured by gears, for example, the overall length of the drive mechanism is shortened. It is also possible.
  • a rotating member such as a sprocket or a chain or an endless member is used for a power transmission mechanism for driving the oil pump 7
  • the thickness of the rotating member is made thinner than when a gear is used. be able to.
  • the required strength of the power transmission mechanism for transmitting the rotational torque to the oil pump 7 is relatively low.
  • the width dimension (thickness) of the gear must be set to a minimum dimension that does not generate noise.
  • a rotating member such as a sprocket does not generate a large noise even if it is thinned. Therefore, when the power transmission mechanism is composed of an endless member or a rotating member, the rotating member is made according to the required strength. It can be made thin.
  • the clutch 82 which is a one-way clutch, is incorporated on the inner peripheral side of the sprocket 91, the drive mechanism can be made more compact than arranging the one-way clutch separately from the sprocket and pulley.
  • FIG. 1A Schematic configuration of a modified example of the drive mechanism of the present embodiment is as shown in FIG. 1A as in the above-described embodiment, and a description thereof will be omitted.
  • the drive mechanism of this modification is different from the first embodiment in the configuration of a power transmission mechanism 301 between the input shaft 10, the motor 6, and the oil pump 7.
  • a sprocket (rotating member) 91A is mounted on the hollow shaft 11 via a clutch 82 as a second power interrupting mechanism, and the clutch 82 is a one-way clutch and is included in the sprocket 91A. It is incorporated on the circumferential side.
  • a chain (endless member) 92A is wound around the sprocket 91A and a sprocket (rotating member) 94A mounted on one end side 62 of the motor rotating shaft 61.
  • a sprocket (rotating member) 95A is further mounted on one end side 62 of the motor rotating shaft 61, and the sprocket (rotating member) mounted on the sprocket 95A and the oil pump rotating shaft 71.
  • a chain (endless member) 93A is wound around 96A.
  • a power transmission mechanism between the motor 6 and the oil pump 7 is constituted by the sprocket 95A, the chain 93A, and the sprocket 96A.
  • the sprocket 91A, the chain 92A, the sprocket 94A, the sprocket 95A, the motor rotating shaft 61, the chain 93A, the sprocket 96A, and the pump rotating shaft 71 are arranged in the power transmission path 301 of this modification.
  • a power transmission mechanism between the input shaft 10 and the motor 6 is configured by the sprocket 91A, the chain 92A, and the sprocket 94A. From the sprocket 91A, the chain 92A, the sprocket 94A, the sprocket 95A, the chain 93A, and the sprocket 96A, A power transmission mechanism between the input shaft 10 and the oil pump 7 is configured.
  • the rotation torque of the motor rotation shaft 61 is input to the pump rotation shaft 71 via the sprocket 95A, the chain 93A and the sprocket 96A. It is designed to be driven.
  • the rotational torque of the drive wheels 5 is a power transmission mechanism having the sprocket 99, the chain 98, and the sprocket 97.
  • the motor 6 is driven by being input to the motor rotating shaft 61 via the clutch 83 which is a one-way clutch, and the rotational torque input to the motor rotating shaft 61 is supplied to the pump rotating shaft via the sprocket 95A, the chain 93A and the sprocket 96A.
  • the oil pump 7 is driven by being inputted to 71.
  • the motor rotating shaft 61 is used. Is transmitted in the order of the sprocket 94A, the chain 92A, and the sprocket 91A.
  • the clutch 82 which is a one-way clutch built in the inner periphery of the sprocket 91A, transmits power from the motor 6 to the input shaft 10. Since the motor is in the released state, the rotational torque from the motor 6 is not output to the engine side.
  • the clutch 82 as the second power interrupting mechanism and the clutch 83 as the third power interrupting mechanism are configured as one-way clutches, but at least one of the clutch 82 and the clutch 83 is an electric signal.
  • the clutch may be configured to be intermittently controlled. Examples of such a clutch include a dog clutch, a single plate type or a multi-plate type hydraulically operated clutch, an electromagnetic clutch, or an actuator other than a hydraulic type or an electromagnetic type. There is an intermittent clutch.
  • the clutch control means 200A determines the traveling state of the vehicle according to the detection result of the input shaft rotation sensor 201 and the detection result of the output shaft rotation sensor 202, and the clutch 82 and the clutch 83 are determined according to the traveling state.
  • the supply / discharge of hydraulic pressure to / from the clutch 82 and the clutch 83 and the clutch 83 are controlled.
  • the clutch control means 200A is in a normal running state when it is detected by the input shaft rotation sensor 201 and the output shaft rotation sensor 203 that the input shaft 10 and the output shaft 4 are rotating at a predetermined rotational speed or more.
  • the power transmission path is determined so that the clutch 82 interposed in the power transmission path 301 is connected so that the engine 1 can drive the motor 6 and the oil pump 7 by the engine 1 and does not interfere with the operation on the drive wheel 5 side.
  • the clutch 83 interposed in 302 is put into a released state.
  • the clutch control means 200 ⁇ / b> A is controlled by the input shaft rotation sensor 201 and the output shaft rotation sensor 203.
  • the power transmission path 301 and the power transmission path 302 are disconnected by releasing the clutch 82 and the clutch 83, and the motor. Since the motor 6 is separated from the engine 1 and the drive wheels 5, the drive wheels 5 are not driven by the motor 6 and the vehicle is prevented from traveling.
  • the clutch control means 200A drives the oil pump 7 with the backflow torque from the drive wheels 5 with the clutch 83 in the connected state when the coasting is performed by the accelerator-off operation and the sailing control is performed.
  • the clutch 82 is disengaged and the power transmission path 301 is disconnected to disconnect the driving wheel 5 and the engine 1 so that the engine 1 does not become a power load.
  • the drive mechanism of the present embodiment is different in configuration of the power transmission path 301A and the power transmission path 302A from the above-described embodiment.
  • a schematic configuration of the drive mechanism of the present embodiment will be described with reference to FIG.
  • a power transmission path 301 ⁇ / b> A is formed between the engine 1 and the oil pump 7, and power is transmitted between the drive theory 5, the motor 6, and the oil pump 7.
  • a path 302A is formed, and a clutch 82A as a second intermittent mechanism is interposed in the power transmission path 301A, and a clutch 83 (a clutch 83A in the modified example) as a third intermittent mechanism is interposed in the power transmission path 302A. It is disguised.
  • the power transmission path 302 ⁇ / b> A is formed so that the rotational torque from the drive wheel 5 is transmitted to the motor 6 and the oil pump 7 via the variator 32.
  • the clutch 82A is disposed outside the power transmission path 303 that transmits the power of the input shaft 10 to the output shaft 4 (not disposed on the power transmission path 303), and the clutch 83 is the power of the input shaft 10. Is disposed outside the power transmission path 303 that transmits the power to the output shaft 4 (not disposed on the power transmission path 303).
  • the clutch 82A as a second power interrupting mechanism has a first member and a second member, and is a mechanism capable of interrupting power between the first member and the second member.
  • a clutch 83 (83A in a modified example to be described later) serving as a third power interrupting mechanism has a first member and a second member, and is a mechanism capable of interrupting power between the first member and the second member. It is.
  • a sprocket (rotating member) 91B is connected to the input shaft 10 via a clutch 82A that is a one-way clutch.
  • the sprocket 91B is connected to the inner ring of the clutch 82A that is a one-way clutch.
  • a sprocket (rotating member) 93B is connected to one end side 72 of the pump rotating shaft 71 protruding on both sides of the oil pump 7, and a chain (endless member) 92B is wound around the sprocket 91B and the sprocket 93B. Yes.
  • a power transmission mechanism including the sprocket 91B, the chain 92B, and the sprocket 93B is disposed in the power transmission path 301A, and the rotational torque from the engine 1 does not pass through the first power interrupting mechanism 81 and through the clutch 82A. Transmission to the oil pump 7 is possible via the power transmission path 301A, and the oil pump 7 can be driven by rotation of the engine 1 (that is, by rotation of the input shaft 10).
  • rotary shaft of the sprocket 97B is connected to the other end side 73 of the pump rotary shaft 71 via a clutch 83 which is a one-way clutch.
  • a sprocket 99B is connected to the rotating shaft 32a of the primary pulley 32b, and a chain (endless member) 98B is wound around the sprocket 97B and the sprocket 99B.
  • the rotational torque flowing back from the drive wheel 5 to the output shaft 4 does not pass through the first power interrupting mechanism 81, and the oil is transmitted via the power transmission mechanism including the sprocket 99B, the chain 98B, and the sprocket 97B and the clutch 83 that is a one-way clutch.
  • the oil pump 7 can be driven by the output shaft 4.
  • the power transmission mechanism between the motor 6 and the oil pump 7 is constituted by the sprocket 61B, the chain 95B, and the sprocket 94B.
  • the rotational torque from the motor 6 can be transmitted to the oil pump 7 to drive the oil pump 7, and the rotational torque input from the engine 1 or the drive wheel 5 to the oil pump 7 can be transmitted to the motor 6 to transmit the motor 6. Power generation is possible.
  • the sprocket 99B, the chain 98B, the sprocket 97B, the other end 73 of the pump rotating shaft 71, the sprocket 94B, the chain 95B, the sprocket 61B, and the motor rotating shaft 61 are arranged in the power transmission path 302A.
  • the clutch 82A may be installed anywhere in the power transmission path between the input shaft 10 and the oil pump 7 or the motor 6.
  • the clutch 82A is located at a position indicated by a two-dot chain line in FIG. It may be arranged.
  • the installation location of the clutch 83 may be anywhere in the power transmission path between the output shaft 4 and the oil pump 7 or the motor 6.
  • the clutch 83 is located at a position indicated by a two-dot chain line in FIG. It may be arranged.
  • the drive mechanism of this modification is different from the second embodiment in the configuration of a power transmission path 302A between the output shaft 4, the motor 6, and the oil pump 7.
  • a sprocket (rotating member) 97C is attached to the other end 73 of the pump rotating shaft 71.
  • a sprocket (rotating member) 96C is mounted on the rotary shaft 32a of the primary pulley 32b via a clutch 83A that is a one-way clutch incorporated on the inner peripheral side of the sprocket 96C, and a chain is attached to the sprocket 96C and the sprocket 97C. (Endless member) 98C is wound around.
  • the rotational torque flowing back from the drive wheel 5 to the output shaft 4 can be transmitted to the oil pump 7 not via the first power interrupting mechanism 81 but via the variator 32 or the clutch 83A. 7 can be driven.
  • a sprocket (rotating member) 61C is mounted on the motor rotating shaft 61.
  • a chain (endless member) 95C is wound around the sprocket 61C and the sprocket 96C that forms a part of the transmission path from the drive wheel 5 to the oil pump 7 described above.
  • the power transmission path between the motor 6 and the oil pump 7 is formed so as to partially overlap the power transmission path between the drive wheel 5 and the oil pump 7.
  • the rotational torque from the motor 6 can be transmitted to the oil pump 7 to drive the oil pump 7, and the rotational torque input from the engine 1 to the oil pump 7 can be transmitted to the motor 6 to drive the motor by driving the engine. 6 can generate electric power, and further, the backflow torque input from the drive wheel 5 to the sprocket 96C can be transmitted to the motor 6 so that the motor 6 can generate electric power using the backflow torque.
  • a power transmission mechanism including a sprocket 96C, a chain 98C, a sprocket 97C, the other end 73 of the pump rotation shaft 71, a chain 95C, a sprocket 61C, and a motor rotation shaft 61 is disposed in the power transmission path 302A.
  • the drive mechanism of the present embodiment is different in configuration of the power transmission path 301B and the power transmission path 302B from those of the above-described embodiments. First, a schematic configuration of the drive mechanism of the present embodiment will be described with reference to FIG. .
  • a power transmission path 301 ⁇ / b> B is formed between the engine 1, the motor 6, and the oil pump 7, and power transmission is performed between the drive theory 5 and the oil pump 7.
  • a path 302B is formed, and a clutch 82 as a second intermittent mechanism is interposed in the power transmission path 301B, and a clutch 83 as a third intermittent mechanism is interposed in the power transmission path 302B.
  • the power transmission path 302B is formed so that the rotational torque from the drive wheel 5 is transmitted to the oil pump 7 via the variator 32.
  • a sprocket (rotating member) 91D is mounted on the input shaft 10 via a one-way clutch (second power interrupting mechanism) 82.
  • the one-way clutch 82 is incorporated on the inner peripheral side of the sprocket 91D.
  • a sprocket (rotating member) 93D is connected to one end side 72 of a pump rotating shaft 71 projecting on both sides of the oil pump 7, and a chain (endless member) 92D is wound around the sprocket 91D and the sprocket 93D.
  • a sprocket (rotating member) 94D is further attached to one end side 72 of the pump rotating shaft 71.
  • a sprocket (rotating member) 61D is mounted on the motor rotating shaft 61, and a chain (endless member) 95D is wound around the sprocket 61D and the sprocket 94D.
  • a power transmission mechanism including the sprocket 91D, the chain 92D, the sprocket 93D, the one end side 72 of the pump rotating shaft 71, the sprocket 94D, the chain 95D, the sprocket 61D, and the motor rotating shaft 61 is disposed in the power transmission path 301B.
  • Rotational torque from the engine 1 can be transmitted to the motor 6 and the oil pump 7 via the power transmission path 301B via the clutch 82, which is a one-way clutch, without passing through the first power interrupting mechanism 81 and the rotation from the motor 6.
  • Torque can be transmitted to the oil pump 7.
  • the motor 6 and the oil pump 7 can be driven by the engine, and the oil pump 7 can be driven by the rotation of the motor 6.
  • the other end 73 of the pump rotary shaft 71 is connected to a rotary shaft 96D of a sprocket 97D, which is a one-way clutch and a clutch 83 as a third power interrupting mechanism, and the sprocket 97D and the primary pulley 32b are rotated.
  • a chain (endless member) 98D is looped around the sprocket 99D attached to the shaft 32a.
  • a power transmission mechanism composed of the sprocket 99D, the chain 98D, the sprocket 97D, and the other end side 73 of the pump rotating shaft 71 is disposed in the power transmission path 302B, and the reverse flow torque from the drive wheel 5 (output shaft 4). Can be transmitted to the oil pump 7 via the power transmission path 302B via the clutch 83 which is a one-way clutch without passing through the first power interrupting mechanism 81, and the oil pump 7 can be driven by the rotation of the output shaft 4. Yes.
  • the clutch 83 only needs to be interposed between the motor 6 and the output shaft 4, and is installed between the sprocket 99D and the variator 32 as shown by a two-dot chain line in FIG. Also good.
  • a power transmission path 301 ⁇ / b> C is formed between the engine 1 and the motor 6, and a power transmission path between the drive theory 5, the motor 6, and the oil pump 7.
  • 302C is formed, and a clutch 82A as a second power interrupting mechanism is interposed in the power transmission path 301C, and a clutch 83 as a third power interrupting mechanism is interposed in the power transmission path 302C.
  • the power transmission path 302 ⁇ / b> C is formed so that the rotational torque from the drive wheel 5 is transmitted to the motor 6 and the oil pump 7 via the variator 32.
  • the clutch 82A is disposed outside the power transmission path 303 that transmits the power of the input shaft 10 to the output shaft 4 (not disposed on the power transmission path 303), and the clutch 83 is the power of the input shaft 10. Is disposed outside the power transmission path 303 that transmits the power to the output shaft 4 (not disposed on the power transmission path 303).
  • a sprocket (rotating member) 91E is mounted on the input shaft 10 via a clutch 82A that is a one-way clutch.
  • a sprocket (rotating member) 93E is attached to one end side 62 of the motor rotating shaft 61 protruding on both sides of the motor 6, and a chain (endless member) 92E is wound around the sprocket 91E and the sprocket 93E.
  • a power transmission mechanism including a sprocket 91E, a chain 92E, a sprocket 93E, and a motor rotating shaft 61 is disposed in the power transmission path 301C, and the rotational torque from the engine 1 is not transmitted through the first power interrupting mechanism 81 and the clutch. Transmission to the motor 6 via the power transmission path 301C via 82A is possible, and the motor 6 can be driven by the engine.
  • a sprocket 63E is mounted on the other end side 63 of the motor rotating shaft 61, and a rotating shaft of the sprocket 94E is connected via a clutch 83 which is a one-way clutch.
  • a sprocket 96E is mounted on the rotary shaft 32a of the primary pulley 32b, and a chain (endless member) 95E is wound around the sprocket 94E and the sprocket 96E.
  • the backflow torque from the drive wheel 5 (that is, the output shaft 4) is transmitted to the motor 6 through the power transmission mechanism and the clutch 83 including the sprocket 96E, the chain 95E, and the sprocket 94E without passing through the first power interrupting mechanism 81.
  • the motor 6 can be driven by the output shaft 4.
  • a sprocket (rotating member) 63E is attached to the other end 63 of the motor rotating shaft 61.
  • a sprocket (rotating member) 71E is attached to the oil pump rotating shaft 71, and a chain (endless member) 97E is wound around the sprocket 63E and the sprocket 71E.
  • the rotational torque from the motor 6 can be transmitted to the oil pump 7 via the power transmission mechanism including the sprocket 63E, the chain (endless member) 97E, and the sprocket 71E, and the oil pump 7 can be driven by the motor.
  • Rotational torque input from the motor 6 to the oil pump 7 can be transmitted to the oil pump 7 to drive the engine, or torque reversely flowing from the drive wheel 5 to the sprocket 63E can also be transmitted to the oil pump 7 to drive the oil pump 7. It is like that.
  • the sprocket 96E, the chain 95E, the sprocket 94E, the sprocket 63E, the motor rotating shaft 61, the chain 97E, the sprocket 71E, and the pump rotating shaft 71 are arranged in the power transmission path 302C.
  • the clutch 83 only needs to be interposed between the motor 6 and the output shaft 4, and is installed between the sprocket 96E and the variator 32 as shown by a two-dot chain line in FIG. Also good.
  • FIG. 6A Schematic configuration of a modified example of the drive mechanism of the present embodiment is as shown in FIG. 6A as in the above-described embodiment, and thus description thereof is omitted.
  • the drive mechanism of the present modification is different from the fourth embodiment in the configuration of the power transmission path 302C between the output shaft 4, the motor 6, and the oil pump 7.
  • a sprocket 71E is attached to the oil pump rotating shaft 71, and a rotating shaft of a sprocket 94F is connected via a clutch 83 which is a one-way clutch.
  • a sprocket 96F is mounted on the rotation shaft 32a of the primary pulley 32b, and a chain (endless member) 95F is wound around the sprocket 94F and the sprocket 96F.
  • the backflow torque from the drive wheel 5 (output shaft 4) is transmitted to the oil pump 7 via the power transmission mechanism and the clutch 83 including the sprocket 96F, the chain 95F, and the sprocket 94F without passing through the first power interrupting mechanism 81.
  • the oil pump 7 can be driven by the rotation of the output shaft 4.
  • a sprocket (rotating member) 63E is attached to the other end 63 of the motor rotating shaft 61.
  • a sprocket (rotating member) 71E is mounted on the oil pump rotating shaft 71, and a chain (endless member) 97E is wound around the sprocket 63E and the sprocket 71E.
  • the sprocket 71E, the chain 97E, and the sprocket A power transmission mechanism between the motor 6 and the oil pump 7 is configured from 63E.
  • the output of the motor 6 or the engine output input from the engine 1 to the motor 6 via the power transmission path 301C can be transmitted to the oil pump 7 to drive the oil pump 7 or drive the engine.
  • the rotational torque input to the oil pump 7 can also be transmitted to the motor 6 to drive the motor 6 with the backflow torque from the drive wheels 5 to generate electric power.
  • the clutch 83 which is a one-way clutch, only needs to be interposed in the power transmission path between the motor 6 and the output shaft 4. As shown by a two-dot chain line in FIG. 7, the clutch 83 is connected to the sprocket 96F variator 32. You may install between.
  • the variator as the gear ratio adjusting mechanism has been described as a belt type continuously variable transmission mechanism.
  • the variator is not limited to the belt type, but other continuously variable transmission mechanisms such as a chain type. May be used.
  • the gear ratio adjusting mechanism is not limited to the continuously variable transmission mechanism, and a stepped transmission mechanism may be used.
  • the first power connection / disconnection mechanism is a stepped transmission.
  • the first power connection / disconnection mechanism may be provided outside the stepped transmission mechanism.
  • the clutch 82 as the second power interrupting mechanism is not limited to the arrangement of the above embodiments as long as it is between the motor 6 or the oil pump 7 and the input shaft 10.
  • the clutch 83 as the third power interrupting mechanism is not limited to the arrangement of the above embodiments as long as it is between the motor 6 or the oil pump 7 and the output shaft 4.
  • the clutch as the second power interrupting mechanism and the clutch as the third power interrupting mechanism are replaced by a one-way clutch and configured by a hydraulically operated clutch.
  • the operation of the clutch may be controlled according to the detection result of the input shaft rotation sensor 201 and the detection result of the output shaft rotation sensor 202.
  • the forward / reverse switching mechanism 31 for achieving the forward / reverse travel is provided between the input shaft 10 and the variator 32, and the forward clutch 31c and the reverse brake 31d of the forward / backward travel switching mechanism 31 are the first.
  • the configuration for functioning as the power interrupting mechanism 81 has been illustrated, when the forward / reverse switching mechanism 31 is disposed between the variator 32 and the output shaft 4, it is within the power transmission path between the input shaft 10 and the variator 32.
  • the hydraulically operated clutch is interposed as the first power interrupting mechanism and the clutch is controlled by the clutch control means 200A, it is possible to obtain the same functions and effects as in the above embodiments.
  • a sub-transmission with a forward / reverse switching function may be used in place of the forward / reverse switching mechanism. If the forward / backward switching mechanism does not involve a change in the gear ratio, a separate sub-transmission is provided. You may do it.
  • the motor rotating shaft 61 and the oil pump rotating shaft 71 are separately provided and connected to each other by a power transmission mechanism. However, the motor rotating shaft 61 and the oil pump rotating shaft 71 are connected to each other by a power transmission mechanism.
  • the pump rotating shaft 71 may be integrated (hereinafter, the shaft in which the motor rotating shaft 61 and the oil pump rotating shaft 71 are integrated is referred to as “integrated shaft”).
  • the power of the input shaft 10 can be transmitted to the integrated shaft through one power transmission mechanism, and the power of the output shaft 4 can be transmitted through one power transmission mechanism. Can be transmitted to the integrated shaft.
  • the power of the input shaft 10 is transmitted to the motor rotating shaft 61 by the power transmission mechanism including the chain 92 and by the power transmission mechanism including the chain 93.
  • the power of the output shaft 4 transmitted to the oil pump rotary shaft 71 is transmitted to the motor rotary shaft 61 and the power transmission mechanism including the chain 98, the power transmission mechanism including the chain 92, and the power transmission mechanism including the chain 93. It is transmitted to the oil pump rotating shaft 71.
  • the power of the output shaft 4 is transmitted to the motor rotating shaft 61 by the power transmission mechanism including the chain 95C and the power transmission including the chain 98C.
  • the power of the input shaft 10 is transmitted to the oil pump rotary shaft 71 by the mechanism, and the motor rotary shaft is driven by the power transmission mechanism including the chain 92B, the power transmission mechanism including the chain 95C, and the power transmission mechanism including the chain 98C. 61 and the oil pump rotating shaft 71.
  • the sprocket 91 attached to the input shaft 10 the sprocket 94 attached to the motor rotating shaft 61, and the sprocket 95 attached to the oil pump rotating shaft 71.
  • the power transmission mechanism attached to each of the motor rotating shaft 61 and the oil pump rotating shaft 71 can be integrated by hanging one chain around the three sprockets.
  • the sprocket 96C attached to the input shaft 32a of the primary pulley 32b, the sprocket 61C attached to the motor rotating shaft 61, and the oil pump rotating shaft 71 can be integrated by hanging one chain around the three sprockets of the sprocket 97C attached to the motor.
  • Integrating the power transmission mechanism in this way can reduce the number of power transmission mechanisms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a driving mechanism including an input shaft (10); an output shaft (4); a motive-power transmitting route (303) through which the motive power of the input shaft (10) is transmitted to the output shaft (4); a first motive-power interrupting mechanism (81) located in the motive-power transmitting route (303); and a second motive-power interrupting mechanism (82), a third motive-power interrupting mechanism (83), a motor (6), and an oil pump (7) that are located outside the motive-power transmitting route (303). The motive power of the input shaft (10) can be transmitted to the output shaft (4) via the first motive-power interrupting mechanism (81) and can also be transmitted to the motor (6) and the oil pump (7) via the second motive-power interrupting mechanism (82); the motive power of the output shaft (4) can be transmitted to the motor (6) and the oil pump (7) via the third motive-power interrupting mechanism (83); and the motor (6) is capable of generating electric power.

Description

駆動機構Drive mechanism
 本発明は、変速機構を有する駆動機構に関するものであり、特に、車両を駆動させるための機構(車両用駆動機構)に使用して好適な駆動機構、に関するものである。 The present invention relates to a drive mechanism having a speed change mechanism, and particularly to a drive mechanism suitable for use in a mechanism for driving a vehicle (vehicle drive mechanism).
 特許文献1には、エンジン及び電動モータを備えたハイブリッド自動車の駆動装置において、自動変速機に作動油を供給するオイルポンプの駆動をエンジン又は電動モータにより行えるようにした技術が記載されている。 Japanese Patent Application Laid-Open No. 2004-228561 describes a technique in which an oil pump for supplying hydraulic oil to an automatic transmission can be driven by an engine or an electric motor in a hybrid vehicle driving device including an engine and an electric motor.
 この特許文献1は、エンジン、電動モータ、第1ワンウェイクラッチ、第2ワンウェイクラッチ、無段変速機構、オイルポンプ及び駆動輪を有する車両を開示しており、エンジンは第1ワンウェイクラッチを介してオイルポンプへ動力を伝達することができ、電動モータは第2ワンウェイクラッチを介してオイルポンプへ動力を伝達することができる。 This patent document 1 discloses a vehicle having an engine, an electric motor, a first one-way clutch, a second one-way clutch, a continuously variable transmission mechanism, an oil pump and a drive wheel, and the engine is oiled via the first one-way clutch. Power can be transmitted to the pump, and the electric motor can transmit power to the oil pump via the second one-way clutch.
 しかしながら、特許文献1に記載された車両では、電動モータは無段変速機構の入力軸に直結されて、電動モータが無段変速機構を介して駆動輪へ常に接続される構造となっているため電動モータが回転すると駆動輪も回転してしまうことから電動モータの使用が制限されてしまうといった課題がある。 However, in the vehicle described in Patent Document 1, since the electric motor is directly connected to the input shaft of the continuously variable transmission mechanism, the electric motor is always connected to the drive wheels via the continuously variable transmission mechanism. When the electric motor rotates, the driving wheel also rotates, which causes a problem that the use of the electric motor is limited.
 つまり、特許文献1に記載された車両では、電動モータでオイルポンプを駆動すると車両が発進してしまうため、停車中はエンジンと無段変速機との間の前後進切替機構をニュートラル状態として(前進クラッチ及び後退ブレーキを解放して)エンジンを作動させてオイルポンプを駆動させることになる(特許文献1の図2参照)。 That is, in the vehicle described in Patent Document 1, since the vehicle starts when the oil pump is driven by the electric motor, the forward / reverse switching mechanism between the engine and the continuously variable transmission is set to the neutral state while the vehicle is stopped ( The oil pump is driven by operating the engine by releasing the forward clutch and the reverse brake (see FIG. 2 of Patent Document 1).
 特許文献1ではアイドルストップ時について検討がなされていないが、もしも特許文献1に記載の車両においてアイドルストップを行おうとすると、アイドルストップ時(停車時且つエンジン停止時)には、エンジン停止のためにエンジンによるオイルポンプの駆動も電動モータによるオイルポンプの駆動もできずに無段変速機構に油圧が供給されない状態になる。 Patent Document 1 does not discuss the idling stop. However, if an attempt is made to perform idling stop in the vehicle described in Patent Document 1, the engine is stopped at idling stop (when the vehicle is stopped and the engine is stopped). The oil pump cannot be driven by the engine or the electric motor, and no hydraulic pressure is supplied to the continuously variable transmission mechanism.
 そのため、アイドルストップから再発進するとき、エンジンを再始動してエンジンによりオイルポンプを駆動することになる。 Therefore, when restarting from idle stop, the engine is restarted and the oil pump is driven by the engine.
 これによりオイルポンプから変速機構に必要な油圧を供給できるようになるまでの時間がタイムラグとして生じてしまう。 This causes a time lag until the required oil pressure can be supplied from the oil pump to the transmission mechanism.
 このタイムラグを減らすため、アイドルストップ時にオイルポンプを駆動するための専用のモータを別途取り付ける方法も考えられるがコストが増加してしまうので好ましくない。 ¡In order to reduce this time lag, a method of separately attaching a dedicated motor for driving the oil pump at the time of idling stop can be considered, but this is not preferable because the cost increases.
 本発明は、かかる課題に鑑み創案されたもので、モータの使用用途を拡大するとともにオイルポンプを様々な態様で駆動できるようにすることで、従来よりも多機能な駆動機構を提供することを目的とするものである。 The present invention has been devised in view of such problems, and provides a drive mechanism that is more multifunctional than before by expanding the usage of the motor and allowing the oil pump to be driven in various modes. It is the purpose.
特開2012-71752号公報JP 2012-71752 A
 上記の目的を達成するために、本願発明の駆動機構は、入力軸を有し、出力軸を有し、前記入力軸の動力を前記出力軸へ伝達する動力伝達経路を有し、前記動力伝達経路内に、第1動力断続機構を有し、前記動力伝達経路外に、第2動力断続機構を有し、前記動力伝達経路外に、第3動力断続機構を有し、前記動力伝達経路外に、モータを有し、前記動力伝達経路外に、オイルポンプを有し、前記入力軸の動力は、前記第1動力断続機構を介して、前記出力軸へ伝達可能であり、前記入力軸の動力は、前記第1動力断続機構を介さず、且つ、前記第2動力断続機構を介して、前記モータ及び前記オイルポンプへ伝達可能であり、前記出力軸の動力は、前記第1動力断続機構を介さず、且つ、前記第3動力断続機構を介して、前記モータ及び前記オイルポンプへ伝達可能であり、前記モータは発電機能を有することを特徴する。 In order to achieve the above object, the drive mechanism of the present invention has an input shaft, an output shaft, a power transmission path for transmitting the power of the input shaft to the output shaft, and the power transmission. A first power interruption mechanism in the path; a second power interruption mechanism outside the power transmission path; a third power interruption mechanism outside the power transmission path; And an oil pump outside the power transmission path, and the power of the input shaft can be transmitted to the output shaft via the first power interrupting mechanism. The power can be transmitted to the motor and the oil pump via the second power interrupt mechanism without passing through the first power interrupt mechanism, and the power of the output shaft can be transmitted to the first power interrupt mechanism. And through the third power interrupting mechanism, the motor and And can be transmitted to the serial oil pump, the motor is characterized by having a power generation function.
 前記入力軸及び前記出力軸が停止しているとき、前記第2動力断続機構及び前記第3動力断続機構が動力遮断状態となった状態で、前記モータの回転により前記オイルポンプを駆動可能であることが好ましい。 When the input shaft and the output shaft are stopped, the oil pump can be driven by the rotation of the motor in a state where the second power interrupting mechanism and the third power interrupting mechanism are in a power interrupting state. It is preferable.
 前記入力軸が停止しているとき、前記第3動力断続機構を動力伝達状態となった状態で、前記出力軸の回転により前記モータ及び前記オイルポンプを駆動可能であることが好ましい。 It is preferable that when the input shaft is stopped, the motor and the oil pump can be driven by rotation of the output shaft while the third power interrupting mechanism is in a power transmission state.
 前記動力伝達経路内に、変速比調整機構を有し、前記出力軸の回転を、前記変速比調整機構及び第3動力断続機構を介して、前記モータ及び前記オイルポンプへ伝達可能であることが好ましい。 The power transmission path has a speed ratio adjusting mechanism, and the rotation of the output shaft can be transmitted to the motor and the oil pump via the speed ratio adjusting mechanism and the third power interrupting mechanism. preferable.
 前記動力伝達経路内に、変速比調整機構を有し、前記入力軸が所定回転速度以下で回転しているとき、前記第2動力断続機構及び前記第3動力断続機構を動力遮断状態として、前記モータの回転により前記オイルポンプを駆動させることにより、前記変速比調整機構の変速を行うことが好ましい。 The power transmission path has a gear ratio adjustment mechanism, and when the input shaft rotates at a predetermined rotational speed or less, the second power interrupt mechanism and the third power interrupt mechanism are in a power interrupt state, It is preferable that the gear ratio adjusting mechanism is shifted by driving the oil pump by rotation of a motor.
 前記入力軸が所定回転速度以下で回転しているとき、前記第2動力断続機構及び前記第3動力断続機構を動力遮断状態として、前記モータの回転により前記オイルポンプを駆動させることにより、前記変速比調整機構の変速を行うことが好ましい。 When the input shaft is rotating at a predetermined rotational speed or less, the second power interrupting mechanism and the third power interrupting mechanism are set in a power shut-off state, and the oil pump is driven by the rotation of the motor to thereby change the speed change. It is preferable to shift the ratio adjustment mechanism.
 第1回転部材と、第2回転部材と、前記第1回転部材及び前記第2回転部材に掛け渡された第1無端状部材と、を有する第1動力伝達機構を有し、前記モータと前記オイルポンプとは、前記第1動力伝達機構を介して連結されていることが好ましい。 A first power transmission mechanism having a first rotating member, a second rotating member, and a first endless member spanned between the first rotating member and the second rotating member, the motor and the It is preferable that the oil pump is connected via the first power transmission mechanism.
 第3回転部材と、第4回転部材と、前記第3回転部材及び前記第4回転部材に掛け渡された第2無端状部材を有する第2動力伝達機構と、を有し、前記入力軸と、前記モータ及び前記オイルポンプの少なくとも一方とは、前記第2動力伝達機構を介して連結されていることが好ましい。 A second power transmission mechanism having a third rotating member, a fourth rotating member, and a second endless member stretched over the third rotating member and the fourth rotating member, and the input shaft It is preferable that at least one of the motor and the oil pump is connected via the second power transmission mechanism.
 前記第2動力断続機構は、前記第3回転部材又は前記第4回転部材の内周に位置するワンウェイクラッチを有することが好ましい。 The second power interrupting mechanism preferably has a one-way clutch located on the inner periphery of the third rotating member or the fourth rotating member.
 前記第2動力断続機構及び前記第3動力断続機構の少なくとも一方は、ワンウェイクラッチを有することが好ましい。 It is preferable that at least one of the second power interrupt mechanism and the third power interrupt mechanism has a one-way clutch.
 上記の目的を達成するために、本発明の車両は、駆動源を有し、駆動輪を有し、前記駆動機構を有し、前記入力軸には、前記駆動源の動力が入力され前記駆動輪には、前記出力軸の動力が出力されることを特徴としている。 In order to achieve the above object, a vehicle according to the present invention includes a drive source, a drive wheel, the drive mechanism, and the input shaft is input with power of the drive source. The wheel is characterized in that the power of the output shaft is output.
 ここで、本願発明における「動力断続機構」についてさらに説明する。 Here, the “power interruption mechanism” in the present invention will be further described.
 「動力断続機構」は、第1メンバと第2メンバとを有する。 The “power intermittent mechanism” has a first member and a second member.
 「動力断続機構」は、第1メンバと第2メンバとの間の動力を断続可能な機構を意味する。 “Power interrupting mechanism” means a mechanism capable of interrupting the power between the first member and the second member.
 「動力断続機構」は、少なくとも、第1メンバ又は第2メンバの一方から、第1メンバ又は第2メンバの他方へ動力を伝達する機能を有する。 The “power interruption mechanism” has at least a function of transmitting power from one of the first member or the second member to the other of the first member or the second member.
 言い換えると、第1メンバ又は第2メンバの一方に入力される動力は、動力断続機構を介して、第1メンバ又は第2メンバの他方へ伝達可能である。 In other words, the power input to one of the first member or the second member can be transmitted to the other of the first member or the second member via the power interrupting mechanism.
 例えば、第1動力断続機構は、少なくとも第1メンバから第2メンバへ動力を伝達する機能を有する。 For example, the first power interrupt mechanism has a function of transmitting power from at least the first member to the second member.
 もちろん、第1動力断続機構は、第2メンバから第1メンバへ動力を伝達する機能を有することができる。 Of course, the first power interrupt mechanism can have a function of transmitting power from the second member to the first member.
 なお、例えば、第1動力断続機構は、入力軸側に第1メンバを有する。 For example, the first power interrupt mechanism has a first member on the input shaft side.
 また、例えば、第1動力断続機構は、出力軸側に第2メンバを有する。 Also, for example, the first power interrupting mechanism has a second member on the output shaft side.
 よって、入力軸の動力は、第1動力断続機構を介して、出力軸へ伝達可能であるといえる。 Therefore, it can be said that the power of the input shaft can be transmitted to the output shaft through the first power interrupting mechanism.
 このとき、入力軸の動力は、第2動力断続機構及び第3動力断続機構を介さず、出力軸へ伝達される。 At this time, the power of the input shaft is transmitted to the output shaft without passing through the second power interrupt mechanism and the third power interrupt mechanism.
 例えば、第2動力断続機構は、少なくとも第1メンバから第2メンバへ動力を伝達する機能を有する。 For example, the second power interrupt mechanism has a function of transmitting power from at least the first member to the second member.
 もちろん、第2動力断続機構は、第2メンバから第1メンバへ動力を伝達する機能を有することができる。 Of course, the second power interrupting mechanism can have a function of transmitting power from the second member to the first member.
 なお、例えば、第2動力断続機構は、入力軸側に第1メンバを有する。 For example, the second power interrupting mechanism has a first member on the input shaft side.
 また、例えば、第2動力断続機構は、オイルポンプ側且つモータ側に第2メンバを有する。 Also, for example, the second power interrupting mechanism has a second member on the oil pump side and the motor side.
 よって、入力軸の動力は、第1動力断続機構を介さず、且つ、第2動力断続機構を介して、モータ及びオイルポンプへ伝達可能であるといえる。 Therefore, it can be said that the power of the input shaft can be transmitted to the motor and the oil pump via the second power interrupting mechanism and not via the first power interrupting mechanism.
 このとき、入力軸の動力は、第3動力断続機構を介さず、モータ及びオイルポンプへ伝達される。 At this time, the power of the input shaft is transmitted to the motor and the oil pump without passing through the third power interrupting mechanism.
 例えば、第3動力断続機構は、少なくとも第1メンバから第2メンバへ動力を伝達する機能を有する。 For example, the third power interrupting mechanism has a function of transmitting power from at least the first member to the second member.
 もちろん、第3動力断続機構は、第2メンバから第1メンバへ動力を伝達する機能を有することができる。 Of course, the third power interrupting mechanism can have a function of transmitting power from the second member to the first member.
 なお、例えば、第3動力断続機構は、出力軸側に第1メンバを有する。 For example, the third power interrupting mechanism has a first member on the output shaft side.
 また、例えば、第3動力断続機構は、オイルポンプ側且つモータ側に第2メンバを有する。 Also, for example, the third power interrupting mechanism has a second member on the oil pump side and the motor side.
 よって、出力軸の動力は、第1動力断続機構を介さず、且つ、第3動力断続機構を介して、モータ及びオイルポンプへ伝達可能であるといえる。 Therefore, it can be said that the power of the output shaft can be transmitted to the motor and the oil pump via the third power interrupting mechanism and not via the first power interrupting mechanism.
 このとき、出力軸の動力は、第2動力断続機構を介さず、モータ及びオイルポンプへ伝達される。 At this time, the power of the output shaft is transmitted to the motor and the oil pump without passing through the second power interrupting mechanism.
 なお、第1動力断続機構は、入力軸の動力を出力軸へ伝達する動力伝達経路内に配置されている(動力伝達経路上に配置されている)。 The first power interrupting mechanism is disposed in a power transmission path that transmits the power of the input shaft to the output shaft (arranged on the power transmission path).
 一方、第2動力断続機構は、入力軸の動力を出力軸へ伝達する動力伝達経路外に配置されている(動力伝達経路上に配置されていない)。 On the other hand, the second power interrupt mechanism is disposed outside the power transmission path for transmitting the power of the input shaft to the output shaft (not disposed on the power transmission path).
 また、第3動力断続機構は、入力軸の動力を出力軸へ伝達する動力伝達経路外に配置されている(動力伝達経路上に配置されていない)。 Also, the third power interrupting mechanism is disposed outside the power transmission path that transmits the power of the input shaft to the output shaft (not disposed on the power transmission path).
 なお、オイルポンプは、第2動力断続機構を介して伝達される入力軸の動力、第3動力断続機構を介して伝達される出力軸の動力、又は、モータの動力のいずれか一つにより駆動される。 The oil pump is driven by any one of the power of the input shaft transmitted through the second power interrupting mechanism, the power of the output shaft transmitted through the third power interrupting mechanism, or the power of the motor. Is done.
 オイルポンプを、第1動力断続機構及び第3動力断続機構を介して伝達される入力軸の動力により駆動しても良い。 The oil pump may be driven by the power of the input shaft transmitted via the first power interrupt mechanism and the third power interrupt mechanism.
 なお、さらに以下のような態様を採用することも好ましい。 In addition, it is also preferable to adopt the following aspects.
 前記入力軸側に配置され、前進クラッチ及び後退ブレーキを含む前後進切替機構と、前記前後進切替機構の出力側と前記出力軸との間に介装された無段変速機構とを備え、前記前進クラッチ及び前記後退ブレーキが前記第1動力断続機構を構成し、前記無段変速機構が前記変速比調整機構を構成することが好ましい。 A forward / reverse switching mechanism that is disposed on the input shaft side and includes a forward clutch and a reverse brake; and a continuously variable transmission mechanism interposed between an output side of the forward / backward switching mechanism and the output shaft; It is preferable that the forward clutch and the reverse brake constitute the first power interrupting mechanism, and the continuously variable transmission mechanism constitutes the speed ratio adjusting mechanism.
 前記モータ及び前記オイルポンプの回転速度を前記入力軸の回転速度よりも高速にする際に、前記第2動力断続機構を動力遮断状態とする第1解放手段と、前記モータ及び前記オイルポンプの回転速度を前記第1動力断続機構の出力側の回転速度よりも高速にする際に、前記第3動力断続機構を動力遮断状態とする第2解放手段と、を備えていることが好ましい。 A first release means for bringing the second power interrupting mechanism into a power shut-off state when the motor and the oil pump are rotated at a speed higher than the rotational speed of the input shaft; and the rotation of the motor and the oil pump. It is preferable to include second release means for bringing the third power interrupting mechanism into a power interrupting state when the speed is higher than the rotational speed on the output side of the first power interrupting mechanism.
 前記第2動力断続機構は、前記モータ又は前記オイルポンプ側から前記入力軸側への動力伝達を遮断する前記第1解放手段を備え、前記入力軸側から前記モータ又は前記オイルポンプ側への動力伝達のみ可能とするワンウェイクラッチであり、前記第3動力断続機構は、前記モータ又は前記オイルポンプ側から前記出力軸側への動力伝達を遮断する前記第2解放手段を備え、前記出力軸側から前記モータ又は前記オイルポンプ側への動力伝達のみ可能とするワンウェイクラッチであることが好ましい。 The second power interrupting mechanism includes the first release means for interrupting power transmission from the motor or the oil pump side to the input shaft side, and the power from the input shaft side to the motor or the oil pump side. The third power interrupting mechanism includes the second release means for interrupting power transmission from the motor or the oil pump side to the output shaft side, from the output shaft side. A one-way clutch that can only transmit power to the motor or the oil pump is preferable.
 前記第2動力断続機構及び前記第3動力断続機構は電気信号で断続を制御され、前記入力軸の回転を検出する入力軸回転検出手段を有し、前記出力軸の回転を検出する出力軸回転検出手段を有し、前記入力軸回転検出手段及び出力軸回転検出手段の検出結果に基づいて、前記第2動力断続機構及び前記第3動力断続機構並びに前記モータを制御する制御手段と、を有し、前記制御手段は、前記第1解放手段及び前記第2解放手段の機能を有していることが好ましい。 The second power interrupt mechanism and the third power interrupt mechanism are intermittently controlled by an electric signal, and have an input shaft rotation detecting means for detecting the rotation of the input shaft, and an output shaft rotation for detecting the rotation of the output shaft. Control means for controlling the second power interrupting mechanism, the third power interrupting mechanism, and the motor based on the detection results of the input shaft rotation detecting means and the output shaft rotation detecting means. The control means preferably has functions of the first release means and the second release means.
 前記オイルポンプの回転を検出するポンプ回転検出手段を有し、前記ポンプ回転検出手段の検出結果に基づいて、前記オイルポンプの回転速度が設定回転速度域内になるように前記モータを制御するモータ制御手段を有していることが好ましい。 Motor control that has pump rotation detection means for detecting rotation of the oil pump and controls the motor so that the rotation speed of the oil pump is within a set rotation speed range based on the detection result of the pump rotation detection means It is preferable to have a means.
 前記モータ制御手段は、前記オイルポンプの回転速度が前記設定回転速度域以下の場合には、前記モータを電動機として作動させることが好ましい。 The motor control means preferably operates the motor as an electric motor when the rotation speed of the oil pump is not more than the set rotation speed range.
 前記オイルポンプから吐出される作動油を用いて前記変速比調整機構を制御する変速比制御手段を有し、前記変速比制御手段は、前記出力軸の回転によって前記オイルポンプが駆動されている場合に、前記オイルポンプの回転速度が前記設定回転速度域内になるように、前記変速比調整機構の変速比を制御することが好ましい。 A gear ratio control means for controlling the gear ratio adjustment mechanism using hydraulic oil discharged from the oil pump, wherein the gear ratio control means is driven by rotation of the output shaft; In addition, it is preferable to control the speed ratio of the speed ratio adjusting mechanism so that the rotational speed of the oil pump is within the set rotational speed range.
 したがって、本発明によれば、モータの使用用途を拡大するとともにオイルポンプを様々な態様で駆動することができるようになり、従来よりも多機能な駆動機構を提供することできる。 Therefore, according to the present invention, the use application of the motor can be expanded and the oil pump can be driven in various modes, so that a multi-function drive mechanism can be provided.
 つまり、入力軸の動力を、第1動力断続機構を介さず、且つ、第2動力断続機構を介してモータ及びオイルポンプへ伝達すれば、入力軸への入力によってモータ及びオイルポンプを駆動することができる。 That is, if the power of the input shaft is transmitted to the motor and the oil pump via the second power interrupt mechanism without passing through the first power interrupt mechanism, the motor and oil pump are driven by the input to the input shaft. Can do.
 このとき、モータを発電作動させれば入力軸に入力される回転トルクの一部で運動エネルギを電力エネルギに変換することができる。 At this time, if the motor is operated to generate electricity, kinetic energy can be converted into electric energy by a part of the rotational torque input to the input shaft.
 また、このとき、モータを力行作動させればモータによりオイルポンプの駆動をアシストすることができる。 Also, at this time, if the motor is powered, the oil pump can be assisted by the motor.
 出力軸の動力を、第1動力断続機構を介さず、且つ、第3動力断続機構を介して、モータ及びオイルポンプへ伝達すれば、出力軸への入力によってオイルポンプを駆動することができる。 If the power of the output shaft is transmitted to the motor and the oil pump via the third power interrupt mechanism without using the first power interrupt mechanism, the oil pump can be driven by the input to the output shaft.
 入力軸及び出力軸が停止しているとき、前記第2動力断続機構及び第3動力断続機構が動力遮断状態となった状態では、モータを力行作動させることによりモータでオイルポンプを駆動することができる。 When the input shaft and the output shaft are stopped, when the second power interrupting mechanism and the third power interrupting mechanism are in the power shut-off state, the oil pump can be driven by the motor by performing a power running operation of the motor. it can.
 したがって、停車アイドルストップ時にも、オイルポンプを作動させて油圧を発生させることができ、停車アイドルストップから車両を再発進させる場合に、速やかに必要油圧の作動油を必要量だけ供給することが可能になり、発進時のタイムラグの発生を防止できる。 Therefore, oil pressure can be generated by operating the oil pump even when the vehicle is idle stopped, and when the vehicle is restarted from the vehicle idle stop, the required amount of hydraulic oil can be supplied quickly. Therefore, it is possible to prevent the occurrence of a time lag when starting.
 また、動力伝達経路内に、変速比調整機構を有し、出力軸の回転を変速比調整機構及び第3動力断続機構を介してモータ及びオイルポンプへ伝達すれば、モータ及びオイルポンプは、変速比調整機構を介して出力軸と接続されるため、回生時、即ち、出力軸に入力される回転トルクによりモータ及びオイルポンプを駆動する時に、変速比調整機構を通じて出力軸からの回転を変速してモータ及びオイルポンプに伝達することができ、オイルポンプの回転速度を上昇させポンプ吐出量を増大させることが可能になる。 In addition, if the power transmission path has a gear ratio adjustment mechanism and the rotation of the output shaft is transmitted to the motor and the oil pump via the gear ratio adjustment mechanism and the third power interrupt mechanism, the motor and the oil pump Since it is connected to the output shaft via the ratio adjustment mechanism, during regeneration, that is, when the motor and the oil pump are driven by the rotational torque input to the output shaft, the rotation from the output shaft is changed through the transmission ratio adjustment mechanism. Therefore, the rotation speed of the oil pump can be increased and the pump discharge amount can be increased.
 また、モータの発電効率はモータの回転速度に応じて変化し、車両の惰性走行時には出力軸の回転速度が徐々に低下していくが、出力軸からモータへと伝達される回転を変速比調整機構により発電効率の良い回転速度に維持することができるので、車両の惰性走行時にモータにより高効率に発電を行える。 In addition, the power generation efficiency of the motor changes according to the rotational speed of the motor, and the rotational speed of the output shaft gradually decreases when the vehicle is coasting, but the transmission ratio from the output shaft to the motor is adjusted. Since the rotation speed with good power generation efficiency can be maintained by the mechanism, power can be generated with high efficiency by the motor when the vehicle is coasting.
 本駆動機構を、その入力軸に駆動源の動力が入力され、その駆動輪に出力軸の動力が出力される車両に適用した場合、駆動輪の回転トルクを出力軸に入力するトルクの逆流状態を発生させ、駆動輪の回転トルクによってオイルポンプを駆動することができる。 When this drive mechanism is applied to a vehicle in which the power of the drive source is input to the input shaft and the power of the output shaft is output to the drive wheel, the reverse flow state of the torque that inputs the rotational torque of the drive wheel to the output shaft And the oil pump can be driven by the rotational torque of the drive wheels.
 入力軸の回転速度が不十分でオイルポンプで必要油圧の作動油を必要量だけ発生させることができなければ、モータによって、入力軸で駆動されるよりも高速でオイルポンプを駆動することで、必要油圧の作動油を必要量だけ発生させることができ、変速比調整機構の変速を行うことができる。 If the rotation speed of the input shaft is insufficient and the oil pump cannot generate the required amount of hydraulic fluid, the motor can drive the oil pump at a higher speed than that driven by the input shaft. A required amount of hydraulic fluid can be generated in a necessary amount, and the gear ratio adjustment mechanism can be shifted.
 さらに、第2、第3動力断続機構としてワンウェイクラッチを用いれば、電気信号で断続を制御される動力断続機構を使用する場合に比べて断続制御や当該断続制御に必要な設備が不要となる。 Furthermore, if the one-way clutch is used as the second and third power interrupting mechanisms, the intermittent control and the facilities necessary for the intermittent control are not required as compared with the case of using the power intermittent mechanism that is controlled by electrical signals.
 第1回転部材と、第2回転部材と、第1回転部材及び第2回転部材に掛け渡された第1無端状部材とを有して第1動力伝達機構を構成すれば、また、第3回転部材と、第4回転部材と、第3回転部材及び第4回転部材に掛け渡された第2無端状部材を有して第2動力伝達機構を構成すれば、動力伝達機構をギヤにより構成する場合に比べて、モータ、オイルポンプ、入力軸、出力軸の位置関係の設定自由度が高まり、駆動機構の全長を短くすることも可能となり、ギヤと異なり幅寸法を薄くしても大きなノイズが発生することがないので回転部材の幅寸法を薄くすることが可能となる。 If the first power transmission mechanism is configured by including the first rotating member, the second rotating member, and the first endless member spanned between the first rotating member and the second rotating member, the third power member If the second power transmission mechanism is configured by including the rotation member, the fourth rotation member, the third rotation member, and the second endless member spanned over the fourth rotation member, the power transmission mechanism is configured by a gear. Compared with the case where the motor, the oil pump, the input shaft, and the output shaft can be set more freely and the overall length of the drive mechanism can be shortened. Therefore, the width of the rotating member can be reduced.
 また、第2動力断続機構において、第3回転部材又は第4回転部材の内周にワンウェイクラッチを位置させればワンウェイクラッチを回転部材と別々に配置するよりも駆動機構をコンパクトにすることが可能となる。 In the second power interrupting mechanism, if the one-way clutch is positioned on the inner periphery of the third rotating member or the fourth rotating member, the driving mechanism can be made more compact than arranging the one-way clutch separately from the rotating member. It becomes.
本発明の第1実施形態にかかる駆動機構及びこの駆動機構が装備される車両の要部構成図であり、(a)は概略構成図、(b)は具体的構成図である。It is a principal part block diagram of the drive mechanism concerning 1st Embodiment of this invention, and the vehicle by which this drive mechanism is equipped, (a) is a schematic block diagram, (b) is a specific block diagram. 本発明の第1実施形態の変形例にかかる駆動機構及びこの駆動機構が装備される車両の具体的構成図である。It is a specific block diagram of the drive mechanism concerning the modification of 1st Embodiment of this invention, and the vehicle by which this drive mechanism is equipped. 本発明の第2実施形態にかかる駆動機構及びこの駆動機構が装備される車両の要部構成図であり、(a)は概略構成図、(b)は具体的構成図である。It is a principal part block diagram of the drive mechanism concerning 2nd Embodiment of this invention, and the vehicle by which this drive mechanism is equipped, (a) is a schematic block diagram, (b) is a specific block diagram. 本発明の第2実施形態の変形例にかかる駆動機構及びこの駆動機構が装備される車両の具体的構成図である。It is a specific block diagram of the drive mechanism concerning the modification of 2nd Embodiment of this invention, and the vehicle by which this drive mechanism is equipped. 本発明の第3実施形態にかかる駆動機構及びこの駆動機構が装備される車両の要部構成図であり、(a)は概略構成図、(b)は具体的構成図である。It is a principal part block diagram of the drive mechanism concerning 3rd Embodiment of this invention, and the vehicle by which this drive mechanism is equipped, (a) is a schematic block diagram, (b) is a specific block diagram. 本発明の第4実施形態にかかる駆動機構及びこの駆動機構が装備される車両の要部構成図であり、(a)は概略構成図、(b)は具体的構成図である。It is a principal part block diagram of the drive mechanism concerning 4th Embodiment of this invention, and the vehicle by which this drive mechanism is equipped, (a) is a schematic block diagram, (b) is a specific block diagram. 本発明の第4実施形態の変形例にかかる駆動機構及びこの駆動機構が装備される車両の具体的構成図である。It is a specific block diagram of the drive mechanism concerning the modification of 4th Embodiment of this invention, and the vehicle by which this drive mechanism is equipped.
 以下、図面を参照して、本発明の駆動機構にかかる実施の形態を説明する。 Hereinafter, embodiments of the drive mechanism of the present invention will be described with reference to the drawings.
 各実施形態では、本発明の駆動機構が装備される車両が自動車であり、本発明の駆動機構にかかる変速機(変速比調整機構を含む)が無段変速機であるものを説明する。 In each embodiment, a vehicle equipped with the drive mechanism of the present invention is an automobile, and a transmission (including a gear ratio adjusting mechanism) according to the drive mechanism of the present invention is a continuously variable transmission.
 〔1.第1実施形態〕
 〔1-1.駆動機構の概略構成〕
 先ず、本実施形態の駆動機構の概略構成を図1(a)により説明する。
[1. First Embodiment]
[1-1. (Schematic configuration of drive mechanism)
First, a schematic configuration of the drive mechanism of the present embodiment will be described with reference to FIG.
 図1(a)に示すように、本実施形態の駆動機構は、自動車の駆動系に装備され、動力源としての原動機(以下、エンジンともいう)1に接続され、このエンジン1から回転トルクを入力される入力軸(本願発明に係る入力軸)10と、駆動輪5に接続されこの駆動輪5に回転トルクを出力する出力軸4と、前記入力軸10に連結され、少なくとも前進、後進及び中立(ニュートラル)の変速段が達成可能で、入力軸10の回転を変速して出力軸4に送る変速機100とを備えて構成される。 As shown in FIG. 1A, the drive mechanism of the present embodiment is mounted on a drive system of an automobile and is connected to a prime mover (hereinafter also referred to as an engine) 1 as a power source. An input shaft (input shaft according to the present invention) 10 that is input, an output shaft 4 that is connected to the drive wheel 5 and outputs rotational torque to the drive wheel 5, and is connected to the input shaft 10, and at least forward, reverse, and A neutral gear stage can be achieved, and a transmission 100 that shifts the rotation of the input shaft 10 and sends it to the output shaft 4 is provided.
 変速機100は、トルクコンバータ2と、変速比調整機構としてのバリエータ32を有する変速機構3と、発電機能を備えたモータ(電動発電機)6と、モータ6と動力伝達状態に接続されたオイルポンプ7と、オイルポンプ7からのオイルを適宜の圧力に調整する油圧制御回路7aと、変速機構3に装備された第1動力断続機構81と、第2動力断続機構としてのクラッチ82と、第3動力断続機構としてのクラッチ83と、コンピュータを用いた制御装置(制御手段)200とを備えている。 The transmission 100 includes a torque converter 2, a transmission mechanism 3 having a variator 32 as a transmission ratio adjusting mechanism, a motor (motor generator) 6 having a power generation function, and oil connected to the motor 6 in a power transmission state. A pump 7, a hydraulic control circuit 7a for adjusting oil from the oil pump 7 to an appropriate pressure, a first power interrupting mechanism 81 provided in the transmission mechanism 3, a clutch 82 as a second power interrupting mechanism, A clutch 83 serving as a three-power intermittent mechanism and a control device (control means) 200 using a computer are provided.
 ここで、「動力伝達状態に接続された」とは、一の構成品と他の構成品との間で一方向又は双方向に動力が直接又は動力伝達経路を介して伝達されるように相互に接続されることを意味し、例えば一の構成品から動力が出力されるとこの動力が他の構成品に伝達される場合には、一の構成品と他の構成品とが動力伝達状態に接続されていることとなる。 Here, “connected to a power transmission state” means that power is transmitted directly or via a power transmission path in one direction or in both directions between one component and another component. For example, when power is transmitted from one component to another component, the power is transmitted between the one component and the other component. It will be connected to.
 第1動力断続機構81、第2動力断続機構としてのクラッチ82及び第3動力断続機構としてのクラッチ83についてさらに説明する。 The first power interrupting mechanism 81, the clutch 82 as the second power interrupting mechanism, and the clutch 83 as the third power interrupting mechanism will be further described.
 第1動力断続機構81は、第1メンバと第2メンバとを有し、これらの第1メンバと第2メンバとの間の動力伝達を断続可能な機構である。 The first power interrupting mechanism 81 has a first member and a second member, and is a mechanism capable of interrupting power transmission between the first member and the second member.
 同様に、第2動力断続機構としてのクラッチ82は、第1メンバと第2メンバとを有し、これらの第1メンバと第2メンバとの間の動力伝達を断続可能な機構である。 Similarly, the clutch 82 as the second power interrupting mechanism has a first member and a second member, and is a mechanism capable of interrupting power transmission between the first member and the second member.
 同様に、第3動力断続機構としてのクラッチ83は、第1メンバと第2メンバとを有し、これらの第1メンバと第2メンバとの間の動力伝達を断続可能な機構である。 Similarly, the clutch 83 as the third power interrupting mechanism has a first member and a second member, and is a mechanism capable of interrupting power transmission between the first member and the second member.
 第1動力断続機構81は、入力軸10と出力軸4との間の動力伝達経路303内に設けられており、第1動力断続機構81の入力側は入力軸10と直接又は間接的に接続され、第1動力断続機構81の出力側は出力軸4と直接又は間接的に接続されている。 The first power interrupting mechanism 81 is provided in the power transmission path 303 between the input shaft 10 and the output shaft 4, and the input side of the first power interrupting mechanism 81 is directly or indirectly connected to the input shaft 10. The output side of the first power interrupt mechanism 81 is directly or indirectly connected to the output shaft 4.
 ここで、「間接的に接続」とは、接続されるものの相互間にギヤやプーリなどにより構成される動力伝達経路を介在させて接続することをいう。 Here, “indirectly connected” means connecting by connecting a power transmission path composed of gears, pulleys, etc. between the connected ones.
 第2動力断続機構としてのクラッチ82は、上記動力伝達経路303外に設けられており、モータ6及びオイルポンプ7とエンジン1(入力軸10)との間の動力伝達経路301内に配置されている(動力伝達経路301上に配置されている)。 The clutch 82 as the second power interrupting mechanism is provided outside the power transmission path 303 and is disposed in the power transmission path 301 between the motor 6 and the oil pump 7 and the engine 1 (input shaft 10). (Disposed on the power transmission path 301).
 第3動力断続機構としてのクラッチ83は、上記動力伝達経路303外に設けられており、モータ6と駆動輪5(出力軸4)との間の動力伝達経路302内に配置されている(動力伝達経路302上に配置されている)。 The clutch 83 as the third power interrupting mechanism is provided outside the power transmission path 303 and is disposed in the power transmission path 302 between the motor 6 and the drive wheel 5 (output shaft 4) (power). Arranged on the transmission path 302).
 詳しくは、動力伝達経路302は、駆動輪5からの回転トルクがバリエータ32を介してモータ6に伝達できるように形成されている。 Specifically, the power transmission path 302 is formed so that the rotational torque from the drive wheels 5 can be transmitted to the motor 6 via the variator 32.
 また、モータ6は上記動力伝達経路303外に設けられ、オイルポンプ7は上記動力伝達経路303外に設けられている。 The motor 6 is provided outside the power transmission path 303, and the oil pump 7 is provided outside the power transmission path 303.
 したがって、クラッチ82を接続すれば、動力伝達経路301を使用してエンジン1から入力される回転トルクによってモータ6及びオイルポンプ7を駆動することができ、クラッチ83を接続すれば、動力伝達経路302を使用して駆動輪5から入力される回転トルク(逆流トルク)によってモータ6及びオイルポンプ7を駆動することができるようになっている。 Therefore, if the clutch 82 is connected, the motor 6 and the oil pump 7 can be driven by the rotational torque input from the engine 1 using the power transmission path 301. If the clutch 83 is connected, the power transmission path 302 is connected. The motor 6 and the oil pump 7 can be driven by the rotational torque (backflow torque) input from the drive wheel 5 using.
 オイルポンプ7からのオイルは、油圧制御回路7aにより適宜の圧力に制御されたのち変速機100の各部に供給されるようになっている。 The oil from the oil pump 7 is supplied to each part of the transmission 100 after being controlled to an appropriate pressure by the hydraulic control circuit 7a.
 さらに、クラッチ82及びクラッチ83が油圧作動のクラッチにより構成される場合には、二点鎖線で示すようにオイルポンプ7からのオイルは油圧制御回路7aにより適宜の圧力に調圧されたのちクラッチ82及びクラッチ83に供給されるようになっている。 Further, when the clutch 82 and the clutch 83 are constituted by hydraulically operated clutches, the oil from the oil pump 7 is adjusted to an appropriate pressure by the hydraulic control circuit 7a as shown by a two-dot chain line, and then the clutch 82. And is supplied to the clutch 83.
 また、本駆動機構には、上記入力軸10の回転を検出する入力軸回転センサ(入力軸回転検出手段)201と、上記出力軸4の回転を検出する出力軸回転センサ(出力軸回転検出手段)202と、オイルポンプ7の回転を検出するポンプ回転センサ(ポンプ回転検出手段)203とが備えられており、入力軸回転センサ201、出力軸回転センサ202及びポンプ回転センサ203の各検出信号はそれぞれ制御装置200に入力され、制御装置200は、これらの検出信号に基づいてモータ6や第1動力断続機構81の作動を制御し、さらにクラッチ82及びクラッチ83が電子制御式の油圧作動のクラッチの場合にはクラッチ82及びクラッチ83の作動を制御するようになっている。 The drive mechanism also includes an input shaft rotation sensor (input shaft rotation detection means) 201 that detects the rotation of the input shaft 10 and an output shaft rotation sensor (output shaft rotation detection means) that detects the rotation of the output shaft 4. ) 202 and a pump rotation sensor (pump rotation detection means) 203 that detects the rotation of the oil pump 7. The detection signals of the input shaft rotation sensor 201, the output shaft rotation sensor 202, and the pump rotation sensor 203 are as follows. The control device 200 controls the operation of the motor 6 and the first power interrupting mechanism 81 based on these detection signals, and the clutch 82 and the clutch 83 are electronically controlled hydraulically operated clutches. In this case, the operation of the clutch 82 and the clutch 83 is controlled.
 〔1-2.駆動機構の具体的構成〕
 次に、本実施形態の駆動機構の構成を図1(b)により具体的に説明する。
[1-2. Specific configuration of drive mechanism]
Next, the configuration of the drive mechanism of the present embodiment will be specifically described with reference to FIG.
 本実施形態の駆動機構は、例えば、図1(b)に示すように、エンジン1からの出力伝達方向順に、入力軸10を有する変速機100と、出力軸4と、動力伝達機構5aと、駆動輪5とを少なくとも備えている。 The drive mechanism of the present embodiment includes, for example, a transmission 100 having an input shaft 10, an output shaft 4, a power transmission mechanism 5a, in the order of the output transmission direction from the engine 1, as shown in FIG. And at least a drive wheel 5.
 変速機100は、図1(b)中に一点鎖線で示すように、トルクコンバータ2と、第1動力断続機構81を有する前後進切替機構31、バリエータ(変速比調整機構、無段変速機構)32からなる変速機構3、オイルポンプ7、油圧制御回路7a、オイルポンプ7、発電機能を備えた両軸式のモータ6、第2動力断続機構としてのクラッチ82、第3動力断続機構としてのクラッチ83及び制御装置200を備えて構成されており、ここでは、クラッチ82及びクラッチ83はいずれもワンウェイクラッチである。 As shown by a one-dot chain line in FIG. 1B, the transmission 100 includes a torque converter 2, a forward / reverse switching mechanism 31 having a first power interrupting mechanism 81, a variator (speed ratio adjusting mechanism, continuously variable transmission mechanism). 32 transmission mechanism 3, oil pump 7, hydraulic control circuit 7 a, oil pump 7, double-shaft motor 6 having a power generation function, clutch 82 as a second power interrupting mechanism, clutch as a third power interrupting mechanism 83 and the control device 200, where the clutch 82 and the clutch 83 are both one-way clutches.
 オイルポンプ7は、後で詳しく説明するように、エンジン1、駆動輪5又はモータ6により駆動されるようになっている(以下、オイルポンプ7をエンジン1により駆動することをエンジン駆動、モータ6により駆動することをモータ駆動とも言う)。 As will be described in detail later, the oil pump 7 is driven by the engine 1, the drive wheel 5, or the motor 6 (hereinafter, driving the oil pump 7 by the engine 1 is referred to as “engine drive, motor 6”). (It is also called motor drive).
 また、モータ6にはバッテリ(図示省略)が接続されており、モータ6を力行作動させる場合、バッテリの電力を用いて行い、モータ6によって発電を行った場合、生成された電力はバッテリに充電される。 In addition, a battery (not shown) is connected to the motor 6, and when the motor 6 is powered, the battery power is used. When the motor 6 generates power, the generated power is charged to the battery. Is done.
 トルクコンバータ2は、エンジン1の出力軸に接続されたトルコン入力軸21と、トルコン入力軸21に固定されたポンプインペラ23と、前後進切替機構31の入力軸すなわち変速機構入力軸31aにタービン軸25を介して接続されたタービンランナ24とを有し、ポンプインペラ23を介して入力されたエンジン1の出力を、タービンランナ24に伝達し、変速機構3に伝達するものである。 The torque converter 2 includes a torque converter input shaft 21 connected to the output shaft of the engine 1, a pump impeller 23 fixed to the torque converter input shaft 21, an input shaft of the forward / reverse switching mechanism 31, that is, a speed change mechanism input shaft 31a and a turbine shaft. And an output of the engine 1 input via the pump impeller 23 is transmitted to the turbine runner 24 and transmitted to the transmission mechanism 3.
 そして、上記入力軸10は、トルコン入力軸21とフロントカバー22とポンプインペラ23とポンプインペラ23に固定された中空軸11とを備えて構成されている。 The input shaft 10 includes a torque converter input shaft 21, a front cover 22, a pump impeller 23, and a hollow shaft 11 fixed to the pump impeller 23.
 また、トルクコンバータ2にはフロントカバー22とタービンランナ24とを直結するロックアップクラッチ26が設けられている。 Further, the torque converter 2 is provided with a lockup clutch 26 that directly connects the front cover 22 and the turbine runner 24.
 前後進切替機構31は、遊星歯車機構31bと、締結されると前進変速段を達成する前進クラッチ31cと、締結されると後進変速段を達成する後退ブレーキ31dとを有し、前進クラッチ31cと後退ブレーキ31dとから第1動力断続機構81が構成され、第1動力断続機構81が解放されることにより、動力遮断状態である中立が達成される。 The forward / reverse switching mechanism 31 includes a planetary gear mechanism 31b, a forward clutch 31c that achieves a forward shift stage when engaged, and a reverse brake 31d that achieves a reverse shift stage when engaged, The first power interrupting mechanism 81 is configured from the reverse brake 31d, and the first power interrupting mechanism 81 is released, thereby achieving neutrality that is a power interrupting state.
 前進クラッチ31cは、遊星歯車機構31bのリングギアとサンギアとを連結することで出力回転(サンギアの回転)を正回転とし、後退ブレーキ31dは遊星歯車機構31bのキャリアをケース側に締結することで出力回転を逆回転とする。 The forward clutch 31c connects the ring gear of the planetary gear mechanism 31b and the sun gear to make the output rotation (sun gear rotation) forward, and the reverse brake 31d fastens the carrier of the planetary gear mechanism 31b to the case side. The output rotation is the reverse rotation.
 そして、上記のタービン軸25、変速機構入力軸31aが上記動力伝達経路303内に配置されており、エンジン1から入力軸10に入力される回転トルク(動力)が、第1動力断続機構81(前進クラッチ31c及び後退ブレーキ31d)を介して動力伝達経路303経由で出力軸4に伝達可能となっている。 The turbine shaft 25 and the transmission mechanism input shaft 31a are disposed in the power transmission path 303, and the rotational torque (power) input from the engine 1 to the input shaft 10 is converted into the first power interrupting mechanism 81 ( It can be transmitted to the output shaft 4 via the power transmission path 303 via the forward clutch 31c and the reverse brake 31d).
 バリエータ32は、プライマリプーリ32bと、セカンダリプーリ32cと、これらのプーリ32b及びプーリ32cに掛け回されたベルト32dとを有し、プライマリプーリ32bの両側に突出して設けられた入力軸32aの一端側が前後進切替機構31の出力側に接続され、プーリ32b及びプーリ32cの各々へのベルト32dの巻き付き径(プーリの有効半径)が調整されて変速比を変更するものである。 The variator 32 has a primary pulley 32b, a secondary pulley 32c, and a belt 32d wound around the pulley 32b and the pulley 32c, and one end side of an input shaft 32a provided to protrude from both sides of the primary pulley 32b is provided. It is connected to the output side of the forward / reverse switching mechanism 31 and adjusts the wrapping diameter (effective pulley radius) of the belt 32d around each of the pulley 32b and the pulley 32c to change the gear ratio.
 前進クラッチ31cは、図示しないセレクトバーによりドライブ(D)レンジ等の前進走行レンジが選択される走行時に油圧が供給されて締結され、前進クラッチ31cが締結すると、変速機構入力軸31aとプライマリプーリ32bの入力軸32aとが同方向に回転する。 The forward clutch 31c is fastened by being supplied with hydraulic pressure during travel in which a forward travel range such as a drive (D) range is selected by a select bar (not shown). When the forward clutch 31c is engaged, the transmission mechanism input shaft 31a and the primary pulley 32b are engaged. The input shaft 32a rotates in the same direction.
 一方、後退ブレーキ31dは、リバース(R)レンジ(後進走行レンジ)が選択される後進走行時に油圧が供給されて締結され、後退ブレーキ31dを締結すると、変速機構入力軸31aに対しプライマリプーリ32bの入力軸32aが逆方向に回転する。 On the other hand, the reverse brake 31d is supplied with hydraulic pressure and is engaged during reverse travel in which a reverse (R) range (reverse travel range) is selected. When the reverse brake 31d is engaged, the reverse pulley 31b is connected to the transmission mechanism input shaft 31a. The input shaft 32a rotates in the reverse direction.
 RレンジやDレンジといった走行レンジが選択される車両走行時には、前進クラッチ31c及び後退ブレーキ31dの締結は互いに排他的に行なわれ、前進クラッチ31cが締結されれば後退ブレーキ31dは解放され、後退ブレーキ31dが締結されれば前進クラッチ31cは解放される。 When the vehicle travels such as the R range or D range, the forward clutch 31c and the reverse brake 31d are engaged exclusively with each other, and when the forward clutch 31c is engaged, the reverse brake 31d is released and the reverse brake is released. When 31d is engaged, the forward clutch 31c is released.
 ただし、走行レンジが選択される車両走行時においても後述するようにコースト走行時にセーリング制御が行われると前進クラッチ31c及び後退ブレーキ31dが何れも解放された中立とされる。 However, even when the vehicle is traveling in which the travel range is selected, as described later, if sailing control is performed during coasting, both the forward clutch 31c and the reverse brake 31d are neutral.
 一方、パーキング(P)レンジやニュートラル(N)レンジの非走行レンジ選択時には、前進クラッチ31c及び後退ブレーキ31dの何れからも油圧が排出されて、両者とも解放され、中立が達成される。 On the other hand, when the non-traveling range of the parking (P) range or the neutral (N) range is selected, the hydraulic pressure is discharged from both the forward clutch 31c and the reverse brake 31d, and both are released to achieve neutrality.
 なお、「前後進切替機構」は前進及び後進の何れについても変速比の変更をともなわないものであるが、この前後進切替機構に替えて、前後進切替機構を有する副変速機構(前進及び後進の少なくとも一方について変速比の変更が可能な機構)を用いても良いし、前後進切替機構に加えて副変速機構を設けても良い。 Note that the “forward / reverse switching mechanism” does not change the gear ratio for both forward and reverse, but instead of this forward / reverse switching mechanism, a sub-transmission mechanism (forward / reverse switching mechanism) having a forward / reverse switching mechanism is provided. A mechanism capable of changing the gear ratio for at least one of them may be used, or a sub-transmission mechanism may be provided in addition to the forward / reverse switching mechanism.
 変速機構3の出力側は出力軸4に接続され、出力軸4は終減速機やディファレンシャルやドライブシャフト等を有する動力伝達機構5aを介して駆動輪5に接続されている。 The output side of the speed change mechanism 3 is connected to the output shaft 4, and the output shaft 4 is connected to the drive wheels 5 via a power transmission mechanism 5a having a final reduction gear, a differential, a drive shaft, and the like.
 オイルポンプ7から圧送される作動油(オイル)は、油圧制御回路7aを介して第1動力断続機構81、バリエータ32に供給されるようになっている。 The hydraulic oil (oil) pumped from the oil pump 7 is supplied to the first power interrupting mechanism 81 and the variator 32 via the hydraulic control circuit 7a.
 詳しくは、油圧制御回路7aは、図示しない複数のソレノイド弁を有しており、これらのソレノイド弁から制御装置200の指令に応じて各々所定の圧力に制御された作動油が、プライマリプーリ32b、セカンダリプーリ32c、前進クラッチ31c、後退ブレーキ31dへと供給されるようになっている。 Specifically, the hydraulic control circuit 7a has a plurality of solenoid valves (not shown), and the hydraulic oil controlled to a predetermined pressure from these solenoid valves according to a command from the control device 200 is supplied to the primary pulley 32b, The secondary pulley 32c, the forward clutch 31c, and the reverse brake 31d are supplied.
 そして、プライマリプーリ32b及びセカンダリプーリ32cに供給された作動油の油圧(作動圧)に応じて上述のとおり各プーリの有効半径が調整されるようになっている。 The effective radius of each pulley is adjusted as described above according to the hydraulic pressure (operating pressure) of the hydraulic oil supplied to the primary pulley 32b and the secondary pulley 32c.
 また、前進クラッチ31c及び後退ブレーキ31dへの作動圧の供給、排出を制御することによって前後進切替機構31の作動が制御されるようになっている。 Further, the operation of the forward / reverse switching mechanism 31 is controlled by controlling the supply and discharge of the operating pressure to the forward clutch 31c and the reverse brake 31d.
 〔1-3.駆動機構の要部〕
 ここで、本実施形態の駆動機構の要部であるオイルポンプの駆動系統について説明する。
[1-3. (Main parts of the drive mechanism)
Here, the drive system of the oil pump, which is the main part of the drive mechanism of the present embodiment, will be described.
 入力軸10には、ワンウェイクラッチであるクラッチ82を介してスプロケット(回転部材)91が装着されており、クラッチ82はスプロケット91の内周側に組み込まれている。 A sprocket (rotating member) 91 is attached to the input shaft 10 via a clutch 82 that is a one-way clutch, and the clutch 82 is incorporated on the inner peripheral side of the sprocket 91.
 そして、このスプロケット91には二本のチェーン(無端状部材)92及びチェーン(無端状部材)93が架け回されている。 Then, two chains (endless members) 92 and a chain (endless member) 93 are wound around the sprocket 91.
 一方のチェーン92は、上記スプロケット91と、モータ回転軸61の一端側62に装着されたスプロケット(回転部材)94とに架け回され、他方のチェーン93は、上記スプロケット91と、オイルポンプ回転軸71に装着されたスプロケット(回転部材)95とに架け回されている。 One chain 92 is wound around the sprocket 91 and a sprocket (rotating member) 94 mounted on one end side 62 of the motor rotating shaft 61, and the other chain 93 includes the sprocket 91 and the oil pump rotating shaft. It is wound around a sprocket (rotating member) 95 attached to 71.
 そして、スプロケット91、チェーン92及びチェーン93、スプロケット94及びスプロケット95、モータ回転軸61及びポンプ回転軸71が上記動力伝達経路301内に配置されている。 The sprocket 91, the chain 92 and the chain 93, the sprocket 94 and the sprocket 95, the motor rotating shaft 61 and the pump rotating shaft 71 are arranged in the power transmission path 301.
 さらにいうと、スプロケット91、チェーン92及びスプロケット94より、入力軸10とモータ6との間の動力伝達機構が構成され、スプロケット91、チェーン93及びスプロケット95より、入力軸10とポンプ回転軸71との間の動力伝達機構が構成されている。 More specifically, the power transmission mechanism between the input shaft 10 and the motor 6 is configured by the sprocket 91, the chain 92, and the sprocket 94, and the input shaft 10 and the pump rotating shaft 71 are configured by the sprocket 91, the chain 93, and the sprocket 95. A power transmission mechanism between the two is configured.
 また、モータ回転軸61の他端側63はワンウェイクラッチであるクラッチ83を介してスプロケット97の回転軸96に接続されており、このスプロケット97と、プライマリプーリ32bの回転軸32aに装着されたスプロケット99とにはチェーン(無端状部材)98が架け回されている。 The other end 63 of the motor rotating shaft 61 is connected to a rotating shaft 96 of a sprocket 97 via a clutch 83 which is a one-way clutch. The sprocket 97 and a sprocket mounted on the rotating shaft 32a of the primary pulley 32b. A chain (endless member) 98 is looped around 99.
 そして、スプロケット99、チェーン98及びスプロケット97からなる動力伝達機構と、回転軸96と、モータ回転軸61とは上記動力伝達経路302内に配置されている。 The power transmission mechanism including the sprocket 99, the chain 98, and the sprocket 97, the rotary shaft 96, and the motor rotary shaft 61 are disposed in the power transmission path 302.
 また、オイルポンプ7がモータ駆動される際には、モータ回転軸61の回転トルクが、スプロケット94、チェーン92、スプロケット91、チェーン93、スプロケット95及びポンプ回転軸71の順に伝達されようになっている。 When the oil pump 7 is driven by a motor, the rotational torque of the motor rotating shaft 61 is transmitted in the order of the sprocket 94, the chain 92, the sprocket 91, the chain 93, the sprocket 95, and the pump rotating shaft 71. Yes.
 つまり、スプロケット94、チェーン92、スプロケット91、チェーン93、スプロケット95より、モータ6とオイルポンプ7との間の動力伝達機構が構成されている。 That is, the sprocket 94, the chain 92, the sprocket 91, the chain 93, and the sprocket 95 constitute a power transmission mechanism between the motor 6 and the oil pump 7.
 ここで、クラッチ82及びクラッチ83についてさらに説明する。 Here, the clutch 82 and the clutch 83 will be further described.
 先ずクラッチ82について説明すると、クラッチ82は上述したとおりワンウェイクラッチであり、入力軸10からの動力は、動力断続機構81を介さず且つクラッチ82を介してモータ6やオイルポンプ7に伝達可能であり、入力軸10からモータ6やオイルポンプ7に向かう動力のみ伝達可能に形成されている。 First, the clutch 82 will be described. The clutch 82 is a one-way clutch as described above, and the power from the input shaft 10 can be transmitted to the motor 6 and the oil pump 7 via the clutch 82 without passing through the power interrupting mechanism 81. , Only the power directed from the input shaft 10 to the motor 6 and the oil pump 7 can be transmitted.
 つまり、入力軸10の回転速度のほうがスプロケット91の回転速度よりも高速で入力軸10からモータ6やオイルポンプ7側に動力が出力されるような場合ではクラッチ82は締結状態となる。 That is, when the rotational speed of the input shaft 10 is higher than the rotational speed of the sprocket 91 and power is output from the input shaft 10 to the motor 6 or the oil pump 7 side, the clutch 82 is engaged.
 一方、入力軸10の回転速度よりもスプロケット91の回転速度のほうが高速で動力伝達方向がモータ6やオイルポンプ7側から入力軸10へと向かう方向となる場合(例えば入力軸10が停止状態においてモータ6又は駆動輪5によりスプロケット91を介してオイルポンプ7が駆動されるような場合)ではクラッチ82は解放状態(動力遮断状態)となる。 On the other hand, when the rotation speed of the sprocket 91 is higher than the rotation speed of the input shaft 10 and the power transmission direction is the direction from the motor 6 or the oil pump 7 toward the input shaft 10 (for example, when the input shaft 10 is in a stopped state). In the case where the oil pump 7 is driven by the motor 6 or the drive wheel 5 via the sprocket 91), the clutch 82 is in a released state (power cutoff state).
 次にクラッチ83について説明すると、クラッチ83は上述したとおりワンウェイクラッチであり、出力軸4(回転軸96)側からの動力は動力断続機構81を介さず且つクラッチ83を介してモータ回転軸61に伝達可能であり、出力軸4からモータ回転軸61に向かう動力のみ伝達可能に形成されている。 Next, the clutch 83 will be described. The clutch 83 is a one-way clutch as described above, and the power from the output shaft 4 (rotating shaft 96) side does not pass through the power interrupting mechanism 81 and passes through the clutch 83 to the motor rotating shaft 61. The power transmission is possible, and only the power from the output shaft 4 toward the motor rotation shaft 61 can be transmitted.
 つまり、駆動輪5(出力軸4)により間接的に駆動される回転軸96の回転速度のほうがモータ回転軸61の回転速度よりも高速であるために回転軸96からモータ回転軸61に動力が伝達されるような場合(例えばエンジン1や入力軸10が停止または低速回転状態において、駆動輪5によりモータ6やオイルポンプ7が駆動されるような場合)ではワンウェイクラッチであるクラッチ83は締結状態となる。 That is, since the rotational speed of the rotating shaft 96 indirectly driven by the drive wheel 5 (output shaft 4) is higher than the rotating speed of the motor rotating shaft 61, power is transmitted from the rotating shaft 96 to the motor rotating shaft 61. In the case of transmission (for example, when the motor 6 or the oil pump 7 is driven by the drive wheels 5 when the engine 1 or the input shaft 10 is stopped or in a low-speed rotation state), the clutch 83 that is a one-way clutch is in an engaged state. It becomes.
 一方、回転軸96の回転速度よりもモータ回転軸61の回転速度のほうが高速で動力伝達方向がモータ回転軸61から出力軸4へ向かうような方向となる場合(例えば駆動輪5や出力軸4が停止または低速回転状態においてモータ6を作動させてオイルポンプ7をモータ駆動するような場合)ではワンウェイクラッチであるクラッチ83は解放状態(動力遮断状態)となる。 On the other hand, when the rotation speed of the motor rotation shaft 61 is higher than the rotation speed of the rotation shaft 96 and the power transmission direction is a direction from the motor rotation shaft 61 toward the output shaft 4 (for example, the drive wheels 5 and the output shaft 4). In the case where the oil pump 7 is driven by operating the motor 6 in a stopped or low-speed rotation state), the clutch 83 which is a one-way clutch is in a released state (power cut-off state).
 なお、クラッチ83は、動力伝達経路303外に配置され且つ動力伝達経路302上でモータ6と出力軸4との間に介装されていればよく、図1において二点鎖線で示すように、スプロケット99とバリエータ32との間、若しくは前記クラッチ82と同様にスプロケット99またはスプロケット97の内周側に設置してもよい。 The clutch 83 only needs to be disposed outside the power transmission path 303 and interposed between the motor 6 and the output shaft 4 on the power transmission path 302, as shown by a two-dot chain line in FIG. It may be installed between the sprocket 99 and the variator 32 or on the inner peripheral side of the sprocket 99 or the sprocket 97 in the same manner as the clutch 82.
 ここで、「介装」とは部材間に備え付けることを意味するが、本願発明では、この部材間は、物理的な配置上の部材間に限定されるものではない。 Here, “intervening” means to be provided between the members, but in the present invention, the space between the members is not limited to the members on the physical arrangement.
 すなわち、「部材間」とは、実際の配置において一の部材と他の部材との相互間に形成される空間に限定されるものではない。 That is, “between members” is not limited to a space formed between one member and another member in an actual arrangement.
 したがって、上記のように「クラッチ83は、モータ6と出力軸4との間の動力伝達経路上に介装されていればよく」とは、クラッチ83が、モータ6と出力軸4との間に形成された動力伝達経路内に配置されていればよく、モータ6と出力軸4との間の空間内に配置される必要はない。 Therefore, as described above, “the clutch 83 only needs to be interposed on the power transmission path between the motor 6 and the output shaft 4” means that the clutch 83 is between the motor 6 and the output shaft 4. It is only necessary to be disposed in the power transmission path formed in the above, and it is not necessary to be disposed in the space between the motor 6 and the output shaft 4.
 〔1-4.制御装置〕
 本実施形態の駆動機構には、上述したように、制御装置200と、入力軸回転センサ201と、出力軸回転センサ202及びポンプ回転軸71の回転速度(ポンプ回転速度)を検出するポンプ回転センサ203とが設けられており、制御装置200は、クラッチ制御手段200A、モータ制御手段200B及び変速比制御手段200Cを備えている。
[1-4. Control device〕
As described above, the drive mechanism of the present embodiment includes the control device 200, the input shaft rotation sensor 201, the output shaft rotation sensor 202, and the pump rotation sensor that detects the rotation speed (pump rotation speed) of the pump rotation shaft 71. 203, and the control device 200 includes clutch control means 200A, motor control means 200B, and gear ratio control means 200C.
 なお、クラッチ制御手段200A、モータ制御手段200B及び変速比制御手段200Cはそれぞれ別々のハードウェア(制御装置)により構成してもよい。 The clutch control means 200A, the motor control means 200B, and the gear ratio control means 200C may be configured by separate hardware (control device).
 クラッチ制御手段200Aはドライブレンジなどに応じて油圧制御回路7aを介して第1動力断続機構81(前進クラッチ31c、後退ブレーキ31d)へのオイルの供給、排出を制御し、実質的には前後進切替機構31の変速状態を制御する。 The clutch control means 200A controls the supply and discharge of oil to and from the first power interrupting mechanism 81 (forward clutch 31c, reverse brake 31d) via the hydraulic control circuit 7a according to the drive range and the like. The shift state of the switching mechanism 31 is controlled.
 さらに、クラッチ制御手段200Aは、アクセルオフによるコースト走行時には、車速が第1所定速度以上であれば、車速が第1所定速度よりも低い第2所定速度未満に低下するまで前進クラッチ31c及び後退ブレーキ31dを何れも解放して、変速機100をニュートラル状態とするセーリング制御を行う。 Further, when coasting with the accelerator off, the clutch control means 200A, if the vehicle speed is equal to or higher than the first predetermined speed, moves the forward clutch 31c and the reverse brake until the vehicle speed drops below a second predetermined speed lower than the first predetermined speed. All of 31d are released, and sailing control is performed to place the transmission 100 in the neutral state.
 このセーリング制御の際には、エンジン1を停止させることで燃費を向上させることができるが、本制御装置200はセーリング制御時に駆動輪5から出力軸4に回転トルクが入力するトルクの逆流状態を利用してオイルポンプ7を駆動する。 In this sailing control, the fuel consumption can be improved by stopping the engine 1, but the control device 200 displays a reverse flow state of torque in which rotational torque is input from the drive wheels 5 to the output shaft 4 during the sailing control. The oil pump 7 is driven using this.
 また、バッテリのSOC(State Of Charge)が充電可能な状態であればモータ6により発電を行う。 Also, if the battery SOC (State Of 充電 Charge) is in a chargeable state, the motor 6 generates power.
 ただし、セーリング制御では、できるだけ車速を低下させたくないのでモータ6による発電負荷を抑制することが好ましい。 However, in sailing control, it is preferable not to reduce the vehicle speed as much as possible, so it is preferable to suppress the power generation load by the motor 6.
 また、セーリング制御時にフットブレーキ操作がされたらモータ6による発電負荷を回生制動力とすることができるので、所定の制動力(モータ6の発電負荷)が得られるようにモータ6により発電を行う。 Also, if a foot brake operation is performed during sailing control, the power generation load by the motor 6 can be used as a regenerative braking force, so that the motor 6 generates power so as to obtain a predetermined braking force (power generation load of the motor 6).
 セーリング制御時にフットブレーキ操作がされたら、フューエルカット状態で前進クラッチ31cを締結状態としてエンジンブレーキにより制動力を作用させるようにしても良い。 If the foot brake is operated during sailing control, the forward clutch 31c may be engaged in the fuel cut state, and the braking force may be applied by the engine brake.
 モータ制御手段200Bは、モータ6を電動機、無負荷及び発電機の何れかの状態に制御し、また、モータ6を電動機として作動させる場合には、入力軸回転センサ201により検出されるエンジン回転速度が所定回転速度以下の場合には、エンジン駆動ではオイルポンプ7の出力が不足するおそれがあるためモータ6を作動させる。 The motor control means 200B controls the motor 6 to any state of an electric motor, no load, and a generator, and when operating the motor 6 as an electric motor, the engine rotation speed detected by the input shaft rotation sensor 201. Is less than a predetermined rotational speed, the motor 6 is operated because there is a possibility that the output of the oil pump 7 may be insufficient when the engine is driven.
 モータ制御手段200Bは、ポンプ回転センサ203により検出されるポンプ回転速度に基づいてモータ6の作動を制御するようにしても良い。 The motor control means 200B may control the operation of the motor 6 based on the pump rotation speed detected by the pump rotation sensor 203.
 具体的には、モータ制御手段200Bは、ポンプ回転速度が上記設定回転速度域以下の場合には、モータ6を電動機として作動させてオイルポンプ7を駆動してポンプ回転速度を上記設定回転速度域内に入るようにすれば良い。 Specifically, when the pump rotation speed is equal to or lower than the set rotation speed range, the motor control means 200B operates the motor 6 as an electric motor to drive the oil pump 7 and set the pump rotation speed within the set rotation speed range. Just go in.
 このように入力軸回転センサ201やポンプ回転センサ203に検出結果に基づいてモータの作動を制御することにより、エンジン回転速度(すなわち入力軸10の回転速度)よりも高速でスプロケット91を回転させれば、ワンウェイクラッチであるクラッチ82の作用によりエンジン1の回転トルクに代わってモータ6の回転トルクがオイルポンプ7に伝達するようになり、オイルポンプ7を上記設定回転速度域で回転させることができる。 Thus, by controlling the operation of the motor based on the detection result by the input shaft rotation sensor 201 and the pump rotation sensor 203, the sprocket 91 can be rotated at a speed higher than the engine rotation speed (that is, the rotation speed of the input shaft 10). For example, the rotational torque of the motor 6 is transmitted to the oil pump 7 in place of the rotational torque of the engine 1 by the action of the clutch 82 which is a one-way clutch, and the oil pump 7 can be rotated in the set rotational speed range. .
 また、ポンプ回転軸71とモータ回転軸61とは動力伝達状態に接続されているのでポンプ回転速度とモータ回転速度とには相関関係があるから、モータ回転軸61の回転速度(モータ回転速度)を検出するモータ回転センサを設けて、ポンプ回転速度に代えて前記モータ回転センサにより検出されるモータ回転速度に基づいてモータ6の作動を制御するようにしても良い。 Further, since the pump rotation shaft 71 and the motor rotation shaft 61 are connected in a power transmission state, there is a correlation between the pump rotation speed and the motor rotation speed, so the rotation speed of the motor rotation shaft 61 (motor rotation speed). The motor 6 may be controlled based on the motor rotation speed detected by the motor rotation sensor instead of the pump rotation speed.
 具体的には、モータ制御手段200Bが、モータ6のモータ回転速度が設定回転速度域以下の場合には、モータ6を電動機として作動させてオイルポンプ7を駆動してポンプ回転速度を上記設定回転速度域内に入るようにすれば良い。 Specifically, when the motor rotation speed of the motor 6 is equal to or less than the set rotation speed range, the motor control unit 200B operates the motor 6 as an electric motor to drive the oil pump 7 to set the pump rotation speed to the above set rotation. It only has to be within the speed range.
 また、モータ制御手段200Bは、バッテリのSOCが所定値よりも低いときにはモータ6を発電機として動作させ、通常走行中は要求エンジン負荷を充足できることを条件としてエンジン1によりモータ6を駆動して発電を行わせ、上述したようにコースト走行時には駆動輪によりモータ6を適宜駆動して発電を行わせる。 The motor control unit 200B operates the motor 6 as a generator when the SOC of the battery is lower than a predetermined value, and drives the motor 6 with the engine 1 to generate electric power on condition that the required engine load can be satisfied during normal traveling. As described above, during coasting, the motor 6 is appropriately driven by drive wheels to generate power.
 モータ制御手段200Bによりこのような制御が行なわれる結果、停車アイドルストップが実施されていてオイルポンプ7がエンジン1や駆動輪5からの回転トルクにより駆動されない場合にも、オイルポンプ7がモータ駆動されることとなって、停車アイドルストップ中でも変速機100に所要量、所要圧のオイルを供給できるようになっている。 As a result of such control by the motor control means 200B, the oil pump 7 is driven by the motor even when the stop idling stop is performed and the oil pump 7 is not driven by the rotational torque from the engine 1 or the drive wheels 5. Thus, the required amount of oil and the required pressure can be supplied to the transmission 100 even when the vehicle is stopped idle.
 この他、モータ制御手段200Bによって、バッテリのSOCが所定値より高いことなどを条件として、エンジン駆動によってオイルポンプ7を設定回転速度域で駆動できるような場合であってもモータ6を作動させてエンジン負荷を軽減するようにしても良い。 In addition, the motor 6 is operated by the motor control means 200B even when the oil pump 7 can be driven in the set rotational speed range by the engine drive on the condition that the SOC of the battery is higher than a predetermined value. The engine load may be reduced.
 変速比制御手段200Cは油圧制御回路7aを介してプライマリプーリ32b及びセカンダリプーリ32cへ調圧された作動圧のオイルを供給、排出してプーリの有効半径ひいては変速比を制御する。 The gear ratio control means 200C supplies and discharges the adjusted hydraulic pressure oil to the primary pulley 32b and the secondary pulley 32c via the hydraulic control circuit 7a, and controls the effective radius of the pulley and thus the gear ratio.
 〔1-5.駆動機構の作用・効果〕
 本発明の第1実施形態の駆動機構は上述のように構成されているので、以下のように種々の態様によりオイルポンプを駆動することができ、これに伴い種々の効果が得られる。
[1-5. (Operation and effect of drive mechanism)
Since the drive mechanism of the first embodiment of the present invention is configured as described above, the oil pump can be driven in various modes as described below, and various effects can be obtained accordingly.
 (a)通常走行中
 通常走行中はエンジン1から入力軸10に入力された回転トルクが、ワンウェイクラッチであるクラッチ82を介してオイルポンプ7とモータ6とに入力され、オイルポンプ7とモータ6とがエンジン駆動される。
(A) During normal driving During normal driving, the rotational torque input from the engine 1 to the input shaft 10 is input to the oil pump 7 and the motor 6 via the clutch 82 that is a one-way clutch. And the engine is driven.
 この際、モータ6が両軸形式であるためモータ回転軸61からクラッチ83側にも回転トルクが出力されるが、ワンウェイクラッチであるクラッチ83の作用によりモータ回転軸61からの回転トルクは出力軸4側には伝達されない。 At this time, since the motor 6 is of the double shaft type, the rotational torque is also output from the motor rotating shaft 61 to the clutch 83 side. It is not transmitted to the 4th side.
 したがって、バリエータ32や駆動輪5などの作動に影響を及ぼすことなく、オイルポンプ7及びモータ6をエンジン駆動することができる。 Therefore, the oil pump 7 and the motor 6 can be driven by the engine without affecting the operation of the variator 32, the drive wheel 5, and the like.
 そして、このとき、モータ6を発電作動させれば入力軸10に入力される回転トルクの一部で運動エネルギを電力エネルギに変換することができ、バッテリの充電や電装品へ電力を供給することができる。 At this time, if the motor 6 is operated to generate electricity, the kinetic energy can be converted into electric energy with a part of the rotational torque input to the input shaft 10, and the battery is charged and electric power is supplied to the electrical components. Can do.
 また、車両の後退時においても、入力軸10に入力された回転トルクは前後進切替機構31に入力される前に(逆方向に変換される前の正回転状態で)モータ6へと伝達されるので、この正回転によりオイルポンプ7及びモータ6をエンジン駆動することができる。 Further, even when the vehicle is moving backward, the rotational torque input to the input shaft 10 is transmitted to the motor 6 before being input to the forward / reverse switching mechanism 31 (in the forward rotation state before being converted in the reverse direction). Therefore, the oil pump 7 and the motor 6 can be driven by the engine by this forward rotation.
 また、エンジン回転速度が設定回転速度域以下の場合やポンプ回転速度が設定回転速度域以下の場合にはモータ6を力行作動させるので、エンジン回転速度が低速のためエンジン駆動では必要油圧の作動油を必要量だけ発生させることができないような場合には、オイルポンプ7がモータ駆動され必要油圧の作動油を必要量だけ発生させることができる。 Further, when the engine rotation speed is lower than the set rotation speed range or when the pump rotation speed is lower than the set rotation speed range, the motor 6 is operated in a powering manner. If the required amount cannot be generated, the oil pump 7 can be driven by a motor to generate the required amount of hydraulic oil.
 これによりエンジン低回転速度領域においてキックダウンによる急速な変速を行うような場合にも、オイルポンプ7によりバリエータ32に必要な作動圧を供給でき素早く変速を行うことができる。 Thus, even when a rapid shift by kickdown is performed in the engine low rotation speed region, the oil pump 7 can supply the operating pressure necessary for the variator 32 and the shift can be performed quickly.
 具体的には、アクセルペダルが踏まれたとき、アクセルペダルの踏み込み量又はアクセルペダルの踏み込み速度が所定速度以上で、且つ、ダウンシフトが禁止されていない状態であれば、制御装置200は踏み込みダウン(踏み込みダウンシフト)判定を行い、踏み込みダウンが実行される。 Specifically, when the accelerator pedal is depressed, if the amount of depression of the accelerator pedal or the depression speed of the accelerator pedal is equal to or higher than a predetermined speed and the downshift is not prohibited, the control device 200 depresses the depression. (Step-down downshift) is determined, and step-down is executed.
 踏み込みダウン判定が行われ、且つ、エンジン回転速度が所定回転速度以下であれば、モータ6によりオイルポンプ7を駆動し、踏み込みダウンが実行される。 When the step-down determination is made and the engine speed is equal to or lower than the predetermined speed, the oil pump 7 is driven by the motor 6 and the step-down is executed.
 なお、キックダウンは踏み込みダウンの下位概念であり、アクセルペダルを踏み込みきったとき(アクセル開度が最大のとき)に実行されるダウンシフトを、キックダウンと呼ぶ。 Note that kickdown is a subordinate concept of stepping down, and a downshift that is executed when the accelerator pedal is fully depressed (when the accelerator opening is maximum) is called kickdown.
 (b)停車アイドルストップ時
 モータ制御手段200Bは、エンジン回転速度が設定回転速度域以下の場合やポンプ回転速度が設定回転速度域以下の場合にはモータ6を電動機として作動させてオイルポンプ7を駆動するので、停車アイドルストップが行われたときにはオイルポンプ7をモータ6により駆動可能となっている。
(B) When the vehicle is stopped at idling stop The motor control means 200B operates the motor 6 as an electric motor to operate the oil pump 7 when the engine rotational speed is below the set rotational speed range or when the pump rotational speed is below the set rotational speed range. Since it is driven, the oil pump 7 can be driven by the motor 6 when the vehicle is stopped idle.
 つまり、停車アイドルストップ中は入力軸10と出力軸4とがそれぞれ停止状態となり、上述したとおり入力軸10と出力軸4とが停止状態の時にモータ6によりオイルポンプ7を駆動するとワンウェイクラッチであるクラッチ82及びワンウェイクラッチであるクラッチ83がそれぞれ解放状態となるのでモータ6がエンジン側及び駆動輪側と動力的に切り離される。 That is, the input shaft 10 and the output shaft 4 are stopped during the idling stop, and when the oil pump 7 is driven by the motor 6 when the input shaft 10 and the output shaft 4 are stopped as described above, it is a one-way clutch. Since the clutch 82 and the clutch 83, which is a one-way clutch, are respectively released, the motor 6 is powered off from the engine side and the drive wheel side.
 したがって、エンジン1が負荷となるようなこともなく且つ駆動輪を駆動して車両を走行させることもなく、モータ6によりオイルポンプ7を駆動可能となっている。 Therefore, the oil pump 7 can be driven by the motor 6 without causing the engine 1 to become a load and driving the driving wheel to drive the vehicle.
 停車アイドルストップ中にもオイルポンプ7により前後進切替機構31及び変速機構3に油圧を供給できるので、停車アイドルストップから車両を再発進させる場合に、速やかに必要油圧の作動油を必要量だけ供給することが可能になり、発進時のタイムラグの発生を防止できる。 Since oil pressure can be supplied to the forward / reverse switching mechanism 31 and the transmission mechanism 3 by the oil pump 7 even when the vehicle is idle stopped, the required amount of hydraulic oil is quickly supplied when the vehicle restarts from the vehicle idle stop. It is possible to prevent the occurrence of a time lag when starting.
 (c)コースト走行時
 アクセルオフ操作によりコースト走行となると前進クラッチ31c及び後退ブレーキ31dが何れも解放される(変速機100が中立となり動力遮断状態となる)セーリング制御が行われ、駆動輪5の回転トルクを出力軸4に入力するトルクの逆流状態を利用して、オイルポンプ7を駆動可能であり、さらにモータ6を駆動する回生制動を行なうことも可能である。
(C) During coasting When coasting is performed by accelerator-off operation, both the forward clutch 31c and the reverse brake 31d are released (transmission 100 is neutral and the power is cut off), and sailing control is performed. The oil pump 7 can be driven by utilizing the reverse flow state of the torque input to the output shaft 4, and regenerative braking for driving the motor 6 can also be performed.
 この場合、駆動輪5の回転トルクは、動力伝達経路302のモータ回転軸61に伝達されてモータ6を駆動し、モータ回転軸61に伝達された回転トルクはさらに、スプロケット94,チェーン92,スプロケット91,チェーン93及びスプロケット95が配置される動力伝達経路を介してポンプ回転軸71に伝達されてオイルポンプ7を駆動する。 In this case, the rotational torque of the drive wheel 5 is transmitted to the motor rotational shaft 61 of the power transmission path 302 to drive the motor 6, and the rotational torque transmitted to the motor rotational shaft 61 is further sprocket 94, chain 92, sprocket. 91, the oil pump 7 is driven by being transmitted to the pump rotating shaft 71 through a power transmission path in which the chain 93 and the sprocket 95 are arranged.
 この際、モータ回転軸61からスプロケット91にも回転トルクが伝達するが、ワンウェイクラッチであるクラッチ82の作用によりこの回転トルクは入力軸10やエンジン1には伝達されない(換言すれば、エンジン1は駆動輪5から動力的に切り離された状態に維持され、コースト走行を阻害しない)。 At this time, the rotational torque is transmitted from the motor rotating shaft 61 to the sprocket 91, but this rotating torque is not transmitted to the input shaft 10 or the engine 1 by the action of the clutch 82 which is a one-way clutch (in other words, the engine 1 is It is maintained in a state where it is dynamically disconnected from the drive wheel 5 and does not hinder coasting).
 このようなコースト走行時、モータ6を発電状態にすれば出力軸4に入力される回転トルクの一部で運動エネルギを電力エネルギに変換することができ、モータ6を力行状態にすればモータ6によりオイルポンプ7の駆動をアシストすることができる。 In such coasting, if the motor 6 is in a power generation state, kinetic energy can be converted into electric energy with a part of the rotational torque input to the output shaft 4, and if the motor 6 is in a power running state, the motor 6 Thus, driving of the oil pump 7 can be assisted.
 加えて、モータ6やオイルポンプ7は、バリエータ32を介して出力軸4と接続されるため、バリエータ32によって出力軸4からの回転を変速してモータ6及びオイルポンプ7に伝達することができる。 In addition, since the motor 6 and the oil pump 7 are connected to the output shaft 4 via the variator 32, the rotation from the output shaft 4 can be changed by the variator 32 and transmitted to the motor 6 and the oil pump 7. .
 この際、変速比制御手段200Cによりポンプ回転速度が設定回転速度域内になるように変速比が制御されるので、オイルポンプ7の回転速度を上昇させポンプ吐出量を増大させることが可能になる。 At this time, since the gear ratio is controlled by the gear ratio control means 200C so that the pump rotational speed is within the set rotational speed range, it is possible to increase the rotational speed of the oil pump 7 and increase the pump discharge amount.
 例えばコースト走行中に車速が低下していくとオイルポンプ7の回転速度が低下するが、このときにはバリエータ32の変速比をロー側へシフトさせればプライマリプーリ32bひいてはオイルポンプ7の回転速度を上昇させることができる。 For example, if the vehicle speed decreases during coasting, the rotational speed of the oil pump 7 decreases. At this time, if the gear ratio of the variator 32 is shifted to the low side, the rotational speed of the primary pulley 32b and thus the oil pump 7 increases. Can be made.
 さらに、コースト走行時にモータ6により発電を行う場合には、変速比制御手段200Cによりモータ回転速度が発電効率の良い回転速度になるように変速比を制御することもできる。 Furthermore, when power is generated by the motor 6 during coasting, the gear ratio can be controlled by the gear ratio control means 200C so that the motor rotational speed becomes a rotational speed with good power generation efficiency.
 つまり、発電効率はモータ回転速度に応じて変化し、例えばコースト走行時には出力軸4の回転速度が徐々に低下していくが、バリエータ32の変速比をロー側へシフトさせればモータ回転速度を発電効率の良い回転速度にまで変速することができるので、モータ6により高効率に発電を行える。 That is, the power generation efficiency changes according to the motor rotation speed. For example, during coasting, the rotation speed of the output shaft 4 gradually decreases, but if the gear ratio of the variator 32 is shifted to the low side, the motor rotation speed is reduced. Since the speed can be changed to a rotational speed with good power generation efficiency, the motor 6 can generate power with high efficiency.
 この際には、オイルポンプ7の回転速度とモータ回転速度とは相関関係があるので、ポンプ回転センサ203の検出結果に応じて変速比を制御することができる(もちろんモータ回転速度を直接検出するセンサを設けてもよい)。 At this time, since the rotational speed of the oil pump 7 and the motor rotational speed have a correlation, the gear ratio can be controlled according to the detection result of the pump rotational sensor 203 (of course, the motor rotational speed is directly detected). A sensor may be provided).
〔1-6.その他〕
 本実施形態では、第2動力断接機構としてのクラッチ82及び第3動力断接機構としてのクラッチ83にそれぞれワンウェイクラッチを使用しているので、オイルポンプ7の駆動源を車両の状態に応じてメカニカルに変更することができ、第2動力断接機構及び第3動力断接機構に電気信号で断続を制御されるクラッチを使用する場合に比べて断続制御や当該断続制御に必要な設備が不要となる。
[1-6. Others]
In this embodiment, since the one-way clutch is used for the clutch 82 as the second power connection / disconnection mechanism and the clutch 83 as the third power connection / disconnection mechanism, the drive source of the oil pump 7 is set according to the state of the vehicle. Compared to using a clutch that can be controlled by electrical signals for the second power connection mechanism and the third power connection mechanism, there is no need for intermittent control and facilities necessary for the intermittent control. It becomes.
 また、モータ6とオイルポンプ7との間の動力伝達機構、モータ6と入力軸10との間の動力伝達機構、オイルポンプ7と入力軸10との間の動力伝達機構、及び、モータ6とオイルポンプと出力軸4との間の動力伝達機構が、回転部材(本実施形態ではスプロケット)と、これらの回転部材に架け回された無端状部材(本実施形態ではチェーン)とを備えて構成されているので、ギヤにより動力伝達機構を構成する場合に比べて、モータ6、オイルポンプ7、入力軸10、出力軸4の位置関係の設定自由度が高まり、例えば駆動機構の全長を短くすることも可能となる。 Also, a power transmission mechanism between the motor 6 and the oil pump 7, a power transmission mechanism between the motor 6 and the input shaft 10, a power transmission mechanism between the oil pump 7 and the input shaft 10, and the motor 6 A power transmission mechanism between the oil pump and the output shaft 4 includes a rotating member (a sprocket in the present embodiment) and an endless member (a chain in the present embodiment) spanned around these rotating members. Therefore, the degree of freedom in setting the positional relationship among the motor 6, the oil pump 7, the input shaft 10, and the output shaft 4 is increased as compared with the case where the power transmission mechanism is configured by gears, for example, the overall length of the drive mechanism is shortened. It is also possible.
 さらに、オイルポンプ7を駆動するための動力伝達機構にスプロケットやチェーンのような回転部材や無端状部材を使用しているのでギヤを使用するのに較べてスプロケットなどの回転部材の厚みを薄くすることができる。 Further, since a rotating member such as a sprocket or a chain or an endless member is used for a power transmission mechanism for driving the oil pump 7, the thickness of the rotating member such as a sprocket is made thinner than when a gear is used. be able to.
 つまり、オイルポンプ7の駆動に必要な回転トルクは比較的低いので、オイルポンプ7に回転トルクを伝達する動力伝達機構の必要強度は比較的低くて済むが、動力伝達機構としてギヤを使用する場合には、ギヤの厚みを薄くすると大きなノイズが発生するためギヤの幅寸法(厚み)をノイズの発生しない最低寸法以上にしなければならない。 That is, since the rotational torque required for driving the oil pump 7 is relatively low, the required strength of the power transmission mechanism for transmitting the rotational torque to the oil pump 7 is relatively low. However, when a gear is used as the power transmission mechanism. In this case, if the gear thickness is reduced, a large noise is generated. Therefore, the width dimension (thickness) of the gear must be set to a minimum dimension that does not generate noise.
 これに対して、スプロケットなどの回転部材は厚みを薄くしても大きなノイズが発生することはないので、動力伝達機構を無端状部材や回転部材により構成する場合には回転部材を必要強度に応じた薄いものとすることができるのである。 On the other hand, a rotating member such as a sprocket does not generate a large noise even if it is thinned. Therefore, when the power transmission mechanism is composed of an endless member or a rotating member, the rotating member is made according to the required strength. It can be made thin.
 さらに、ワンウェイクラッチであるクラッチ82がスプロケット91の内周側に組み込まれるのでワンウェイクラッチをスプロケットやプーリと別々に配置するよりも駆動機構をコンパクトにすることが可能となる。 Furthermore, since the clutch 82, which is a one-way clutch, is incorporated on the inner peripheral side of the sprocket 91, the drive mechanism can be made more compact than arranging the one-way clutch separately from the sprocket and pulley.
 〔1-7.変形例〕
 次に、本実施形態の駆動機構の変形例について説明する。
[1-7. (Modification)
Next, a modified example of the drive mechanism of the present embodiment will be described.
 本実施形態の駆動機構の変形例の概略構成は前述の実施形態と同様に図1(a)に示す通りであるので説明を省略する。 Schematic configuration of a modified example of the drive mechanism of the present embodiment is as shown in FIG. 1A as in the above-described embodiment, and a description thereof will be omitted.
 本変形例の駆動機構の具体的な構成を図2を参照して説明するが、上記実施形態と同一の構成については同じ符号を付して説明は省略する。 The specific configuration of the drive mechanism of this modification will be described with reference to FIG. 2, but the same components as those in the above embodiment will be denoted by the same reference numerals and description thereof will be omitted.
 図2に示すように、本変形例の駆動機構は、上記第1実施形態に対し、入力軸10とモータ6及びオイルポンプ7との間の動力伝達機構301の構成が相違する。 As shown in FIG. 2, the drive mechanism of this modification is different from the first embodiment in the configuration of a power transmission mechanism 301 between the input shaft 10, the motor 6, and the oil pump 7.
 つまり、本変形例の駆動機構では、中空軸11に、第2動力断続機構としてのクラッチ82を介してスプロケット(回転部材)91Aが装着されており、クラッチ82はワンウェイクラッチでありスプロケット91Aの内周側に組み込まれている。 That is, in the drive mechanism of this modification, a sprocket (rotating member) 91A is mounted on the hollow shaft 11 via a clutch 82 as a second power interrupting mechanism, and the clutch 82 is a one-way clutch and is included in the sprocket 91A. It is incorporated on the circumferential side.
 このスプロケット91Aと、モータ回転軸61の一端側62に装着されたスプロケット(回転部材)94Aとにはチェーン(無端状部材)92Aが架け回されている。 A chain (endless member) 92A is wound around the sprocket 91A and a sprocket (rotating member) 94A mounted on one end side 62 of the motor rotating shaft 61.
 また、モータ回転軸61の一端側62には、上記スプロケット94Aに加えてスプロケット(回転部材)95Aがさらに装着されており、このスプロケット95Aとオイルポンプ回転軸71に装着されたスプロケット(回転部材)96Aとにはチェーン(無端状部材)93Aが架け回されている。 In addition to the sprocket 94A, a sprocket (rotating member) 95A is further mounted on one end side 62 of the motor rotating shaft 61, and the sprocket (rotating member) mounted on the sprocket 95A and the oil pump rotating shaft 71. A chain (endless member) 93A is wound around 96A.
 つまり、スプロケット95A、チェーン93A、スプロケット96Aよりモータ6とオイルポンプ7との間の動力伝達機構が構成されている。 That is, a power transmission mechanism between the motor 6 and the oil pump 7 is constituted by the sprocket 95A, the chain 93A, and the sprocket 96A.
 そして、スプロケット91A、チェーン92A、スプロケット94A、スプロケット95A、モータ回転軸61、チェーン93A、スプロケット96A及びポンプ回転軸71が本変形例の動力伝達経路301内に配置されている。 Further, the sprocket 91A, the chain 92A, the sprocket 94A, the sprocket 95A, the motor rotating shaft 61, the chain 93A, the sprocket 96A, and the pump rotating shaft 71 are arranged in the power transmission path 301 of this modification.
 さらにいうと、スプロケット91A、チェーン92A及びスプロケット94Aより、入力軸10とモータ6との間の動力伝達機構が構成され、スプロケット91A、チェーン92A、スプロケット94A、スプロケット95A、チェーン93A及びスプロケット96Aより、入力軸10とオイルポンプ7との間の動力伝達機構が構成されている。 More specifically, a power transmission mechanism between the input shaft 10 and the motor 6 is configured by the sprocket 91A, the chain 92A, and the sprocket 94A. From the sprocket 91A, the chain 92A, the sprocket 94A, the sprocket 95A, the chain 93A, and the sprocket 96A, A power transmission mechanism between the input shaft 10 and the oil pump 7 is configured.
 そして、停車アイドルストップ時にモータ6によりオイルポンプ7を駆動する場合は、モータ回転軸61の回転トルクがスプロケット95A、チェーン93A及びスプロケット96Aを介してポンプ回転軸71へと入力され、オイルポンプ7が駆動されるようになっている。 When the oil pump 7 is driven by the motor 6 at the time of idling stop, the rotation torque of the motor rotation shaft 61 is input to the pump rotation shaft 71 via the sprocket 95A, the chain 93A and the sprocket 96A. It is designed to be driven.
 また、コースト走行時にセーリング制御が行われて、駆動輪5からの逆流トルクによってオイルポンプ7を駆動する場合は、駆動輪5の回転トルクが、スプロケット99、チェーン98及びスプロケット97を有する動力伝達機構や、ワンウェイクラッチであるクラッチ83を介してモータ回転軸61に入力されてモータ6が駆動され、モータ回転軸61に入力された回転トルクがスプロケット95A、チェーン93A及びスプロケット96Aを介してポンプ回転軸71に入力されてオイルポンプ7が駆動されるようになっている。 Further, when sailing control is performed during coasting and the oil pump 7 is driven by the backflow torque from the drive wheels 5, the rotational torque of the drive wheels 5 is a power transmission mechanism having the sprocket 99, the chain 98, and the sprocket 97. In addition, the motor 6 is driven by being input to the motor rotating shaft 61 via the clutch 83 which is a one-way clutch, and the rotational torque input to the motor rotating shaft 61 is supplied to the pump rotating shaft via the sprocket 95A, the chain 93A and the sprocket 96A. The oil pump 7 is driven by being inputted to 71.
 このように停車アイドルストップ時にモータ6によりオイルポンプ7を駆動する場合や、コースト走行時のセーリング制御中に駆動輪5の回転トルクによってモータ6やオイルポンプ7を駆動する場合は、モータ回転軸61の回転トルクがスプロケット94A、チェーン92A及びスプロケット91Aの順に伝達されるが、スプロケット91Aの内周側に組み込まれたワンウェイクラッチであるクラッチ82は、モータ6から入力軸10に動力が伝達される場合には解放状態となるので、モータ6からの回転トルクがエンジン側に出力されることはない。 As described above, when the oil pump 7 is driven by the motor 6 at the time of idling stop, or when the motor 6 or the oil pump 7 is driven by the rotational torque of the driving wheel 5 during the sailing control during coasting, the motor rotating shaft 61 is used. Is transmitted in the order of the sprocket 94A, the chain 92A, and the sprocket 91A. The clutch 82, which is a one-way clutch built in the inner periphery of the sprocket 91A, transmits power from the motor 6 to the input shaft 10. Since the motor is in the released state, the rotational torque from the motor 6 is not output to the engine side.
 この他の構成は上記実施形態と同じなので説明を省略する。 Since other configurations are the same as those in the above embodiment, description thereof is omitted.
 本変形例の駆動機構は上述のように構成されているので、上記実施形態と同様に作用効果が得られる。 Since the drive mechanism of the present modification is configured as described above, the same effects as those in the above embodiment can be obtained.
 なお、上記の実施形態及び変形例では、第2動力断続機構としてのクラッチ82及び第3動力断続機構としてのクラッチ83をワンウェイクラッチで構成したが、クラッチ82及びクラッチ83の少なくとも一方を電気信号で断続を制御されるクラッチで構成しても良く、このようなクラッチとしては、例えば、ドグクラッチ、単板型又は多板型の油圧作動のクラッチ、電磁クラッチ、或いは油圧式や電磁式以外のアクチュエータにより断続するクラッチがある。 In the above-described embodiment and modification, the clutch 82 as the second power interrupting mechanism and the clutch 83 as the third power interrupting mechanism are configured as one-way clutches, but at least one of the clutch 82 and the clutch 83 is an electric signal. The clutch may be configured to be intermittently controlled. Examples of such a clutch include a dog clutch, a single plate type or a multi-plate type hydraulically operated clutch, an electromagnetic clutch, or an actuator other than a hydraulic type or an electromagnetic type. There is an intermittent clutch.
 この場合は、クラッチ制御手段200Aは、入力軸回転センサ201の検出結果及び出力軸回転センサ202の検出結果などに応じて車両の走行状態を判断し、この走行状態に応じてクラッチ82及びクラッチ83への油圧の給排ひいてはクラッチ82及びクラッチ83の断続を制御する。 In this case, the clutch control means 200A determines the traveling state of the vehicle according to the detection result of the input shaft rotation sensor 201 and the detection result of the output shaft rotation sensor 202, and the clutch 82 and the clutch 83 are determined according to the traveling state. The supply / discharge of hydraulic pressure to / from the clutch 82 and the clutch 83 and the clutch 83 are controlled.
 つまり、クラッチ制御手段200Aは、入力軸回転センサ201及び出力軸回転センサ203により入力軸10及び出力軸4がそれぞれ所定回転速度以上で回転していることが検出された場合には通常走行中であると判断して、エンジン1でモータ6やオイルポンプ7を駆動できるよう動力伝達経路301に介装されたクラッチ82を接続状態とするとともに駆動輪5側の作動と干渉しないように動力伝達経路302に介装されたクラッチ83を解放状態とする。 That is, the clutch control means 200A is in a normal running state when it is detected by the input shaft rotation sensor 201 and the output shaft rotation sensor 203 that the input shaft 10 and the output shaft 4 are rotating at a predetermined rotational speed or more. The power transmission path is determined so that the clutch 82 interposed in the power transmission path 301 is connected so that the engine 1 can drive the motor 6 and the oil pump 7 by the engine 1 and does not interfere with the operation on the drive wheel 5 side. The clutch 83 interposed in 302 is put into a released state.
 また、上述した通り停車アイドルストップが行われたときにはオイルポンプ7がモータ6により駆動されるようになるが、クラッチ制御手段200Aは、入力軸回転センサ201及び出力軸回転センサ203により入力軸10及び出力軸4が何れも停止状態であることを条件の一つとして停車アイドルストップ中であることを検出すると、クラッチ82及びクラッチ83の解放により動力伝達経路301及び動力伝達経路302を切断状態としてモータ6をエンジン1及び駆動輪5から動力的に切り離すので、モータ6により駆動輪5を駆動して車両を走行させてしまうことが防止される。 Further, as described above, when the stop idling stop is performed, the oil pump 7 is driven by the motor 6, but the clutch control means 200 </ b> A is controlled by the input shaft rotation sensor 201 and the output shaft rotation sensor 203. When it is detected that the output shaft 4 is in a stopped state under the condition that both of the output shafts 4 are in a stopped state, the power transmission path 301 and the power transmission path 302 are disconnected by releasing the clutch 82 and the clutch 83, and the motor. Since the motor 6 is separated from the engine 1 and the drive wheels 5, the drive wheels 5 are not driven by the motor 6 and the vehicle is prevented from traveling.
 さらに、クラッチ制御手段200Aは、アクセルオフ操作によりコースト走行となってセーリング制御が行われた場合には、クラッチ83を接続状態として駆動輪5からの逆流トルクによりオイルポンプ7を駆動するようにし、クラッチ82を解放状態として動力伝達経路301を切断して駆動輪5とエンジン1とを切り離して、エンジン1が動力負荷とならないようにしている。 Furthermore, the clutch control means 200A drives the oil pump 7 with the backflow torque from the drive wheels 5 with the clutch 83 in the connected state when the coasting is performed by the accelerator-off operation and the sailing control is performed. The clutch 82 is disengaged and the power transmission path 301 is disconnected to disconnect the driving wheel 5 and the engine 1 so that the engine 1 does not become a power load.
 〔2.第2実施形態〕
 本実施形態及びその変形例の駆動機構の構成を図3(a),(b)及び図4により説明するが、上記の実施形態及びその変形例と同一の構成については同じ符号を付して説明を省略する。
[2. Second Embodiment]
The configuration of the drive mechanism of this embodiment and its modification will be described with reference to FIGS. 3A, 3B, and 4. The same reference numerals are given to the same configurations as those of the above-described embodiment and its modification. Description is omitted.
 〔2-1.駆動機構の概略構成〕
 本実施形態の駆動機構は動力伝達経路301A及び動力伝達経路302Aの構成が上記実施形態のものと異なっており、先ず、本実施形態の駆動機構の概略構成を図3(a)により説明する。
[2-1. (Schematic configuration of drive mechanism)
The drive mechanism of the present embodiment is different in configuration of the power transmission path 301A and the power transmission path 302A from the above-described embodiment. First, a schematic configuration of the drive mechanism of the present embodiment will be described with reference to FIG.
 図3(a)に示すように、本実施形態では、エンジン1とオイルポンプ7との間に動力伝達経路301Aが形成されるとともに駆動論5とモータ6及びオイルポンプ7との間に動力伝達経路302Aが形成されており、動力伝達経路301Aには第2断続機構としてのクラッチ82Aが介装され、動力伝達経路302Aには第3断続機構としてのクラッチ83(変形例ではクラッチ83A)が介装されている。 As shown in FIG. 3A, in this embodiment, a power transmission path 301 </ b> A is formed between the engine 1 and the oil pump 7, and power is transmitted between the drive theory 5, the motor 6, and the oil pump 7. A path 302A is formed, and a clutch 82A as a second intermittent mechanism is interposed in the power transmission path 301A, and a clutch 83 (a clutch 83A in the modified example) as a third intermittent mechanism is interposed in the power transmission path 302A. It is disguised.
 詳しくは、動力伝達経路302Aは、駆動輪5からの回転トルクがバリエータ32を介してモータ6及びオイルポンプ7に伝達されるように形成されている。 Specifically, the power transmission path 302 </ b> A is formed so that the rotational torque from the drive wheel 5 is transmitted to the motor 6 and the oil pump 7 via the variator 32.
 さらにいうと、クラッチ82Aは、入力軸10の動力を出力軸4へ伝達する動力伝達経路303外に配置され(動力伝達経路303上に配置されていない)、クラッチ83は、入力軸10の動力を出力軸4へ伝達する動力伝達経路303外に配置されている(動力伝達経路303上に配置されていない)。 Furthermore, the clutch 82A is disposed outside the power transmission path 303 that transmits the power of the input shaft 10 to the output shaft 4 (not disposed on the power transmission path 303), and the clutch 83 is the power of the input shaft 10. Is disposed outside the power transmission path 303 that transmits the power to the output shaft 4 (not disposed on the power transmission path 303).
 第2動力断続機構としてのクラッチ82Aは、第1メンバと第2メンバとを有し、これらの第1メンバと第2メンバとの間の動力を断続可能な機構である。 The clutch 82A as a second power interrupting mechanism has a first member and a second member, and is a mechanism capable of interrupting power between the first member and the second member.
 第3動力断続機構としてのクラッチ83(後述の変形例では83A)は、第1メンバと第2メンバとを有し、これらの第1メンバと第2メンバとの間の動力を断続可能な機構である。 A clutch 83 (83A in a modified example to be described later) serving as a third power interrupting mechanism has a first member and a second member, and is a mechanism capable of interrupting power between the first member and the second member. It is.
 〔2-2.駆動機構の構成及び作用効果〕
 本実施形態の駆動機構の具体的な構成を図3(b)により説明すると、入力軸10には、ワンウェイクラッチであるクラッチ82Aを介してスプロケット(回転部材)91Bが接続されており、ここでは、スプロケット91Bがワンウェイクラッチであるクラッチ82Aの内輪に連結されている。
[2-2. (Configuration and effect of drive mechanism)
A specific configuration of the drive mechanism of the present embodiment will be described with reference to FIG. 3B. A sprocket (rotating member) 91B is connected to the input shaft 10 via a clutch 82A that is a one-way clutch. The sprocket 91B is connected to the inner ring of the clutch 82A that is a one-way clutch.
 オイルポンプ7の両側に突出するポンプ回転軸71の一端側72にはスプロケット(回転部材)93Bが接続されており、スプロケット91Bとスプロケット93Bとにはチェーン(無端状部材)92Bが架け回されている。 A sprocket (rotating member) 93B is connected to one end side 72 of the pump rotating shaft 71 protruding on both sides of the oil pump 7, and a chain (endless member) 92B is wound around the sprocket 91B and the sprocket 93B. Yes.
 これらのスプロケット91B、チェーン92B及びスプロケット93Bからなる動力伝達機構が上記動力伝達経路301A内に配置されており、エンジン1からの回転トルクが第1動力断続機構81を介さず且つクラッチ82Aを介して動力伝達経路301A経由でオイルポンプ7に伝達可能となってエンジン1の回転(すなわち入力軸10の回転により)オイルポンプ7を駆動可能になっている。 A power transmission mechanism including the sprocket 91B, the chain 92B, and the sprocket 93B is disposed in the power transmission path 301A, and the rotational torque from the engine 1 does not pass through the first power interrupting mechanism 81 and through the clutch 82A. Transmission to the oil pump 7 is possible via the power transmission path 301A, and the oil pump 7 can be driven by rotation of the engine 1 (that is, by rotation of the input shaft 10).
 また、ポンプ回転軸71の他端側73にワンウェイクラッチであるクラッチ83を介してスプロケット97Bの回転軸が接続されている。 Further, the rotary shaft of the sprocket 97B is connected to the other end side 73 of the pump rotary shaft 71 via a clutch 83 which is a one-way clutch.
 プライマリプーリ32bの回転軸32aにはスプロケット99Bが接続されており、スプロケット97Bとスプロケット99Bとにはチェーン(無端状部材)98Bが架け回されている。 A sprocket 99B is connected to the rotating shaft 32a of the primary pulley 32b, and a chain (endless member) 98B is wound around the sprocket 97B and the sprocket 99B.
 これにより、駆動輪5から出力軸4に逆流する回転トルクが第1動力断続機構81を介さず且つスプロケット99B、チェーン98B及びスプロケット97Bからなる動力伝達機構やワンウェイクラッチであるクラッチ83を介してオイルポンプ7に伝達可能となっており、オイルポンプ7を出力軸4により駆動可能となっている。 As a result, the rotational torque flowing back from the drive wheel 5 to the output shaft 4 does not pass through the first power interrupting mechanism 81, and the oil is transmitted via the power transmission mechanism including the sprocket 99B, the chain 98B, and the sprocket 97B and the clutch 83 that is a one-way clutch. The oil pump 7 can be driven by the output shaft 4.
 また、モータ6とオイルポンプ7との間には、モータ回転軸61に取り付けられたスプロケット(回転部材)61B、ポンプ回転軸71の他端側73に取り付けられたスプロケット(回転部材)94B及びこれらのスプロケット61Bとスプロケット94Bとに架け回されたチェーン(無端状部材)95Bが設けられている。 Further, between the motor 6 and the oil pump 7, a sprocket (rotating member) 61 </ b> B attached to the motor rotating shaft 61, a sprocket (rotating member) 94 </ b> B attached to the other end side 73 of the pump rotating shaft 71, and these A chain (endless member) 95B is provided around the sprocket 61B and the sprocket 94B.
 つまり、スプロケット61B、チェーン95B及びスプロケット94Bからモータ6とオイルポンプ7との間の動力伝達機構が構成されている。 That is, the power transmission mechanism between the motor 6 and the oil pump 7 is constituted by the sprocket 61B, the chain 95B, and the sprocket 94B.
 これにより、モータ6からの回転トルクをオイルポンプ7に伝達させてオイルポンプ7をモータ駆動できるとともに、エンジン1や駆動輪5からオイルポンプ7に入力した回転トルクをモータ6に伝達してモータ6による発電が可能となっている。 Thus, the rotational torque from the motor 6 can be transmitted to the oil pump 7 to drive the oil pump 7, and the rotational torque input from the engine 1 or the drive wheel 5 to the oil pump 7 can be transmitted to the motor 6 to transmit the motor 6. Power generation is possible.
 そして、スプロケット99B、チェーン98B、スプロケット97B、ポンプ回転軸71の他端側73、スプロケット94B、チェーン95B、スプロケット61B及びモータ回転軸61が上記動力伝達経路302A内に配置されている。 The sprocket 99B, the chain 98B, the sprocket 97B, the other end 73 of the pump rotating shaft 71, the sprocket 94B, the chain 95B, the sprocket 61B, and the motor rotating shaft 61 are arranged in the power transmission path 302A.
 なお、クラッチ82Aの設置個所は、入力軸10とオイルポンプ7やモータ6との間の動力伝達経路内であればどこでも良く、例えばクラッチ82Aを図3(b)に二点鎖線で示す位置に配置しても良い。 The clutch 82A may be installed anywhere in the power transmission path between the input shaft 10 and the oil pump 7 or the motor 6. For example, the clutch 82A is located at a position indicated by a two-dot chain line in FIG. It may be arranged.
 また、クラッチ83の設置個所は、出力軸4とオイルポンプ7やモータ6との間の動力伝達経路内であればどこでも良く、例えばクラッチ83を図3(b)に二点鎖線で示す位置に配置しても良い。 The installation location of the clutch 83 may be anywhere in the power transmission path between the output shaft 4 and the oil pump 7 or the motor 6. For example, the clutch 83 is located at a position indicated by a two-dot chain line in FIG. It may be arranged.
 この他の構成は上記実施形態と同じなので説明を省略する。 Since other configurations are the same as those in the above embodiment, description thereof is omitted.
 本実施形態の駆動機構は上述のように構成されているので、上記第1実施形態と同様の作用効果が得られる。 Since the drive mechanism of the present embodiment is configured as described above, the same effects as those of the first embodiment can be obtained.
 〔2-3.変形例〕
 次に、本実施形態の駆動機構の変形例について説明する。
[2-3. (Modification)
Next, a modified example of the drive mechanism of this embodiment will be described.
 本実施形態の駆動機構の変形例の概略構成は前述の実施形態と同様に図3(a)に示す通りであるので説明を省略する。 Since the schematic configuration of a modified example of the drive mechanism of the present embodiment is as shown in FIG. 3A as in the above-described embodiment, description thereof is omitted.
 本変形例の駆動機構の具体的な構成を図4を参照して説明するが、上記実施形態と同一の構成については同じ符号を付して説明を省略する。 The specific configuration of the drive mechanism of this modification will be described with reference to FIG. 4, but the same reference numerals are given to the same configurations as those in the above-described embodiment, and the description will be omitted.
 図4に示すように、本変形例の駆動機構は、上記第2実施形態に対し、出力軸4とモータ6及びオイルポンプ7との間の動力伝達経路302Aの構成が相違する。 As shown in FIG. 4, the drive mechanism of this modification is different from the second embodiment in the configuration of a power transmission path 302A between the output shaft 4, the motor 6, and the oil pump 7.
 つまり、ポンプ回転軸71の他端側73にスプロケット(回転部材)97Cが装着されている。 That is, a sprocket (rotating member) 97C is attached to the other end 73 of the pump rotating shaft 71.
 プライマリプーリ32bの回転軸32aにスプロケット(回転部材)96Cが、このスプロケット96Cの内周側に組み込まれているワンウェイクラッチであるクラッチ83Aを介して装着されており、スプロケット96C及びスプロケット97Cにはチェーン(無端状部材)98Cが架け回されている。 A sprocket (rotating member) 96C is mounted on the rotary shaft 32a of the primary pulley 32b via a clutch 83A that is a one-way clutch incorporated on the inner peripheral side of the sprocket 96C, and a chain is attached to the sprocket 96C and the sprocket 97C. (Endless member) 98C is wound around.
 これにより駆動輪5から出力軸4に逆流する回転トルクが第1動力断続機構81を介さず且つバリエータ32やクラッチ83Aを介してオイルポンプ7に伝達可能となっており、出力軸4によりオイルポンプ7を駆動可能となっている。 Thus, the rotational torque flowing back from the drive wheel 5 to the output shaft 4 can be transmitted to the oil pump 7 not via the first power interrupting mechanism 81 but via the variator 32 or the clutch 83A. 7 can be driven.
 また、モータ回転軸61にスプロケット(回転部材)61Cが装着されている。 Also, a sprocket (rotating member) 61C is mounted on the motor rotating shaft 61.
 このスプロケット61Cと、上述した駆動輪5からオイルポンプ7への伝達経路の一部を形成する上記スプロケット96Cとにはチェーン(無端状部材)95Cが架け回されている。 A chain (endless member) 95C is wound around the sprocket 61C and the sprocket 96C that forms a part of the transmission path from the drive wheel 5 to the oil pump 7 described above.
 すなわち、モータ6とオイルポンプ7との間の動力伝達経路が、上記の駆動輪5とオイルポンプ7との間の動力伝達経路と一部重複して形成されている。 That is, the power transmission path between the motor 6 and the oil pump 7 is formed so as to partially overlap the power transmission path between the drive wheel 5 and the oil pump 7.
 これにより、モータ6からの回転トルクをオイルポンプ7に伝達させてオイルポンプ7をモータ駆動することができ、エンジン1からオイルポンプ7に入力した回転トルクをモータ6に伝達してエンジン駆動によってモータ6により発電することが可能となり、さらには、駆動輪5からスプロケット96Cに入力された逆流トルクをモータ6に伝達して逆流トルクによってモータ6により発電することが可能となっている。 As a result, the rotational torque from the motor 6 can be transmitted to the oil pump 7 to drive the oil pump 7, and the rotational torque input from the engine 1 to the oil pump 7 can be transmitted to the motor 6 to drive the motor by driving the engine. 6 can generate electric power, and further, the backflow torque input from the drive wheel 5 to the sprocket 96C can be transmitted to the motor 6 so that the motor 6 can generate electric power using the backflow torque.
 そして、スプロケット96C、チェーン98C、スプロケット97C、ポンプ回転軸71の他端側73、チェーン95C、スプロケット61C、モータ回転軸61からなる動力伝達機構が上記動力伝達経路302A内に配置されている。 A power transmission mechanism including a sprocket 96C, a chain 98C, a sprocket 97C, the other end 73 of the pump rotation shaft 71, a chain 95C, a sprocket 61C, and a motor rotation shaft 61 is disposed in the power transmission path 302A.
 この他の構成は上記各実施形態と同じなので説明を省略する。 Other configurations are the same as those in the above-described embodiments, and thus description thereof is omitted.
 本実施形態の駆動機構は上述のように構成されているので、上記各実施形態と同様に作用効果が得られる。 Since the drive mechanism of the present embodiment is configured as described above, the same effects as those of the above embodiments can be obtained.
 〔3.第3実施形態〕
 本実施形態の駆動機構の構成を図5(a),(b)により説明するが、上記の各実施形態及びその変形例と同一の構成については同じ符号を付して説明は省略する。
[3. Third Embodiment]
The configuration of the drive mechanism of the present embodiment will be described with reference to FIGS. 5A and 5B, but the same reference numerals are given to the same configurations as those of the above-described embodiments and modifications thereof, and description thereof will be omitted.
 〔3-1.駆動機構の概略構成〕
 本実施形態の駆動機構は動力伝達経路301B及び動力伝達経路302Bの構成が上記各実施形態のものと異なっており、先ず、本実施形態の駆動機構の概略構成を図5(a)により説明する。
[3-1. (Schematic configuration of drive mechanism)
The drive mechanism of the present embodiment is different in configuration of the power transmission path 301B and the power transmission path 302B from those of the above-described embodiments. First, a schematic configuration of the drive mechanism of the present embodiment will be described with reference to FIG. .
  図5(a)に示すように、本実施形態では、エンジン1とモータ6及びオイルポンプ7との間に動力伝達経路301Bが形成されるとともに駆動論5とオイルポンプ7との間に動力伝達経路302Bが形成されており、動力伝達経路301B内には第2断続機構としてのクラッチ82が介装され、動力伝達経路302B内には第3断続機構としてのクラッチ83が介装されている。 As shown in FIG. 5A, in this embodiment, a power transmission path 301 </ b> B is formed between the engine 1, the motor 6, and the oil pump 7, and power transmission is performed between the drive theory 5 and the oil pump 7. A path 302B is formed, and a clutch 82 as a second intermittent mechanism is interposed in the power transmission path 301B, and a clutch 83 as a third intermittent mechanism is interposed in the power transmission path 302B.
 詳しくは、動力伝達経路302Bは、駆動輪5からの回転トルクがバリエータ32を介してオイルポンプ7に伝達されるように形成されている。 Specifically, the power transmission path 302B is formed so that the rotational torque from the drive wheel 5 is transmitted to the oil pump 7 via the variator 32.
 〔3-2.駆動機構の構成及び作用効果〕
 本実施形態の駆動機構の具体的な構成を図5(b)により説明すると、入力軸10には、ワンウェイクラッチ(第2動力断続機構)82を介してスプロケット(回転部材)91Dが装着されており、ワンウェイクラッチ82はスプロケット91Dの内周側に組み込まれている。
[3-2. (Configuration and effect of drive mechanism)
A specific configuration of the drive mechanism of the present embodiment will be described with reference to FIG. 5B. A sprocket (rotating member) 91D is mounted on the input shaft 10 via a one-way clutch (second power interrupting mechanism) 82. The one-way clutch 82 is incorporated on the inner peripheral side of the sprocket 91D.
 オイルポンプ7の両側に突出するポンプ回転軸71の一端側72にスプロケット(回転部材)93Dが接続されており、スプロケット91Dとスプロケット93Dとにチェーン(無端状部材)92Dが架け回されている。 A sprocket (rotating member) 93D is connected to one end side 72 of a pump rotating shaft 71 projecting on both sides of the oil pump 7, and a chain (endless member) 92D is wound around the sprocket 91D and the sprocket 93D.
 また、ポンプ回転軸71の一端側72にはさらにスプロケット(回転部材)94Dが装着されている。モータ回転軸61にスプロケット(回転部材)61Dが装着されており、スプロケット61D及びスプロケット94Dにはチェーン(無端状部材)95Dが架け回されている。 Further, a sprocket (rotating member) 94D is further attached to one end side 72 of the pump rotating shaft 71. A sprocket (rotating member) 61D is mounted on the motor rotating shaft 61, and a chain (endless member) 95D is wound around the sprocket 61D and the sprocket 94D.
 そして、スプロケット91D、チェーン92D、スプロケット93D、ポンプ回転軸71の一端側72、スプロケット94D、チェーン95D、スプロケット61D及びモータ回転軸61からなる動力伝達機構が上記動力伝達経路301B内に配置されており、エンジン1からの回転トルクが第1動力断続機構81を介さず且つワンウェイクラッチであるクラッチ82を介して動力伝達経路301B経由でモータ6及びオイルポンプ7に伝達可能であるとともにモータ6からの回転トルクがオイルポンプ7に伝達可能となっている。これにより、モータ6及びオイルポンプ7をエンジン駆動可能であるとともにオイルポンプ7をモータ6の回転により駆動可能となっている。 A power transmission mechanism including the sprocket 91D, the chain 92D, the sprocket 93D, the one end side 72 of the pump rotating shaft 71, the sprocket 94D, the chain 95D, the sprocket 61D, and the motor rotating shaft 61 is disposed in the power transmission path 301B. Rotational torque from the engine 1 can be transmitted to the motor 6 and the oil pump 7 via the power transmission path 301B via the clutch 82, which is a one-way clutch, without passing through the first power interrupting mechanism 81 and the rotation from the motor 6. Torque can be transmitted to the oil pump 7. Thus, the motor 6 and the oil pump 7 can be driven by the engine, and the oil pump 7 can be driven by the rotation of the motor 6.
 また、ポンプ回転軸71の他端側73にはワンウェイクラッチであって第3動力断続機構としてのクラッチ83を介してスプロケット97Dの回転軸96Dが接続され、このスプロケット97Dと、プライマリプーリ32bの回転軸32aに装着されたスプロケット99Dとにはチェーン(無端状部材)98Dが架け回されている。 The other end 73 of the pump rotary shaft 71 is connected to a rotary shaft 96D of a sprocket 97D, which is a one-way clutch and a clutch 83 as a third power interrupting mechanism, and the sprocket 97D and the primary pulley 32b are rotated. A chain (endless member) 98D is looped around the sprocket 99D attached to the shaft 32a.
 これらのスプロケット99D、チェーン98D、スプロケット97D及びポンプ回転軸71の他端側73からなる動力伝達機構が上記動力伝達経路302B内に配置されており、駆動輪5(出力軸4)からの逆流トルクが第1動力断続機構81を介さず且つワンウェイクラッチであるクラッチ83を介して動力伝達経路302B経由でオイルポンプ7に伝達可能となって出力軸4の回転によりオイルポンプ7を駆動可能となっている。 A power transmission mechanism composed of the sprocket 99D, the chain 98D, the sprocket 97D, and the other end side 73 of the pump rotating shaft 71 is disposed in the power transmission path 302B, and the reverse flow torque from the drive wheel 5 (output shaft 4). Can be transmitted to the oil pump 7 via the power transmission path 302B via the clutch 83 which is a one-way clutch without passing through the first power interrupting mechanism 81, and the oil pump 7 can be driven by the rotation of the output shaft 4. Yes.
 なお、クラッチ83は、モータ6と出力軸4との間に介装されていればよく、図5(b)において二点鎖線で示すように、スプロケット99Dとバリエータ32との間に設置してもよい。 The clutch 83 only needs to be interposed between the motor 6 and the output shaft 4, and is installed between the sprocket 99D and the variator 32 as shown by a two-dot chain line in FIG. Also good.
 この他の構成は上記実施形態と同じなので説明を省略する。 Since other configurations are the same as those in the above embodiment, description thereof is omitted.
 本実施形態の駆動機構は上述のように構成されているので、上記各実施形態と同様の作用効果が得られる。 Since the drive mechanism of the present embodiment is configured as described above, the same effects as those of the above embodiments can be obtained.
 〔4.第4実施形態〕
 本実施形態及びその変形例の駆動機構の構成を図6(a),(b)及び図7により説明するが、上記の各実施形態及びその変形例と同一の構成については同じ符号を付して説明を省略する。
 〔4-1.駆動機構の概略構成〕
 本実施形態の駆動機構は動力伝達経路301C及び動力伝達経路302Cの構成が上記各実施形態のものと異なっており、先ず、本実施形態の駆動機構の概略構成を図6(a)により説明する。
[4. Fourth Embodiment]
The configuration of the drive mechanism of this embodiment and its modification will be described with reference to FIGS. 6A, 6B, and 7. The same reference numerals are given to the same configurations as those of the above-described embodiments and their modifications. The description is omitted.
[4-1. (Schematic configuration of drive mechanism)
The drive mechanism of the present embodiment is different in configuration of the power transmission path 301C and the power transmission path 302C from those of the above-described embodiments. First, a schematic configuration of the drive mechanism of the present embodiment will be described with reference to FIG. .
 図6(a)に示すように、本実施形態では、エンジン1とモータ6との間に動力伝達経路301Cが形成されるとともに駆動論5とモータ6及びオイルポンプ7との間に動力伝達経路302Cが形成されており、動力伝達経路301C内には第2動力断続機構としてのクラッチ82Aが介装され、動力伝達経路302C内には第3動力断続機構としてのクラッチ83が介装されている。 As shown in FIG. 6A, in this embodiment, a power transmission path 301 </ b> C is formed between the engine 1 and the motor 6, and a power transmission path between the drive theory 5, the motor 6, and the oil pump 7. 302C is formed, and a clutch 82A as a second power interrupting mechanism is interposed in the power transmission path 301C, and a clutch 83 as a third power interrupting mechanism is interposed in the power transmission path 302C. .
 詳しくは、動力伝達経路302Cは、駆動輪5からの回転トルクがバリエータ32を介してモータ6及びオイルポンプ7に伝達されるように形成されている。 Specifically, the power transmission path 302 </ b> C is formed so that the rotational torque from the drive wheel 5 is transmitted to the motor 6 and the oil pump 7 via the variator 32.
 さらにいうと、クラッチ82Aは、入力軸10の動力を出力軸4へ伝達する動力伝達経路303外に配置され(動力伝達経路303上に配置されていない)、クラッチ83は、入力軸10の動力を出力軸4へ伝達する動力伝達経路303外に配置されている(動力伝達経路303上に配置されていない)。 Furthermore, the clutch 82A is disposed outside the power transmission path 303 that transmits the power of the input shaft 10 to the output shaft 4 (not disposed on the power transmission path 303), and the clutch 83 is the power of the input shaft 10. Is disposed outside the power transmission path 303 that transmits the power to the output shaft 4 (not disposed on the power transmission path 303).
 〔4-2.駆動機構の構成及び作用効果〕
 本実施形態の駆動機構の具体的な構成を図6(b)により説明すると、入力軸10には、ワンウェイクラッチであるクラッチ82Aを介してスプロケット(回転部材)91Eが装着されている。
[4-2. (Configuration and effect of drive mechanism)
A specific configuration of the drive mechanism of the present embodiment will be described with reference to FIG. 6B. A sprocket (rotating member) 91E is mounted on the input shaft 10 via a clutch 82A that is a one-way clutch.
 モータ6の両側に突出するモータ回転軸61の一端側62にスプロケット(回転部材)93Eが装着されており、スプロケット91Eとスプロケット93Eとにチェーン(無端状部材)92Eが架け回されている。 A sprocket (rotating member) 93E is attached to one end side 62 of the motor rotating shaft 61 protruding on both sides of the motor 6, and a chain (endless member) 92E is wound around the sprocket 91E and the sprocket 93E.
 そして、スプロケット91E、チェーン92E、スプロケット93E、モータ回転軸61からなる動力伝達機構が上記動力伝達経路301Cに配置されており、エンジン1からの回転トルクが第1動力断続機構81を介さず且つクラッチ82Aを介して動力伝達経路301C経由でモータ6に伝達可能となってモータ6をエンジン駆動可能となっている。 A power transmission mechanism including a sprocket 91E, a chain 92E, a sprocket 93E, and a motor rotating shaft 61 is disposed in the power transmission path 301C, and the rotational torque from the engine 1 is not transmitted through the first power interrupting mechanism 81 and the clutch. Transmission to the motor 6 via the power transmission path 301C via 82A is possible, and the motor 6 can be driven by the engine.
 また、モータ回転軸61の他端側63にはスプロケット63Eが装着されると共にワンウェイクラッチであるクラッチ83を介してスプロケット94Eの回転軸が接続されている。 Further, a sprocket 63E is mounted on the other end side 63 of the motor rotating shaft 61, and a rotating shaft of the sprocket 94E is connected via a clutch 83 which is a one-way clutch.
 プライマリプーリ32bの回転軸32aにはスプロケット96Eが装着されており、スプロケット94E及びスプロケット96Eにチェーン(無端状部材)95Eが架け回されている。 A sprocket 96E is mounted on the rotary shaft 32a of the primary pulley 32b, and a chain (endless member) 95E is wound around the sprocket 94E and the sprocket 96E.
 これにより、駆動輪5(すなわち出力軸4)からの逆流トルクが第1動力断続機構81を介さず且つスプロケット96E、チェーン95E及びスプロケット94Eからなる動力伝達機構やクラッチ83を介してモータ6に伝達可能となっており、モータ6を出力軸4により駆動可能となっている。 Thereby, the backflow torque from the drive wheel 5 (that is, the output shaft 4) is transmitted to the motor 6 through the power transmission mechanism and the clutch 83 including the sprocket 96E, the chain 95E, and the sprocket 94E without passing through the first power interrupting mechanism 81. The motor 6 can be driven by the output shaft 4.
 また、モータ回転軸61の他端側63にはスプロケット(回転部材)63Eが装着されている。 Further, a sprocket (rotating member) 63E is attached to the other end 63 of the motor rotating shaft 61.
 そして、オイルポンプ回転軸71にはスプロケット(回転部材)71Eが装着されており、スプロケット63Eとスプロケット71Eとにはチェーン(無端状部材)97Eが架け回されている。 A sprocket (rotating member) 71E is attached to the oil pump rotating shaft 71, and a chain (endless member) 97E is wound around the sprocket 63E and the sprocket 71E.
 これにより、モータ6からの回転トルクを、スプロケット63Eやチェーン(無端状部材)97Eやスプロケット71Eからなる動力伝達機構を介してオイルポンプ7に伝達させてオイルポンプ7をモータ駆動できるとともに、エンジン1からモータ6に入力した回転トルクをオイルポンプ7に伝達してオイルポンプ7をエンジン駆動したり、駆動輪5からスプロケット63Eに逆流したトルクをオイルポンプ7にも伝達してオイルポンプ7を駆動できるようになっている。 Thus, the rotational torque from the motor 6 can be transmitted to the oil pump 7 via the power transmission mechanism including the sprocket 63E, the chain (endless member) 97E, and the sprocket 71E, and the oil pump 7 can be driven by the motor. Rotational torque input from the motor 6 to the oil pump 7 can be transmitted to the oil pump 7 to drive the engine, or torque reversely flowing from the drive wheel 5 to the sprocket 63E can also be transmitted to the oil pump 7 to drive the oil pump 7. It is like that.
 そして、スプロケット96E、チェーン95E、スプロケット94E、スプロケット63E、モータ回転軸61、チェーン97E、スプロケット71E、ポンプ回転軸71が上記動力伝達経路302C内に配置されている。 The sprocket 96E, the chain 95E, the sprocket 94E, the sprocket 63E, the motor rotating shaft 61, the chain 97E, the sprocket 71E, and the pump rotating shaft 71 are arranged in the power transmission path 302C.
 なお、クラッチ83は、モータ6と出力軸4との間に介装されていればよく、図6(b)において二点鎖線で示すように、スプロケット96Eとバリエータ32との間に設置してもよい。 The clutch 83 only needs to be interposed between the motor 6 and the output shaft 4, and is installed between the sprocket 96E and the variator 32 as shown by a two-dot chain line in FIG. Also good.
 この他の構成は上記各実施形態と同じなので説明を省略する。 Other configurations are the same as those in the above-described embodiments, and thus description thereof is omitted.
 本実施形態の駆動機構は上述のように構成されているので、上記各実施形態と同様に作用効果が得られる。 Since the drive mechanism of the present embodiment is configured as described above, the same effects as those of the above embodiments can be obtained.
 〔4-3.変形例〕
 次に、本実施形態の駆動機構の変形例について説明する。
[4-3. (Modification)
Next, a modified example of the drive mechanism of the present embodiment will be described.
 本実施形態の駆動機構の変形例の概略構成は前述の実施形態と同様に図6(a)に示す通りであるので説明を省略する。 Schematic configuration of a modified example of the drive mechanism of the present embodiment is as shown in FIG. 6A as in the above-described embodiment, and thus description thereof is omitted.
 本変形例の駆動機構の具体的な構成を図7を参照して説明する。 A specific configuration of the drive mechanism of this modification will be described with reference to FIG.
 図7に示すように、本変形例の駆動機構は、上記第4実施形態に対し、出力軸4とモータ6及びオイルポンプ7との間の動力伝達経路302Cの構成が相違する。 As shown in FIG. 7, the drive mechanism of the present modification is different from the fourth embodiment in the configuration of the power transmission path 302C between the output shaft 4, the motor 6, and the oil pump 7.
 具体的に説明すると、オイルポンプ回転軸71には、スプロケット71Eが装着されると共にワンウェイクラッチであるクラッチ83を介してスプロケット94Fの回転軸が接続されている。 More specifically, a sprocket 71E is attached to the oil pump rotating shaft 71, and a rotating shaft of a sprocket 94F is connected via a clutch 83 which is a one-way clutch.
 また、プライマリプーリ32bの回転軸32aにスプロケット96Fが装着されており、スプロケット94Fとスプロケット96Fとにチェーン(無端状部材)95Fが架け回されている。 Further, a sprocket 96F is mounted on the rotation shaft 32a of the primary pulley 32b, and a chain (endless member) 95F is wound around the sprocket 94F and the sprocket 96F.
 これにより、駆動輪5(出力軸4)からの逆流トルクが第1動力断続機構81を介さず且つスプロケット96F、チェーン95F及びスプロケット94Fからなる動力伝達機構やクラッチ83を介してオイルポンプ7に伝達可能となっており、オイルポンプ7を出力軸4の回転により駆動可能となっている。 Thus, the backflow torque from the drive wheel 5 (output shaft 4) is transmitted to the oil pump 7 via the power transmission mechanism and the clutch 83 including the sprocket 96F, the chain 95F, and the sprocket 94F without passing through the first power interrupting mechanism 81. The oil pump 7 can be driven by the rotation of the output shaft 4.
 また、モータ回転軸61の他端側63にスプロケット(回転部材)63Eが装着されている。 Also, a sprocket (rotating member) 63E is attached to the other end 63 of the motor rotating shaft 61.
 そして、オイルポンプ回転軸71にはスプロケット(回転部材)71Eが装着されており、スプロケット63Eとスプロケット71Eにチェーン(無端状部材)97Eが架け回されており、これらのスプロケット71E、チェーン97E及びスプロケット63Eからモータ6とオイルポンプ7との間の動力伝達機構が構成されている。 A sprocket (rotating member) 71E is mounted on the oil pump rotating shaft 71, and a chain (endless member) 97E is wound around the sprocket 63E and the sprocket 71E. The sprocket 71E, the chain 97E, and the sprocket A power transmission mechanism between the motor 6 and the oil pump 7 is configured from 63E.
 これにより、モータ6の出力又はエンジン1から動力伝達経路301Cを経由してモータ6に入力されたエンジン出力をオイルポンプ7に伝達させてオイルポンプ7をモータ駆動又はエンジン駆動できるとともに、駆動輪5からオイルポンプ7に入力する回転トルクをモータ6にも伝達してモータ6を駆動輪5からの逆流トルクによって駆動して発電させることが可能となっている。 As a result, the output of the motor 6 or the engine output input from the engine 1 to the motor 6 via the power transmission path 301C can be transmitted to the oil pump 7 to drive the oil pump 7 or drive the engine. Thus, the rotational torque input to the oil pump 7 can also be transmitted to the motor 6 to drive the motor 6 with the backflow torque from the drive wheels 5 to generate electric power.
 なお、ワンウェイクラッチであるクラッチ83は、モータ6と出力軸4との間の動力伝達経路内に介装されていればよく、図7において二点鎖線で示すように、スプロケット96Fバリエータ32との間に設置してもよい。 The clutch 83, which is a one-way clutch, only needs to be interposed in the power transmission path between the motor 6 and the output shaft 4. As shown by a two-dot chain line in FIG. 7, the clutch 83 is connected to the sprocket 96F variator 32. You may install between.
 この他の構成は上記各実施形態と同じなので説明を省略する。 Other configurations are the same as those in the above-described embodiments, and thus description thereof is omitted.
 本変形例の駆動機構は上述のように構成されているので、上記各実施形態及びそれらの変形例と同様に作用効果が得られる。 Since the drive mechanism of the present modification is configured as described above, the operational effects can be obtained in the same manner as in the above embodiments and modifications thereof.
〔5.その他〕
 以上本発明の実施形態を説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で上記の実施形態を変更したり上記の実施形態を部分的に適用したりして実施することができる。
[5. Others]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and the above-described embodiments may be changed or the above-described embodiments may be partially changed without departing from the spirit of the present invention. Or can be implemented.
 例えば、上記各実施形態では、変速比調整機構としてのバリエータがベルト式無段変速機構のものを説明したが、バリエータは、ベルト式のものに代えてチェーン式のものなど他の無段変速機構を用いてもよい。 For example, in each of the above embodiments, the variator as the gear ratio adjusting mechanism has been described as a belt type continuously variable transmission mechanism. However, the variator is not limited to the belt type, but other continuously variable transmission mechanisms such as a chain type. May be used.
 さらに、変速比調整機構は、無段変速機構に限定されず有段変速機構を用いても良く、変速比調整機構に有段変速機構を用いる場合は、第1動力断接機構が有段変速機構内に設けられていても良く、第1動力断接機構が有段変速機構外に設けられていても良い。 Further, the gear ratio adjusting mechanism is not limited to the continuously variable transmission mechanism, and a stepped transmission mechanism may be used. When the stepped transmission mechanism is used as the gear ratio adjusting mechanism, the first power connection / disconnection mechanism is a stepped transmission. The first power connection / disconnection mechanism may be provided outside the stepped transmission mechanism.
 また、第2動力断続機構としてのクラッチ82は、モータ6又はオイルポンプ7と入力軸10との間であれば上記各実施形態の配置に限定されない。 Further, the clutch 82 as the second power interrupting mechanism is not limited to the arrangement of the above embodiments as long as it is between the motor 6 or the oil pump 7 and the input shaft 10.
 同様に第3動力断続機構としてのクラッチ83は、モータ6又はオイルポンプ7と出力軸4との間であれば上記各実施形態の配置に限定されない。 Similarly, the clutch 83 as the third power interrupting mechanism is not limited to the arrangement of the above embodiments as long as it is between the motor 6 or the oil pump 7 and the output shaft 4.
 また、第2~第4実施形態においても、第1実施形態と同様に、第2動力断続機構としてのクラッチ及び第3動力断続機構としてのクラッチをワンウェイクラッチに代えて油圧作動のクラッチにより構成するとともに入力軸回転センサ201の検出結果及び出力軸回転センサ202の検出結果などに応じてこのクラッチの作動を制御するようにしても良い。 Also in the second to fourth embodiments, similarly to the first embodiment, the clutch as the second power interrupting mechanism and the clutch as the third power interrupting mechanism are replaced by a one-way clutch and configured by a hydraulically operated clutch. In addition, the operation of the clutch may be controlled according to the detection result of the input shaft rotation sensor 201 and the detection result of the output shaft rotation sensor 202.
 さらに、上記各実施形態では、前後進を達成するための前後進切替機構31を入力軸10とバリエータ32との間に設け、この前後進切替機構31の前進クラッチ31c及び後退ブレーキ31dを第1動力断続機構81として機能させる構成を例示したが、前後進切替機構31をバリエータ32と出力軸4との間に配設する場合には、入力軸10とバリエータ32との間の動力伝達経路内に第1動力断続機構として油圧作動式クラッチのみを介装し、同クラッチをクラッチ制御手段200Aで制御するように構成すれば、上記各実施形態と同様の作用効果を得ることが可能である。 Further, in each of the above-described embodiments, the forward / reverse switching mechanism 31 for achieving the forward / reverse travel is provided between the input shaft 10 and the variator 32, and the forward clutch 31c and the reverse brake 31d of the forward / backward travel switching mechanism 31 are the first. Although the configuration for functioning as the power interrupting mechanism 81 has been illustrated, when the forward / reverse switching mechanism 31 is disposed between the variator 32 and the output shaft 4, it is within the power transmission path between the input shaft 10 and the variator 32. In addition, if only the hydraulically operated clutch is interposed as the first power interrupting mechanism and the clutch is controlled by the clutch control means 200A, it is possible to obtain the same functions and effects as in the above embodiments.
 この場合、前後進切替機構に代えて前後進切替機能付き副変速機を使用しても良いし、前後進切替機構が変速比の変更を伴わないものである場合は、副変速機を別に設けるようにしても良い。 In this case, a sub-transmission with a forward / reverse switching function may be used in place of the forward / reverse switching mechanism. If the forward / backward switching mechanism does not involve a change in the gear ratio, a separate sub-transmission is provided. You may do it.
 また、図1~図7に示す各実施形態では、モータ回転軸61とオイルポンプ回転軸71とを別体に設けて動力伝達機構により相互に接続する構成としたが、モータ回転軸61とオイルポンプ回転軸71とを一体化しても良い(以下、モータ回転軸61とオイルポンプ回転軸71とを一体化した軸を「一体化軸」と呼ぶ)。 1 to 7, the motor rotating shaft 61 and the oil pump rotating shaft 71 are separately provided and connected to each other by a power transmission mechanism. However, the motor rotating shaft 61 and the oil pump rotating shaft 71 are connected to each other by a power transmission mechanism. The pump rotating shaft 71 may be integrated (hereinafter, the shaft in which the motor rotating shaft 61 and the oil pump rotating shaft 71 are integrated is referred to as “integrated shaft”).
 このような一体化軸を採用した場合、入力軸10の動力を一つの動力伝達機構を介して一体化軸へ伝達することができ、且つ、出力軸4の動力を一つの動力伝達機構を介して一体化軸へ伝達することができる。 When such an integrated shaft is adopted, the power of the input shaft 10 can be transmitted to the integrated shaft through one power transmission mechanism, and the power of the output shaft 4 can be transmitted through one power transmission mechanism. Can be transmitted to the integrated shaft.
 図1~図7に示す各実施形態では、入力軸10、モータ回転軸61、オイルポンプ回転軸71及び出力軸4の間に3つの動力伝達機構を使用しているが、一体化軸を採用すれば動力伝達機構を1つ減らして2つとすることができる。 In each embodiment shown in FIGS. 1 to 7, three power transmission mechanisms are used between the input shaft 10, the motor rotating shaft 61, the oil pump rotating shaft 71, and the output shaft 4, but an integrated shaft is adopted. If this is done, the number of power transmission mechanisms can be reduced to one.
 例えば、図1(b)に示す第1実施形態に係る構成では、入力軸10の動力は、チェーン92を含む動力伝達機構によってモータ回転軸61へ伝達されるとともにチェーン93を含む動力伝達機構によってオイルポンプ回転軸71へ伝達され、出力軸4の動力は、チェーン98を含む動力伝達機構と前記のチェーン92を含む動力伝達機構と前記のチェーン93を含む動力伝達機構とによってモータ回転軸61及びオイルポンプ回転軸71へと伝達される。 For example, in the configuration according to the first embodiment shown in FIG. 1B, the power of the input shaft 10 is transmitted to the motor rotating shaft 61 by the power transmission mechanism including the chain 92 and by the power transmission mechanism including the chain 93. The power of the output shaft 4 transmitted to the oil pump rotary shaft 71 is transmitted to the motor rotary shaft 61 and the power transmission mechanism including the chain 98, the power transmission mechanism including the chain 92, and the power transmission mechanism including the chain 93. It is transmitted to the oil pump rotating shaft 71.
 すなわち、チェーン92を含む動力伝達機構と、チェーン93を含む動力伝達機構と、チェーン98を含む動力伝達機構との3つの動力伝達機構が必要となる。 That is, three power transmission mechanisms including a power transmission mechanism including the chain 92, a power transmission mechanism including the chain 93, and a power transmission mechanism including the chain 98 are required.
 これに対し、モータ回転軸61及びオイルポンプ回転軸71を一体化した一体化軸を使用することで、入力軸10とモータ回転軸61との間、及び、入力軸10とオイルポンプ回転軸71との間にそれぞれ必要であった動力伝達機構を一つとすることができるので、上記3つの動力伝達機構から2つの動力伝達機構へと減らすことができる。 On the other hand, by using an integrated shaft in which the motor rotating shaft 61 and the oil pump rotating shaft 71 are integrated, between the input shaft 10 and the motor rotating shaft 61 and between the input shaft 10 and the oil pump rotating shaft 71. Since one power transmission mechanism is required between each of the three power transmission mechanisms, the three power transmission mechanisms can be reduced to two power transmission mechanisms.
 また、例えば、図4に示す第2実施形態の変形例に係る構成では、出力軸4の動力は、チェーン95Cを含む動力伝達機構によってモータ回転軸61へ伝達されるとともにチェーン98Cを含む動力伝達機構によってオイルポンプ回転軸71へ伝達され、入力軸10の動力は、チェーン92Bを含む動力伝達機構と前記のチェーン95Cを含む動力伝達機構と前記のチェーン98Cを含む動力伝達機構とによってモータ回転軸61及びオイルポンプ回転軸71へと伝達される。 Further, for example, in the configuration according to the modification of the second embodiment shown in FIG. 4, the power of the output shaft 4 is transmitted to the motor rotating shaft 61 by the power transmission mechanism including the chain 95C and the power transmission including the chain 98C. The power of the input shaft 10 is transmitted to the oil pump rotary shaft 71 by the mechanism, and the motor rotary shaft is driven by the power transmission mechanism including the chain 92B, the power transmission mechanism including the chain 95C, and the power transmission mechanism including the chain 98C. 61 and the oil pump rotating shaft 71.
 すなわち、チェーン95Cを含む動力伝達機構と、チェーン98Cを含む動力伝達機構と、チェーン92Bを含む動力伝達機構との3つの動力伝達機構が必要となる。 That is, three power transmission mechanisms including a power transmission mechanism including the chain 95C, a power transmission mechanism including the chain 98C, and a power transmission mechanism including the chain 92B are required.
 これに対し、モータ回転軸61及びオイルポンプ回転軸71を一体化した一体化軸を使用することで、出力軸4とモータ回転軸61との間、及び、出力軸4とオイルポンプ回転軸71との間にそれぞれ必要であった動力伝達機構を一つとすることができるので、上記3つの動力伝達機構から2つの動力伝達機構へと減らすことができる。 On the other hand, by using an integrated shaft in which the motor rotating shaft 61 and the oil pump rotating shaft 71 are integrated, between the output shaft 4 and the motor rotating shaft 61 and between the output shaft 4 and the oil pump rotating shaft 71. Since one power transmission mechanism is required between each of the three power transmission mechanisms, the three power transmission mechanisms can be reduced to two power transmission mechanisms.
 或いは、図1~図7に示す各実施形態の構成においてモータ回転軸61及びオイルポンプ回転軸71の各々に取り付けられた動力伝達機構を一体化して動力伝達機構を減らすことも可能である。 Alternatively, it is also possible to reduce the power transmission mechanism by integrating the power transmission mechanisms attached to the motor rotation shaft 61 and the oil pump rotation shaft 71 in the configuration of each embodiment shown in FIGS.
 例えば、図1(b)に示す第1実施形態に係る構成において、入力軸10に装着されたスプロケット91、モータ回転軸61に装着されたスプロケット94及びオイルポンプ回転軸71に装着されたスプロケット95の3つのスプロケットに一つのチェーンを掛け回すことによりモータ回転軸61及びオイルポンプ回転軸71の各々に取り付けられた動力伝達機構を一体化することができる。 For example, in the configuration according to the first embodiment shown in FIG. 1B, the sprocket 91 attached to the input shaft 10, the sprocket 94 attached to the motor rotating shaft 61, and the sprocket 95 attached to the oil pump rotating shaft 71. The power transmission mechanism attached to each of the motor rotating shaft 61 and the oil pump rotating shaft 71 can be integrated by hanging one chain around the three sprockets.
 また、例えば、図4に示す第2実施形態の変形例に係る構成では、プライマリプーリ32bの入力軸32aに装着されたスプロケット96C、モータ回転軸61に装着されたスプロケット61C及びオイルポンプ回転軸71に装着されたスプロケット97Cの3つのスプロケットに一つのチェーンを掛け回すことによりモータ回転軸61及びオイルポンプ回転軸71の各々に取り付けられた動力伝達機構を一体化することができる。 Further, for example, in the configuration according to the modification of the second embodiment shown in FIG. 4, the sprocket 96C attached to the input shaft 32a of the primary pulley 32b, the sprocket 61C attached to the motor rotating shaft 61, and the oil pump rotating shaft 71. The power transmission mechanism attached to each of the motor rotating shaft 61 and the oil pump rotating shaft 71 can be integrated by hanging one chain around the three sprockets of the sprocket 97C attached to the motor.
 このように動力伝達機構を一体化することにより動力伝達機構の数を削減することができる。 Integrating the power transmission mechanism in this way can reduce the number of power transmission mechanisms.

Claims (11)

  1.  入力軸を有し、
     出力軸を有し、
     前記入力軸の動力を前記出力軸へ伝達する動力伝達経路を有し、
     前記動力伝達経路内に、第1動力断続機構を有し、
     前記動力伝達経路外に、第2動力断続機構を有し、
     前記動力伝達経路外に、第3動力断続機構を有し、
     前記動力伝達経路外に、モータを有し、
     前記動力伝達経路外に、オイルポンプを有し、
     前記入力軸の動力は、前記第1動力断続機構を介して、前記出力軸へ伝達可能であり、
     前記入力軸の動力は、前記第1動力断続機構を介さず、且つ、前記第2動力断続機構を介して、前記モータ及び前記オイルポンプへ伝達可能であり、
     前記出力軸の動力は、前記第1動力断続機構を介さず、且つ、前記第3動力断続機構を介して、前記モータ及び前記オイルポンプへ伝達可能であり、
     前記モータは発電機能を有する、駆動機構。
    Has an input shaft,
    Having an output shaft,
    A power transmission path for transmitting the power of the input shaft to the output shaft;
    A first power interrupt mechanism in the power transmission path;
    A second power interrupting mechanism outside the power transmission path;
    A third power interrupting mechanism outside the power transmission path;
    A motor outside the power transmission path;
    An oil pump outside the power transmission path;
    The power of the input shaft can be transmitted to the output shaft via the first power interrupt mechanism,
    The power of the input shaft can be transmitted to the motor and the oil pump without passing through the first power interrupting mechanism and via the second power interrupting mechanism.
    The power of the output shaft can be transmitted to the motor and the oil pump without passing through the first power interrupting mechanism and via the third power interrupting mechanism.
    The motor has a power generation function.
  2.  前記入力軸及び前記出力軸が停止しているとき、前記第2動力断続機構及び前記第3動力断続機構が動力遮断状態となった状態で、前記モータの回転により前記オイルポンプを駆動可能である、請求項1記載の駆動機構。 When the input shaft and the output shaft are stopped, the oil pump can be driven by the rotation of the motor in a state where the second power interrupting mechanism and the third power interrupting mechanism are in a power interrupting state. The drive mechanism according to claim 1.
  3.  前記入力軸が停止しているとき、前記第3動力断続機構が動力伝達状態となった状態で、前記出力軸の回転により前記モータ及び前記オイルポンプを駆動可能である、請求項1又は2記載の駆動機構。 3. The motor and the oil pump can be driven by rotation of the output shaft while the third power interrupting mechanism is in a power transmission state when the input shaft is stopped. Drive mechanism.
  4.  前記動力伝達経路内に、変速比調整機構を有し、
     前記出力軸の回転を、前記変速比調整機構及び第3動力断続機構を介して、前記モータ及び前記オイルポンプへ伝達可能である、請求項3記載の駆動機構。
    In the power transmission path, there is a gear ratio adjustment mechanism,
    4. The drive mechanism according to claim 3, wherein the rotation of the output shaft can be transmitted to the motor and the oil pump via the speed ratio adjusting mechanism and the third power interrupting mechanism.
  5.  前記動力伝達経路内に、変速比調整機構を有し、
     前記入力軸が所定回転速度以下で回転しているとき、前記第2動力断続機構及び前記第3動力断続機構を動力遮断状態として、前記モータの回転により前記オイルポンプを駆動させることにより、前記変速比調整機構の変速を行う、請求項1~3の何れか一項に記載の駆動機構。
    In the power transmission path, there is a gear ratio adjustment mechanism,
    When the input shaft is rotating at a predetermined rotational speed or less, the second power interrupting mechanism and the third power interrupting mechanism are set in a power shut-off state, and the oil pump is driven by the rotation of the motor to thereby change the speed change. The drive mechanism according to any one of claims 1 to 3, wherein a speed of the ratio adjusting mechanism is changed.
  6.  前記入力軸が所定回転速度以下で回転しているとき、前記第2動力断続機構及び前記第3動力断続機構を動力遮断状態として、前記モータの回転により前記オイルポンプを駆動させることにより、前記変速比調整機構の変速を行う、請求項4記載の駆動機構。 When the input shaft is rotating at a predetermined rotational speed or less, the second power interrupting mechanism and the third power interrupting mechanism are set in a power shut-off state, and the oil pump is driven by the rotation of the motor to thereby change the speed change. The drive mechanism according to claim 4, wherein the ratio adjustment mechanism is shifted.
  7.  第1回転部材と、第2回転部材と、前記第1回転部材及び前記第2回転部材に掛け回された第1無端状部材と、を有する第1動力伝達機構を有し、
     前記モータと前記オイルポンプとは、前記第1動力伝達機構を介して連結されている、請求項1~6の何れか一項に記載の駆動機構。
    A first power transmission mechanism having a first rotating member, a second rotating member, and a first endless member wound around the first rotating member and the second rotating member;
    The drive mechanism according to any one of claims 1 to 6, wherein the motor and the oil pump are connected via the first power transmission mechanism.
  8.  第3回転部材と、第4回転部材と、前記第3回転部材及び前記第4回転部材に掛け回された第2無端状部材を有する第2動力伝達機構と、を有し、
     前記入力軸と、前記モータ及び前記オイルポンプの少なくとも一方とは、前記第2動力伝達機構を介して連結されている、請求項1~7の何れか一項に記載の駆動機構。
    A third rotating member, a fourth rotating member, and a second power transmission mechanism having a second endless member wound around the third rotating member and the fourth rotating member,
    The drive mechanism according to any one of claims 1 to 7, wherein the input shaft and at least one of the motor and the oil pump are connected via the second power transmission mechanism.
  9.  前記第2動力断続機構は、前記第3回転部材又は前記第4回転部材の内周に位置するワンウェイクラッチを有する、請求項8記載の駆動機構。 The drive mechanism according to claim 8, wherein the second power interrupting mechanism has a one-way clutch located on an inner periphery of the third rotating member or the fourth rotating member.
  10.  前記第2動力断続機構及び前記第3動力断続機構の少なくとも一方は、ワンウェイクラッチを有する、請求項1~8の何れか一項に記載の駆動機構。 The drive mechanism according to any one of claims 1 to 8, wherein at least one of the second power interrupt mechanism and the third power interrupt mechanism has a one-way clutch.
  11.  駆動源を有し、
     駆動輪を有し、
     請求項1~10の何れか一項に記載の駆動機構を有し、
     前記入力軸には、前記駆動源の動力が入力され
     前記駆動輪には、前記出力軸の動力が出力される、車両。
    Having a drive source,
    Having drive wheels,
    A drive mechanism according to any one of claims 1 to 10,
    A vehicle in which power of the drive source is input to the input shaft, and power of the output shaft is output to the drive wheel.
PCT/JP2015/064407 2014-07-08 2015-05-20 Driving mechanism WO2016006325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-140900 2014-07-08
JP2014140900A JP6385167B2 (en) 2014-07-08 2014-07-08 Drive mechanism

Publications (1)

Publication Number Publication Date
WO2016006325A1 true WO2016006325A1 (en) 2016-01-14

Family

ID=55063969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064407 WO2016006325A1 (en) 2014-07-08 2015-05-20 Driving mechanism

Country Status (2)

Country Link
JP (1) JP6385167B2 (en)
WO (1) WO2016006325A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107499111A (en) * 2017-08-21 2017-12-22 东风汽车公司 A kind of transmission system of the hybrid vehicle with various modes

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6694286B2 (en) * 2016-02-04 2020-05-13 ジヤトコ株式会社 Vehicle control device and vehicle control method
US10962111B2 (en) 2016-05-25 2021-03-30 Jatco Ltd Control device and control method for vehicle including continuously variable transmission
JP6673110B2 (en) * 2016-09-14 2020-03-25 日産自動車株式会社 Sailing control method and sailing control device
KR101893295B1 (en) 2017-04-06 2018-08-29 장순길 Power variable distribution method
JP2019095034A (en) * 2017-11-27 2019-06-20 日産自動車株式会社 Control method and control device of automatic transmission
WO2019111442A1 (en) * 2017-12-04 2019-06-13 アイシン・エィ・ダブリュ株式会社 Drive device foe vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046165A (en) * 1998-07-30 2000-02-18 Toyota Motor Corp Control system for vehicular driver
JP2002227978A (en) * 2001-02-01 2002-08-14 Fuji Heavy Ind Ltd Automatic transmission for vehicle
JP2012071752A (en) * 2010-09-29 2012-04-12 Fuji Heavy Ind Ltd Vehicle drive apparatus
JP2013095261A (en) * 2011-10-31 2013-05-20 Aisin Aw Co Ltd Vehicle driving device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872880B2 (en) * 2007-10-05 2012-02-08 トヨタ自動車株式会社 Power output device
JP6072463B2 (en) * 2012-08-07 2017-02-01 富士重工業株式会社 Hydraulic oil supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000046165A (en) * 1998-07-30 2000-02-18 Toyota Motor Corp Control system for vehicular driver
JP2002227978A (en) * 2001-02-01 2002-08-14 Fuji Heavy Ind Ltd Automatic transmission for vehicle
JP2012071752A (en) * 2010-09-29 2012-04-12 Fuji Heavy Ind Ltd Vehicle drive apparatus
JP2013095261A (en) * 2011-10-31 2013-05-20 Aisin Aw Co Ltd Vehicle driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107499111A (en) * 2017-08-21 2017-12-22 东风汽车公司 A kind of transmission system of the hybrid vehicle with various modes

Also Published As

Publication number Publication date
JP2016016753A (en) 2016-02-01
JP6385167B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP6385167B2 (en) Drive mechanism
US9616883B2 (en) Hybrid vehicle
JP5535020B2 (en) Vehicle drive device
US9963141B2 (en) Hybrid vehicle control device with transmission control for a level difference of a road surface
US6799109B2 (en) Vehicle control apparatus
JP6061021B2 (en) Vehicle control apparatus and method
US9758158B2 (en) Hybrid vehicle control device
JP2012066641A (en) Hybrid vehicle drive device
JP5712096B2 (en) Engine idling stop control device
JP6191492B2 (en) Vehicle drive device
JP6151973B2 (en) Vehicle control device
JP5652044B2 (en) Vehicle control system
JP5171500B2 (en) Vehicle starting device
JP2004056899A (en) Vehicle controller
JP6242609B2 (en) Power transmission mechanism
JP6072610B2 (en) Vehicle control device
JP6646946B2 (en) Transmission
JP6343506B2 (en) Drive mechanism
JP5807590B2 (en) Control device for automatic transmission for hybrid vehicle
JP2021130372A (en) Hybrid vehicle system
JP6101189B2 (en) Hydraulic control device
JP6036484B2 (en) Control device for continuously variable transmission
JP2013126784A (en) Control device of vehicle
JP4734783B2 (en) Vehicle power unit
JP6770386B2 (en) Hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818946

Country of ref document: EP

Kind code of ref document: A1