WO2016004726A1 - 双面显示面板以及双面显示装置 - Google Patents

双面显示面板以及双面显示装置 Download PDF

Info

Publication number
WO2016004726A1
WO2016004726A1 PCT/CN2014/092957 CN2014092957W WO2016004726A1 WO 2016004726 A1 WO2016004726 A1 WO 2016004726A1 CN 2014092957 W CN2014092957 W CN 2014092957W WO 2016004726 A1 WO2016004726 A1 WO 2016004726A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
sub
double
display panel
subunit
Prior art date
Application number
PCT/CN2014/092957
Other languages
English (en)
French (fr)
Inventor
张春兵
张斌
侯帅
赖意强
张亮
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/768,983 priority Critical patent/US9997583B2/en
Priority to EP14882144.0A priority patent/EP3168677B1/en
Publication of WO2016004726A1 publication Critical patent/WO2016004726A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/128Active-matrix OLED [AMOLED] displays comprising two independent displays, e.g. for emitting information from two major sides of the display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133342Constructional arrangements; Manufacturing methods for double-sided displays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3031Two-side emission, e.g. transparent OLEDs [TOLED]

Definitions

  • Embodiments of the present invention relate to a double-sided display panel and a double-sided display device including the double-sided display panel.
  • Double-sided display devices are widely used as requirements for diversifying display functions. Double-sided display has many advantages. For example, when a double-sided display device is used as a television signal receiving device at home, it can be embedded in a door frame or a partition wall of an adjacent room, so that people in different rooms can simultaneously acquire the same one. Information or different information.
  • the double-sided display device has problems such as low light utilization efficiency, small contrast between display brightness and ambient light, and difficulty in recognizing a display screen under strong light.
  • Embodiments of the present invention provide a double-sided display panel and a double-sided display device including the double-sided display panel, which have high light utilization efficiency, improve display contrast and ambient light contrast, and have better display effect.
  • an embodiment of the present invention provides a double-sided display panel, including: a first display sub-unit having a first display surface and a first non-display surface opposite to each other; and a second display sub-unit having a first display a second display surface and a second non-display surface disposed opposite to the first display sub-unit, the second non-display surface facing the first non-display surface; and a reflection unit disposed at the first Between the display subunit and the second display subunit, wherein the reflective unit is configured to reflect display light emitted by the first display subunit back to the first display subunit, and to display the second display sub The display light emitted by the unit is reflected back to the second display subunit.
  • an embodiment of the present invention further provides a double-sided display device comprising: a display panel, which is a double-sided display panel as described above; and a driving circuit connected to the display panel.
  • FIG. 1 is a cross-sectional structural view of a double-sided display panel according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of illumination of a sub-pixel of FIG. 1;
  • FIG. 3 is a schematic structural view of a sub-pixel in FIG. 1;
  • Figure 4 is a schematic cross-sectional view of a reflecting unit in accordance with a first embodiment of the present invention
  • FIG. 5 is a schematic diagram of an optical path of a double-sided display panel in a state in which the sub-pixels of FIG. 1 are illuminated;
  • FIG. 6 is a schematic view showing the optical path of the double-sided display panel in the state in which the sub-pixels in FIG. 1 are not illuminated.
  • a first embodiment of the present invention provides a double-sided display panel, as shown in FIG. 1 , the double-sided display panel includes: a first display sub-unit 1 having a first display surface and a first non-display surface opposite to each other;
  • the second display subunit 2 has a second display surface and a second non-display surface opposite to each other, and the second display subunit 2 is disposed opposite to the first display subunit 1, and the second non-display surface faces the a first non-display surface; and a reflection unit 3 disposed between the first display sub-unit 1 and the second display sub-unit 2, configured to reflect the display light emitted by the first display sub-unit 1 back to the first display sub-unit 1. Reflecting the display light emitted by the second display subunit 2 back to the second display subunit 2.
  • the first display subunit 1 includes two first substrates 11 disposed opposite to each other and a plurality of first sub-pixels 12 disposed between the two first substrates 11; a second display subunit 2 includes two second substrates 21 disposed opposite each other and a plurality of second sub-pixels 22 disposed between the two second substrates 21.
  • the light emitted by the first display subunit 1 is emitted by the first sub-pixel 12 of the first display sub-unit 1
  • the light emitted by the second display sub-unit 2 is emitted by the second sub-pixel 22, reflecting
  • the unit 3 is configured to reflect the light emitted by the first sub-pixel 12 back to the first display sub-unit 1 and to reflect the light emitted by the second sub-pixel 22 back to the second display sub-unit 2.
  • each of the first sub-pixel 12 and the second sub-pixel 22 includes an Organic Light-Emitting Diode (OLED), where the organic electroluminescent device can be a top-emitting or two-way illuminating device. type.
  • OLED Organic Light-Emitting Diode
  • each of the organic electroluminescent devices included in each of the first sub-pixel 12 and the second sub-pixel 22 is of a top emission type, that is, each of the organic electroluminescent devices is directed to the first display sub-unit and the second display sub-
  • the display surfaces of the cells opposite to each other emit light
  • the reflection unit 3 since the reflection unit 3 is disposed between the non-display surfaces of the first display sub-unit and the second display sub-unit opposite to each other, the reflection unit 3 can deflect to the non-display The surface light is reflected back to the first display sub-unit and the second display sub-unit, thereby improving light utilization.
  • each of the first sub-pixel 12 and the second sub-pixel 22 when the organic electroluminescent device included in each of the first sub-pixel 12 and the second sub-pixel 22 is of a bidirectional light-emitting type, one OLED can be turned to the top.
  • the light is emitted, and the light can also be emitted to the bottom (ie, the side facing the reflecting unit 3), and the light emitted to the top can be directly transmitted through the first display subunit 1 or the second display subunit 2, and is utilized to the bottom.
  • the emitted light is reflected by the reflection unit 3 and then transmitted out through the first display subunit 1 or the second display subunit 2 to be reused, thereby improving the light utilization efficiency of the double-sided display panel.
  • the structure of the organic electroluminescent device included in each of the first sub-pixel 12 and the second sub-pixel 22 may include three layers: an anode, a light-emitting layer, and a cathode, for example, FIG. 3 shows the first sub-
  • the structure of the organic electroluminescent device included in the pixel 12 includes an anode 121, a cathode 123, and a light-emitting layer 122 disposed between the anode 121 and the cathode 123.
  • the OLED may further include an organic functional layer disposed between the anode 121 and the cathode 123.
  • the organic functional layer includes a hole injection layer, a hole transport layer, an electron blocking layer, holes and excitons. At least one of the barrier layer, the electron transport layer, and the electron injection layer.
  • the organic functional layer can be flexibly selected according to requirements in practical applications, and will not be described in detail here.
  • the electrode disposed near the display surface of the first or second display subunit may be a cathode or an anode, but the electrode is a transparent electrode, correspondingly, except The other electrode other than the electrode disposed near the display surface may be an opaque electrode or a reflective electrode; and for the bidirectional light-emitting type organic electroluminescent device, at least one of the cathode and the anode is transparent.
  • the first sub-pixel 21 may include red (R), green (G), and blue (B)
  • the second sub-pixel 22 may also include the second sub-pixel of three colors of red (R), green (G), and blue (B), that is, color display in full color mode .
  • each of the first sub-pixel and the second sub-pixel may include a white OLED, and the substrate on the light-emitting side is further provided with a red-green-blue color filter, thereby implementing color display in a WOLED-COA manner, and of course,
  • the color display is implemented in the manner of the WOLED-CF (white OLED and red, green, blue, and white color filters), which is not limited by the embodiment of the present invention.
  • the reflective unit 3 includes a switching layer 33 and a first reflective layer 31 and a second reflective layer 32 that are alternately disposed on opposite sides of the switching layer 33, respectively.
  • the first reflective layer 31 and the first reflective layer 32 may be mirrors, such as an electroless silver plated silver mirror.
  • the first reflective layer 31 is disposed opposite to the first sub-pixel 12 and is separated from the first display sub-unit 1 by the second reflective layer 32 and the switch layer 33.
  • the second reflective layer 32 is disposed opposite to the second sub-pixel 22 and is opposite to the second
  • the display subunit 2 is disposed across the first reflective layer 31 and the switch layer 33, the first reflective layer 31 is disposed on a side of the switch layer 33 adjacent to the second display subunit 2, and the second reflective layer 22 is disposed on the switch layer 33 near the first One side of the subunit 1 is displayed.
  • the first reflective layer 31 and the second reflective layer 32 are disposed on both sides of the switch layer 33, and “interlaced” means that the orthographic projections on the switch layer 33 respectively have no overlap, and “complementary” means When the two move parallel to the same plane, a complete, seamless pattern can be formed.
  • the switch layer 33 is mainly used for the adjustment of light so that the reflection acts or does not work.
  • the switch layer 33 includes a liquid crystal cell including an upper substrate 331, a lower substrate 333, and a liquid crystal layer 332 disposed between the upper substrate 331 and the lower substrate 333, wherein the liquid crystal cell further includes control An electrode, the control electrode includes: a plurality of first upper electrodes 311 and second upper electrodes 321 disposed on the side of the upper substrate 331 adjacent to the liquid crystal layer 332, which are disposed on the side of the lower substrate 333 adjacent to the liquid crystal layer 332 a plurality of first lower electrodes 312 and second lower electrodes 322 arranged alternately, wherein the first upper electrodes 311 and the first lower electrodes 312 are disposed in pairs and correspond to the first reflective layer 31, the second upper electrodes 321 and the second The lower electrodes 322 are disposed in pairs and correspond to the second reflective layer 32.
  • the first upper electrode 311 and the first lower electrode 312 cooperate with each other for controlling the corresponding liquid crystal deflection in the liquid crystal cell, and the second upper electrode 321 and the second lower electrode 322. Cooperate with each other for controlling the corresponding liquid crystal deflection in the liquid crystal cell.
  • the liquid crystal located between the liquid crystal cells is deflected therebetween, when the second upper electrode 321 and the second lower electrode 322 When a voltage having a voltage difference is applied separately, the liquid crystal located between the liquid crystal cells is biased turn.
  • the plurality of first upper electrodes 311 can be applied with the same voltage
  • the plurality of first lower electrodes 312 can be applied with the same voltage
  • the plurality of second upper electrodes 321 can be applied with the same voltage
  • the plurality of second lower electrodes The same voltage can be applied to the 322, and the first upper electrode and the second upper electrode are separately controlled, and the first lower electrode and the second lower electrode are separately controlled.
  • the first upper electrode 311 and the first lower electrode 312 respectively apply a positive voltage and a reference voltage
  • the second upper electrode 321 and the second lower electrode 322 respectively apply a positive voltage and a reference voltage, so that a voltage can be applied to the control electrode.
  • the electric field is formed, and the control of the liquid crystal deflection can be conveniently realized.
  • control electrode may be formed of a transparent electrode material, for example, Indium Tin Oxide (ITO), and the liquid crystal in the liquid crystal cell sandwiched between the two sub-electrodes may be TN (Twisted Nematic).
  • ITO Indium Tin Oxide
  • TN Transmission Nematic
  • Column type liquid crystal that is, the liquid crystal deflects to form a transparent state when an electric field acts, and is opaque when there is no electric field.
  • the light control state of the reflection unit 3 is changed by controlling the magnitude of the electric field between the sub-electrodes.
  • the switching layer 33 is capable of switching between two different optical states, a transparent state and an opaque state, such that the reflective layer acts or does not function.
  • a transparent state when a certain sub-pixel is in a bright state (light-emitting state), an electric field is applied by controlling a control electrode of the corresponding region, liquid crystal molecules are regularly arranged perpendicular to the electric field, and refractive index matching of each liquid crystal molecule is matched.
  • the first display sub-unit 1 further includes a first black matrix 13 (BM) disposed between adjacent first sub-pixels 12, and the second display sub-unit 2 further includes The second black matrix 23 between the adjacent second sub-images 22, the first reflective layer 31 is opposite to the second black matrix 23, and the second reflective layer 32 is opposite to the first black matrix 13.
  • BM black matrix 13
  • the first reflective layer 31, the first sub-pixel 12 and the second black matrix 23 have the same area
  • the second reflective layer 32 and the second sub-pixel 22 have the same area as the first black matrix 13. That is, the sub-pixels in the first display sub-unit 1 and the second display sub-unit 2 are respectively set in error
  • the first display sub-unit The first sub-pixel 12 of 1 corresponds to the first reflective layer 31 and the second black matrix 23 of the second display sub-unit 2, and can effectively utilize the light emitted by the first sub-pixel 12 in the first display sub-unit 1 to improve the first A display of the light utilization rate of the sub-unit 1 does not affect the operation of the second display sub-unit 2; similarly, the second sub-pixel 22 of the second display sub-unit 2 corresponds to the second reflective layer 32 and the first display sub-unit
  • the first black matrix 13 of 1 can effectively utilize the light emitted by the second sub-pixel 22 in the second display sub-unit 2 to improve the light utilization efficiency of the second display sub-unit 2 without affecting the operation of the first display sub
  • the area of the first reflective layer 31, the first sub-pixel 12, and the second black matrix 23 may be different.
  • the areas of the second reflective layer 32, the second sub-pixel 22, and the first black matrix 13 may also be different.
  • the operation of the second display subunit 2 and the first display subunit 1 does not affect each other, and the utilization of light can be improved. This embodiment of the present invention does not limit this.
  • the area of the first sub-pixel 12 and the second sub-pixel 22 are the same.
  • the area of the first sub-pixel 12, the first black matrix 13, and the first reflective layer 31 in the first display sub-unit 1 and the second sub-pixel 22, the second black matrix 23 in the second display sub-unit 2 The second reflective layer 32 has the same area, which further simplifies the design process and improves process efficiency.
  • an embodiment of the present invention further provides a method for manufacturing a double-sided display panel.
  • the first display sub-unit 1, the second display sub-unit 2, and the reflection may be first
  • the units 3 are separately prepared, and then the above units are bonded together by a sealant to form a whole; or one of the display subunits may be used to sequentially form the reflection unit 3 and the other display subunit on one side thereof.
  • a sub-pixel including an OLED and a black matrix are formed on the first substrate, for example, a transparent substrate, and a second substrate opposite to the first substrate is disposed to form a display sub-unit.
  • each sub-pixel may separately emit three colors of red (R), green (G), or blue (B), and the area of the black matrix is the same as the area of the sub-pixel;
  • Step 2 forming a reflective layer on the second substrate of the non-display surface of the display sub-unit corresponding to the position of the black matrix; then forming a switch layer and another reflective layer on the reflective layer, wherein the positions of the two reflective layers Interlaced and complementary;
  • Step 3 providing a third substrate, such as a transparent substrate, on the other reflective layer, and then forming a sub-pixel including the OLED and the black matrix on the third substrate and disposing the third substrate
  • the opposite fourth substrate is formed to form another display subunit.
  • the reflection unit since the reflection unit is disposed between the two display sub-units disposed opposite each other, the reflection unit can reflect the display light emitted from each display sub-unit to the non-display surface.
  • the corresponding display sub-unit is reused, and can block the entrance of ambient light, so that the double-sided display panel has higher display brightness and higher contrast, and can improve the display brightness of the display panel and the contrast of the ambient light, and display The effect is better, and the energy saving effect can be achieved even under the condition that the brightness is also displayed.
  • a second embodiment of the present invention provides a double-sided display device including a display panel and a driving circuit connected to the display panel.
  • the display panel adopts the double-sided display panel in Embodiment 1.
  • the first display sub-unit and the second display sub-unit respectively have independent driving circuits, and the first display sub-unit and the second display sub-unit display the same image or display different images at a certain moment.
  • one assembly manner is: first, the two first substrates 11 and the first sub-pixels 12 are connected by using a frame sealant to form the first display sub-unit 1; The second substrate 21 and the second sub-pixel 22 are connected by a sealant to form a second display sub-unit 2; then, the reflective unit 3 is disposed between the first display sub-unit 1 and the second display sub-unit 2, and is aligned. And sealing the frame with a frame sealant to obtain a double-sided display device.
  • the double-sided display device has two independent input ports, and the two input ports can input the same signal or different signals, and correspondingly display the same image information or different image information.
  • both display subunits of the double-sided display device display the same screen
  • the same image source is input to the drive port corresponding to the first display subunit 1 and the drive port of the second display subunit 2, and the same image information is At the same time, it is transmitted to the first display sub-unit 1 and the second display sub-unit 2 for display.
  • This driving method is generally used for billboards on square panels or roads and other places where double-sided display is required.
  • the double-sided display panel uses the reflection unit to re-reflect the light emitted from the sub-pixels in the first display sub-unit and the second display sub-unit to the non-display surface, so that the double-sided display panel
  • the light utilization efficiency of the surface display device is improved, and not only is the highlight and the contrast is better, so that the display device has a better display effect, and the viewer can easily recognize the display image even under strong light, thereby obtaining a better visual experience.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种双面显示面板以及包含该双面显示面板的双面显示装置。该双面显示面板包括:第一显示子单元(1),具有彼此相对的第一显示面和第一非显示面;第二显示子单元(2),具有彼此相对的第二显示面和第二非显示面,且与第一显示子单元(1)相背设置,第二非显示面面对第一非显示面;以及反射单元(3),设置在第一显示子单元(1)和第二显示子单元(2)之间,其中反射单元(3)构造为将第一显示子单元(1)发出的显示光反射回第一显示子单元(1)、将第二显示子单元(2)发出的显示光反射回第二显示子单元(2)。由于采用了反射单元(3),第一显示子单元(1)和第二显示子单元(2)中发出的射向非显示面的显示光能够被反射而再次利用,从而提高了双面显示装置的光利用率,提高了双面显示装置的亮度且使其具有更好的对比度。

Description

双面显示面板以及双面显示装置 技术领域
本发明的实施例涉及一种双面显示面板以及包含该双面显示面板的双面显示装置。
背景技术
随着对显示功能多样化的要求,双面显示装置被广泛采用。双面显示具有很多优点,例如,采用双面显示装置作为家里的电视信号接收装置时,可以将其嵌入在相邻房间的门框或隔墙内,以使得处于不同房间的人均能同时获取同一个信息或者不同的信息。
但是,由于应用环境的多样化,双面显示装置存在光利用率低、显示亮度与环境光对比度小,在强光下难以辨识显示画面等问题。
发明内容
本发明的实施例提供一种双面显示面板以及包含该双面显示面板的双面显示装置,其具有较高的光利用率,提高了显示亮度与环境光的对比度,且具有更好的显示效果。
一方面,本发明的实施例提供一种双面显示面板,包括:第一显示子单元,具有彼此相对的第一显示面和第一非显示面;第二显示子单元,具有彼此相对的第二显示面和第二非显示面,且与所述第一显示子单元相背设置,所述第二非显示面面对所述第一非显示面;以及反射单元,设置在所述第一显示子单元和所述第二显示子单元之间,其中所述反射单元构造为将所述第一显示子单元发出的显示光反射回所述第一显示子单元、将所述第二显示子单元发出的显示光反射回所述第二显示子单元。
另一方面,本发明的实施例还提供一种双面显示装置,包括:显示面板,为如上所述的双面显示面板;以及驱动电路,与所述显示面板相连接。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为根据本发明第一实施例的双面显示面板的截面结构图;
图2为图1中子像素的发光示意图;
图3为图1中子像素的结构示意图;
图4为根据本发明第一实施例的反射单元的示意性截面图;
图5为图1中子像素发光状态下双面显示面板的光路示意图;以及
图6为图1中子像素不发光状态下双面显示面板的光路示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
第一实施例
本发明的第一实施例提供一种双面显示面板,如图1所示,该双面显示面板包括:第一显示子单元1,具有彼此相对的第一显示面和第一非显示面;第二显示子单元2,具有彼此相对的第二显示面和第二非显示面,且第二显示子单元2与第一显示子单元1相背设置,所述第二非显示面面对所述第一非显示面;以及反射单元3,设置在第一显示子单元1与第二显示子单元2之间,构造为将第一显示子单元1发出的显示光反射回第一显示子单元1、将第二显示子单元2发出的显示光反射回第二显示子单元2。
示例性地,如图1所示,第一显示子单元1包括相对设置的两个第一基板11以及设置两个第一基板11之间的多个第一子像素12;第二显示子单元2包括相对设置的两个第二基板21以及设置在两个第二基板21之间的多个第二子像素22。这样,第一显示子单元1发出的光由第一显示子单元1的第一子像素12发出,第二显示子单元2发出的光由第二子像素22发出,反射 单元3被构造为将第一子像素12发出的光反射回第一显示子单元1、将第二子像素22发出的光反射回第二显示子单元2。
示例性地,第一子像素12和第二子像素22的每个均包括有机电致发光器件(Organic Light-Emitting Diode,简称OLED),这里有机电致发光器件可以为顶发射型或双向发光型。例如,第一子像素12和第二子像素22的每个所包括的有机电致发光器件为顶发射型时,也就是每个有机电致发光器件向第一显示子单元和第二显示子单元的彼此相背的显示面发射光,由于第一显示子单元和第二显示子单元的彼此相对的非显示面之间设置有反射单元3,这样反射单元3能将偏离而射向非显示面的光反射回第一显示子单元和第二显示子单元,从而提高了光的利用率。例如,如图2的每个子像素的发光示意图所示,当第一子像素12与第二子像素22的每个所包括的有机电致发光器件为双向发光型时,一个OLED既可以向顶部发射光线,也可以向底部(即朝向反射单元3的一侧)发射光线,其向顶部发射的光线能直接透出第一显示子单元1或第二显示子单元2而得到利用,其向底部发射的光线经反射单元3反射后透出第一显示子单元1或第二显示子单元2而得到再次利用,提高了双面显示面板的光利用率。
示例性地,第一子像素12和第二子像素22的每个所包括的有机电致发光器件的结构可以包括三层:阳极、发光层和阴极,例如,图3示出了第一子像素12所包括的有机电致发光器件的结构,包括:阳极121、阴极123以及设置于阳极121与阴极123之间的发光层122。当然,为了进一步改进OLED的性能,OLED还可以包括设置在阳极121和阴极123之间的有机功能层,有机功能层包括空穴注入层、空穴传输层、电子阻挡层、空穴与激子阻挡层、电子传输层以及电子注入层中的至少一层。有机功能层在在实际应用中可根据需求进行灵活选择,这里不再详述。
另外,需要注意的是,对于顶发射型有机电致发光器件,靠近第一或第二显示子单元的显示面设置的电极可以为阴极或阳极,但该电极为透明电极,相对应地,除了靠近显示面设置的电极之外的另一电极可以为不透明电极或反射电极;而对于双向发光型有机电致发光器件,其阴极和阳极至少一个是透明的。
示例性地,第一子像素21可以包括红(R)、绿(G)和蓝(B)三 种颜色的第一子像素,而第二子像素22也可以包括红(R)、绿(G)和蓝(B)三种颜色的第二子像素,也就是,以全彩方式实现彩色显示。或者,第一子像素和第二子像素的每个可以包括白色OLED,且在出光侧的基板还设置有红绿蓝滤色器,从而以WOLED-COA方式实现彩色显示,当然,也可以以WOLED-CF(白色OLED及红、绿、蓝、白四色彩色滤光片)方式实现彩色显示,本发明的实施例对此不做限定。
示例性地,反射单元3包括开关层33以及分别交错互补设置于开关层33两侧的第一反射层31和第二反射层32。第一反射层31和第一反射层32可以为反射镜,例如为化学镀银银镜。第一反射层31与第一子像素12相对设置且与第一显示子单元1隔着第二反射层32和开关层33,第二反射层32与第二子像素22相对设置且与第二显示子单元2隔着第一反射层31和开关层33,第一反射层31设置在开关层33靠近第二显示子单元2的一侧,第二反射层22设置于开关层33靠近第一显示子单元1的一侧。在本实施例中,第一反射层31和第二反射层32设置在开关层33的两侧,“交错”即指二者分别在开关层33上的正投影无重叠,“互补”即指当二者平行移动至同一平面时能形成一个完整、无缝隙的图形。
开关层33主要用于光线的调节,以使得反射起作用或不起作用。示例性地,如图4所示,开关层33包括液晶盒,液晶盒包括上基板331、下基板333以及设置在上基板331与下基板333之间的液晶层332,其中液晶盒还包括控制电极,该控制电极包括:设置在上基板331的靠近液晶层332一侧的多个交替间隔设置的第一上电极311和第二上电极321,设置在下基板333的靠近液晶层332一侧的多个交替间隔设置的第一下电极312和第二下电极322,其中第一上电极311和第一下电极312成对设置且对应于第一反射层31,第二上电极321和第二下电极322成对设置且对应于第二反射层32,第一上电极311和第一下电极312彼此配合用于控制液晶盒内对应的液晶偏转,第二上电极321和第二下电极322彼此配合用于控制液晶盒内对应的液晶偏转。
示例性地,当第一上电极311和第一下电极312分别施加具有电压差的电压时,液晶盒内位于二者之间的液晶便偏转,当第二上电极321和第二下电极322分别施加具有电压差的电压时,液晶盒内位于二者之间的液晶便偏 转。其中,多个第一上电极311可以被施加相同的电压,多个第一下电极312可以被施加相同的电压,多个第二上电极321可以被施加相同的电压,多个第二下电极322可以被施加相同的电压,且第一上电极和第二上电极被分别控制,第一下电极和第二下电极被分别控制。例如,第一上电极311和第一下电极312分别施加正电压和参考电压,第二上电极321和第二下电极322分别施加正电压和参考电压,这样,通过对控制电极施加电压即可形成电场,进而能很方便地实现对液晶偏转的控制。
示例性地,控制电极可以采用透明电极材料,例如,氧化铟锡(Indium Tin Oxide,简称ITO)形成,夹在两层子电极之间的液晶盒内的液晶可以为TN(Twisted Nematic,扭曲向列)型液晶,即该液晶在有电场的作用时偏转形成透明态,无电场的作用时为不透明态。通过控制子电极之间的电场大小来改变反射单元3的光控状态。
在本实施例中,开关层33能够在透明态和不透明态两种不同的光学状态下切换,使得反射层起作用或不起作用。示例性地,如图5所示,当某一子像素处于亮态(发光状态)时,通过控制对应区域的控制电极施加电场,液晶分子垂直于电场有规则排列,各液晶分子的折射率匹配,形成透明态,使其对应子像素的反射层发挥作用,使透明子像素发出的光能够被反射,从而达到高亮的显示效果以及节能的目的;而图6所示,当某一子像素处于不亮状态(不发光状态)时,通过控制对应区域的控制电极不形成电场,液晶分子无规则排列,由于各液晶分子的折射率是各向异性的,形成不透明态,射进其中的环境光被开关层33阻挡,且对应子像素的反射层不起作用,该环境光不能被反射层反射,即使再高的环境光,照射到该双面显示面板上时,都会被吸收掉,从而达到了提高环境光与显示面板的显示亮度的对比度的目的。
在本实施例的双面显示面板中,第一显示子单元1还包括设置于相邻第一子像素12之间的第一黑矩阵13(BM),第二显示子单元2还包括设置于相邻第二子像22素之间的第二黑矩阵23,第一反射层31与第二黑矩阵23相对、第二反射层32与第一黑矩阵13相对。
示例性地,第一反射层31、第一子像素12与第二黑矩阵23的面积相同,第二反射层32、第二子像素22与第一黑矩阵13的面积相同。也即,第一显示子单元1与第二显示子单元2中的子像素分别相错设置,第一显示子单元 1的第一子像素12对应于第一反射层31以及第二显示子单元2的第二黑矩阵23,既能有效利用第一显示子单元1中第一子像素12发出的光,提高第一显示子单元1的光利用率,又不影响第二显示子单元2的工作;同理,第二显示子单元2的第二子像素22对应于第二反射层32以及第一显示子单元1的第一黑矩阵13,可以有效利用第二显示子单元2中第二子像素22发出的光,提高第二显示子单元2的光利用率,又不影响第一显示子单元1的工作。
当然,第一反射层31、第一子像素12与第二黑矩阵23的面积也可不相同,第二反射层32、第二子像素22与第一黑矩阵13的面积也可以不相同,只要第二显示子单元2和第一显示子单元1的工作不互相影响,又能够提高光的利用率即可,本发明的实施例并不对此进行限定。
示例性地,第一子像素12与第二子像素22的面积相同。这样,第一显示子单元1中的第一子像素12、第一黑矩阵13、第一反射层31的面积与第二显示子单元2中的第二子像素22、第二黑矩阵23、第二反射层32的面积相同,能进一步简化设计流程,提高工艺效率。
进一步地,本发明的实施例还提供一种双面显示面板的制造方法,当制备如上所述的双面显示面板时,可以先将第一显示子单元1、第二显示子单元2和反射单元3分别制备完成,然后将上述各单元通过封框胶粘结形成整体;也可以以其中一个显示子单元为基准,依次向其一侧形成反射单元3和另一个显示子单元。
下面,以采用第二种方式形成该双面显示面板为例,简单叙述其工艺过程如下:
步骤1,在第一衬底基板,例如透明基板上制作包括OLED的子像素及黑矩阵且设置与第一衬底基板相对的第二衬底基板,形成一个显示子单元。
示例性地,每个子像素可单独发出红(R)、绿(G)或蓝(B)三种颜色,且黑矩阵的面积与子像素的面积相同;
步骤2,在显示子单元的非显示面的第二衬底基板对应着黑矩阵的位置,制作反射层;然后在该反射层上形成开关层和另一层反射层,其中两反射层的位置交错互补;
步骤3,在另一层反射层上设置第三衬底基板,例如透明基板,然后在该第三衬底基板上制作包括OLED的子像素及黑矩阵且设置与该第三衬底板 相对的第四衬底基板,从而形成另一个显示子单元。
本实施例中的双面显示面板,由于在相背设置的两个显示子单元之间设置有反射单元,该反射单元能够将每个显示子单元发出的射向非显示面的显示光反射回相应的显示子单元而再次利用,且能够阻挡环境光的进入,从而该双面显示面板具有更高的显示亮度及更高的对比度,且可以提高显示面板的显示亮度与环境光的对比度,显示效果更好,而且,在同样显示亮度的条件下更能达到节能的目的。
第二实施例
本发明的第二实施例提供一种双面显示装置,包括显示面板以及与显示面板相连接的驱动电路,显示面板采用实施例1中的双面显示面板。其中,第一显示子单元与第二显示子单元分别具有独立的驱动电路,第一显示子单元与第二显示子单元在某一时刻显示相同的图像或显示不相同的图像。
本实施例的双面显示装置中,一种组装方式是,首先将两个第一基板11和第一子像素12采用封框胶进行连接形成第一显示子单元1;同时,可以将两个第二基板21和第二子像素22采用封框胶进行连接形成第二显示子单元2;然后,将反射单元3设置于第一显示子单元1与第二显示子单元2之间、对位,并采用封框胶进行封框,从而得到双面显示装置。
该双面显示装置具有两个独立的输入端口,这两个输入端口可以输入相同的信号或者不相同的信号,相应地即可显示同一图像信息或者不同的图像信息。
当该双面显示装置的两个显示子单元均显示同一画面时,对应着第一显示子单元1的驱动端口和第二显示子单元2的驱动端口输入相同的信号源,相同的图像信息被同时传送到第一显示子单元1和第二显示子单元2进行显示,这种驱动方式通常用于广场用展板或公路上的广告牌以及其他需要双面显示的场所。
当该双面显示装置的两个显示子单元显示不同画面时,对应着第一显示子单元1的驱动端口和第二显示子单元2的驱动端口输入不同的信号源,不同的图像信息被分别传送到第一显示子单元1和第二显示子单元2进行显示,这种驱动方式通常用于医疗用仪器、教学用设备或双面展板以及其他需要双面显示的场所。
该双面显示装置中,其中的双面显示面板由于采用了反射单元对第一显示子单元与第二显示子单元中的子像素发出的射向非显示面的光线进行再次反射利用,使得双面显示装置的光利用率提高,不仅高亮且具有更好的对比度,使显示装置具有更好的显示效果,使观看者即使在强光下也易于辨识显示画面,获得更好的视觉感受。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。
本申请要求于2014年7月11日递交的中国专利申请第201410332533.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (16)

  1. 一种双面显示面板,包括:
    第一显示子单元,具有彼此相对的第一显示面和第一非显示面;
    第二显示子单元,具有彼此相对的第二显示面和第二非显示面,且与所述第一显示子单元相背设置,所述第二非显示面面对所述第一非显示面;以及
    反射单元,设置在所述第一显示子单元和所述第二显示子单元之间,
    其中所述反射单元构造为将所述第一显示子单元发出的显示光反射回所述第一显示子单元、将所述第二显示子单元发出的显示光反射回所述第二显示子单元。
  2. 根据权利要求1所述的双面显示面板,其中所述反射单元包括开关层以及分别交错互补设置于所述开关层两侧的第一反射层和第二反射层,所述第一反射层设置于所述开关层靠近所述第二显示子单元的一侧,所述第二反射层设置于所述开关层靠近所述第一显示子单元的一侧。
  3. 根据权利要求2所述的双面显示面板,其中所述第一显示子单元包括相对设置的两个第一基板以及设置所述两个第一基板之间的多个第一子像素,所述第二显示子单元包括相对设置的两个第二基板以及设置在两个第二基板之间的多个第二子像素。
  4. 根据权利要求3所述的双面显示面板,其中所述第一反射层与所述第一子像素相对设置,所述第二反射层与所述第二子像素相对设置。
  5. 根据权利要求4所述的双面显示面板,其中所述多个第一子像素之间设置有第一黑矩阵,所述多个第二子像素设置有所述第二黑矩阵。
  6. 根据权利要求2-4中任一项所述的双面显示面板,其中所述开关层包括:上基板、下基板、设置在所述上基板与所述下基板之间的液晶层以及设置在所述上基板和所述下基板的靠近所述液晶层一侧的控制电极,所述控制电极被施加电压以控制所述液晶盒内的液晶偏转。
  7. 根据权利要求6所述的双面显示面板,其中所述控制电极包括设置在所述上基板的靠近所述液晶层一侧的多个交替间隔设置的第一上电极和第二上电极以及设置在所述下基板的靠近所述液晶层一侧的多个交替间隔设置的 第一下电极和第二下电极。
  8. 根据权利要求7所述的双面显示面板,其中所述第一上电极和所述第二上电极被分别施加正电压和参考电压,所述第一下电极和所述第二下电极被分别施加正电压和参考电压。
  9. 根据权利要求5所述的双面显示面板,其中所述第一反射层与所述第二黑矩阵相对、所述第二反射层与所述第一黑矩阵相对。
  10. 根据权利要求9所述的双面显示面板,其中所述第一反射层、所述第一子像素与所述第二黑矩阵的面积相同,所述第二反射层、所述第二子像素与所述第一黑矩阵的面积相同。
  11. 根据权利要求10所述的双面显示面板,其中所述第一子像素与所述第二子像素的面积相同。
  12. 根据权利要求3-11中任一项所述的双面显示面板,其中所述多个第一子像素的每个和所述多个第二子像素的每个均包括有机电致发光器件。
  13. 根据权利要求12所述的双面显示面板,其中所述有机电致发光器件为双向发光型或顶发射型。
  14. 根据权利要求3所述的双面显示面板,其中所述多个第一子像素包括红色、绿色和蓝色子像素,所述多个第二子像素包括红色、绿色和蓝色子像素。
  15. 一种双面显示装置,包括:
    显示面板,为如权利要求1-14中任一项所述的双面显示面板;以及
    驱动电路,与所述显示面板相连接。
  16. 根据权利要求15所述的双面显示装置,其中所述第一显示子单元与所述第二显示子单元分别具有独立的驱动电路,所述第一显示子单元与所述第二显示子单元在某一时刻显示相同的图像或显示不相同的图像。
PCT/CN2014/092957 2014-07-11 2014-12-03 双面显示面板以及双面显示装置 WO2016004726A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/768,983 US9997583B2 (en) 2014-07-11 2014-12-03 Double-faced display panel and double-faced display device
EP14882144.0A EP3168677B1 (en) 2014-07-11 2014-12-03 Double-surface display panel and double-surface display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410332533.XA CN104155791B (zh) 2014-07-11 2014-07-11 一种双面显示面板以及双面显示装置
CN201410332533.X 2014-07-11

Publications (1)

Publication Number Publication Date
WO2016004726A1 true WO2016004726A1 (zh) 2016-01-14

Family

ID=51881330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092957 WO2016004726A1 (zh) 2014-07-11 2014-12-03 双面显示面板以及双面显示装置

Country Status (4)

Country Link
US (1) US9997583B2 (zh)
EP (1) EP3168677B1 (zh)
CN (1) CN104155791B (zh)
WO (1) WO2016004726A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511117B1 (ko) * 2014-01-07 2015-04-10 주식회사 토비스 양면 디스플레이장치
CN104155791B (zh) 2014-07-11 2017-01-18 京东方科技集团股份有限公司 一种双面显示面板以及双面显示装置
CN104391407B (zh) * 2014-12-15 2017-04-05 京东方科技集团股份有限公司 显示装置以及显示装置的显示方法
KR102380158B1 (ko) * 2015-04-24 2022-03-29 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN105242443A (zh) * 2015-10-28 2016-01-13 深圳市华星光电技术有限公司 反射式双面液晶显示器
US11243735B2 (en) 2016-02-09 2022-02-08 Lim Industries LLC Electronic panel having multiple display devices and a multi-state device operable with a processor to control a see-through mode and a plurality of display modes
CN105810714B (zh) * 2016-03-16 2019-03-15 武汉华星光电技术有限公司 具有双面显示的oled显示装置及其制作方法
CN105785685B (zh) * 2016-05-11 2018-03-09 深圳市华星光电技术有限公司 双面显示器、显示模组及其tft阵列基板
KR102604993B1 (ko) * 2016-05-17 2023-11-27 삼성디스플레이 주식회사 유기 발광 표시 장치
US10339531B2 (en) 2016-06-10 2019-07-02 Bank Of America Corporation Organic light emitting diode (“OLED”) security authentication system
US10163154B2 (en) * 2016-06-21 2018-12-25 Bank Of America Corporation OLED (“organic light emitting diode”) teller windows
US10460135B1 (en) 2016-06-21 2019-10-29 Bank Of America Corporation Foldable organic light emitting diode (“OLED”) purchasing instrument reader
US10783336B2 (en) 2016-06-21 2020-09-22 Bank Of America Corporation Reshape-able OLED device for positioning payment instrument
US9665818B1 (en) 2016-06-21 2017-05-30 Bank Of America Corporation Organic light emitting diode (“OLED”) universal plastic
US10970027B2 (en) 2016-06-21 2021-04-06 Bank Of America Corporation Combination organic light emitting diode (“OLED”) device
US10001640B1 (en) * 2016-06-27 2018-06-19 Amazon Technologies, Inc. Relocating common connector pads in display devices
US10580068B2 (en) 2016-07-11 2020-03-03 Bank Of America Corporation OLED-based secure monitoring of valuables
US10043183B2 (en) 2016-08-30 2018-08-07 Bank Of America Corporation Organic light emitting diode (“OLED”) visual authentication circuit board
US10176676B2 (en) 2016-09-23 2019-01-08 Bank Of America Corporation Organic light emitting diode (“OLED”) display with quick service terminal (“QST”) functionality
US10156714B1 (en) * 2017-03-22 2018-12-18 Amazon Technologies, Inc. Electrowetting pixel with bottom electrode to reduce electromagnetic fringe fields
CN107274786B (zh) * 2017-07-06 2021-04-06 京东方科技集团股份有限公司 显示面板、显示装置及显示方法
CN107255888A (zh) * 2017-08-03 2017-10-17 深圳市华星光电技术有限公司 双面显示面板及显示装置
KR102502881B1 (ko) 2018-01-16 2023-02-24 엘지전자 주식회사 디스플레이 디바이스
CN108459442A (zh) * 2018-02-11 2018-08-28 深圳市华星光电技术有限公司 双面显示装置
CN108400155B (zh) * 2018-04-23 2020-06-05 京东方科技集团股份有限公司 Oled双面显示面板及其制备方法
US10916731B2 (en) 2018-09-11 2021-02-09 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Organic light emitting diode display device
CN109192763A (zh) * 2018-09-11 2019-01-11 武汉华星光电半导体显示技术有限公司 Oled显示装置
CN109300968B (zh) * 2018-11-22 2022-05-20 合肥鑫晟光电科技有限公司 一种显示基板、显示装置及显示控制方法
CN109273518A (zh) 2018-11-26 2019-01-25 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置及其控制方法
CN109559536B (zh) * 2018-12-10 2021-06-08 百度在线网络技术(北京)有限公司 交通灯、交通灯识别方法、装置、设备及存储介质
CN109768063B (zh) * 2019-01-28 2021-11-26 京东方科技集团股份有限公司 一种双面显示屏及显示装置
WO2020205712A1 (en) * 2019-04-04 2020-10-08 Lim Industries LLC Electronic panel having multiple display devices operable with a multi-state device
US11138488B2 (en) 2019-06-26 2021-10-05 Bank Of America Corporation Organic light emitting diode (“OLED”) single-use payment instrument
CN112782893B (zh) * 2019-11-08 2022-08-26 京东方科技集团股份有限公司 一种显示面板及其驱动方法和制备方法、显示装置
US11164822B1 (en) * 2020-09-28 2021-11-02 United Microelectronics Corp. Structure of semiconductor device and method for bonding two substrates
CN113299708B (zh) * 2021-05-12 2022-09-09 武汉华星光电技术有限公司 双面显示面板及其制备方法
CN113238415B (zh) * 2021-05-13 2023-05-23 北京京东方技术开发有限公司 透明显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185994A (ja) * 2001-12-14 2003-07-03 Nanox Corp 液晶表示装置
US20070114916A1 (en) * 2005-11-24 2007-05-24 Chan-Ching Chang Organic electro-luminescent device
CN202736926U (zh) * 2012-08-29 2013-02-13 温兆楠 Oled显示器
CN103257474A (zh) * 2013-03-15 2013-08-21 京东方科技集团股份有限公司 一种双面显示面板以及双面显示装置
CN104155791A (zh) * 2014-07-11 2014-11-19 京东方科技集团股份有限公司 一种双面显示面板以及双面显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004014316A (ja) 2002-06-07 2004-01-15 Rohm Co Ltd 両面表示有機エレクトロルミネセンスディスプレイモジュール及び情報端末
JP4159817B2 (ja) 2002-07-11 2008-10-01 シチズンホールディングス株式会社 液晶表示装置
JP2004199028A (ja) 2002-10-24 2004-07-15 Seiko Epson Corp 表示装置、及び電子機器
US8681140B2 (en) * 2004-05-21 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus having the same
TWI351549B (en) 2004-09-03 2011-11-01 Hon Hai Prec Ind Co Ltd Backlight module capable of emitting light from tw
US7259815B2 (en) * 2004-10-28 2007-08-21 Motorola Inc. Two-way trans-reflective display
WO2007040028A1 (ja) * 2005-10-04 2007-04-12 Sharp Kabushiki Kaisha 液晶表示装置およびそれを備えた携帯型電子機器
CN2862090Y (zh) * 2005-10-12 2007-01-24 群康科技(深圳)有限公司 双面显示液晶显示器
US8472101B2 (en) * 2009-06-08 2013-06-25 Industrial Technology Research Institute Dual display
CN102998845B (zh) * 2012-12-11 2015-07-15 京东方科技集团股份有限公司 一种液晶显示屏及显示装置
CN103246105A (zh) * 2013-04-26 2013-08-14 京东方科技集团股份有限公司 一种液晶面板和液晶显示器
CN203299494U (zh) * 2013-05-27 2013-11-20 北京京东方光电科技有限公司 一种双面显示器
CN103293793B (zh) * 2013-05-31 2016-06-01 京东方科技集团股份有限公司 一种双面显示面板及其制造方法
TW201504718A (zh) * 2013-07-16 2015-02-01 Wintek Corp 光電元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185994A (ja) * 2001-12-14 2003-07-03 Nanox Corp 液晶表示装置
US20070114916A1 (en) * 2005-11-24 2007-05-24 Chan-Ching Chang Organic electro-luminescent device
CN202736926U (zh) * 2012-08-29 2013-02-13 温兆楠 Oled显示器
CN103257474A (zh) * 2013-03-15 2013-08-21 京东方科技集团股份有限公司 一种双面显示面板以及双面显示装置
CN104155791A (zh) * 2014-07-11 2014-11-19 京东方科技集团股份有限公司 一种双面显示面板以及双面显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3168677A4 *

Also Published As

Publication number Publication date
US9997583B2 (en) 2018-06-12
EP3168677B1 (en) 2019-07-31
EP3168677A4 (en) 2018-04-18
CN104155791B (zh) 2017-01-18
EP3168677A1 (en) 2017-05-17
US20160254336A1 (en) 2016-09-01
CN104155791A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2016004726A1 (zh) 双面显示面板以及双面显示装置
CN107632454B (zh) 显示面板、显示装置、显示面板的制作方法及驱动方法
CN109031762A (zh) 显示面板及其驱动方法、显示装置
WO2016192278A1 (zh) 场序显示面板、场序显示装置及驱动方法
WO2018223805A1 (zh) 显示面板、显示装置及其驱动方法
CN105911785A (zh) 一种显示面板和显示装置
US10120234B2 (en) Liquid crystal display apparatus
KR20080074757A (ko) 지향성 표시 디스플레이
KR20170049653A (ko) 거울-디스플레이 겸용 장치
CN104517998A (zh) 显示装置
CN104297968A (zh) 显示面板及其驱动方法、显示装置
CN103915481A (zh) 一种显示面板及显示装置
CN110531549B (zh) 双面显示面板和显示装置
US20110018856A1 (en) Outdoor readable liquid crystal display device
CN108364990A (zh) 双面显示面板及双面显示装置
US9429811B2 (en) Display panel and display method thereof and display apparatus
JP2015201314A (ja) 発光素子表示装置
CN107179638B (zh) 一种显示面板及其控制方法、显示装置
JP2021067707A (ja) 表示装置
CN102608808A (zh) 透明显示装置及应用该装置的电子设备
KR20130131693A (ko) 유기전계 발광소자를 구비한 투명 표시장치
CN103439832B (zh) 透明显示装置
WO2016063846A1 (ja) 表示装置
WO2019085194A1 (zh) 显示面板及其显示装置
WO2021103085A1 (zh) 透明显示面板和电子设备

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014882144

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14768983

Country of ref document: US

Ref document number: 2014882144

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE