WO2016004652A1 - 基于ami与j2ee的智能用电数据管理方法及*** - Google Patents

基于ami与j2ee的智能用电数据管理方法及*** Download PDF

Info

Publication number
WO2016004652A1
WO2016004652A1 PCT/CN2014/082782 CN2014082782W WO2016004652A1 WO 2016004652 A1 WO2016004652 A1 WO 2016004652A1 CN 2014082782 W CN2014082782 W CN 2014082782W WO 2016004652 A1 WO2016004652 A1 WO 2016004652A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
collection
intelligent power
communication
acquisition
Prior art date
Application number
PCT/CN2014/082782
Other languages
English (en)
French (fr)
Inventor
罗华永
辜文斌
朱海萍
黄继勇
宋卫平
何灵慧
沈磊
Original Assignee
四川中电启明星信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川中电启明星信息技术有限公司 filed Critical 四川中电启明星信息技术有限公司
Publication of WO2016004652A1 publication Critical patent/WO2016004652A1/zh
Priority to PH12017500225A priority Critical patent/PH12017500225A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs

Definitions

  • the invention relates to the field of electrical data management, power data collection, display and intelligent monitoring, and in particular to an intelligent power data management method and system based on AMI and J2EE.
  • MDMS Metrology Data Management System
  • a basic function of MDMS is to validate, edit, and estimate AMI data to ensure that the flow of data to the above information system or software is complete and accurate even when the communication network terminal and user side fail.
  • the power information collection system uses microelectronics and computer networks, sensing and other technologies to automatically read and process meter data, and comprehensively process the electricity consumption information of urban residents. It mainly realizes electricity data collection, electricity data management, meter control, marketing business comprehensive application, meter operation and maintenance management.
  • the existing acquisition system can not meet the collection requirements of different types of users and different types of energy, lack of unified planning and unified standard specifications.
  • one measurement point should install several collection terminals and exchange data with the respective system main stations. This not only causes great waste of resources such as manpower and material resources, but also increases the burden of metering equipment, affecting the accuracy of metering and the reliable operation of equipment.
  • the user's power information intelligent collection system focuses on data collection, analysis and prediction, and reduces the functions of data inspection and data mining, so that the integrity and correctness of the data cannot be guaranteed.
  • an acquisition system that compensates for data integrity is designed, such as power consumption information with a backup concentrator, mainly by failing to transmit power data to the primary station when communication between the primary concentrator and the primary station fails.
  • the standby concentrator continues to send the power data from the main concentrator that has not been sent to the primary station to The primary station, and continues to collect the power usage data collected by the collector and send it to the primary station to reduce the defect of data integrity.
  • this method is solved by adding hardware devices, which inevitably increases the input cost and increases the investment benefit recovery period.
  • the object of the present invention is to provide an intelligent power data management method and system based on AMI and J2EE, and adopt technical means to automatically or manually compensate for the data integrity without adding hardware facilities.
  • the intelligent power data management method based on AMI and J2EE includes the following steps:
  • Step A Collection task assignment: According to different business requirements, according to the configuration requirements of the data to be collected, the allocation task is performed;
  • Step B Acquisition task execution: After step A, according to the prepared collection task, automatically send the acquisition instruction to the collection terminal or the measurement device according to the requirements, and obtain various types of data of the collection terminal or the measurement device;
  • Step C Data check: Perform data check, data integrity check, and data quality check on the data collected in step B to check whether the data result is correct or not;
  • Step D Data storage: The data collected by the collection terminal or the measurement device is divided into one type of real-time data, two types of historical data, and three types of event data according to business needs, and corresponding message queues are respectively established, and the data is stored in the buffer area to reach the setting. Batch storage after volume.
  • the step A includes:
  • Step A.l data collection: intelligent power data management system for Q/GDW 376.1-2009 agreement,
  • Step A.2. Data Filtering: The response message obtained from the measurement device consisting mainly of sensors and the collection terminal mainly composed of the smart meter, the concentrator, and the collector is passed through various built-in functions of the intelligent power data management system. The filter performs data matching and filtering, and finally converts the data and information that the intelligent power data management system can recognize.
  • the step B includes the following steps: Step B1, collecting communication protocols of various mainstream collecting terminals or measuring devices on the market; Step B.2 Analyze the communication rules for these protocols, find commonalities, and develop compatible communication packets. Step B.3. Perform minimum-differentiated development for the personality communication rules of mainstream collection devices. Step B.4, package into a large commonality, small Heterogeneous compatibility communication API; Step B.5. Set up a test environment and test the mainstream acquisition equipment.
  • Step B.6 Modify the procedure according to the test results
  • Step B.7 Complete the collection task execution process.
  • the step C includes the following steps: Step Cl, data collection process: collection task information received by the management interface, according to specific configuration conditions
  • the task is performed when the components are divided into components.
  • the communication protocol of the target collection terminal is matched with the API in the analysis of the intelligent power data management protocol, and the data processing layer of the data processing layer is automatically converted by the intelligent power data management layer, and automatically
  • the collection task sends an encrypted acquisition instruction that the collection device can recognize to the collection terminal, and the intelligent power data management data processing layer decrypts the encrypted data fed back by the collection terminal, and converts the collected data into intelligent power consumption data management.
  • Step C.2. Data quality inspection: Provide effective data inspection indicators to check the rationality and validity of the collected data;
  • Step C.4 after step C.3, if the collected data is qualified data or the data is collected successfully, step D will be performed; if the collected data is unqualified or the data is unsuccessful, the data will be supplemented.
  • step C.1 when you choose not to make up, perform step 0.
  • step C.3 further includes the following steps: Step C3.1, Acquisition quality check: Check the execution quality of the collection task, and collect statistical data. Success rate, complete rate of collection;
  • Step C3.2 real-time recall: differential data collected after the data check is completed Communication.
  • An intelligent power data management method and system based on AMI and J2EE comprising a sensor, a serial port server, a communication service circuit, and a collection terminal, wherein the sensor is connected to a communication service circuit through a serial port server, and the communication service circuit is connected to the collection terminal,
  • the collection terminal includes a smart meter, a concentrator and a collector; the communication service circuit is provided with a filter chain for matching and filtering data of response messages of the obtained terminal or measuring device of the sensor, the smart meter, the concentrator, the collector, and the like.
  • the IoHandler service processing layer is configured to complete the step B, the step C, and the step D; the filter chain layer includes a link layer filter, an encryption filter, and a request response filter.
  • an application layer filter passes the data layer through the filtering chain layer Processing is ultimately translated into business data for storage.
  • TCP/IP communication is used and communication is performed between the serial port server and the communication service circuit, and JMX monitoring is adopted; communication between the collection terminal and the communication service circuit is performed. It uses TCP/IP communication and uses JMX monitoring.
  • an IOService communication service is employed in the communication service circuit.
  • the present invention has the following advantages and beneficial effects:
  • the invention adopts technical means to automatically or manually replenish the data without the need to increase the hardware facilities, so as to achieve data integrity.
  • the invention is based on the national grid company's finishing planning requirements and a series of standard specifications. All the collection standards and specifications are standardized and easy to adapt to various collection requirements.
  • the present invention has a set of configurable, complete and validated data inspection indicators. Ensure the accuracy and validity of the data while ensuring data integrity.
  • the invention reduces the input cost under the premise of ensuring complete functions, and has the advantages of relatively stable and high efficiency.
  • the data acquisition implementation of the present invention implements an automatic or manual revocation method using non-blocking flow channel technology to ensure data integrity and effectiveness.
  • the data inspection of the present invention adopts a configurable inspection index method to realize configurability and adjustment of data inspection, and designs a complete data inspection index scheme.
  • Figure 1 is a flow chart of the method of the present invention.
  • FIG. 2 is a diagram of the system and data acquisition process of the present invention.
  • FIG. 3 is a communication monitoring diagram of JMX monitoring according to the present invention.
  • J2EE a technical architecture that is completely different from traditional application development, contains many components, which can simplify and standardize the development and deployment of application systems, thereby improving portability, security and reuse value.
  • AMI advanced metering infrastructure
  • AMI advanced metering infrastructure
  • MDMS measurement data management system. Is a database with analysis tools that can be used with the AMI Automatic Data Phone System (ADCS) to process and store meters It is an important part of the AMI system.
  • ADCS Automatic Data Phone System
  • JMX JMX
  • JMX is an application programming interface, a collection of scalable objects and methods that can be used to flexibly develop seamlessly integrated systems across a range of heterogeneous operating system platforms, system architectures, and network transport protocols.
  • Network and Service Management Applications It provides user interface guidance, Java classes, and specifications for developing integrated systems, network, and network management applications.
  • Step A Collection task assignment: According to different business requirements, according to the configuration requirements of the data to be collected, the assignment task is assigned;
  • Step B Acquisition task execution: After step A, according to the prepared collection task, automatically send the acquisition instruction to the collection terminal or measurement device according to the requirements, and obtain various types of data of the collection terminal or the measurement device;
  • Data check Perform a series of checks on the data collected by step B, including business rule check, data integrity check, and data quality check, to check whether the data result is correct or not.
  • Step D Data storage: The data collected by the collection terminal or the measurement device is divided into a type of real-time data, two types of historical data, and three types of event data according to business needs, respectively, corresponding message queues are established, and the data is stored in the cache. After the area reaches the set amount, it is stored in batches.
  • step D When the step D is completed, the data collection will be completed, and the completion step will be completed.
  • This embodiment is optimized on the basis of the above embodiment, and the device in the system is first turned on. After completing the opening process, complete the following steps:
  • Step Al data acquisition: Intelligent power data management system for Q/GDW 376.1-2009 protocol, MODBUS and other acquisition terminal conventional protocol compatible development and feature development, according to different business needs, through smart meters, concentrators, collectors Collect energy consumption equipment data, collect environmental temperature data, radiation, wind speed, pressure and other data through sensors;
  • Step A.2. Data Filtering: The response message obtained from the measurement device consisting mainly of sensors and the collection terminal mainly composed of the smart meter, the concentrator, and the collector is passed through various built-in functions of the intelligent power data management system. The filter performs data matching and filtering, and finally converts the data and information that the intelligent power data management system can recognize.
  • Step B Acquisition task execution: After step A, according to the prepared collection task, automatically send the acquisition instruction to the collection terminal or measurement device according to the requirements, and obtain various data of the collection terminal or the measurement device, and the data acquisition overall Designed based on uniform specification requirements and standards, it is perfectly compatible with a wide range of acquisition requirements, including the following steps:
  • Step B1 collect communication protocols of various mainstream collection terminals or measurement devices on the market; Step B.2, analyze communication rules for these protocols, find commonality, and develop compatible communication packets; Step B.3, for mainstream acquisition Personalized communication rules of the device, for minimum differential development; Step B.4, packaged into a large commonality, small heterogeneous compatibility communication API;
  • Step B.5. Set up a test environment and test the mainstream acquisition equipment.
  • Step B.6 Modify the procedure according to the test results
  • Step B.7 Complete the collection task execution process.
  • Step C Data check: The data collected in step B is subjected to a series of checks including business rule check, data integrity check, data quality check, etc., to check whether the data result is correct or not, and data acquisition is implemented.
  • the non-blocking flow channel technology is used to realize the automatic or manual call mode to ensure the integrity and validity of the data.
  • the data check adopts the configurable check indicator method to realize the configurable and adjustable data check, and designs a complete set.
  • the data check indicator scheme, the step C includes the following steps:
  • Step Cl data collection process:
  • the collection task information received by the management interface is executed according to the specific configuration conditions when the collection task is divided into components, and the communication protocol matching the target collection terminal according to the configuration condition corresponds to the intelligent power consumption data management protocol.
  • the API in the analysis through the intelligent power data management data processing layer, performs data conversion on the API acquisition instruction, automatically sends the encrypted acquisition instruction that the collection device can recognize to the collection terminal according to the collection task, and the intelligent power data management data processing layer
  • the encrypted data fed back by the collection terminal is algorithmically decrypted, and the collected data is converted into a format that the intelligent power data management system can recognize and store.
  • Step C.2. Data quality inspection: Provide effective data inspection indicators to check the rationality and validity of the collected data;
  • Step C.4 after step C.3, if the collected data is qualified data or the data is collected successfully, step D will be performed; if the collected data is unqualified or the data is unsuccessful, the data will be supplemented.
  • step C.1 when you choose not to make up, perform step 0.
  • Step D Data storage: The data collected by the collection terminal or the measurement device is divided into a type of real-time data, two types of historical data, and three types of event data according to business needs, and corresponding data is respectively established. The queue is stored in the buffer after the data is stored in the buffer area.
  • step C.3 further includes the following steps:
  • Step C3.1 Collection quality inspection: Check the execution quality of the collection task, the success rate of statistical data collection, and the complete rate of collection;
  • Step C3.2 Real-time call collection: The differential acquisition communication is found after the data check is completed. Real-time recall, according to the received real-time data collection requirements, through remote technical means, automatically send acquisition commands, real-time call terminal or measurement equipment data.
  • the invention collects various information in the real-time electricity unit, mainly includes information such as illuminance, temperature, humidity, smoke, pressure, flow, power consumption, equipment status, etc., real-time display, intelligent control and abnormal event monitoring and alarm.
  • the intelligent power data management system based on AMI and J2EE includes a sensor, a serial port server, a communication service circuit, and a collection terminal, wherein the sensor is connected to a communication service circuit through a serial port server, and the communication service circuit is connected and collected.
  • a terminal, the collection terminal includes a smart meter, a concentrator, and a collector; and the communication service circuit is configured to perform data matching on response messages of the obtained terminal or measurement device of the sensor, the smart meter, the concentrator, the collector, and the like.
  • the filter chain layer includes a link layer filter, an encryption filter, Request response filter, application layer filter, event filter, heartbeat filter, clock peer filter, identity authentication filter, uplink message queue filter, and downlink message queue filter; the loHandler service processing through the filtering chain layer
  • the layer ultimately transforms the processing of the data objects into business data for storage.
  • Data collection is based on hardware devices such as concentrators, collectors, smart meters, sensors, and serial servers. It uses tcp/ip protocol and lOService communication service, and links layer filters and encryption filters set through the filtering chain layer.
  • Request response filters, event filters, etc. collect and filter data, continue object processing (class I, class, parameter, event, modbus data) set by the data processing layer, data quality check, mining, data bulk inventory It is finally converted into business data for storage.
  • the data collected by the sensor is collected by using a sensor such as an illuminance sensor, a temperature sensor, a humidity sensor, a smoke sensor, and a pressure sensor provided in the measuring device; and the smart meter, the collector, and the concentrator are used
  • the collection terminal collects information such as traffic, power consumption, and device status, and transmits the information to the communication service circuit, and the link layer filter, the encryption filter, and the request response filter on the filter chain layer set therein.
  • the application layer filter, the event filter, the heartbeat filter, the clock peer filter, the identity authentication filter, the uplink message queue filter, and the downlink message queue filter are filtered accordingly, and the filter chain layer is not filtered.
  • the same data is erased, the filtered data continues to be transformed through object processing (Class I, Class II, parameters, events, modbus data) set by the data processing layer, data quality check, mining, data bulk inventory to finally convert Store for business data.
  • object processing Class I, Class II, parameters, events, modbus data
  • the invention is mainly used for the operation display and intelligent monitoring of the electric equipment, the real-time operation of the electric equipment, the real-time parameters of the micro-environment, the linkage display and the intelligent control, when the electric equipment is unattended, the various possible occurrences Abnormal events are predicted, and various faults that have occurred are recorded and automatically notified to the responsible person.
  • the invention can liberate people from the daily heavy labor on the one hand, and can improve the efficiency of equipment use on the other hand, which is particularly important for China that is intelligently reducing emissions, increasing efficiency and reducing pollution.
  • Example 5
  • TCP/IP communication is adopted when communicating between the serial port server and the communication service circuit.
  • JMX monitoring; TCP/IP communication and JMX monitoring are used when communicating between the acquisition terminal and the communication service circuit.
  • the system monitors the status information of the controlled resource in real time through JMX.
  • the monitoring system alarms by sending an email or sending a short message.
  • the system uses JXM monitoring set up by the JMX agent layer to collect controlled resource status information.
  • the JMI agent layer runs on the same machine as the controlled resources.
  • the controlled resource status information collected by the agent layer is sent to the monitoring application client management program of the monitoring system through the JMX distributed service layer component.
  • the monitoring application client management program receives the monitored resource status information sent by the monitoring application agent and processes the information.
  • an IOService communication service is employed in the communication service circuit.
  • a variety of presentation methods are implemented in the data presentation, which not only displays the basic data, but also implements various parameters (personnel density, air humidity, ambient temperature, raw data, special conditions, etc.) through data mining and data analysis. Various predictions of electrical energy data.
  • the invention satisfies the requirements of information system authority management, uniformly manages enterprise identity data, and centrally manages all controlled resource objects or resource abstract objects, thereby effectively improving management efficiency and reducing production and management costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

基于AMI与J2EE的智能用电数据管理方法,包括以下步骤:根据不同业务需求,按照待采集数据的配置条件要求,进行分配采集任务;采集任务执行,根据编制好的采集任务,按照要求自动下发采集指令到采集终端或量测设备,获取采集终端或量测设备的各类数据;数据检查,对采集回来的数据进行业务规则检查、数据完整性检查、数据质量检查,以针对数据结果正确与否进行的检查;数据存储,将采集终端或量测设备采集回来的数据存储到缓存区达到设定量后进行批量存储;智能用电数据管理***,包括传感器、串口服务器、通讯服务电路、采集终端,在不需要增加硬件设施的条件下,采用技术手段自动或手动补采,做到数据的完整性。

Description

说 明 书
基于 AMI与 J2EE的智能用电数据管理方法及*** 技术领域
本发明涉及用电数据管理、 用电数据采集、 展示和智能监控领域, 具体 的说, 是基于 AMI与 J2EE的智能用电数据管理方法及***。
背景技术
目前在美国广泛应用的是高级量测体系 AMI, 而其中重要的是计量数据 管理*** (MDMS )。 MDMS是一个带有分析工具的数据库, 通过与 AMI 自动数据手机***的配合使用, 处理和储存电表的计量值, 能与其他信息系 统之间进行交互, 如用电信息***、 账单***、 电力网站、 停电管理***、 电能质量管理和负荷预测***、 移动工作组管理、 地理信息***、 变压器负 荷管理***。
MDMS的一个基本功能是对 AMI数据进行确认、 编辑、 估算、 以确保 即使通信网络终端和用户侧故障时, 流向上述信息***或软件的数据流也是 完整这准确的。
我国各主要电力公司根据业务发展需要, 从 20世纪 90年代至今, 已经 建立了针对不同类型用户的电能信息采集***,主要有关口电能量采集***、 电力负荷管理***、 客户电能量采集***、 低压集中抄表***和配电自动化 ***, 并且各种电能量采集终端的安装已经具有一定规模。 电能信息采集系 统利用微电子和计算机网络、 传感等技术自动读取和处理表计数据, 将城市 居民的用电信息加以综合处理。 它主要实现用电数据采集、 用电数据管理、 表计控制、 营销业务综合应用、 表计运行维护管理。 现有的采集***无法满足不同类型用户、 不同类型能源的采集需求, 缺 乏统一规划、 统一标准规范, 往往一个计量点要安装几个采集终端和各自系 统主站交换数据。 这不仅造成人力、 物力等资源的极大浪费, 还增加了计量 设备的负担, 影响了计量的准确度和设备的可靠行。
比如用户用电信息智能采集***侧重于数据的采集、 分析和预测, 而减 弱了数据检査和数据挖掘的功能,这样就不能保证的数据的完整性和正确性。
为此设计出弥补数据完整性的采集***, 如具有备用集中器的用电信息 采, 主要是通过当主集中器与主站之间的通信发生故障而不能将用电数据发 送到主站时或当主集中器与采集器之间的通信发生故障而不能实时采集用电 数据时, 启动并切换到备用集中器, 备用集中器将尚未发给主站的来自主集 中器的用电数据继续发送到主站, 并且继续收集采集器采集到的用电数据并 且发送到主站的方法来降低数据完整性的缺陷。 但是此方法是通过增加硬件 设备的方法来解决的, 这样就不可避免的增加了投入成本, 也增加了投入效 益回收年限。
发明内容
本发明的目的在于提供基于 AMI与 J2EE的智能用电数据管理方法及系 统, 在不需要增加硬件设施的条件下, 采用技术手段自动或手动补采, 做到 数据的完整性。
本发明通过下述技术方案实现: 基于 AMI与 J2EE的智能用电数据管理 方法, 包括以下歩骤:
歩骤 A、 采集任务分配: 根据不同业务需求, 按照待采集数据的配置条 件要求, 进行分配采集任务; 歩骤 B、 采集任务执行: 经歩骤 A, 根据编制好的采集任务, 按照要求 自动下发采集指令到采集终端或量测设备, 获取采集终端或量测设备的各类 数据;
歩骤 C、 数据检査: 对歩骤 B采集回来的数据进行包括业务规则检査、 数据完整性检査、 数据质量检査, 以针对数据结果正确与否进行的检査; 歩骤 D、 数据存储: 将采集终端或量测设备采集回来的数据根据业务需 要划分为一类实时数据、 二类历史数据、 三类事件数据, 分别建立对应的消 息队列, 将数据存储到缓存区达到设定量后进行批量存储。
进一歩的, 为更好的实现本发明所述方法, 所述歩骤 A包括:
歩骤 A.l、数据采集:智能用电数据管理***对 Q/GDW 376.1-2009协议、
MODBUS等采集终端常规协议的兼容开发与特性开发, 根据不同的业务需 要, 通过智能电表、 集中器、 采集器采集能耗设备数据, 通过传感器采集环 境温度数据、 辐射、 风速、 压力等数据;
歩骤 A.2、 数据过滤: 将从主要由传感器组成的量测设备和主要由智能 电表、 集中器、 采集器组成的采集终端得到的响应报文通过智能用电数据管 理***各种内置的过滤器进行数据匹配与过滤, 最终转换成智能用电数据管 理***能够识别的数据和信息。
进一歩的, 为更好的实现本发明所述方法, 所述歩骤 B包含如下歩骤: 歩骤 B.l、 收集市面上各种主流采集终端或量测设备的通信协议; 歩骤 B.2、 针对这些协议分析通信规则, 找共性, 开发兼容通信包; 歩骤 B.3、 针对主流采集设备的个性通信规则, 进行最小差异化开发; 歩骤 B.4、 打包成一个大共性, 小异性的兼容性通信 API; 歩骤 B.5、 搭建测试环境, 对主流采集设备进行测试
歩骤 B.6、 根据测试结果修改程序;
歩骤 B.7、 完成采集任务执行过程。
进一歩的, 为更好的实现本发明所述方法, 所述歩骤 C包含如下歩骤: 歩骤 C.l、 数据采集过程: 针对管理界面接收到的采集任务信息, 按其 具体配置条件对采集任务进行分组分时执行, 按照配置条件匹配目标采集终 端的通信协议对应在智能用电数据管理协议解析中的 API, 通过智能用电数 据管理数据处理层对 API的采集指令进行数据转换, 自动按照采集任务下发 采集设备能够识别的加密的采集指令到采集终端, 智能用电数据管理数据处 理层对采集终端反馈的加密的数据进行算法解密, 并将采集回来的数据转换 为智能用电数据管理***能够识别和存储的格式。
歩骤 C.2、 数据质量检査: 提供有效的数据检査指标, 对采集的数据的 合理性、 有效性进行检査;
歩骤 C.3、 检査结果: 通过智能用电数据管理***按照业务规格设置的 数据验证指标对数据进行验证, 来实现数据的完整性和正确性;
歩骤 C.4、经歩骤 C.3 , 如果所采集数据为合格数据或采集数据成功则将 执行歩骤 D; 如若所采集数据为不合格数据或采集数据不成功则将进行数据 补采的选择, 当选择补采, 执行歩骤 C.1 , 当选择不补采, 执行歩骤0。
进一歩的, 为更好的实现本发明所述方法, 歩骤 C.3还包括以下歩骤: 歩骤 C3.1、 采集质量检査: 对采集任务的执行质量进行检査, 统计数据 采集成功率、 采集的完整率;
歩骤 C3.2、 实时召采: 数据检査完成后发现存在问题进行的差异化采集 通讯。
基于 AMI与 J2EE的智能用电数据管理方法及***, 包括传感器、 串口 服务器、 通讯服务电路、 采集终端, 所述传感器通过串口服务器同通讯服务 电路连接, 所述通讯服务电路连接采集终端, 所述采集终端包括智能电表、 集中器和采集器; 在所述通讯服务电路设置有将传感器、智能电表、集中器、 采集器等所得终端或量测设备的响应报文进行数据匹配与过滤的过滤链层; 在所述通讯服务电路设置有用于完成歩骤 B、 歩骤 C、 歩骤 D的 IoHandler 业务处理层; 所述过滤链层中包括链路层过滤器、 加密过滤器、 请求响应过 滤器、 应用层过滤器、 事件过滤器、 心跳过滤器、 时钟同歩过滤器、 身份认 证过滤器、 上行消息队列过滤器和下行消息队列过滤器; 经过滤链层所述 IoHandler业务处理层将数据对象处理最终转化为业务数据进行存储。
进一歩的, 为更好的实现本发明所述***, 在所述串口服务器与通讯服 务电路之间进行通信时采用 TCP/IP通信且采用 JMX监控; 在采集终端与通 讯服务电路之间进行通信时采用 TCP/IP通信且采用 JMX监控。
进一歩的, 为更好的实现本发明所述***, 在通讯服务电路中采用 IOService通信服务。
本发明与现有技术相比, 具有以下优点及有益效果:
( 1 )本发明在不需要增加硬件设施的条件下,采用技术手段自动或手动 补采, 做到数据的完整性。
(2 )本发明基于国家电网公司整理规划要求和一系列标准规范,所有的 采集标准和规范均统一规范, 便于适应各种采集需求。
(3 ) 本发明设有一套可配置、 完整的并经过有效验证的数据检査指标, 能保证数据完整性的前提下确保数据的准确性和有效性。
(4 )本发明在保证功能齐全完善的前提下降低投入成本;并且具有比较 稳定、 效率更高的优点。
(5 )本发明数据采集实现采用无阻塞流通道技术实现自动或人工补召方 式保证数据的完整性和有效性。
(6 ) 本发明数据检査采用可配置检査指标方式实现数据检査的可配置、 可调节, 并设计出一套完整的数据检査指标方案。
附图说明
图 1为本发明所述方法流程图。
图 2为本发明所述***及数据采集过程图。
图 3为本发明所述 JMX监控的通讯监控图。
具体实施方式
下面结合实施例对本发明作进一歩地详细说明, 但本发明的实施方式不 限于此。
J2EE, 是一套全然不同于传统应用开发的技术架构, 包含许多组件, 主 要可简化且规范应用***的开发与部署, 进而提高可移植性、 安全与再用价 值。
AMI, 高级量测体系 (advanced metering infrastructure , AMI)是一个用来 测量、 收集、 储存、 分析、 运用和传送用户用电数据、 电价信息和***运行 状况的完整的网络和***,能够有效地支持需求响应。
MDMS , 量测数据管理***。 是一个带有分析工具的数据库, 通过与 AMI自动数据手机*** (ADCS ) 的配合使用, 可处理和储存电表的计量值 得, 是 AMI体系中的一个重要组成部分。
JMX, JMX是一种应用编程接口, 可扩充对象和方法的集合体, 可以用 于跨越一系列不同的异构操作***平台、 ***体系结构和网络传输协议, 灵 活的开发无缝集成的***、网络和服务管理应用它提供了用户界面指导、 Java 类和开发集成***、 网络及网络管理应用的规范。
实施例 1 :
首先将***内设备打开, 完成开启歩骤, 然后完成基于 AMI与 J2EE的 智能用电数据管理方法, 如图 1所示, 包括以下歩骤:
歩骤 A、 采集任务分配: 根据不同业务需求, 按照待采集数据的配置条 件要求, 进行分配采集任务;
歩骤 B、 采集任务执行: 经歩骤 A, 根据编制好的采集任务, 按照要求 自动下发采集指令到采集终端或量测设备, 获取采集终端或量测设备的各类 数据;
歩骤 C、 数据检査: 对歩骤 B采集回来的数据进行包括业务规则检査、 数据完整性检査、 数据质量检査等一系列以针对数据结果正确与否进行的检 査;
歩骤 D、 数据存储: 将采集终端或量测设备采集回来的数据根据业务需 要划分为一类实时数据、 二类历史数据、 三类事件数据, 分别建立对应的消 息队列, 将数据存储到缓存区达到设定量后进行批量存储。
当歩骤 D完成后将结束数据采集, 完成结束歩骤。
实施例 2:
本实施例是在上述实施例的基础上进一歩优化,首先将***内设备打开, 完成开启歩骤, 完成下述歩骤:
歩骤 A、 采集任务分配: 根据不同业务需求, 按照待采集数据的配置条 件要求, 进行分配采集任务, 包括下述歩骤:
歩骤 A.l、 数据采集: 智能用电数据管理***对 Q/GDW 376.1-2009协 议、 MODBUS等采集终端常规协议的兼容开发与特性开发, 根据不同的业 务需要, 通过智能电表、 集中器、 采集器采集能耗设备数据, 通过传感器采 集环境温度数据、 辐射、 风速、 压力等数据;
歩骤 A.2、 数据过滤: 将从主要由传感器组成的量测设备和主要由智能 电表、 集中器、 采集器组成的采集终端得到的响应报文通过智能用电数据管 理***各种内置的过滤器进行数据匹配与过滤, 最终转换成智能用电数据管 理***能够识别的数据和信息。
歩骤 B、 采集任务执行: 经歩骤 A, 根据编制好的采集任务, 按照要求 自动下发采集指令到采集终端或量测设备, 获取采集终端或量测设备的各类 数据, 数据采集整体设计基于统一规范要求和标准, 对各种采集需求做到完 美兼容, 包括下述歩骤:
歩骤 B.l、 收集市面上各种主流采集终端或量测设备的通信协议; 歩骤 B.2、 针对这些协议分析通信规则, 找共性, 开发兼容通信包; 歩骤 B.3、 针对主流采集设备的个性通信规则, 进行最小差异化开发; 歩骤 B.4、 打包成一个大共性, 小异性的兼容性通信 API;
歩骤 B.5、 搭建测试环境, 对主流采集设备进行测试
歩骤 B.6、 根据测试结果修改程序;
歩骤 B.7、 完成采集任务执行过程。 歩骤 C: 数据检査: 对歩骤 B采集回来的数据进行包括业务规则检査、 数据完整性检査、 数据质量检査等一系列以针对数据结果正确与否进行的检 査, 数据采集实现采用无阻塞流通道技术实现自动或人工补召方式保证数据 的完整性和有效性, 数据检査采用可配置检査指标方式实现数据检査的可配 置、 可调节, 并设计出一套完整的数据检査指标方案, 所述歩骤 C包含如下 歩骤:
歩骤 C.l、 数据采集过程: 针对管理界面接收到的采集任务信息, 按其 具体配置条件对采集任务进行分组分时执行, 按照配置条件匹配目标采集终 端的通信协议对应在智能用电数据管理协议解析中的 API, 通过智能用电数 据管理数据处理层对 API的采集指令进行数据转换, 自动按照采集任务下发 采集设备能够识别的加密的采集指令到采集终端, 智能用电数据管理数据处 理层对采集终端反馈的加密的数据进行算法解密, 并将采集回来的数据转换 为智能用电数据管理***能够识别和存储的格式。
歩骤 C.2、 数据质量检査: 提供有效的数据检査指标, 对采集的数据的 合理性、 有效性进行检査;
歩骤 C.3、 检査结果: 通过智能用电数据管理***按照业务规格设置的 数据验证指标对数据进行验证, 来实现数据的完整性和正确性;
歩骤 C.4、经歩骤 C.3 , 如果所采集数据为合格数据或采集数据成功则将 执行歩骤 D; 如若所采集数据为不合格数据或采集数据不成功则将进行数据 补采的选择, 当选择补采, 执行歩骤 C.1 , 当选择不补采, 执行歩骤0。
歩骤 D: 数据存储: 将采集终端或量测设备采集回来的数据根据业务需 要划分为一类实时数据、 二类历史数据、 三类事件数据, 分别建立对应的消 息队列, 将数据存储到缓存区达到设定量后进行批量存储。
实施例 3:
本实施例是在上述实施例的基础上进一歩优化, 进一歩的, 为更好的实 现本发明所述方法, 歩骤 C.3还包括以下歩骤:
歩骤 C3.1、 采集质量检査: 对采集任务的执行质量进行检査, 统计数据 采集成功率、 采集的完整率;
歩骤 C3.2、 实时召采: 数据检査完成后发现存在问题进行的差异化采集 通讯。 实时召采, 根据接收到的实时数据采集要求, 通过远程技术手段, 自 动下发采集指令, 实时召采终端或量测设备的数据。 本发明实时采集用电单 位中的各种信息, 主要包括照度、 温度、 湿度、 烟雾、 压力、 流量、 用电量、 设备状态等信息, 进行实时展示、 智能控制及异常事件监控和报警。
实施例 4:
基于 AMI与 J2EE的智能用电数据管理***,如图 2所示,包括传感器、 串口服务器、 通讯服务电路、 采集终端, 所述传感器通过串口服务器同通讯 服务电路连接, 所述通讯服务电路连接采集终端, 所述采集终端包括智能电 表、 集中器和采集器; 在所述通讯服务电路设置有将传感器、 智能电表、 集 中器、 采集器等所得终端或量测设备的响应报文进行数据匹配与过滤的过滤 链层; 在所述通讯服务电路设置有用于完成歩骤 B、 歩骤 C、 歩骤 D的 loHandler业务处理层; 所述过滤链层中包括链路层过滤器、 加密过滤器、请 求响应过滤器、 应用层过滤器、 事件过滤器、 心跳过滤器、 时钟同歩过滤器、 身份认证过滤器、 上行消息队列过滤器和下行消息队列过滤器; 经过滤链层 所述 loHandler业务处理层将数据对象处理最终转化为业务数据进行存储。 数据采集以集中器、 采集器、 智能电表、 传感器、 串口服务器等硬件设 施为基础, 通过 tcp/ip协议和 lOService通信服务, 并经过过滤链层所设置的 链路层过滤器、 加密过滤器、 请求响应过滤器、 事件过滤器等对数据进行采 集过滤, 继续通过数据处理层设置的对象处理 (I类、 Π类、 参数、 事件、 modbus数据)、 数据质量检査、 采补、 数据批量库存来最终转化为业务数据 进行存储。
利用作为量测设备的传感器内所设置的诸如照度传感器、 温度传感器、 湿度传感器、 烟雾传感器、 压力传感器, 将一应传感器可采集的数据进行采 集; 并利用智能电表、 采集器和集中器所构成的采集终端对流量、 用电量、 设备状态等信息进行采集, 传输到通讯服务电路内, 在其内部所设置的过滤 链层上的链路层过滤器、 加密过滤器、 请求响应过滤器、 应用层过滤器、 事 件过滤器、 心跳过滤器、 时钟同歩过滤器、 身份认证过滤器、 上行消息队列 过滤器和下行消息队列过滤器进行相应的过滤, 过滤出过滤链层所设定的不 一样的数据并清除, 经过滤后的数据, 继续通过数据处理层设置的对象处理 (I类、 II类、 参数、 事件、 modbus数据)、 数据质量检査、 采补、 数据批量 库存来最终转化为业务数据进行存储。
本发明主要用于用电设备的运行展示和智能监控, 对于用电设备的实时 运行情况、 微环境的实时参数进行联动展示和智能控制, 当用电设备无人值 守时对可能发生的各种异常事件进行预测, 对已发生的各种故障进行记录并 自动通知相关责任人。
本发明能够一方面将人们从日常的繁重劳动中解放出来, 另一方面能够 提高设备使用效率, 对智能减排、 增效降污的中国来说显得尤为重要。 实施例 5:
本实施例是在上述实施例的基础上进一歩优化, 进一歩的, 为更好的实 现本发明所述***, 在所述串口服务器与通讯服务电路之间进行通信时采用 TCP/IP通信且采用 JMX监控; 在采集终端与通讯服务电路之间进行通信时 采用 TCP/IP通信且采用 JMX监控。
***通过 JMX监控实时的显示受控资源的状态信息,当受控资源的状态 出现异常的时候, 该监控***通过发送电子邮件或发送短消息方式报警。
如图 3所示, ***使用 JMX代理层所设的 JXM监控收集受控资源状态 信息。 JMI代理层和受控资源运行在同一台机器上。通过 JMX分布式服务层 组件把代理层收集到的受控资源状态信息发送到监控***的监控应用客户端 管理程序。 监控应用客户端管理程序接收监控应用代理端发送过来的受控资 源状态信息, 并对信息作进一歩处理。
进一歩的, 为更好的实现本发明所述***, 在通讯服务电路中采用 IOService通信服务。
数据展现方面实现多种展现方式, 不但对基础数据进行査询展示, 并通 过数据挖掘、 数据分析实现了多种参数 (人员密度、 空气湿度、 环境温度、 原始数据、 特殊状况等) 情况下进行电能数据的各种预测。
本发明满足信息***权限管理所需, 将企业身份数据进行统一管理, 所 有的受控资源对象或资源抽象对象进行集中管理, 有效提高管理效率、 降低 生产及管理成本。
以上所述, 仅是本发明的较佳实施例, 并非对本发明做任何形式上的限 制, 凡是依据本发明的技术实质对以上实施例所作的任何简单修改、 等同变 化, 均落入本发明的保护范围之内

Claims

M ^ ^
1、 基于 AMI与 J2EE的智能用电数据管理方法, 其特征在于: 包括以 下歩骤:
歩骤 A、 采集任务分配: 根据不同业务需求, 按照待采集数据的配置条 件要求, 进行分配采集任务;
歩骤 B、 采集任务执行: 经歩骤 A, 根据编制好的采集任务, 按照要求 自动下发采集指令到采集终端或量测设备, 获取采集终端或量测设备的各类 数据;
歩骤 C、 数据检査: 对歩骤 B采集回来的数据进行包括业务规则检査、 数据完整性检査、 数据质量检査, 以针对数据结果正确与否进行的检査; 歩骤 D、 数据存储: 将采集终端或量测设备采集回来的数据根据业务需 要划分为一类实时数据、 二类历史数据、 三类事件数据, 分别建立对应的消 息队列, 将数据存储到缓存区达到设定量后进行批量存储。
2、 根据权利要求 1所述的基于 AMI与 J2EE的智能用电数据管理方法, 其特征在于: 所述歩骤 A包括:
歩骤 A.l、数据采集:智能用电数据管理***对 Q/GDW 376.1-2009协议、 MODBUS等采集终端常规协议的兼容开发与特性开发, 根据不同的业务需 要, 通过智能电表、 集中器、 采集器采集能耗设备数据, 通过传感器采集包 括环境温度数据、 辐射数据、 风速数据、 压力数据; 歩骤 A.2、 数据过滤: 将从主要由传感器组成的量测设备和主要由智能电表、 集中器、 采集器组成 的采集终端得到的响应报文通过智能用电数据管理***各种内置的过滤器进 行数据匹配与过滤, 最终转换成智能用电数据管理***能够识别的数据和信 息。
3、 根据权利要求 1所述的基于 AMI与 J2EE的智能用电数据管理方法, 其特征在于: 所述歩骤 B包含如下歩骤:
歩骤 B.l、 收集市面上各种主流采集终端或量测设备的通信协议; 歩骤 B.2、 针对这些协议分析通信规则, 找共性, 开发兼容通信包; 歩骤 B.3、 针对主流采集设备的个性通信规则, 进行最小差异化开发; 歩骤 B.4、 打包成一个大共性, 小异性的兼容性通信 API;
歩骤 B.5、 搭建测试环境, 对主流采集设备进行测试
歩骤 B.6、 根据测试结果修改程序;
歩骤 B.7、 完成采集任务执行过程。
4、 根据权利要求 1所述的基于 AMI与 J2EE的智能用电数据管理方法, 其特征在于: 所述歩骤 C包含如下歩骤:
歩骤 C.l、 数据采集过程: 针对管理界面接收到的采集任务信息, 按其 具体配置条件对采集任务进行分组分时执行, 按照配置条件匹配目标采集终 端的通信协议对应在智能用电数据管理协议解析中的 API, 通过智能用电数 据管理数据处理层对 API的采集指令进行数据转换, 自动按照采集任务下发 采集设备能够识别的加密的采集指令到采集终端, 智能用电数据管理数据处 理层对采集终端反馈的加密的数据进行算法解密, 并将采集回来的数据转换 为智能用电数据管理***能够识别和存储的格式。
歩骤 C.2、 数据质量检査: 提供有效的数据检査指标, 对采集的数据的 合理性、 有效性进行检査;
歩骤 C.3、 检査结果: 通过智能用电数据管理***按照业务规格设置的 数据验证指标对数据进行验证, 来实现数据的完整性和正确性; 歩骤 C.4、经歩骤 C.3 , 如果所采集数据为合格数据或采集数据成功则将 执行歩骤 D; 如若所采集数据为不合格数据或采集数据不成功则将进行数据 补采的选择, 当选择补采, 执行歩骤 C.1 , 当选择不补采, 执行歩骤0。
5、 根据权利要求 4所述的基于 AMI与 J2EE的智能用电数据管理方法, 其特征在于: 歩骤 C.3还包括以下歩骤:
歩骤 C3.1、 采集质量检査: 对采集任务的执行质量进行检査, 统计数据 采集成功率、 采集的完整率;
歩骤 C3.2、 实时召采: 数据检査完成后发现存在问题进行的差异化采集 通讯。
6、 基于 AMI与 J2EE的智能用电数据管理***, 其特征在于: 包括传 感器、 串口服务器、 通讯服务电路、 采集终端, 所述传感器通过串口服务器 同通讯服务电路连接, 所述通讯服务电路连接采集终端, 所述采集终端包括 智能电表、 集中器和采集器; 在所述通讯服务电路设置有将传感器、 智能电 表、 集中器、 采集器等所得终端或量测设备的响应报文进行数据匹配与过滤 的过滤链层; 在所述通讯服务电路设置有用于完成歩骤 B、 歩骤 C、 歩骤 D 的 loHandler业务处理层; 所述过滤链层中包括链路层过滤器、 加密过滤器、 请求响应过滤器、 应用层过滤器、 事件过滤器、 心跳过滤器、 时钟同歩过滤 器、 身份认证过滤器、 上行消息队列过滤器和下行消息队列过滤器; 经过滤 链层所述 loHandler业务处理层将数据对象处理最终转化为业务数据进行存 储。
7、 根据权利要求 6所述的基于 AMI与 J2EE的智能用电数据管理***, 其特征在于:在所述串口服务器与通讯服务电路之间进行通信时采用 TCP/IP 通信且采用 JMX监控; 在采集终端与通讯服务电路之间进行通信时采用
TCP/IP通信且采用 JMX监控。
8、 根据权利要求 6所述的基于 AMI与 J2EE的智能用电数据管理***, 其特征在于: 在通讯服务电路中采用 IOService通信服务。
PCT/CN2014/082782 2014-07-07 2014-07-23 基于ami与j2ee的智能用电数据管理方法及*** WO2016004652A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12017500225A PH12017500225A1 (en) 2014-07-07 2017-02-07 Intelligent power usage management method and system based on ami and j2ee

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410319685.6A CN104123134B (zh) 2014-07-07 2014-07-07 基于ami与j2ee的智能用电数据管理方法及***
CN201410319685.6 2014-07-07

Publications (1)

Publication Number Publication Date
WO2016004652A1 true WO2016004652A1 (zh) 2016-01-14

Family

ID=51768559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082782 WO2016004652A1 (zh) 2014-07-07 2014-07-23 基于ami与j2ee的智能用电数据管理方法及***

Country Status (3)

Country Link
CN (1) CN104123134B (zh)
PH (1) PH12017500225A1 (zh)
WO (1) WO2016004652A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598590B (zh) * 2015-01-20 2018-04-20 国家电网公司 Cim与dlms/cosem数据的转换方法
CN104955082B (zh) * 2015-07-13 2018-09-11 北京博大光通国际半导体技术有限公司 一种无线传感器网络通讯质量图形化管理方法和***
CN106648912B (zh) * 2015-10-30 2020-11-03 北京国双科技有限公司 数据采集平台中数据处理的模块化方法及装置
CN105471107B (zh) * 2015-12-24 2018-04-17 安徽立卓智能电网科技有限公司 一种电网电能量计量***的分时任务采集方法
CN105550380A (zh) * 2016-02-16 2016-05-04 国网浙江新昌县供电公司 高配用户用电数据采集接入***及其工作方法
CN106941491B (zh) * 2017-03-29 2020-08-21 中国电力科学研究院 用电信息采集***的安全应用数据链路层设备及通信方法
CN107657544A (zh) * 2017-09-14 2018-02-02 国网辽宁省电力有限公司 一种改进的电费自动缴纳方法及***
CN109587186A (zh) * 2017-09-28 2019-04-05 中兴通讯股份有限公司 一种通过ami平台管理集中器的方法和装置
CN107945048A (zh) * 2017-11-15 2018-04-20 广东电网有限责任公司电力科学研究院 一种基于计量自动化***的数据补采***
CN108230654A (zh) * 2018-01-18 2018-06-29 华立科技股份有限公司 电表数据传输方法及装置
CN108595120A (zh) * 2018-04-11 2018-09-28 广东电网有限责任公司 一种scada准实时数据存储方法及***
CN108876132B (zh) * 2018-06-07 2020-12-22 合肥工业大学 基于云的工业企业能效服务推荐方法和***
CN110084472A (zh) * 2019-03-18 2019-08-02 科大方诚(杭州)智能科技有限公司 一种辐射环境检测工作运营***及其方法
CN110555583A (zh) * 2019-07-02 2019-12-10 国网浙江省电力有限公司 一种智能电网调度控制***广域运行数据统一处理方法
CN110519371A (zh) * 2019-08-28 2019-11-29 广州高谱技术有限公司 一种跨平台及支持多样部署的电力监控***的构建方法
CN112988359A (zh) * 2021-04-26 2021-06-18 成都淞幸科技有限责任公司 一种基于定时调度的采集任务智能分配方法及***
CN113379274A (zh) * 2021-06-22 2021-09-10 南方电网数字电网研究院有限公司 一种基于电能量数据的补采方法、***及存储介质
CN114928624A (zh) * 2022-03-16 2022-08-19 国网河北省电力有限公司营销服务中心 用电信息采集协议扩展方法、装置、存储介质以及终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101799681A (zh) * 2010-02-10 2010-08-11 刘文祥 智能电网
CN102257694A (zh) * 2008-12-15 2011-11-23 埃森哲环球服务有限公司 电网断电和故障状况管理
CN102881143A (zh) * 2012-10-22 2013-01-16 杭州海兴电力科技股份有限公司 Ami***中读取电能表事件记录的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519943C2 (sv) * 2000-12-14 2003-04-29 Abb Ab Metod för fellokalisering i en transmissionlinje
EP2511997A3 (en) * 2002-10-25 2013-11-20 S & C Electric Company Method and apparatus for control of an electric power system in response to circuit abnormalities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102257694A (zh) * 2008-12-15 2011-11-23 埃森哲环球服务有限公司 电网断电和故障状况管理
CN101799681A (zh) * 2010-02-10 2010-08-11 刘文祥 智能电网
CN102881143A (zh) * 2012-10-22 2013-01-16 杭州海兴电力科技股份有限公司 Ami***中读取电能表事件记录的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, HUIMIN ET AL.: "Discussion on Collecting Terminal Test System of Intelligent Power Use Information", GUANGXI ELECTRIC POWER, 2013, pages 118 - 121, XP055252289, ISSN: 1671-735X *

Also Published As

Publication number Publication date
CN104123134B (zh) 2017-05-10
PH12017500225A1 (en) 2017-07-10
CN104123134A (zh) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2016004652A1 (zh) 基于ami与j2ee的智能用电数据管理方法及***
CN111262346B (zh) 一种变电站一体化自动验收***和方法
CN106329721B (zh) 一体化智能电能表及电力计量与控制保护***
JP5616330B2 (ja) 電力グリッドを管理する方法およびシステム
CN111371185A (zh) 一种基于配变终端的线损监测***和方法
CN111131417B (zh) 一种变电站计量监测分析***及方法
BR102016006907A2 (pt) sistema, método, instruções de armazenamento de meio legível por computador e meio legível por computador, não transitório e tangível
CN103852744A (zh) 电能计量装置分布式在线监测***及其方法
CN105160864A (zh) 一种智能电能表运行数据监测***及方法
CN102789219A (zh) 一种能源管理***
US20200117151A1 (en) Outage and switch management for a power grid system
CN102298378B (zh) 一种工业园区有序用电管理***及方法
CN103107914A (zh) 远方电量采集终端检测方法及***
CN103729990A (zh) 基于多合一传感器的电缆线路在线监测***
CN101794503B (zh) 一种变电站电能量平衡监测***
Wu et al. Design of a wireless ARM-based automatic meter reading and control system
CN109391923A (zh) 一种基于5g架构的建筑能耗管理方法及***
CN107832946A (zh) 一种用于生产车间的电能监控与管理方法及***
CN112383141A (zh) 基于区块链的智能融合终端
CN105785837A (zh) 一种基于嵌入式***的能源监测控制装置及方法
CN102970178A (zh) 一种低压集中抄表终端本地通信性能分析仪
Sun et al. The energy consumption monitoring platform design for large-scale industry users based on the GPRS
Di Leo et al. Towards visual smart metering exploiting wM-Bus and DLMS/COSEM
CN203455678U (zh) 一种电网调度自动化设备时钟监测***
CN105021054A (zh) 结合物联网技术与移动管理应用的智能化电炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12017500225

Country of ref document: PH

122 Ep: pct application non-entry in european phase

Ref document number: 14897265

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.06.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14897265

Country of ref document: EP

Kind code of ref document: A1