WO2016004387A1 - Gene expression signature for cancer prognosis - Google Patents

Gene expression signature for cancer prognosis Download PDF

Info

Publication number
WO2016004387A1
WO2016004387A1 PCT/US2015/039108 US2015039108W WO2016004387A1 WO 2016004387 A1 WO2016004387 A1 WO 2016004387A1 US 2015039108 W US2015039108 W US 2015039108W WO 2016004387 A1 WO2016004387 A1 WO 2016004387A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemotherapy
subject
expression
mrnas
cancer
Prior art date
Application number
PCT/US2015/039108
Other languages
French (fr)
Inventor
Jesus Gonzalez BOSQUET
Johnathan Mark Lancaster
Original Assignee
H. Lee Moffitt Cancer Center And Research Institute, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H. Lee Moffitt Cancer Center And Research Institute, Inc. filed Critical H. Lee Moffitt Cancer Center And Research Institute, Inc.
Publication of WO2016004387A1 publication Critical patent/WO2016004387A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • Epithelial ovarian cancer has the highest mortality rate of all gynecologic cancers 1 , mainly because more than 70% of patients present with advanced stage and will have disseminated intra-peritoneal disease at diagnosis 2 . But also because between 20-30% will not respond to the initial treatment consisting of a combination of cytoreductive surgery and a platinum-based chemotherapy 3 . Even in some patients with a complete initial response to chemotherapy, the disease will recur and eventually develop resistance to multiple drugs 4 .
  • the current invention provides a method of treating a subject suffering from a cancer, the method comprising the steps of:
  • the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
  • the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder.
  • the method may further comprise the step of obtaining the sample from the subject.
  • the method may further comprise measuring (quantifying) the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in the sample obtained from the subject.
  • the current invention also provides microarray chip comprising mRNAs corresponding to proteins involved in cellular signaling pathways directly associated with responsiveness to chemotherapy for treatment of a cancer, the microarray chip consisting essentially of oligonucleotides corresponding to the mRNAs corresponding to the proteins identified in Table 9 or Table 12.
  • the microarray chips of the current invention are useful in practicing the claimed invention of identifying a subject suffering from a cancer as a good candidate for chemotherapy.
  • Figures 1A-1C show consensus matrices of the final signature model.
  • Figure 2A GSE9891 database 15 .
  • Figure 2B GSE3149 database 14 .
  • Figure 2C GSE26712 database 18 .
  • Figure 2D GSE23554 database 12 .
  • Figure 2E GSE17260 database 17 .
  • Figure 3 shows gene expression correlation matrix of the 422 and association with pathway analysis. Pathway analysis of both clusters showed an overrepresentation of cellular signaling and immune response pathways in cluster #1 (blue), and DNA repair/replication within the context of cell cycle pathways in cluster #2 (yellow).
  • Figure 4 shows gene expression profile of genes included in cluster #1 and #2 and their association with significant pathways identified with enrichment pathway analyses.
  • Cluster 1 significantly associated with cell signaling (blue), immune response (yellow) and a variety of metabolic pathways (purple).
  • Cluster 2 significantly associated with DNA repair/replication and cell cycle (green), pathways in cancer (red) and a cell adhesion/cytoskeleton pathways (maroon).
  • Figure 5. Multivariate analysis of clinical factors affecting survival in TCGA database. Kaplan-Meier curve representing survival of patients with CR versus patients with IR (graph). Table with independent clinical variables for survival in TCGA: chemo-response is the most significant of all of them with a p-value ⁇ 10-15 (table).
  • Figure 7 Representation of genomic somatic gains and losses determined by the genomic identification of significant targets in cancer (GISTIC) analysis. Losses (blue) and gains (red) are represented with respect to their position in each chromosome. Depiction of X and Y chromosomes are the result of all individuals being female.
  • Figures 8A-8D TCGA analyses of gene expression, mutations, DNA methylation and miRNA expression between CR samples and IR samples.
  • Figure 8 A Heat map of a 69 gene expression signature predictive of CR versus IR in the correlated CNA-gene expression (CCP) subset of genes.
  • Figure 8B Mutated genes associated with chemo-response, CR versus IR (in the first column) and their significant correlation with expressed genes (second column) in the CCP gene subset, p-value ⁇ 10 "4 .
  • Figure 8C Heat map of the 69 genes differentially methylated between the CR and IR groups at 0.001 level of the univariate test.
  • Figure 8D Heat map of the 38 miRNA differentially expressed between the CR and IR groups (p-value ⁇ 0.05, as there were only 619 unique miRNA entering the analysis).
  • FIG. 9 Validation of TCGA gene expression signature in independent available databases. Same study design (definitions of variables, normalization procedures, statistics), same software and analysis tools (BRB Array Tools) were used for validation. GEO# GSE9891 15 , with a p-value ⁇ 0.001. GSE23554 12 , with a p-value of 0.02. GSE28739 16 , with a p-value of 0.01.
  • Figures 10A-10B Transcription factor (TF) binding site analysis.
  • Figure 10A Heat map of the 59 differentially expressed genes between CR and IR that were identified to have TF binding sites at the CCP gene subset (p-value ⁇ 0.01).
  • Figure 10B UCSC Genome Browser of one of the significant genes, RHOT1, with representation of its TF binding sites (above) and conserved gene structure across species (below).
  • Figures 11A-11E Detail of level of agreement (kappa coefficient) for placement of an individual gene in the same cluster than in TCGA analysis represented in contingency tables.
  • Figure 11A GSE9891 database 15 .
  • Figure 11B GSE3149 database 14 .
  • Figure 1 1C GSE26712 database 18 .
  • Figure 11D GSE23554 database 12 .
  • Figure HE GSE17260 database 17 .
  • a third of patients with epithelial ovarian cancer (OVCA) do not respond to standard treatment.
  • the determination of a robust signature that predicts chemo-response could lead to the identification of molecular markers for response as well as possible clinical implementation in the future to identify patients at risk of failing therapy.
  • the claimed invention was designed to identify biological processes affecting candidate pathways associated with chemo-response and to create a robust gene signature. After identifying common pathways associated with chemo-response in serous OVCA in 3 independent gene expression experiments, the biological processes associated with them was assessed using The Cancer Genome Atlas (TCGA) dataset for serous OVCA.
  • TCGA Cancer Genome Atlas
  • CNA differential copy number alterations
  • mutations mutations
  • DNA methylation DNA methylation
  • miRNA expression was also identified.
  • CNA differential copy number alterations
  • a consensus clustering of this signature identified differentiated clusters with unique molecular patterns: for example, a cluster was significant for cellular signaling and immune response (mainly cell-mediated); whereas, another cluster was significant for pathways involving DNA damage repair and replication, cell cycle and apoptosis.
  • Validation through consensus clustering was performed in 5 independent OVCA gene expression experiments. Genes were located in the same cluster with consistent agreement in all 5 studies (Kappa coefficient > 0.6 in 4). As such, integrating high throughput biological data provides a robust molecular signature that predicts chemo- response in OVCA.
  • the current invention provides a method for determining whether a subject suffering from a cancer is a good candidate or a bad candidate for a chemotherapy for the cancer, the method comprising the steps of:
  • the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
  • the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder.
  • the method of the claimed invention can further comprise treating the subject suffering from a cancer, the method comprising the steps of:
  • the method may further comprise the step of obtaining the sample from the subject.
  • the method may further comprise measuring (quantifying) the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in the sample obtained from the subject.
  • the subject is the good candidate for the chemotherapy if the expression in the tissue sample of the subject of at least 80%>, 85%, 90%, 95% or 99% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder and/or the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 20%, 15%, 10%, 5% or 1% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder.
  • the good responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample from a person known to be responsive to the chemotherapy, wherein the sample from the person known to be responsive to the chemotherapy is obtained from the person before the administration of the chemotherapy.
  • the bad responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample from a person known to be non-responsive to the chemotherapy, wherein the sample from the person known to be non-responsive to the chemotherapy is obtained before the administration of the chemotherapy.
  • a good responder i.e., a complete responder
  • the chemotherapy comprises administering a platinum based drug, a taxane, or both (such as Taxol/Carbo) to a subject.
  • a platinum based drug include cisplatin, carboplatin, oxalaplatin, satraplatin, picoplatin, nedaplatin, triplatin, or a combination of two or more of the foregoing.
  • the platinum-based drug may be a liposomal version, such as lipoplatin.
  • Non- limiting examples of taxanes include paclitaxel, docetaxel, cabazitaxel, or a combination of two or more of the foregoing. Additional examples of platinum based drugs and/or taxanes are well known to a person of ordinary skill in the art and such embodiments are within the purview of the current invention.
  • cancer refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • a particular cancer may be characterized by a solid mass tumor.
  • the solid tumor mass if present, may be a primary tumor mass.
  • a primary tumor mass refers to a growth of cancer cells in a tissue resulting from the transformation of a normal cell of that tissue. In most cases, the primary tumor mass is identified by the presence of a cyst, which can be found through visual or palpation methods, or by irregularity in shape, texture or weight of the tissue.
  • cancers are not palpable and can be detected only through medical imaging techniques such as X-rays (e.g., mammography), or by needle aspirations. The use of these latter techniques is more common in early detection.
  • X-rays e.g., mammography
  • needle aspirations e.g., needle aspirations.
  • Molecular and phenotypic analysis of cancer cells within a tissue will usually confirm if the cancer is endogenous to the tissue or if the lesion is due to metastasis from another site.
  • the term cancer or tumor is inclusive of solid tumors and non-solid tumors.
  • Cancers suitable for practicing the methods of the claimed invention include, but are not limited to, cancer and/or tumors of the anus, bile duct, bladder, bone, bone marrow, bowel (including colon and rectum), breast, eye, gall bladder, kidney, mouth, larynx, esophagus, stomach, testis, cervix, head, neck, ovary, lung, mesothelioma, neuroendocrine, penis, skin, spinal cord, thyroid, vagina, vulva, uterus, liver, muscle, pancreas, prostate, blood cells (including lymphocytes and other immune system cells), and brain.
  • cancers suitable for practicing the methods of the claimed invention include, but are not limited to, cancer and/or tumors of the anus, bile duct, bladder, bone, bone marrow, bowel (including colon and rectum), breast, eye, gall bladder, kidney, mouth, larynx, esophagus, stomach, testis, cervix, head, neck,
  • Specific cancers contemplated with the methods of the present invention include, but are not limited to, carcinomas, Karposi's sarcoma, melanoma, mesothelioma, soft tissue sarcoma, ovarian cancer, uterine cancer, endometrial cancer, breast cancer, pancreatic cancer, lung cancer, leukemia (acute lymphoblastic, acute myeloid, chronic lymphocytic, chronic myeloid, and other), and lymphoma (Hodgkin's and non-Hodgkin's), and multiple myeloma.
  • cancers that can be treated according to the present invention are:
  • Ependymoma Childhood Myeloid Leukemia, Adult Acute
  • Esophageal Cancer Myeloid Leukemia, Childhood Acute Esophageal Cancer, Childhood Myeloma, Multiple
  • Thymoma Childhood Renal Cell (Kidney) Cancer, Childhood
  • the cancer is a gynecologic cancer.
  • the cancer is ovarian cancer (e.g., epithelial ovarian cancer or serous ovarian cancer), endometrial cancer, uterine cancer, or breast cancer.
  • the cancer is breast cancer of the triple-negative type (TNBC; any breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and Her2/neu.
  • the cancer may be primary or metastatic.
  • the cancer may be any grade or stage.
  • the cancer may be stage I, IA, IB, IC, II, IA, IIB, IIC, III, IA, IIIB, IIIC, or IV.
  • beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable.
  • Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those with the condition or disorder.
  • Various well known methods can be used to estimate and compare the expression of mR As for practicing the claimed invention. These methods include, but are not limited to detecting and quantifying the expression of mRNAs by northern blot analysis, micro-array based method, real-time quantitative PCR, or semi-quantitative RT-PCR.
  • the method of the current invention is practiced in a mammal.
  • a mammal include a human, ape, canine, pig, bovine, rodent, or feline.
  • the sample used for practicing the methods of the current invention can be a tissue sample or a body fluid sample.
  • tissue sample include brain, eyes, Pineal gland, Pituitary gland, Thyroid gland, Parathyroid glands, thorax, heart, lungs, esophagus, Thymus gland, pleura, Adrenal glands, Appendix, Gall bladder, urinary bladder, large intestine, small intestine, kidneys, liver, pancreas, spleen, stoma, Prostate gland, Testes, ovaries, or uterus.
  • Non-limiting examples of a body fluid sample include amniotic fluid, aqueous humor, vitreous humor, bile, cerebrospinal fluid, chyle, endolymph, perilymph, female ejaculate, male ejaculate, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sputum, synovial fluid, vaginal secretion, pancreatic juice or aspirate, pancreatic cyst fluid, serum, plasma, and blood.
  • amniotic fluid include amniotic fluid, aqueous humor, vitreous humor, bile, cerebrospinal fluid, chyle, endolymph, perilymph, female ejaculate, male ejaculate, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, s
  • the treatments of the invention include certain steps that are also a separate aspect of the invention: a method for determining whether a subject suffering from a cancer is a good candidate or bad candidate for a chemotherapy for the cancer, the method comprising the steps of:
  • Table 9 or Table 12 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
  • the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
  • the method further includes administering the chemotherapy to the subject identified as a good candidate; or withholding chemotherapy and, optionally, administering a cancer treatment other than chemotherapy (e.g., an immunotherapy) to the subject identified as a bad candidate for chemotherapy.
  • a cancer treatment other than chemotherapy e.g., an immunotherapy
  • Another aspect of the invention includes a method for gene expression analysis, comprising:
  • the method further comprises providing a report of the outcome of a). In some embodiments, when b), is carried out, the method may further comprise providing a report of the outcome of b), such as to a healthcare provider or to the subject.
  • a report may be generated and provided to a healthcare provider or to the subject.
  • the report can be in electronic, verbal, or in paper format, for example.
  • the report can be provided electronically, telephonically (e.g., by facsimile, using devices such as fax back), or by mail or courier, or in person, for example.
  • the report includes an icon or other indicator indicating the classification of a sample as being above or below a reference value as described with the methods of treatment of the invention.
  • the report includes an indicator of whether the subject is a good candidate or a bad candidate for chemotherapy as described with the methods of the treatment of the invention.
  • the current invention further provides a microarray chip useful for carrying out the methods of the invention, comprising or consisting essentially of the oligonucleotides corresponding to mR As corresponding to proteins directly associated with cellular signaling pathways that impact responsiveness to a chemotherapy for the treatment of cancer.
  • a microarray chip "consisting essentially of oligonucleotides corresponding to mRNAs corresponding to proteins directly associated with cellular signaling pathways that impact responsiveness to a chemotherapy for the treatment of cancer indicates that the microarray chip contains only those oligonucleotides which correspond to mRNAs corresponding to proteins directly associated with cellular signaling pathways that impact responsiveness to a chemotherapy for the treatment of cancer and do not contain oligonucleotides corresponding to mRNAs corresponding to proteins that are not so associated.
  • the microarray chips of the claimed invention consist of about 500, about 600, about 700, about 800, about 900 or about 1000 oligonucleotides.
  • the microarray chips of the claimed invention consist essentially of oligonucleotides corresponding to mRNAs corresponding to proteins directly associated with cellular signaling pathways that impact responsiveness to a chemotherapy which comprises administering a platinum based drug and/or taxane to the subject.
  • the platinum based drug can be cisplatin, carboplatin, oxalaplatin or a combination thereof and the taxane can be paclitaxel and/or docetaxel.
  • the current invention provides microarray chips consisting essentially of oligonucleotides corresponding to mRNAs corresponding to proteins identified in Table 9 or Table 12.
  • the oligonucleotides which act as capture probes, are immobilized on a solid surface (e.g., plate, flow channel, bead or other particle, etc.).
  • the oligonucleotides may be systematically arranged in different positions (e.g., by spatial mapping or by differential tagging).
  • the arrayed arrayed oligonucleotide sequences are then hybridized with isolated nucleic acids (such as cDNA, miRNA or mRNA) from the test sample obtained from a subject.
  • isolated nucleic acids such as cDNA, miRNA or mRNA
  • the isolated nucleic acids from the test sample are labeled, such that their hybridization with the specific complementary oligonucleotide on the array (e.g., from Table 9, Table 12, or both) can be determined.
  • the test sample nucleic acids are not labeled, and hybridization between the oligonucleotides on the array and the target nucleic acid is detected using a sandwich assay, for example using additional oligonucleotides complementary to the target that are labeled.
  • the hybridized nucleic acids are detected by detecting one or more labels attached to the sample nucleic acids or attached to a nucleic acid probe that hybridizes directly or indirectly to the target nucleic acids.
  • the labels can be incorporated by any of a number of methods.
  • the label is simultaneously incorporated during the amplification step in the preparation of the sample nucleic acids.
  • PCR polymerase chain reaction
  • transcription amplification using a labeled nucleotide incorporates a label into the transcribed nucleic acids).
  • Detectable labels suitable for use in embodiments throughout this disclosure include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means.
  • Useful labels include biotin for staining with labeled streptavidin conjugate, magnetic beads (for example DYNABEADS), fluorescent dyes (for example, fluorescein, Texas red, rhodamine, green fluorescent protein, and the like), chemiluminescent markers, radiolabels, enzymes (for example, horseradish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic (for example, polystyrene, polypropylene, latex, etc.) beads.
  • labels teaching the use of such labels include U.S. Patent No. 3,817,837; U.S. Patent No. 3,850,752; U.S. Patent No. 3,939,350; U.S. Patent No. 3,996,345; U.S. Patent No. 4,277,437; U.S. Patent No. 4,275,149; and U.S. Patent No. 4,366,241.
  • labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
  • radiolabels may be detected using photographic film or scintillation counters
  • fluorescent markers may be detected using a photodetector to detect emitted light.
  • Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and colorimetric labels are detected by simply visualizing the colored label.
  • the label may be added to the target (sample) nucleic acid(s) prior to, or after, the hybridization.
  • direct labels are detectable labels that are directly attached to or incorporated into the target (sample) nucleic acid prior to hybridization. In contrast, so-called “indirect labels” are joined to the hybrid duplex after hybridization.
  • the indirect label is attached to a binding moiety that has been attached to the target nucleic acid prior to the hybridization.
  • the target nucleic acid may be biotinylated before the hybridization.
  • an avidin-conjugated fluorophore will bind the biotin bearing hybrid duplexes providing a label that is easily detected (see Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 24: Hybridization With Nucleic Acid Probes, P. Tijssen, ed. Elsevier, N.Y., 1993).
  • Embodiment 1 A method of treating a subject suffering from a cancer, the method comprising the steps of:
  • the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 are not significantly different than the corresponding reference values for the good responder, and/or
  • the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 are significantly different than the corresponding reference value for a bad responder, and
  • Embodiment 3 The method of any preceding embodiment, wherein the good responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 in a sample from a person known to be responsive to the chemotherapy, wherein the sample from the person known to be responsive to the chemotherapy is obtained before the administration of the chemotherapy.
  • Embodiment 4 The method of any preceding embodiment, wherein the bad responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 in a sample from a person known to be non-responsive to the chemotherapy, wherein the sample from the person known to be non- responsive to the chemotherapy is obtained before the administration of the chemotherapy.
  • Embodiment 5 The method of any preceding embodiment, wherein the chemotherapy comprises administering a platinum based drug and/or taxane to the subject.
  • Embodiment 6 The method of any preceding embodiment, wherein the platinum based drug is cisplatin, carboplatin, oxaliplatin or a combination of two or more of the foregoing.
  • Embodiment 7 The method of any preceding embodiment, wherein the taxane is paclitaxel and/or docetaxel.
  • Embodiment 8 The method of any preceding embodiment, wherein the cancer is epithelial ovarian cancer, serous ovarian cancer, endometrial ovarian cancer, uterine cancer or breast cancer.
  • Embodiment 9 The method of any preceding embodiment, wherein said method comprises identifying the subject as a good candidate for a chemotherapy; and administering the chemotherapy to the subject identified as the good candidate for the chemotherapy.
  • Embodiment 10 The method of any one of embodiments 1 to 8, wherein said method comprises identifying the subject as a bad candidate for a chemotherapy; and administering a cancer treatment other than the chemotherapy to the subject identified as the bad candidate for the chemotherapy.
  • Embodiment 11 The method of any preceding embodiment, wherein the step of comparing the expression of mRNAs corresponding to the proteins identified in Table 9 in the sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy comprises:
  • Embodiment 12 The method of any preceding embodiment, wherein the sample is a tissue sample or a body fluid sample.
  • Embodiment 13 The method of embodiment 12, wherein the sample is a body fluid sample that is amniotic fluid, aqueous humor, vitreous humor, bile, cerebrospinal fluid, chyle, endolymph, perilymph, female ejaculate, male ejaculate, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sputum, synovial fluid, vaginal secretion, pancreatic juice or aspirate, pancreatic cyst fluid, serum, plasma, or blood.
  • pericardial fluid peritoneal fluid
  • pleural fluid pus, rheum
  • saliva saliva
  • sputum synovial fluid
  • pancreatic juice or aspirate pancreatic cyst fluid, serum, plasma, or blood.
  • Embodiment 14 The method of embodiment 12, wherein the sample is a tissue sample comprising or consisting of tissue of the brain, eyes, Pineal gland, Pituitary gland, Thyroid gland, Parathyroid glands, thorax, heart, lungs, esophagus, Thymus gland, pleura, Adrenal glands, Appendix, Gall blader, urinary blader, large intestine, small intestine, kidneys, liver, pancrease, spleen, stoma, Prostate gland, Testes, ovaries, or uterus.
  • Embodiment 15 The method of any preceding embodiment, wherein the subject is human.
  • Embodiment 16 A method of treating a subject suffering from a cancer, the method comprising the steps of:
  • Table 12 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
  • the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
  • the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 12 are significantly different than the corresponding reference value for a bad responder, and
  • Embodiment 17 The method of embodiment 16, wherein the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 80%, 85%o, 90%), 95%o or 99% of the mRNAs corresponding to the proteins identified in Table 12 are not significantly different than the corresponding reference values for the good responder and/or the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 20%>, 15%, 10%>, 5% or 1% of the mRNAs corresponding to the proteins identified in Table 12 are significantly different than the corresponding reference value for a bad responder.
  • Embodiment 18 The method of any preceding embodiment, wherein the good responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 12 in a sample from a person known to be responsive to the chemotherapy, wherein the sample from the person known to be responsive to the chemotherapy is obtained before the administration of the chemotherapy.
  • Embodiment 19 The method of any preceding embodiment, wherein the bad responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 12 in a sample from a person known to be non-responsive to the chemotherapy, wherein the sample from the person known to be non- responsive to the chemotherapy is obtained before the administration of the chemotherapy.
  • Embodiment 20 The method of any preceding embodiment, wherein the chemotherapy comprises administering a platinum based drug and/or taxane to the subject.
  • Embodiment 21 The method of embodiment 20, wherein the platinum based drug is cisplatin, carboplatin, oxalaplatin or a combination of two or more of the foregoing.
  • Embodiment 22 The method of embodiment 21, wherein the taxane is paclitaxel and/or docetaxel.
  • Embodiment 23 The method of any preceding embodiment, wherein the cancer is epithelial ovarian cancer, serous ovarian cancer, endometrial ovarian cancer, uterine cancer or breast cancer.
  • Embodiment 24 The method of any preceding embodiment, wherein the step of comparing the expression of mRNAs corresponding to the proteins identified in Table 12 in the sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy comprises:
  • Embodiment 25 The method of any preceding embodiment, wherein the subject is human.
  • Embodiment 26 The method of any preceding embodiment, wherein the sample is a tissue sample or a body fluid sample.
  • Embodiment 27 The method of embodiment 26, wherein the same is a tissue sample comprising or consisting of a tissue of the brain, eyes, Pineal gland, Pituitary gland, Thyroid gland, Parathyroid glands, thorax, heart, lungs, esophagus, Thymus gland, pleura, Adrenal glands, Appendix, Gall blader, urinary blader, large intestine, small intestine, kidneys, liver, pancrease, spleen, stoma, Prostate gland, Testes, ovaries, or uterus.
  • a tissue sample comprising or consisting of a tissue of the brain, eyes, Pineal gland, Pituitary gland, Thyroid gland, Parathyroid glands, thorax, heart, lungs, esophagus, Thymus gland, pleura, Adrenal glands, Appendix, Gall blader, urinary blader, large intestine, small intestine, kidneys, liver, pancrease, spleen,
  • Embodiment 28 The method of embodiment 26, wherein the sample is a body fluid sample that is amniotic fluid, aqueous humor, vitreous humor, bile, cerebrospinal fluid, chyle, endolymph, perilymph, female ejaculate, male ejaculate, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sputum, synovial fluid, vaginal secretion, pancreatic juice or aspirate, pancreatic cyst fluid, serum, plasma, or blood.
  • pericardial fluid peritoneal fluid
  • pleural fluid pus, rheum
  • saliva saliva
  • sputum synovial fluid
  • pancreatic juice or aspirate pancreatic cyst fluid, serum, plasma, or blood.
  • Embodiment 29 A microarray chip comprising mRNAs corresponding to proteins involved in cellular signaling pathways directly associated with responsiveness to chemotherapy for treatment of a cancer, the microarray chip comprises oligonucleotides corresponding to the mRNAs corresponding to the proteins identified in Table 9 or Table 12, or both.
  • Embodiment 30 The microarray chip of embodiment 29, wherein the chemotherapy comprises administering a platinum based drug and/or taxane to the subject.
  • Embodiment 31 The microarray chip of embodiment 30, wherein the platinum based drug is cisplatin, carboplatin, oxaliplatin or a combination thereof.
  • Embodiment 32 The microarray chip of embodiment 30, wherein the taxane is paclitaxel and/or docetaxel.
  • Embodiment 33 The microarray chip of any preceding embodiment, wherein the cancer is epithelial ovarian cancer, serous ovarian cancer, endometrial ovarian cancer, uterine cancer or breast cancer.
  • Embodiment 34 The microarray chip of embodiment 29, wherein the microarray chip has no more than one thousand different oligonucleotides (i.e., no more than one thousand oligonucleotides with different sequences).
  • Embodiment 35 The microarray chip of emnbodiment 29, wherein the microarray chip has no more than nine hundred different oligonucleotides.
  • Embodiment 36 The microarray chip of embodiment 29, wherein the microarray chip has no more than eight hundred different oligonucleotides.
  • Embodiment 37 The microarray chip of embodiment 29, wherein the microarray chip has no more than seven hundred different oligonucleotides.
  • Embodiment 38 The microarray chip of embodiment 29, wherein the microarray chip has no more than six hundred different oligonucleotides.
  • Embodiment 39 The microarray chip of embodiment 29, wherein the microarray chip has no more than five hundred different oligonucleotides.
  • Embodiment 40 The microarray chip of embodiment 29, wherein the microarray chip consists essentially of oligonucleotides corresponding to the mRNAs corresponding to the proteins identified in Table 9 or Table 12, or both
  • Embodiment 41 A method for determining whether a subject suffering from a cancer is a good candidate or bad candidate for a chemotherapy for the cancer, the method comprising the steps of:
  • the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
  • the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder.
  • Embodiment 42 A method for gene expression analysis, comprising:
  • Embodiment 43 The method of embodiment 42, further comprising providing a report of the outcome of a).
  • Embodiment 44 The method of embodiment 43, further comprising providing a report of the outcome of b).
  • OVCA cultured cell lines used were A2008, A2780CP, A2780S, C13, IGROV1, OV2008, OVCAR5, and T8 12 .
  • Cells were subjected to sequential treatment with increasing doses of cisplatin. Both cisplatin resistance and genome-wide expression changes were measured serially at baseline and after 3 and 6 cisplatin-treatment/expansion cycles.
  • Gene expression using Affymetrix Human U133 Plus 2.0 arrays was uploaded at the Gene Expression Omnibus (GEO), accession number GSE23553.
  • GEO clinical datasets 127 serous OVCA with chemo-response information from the dataset GSE23554 12 and dataset GSE3149 14 with Affymetrix Human Genome U133 Plus
  • TCGA cancergenome.nih.gov
  • TCGA comprehensive genomic information includes copy number variation, SNPs, miRNA expression, gene expression (mRNA), and DNA methylation as well as clinical and outcome information.
  • Data from TCGA was downloaded, normalized, formatted and organized for the integration and analysis with other biological datasets in accordance with the precepts of the TCGA data sharing agreements.
  • NCI National Cancer Institute
  • NHGRI National Human Genome Research Institute
  • Complete response was defined as complete disappearance of all disease up to 6 months after treatment.
  • IR incomplete response
  • the disease either not responded or progressed during treatment (refractory) or recurred within 6 months of treatment completion (resistant) 3 ' 19 ' 20 .
  • CNA Copy number alteration
  • Somatic mutation detection, calling, annotation and validation have been extensively discussed previously 23 .
  • Somatic mutation information resulting from Illumina Genome Analyzer DNA Sequencing GAIIx platform (Illumina Inc., San Diego, CA) was downloaded and formatted for analysis. Mutation information was downloaded as Level 3, or validated somatic mutations. Somatic mutation information was available from 137 samples from patients with CR and 55 with IR. For those patients, there were 6,716 unique genes presenting some type of validated somatic mutation. These included: frame shift insertions and deletions, in-frame insertions or deletions, missense, nonsense and nonstop mutations, silence, splice site and translation start site mutations.
  • Gene expression and correlation with CNA Raw gene expression data was downloaded from the TCGA Data Portal (Level 1), extracted, loaded, and normalized with the analytical software, BRB-ArrayTools. In total 594 microarrays samples analyzed with Affymetrix HT Human Genome U133 Array: 584 coming from cancer tissue and 10 coming from ovarian normal samples. DNA sequences were aligned to NCBI Build 36 of the human genome. There were 452 arrays with clinical information about chemo-response. During the Circular Binary Segmentation analysis of the CNA, a gene-centric table is created, which contains a value for each gene covered in the genomic array. This value is assigned based on the segmentation mean log ratios.
  • the gene-centric table is required for the correlation analysis between copy number and gene expression. Positive correlation between gene expression and CNA (increased CNA/increased gene expression, and decreased CNA/decreased gene expression) was performed using Spearman's rank correlation test, as the expression between genes is not completely independent one from another. Statistical significance was assessed with qFDR and p-value, and corrected for multiple analyses 24 .
  • DNA methylation data with beta-values, methylated (M) and unmethylated (U) intensities were downloaded from the TCGA Data Portal (Level 2), extracted, loaded, and normalized.
  • Level 2 TCGA Data Portal
  • Differential DNA methylation of gene promoters was computed based on beta-values. Beta-values for each sample and locus were calculated as (M/(M+U)) 23 .
  • miRNA expression analysis and its correlation with gene expression Raw miRNA expression data was downloaded from the TCGA Data Portal (Level 1), extracted, loaded, and normalized with the analytical software, BRB- Array Tools. In total 595 microarrays samples of Agilent Human miRNA Microarray Rell2.0 (Agilent Technologies Inc., Santa Clara, CA): 585 cancer, 10 normal. There were 455 unique miRNA expression arrays from serous OVCA with clinical information about chemo-response 23 . Differences of miRNA expression between the classes (CR vs. IR) at the univariate significance level of p ⁇ 0.05 were considered significant, as there were 619 unique miRNA tested.
  • CR vs. IR CR vs. IR
  • Rank-based Spearman correlation was used to allow for non-linear relationships between miRNA expression and gene expression, along with p-values.
  • FDR false discovery rate
  • qFDR statistical significance
  • TF binding sites and their association with gene expression To identify TF and their binding sites within the CNA-Correlated-Pathway (CCP) gene subset, we used publicly available search tools, The Transcription Factor Database (TRANSFAC®) 25 .
  • TRANSFAC is a knowledge-base containing published data on eukaryotic transcription factors, their experimentally-proven binding sites, and regulated genes 26 that utilizes a range of tools and algorithms to search DNA sequences for predicted TF binding sites through high-throughput promoter analysis. Differential gene expression between CR and IR were performed on those genes within the CCP set found to have TF binding sites by TRANSFAC database. Differences of gene expression between the classes (CR vs. IR) at the univariate significance level of p ⁇ 0.01 were considered significant, as ⁇ 1,700 genes were introduced in the analysis.
  • NMF Non-negative matrix factorization consensus clustering of final model: NMF is an unsupervised learning algorithm that has been shown to identify molecular patterns when applied to gene expression data. NMF detects context dependent patterns of gene expression in complex biological systems 15 ' 23 . This method computes multiple k-factor factorization decompositions of the expression matrix and evaluates the stability of the solutions using a cophenetic coefficient. The final subclasses of genes were defined based on the most stable k-factor decomposition and visual inspection of gene by gene correlation matrices.
  • MultiExperiment Viewer was used to implement the NMF consensus clustering and is part of the TM4 suite of tools (see world-wide website: tm4.org) developed in Java, an open- source, and freely available collection of tools of use to a wide range of laboratories conducting microarray experiments.
  • Pathway enrichment analysis To identify over-represented and significant pathways among the selected list of genes we used MetaCoreTM (GeneGo, Inc., Carlsbad, CA), an integrated and curated "knowledge-based" platform for pathway analysis. The p- value of significant associated pathways represents the probability that a particular gene of an experiment is placed into a pathway by chance, considering the numbers of genes in the experiment, and total genes across all pathways.
  • Sources included OVCA cultured cell lines that underwent progressive higher doses of chemotherapy and tested with a chemo- sensitivity analysis measured by IC 50 . Then gene expression of 48 samples was compared before and after the treatment 12 . Also, we included clinical samples gathered from our own institution, 127 samples, available at the Gene Expression Omnibus repository (GEO) with accession number GSE23554 10 ' 12 ' 13 , OVCA samples from 240 patients from the GEO database GSE9891 15 , and data from TCGA, with 465 OVCA samples 23 . Only serous OVCA specimens with information of response to chemotherapy were used for comparison.
  • GEO Gene Expression Omnibus repository
  • Chemo- response was a significant independent survival factor in TCGA dataset survival analysis (Cox proportional hazard ratio), even after control for age, stage and optimal surgery (p-value ⁇ 10 ⁇ 15 , Figure 5).
  • TCGA dataset survival analysis Cox proportional hazard ratio
  • p-value ⁇ 10 ⁇ 15 , Figure 5 p-value ⁇ 10 ⁇ 15 , Figure 5.
  • TCGA datasets for genomic copy number alterations (CNA), mutation and methylation analysis, and miRNA expression were used to identify the elements that could potentially influence the expression of our candidate pathways.
  • CNA genomic copy number alterations
  • miRNA expression was used to identify the elements that could potentially influence the expression of our candidate pathways.
  • Main clinical and biological data from TCGA patients included in our study are summarized in Table 1. The Transcription
  • TRANSFAC TraNSFAC
  • Tislsk 1 CiJsskal ami Mi1 ⁇ 2gk.a dais frosts 1 ' CGA psti su-s i n luded in iiie s d
  • CNA genomic identification of significant targets in cancer
  • the gene signature profile was validated in all independent databases with a p-value ⁇ 0.001 for GEO# GSE9891 15 , p-value of 0.01 for GSE28739 16 , and p-value of 0.02 for GSE23554 12 (Figure 9).
  • Epigenetic gene regulation also may affect expression of candidate pathways by inactivating gene function 36 .
  • an analysis of DNA methylation status was performed in 440 patients with high-throughput data and information about chemo-response available.
  • 69 genes were differentially methylated between the CR and IR groups ( Figure 8C). A list of these genes could be reviewed at Table 6.
  • p-value and qFDR ⁇ 10 "6 Differentially methylated genes and their correlated expressed genes were also added to significant gene signature and mutations found previously to improve the molecular model.
  • Gene expression is also regulated by miRNAs.
  • differentially miRNA expression was performed in 455 patients with available high-throughput data and information about chemo-response.
  • a heat map of the 38 miRNA differentially expressed between the CR and IR groups is represented in Figure 8D.
  • a list of these miRNA could be reviewed at Table 7. Possible interactions between differentially expressed miRNA and their possible influence in the expression of our candidate pathways were explored with a corrected correlation between miRNA expression and gene expression of the CCP subset (p- value and qFDR ⁇ 10 "6 ). Differentially expressed miRNAs and their correlated genes were also included to the model or signature.
  • Cluster #2 was significant for pathways involving DNA damage repair and replication as well as cell cycle and apoptosis, all of them with strong influence by mutated TP53.
  • Cluster #2 also presented significant pathways related to cancer and cytoskeleton configuration and structure ( Figure 4, and Table 11).
  • Two thirds of all cell cycle and DNA repair genes presented elevated expression in CR tumors when compared to IR tumors, probably driven by mutated key elements of these pathways, like TP53, and increased expression of transcription factors, like ATF6B, CRTC1, E2F1, SIN3B and NFIX.
  • both clusters in the model included the same individual genes with substantial agreement in all but one of the 5 independent gene expression sets, where the agreement was moderate (Figure 2).
  • CNA micro-arrays
  • mutations, methylation, miRNA, TF binding sites added stability to the molecular signature and provided enough range to overcome validation difficulties observed by gene expression experiments alone due to tumor heterogeneity 8"9 .
  • genes included in our molecular signature for chemo-response are drawn from cellular functions previously associated with response to chemotherapy 9 . These biological processes include cell signaling pathways, immune response pathways, and several types of metabolic pathways that are involved in DNA damage repair and replication, cell cycle and apoptosis, all of them also have been associated with cancer transformation and proliferation 44 .
  • signaling transduction cascades from the pathways PBKIAKTI m TOR and RaslRaflMEKIMAPKIERK (with representation in our molecular model, Table 9) may result in diverse effects, including cell proliferation, invasion, angiogenesis, apoptosis evasion, and response to chemotherapy 44"45 .
  • the MAPK signaling pathway is also connected to the Ras pathway (which includes PAK4), that also regulates cell morphology, cytoskeletal organization, and cell proliferation and migration; PAK4 can also function as an anti-apoptotic protein 46 .
  • PAK proteins are critical effectors that link Rho GTPases to cytoskeleton reorganization and nuclear signaling. Both PAK4 and RHOT1 are included in cluster #2.
  • the Ras gene family (which RASAl is part) encodes membrane- associated, guanine nucleotide-binding proteins that are involved also in the control of cellular proliferation and differentiation, and have a weak intrinsic GTPase activity, effectors of Ras oncogene action 47 .
  • MAP kinases may also have a role in early gene expression by modifying the chromatin environment of target genes 48 , an action regulated through phosphorylation of various substrates, including transcription factors and chromatin constituents.
  • NCAPG a component of the condensin complex that is required for both interphase and mitotic condensation, is present in cluster #2 of the chemo-response model. Animal models with condensin mutations, DNA damage induced by ultraviolet radiation is not repaired and cells arrested by hydroxyurea do not recover 49 .
  • DNA repair pathway mainly through homologous recombination
  • PARP12 elements of the PARP family, like PARP12.
  • PARPs inhibitors have been proven to be efficacious in the treatment of OVCA in carriers of BRCA1 or BRCA2 mutations 50 . Also notable are the results of bevacizumab, a humanized antibody against VEGF, in the adjuvant treatment of OVCA 51 . PDGFB, a component of the VEGF signaling pathway, is present in cluster #1, with other numerous components of cell signaling pathways. With all these interconnections between signaling pathways, DNA damage repair, and cell cycle, alternative strategies to standard therapies may have to involve a combination of cross-specific drugs to avoid by-pass of the blocked path 52 .
  • the claimed invention based on a large genomic dataset, which has high benchmarks for quality control and processing (TCGA).
  • the large sample size confers adequate power to detect important patterns while at the same time, it overcomes possible bias introduced by outliers; moreover, it permits better selection of the histological type (serous) and outcome of interest (chemo-response) to improve homogeneity.
  • TCGA quality control and processing
  • Other major factor influencing a significant validation is the integration of diverse biological data, other than gene expression, in the final model.
  • For the validation process we used two OVCA datasets that were used initially to identify candidate pathways 12 ' 15 .
  • NR1I3, PCP4L1, MPZ SDHC, Clorfl92, FCGR2A, HSPA6, FCGR3A, FCGR2C, HSPA7, FCGR3B, FCGR2B, RPL31P11, FCRLA, FCRLB, DUSP12, ATF6, OLFML2B, NOS1AP, MIR556, Clorfl l l, Clorf226, SH2D1B, UHMK1, UAP1, DDR2, HSD17B7, Clorfl lO
  • DISCI SIPA1L2, KIAA1383, NTPCR, PCNXL2, KIAA1804, KCNK1, SLC35F3, Clorf31, lq42.2- TARBP1, IRF2BP2, NCRNA00184, TOMM20, SNORA14B, RBM34, ARID4B, GGPS1, q 230118582 8427149 6.87 38 TBCE, B3GALNT2, GNG4, LYST, MIR1537, NIDI, GPR137B, EROILB, EDARADD, q43 LGALS8, LOC100287902, HEATR1, ACTN2, MTR, RYR2, LOC100130331, ZP4,
  • FAM36A NCRNA00201, HNRNPU, EFCAB2, KIF26B, SMYD3, TFB2M, CNST, SCCPDH, i q 242989278 2757076 2.25 lq44 22 LOC149134, AHCTF1, ZNF695, ZNF670, ZNF669, Clorf229, ZNF124, MIR3916, VN1R5,
  • MICB MCCD1, DDX39B, ATP6V1G2-DDX39B, SNORD117, SNORD84, ATP6V1G2, NFKBIL1, LTA, TNF, LTB, LST1, NCR3, AIF1, PRRC2A, SNORA38, BAG6, APOM, C6orf47, GPANKl, CSNK2B, LY6G5B, LY6G5C, ABHD16A, LY6G6F, LY6G6E, LY6G6D,
  • RPL13AP20 GPRC5A, MIR614, GPRC5D, HEBP1, HTR7P1, KIAA1467, GSG1, EMP1, C12orf36, GRIN2B, ATF7IP, PLBD1, GUCY2C, HIST4H4, H2AFJ, WBP11, C12orf60, C12orf69, ART4, MGP, ERP27, ARHGDIB, PDE6H, RERG, PTPRO, EPS8, STRAP, DERA, SLC15A5, MGST1, LM03, LOC728622, RERGL, PIK3C2G, PLCZ1, CAPZA3, PLEKHA5, AEBP2, PDE3A, SLCOICI, SLC01B3, LST-3TM12, SLCOIB I, SLC01A2, IAPP, PYROXDl, RECQL, GOLTIB, C12orf39, GYS2, LDHB, KCNJ8, ABCC9
  • PELO ITGA1, ITGA2, MOCS2, LOC257396, FST, NDUFS4, ARL15, MIR581, HSPB3, SNX18, ESM1, GZMK, GZMA, CDC20B, GPX8, MIR449A, MIR449B, MIR449C, LOC345643, CCNO, DHX29, SKIV2L2, PPAP2A, RNF138P1, SLC38A9, DDX4, IL31RA, IL6ST, ANKRD55, MAP3K1, C5orf35, MIER3, GPBP1, ACTBL2, PLK2, GAPT, RAB3C, PDE4D, PARTI, DEPDC1B, ELOVL7, ERCC8, NDUFAF2, C5orf43, ZSWIM6, FLJ37543, KIF2A, DIMT1L, IPOl l, LRRC70, HTR1A, RNF180, RGS7BP, FAM159B
  • RPL23AP53 ZNF596, FBX025, C8orf42, ERICHl, LOC286083, DLGAP2, CLN8, MIR596, ARHGEF10, KBTBD11, MYOM2, CSMD1, MCPH1, ANGPT2, AGPAT5, XKR5, DEFB1, DEFA6, DEFA4, DEFA10P, DEFA1B, DEFA1, DEFT1P, DEFT1P2, DEFA3, DEFA5, FAM90A14, FAM90A13, LOC349196, FAM90A5, FAM90A20, FAM66B, DEFB109P1B, ZNF705G, DEFB103B, DEFB103A, SPAG11B, DEFB104B, DEFB104A, DEFB106B, DEFB 106A, DEFB 105B, DEFB 105A, DEFB107B, DEFB 107A, FAM90A7, FAM90A19, FAM90A18, FAM90A8, FAM90A9, FAM90A
  • SH2D4A CSGALNACT1, INTS10, LPL, SLC18A1, ATP6V1B2, LZTS1, LOC286114, GFRA2, DOK2, XP07, NPM2, FGF17, EPB49, FAM160B2, NUDT18, HR, REEP4, LGI3, SFTPC, BMP1, PHYHIP, MIR320A, POLR3D, PIWIL2, SLC39A14, PPP3CC, SORB S3, PDLIM2, C8orf58, KIAA1967, BIN3, FLJ14107, EGR3, PEBP4, RHOBTB2, TNFRSF10B, TNFRSF10C, TNFRSF10D, TNFRSF10A, LOC389641, CHMP7, R3HCC1, LOXL2, ENTPD4, SLC25A37, NKX3-1, NKX2-6, STCl, ADAM28, ADAMDECl, ADAM7, NEFM, NEFL, DOCK
  • OR51A2 MMP26, OR51L1, OR52J3, OR52E2, OR52A4, OR52A5, OR52A1, OR51V1, HBB, HBD, HBBPl, HBGl, HBG2, HBEl, OR51B4, OR51B2, OR51B5, OR51B6, OR51M1,
  • BHLHA9 BHLHA9, TUSC5, YWHAE, CRK, MYOIC, INPP5K, LOC100306951, PITPNA, SLC43A2,

Abstract

The current invention pertains to a method for determining whether a subject suffering from a cancer is a good candidate for a chemotherapy for the cancer, and a method of treating a subject suffering from a cancer based on the identification of the subject as a good candidate or a bad candidate for the chemotherapy. The methods comprise the steps of identifying the subject as a good candidate for a chemotherapy or a bad candidate for the chemotherapy. The methods may further include administering the chemotherapy to the subject if the subject is identified as a good candidate for the chemotherapy, or withholding the administration of the chemotherapy to the subject identified as the bad candidate for the chemotherapy. In addition to withholding the chemotherapy from the bad candidate, an alternative treatment may be administered. The current invention also provides microarray chips useful in practicing the claimed invention of identifying a subject suffering from a cancer as a good candidate for a chemotherapy.

Description

GENE EXPRESSION SIGNATURE FOR CANCER PROGNOSIS
DESCRIPTION
CROSS-REFERENCE TO RELATED APPLICATION
The present application claims the benefit of U.S. Provisional Application Serial No. 62/020,310, filed July 2, 2014, which is hereby incorporated by reference herein in its entirety, including any figures, tables, nucleic acid sequences, amino acid sequences, or drawings.
GOVERNMENT SUPPORT
This invention was made with government support under grant number W81XWH- 08-2-0101 awarded by the US Army Medical Research and Materiel Command. The government has certain rights in the invention.
BACKGROUND OF THE INVENTION
Epithelial ovarian cancer (OVCA) has the highest mortality rate of all gynecologic cancers1, mainly because more than 70% of patients present with advanced stage and will have disseminated intra-peritoneal disease at diagnosis2. But also because between 20-30% will not respond to the initial treatment consisting of a combination of cytoreductive surgery and a platinum-based chemotherapy3. Even in some patients with a complete initial response to chemotherapy, the disease will recur and eventually develop resistance to multiple drugs4. Several mechanisms have been described to contribute to chemo-response including drug efflux, increased cellular glutathione levels, increased DNA repair, and drug tolerance, but the exact mechanisms are not fully defined5"7, and there are no valid clinical biomarkers or molecular signatures that effectively predict response to chemotherapy8'9. Understanding the underlying processes could lead to the identification of prognostic signatures, which in turn, could be used to stratify patients who are likely to develop resistance to standard chemotherapy and thus could benefit from alternative strategies9. BRIEF SUMMARY OF THE INVENTION
The current invention provides a method of treating a subject suffering from a cancer, the method comprising the steps of:
a) comparing the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
b) identifying the subject as a good candidate for a chemotherapy or a bad candidate for the chemotherapy, and
i) administering the chemotherapy to the subject if the subject is identified as the good candidate for the chemotherapy, or
ii) withholding the administration of the chemotherapy to the subject identified as the bad candidate for the chemotherapy, and optionally, administering a cancer treatment other than the chemotherapy to the subject identified as the bad candidate for the chemotherapy,
wherein, the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder.
Prior to the comparison step, the method may further comprise the step of obtaining the sample from the subject. Prior to the comparison step, and after a sample is obtained from the subject, the method may further comprise measuring (quantifying) the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in the sample obtained from the subject.
The current invention also provides microarray chip comprising mRNAs corresponding to proteins involved in cellular signaling pathways directly associated with responsiveness to chemotherapy for treatment of a cancer, the microarray chip consisting essentially of oligonucleotides corresponding to the mRNAs corresponding to the proteins identified in Table 9 or Table 12. The microarray chips of the current invention are useful in practicing the claimed invention of identifying a subject suffering from a cancer as a good candidate for chemotherapy.
BRIEF DESCRIPTION OF THE DRAWINGS The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Patent and Trademark Office upon request and payment of the necessary fee.
Figures 1A-1C show consensus matrices of the final signature model. Figure 1A: Consensus matrix of the final model including 422 genes, suggesting and optimal and more robust result, with limited overlap between clusters, for clustering with k- factor = 2. Figure IB: Cophenetic correlation coefficients representation, with an optimal result for k=2. Figure 1C: Other consensus matrices for k=3 to k=6 showing less harmonious models.
Figures 2A-2E show validation of the NMF consensus clustering in independent publicly available databases. In all of them we used 422 genes included the final model. All of them also showed robust clustering with k = 2, and very limited overlap between clusters. Other consensus matrices for k=3 to k=6 were less harmonious (not shown). All cophenetic correlation coefficients had optimal results for k=2 (not shown). The level of agreement (kappa coefficient) for placement of an individual gene in the same cluster than in TCGA analysis are also shown for each dataset. Figure 2A: GSE9891 database15. Figure 2B: GSE3149 database14. Figure 2C: GSE26712 database18. Figure 2D: GSE23554 database12. Figure 2E: GSE17260 database17.
Figure 3 shows gene expression correlation matrix of the 422 and association with pathway analysis. Pathway analysis of both clusters showed an overrepresentation of cellular signaling and immune response pathways in cluster #1 (blue), and DNA repair/replication within the context of cell cycle pathways in cluster #2 (yellow).
Figure 4 shows gene expression profile of genes included in cluster #1 and #2 and their association with significant pathways identified with enrichment pathway analyses. Cluster 1 : significantly associated with cell signaling (blue), immune response (yellow) and a variety of metabolic pathways (purple). Cluster 2: significantly associated with DNA repair/replication and cell cycle (green), pathways in cancer (red) and a cell adhesion/cytoskeleton pathways (maroon). Figure 5. Multivariate analysis of clinical factors affecting survival in TCGA database. Kaplan-Meier curve representing survival of patients with CR versus patients with IR (graph). Table with independent clinical variables for survival in TCGA: chemo-response is the most significant of all of them with a p-value <10-15 (table).
Figure 6. Differentially expressed genes between patients with complete response
(CR) and patients with incomplete response (IR) in the 3 clinical databases (GSE9891, TCGA, GSE23554); and in OVCA cell lines after in vitro chemo-sensitivity analysis. Only common significant genes between analyses, marked with colored arrows, were included in the enrichment analysis with GeneGo (METACORE™, Carlsbad, CA).
Figure 7. Representation of genomic somatic gains and losses determined by the genomic identification of significant targets in cancer (GISTIC) analysis. Losses (blue) and gains (red) are represented with respect to their position in each chromosome. Depiction of X and Y chromosomes are the result of all individuals being female.
Figures 8A-8D: TCGA analyses of gene expression, mutations, DNA methylation and miRNA expression between CR samples and IR samples. Figure 8 A: Heat map of a 69 gene expression signature predictive of CR versus IR in the correlated CNA-gene expression (CCP) subset of genes. Figure 8B: Mutated genes associated with chemo-response, CR versus IR (in the first column) and their significant correlation with expressed genes (second column) in the CCP gene subset, p-value <10"4. Figure 8C: Heat map of the 69 genes differentially methylated between the CR and IR groups at 0.001 level of the univariate test. Figure 8D: Heat map of the 38 miRNA differentially expressed between the CR and IR groups (p-value <0.05, as there were only 619 unique miRNA entering the analysis).
Figure 9. Validation of TCGA gene expression signature in independent available databases. Same study design (definitions of variables, normalization procedures, statistics), same software and analysis tools (BRB Array Tools) were used for validation. GEO# GSE989115, with a p-value < 0.001. GSE2355412, with a p-value of 0.02. GSE2873916, with a p-value of 0.01.
Figures 10A-10B. Transcription factor (TF) binding site analysis. Figure 10A: Heat map of the 59 differentially expressed genes between CR and IR that were identified to have TF binding sites at the CCP gene subset (p-value <0.01). Figure 10B: UCSC Genome Browser of one of the significant genes, RHOT1, with representation of its TF binding sites (above) and conserved gene structure across species (below). Figures 11A-11E. Detail of level of agreement (kappa coefficient) for placement of an individual gene in the same cluster than in TCGA analysis represented in contingency tables. Figure 11A: GSE9891 database15. Figure 11B: GSE3149 database14. Figure 1 1C: GSE26712 database18. Figure 11D: GSE23554 database12. Figure HE: GSE17260 database17.
DETAILED DESCRIPTION OF THE INVENTION
A third of patients with epithelial ovarian cancer (OVCA) do not respond to standard treatment. The determination of a robust signature that predicts chemo-response could lead to the identification of molecular markers for response as well as possible clinical implementation in the future to identify patients at risk of failing therapy. The claimed invention was designed to identify biological processes affecting candidate pathways associated with chemo-response and to create a robust gene signature. After identifying common pathways associated with chemo-response in serous OVCA in 3 independent gene expression experiments, the biological processes associated with them was assessed using The Cancer Genome Atlas (TCGA) dataset for serous OVCA. The differential copy number alterations (CNA), mutations, DNA methylation, and miRNA expression between patients that responded to standard treatment and those who did not or recurred prematurely was also identified. These significant parameters were correlated to gene expression to create a signature of genes associated with chemo-response. A consensus clustering of this signature identified differentiated clusters with unique molecular patterns: for example, a cluster was significant for cellular signaling and immune response (mainly cell-mediated); whereas, another cluster was significant for pathways involving DNA damage repair and replication, cell cycle and apoptosis. Validation through consensus clustering was performed in 5 independent OVCA gene expression experiments. Genes were located in the same cluster with consistent agreement in all 5 studies (Kappa coefficient > 0.6 in 4). As such, integrating high throughput biological data provides a robust molecular signature that predicts chemo- response in OVCA.
Previous studies have identified a series of molecular signaling pathways associated with OVCA response to chemotherapy in vitro as well as in clinical settings10"13. The current invention is based on identifying pathways associated with chemo-response to identify biological processes that influence expression. Accordingly, the current invention provides a method for determining whether a subject suffering from a cancer is a good candidate or a bad candidate for a chemotherapy for the cancer, the method comprising the steps of:
a) comparing the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
b) identifying the subject as the good candidate for the chemotherapy or the bad candidate for the chemotherapy,
wherein, the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder.
The method of the claimed invention can further comprise treating the subject suffering from a cancer, the method comprising the steps of:
i) administering the chemotherapy to the subject if the subject is identified as the good candidate for the chemotherapy, or
ii) withholding the administration of the chemotherapy to the subject identified as the bad candidate for the chemotherapy, and optionally, administering a cancer treatment other than the chemotherapy to the subject identified as the bad candidate for the chemotherapy.
Prior to the comparison step, the method may further comprise the step of obtaining the sample from the subject. Prior to the comparison step, and after a sample is obtained from the subject, the method may further comprise measuring (quantifying) the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in the sample obtained from the subject.
In an embodiment of the invention, the subject is the good candidate for the chemotherapy if the expression in the tissue sample of the subject of at least 80%>, 85%, 90%, 95% or 99% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder and/or the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 20%, 15%, 10%, 5% or 1% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder.
In certain embodiments of the current invention, the good responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample from a person known to be responsive to the chemotherapy, wherein the sample from the person known to be responsive to the chemotherapy is obtained from the person before the administration of the chemotherapy. In certain other embodiments of the current invention, the bad responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample from a person known to be non-responsive to the chemotherapy, wherein the sample from the person known to be non-responsive to the chemotherapy is obtained before the administration of the chemotherapy.
For the purposes of the current invention, a good responder (i.e., a complete responder
(CR)) to a chemotherapy for treatment of a cancer is a patient who shows a complete disappearance of all disease for a duration of time, for example, 3 months, 4 months, 5 months, 6 months, or longer after treatment. Similarly, a bad responder (i.e. an incomplete responder (IR)) is a patient who either has not responded or progressed during treatment (refractory) or the disease recurred within a duration of time, for example, 3 months, 4 months, 5 months, 6 months, or longer after of treatment completion (resistant)3'19'20.
In one embodiment of the current invention, the chemotherapy comprises administering a platinum based drug, a taxane, or both (such as Taxol/Carbo) to a subject. Non-limiting examples of a platinum based drug include cisplatin, carboplatin, oxalaplatin, satraplatin, picoplatin, nedaplatin, triplatin, or a combination of two or more of the foregoing. Optionally, the platinum-based drug may be a liposomal version, such as lipoplatin. Non- limiting examples of taxanes include paclitaxel, docetaxel, cabazitaxel, or a combination of two or more of the foregoing. Additional examples of platinum based drugs and/or taxanes are well known to a person of ordinary skill in the art and such embodiments are within the purview of the current invention.
As used herein, the term "cancer" or "tumor" refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. For example, a particular cancer may be characterized by a solid mass tumor. The solid tumor mass, if present, may be a primary tumor mass. A primary tumor mass refers to a growth of cancer cells in a tissue resulting from the transformation of a normal cell of that tissue. In most cases, the primary tumor mass is identified by the presence of a cyst, which can be found through visual or palpation methods, or by irregularity in shape, texture or weight of the tissue. However, some primary tumors are not palpable and can be detected only through medical imaging techniques such as X-rays (e.g., mammography), or by needle aspirations. The use of these latter techniques is more common in early detection. Molecular and phenotypic analysis of cancer cells within a tissue will usually confirm if the cancer is endogenous to the tissue or if the lesion is due to metastasis from another site. The term cancer or tumor is inclusive of solid tumors and non-solid tumors.
Cancers suitable for practicing the methods of the claimed invention include, but are not limited to, cancer and/or tumors of the anus, bile duct, bladder, bone, bone marrow, bowel (including colon and rectum), breast, eye, gall bladder, kidney, mouth, larynx, esophagus, stomach, testis, cervix, head, neck, ovary, lung, mesothelioma, neuroendocrine, penis, skin, spinal cord, thyroid, vagina, vulva, uterus, liver, muscle, pancreas, prostate, blood cells (including lymphocytes and other immune system cells), and brain. Specific cancers contemplated with the methods of the present invention include, but are not limited to, carcinomas, Karposi's sarcoma, melanoma, mesothelioma, soft tissue sarcoma, ovarian cancer, uterine cancer, endometrial cancer, breast cancer, pancreatic cancer, lung cancer, leukemia (acute lymphoblastic, acute myeloid, chronic lymphocytic, chronic myeloid, and other), and lymphoma (Hodgkin's and non-Hodgkin's), and multiple myeloma.
Examples of cancers that can be treated according to the present invention are:
Acute Lymphoblastic Leukemia, Hairy Cell Leukemia
Adult Head and Neck Cancer
Acute Lymphoblastic Leukemia, Hepatocellular (Liver) Cancer, Adult
Childhood (Primary)
Acute Myeloid Leukemia, Adult Hepatocellular (Liver) Cancer, Childhood
Acute Myeloid Leukemia, Childhood (Primary)
Adrenocortical Carcinoma Hodgkin's Lymphoma, Adult
Adrenocortical Carcinoma, Childhood Hodgkin's Lymphoma, Childhood
AIDS-Related Cancers Hodgkin's Lymphoma During Pregnancy
AIDS -Related Lymphoma Hypopharyngeal Cancer
Anal Cancer Hypothalamic and Visual Pathway Glioma,
Astrocytoma, Childhood Cerebellar Childhood Astrocytoma, Childhood Cerebral Intraocular Melanoma
Islet Cell Carcinoma (Endocrine Pancreas)
Basal Cell Carcinoma
Bile Duct Cancer, Extrahepatic Kaposi's Sarcoma
Bladder Cancer Kidney (Renal Cell) Cancer
Bladder Cancer, Childhood Kidney Cancer, Childhood
Bone Cancer,
Osteosarcoma/Malignant Fibrous Laryngeal Cancer
Histiocytoma Laryngeal Cancer, Childhood
Brain Stem Glioma, Childhood Leukemia, Acute Lymphoblastic, Adult
Brain Tumor, Adult Leukemia, Acute Lymphoblastic, Childhood
Brain Tumor, Brain Stem Glioma, Leukemia, Acute Myeloid, Adult
Childhood Leukemia, Acute Myeloid, Childhood
Brain Tumor, Cerebellar Leukemia, Chronic Lymphocytic
Astrocytoma, Childhood Leukemia, Chronic Myelogenous
Brain Tumor, Cerebral Leukemia, Hairy Cell
Astrocytoma/Malignant Glioma, Lip and Oral Cavity Cancer
Childhood Liver Cancer, Adult (Primary)
Brain Tumor, Ependymoma, Liver Cancer, Childhood (Primary)
Childhood Lung Cancer, Non-Small Cell
Brain Tumor, Medulloblastoma, Lung Cancer, Small Cell
Childhood Lymphoma, AIDS-Related
Brain Tumor, Supratentorial Primitive Lymphoma, Burkitt's
Neuroectodermal Tumors, Childhood Lymphoma, Cutaneous T-Cell, see Mycosis
Brain Tumor, Visual Pathway and Fungoides and Sezary Syndrome
Hypothalamic Glioma, Childhood Lymphoma, Hodgkin's, Adult
Brain Tumor, Childhood Lymphoma, Hodgkin's, Childhood
Breast Cancer Lymphoma, Hodgkin's During Pregnancy
Breast Cancer, Childhood Lymphoma, Non-Hodgkin's, Adult
Breast Cancer, Male Lymphoma, Non-Hodgkin's, Childhood
Bronchial Adenomas/Carcinoids, Lymphoma, Non-Hodgkin's During
Childhood Pregnancy
Burkitt's Lymphoma Lymphoma, Primary Central Nervous
System
Carcinoid Tumor, Childhood
Carcinoid Tumor, Gastrointestinal Macroglobulinemia, Waldenstrom's Carcinoma of Unknown Primary Malignant Fibrous Histiocytoma of Central Nervous System Lymphoma, Bone/Osteosarcoma
Primary Medulloblastoma, Childhood
Cerebellar Astrocytoma, Childhood Melanoma
Cerebral Astrocytoma/Malignant Melanoma, Intraocular (Eye)
Glioma, Childhood Merkel Cell Carcinoma
Cervical Cancer Mesothelioma, Adult Malignant
Childhood Cancers Mesothelioma, Childhood
Chronic Lymphocytic Leukemia Metastatic Squamous Neck Cancer with Chronic Myelogenous Leukemia Occult Primary
Chronic Myeloproliferative Disorders Multiple Endocrine Neoplasia Syndrome, Colon Cancer Childhood Colorectal Cancer, Childhood Multiple Myeloma/Plasma Cell Neoplasm Cutaneous T-Cell Lymphoma, see Mycosis Fungoides
Mycosis Fungoides and Sezary Myelodysplasia Syndromes
Syndrome Myelodysplastic/Myeloproliferative
Diseases
Endometrial Cancer Myelogenous Leukemia, Chronic
Ependymoma, Childhood Myeloid Leukemia, Adult Acute
Esophageal Cancer Myeloid Leukemia, Childhood Acute Esophageal Cancer, Childhood Myeloma, Multiple
Ewing's Family of Tumors Myeloproliferative Disorders, Chronic Extracranial Germ Cell Tumor,
Childhood Nasal Cavity and Paranasal Sinus Cancer
Extragonadal Germ Cell Tumor Nasopharyngeal Cancer
Extrahepatic Bile Duct Cancer Nasopharyngeal Cancer, Childhood Eye Cancer, Intraocular Melanoma Neuroblastoma
Eye Cancer, Retinoblastoma Non-Hodgkin's Lymphoma, Adult
Non-Hodgkin's Lymphoma, Childhood
Gallbladder Cancer Non-Hodgkin's Lymphoma During
Gastric (Stomach) Cancer Pregnancy
Gastric (Stomach) Cancer, Childhood Non-Small Cell Lung Cancer
Gastrointestinal Carcinoid Tumor
Germ Cell Tumor, Extracranial, Oral Cancer, Childhood
Childhood Oral Cavity Cancer, Lip and
Germ Cell Tumor, Extragonadal Oropharyngeal Cancer
Germ Cell Tumor, Ovarian Osteosarcoma/Malignant Fibrous
Gestational Trophoblastic Tumor Histiocytoma of Bone
Glioma, Adult Ovarian Cancer, Childhood
Glioma, Childhood Brain Stem Ovarian Epithelial Cancer
Glioma, Childhood Cerebral Ovarian Germ Cell Tumor
Astrocytoma Ovarian Low Malignant Potential Tumor
Glioma, Childhood Visual Pathway
and Hypothalamic Pancreatic Cancer
Pancreatic Cancer, Childhood
Skin Cancer (Melanoma) Pancreatic Cancer, Islet Cell
Skin Carcinoma, Merkel Cell Paranasal Sinus and Nasal Cavity Cancer Small Cell Lung Cancer Parathyroid Cancer
Small Intestine Cancer Penile Cancer
Soft Tissue Sarcoma, Adult Pheochromocytoma
Soft Tissue Sarcoma, Childhood Pineoblastoma and Supratentorial Primitive Squamous Cell Carcinoma, see Skin Neuroectodermal Tumors, Childhood Cancer (non-Melanoma) Pituitary Tumor
Squamous Neck Cancer with Occult Plasma Cell Neoplasm/Multiple Myeloma Primary, Metastatic Pleuropulmonary Blastoma
Stomach (Gastric) Cancer Pregnancy and Breast Cancer
Stomach (Gastric) Cancer, Childhood Pregnancy and Hodgkin's Lymphoma Supratentorial Primitive Pregnancy and Non-Hodgkin's Lymphoma Neuroectodermal Tumors, Childhood Primary Central Nervous System
Lymphoma T-Cell Lymphoma, Cutaneous, see Prostate Cancer
Mycosis Fungoides and Sezary
Syndrome Rectal Cancer
Testicular Cancer Renal Cell (Kidney) Cancer
Thymoma, Childhood Renal Cell (Kidney) Cancer, Childhood
Thymoma and Thymic Carcinoma Renal Pelvis and Ureter, Transitional Cell
Thyroid Cancer Cancer
Thyroid Cancer, Childhood Retinoblastoma
Transitional Cell Cancer of the Renal Rhabdomyosarcoma, Childhood
Pelvis and Ureter
Trophoblastic Tumor, Gestational Salivary Gland Cancer
Salivary Gland Cancer, Childhood
Unknown Primary Site, Carcinoma of, Sarcoma, Ewing's Family of Tumors
Adult Sarcoma, Kaposi's
Unknown Primary Site, Cancer of, Sarcoma, Soft Tissue, Adult
Childhood Sarcoma, Soft Tissue, Childhood
Unusual Cancers of Childhood Sarcoma, Uterine
Ureter and Renal Pelvis, Transitional Sezary Syndrome
Cell Cancer Skin Cancer (non-Melanoma)
Urethral Cancer Skin Cancer, Childhood
Uterine Cancer, Endometrial
Uterine Sarcoma
Vaginal Cancer
Visual Pathway and Hypothalamic
Glioma, Childhood
Vulvar Cancer
Waldenstrom's Macroglobulinemia
Wilms' Tumor
In one embodiment of the methods of the invention, the cancer is a gynecologic cancer. In one embodiment of the current invention, the cancer is ovarian cancer (e.g., epithelial ovarian cancer or serous ovarian cancer), endometrial cancer, uterine cancer, or breast cancer. In one embodiment, the cancer is breast cancer of the triple-negative type (TNBC; any breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and Her2/neu.
The cancer may be primary or metastatic. The cancer may be any grade or stage. For example, in the case of ovarian cancer, the cancer may be stage I, IA, IB, IC, II, IA, IIB, IIC, III, IA, IIIB, IIIC, or IV.
As used herein, the terms "treat" or "treatment" refer to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down a cancer, such as the development and/or spread of a cancer. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total), whether detectable or undetectable. "Treatment" can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those with the condition or disorder.
Various well known methods can be used to estimate and compare the expression of mR As for practicing the claimed invention. These methods include, but are not limited to detecting and quantifying the expression of mRNAs by northern blot analysis, micro-array based method, real-time quantitative PCR, or semi-quantitative RT-PCR.
In one embodiment, the method of the current invention is practiced in a mammal. Non-limiting examples of a mammal include a human, ape, canine, pig, bovine, rodent, or feline.
The sample used for practicing the methods of the current invention can be a tissue sample or a body fluid sample. Non- limiting examples of the tissue sample include brain, eyes, Pineal gland, Pituitary gland, Thyroid gland, Parathyroid glands, thorax, heart, lungs, esophagus, Thymus gland, pleura, Adrenal glands, Appendix, Gall bladder, urinary bladder, large intestine, small intestine, kidneys, liver, pancreas, spleen, stoma, Prostate gland, Testes, ovaries, or uterus. Non-limiting examples of a body fluid sample include amniotic fluid, aqueous humor, vitreous humor, bile, cerebrospinal fluid, chyle, endolymph, perilymph, female ejaculate, male ejaculate, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sputum, synovial fluid, vaginal secretion, pancreatic juice or aspirate, pancreatic cyst fluid, serum, plasma, and blood.
It will be understood that the treatments of the invention include certain steps that are also a separate aspect of the invention: a method for determining whether a subject suffering from a cancer is a good candidate or bad candidate for a chemotherapy for the cancer, the method comprising the steps of:
a) comparing the expression of mRNAs corresponding to the proteins identified in
Table 9 or Table 12 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
b) identifying the subject as the good candidate for the chemotherapy or the bad candidate for the chemotherapy,
wherein, the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder. Optionally, the method further includes administering the chemotherapy to the subject identified as a good candidate; or withholding chemotherapy and, optionally, administering a cancer treatment other than chemotherapy (e.g., an immunotherapy) to the subject identified as a bad candidate for chemotherapy.
Another aspect of the invention includes a method for gene expression analysis, comprising:
a) measuring the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample obtained from a subject having cancer; and
b) optionally, comparing the measured expression to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy. In some embodiments, the method further comprises providing a report of the outcome of a). In some embodiments, when b), is carried out, the method may further comprise providing a report of the outcome of b), such as to a healthcare provider or to the subject.
A report may be generated and provided to a healthcare provider or to the subject. The report can be in electronic, verbal, or in paper format, for example. Thus, the report can be provided electronically, telephonically (e.g., by facsimile, using devices such as fax back), or by mail or courier, or in person, for example. In some embodiments, the report includes an icon or other indicator indicating the classification of a sample as being above or below a reference value as described with the methods of treatment of the invention. In some embodiments, the report includes an indicator of whether the subject is a good candidate or a bad candidate for chemotherapy as described with the methods of the treatment of the invention.
The current invention further provides a microarray chip useful for carrying out the methods of the invention, comprising or consisting essentially of the oligonucleotides corresponding to mR As corresponding to proteins directly associated with cellular signaling pathways that impact responsiveness to a chemotherapy for the treatment of cancer. For the purposes of this invention, a microarray chip "consisting essentially of oligonucleotides corresponding to mRNAs corresponding to proteins directly associated with cellular signaling pathways that impact responsiveness to a chemotherapy for the treatment of cancer indicates that the microarray chip contains only those oligonucleotides which correspond to mRNAs corresponding to proteins directly associated with cellular signaling pathways that impact responsiveness to a chemotherapy for the treatment of cancer and do not contain oligonucleotides corresponding to mRNAs corresponding to proteins that are not so associated.
In further embodiments, the microarray chips of the claimed invention consist of about 500, about 600, about 700, about 800, about 900 or about 1000 oligonucleotides.
In certain embodiments, the microarray chips of the claimed invention consist essentially of oligonucleotides corresponding to mRNAs corresponding to proteins directly associated with cellular signaling pathways that impact responsiveness to a chemotherapy which comprises administering a platinum based drug and/or taxane to the subject. The platinum based drug can be cisplatin, carboplatin, oxalaplatin or a combination thereof and the taxane can be paclitaxel and/or docetaxel. Accordingly, in certain embodiments, the current invention provides microarray chips consisting essentially of oligonucleotides corresponding to mRNAs corresponding to proteins identified in Table 9 or Table 12.
Preferably, the oligonucleotides, which act as capture probes, are immobilized on a solid surface (e.g., plate, flow channel, bead or other particle, etc.). The oligonucleotides may be systematically arranged in different positions (e.g., by spatial mapping or by differential tagging).
The arrayed arrayed oligonucleotide sequences are then hybridized with isolated nucleic acids (such as cDNA, miRNA or mRNA) from the test sample obtained from a subject. In some embodiments, the isolated nucleic acids from the test sample are labeled, such that their hybridization with the specific complementary oligonucleotide on the array (e.g., from Table 9, Table 12, or both) can be determined. Alternatively, the test sample nucleic acids are not labeled, and hybridization between the oligonucleotides on the array and the target nucleic acid is detected using a sandwich assay, for example using additional oligonucleotides complementary to the target that are labeled.
In one embodiment, the hybridized nucleic acids are detected by detecting one or more labels attached to the sample nucleic acids or attached to a nucleic acid probe that hybridizes directly or indirectly to the target nucleic acids. The labels can be incorporated by any of a number of methods. In one example, the label is simultaneously incorporated during the amplification step in the preparation of the sample nucleic acids. Thus, for example, polymerase chain reaction (PCR) with labeled primers or labeled nucleotides will provide a labeled amplification product. In one embodiment, transcription amplification using a labeled nucleotide (such as fluorescein-labeled UTP and/or CTP) incorporates a label into the transcribed nucleic acids).
Detectable labels suitable for use in embodiments throughout this disclosure include any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels include biotin for staining with labeled streptavidin conjugate, magnetic beads (for example DYNABEADS), fluorescent dyes (for example, fluorescein, Texas red, rhodamine, green fluorescent protein, and the like), chemiluminescent markers, radiolabels, enzymes (for example, horseradish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic (for example, polystyrene, polypropylene, latex, etc.) beads. Patents teaching the use of such labels include U.S. Patent No. 3,817,837; U.S. Patent No. 3,850,752; U.S. Patent No. 3,939,350; U.S. Patent No. 3,996,345; U.S. Patent No. 4,277,437; U.S. Patent No. 4,275,149; and U.S. Patent No. 4,366,241. In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
Means of detecting such labels are also well known. Thus, for example, radiolabels may be detected using photographic film or scintillation counters, fluorescent markers may be detected using a photodetector to detect emitted light. Enzymatic labels are typically detected by providing the enzyme with a substrate and detecting the reaction product produced by the action of the enzyme on the substrate, and colorimetric labels are detected by simply visualizing the colored label. The label may be added to the target (sample) nucleic acid(s) prior to, or after, the hybridization. So-called "direct labels" are detectable labels that are directly attached to or incorporated into the target (sample) nucleic acid prior to hybridization. In contrast, so-called "indirect labels" are joined to the hybrid duplex after hybridization. Often, the indirect label is attached to a binding moiety that has been attached to the target nucleic acid prior to the hybridization. Thus, for example, the target nucleic acid may be biotinylated before the hybridization. After hybridization, an avidin-conjugated fluorophore will bind the biotin bearing hybrid duplexes providing a label that is easily detected (see Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 24: Hybridization With Nucleic Acid Probes, P. Tijssen, ed. Elsevier, N.Y., 1993).
Exemplified Embodiments:
Examples of embodiments of the invention include, but are not limited to:
Embodiment 1. A method of treating a subject suffering from a cancer, the method comprising the steps of:
a) comparing the expression of mRNAs corresponding to the proteins identified in Table 9 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
b) identifying the subject as a good candidate for a chemotherapy or a bad candidate for the chemotherapy, wherein, the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 are not significantly different than the corresponding reference values for the good responder, and/or
the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 are significantly different than the corresponding reference value for a bad responder, and
c) administering the chemotherapy to the subject if the subject is identified as the good candidate for the chemotherapy or withholding the administration of the chemotherapy to the subject identified as the bad candidate for the chemotherapy, and optionally, administering a cancer treatment other than the chemotherapy to the subject identified as the bad candidate for the chemotherapy. Embodiment 2. The method of embodiment 1, wherein the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 80%, 85%o, 90%), 95%o or 99% of the mRNAs corresponding to the proteins identified in Table 9 are not significantly different than the corresponding reference values for the good responder and/or the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 20%>, 15%, 10%>, 5% or 1% of the mRNAs corresponding to the proteins identified in Table 9 are significantly different than the corresponding reference value for a bad responder.
Embodiment 3. The method of any preceding embodiment, wherein the good responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 in a sample from a person known to be responsive to the chemotherapy, wherein the sample from the person known to be responsive to the chemotherapy is obtained before the administration of the chemotherapy.
Embodiment 4. The method of any preceding embodiment, wherein the bad responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 in a sample from a person known to be non-responsive to the chemotherapy, wherein the sample from the person known to be non- responsive to the chemotherapy is obtained before the administration of the chemotherapy.
Embodiment 5. The method of any preceding embodiment, wherein the chemotherapy comprises administering a platinum based drug and/or taxane to the subject.
Embodiment 6. The method of any preceding embodiment, wherein the platinum based drug is cisplatin, carboplatin, oxaliplatin or a combination of two or more of the foregoing.
Embodiment 7. The method of any preceding embodiment, wherein the taxane is paclitaxel and/or docetaxel.
Embodiment 8. The method of any preceding embodiment, wherein the cancer is epithelial ovarian cancer, serous ovarian cancer, endometrial ovarian cancer, uterine cancer or breast cancer.
Embodiment 9. The method of any preceding embodiment, wherein said method comprises identifying the subject as a good candidate for a chemotherapy; and administering the chemotherapy to the subject identified as the good candidate for the chemotherapy. Embodiment 10. The method of any one of embodiments 1 to 8, wherein said method comprises identifying the subject as a bad candidate for a chemotherapy; and administering a cancer treatment other than the chemotherapy to the subject identified as the bad candidate for the chemotherapy.
Embodiment 11. The method of any preceding embodiment, wherein the step of comparing the expression of mRNAs corresponding to the proteins identified in Table 9 in the sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy comprises:
a) obtaining the sample the subject,
b) detecting and quantifying the expression of mRNAs by northern blot analysis, micro-array based method, real-time quantitative PCR, or semi-quantitative RT-PCR
d) comparing the expression of mRNAs corresponding to the proteins identified in Table 9 in the sample obtained from the subject to the reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to the reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy.
Embodiment 12. The method of any preceding embodiment, wherein the sample is a tissue sample or a body fluid sample.
Embodiment 13. The method of embodiment 12, wherein the sample is a body fluid sample that is amniotic fluid, aqueous humor, vitreous humor, bile, cerebrospinal fluid, chyle, endolymph, perilymph, female ejaculate, male ejaculate, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sputum, synovial fluid, vaginal secretion, pancreatic juice or aspirate, pancreatic cyst fluid, serum, plasma, or blood.
Embodiment 14. The method of embodiment 12, wherein the sample is a tissue sample comprising or consisting of tissue of the brain, eyes, Pineal gland, Pituitary gland, Thyroid gland, Parathyroid glands, thorax, heart, lungs, esophagus, Thymus gland, pleura, Adrenal glands, Appendix, Gall blader, urinary blader, large intestine, small intestine, kidneys, liver, pancrease, spleen, stoma, Prostate gland, Testes, ovaries, or uterus. Embodiment 15. The method of any preceding embodiment, wherein the subject is human.
Embodiment 16. A method of treating a subject suffering from a cancer, the method comprising the steps of:
a) comparing the expression of mRNAs corresponding to the proteins identified in
Table 12 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
b) identifying the subject as a good candidate for a chemotherapy or a bad candidate for the chemotherapy, wherein, the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 12 are significantly different than the corresponding reference value for a bad responder, and
c) administering the chemotherapy to the subject if the subject is identified as the good candidate for the chemotherapy or withholding the administration of the chemotherapy to the subject identified as the bad candidate for the chemotherapy, and optionally, administering a cancer treatment other than the chemotherapy to the subject identified as the bad candidate for the chemotherapy.
Embodiment 17. The method of embodiment 16, wherein the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 80%, 85%o, 90%), 95%o or 99% of the mRNAs corresponding to the proteins identified in Table 12 are not significantly different than the corresponding reference values for the good responder and/or the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 20%>, 15%, 10%>, 5% or 1% of the mRNAs corresponding to the proteins identified in Table 12 are significantly different than the corresponding reference value for a bad responder.
Embodiment 18. The method of any preceding embodiment, wherein the good responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 12 in a sample from a person known to be responsive to the chemotherapy, wherein the sample from the person known to be responsive to the chemotherapy is obtained before the administration of the chemotherapy.
Embodiment 19. The method of any preceding embodiment, wherein the bad responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 12 in a sample from a person known to be non-responsive to the chemotherapy, wherein the sample from the person known to be non- responsive to the chemotherapy is obtained before the administration of the chemotherapy.
Embodiment 20. The method of any preceding embodiment, wherein the chemotherapy comprises administering a platinum based drug and/or taxane to the subject.
Embodiment 21. The method of embodiment 20, wherein the platinum based drug is cisplatin, carboplatin, oxalaplatin or a combination of two or more of the foregoing.
Embodiment 22. The method of embodiment 21, wherein the taxane is paclitaxel and/or docetaxel.
Embodiment 23. The method of any preceding embodiment, wherein the cancer is epithelial ovarian cancer, serous ovarian cancer, endometrial ovarian cancer, uterine cancer or breast cancer.
Embodiment 24. The method of any preceding embodiment, wherein the step of comparing the expression of mRNAs corresponding to the proteins identified in Table 12 in the sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy comprises:
a) obtaining the sample the subject,
b) detecting and quantifying the expression of mRNAs by northern blot analysis, micro-array based method, real-time quantitative PCR, or semi-quantitative
RT-PCR
d) comparing the expression of mRNAs corresponding to the proteins identified in Table 12 in the sample obtained from the subject to the reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to the reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy.
Embodiment 25. The method of any preceding embodiment, wherein the subject is human.
Embodiment 26. The method of any preceding embodiment, wherein the sample is a tissue sample or a body fluid sample.
Embodiment 27. The method of embodiment 26, wherein the same is a tissue sample comprising or consisting of a tissue of the brain, eyes, Pineal gland, Pituitary gland, Thyroid gland, Parathyroid glands, thorax, heart, lungs, esophagus, Thymus gland, pleura, Adrenal glands, Appendix, Gall blader, urinary blader, large intestine, small intestine, kidneys, liver, pancrease, spleen, stoma, Prostate gland, Testes, ovaries, or uterus.
Embodiment 28. The method of embodiment 26, wherein the sample is a body fluid sample that is amniotic fluid, aqueous humor, vitreous humor, bile, cerebrospinal fluid, chyle, endolymph, perilymph, female ejaculate, male ejaculate, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sputum, synovial fluid, vaginal secretion, pancreatic juice or aspirate, pancreatic cyst fluid, serum, plasma, or blood.
Embodiment 29. A microarray chip comprising mRNAs corresponding to proteins involved in cellular signaling pathways directly associated with responsiveness to chemotherapy for treatment of a cancer, the microarray chip comprises oligonucleotides corresponding to the mRNAs corresponding to the proteins identified in Table 9 or Table 12, or both.
Embodiment 30. The microarray chip of embodiment 29, wherein the chemotherapy comprises administering a platinum based drug and/or taxane to the subject.
Embodiment 31. The microarray chip of embodiment 30, wherein the platinum based drug is cisplatin, carboplatin, oxaliplatin or a combination thereof.
Embodiment 32. The microarray chip of embodiment 30, wherein the taxane is paclitaxel and/or docetaxel.
Embodiment 33. The microarray chip of any preceding embodiment, wherein the cancer is epithelial ovarian cancer, serous ovarian cancer, endometrial ovarian cancer, uterine cancer or breast cancer.
Embodiment 34. The microarray chip of embodiment 29, wherein the microarray chip has no more than one thousand different oligonucleotides (i.e., no more than one thousand oligonucleotides with different sequences). Embodiment 35. The microarray chip of emnbodiment 29, wherein the microarray chip has no more than nine hundred different oligonucleotides.
Embodiment 36. The microarray chip of embodiment 29, wherein the microarray chip has no more than eight hundred different oligonucleotides.
Embodiment 37. The microarray chip of embodiment 29, wherein the microarray chip has no more than seven hundred different oligonucleotides.
Embodiment 38. The microarray chip of embodiment 29, wherein the microarray chip has no more than six hundred different oligonucleotides.
Embodiment 39. The microarray chip of embodiment 29, wherein the microarray chip has no more than five hundred different oligonucleotides.
Embodiment 40. The microarray chip of embodiment 29, wherein the microarray chip consists essentially of oligonucleotides corresponding to the mRNAs corresponding to the proteins identified in Table 9 or Table 12, or both
Embodiment 41. A method for determining whether a subject suffering from a cancer is a good candidate or bad candidate for a chemotherapy for the cancer, the method comprising the steps of:
a) comparing the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
b) identifying the subject as the good candidate for the chemotherapy or the bad candidate for the chemotherapy,
wherein, the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder.
Embodiment 42. A method for gene expression analysis, comprising:
a) measuring the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample obtained from a subject having cancer; and b) optionally, comparing the measured expression to reference values corresponding to the mR As expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy.
Embodiment 43. The method of embodiment 42, further comprising providing a report of the outcome of a).
Embodiment 44. The method of embodiment 43, further comprising providing a report of the outcome of b).
MATERIALS AND METHODS
Sources of data
Only serous OVCA specimens were used for these comparisons. The study included the following sets:
1. OVCA cultured cell lines used were A2008, A2780CP, A2780S, C13, IGROV1, OV2008, OVCAR5, and T812. Cells were subjected to sequential treatment with increasing doses of cisplatin. Both cisplatin resistance and genome-wide expression changes were measured serially at baseline and after 3 and 6 cisplatin-treatment/expansion cycles. Gene expression using Affymetrix Human U133 Plus 2.0 arrays (Affymetrix, Santa Clara, CA) was uploaded at the Gene Expression Omnibus (GEO), accession number GSE23553.
2. GEO clinical datasets: 127 serous OVCA with chemo-response information from the dataset GSE2355412 and dataset GSE314914 with Affymetrix Human Genome U133 Plus
2.0 and U133A arrays; 240 serous OVCA with chemo-response information from the dataset GSE989115 with Affymetrix Human Genome U133 Plus 2.0 arrays; 50 serous OVCA with chemo-response information from the dataset GSE2873916 with Agilent-012097 Human 1A arrays (V2) (Agilent Technologies, Santa Clara, CA); 110 serous OVCA with chemo- response information from the dataset GSE1726017 with Agilent-014850 Whole Human Genome 4x44K arrays; 185 serous OVCA from the dataset GSE2671218 with Affymetrix human U133A arrays.
3. TCGA (wee world- wide-website: cancergenome.nih.gov): Over 20 different cancer types are included in this initiative, including more than 560 serous epithelial ovarian cancers, the most common histological subtype of OVCA. TCGA comprehensive genomic information includes copy number variation, SNPs, miRNA expression, gene expression (mRNA), and DNA methylation as well as clinical and outcome information. Data from TCGA was downloaded, normalized, formatted and organized for the integration and analysis with other biological datasets in accordance with the precepts of the TCGA data sharing agreements.
All data collection and processing, including the consenting process, were performed after approval by a local institutional review board and in accord with the TCGA Human Subjects Protection and Data Access Policies, adopted by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI).
Clinical Outcomes
Complete response (CR) was defined as complete disappearance of all disease up to 6 months after treatment. In patients with incomplete response (IR) the disease either not responded or progressed during treatment (refractory) or recurred within 6 months of treatment completion (resistant)3'19'20. Data analysis
Copy number alteration (CNA): Samples from Agilent Human Genome CGH Microarray 244A (Agilent Technologies, Santa Clara, CA) were processed and DNA sequences were aligned to NCBI Build 36 of the human genome. Circular Binary Segmentation was used to identify regions with altered copy number in each chromosome21. The copy number at a particular genomic location was computed based on the segmentation mean log ratio data. We found regions with frequent CNA among all samples by performing genomic identification of significant targets in cancer (or GISTIC) analysis22. The significance of CNA at a particular genomic location is determined based on false discovery rate (FDR), as previously described23. To determine the performance of our strategy, we initially proceed with the analysis of the whole sample set, and then repeated the methodology with only samples from patients that demonstrated CR (n=294) and IR (n=158). CNA in both scenarios was consistent.
Mutation analysis: Somatic mutation detection, calling, annotation and validation have been extensively discussed previously23. Somatic mutation information resulting from Illumina Genome Analyzer DNA Sequencing GAIIx platform (Illumina Inc., San Diego, CA) was downloaded and formatted for analysis. Mutation information was downloaded as Level 3, or validated somatic mutations. Somatic mutation information was available from 137 samples from patients with CR and 55 with IR. For those patients, there were 6,716 unique genes presenting some type of validated somatic mutation. These included: frame shift insertions and deletions, in-frame insertions or deletions, missense, nonsense and nonstop mutations, silence, splice site and translation start site mutations. All independent significant mutated genes were correlated with gene expression of the candidate pathways genes to determine if mutated genes were associated or influenced expression of those pathways. To correlate mutated genes with gene expression we used Spearman's rank correlation test, as both variables are not completely independent one from another. We assessed statistical significance of the correlation by computing q-value for FDR (qFDR) and p-value, corrected for multiple analyses24.
Gene expression and correlation with CNA: Raw gene expression data was downloaded from the TCGA Data Portal (Level 1), extracted, loaded, and normalized with the analytical software, BRB-ArrayTools. In total 594 microarrays samples analyzed with Affymetrix HT Human Genome U133 Array: 584 coming from cancer tissue and 10 coming from ovarian normal samples. DNA sequences were aligned to NCBI Build 36 of the human genome. There were 452 arrays with clinical information about chemo-response. During the Circular Binary Segmentation analysis of the CNA, a gene-centric table is created, which contains a value for each gene covered in the genomic array. This value is assigned based on the segmentation mean log ratios. The gene-centric table is required for the correlation analysis between copy number and gene expression. Positive correlation between gene expression and CNA (increased CNA/increased gene expression, and decreased CNA/decreased gene expression) was performed using Spearman's rank correlation test, as the expression between genes is not completely independent one from another. Statistical significance was assessed with qFDR and p-value, and corrected for multiple analyses24.
To construct a gene signature profile that would classify patients between complete responders and incomplete responders, we used the Class Prediction Tool of BRB- ArrayTools. Genes differentially expressed between both classes at significance level p<0.001 were included in the predictor and evaluated with several methods. To assess how accurately the groups are predicted by this multivariate class predictor, a cross-validated misclassification rate is computed, usually in the form of Leave -one-out cross-validation method. For TCGA gene expression analysis, 40 samples in each group (CR versus IR) had 90% power of detect differentially expressed gene, with a type 1 error of 0.001. A similar experiment, using the same software (BRB Array Tools), same statistics, same outcomes definitions (CR versus IR), and list of genes from the gene signature identified in the testing set (TCGA), was designed to validate the results of the signature profile in independent available databases: GEO# GSE989115, GSE2873916, and GSE2355412.
Methylation analysis and correlation with gene expression: DNA methylation data with beta-values, methylated (M) and unmethylated (U) intensities were downloaded from the TCGA Data Portal (Level 2), extracted, loaded, and normalized. In total 574 arrays samples of Illumina Infinium Human DNA Methylation 27 (Illumina Inc., San Diego, CA): 572 cancer, 2 normal. There were 453 unique DNA-methylation arrays from serous OVCA with clinical information about chemo-response. Differential DNA methylation of gene promoters was computed based on beta-values. Beta-values for each sample and locus were calculated as (M/(M+U))23. Differences of gene's beta-values between the classes (CR vs. IR) at the univariate significance level of p<0.001 were considered significant. Rank-based Spearman correlation was used to allow for non-linear relationships between DNA methylation and gene expression, along with p-values. To control the false discovery rate (FDR) we used the q-value for statistical significance (qFDR)24 and Bonferroni correction for multiple comparisons.
miRNA expression analysis and its correlation with gene expression: Raw miRNA expression data was downloaded from the TCGA Data Portal (Level 1), extracted, loaded, and normalized with the analytical software, BRB- Array Tools. In total 595 microarrays samples of Agilent Human miRNA Microarray Rell2.0 (Agilent Technologies Inc., Santa Clara, CA): 585 cancer, 10 normal. There were 455 unique miRNA expression arrays from serous OVCA with clinical information about chemo-response23. Differences of miRNA expression between the classes (CR vs. IR) at the univariate significance level of p<0.05 were considered significant, as there were 619 unique miRNA tested. Rank-based Spearman correlation was used to allow for non-linear relationships between miRNA expression and gene expression, along with p-values. To control the false discovery rate (FDR) we used the q-value for statistical significance (qFDR)24 and Bonferroni correction for multiple comparisons.
Transcription factor (TF) binding sites and their association with gene expression: To identify TF and their binding sites within the CNA-Correlated-Pathway (CCP) gene subset, we used publicly available search tools, The Transcription Factor Database (TRANSFAC®)25. TRANSFAC is a knowledge-base containing published data on eukaryotic transcription factors, their experimentally-proven binding sites, and regulated genes26 that utilizes a range of tools and algorithms to search DNA sequences for predicted TF binding sites through high-throughput promoter analysis. Differential gene expression between CR and IR were performed on those genes within the CCP set found to have TF binding sites by TRANSFAC database. Differences of gene expression between the classes (CR vs. IR) at the univariate significance level of p<0.01 were considered significant, as ~ 1,700 genes were introduced in the analysis.
Non-negative matrix factorization (NMF) consensus clustering of final model: NMF is an unsupervised learning algorithm that has been shown to identify molecular patterns when applied to gene expression data. NMF detects context dependent patterns of gene expression in complex biological systems15' 23. This method computes multiple k-factor factorization decompositions of the expression matrix and evaluates the stability of the solutions using a cophenetic coefficient. The final subclasses of genes were defined based on the most stable k-factor decomposition and visual inspection of gene by gene correlation matrices.
Software
The majority of analyses were performed using R statistical package for statistical computing and graphics (see, world-wide website: r-project.org) as background, using Bioconductor packages as open source software for bioinformatics (bioconductor.org). Analysis of comparative genomic hybridization (CGH) to assess CNA and analysis of gene expression were performed using Biometric Research Branch (BRB) ArrayTools, an integrated package for the visualization and statistical analysis that utilizes Excel (Microsoft, Redmond, WA) as front end, and with tools developed in the R statistical system. BRB- Array Tools were developed by Dr. Richard Simon and the BRB-Array Tools development team.
MultiExperiment Viewer was used to implement the NMF consensus clustering and is part of the TM4 suite of tools (see world-wide website: tm4.org) developed in Java, an open- source, and freely available collection of tools of use to a wide range of laboratories conducting microarray experiments. Pathway enrichment analysis: To identify over-represented and significant pathways among the selected list of genes we used MetaCore™ (GeneGo, Inc., Carlsbad, CA), an integrated and curated "knowledge-based" platform for pathway analysis. The p- value of significant associated pathways represents the probability that a particular gene of an experiment is placed into a pathway by chance, considering the numbers of genes in the experiment, and total genes across all pathways.
Following are examples which illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted. It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims. In addition, any elements or limitations of any invention or embodiment thereof disclosed herein can be combined with any and/or all other elements or limitations (individually or in any combination) or any other invention or embodiment thereof disclosed herein, and all such combinations are contemplated with the scope of the invention without limitation thereto. EXAMPLE 1 - SELECTION OF CANDIDATE PATHWAYS DIRECTLY ASSOCIATED
WITH RESPONSIVENESS TO CHEMOTHERAPY IN OVCA
The findings described in the journal article Gonzalez Bosquet et al., Analysis of Chemotherapeutic Response in Ovarian Cancers Using Publicly Available High-Throughput Data, Cancer Res. 2014 May 21, pii: canres.0186.2014. [Epub ahead of print], doi: 10.1158/0008-5472. CAN-14-0186 are incorporated herein by reference in their entirety, including, but not limited to, the Figures 1-4, Tables 1-2, Supplementary Figures 1-6 and Supplementary Tables 1-9.
Our analysis focused on gene expression data from different sources to identify genes and pathways involved in OVCA chemo-resistance. Sources included OVCA cultured cell lines that underwent progressive higher doses of chemotherapy and tested with a chemo- sensitivity analysis measured by IC50. Then gene expression of 48 samples was compared before and after the treatment12. Also, we included clinical samples gathered from our own institution, 127 samples, available at the Gene Expression Omnibus repository (GEO) with accession number GSE2355410' 12' 13, OVCA samples from 240 patients from the GEO database GSE989115, and data from TCGA, with 465 OVCA samples23. Only serous OVCA specimens with information of response to chemotherapy were used for comparison. Chemo- response, as defined in methods, was a significant independent survival factor in TCGA dataset survival analysis (Cox proportional hazard ratio), even after control for age, stage and optimal surgery (p-value <10~15, Figure 5). We determined genes that were differentially expressed between patients with CR and patients with IR in the 3 clinical databases; furthermore, we evaluated genes differentially expressed in the OVCA cell lines based on in vitro chemo-sensitivity analysis. A series of genes were common between these comparison analyses: TIMP3, OLFML3, C10orf26, COPZ2, PDGFD, OMD, PKD2, SNRPA, COL8A1, GCNT1, CDK5RAP3, PRPF40A, RAB35, MAPK14, PARN, NCRNA00184, ERCC5, Cl3orfl3, LHFP, KIAA1033, GJBI, SVEPI, TPMI, and IMPACT (Figure 6). We introduced these common differentially expressed genes in the pathway enrichment analysis by GeneGO (MetaCore ™) and only those significant pathways that were previously described as associated with chemo response in OVCA were used as candidates pathways: the O-glycan biosynthesis pathway (p-value=7xl0~3), described in our previous in vitro studies of chemo- sensitivity10, the Transport RABIA regulation pathway (p-value=5xl0~3) that controls vesicle
27 11 28
traffic within the cell and members of the RAS oncogene family ' , MAPK14 and PDGFD29 part of the MAPK signaling pathway (p-value=10~4), involved in the in the initiation of a G2 delay after ultraviolet radiation30 and also identified in in vitro studies11. Only these candidate pathways, previously associated with chemo-response, were used in the rest of the study. Identification of elements influencing expression of candidate pathways genes
TCGA datasets for genomic copy number alterations (CNA), mutation and methylation analysis, and miRNA expression were used to identify the elements that could potentially influence the expression of our candidate pathways. Main clinical and biological data from TCGA patients included in our study are summarized in Table 1. The Transcription
25 31 32
Factor (TRANSFAC) database ' ' was used to predict TF binding sites in our analysis. Tislsk 1 : CiJsskal ami Mi½gk.a dais frosts 1'CGA psti su-s i n luded in iiie s d
Figure imgf000031_0001
CNA analysis and correlation with gene expression:
Of the 452 patients with clinical information about chemo-response (294 CR and 158 IR) and gene expression data from specimens collected at diagnosis, 435 underwent comparative genomic hybridization to determine CNA. Figure 7 and Table 3 summarize whole genome significant somatic gains and losses determined by the genomic identification of significant targets in cancer (GISTIC) analysis22. CNA could be divided into regional alterations, when gain or loss of genetic material affects more than 50% of the chromosomal arm and focal alterations when gains/losses are smaller . In a genome-wide assessment, there were 4 significant regional alterations with gains, 3q22.1-q29, 8pl 1.21-q24.3, 12pl3.33- pl 1.21, and 20ql 1.21-ql3.33, and 8 with losses, 4ql3.3-q35.2, 6ql5-q27, 8p23.3-pl2, 13ql l-q34, 16ql2.2-q24.3, 17pl3.3-q21.2), 18ql2.2-q23, and 22ql l .22-ql3.33. Apart from the candidate pathways genes, these altered regions contained other genes that may be important or associated with unknown mechanisms of chemo-response in OVCA. Details of regional and focal CNA somatic gains and losses affecting genes of the candidate pathways are summarized in Table 2.
Table 2x CNA Aedsi cajidldsste pathway gt-iics
Figure imgf000033_0001
Of the genes included in these candidate regions with CNA (6,622 genes) only 2,364 showed statistically significant positive correlation with gene expression, determined by Spearman's rank correlation (Table 4). Positive statistical correlation was defined as CNA gain with increased gene expression, or CNA loss with decreased gene expression, with a p- value <10~4 to account for multiple comparisons23. These 2,364 genes with CNA and correlated gene expression, including 68 genes from the 3 candidate pathways, may influence or be associated with chemo-response through our candidate pathways, and will be used for the remainder of our analyses and referred as the CNA-Correlated-Pathway (CCP) gene subset.
Differential gene expression at the univariate significance level p<0.001 was used to create a 69 gene expression signature predictive of CR versus IR in the CCP subset of genes (Figure 8A, Table 5). Validation of the gene signature was performed in previously published gene expression studies, including one from our own institution12' 15' 16. For this validation we used the same study design used in the testing set (TCGA), a retrospective design of micro-array gene expression with additional information about chemo-response, the same software used in the testing set (BRB ArrayTools), same statistics (t-test at significance level p<0.001), same outcomes definitions (CR versus IR), and the same list of genes from the gene signature in the testing set. The gene signature profile was validated in all independent databases with a p-value < 0.001 for GEO# GSE989115, p-value of 0.01 for GSE2873916, and p-value of 0.02 for GSE2355412(Figure 9).
Somatic mutations and their correlation with gene expression:
Somatic mutations in genes have been shown to influence gene expression patterns, of both individual genes and distinct pathways33"35. Only validated mutations were used for these series of analyses23. Mutations of 6,716 genes were available for 192 patient's samples with information about chemo-response at TCGA data site. We performed a logistic regression analysis to determine which mutations were associated with chemo-response (CR versus IR). KRT72, MY05C, ODZ1, SMARCA4, and TP53 were statistically associated with the outcome. SMARCA4 had mutations in 0.7% of CR samples and in 7.3% of IR samples (p-value=0.04); and TP53 had mutations in 88.3% of CR samples and in 72.7% of IR samples (p-value=0.01). Spearman's rank correlation, with correction for multiple comparisons, was used to assess the correlation between significant mutated genes and gene expression of CCP gene subset (p-value and qFDR < 10"4) (Figure 8B). Significant mutated genes as well as their 22 correlated genes with significant change in gene expression were included in the model and added to the significant gene signature identified from the CCP gene subset.
Methylation analysis and its correlation with gene expression:
Epigenetic gene regulation also may affect expression of candidate pathways by inactivating gene function36. As we did with mutations, an analysis of DNA methylation status was performed in 440 patients with high-throughput data and information about chemo-response available. 69 genes were differentially methylated between the CR and IR groups (Figure 8C). A list of these genes could be reviewed at Table 6. In order to explore possible interactions between differentially methylated genes and their possible influence in the expression of our candidate pathways we performed a correlation, with correction for multiple comparisons, between these differentially methylated genes and the expression of the CCP gene subset (p-value and qFDR < 10"6). Differentially methylated genes and their correlated expressed genes were also added to significant gene signature and mutations found previously to improve the molecular model.
miRNA expression analysis and its correlation with gene expression:
Gene expression is also regulated by miRNAs. As previously, differentially miRNA expression was performed in 455 patients with available high-throughput data and information about chemo-response. A heat map of the 38 miRNA differentially expressed between the CR and IR groups is represented in Figure 8D. A list of these miRNA could be reviewed at Table 7. Possible interactions between differentially expressed miRNA and their possible influence in the expression of our candidate pathways were explored with a corrected correlation between miRNA expression and gene expression of the CCP subset (p- value and qFDR < 10"6). Differentially expressed miRNAs and their correlated genes were also included to the model or signature.
Transcription factor (TF) binding sites and their association with gene expression:
Since gene expression is regulated at the transcriptional level, we examined web- based tools that utilize algorithms to search DNA sequences for predicted TF binding sites through high-throughput promoter analysis. TRANSFAC® was used to predict TF binding sites in genes of the candidate pathways associated with OVCA chemo-response31. Of the 2,364 gene of the CCP subset, 1,772 genes were identified to have TF binding sites in their promoter area; 59 of these genes had a differential gene expression between CR and IR (Figure 10A, Table 8). Only these 59 genes harboring TF binding sites that presented both copy number alterations and differentially gene expression were also introduced in the final model.
External validation of final model with non-negative matrix factorization (NMF) consensus clustering:
The combined data from all significant and correlated genes included 422 unique different genes introduced in the final model (Table 9). A cluster analysis of these final model was performed with the non-negative matrix factorization consensus clustering, a type of unsupervised learning algorithm that has been shown to identify molecular patterns when applied to gene expression data15. This analysis yielded two clusters with differentiated gene patterns (Figure 1A). Attempts to create models with more than 2 clusters resulted in lower cophenetic correlation coefficients (Figure IB), and less harmonic consensus matrices (Figure 1C).
Validation of this molecular pattern with 2 defined clusters observed in the final signature model of TCGA data were performed in 5 publicly available independent OVCA gene expression datasets with the same analytical tool, NMF consensus clustering. All these independent gene experiments also showed two differentiated clusters with the highest cophenetic correlation coefficients and the most harmonious consensus matrices12'14'15'17'18. Comparison of these 6 sets of two clusters (TCGA and 5 validation sets) showed an unprecedented external validation of molecular signatures associated with chemo-response in OVCA (Figures 2A-2E).
We also determined if the individual genes were placed by the NMF consensus clustering within the same cluster in all databases used for validation. The level of agreement measured with kappa coefficient was considered 'good or substantial' for 3 of them (0.61- 0.80)12' 14' 11 , 'almost perfect' for another one (0.8 l-l)15 and 'moderate' in only one of them (0.41-0.60)18 (Figure 2, and Figures 1 lA-1 IE).
Pathway enrichment analysis:
To identify which pathways and biological processes were overrepresented in both gene clusters identified within the final gene model, further analysis was conducted with MetaCore™ and clusterProfiler37, from the R statistical package, which mines the KEGG database (Kyoto Encyclopedia of Genes and Genomes, www.genome.jp/kegg). The correlation matrix of each cluster denotes overrepresented predominant pathways (Figure 3). Cluster #1 showed a significant representation of cellular signaling and immune response (mainly cell-mediated) pathways, but also several types of metabolic pathways (Figure 4, and Table 10). Three fourths (75%) of all signaling and metabolic pathways genes in cluster #1 were overexpressed in the IR tumors with respect to the CR samples, with the general perception that IR tumors were engaged in higher metabolic rates through external and internal stimuli. Cluster #2 was significant for pathways involving DNA damage repair and replication as well as cell cycle and apoptosis, all of them with strong influence by mutated TP53. Cluster #2 also presented significant pathways related to cancer and cytoskeleton configuration and structure (Figure 4, and Table 11). Two thirds of all cell cycle and DNA repair genes presented elevated expression in CR tumors when compared to IR tumors, probably driven by mutated key elements of these pathways, like TP53, and increased expression of transcription factors, like ATF6B, CRTC1, E2F1, SIN3B and NFIX.
Discussion:
Patients suffering from platinum-refractory or resistant ovarian cancer have a median overall survival around 12-13 months3. Furthermore, these patients become resistant to multiple drugs early on the course of treatment of their disease and thus, it is challenging to establish efficacious treatment strategies38. The objective of our study was to identify biological processes associated with chemo-response so we may, in the future, identify patients at risk for standard chemotherapy resistance, thus eligible for novel strategies. Also, knowledge of mechanisms involved in chemo-response may help design new strategies as molecular-targeted therapy is gaining traction39. Our study determined chemo-response as the most significant independent clinical factor for survival (p-value <10"15) in the TCGA database, agreeing with daily clinical practice and published clinical trials20.
Despite increasing knowledge about mechanisms of chemo-response in tumor cells there are no valid clinical biomarkers or molecular signatures that could effectively predict response to chemotherapy8"9. Initial analysis of gene profiling aiming to identify functional processes associated with chemo-response in OVCA had showed little overlap between studies looking for expression signatures or pathways associated with response to therapy40. Previously, several groups have used integration of Omics data in OVCA to predict other clinical outcomes41"43. By integrating the comprehensive characterization of TCGA data, namely, CNA, gene mutations, DNA methylation, miRNA expression, and TF binding sites location, into an analytical framework for gene expression, we have created a robust molecular signature that predicts chemo-response in OVCA. This model, with 2 clusters involving previous known mechanisms of chemo-response9, was the most robust in TCGA database; but what is even more important and unprecedented in our study is the external validation of the TCGA model with other 5 independent gene expression studies of
Figure imgf000038_0001
These findings demonstrate consistency of this signature across diverse studies and platforms that we believe is due to the selection of micro-array experiments with the same tumor type of OVCA (serous), statistical design of analyses, and adequately powered. Furthermore, both clusters in the model included the same individual genes with substantial agreement in all but one of the 5 independent gene expression sets, where the agreement was moderate (Figure 2). We think that adding elements to the model that did not result exclusively from the differential gene expression of micro-arrays (CNA, mutations, methylation, miRNA, TF binding sites) added stability to the molecular signature and provided enough range to overcome validation difficulties observed by gene expression experiments alone due to tumor heterogeneity8"9.
Most genes included in our molecular signature for chemo-response are drawn from cellular functions previously associated with response to chemotherapy9. These biological processes include cell signaling pathways, immune response pathways, and several types of metabolic pathways that are involved in DNA damage repair and replication, cell cycle and apoptosis, all of them also have been associated with cancer transformation and proliferation44. In ovarian cancers, signaling transduction cascades from the pathways PBKIAKTI m TOR and RaslRaflMEKIMAPKIERK (with representation in our molecular model, Table 9) may result in diverse effects, including cell proliferation, invasion, angiogenesis, apoptosis evasion, and response to chemotherapy44"45. The MAPK signaling pathway is also connected to the Ras pathway (which includes PAK4), that also regulates cell morphology, cytoskeletal organization, and cell proliferation and migration; PAK4 can also function as an anti-apoptotic protein46. PAK proteins are critical effectors that link Rho GTPases to cytoskeleton reorganization and nuclear signaling. Both PAK4 and RHOT1 are included in cluster #2. The Ras gene family (which RASAl is part) encodes membrane- associated, guanine nucleotide-binding proteins that are involved also in the control of cellular proliferation and differentiation, and have a weak intrinsic GTPase activity, effectors of Ras oncogene action47. MAP kinases may also have a role in early gene expression by modifying the chromatin environment of target genes48, an action regulated through phosphorylation of various substrates, including transcription factors and chromatin constituents. NCAPG, a component of the condensin complex that is required for both interphase and mitotic condensation, is present in cluster #2 of the chemo-response model. Animal models with condensin mutations, DNA damage induced by ultraviolet radiation is not repaired and cells arrested by hydroxyurea do not recover49. In our gene signature, it is notable that a set of genes map to DNA repair pathway (mainly through homologous recombination), like RAD52, and elements of the PARP family, like PARP12. PARPs inhibitors have been proven to be efficacious in the treatment of OVCA in carriers of BRCA1 or BRCA2 mutations50. Also notable are the results of bevacizumab, a humanized antibody against VEGF, in the adjuvant treatment of OVCA51. PDGFB, a component of the VEGF signaling pathway, is present in cluster #1, with other numerous components of cell signaling pathways. With all these interconnections between signaling pathways, DNA damage repair, and cell cycle, alternative strategies to standard therapies may have to involve a combination of cross-specific drugs to avoid by-pass of the blocked path52.
The claimed invention based on a large genomic dataset, which has high benchmarks for quality control and processing (TCGA). The large sample size confers adequate power to detect important patterns while at the same time, it overcomes possible bias introduced by outliers; moreover, it permits better selection of the histological type (serous) and outcome of interest (chemo-response) to improve homogeneity. We believe that those are major factors influencing in the important external validation of the molecular signature in 5 independent gene expression experiments, which is unprecedented in micro-array analysis40. Other major factor influencing a significant validation is the integration of diverse biological data, other than gene expression, in the final model. For the validation process we used two OVCA datasets that were used initially to identify candidate pathways12'15. These datasets had the closest clinical information, including chemo-response, and study design to TCGA. To avoid data over fitting in the validation process, though, we added 3 independent gene expression experiments not used before, despite presenting minor differences in study design and platform content14'17'18.
Nearly all patients received standard treatment, with over 99% of them getting a platinum-based chemotherapy (Table 1). Initial treatment with platinum may select for some of molecular patterns observed in our signature, like cell cycle or DNA repair pathways, due to the DNA adducts induced by platinum53. Consequently, the current invention is applicable to OVCA that would receive initial platinum-based treatment, and may also be suited for other scenarios with different initial therapeutic strategies.
Integration of diverse biological data into gene expression may strengthen gene signature models for prediction of OVCA chemo-response. Robust validation over 5 independent publicly available gene expression experiments supports these findings.
All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
Table 3: Whole genome CNA
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
Copy Number Gains
37888254 120807 0.10 lp34.3 Clorfl09, CDCA8, EPHA10
RRAGC, MYCBP, GJA9-MYCBP, GJA9, RHBDL2, AKIRIN1, NDUFS5, MACF1, lp34.3- KIAA0754, BMP8A, PPIEL, PABPC4, SNORA55, HEYL, NT5C1A, HPCAL4, PPIE,
38728744 3008098 2.42 44 BMP8B, OXCT2, TRIT1, MYCL1, MFSD2A, CAP1, PPT1, RLF, TMC02, ZMPSTE24, p34.2 COL9A2, SMAP2, ZNF643, ZNF642, DEMI, ZNF684, RIMS3, LOC100130557, NFYC,
MIR30E, MIR30C1, KCNQ4, CITED4, CTPS, SLFNL1, SCMH1, EDN2
110033018 8694 0.01 lpl3.3 GSTMl
SEC22B, NOTCH2NL, NBPF10, HFE2, TXNIP, POLR3GL, ANKRD34A, LIX1L, RBM8A, GNRHR2, PEX11B, ITGA10, ANKRD35, PIAS3, NUDT17, POLR3C, RNF115, CD160, PDZK1, GPR89A, GPR89C, PDZK1P1, NBPF11, NBPF24, LOC728989, PRKAB2, PDIA3P, FM05, CHD1L, BCL9, ACP6, GJA5, GJA8, GPR89B, NBPF14, PPIAL4E, PPIAL4D, PPIAL4F, NBPF15, NBPF16, LOC645166, LOC388692, FCGR1C, HIST2H2BF, FCGR1A, HIST2H3D, HIST2H4B, HIST2H4A, HIST2H3C, HIST2H3A, HIST2H2AA4, HIST2H2AA3, HIST2H2BC, HIST2H2BE, HIST2H2AC, HIST2H2AB, BOLA1, SV2A, SF3B4, MTMR11, OTUD7B, VPS45, PLEKHOl, ANP32E, CA14, APHIA, Clorf54, Clorf51, MRPS21, PRPF3, RPRD2, TARS2, ECM1, ADAMTSL4, MIR4257, MCL1, ENSA, GOLPH3L, HORMAD1, CTSS, CTSK, ARNT, SETDB1, LASS2, ANXA9, FAM63A, PRUNE, BNIPL, Clorf56, CDC42SE1, MLLT11, GABPB2, SEMA6C, TNFAIP8L2, LYSMD1, SCNM1, TMOD4, VPS72, PIP5K1A, PSMD4, ZNF687, PI4KB, RFX5, SELENBP1, PSMB4, POGZ, CGN, TUFT1, MIR554, SNX27, CELF3, RIIAD1, MRPL9, OAZ3, TDRKH, LING04, RORC, C2CD4D, LOC100132111, THEM5, THEM4, S100A10, S100A11, TCHHL1, TCHH, RPTN, lq21.1- HRNR, FLG, FLG2, CRNN, LCE5A, CRCT1, LCE3E, LCE3D, LCE3C, LCE3B, LCE3A,
143809389 13468627 10.98 338 LCE2D, LCE2C, LCE2B, LCE2A, LCE4A, Clorf68, KPRP, LCEIF, LCEIE, LCEID, LCEIC, q23.1 LCE1B, LCE1A, LCE6A, SMCP, IVL, SPRR4, SPRR1A, SPRR3, SPRR1B, SPRR2D,
SPRR2A, SPRR2B, SPRR2E, SPRR2F, SPRR2C, SPRR2G, LELP1, PRR9, LOR, PGLYRP3, PGLYRP4, S100A9, S100A12, S100A8, S100A7A, S100A7L2, S100A7, S100A6, S100A5, S100A4, S100A3, S100A2, S100A16, S100A14, S100A13, S100A1, Clorf77, SNAPIN, ILF2, NPR1, INTS3, SLC27A3, GATAD2B, DENND4B, CRTC2, SLC39A1, CREB3L4, JTB, RAB13, RPS27, NUP210L, TPM3, MIR190B, Clorfl89, Clorf43, UBAP2L, HAX1, AQP10, ATP8B2, IL6R, SHE, TDRD10, UBE2Q1, CHRNB2, ADAR, KCNN3, PMVK, PBXIP1, PYG02, SHC1, CKS1B, MIR4258, FLAD1, LENEP, ZBTB7B, DCST2, DCST1, ADAM 15, EFNA4, EFNA3, EFNA1, SLC50A1, DPM3, KRTCAP2, TRIM46, MUC1, MIR92B, THBS3, MTXl, GBAPl, GBA, FAM189B, SCAMP3, CLK2, HCN3, PKLR, FDPS, Clorfl04, RUSCl, ASH1L, MIR555, POU5F1P4, LOC645676, MSTOl, YY1AP1, DAP3, MST02P, GON4L, SYT11, RIT1, KIAA0907, SNORA42, SCARNA4, RXFP4, ARHGEF2, SSR2, UBQLN4, ROBLD3, RAB25, MEX3A, LMNA, SEMA4A, SLC25A44, PMF1, PMF1-BGLAP, BGLAP, PAQR6, SMG5, TMEM79, Clorf85, VHLL, CCT3, Clorfl82, RHBG, Clorf61, MIR9-1, MEF2D, IQGAP3, TTC24, APQAIBP, GPATCH4, HAPLN2, BCAN, NES, CRABP2,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
ISG20L2, RRNAD1, MRPL24, HDGF, PRCC, SH2D2A, NTRK1, INSRR, PEAR1, Clorf92, ARHGEF11, MIR765, ETV3L, ETV3, CYCSP52, FCRL5, FCRL4, FCRL3, FCRL2, FCRL1, CD5L, KIRREL, LOC646268, CD1D, CD1A, CD1C, CD1B, CD1E, OR10T2, OR10K2, OR10K1, OR10R2, OR6Y1, OR6P1, OR10X1, OR10Z1, SPTA1, OR6K2, OR6K3, OR6K6, OR6N1, OR6N2, MNDA, PYHIN1, IFI16
IFI16, AIM2, CADM3, DARC, FCER1A, OR10J3, OR10J1, OR10J5, APCS, CRP, DUSP23, FCRL6, SLAMF8, Clorf204, VSIG8, CCDC19, TAGLN2, IGSF9, SLAMF9, PIGM, KCNJIO, KCNJ9, IGSF8, ATP1A2, ATP1A4, CASQ1, PEA15, DCAF8, PEX19, COP A, SUM01P3, lq23.1- NCSTN, NHLH1, VANGL2, SLAMF6, CD84, SLAMF1, CD48, SLAMF7, LY9, CD244,
1 q 157287924 3811143 3.11 89 ITLNl, ITLN2, FUR, TSTDl, USFl, ARHGAP30, PVRL4, KLHDC9, PFDN2, NITl, DEDD, q23.3 UFC1, USP21, PPOX, B4GALT3, ADAMTS4, NDUFS2, FCER1G, APOA2, TOMM40L,
NR1I3, PCP4L1, MPZ, SDHC, Clorfl92, FCGR2A, HSPA6, FCGR3A, FCGR2C, HSPA7, FCGR3B, FCGR2B, RPL31P11, FCRLA, FCRLB, DUSP12, ATF6, OLFML2B, NOS1AP, MIR556, Clorfl l l, Clorf226, SH2D1B, UHMK1, UAP1, DDR2, HSD17B7, Clorfl lO
1 q 226200980 2625 0.00 lq42.13 1 WNT9A
lq42.13- GALNT2, PGBD5, COG2, AGT, CAPN9, Clorfl98, TTC13, ARV1, FAM89A, MIR1182, i q 228261810 1847426 1.51 22 TRIM67, Clorfl31, GNPAT, EXOC8, Clorfl24, EGLN1, SNRPD2P2, TSNAX, TSNAX- q42.2 DISC1, LOC100287814, DISCI, DISC2
DISCI, SIPA1L2, KIAA1383, NTPCR, PCNXL2, KIAA1804, KCNK1, SLC35F3, Clorf31, lq42.2- TARBP1, IRF2BP2, NCRNA00184, TOMM20, SNORA14B, RBM34, ARID4B, GGPS1, q 230118582 8427149 6.87 38 TBCE, B3GALNT2, GNG4, LYST, MIR1537, NIDI, GPR137B, EROILB, EDARADD, q43 LGALS8, LOC100287902, HEATR1, ACTN2, MTR, RYR2, LOC100130331, ZP4,
LOC339535, CHRM3, RPS7P5, FMN2
1 q 238553479 569652 0.46 lq43 3 FMN2, GREM2, RGS7
1 q 239365946 878760 0.72 lq43 8 RGS7, FH, KMO, OPN3, CHML, WDR64, EXOl, MAP1LC3C
1 q 240263553 841298 0.69 lq43 1 PLD5
1 q 241366280 1602740 1.31 Iq43-q44 9 CEP170, SDCCAG8, AKT3, LOC339529, ZNF238, ClorflOO, ADSS, ClorflOl, PPPDE1
FAM36A, NCRNA00201, HNRNPU, EFCAB2, KIF26B, SMYD3, TFB2M, CNST, SCCPDH, i q 242989278 2757076 2.25 lq44 22 LOC149134, AHCTF1, ZNF695, ZNF670, ZNF669, Clorf229, ZNF124, MIR3916, VN1R5,
ZNF496, NLRP3, OR2B11, OR2W5
OR2L13, OR2L8, OR2AK2, OR2L1P, OR2L2, OR2L3, OR2M1P, OR2M5, OR2M2, OR2M3, i q 246176580 592438 0.48 lq44 22 OR2M4, OR2T33, OR2T12, OR2M7, OR14C36, OR2T4, OR2T6, OR2T1, OR2T2, OR2T3,
OR2T5, OR2G6
1 q 246863179 323335 0.26 lq44 9 OR2T35, OR2T27, OR14I1, LOC646627, SH3BP5L, MIR3124, ZNF672, ZNF692, PGBD2
2 P 33078005 2432 0.00 2p22.3 1 LTBP1
2 q 154605621 1322 0.00 2q24.1 1 GALNT13
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
2 q 179777850 1069 0.00 2q31.2 1 SESTDl
3 q 133191877 2808 0.00 3q22.1 1 CPNE4
CPNE4, ACPP, DNAJC13, ACAD11, NPHP3-ACAD11, CCRL1, UBA5, NPHP3, NCRNA00119, TMEM108, BFSP2, CDV3, TOPBP1, TF, SRPRB, RAB6B, C3orf36, SLC02A1, RYK, AMOTL2, ANAPC13, CEP63, KY, EPHB1, PPP2R3A, MSL2, PCCB, STAG1, TMEM22, NCK1, IL20RB, SOX14, CLDNl 8, DZIP1L, A4GNT, DBR1, ARMC8, TXNDC6, MRAS, ESYT3, CEP70, FAIM, PIK3CB, FOXL2, C3orf72, PRR23A, PRR23B, PRR23C, BPESC1, PISRT1, MRPS22, COPB2, RBP2, RBP1, NMNAT3, CLSTN2, TRIM42, SLC25A36, SPSB4, ACPL2, ZBTB38, RASA2, RNF7, GRK7, ATP1B3, TFDP2, GK5, XRN1, ATR, PLS1, TRPC1, PCOLCE2, PAQR9, LOC100289361, U2SURP, CHST2, SLC9A9, C3orf58, PLOD2, PLSCR4, PLSCR2, PLSCR1, PLSCR5, ZIC4, ZIC1, AGTR1, CPB1, CPA3, GYG1, HLTF, HP S3, CP, TM4SF18, TM4SF1, TM4SF4, WWTR1, COMMD2, C3orfl6, RNF13, PFN2, LOC646903, TSC22D2, SERP1, EIF2A, SELT, FAM194A, SIAH2, CLRN1, CLRNIOS, MED12L, GPR171, P2RY14, GPR87, P2RY13, P2RY12, IGSF10, MIR548H2, AADACL2, LOC201651, AADAC, SUCNR1, LOC401093, MBNL1, TMEM14E, P2RY1, RAP2B, C3orf79, ARHGEF26, DHX36, GPR149, MME, PLCH1, C3orf33, SLC33A1, GMPS, KCNABl, SSR3, LOC100287227, TIPARP, PA2G4P4, LEKRl, LOC339894, LOC100498859, CCNL1, VEPH1, PTX3, C3orf55, SHOX2, RSRC1, MLF1, GFM1, LXN, RARRES1, MFSD1, IQCJ, IQCJ-SCHIP1, SCHIP1, MIR3919, IL12A, LOC401097, IFT80, SMC4, MIR15B, MIR16-2, TRIM59, KPNA4, SCARNA7, ARL14, PPM1L, B3GALNT1, NMD3, C3orf57, OTOLl, LOC647107, SI, SLITRK3, BCHE, ZBBX, SERPINI2, WDR49, PDCD10, SERPINIl,
3q22.1- LOC646168, GOLIM4, EGFEM1P, MIR551B, MECOM, TERC, ARPM1, MYNN, LRRC34,
3 q 133198618 66130974 61.06 386
q29 LRRIQ4, LRRC31, SAMD7, LOC100128164, SEC62, GPR160, PHC3, PRKCI, SKIL,
CLDNl 1, SLC7A14, RPL22L1, EIF5A2, SLC2A2, TNIK, MIR569, PLD1, TMEM212, FNDC3B, GHSR, TNFSF10, NCEH1, ECT2, SPATA16, NLGN1, NAALADL2, TBL1XR1, KCNMB2, ZMAT3, PIK3CA, KCNMB3, ZNF639, MFN1, GNB4, ACTL6A, MRPL47, NDUFB5, USP13, PEX5L, TTC14, CCDC39, FXR1, DNAJC19, SOX20T, SOX2, ATP11B, DCUN1D1, MCCC1, LAMP3, MCF2L2, B3GNT5, KLHL6, KLHL24, YEATS2, MAP6D1, PARL, ABCC5, HTR3D, HTR3C, HTR3E, EIF2B5, DVL3, AP2M1, ABCF3, VWA5B2, MIR1224, ALG3, ECE2, CAMK2N2, PSMD2, EIF4G1, SNORD66, FAM131A, CLCN2, POLR2H, THPO, CHRD, EPHB3, MAGEF1, VPS8, C3orf70, EHHADH, MAP3K13, TMEM41A, LIPH, SENP2, IGF2BP2, C3orf65, TRA2B, LOC344887, ETV5, DGKG, LOC253573, CRYGS, TBCCD1, DNAJB11, AHSG, FETUB, HRG, KNG1, EIF4A2, SNORD2, MIR1248, SNORA81, SNORA63, SNORA4, RFC4, ADIPOQ, ST6GAL1, RPL39L, RTP1, MASP1, RTP4, SST, RTP2, LOC100131635, BCL6, LOC339929, LPP, FLJ42393, TPRGl, TP63, MIR944, LEPRELl, CLDNl, CLDN16, TMEM207, ILIRAP, GEMCl, SNAR- I, OSTN, UTS2D, CCDC50, PYDC2, FGF12, C3orf59, HRASLS, MGC2889, ATP13A5, ATP13A4, OPAl, LOC647323, LOC100128023, HES1, LOC100131551, CPN2, LRRC15, GP5, ATP 13 A3, FLJ34208, TMEM44, LSG1, FAM43A, C3orf21, ACAP2, PPP1R2, APOD, SDHAP2, MIR570, MUC20, MUC4, TNK2, SDHAP1, TFRC, LOC401109, ZDHHC19, OSTalp a, PCYT1A, TCTEX1D2, TM4SF19, UBXN7, RNF168, C3orf43, WDR53, FBX045, LRRC33, C3orf34, PIGX, PAK2, SENP5, NCBP2, LOC152217, PIGZ, MFI2, DLG1, BDH1,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Figure imgf000044_0001
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
p22.2 NRSNl, DCDC2, KAAG1, MRS2, GPLD1, ALDH5A1, KIAA0319, TDP2, ACOT13,
C6orf62, GMNN, FAM65B, CMAH, LRRC16A, SCGN
6 P 26125251 16061 0.03 6p22.1 6 HIST1H1A, HIST1H3A, HIST1H4A, HIST1H4B, HIST1H3B, HIST1H2AB
GUSBL1, NCRNA00240, LOC100270746, HIST1H2BJ, HIST1H2AG, HIST1H2BK, HIST1H4I, HIST1H2AH, MIR3143, PRSS16, POM121L2, FKSG83, ZNF204P, ZNF391, ZNF184, HIST1H2BL, HIST1H2AI, HIST1H3H, HIST1H2AJ, HIST1H2BM, HIST1H4J,
6 P 26863540 1843125 3.05 6p22.1 51 HIST1H4K, HIST1H2AK, HIST1H2BN, HIST1H2AL, HIST1H1B, HIST1H3I, HIST1H4L,
HIST1H3J, HIST1H2AM, HIST1H2BO, OR2B2, OR2B6, ZNF165, ZSCAN12P1, ZSCAN16, ZNF192, ZNF389, LOC222699, ZNF193, ZKSCAN4, NKAPL, ZNF187, PGBD1, ZNF323, ZKSCAN3, ZSCAN12, ZSCAN23, GPX6, GPX5, SCAND3
OR2H1, MAS1L, LOC100507362, UBD, SNORD32B, OR2H2, GABBR1, MOG, ZFP57,
6 P 29535783 291869 0.48 6p22.1 12 HLA-F, LOC285830, IFITM4P
6 P 29972382 20564 0.03 6p21.33 1 HCG2P7
6 P 30000990 20918 0.03 6p21.33 2 HCG4P6, HLA-A
ABCF1, MIR877, PPP1R10, MRPS18B, ATAT1, C6orfl36, DHX16, KIAA1949, NRM,
6 P 30653994 590781 0.98 6p21.33 28 MDC1, TUBB, FLOT1, IER3, DDR1, GTF2H4, VARS2, SFTA2, DPCR1, MUC21,
PBMUCL1, HCG22, C6orfl5, PSORS1C1, CDSN, PSORS1C2, CCHCR1, TCF19, POU5F1
MICB, MCCD1, DDX39B, ATP6V1G2-DDX39B, SNORD117, SNORD84, ATP6V1G2, NFKBIL1, LTA, TNF, LTB, LST1, NCR3, AIF1, PRRC2A, SNORA38, BAG6, APOM, C6orf47, GPANKl, CSNK2B, LY6G5B, LY6G5C, ABHD16A, LY6G6F, LY6G6E, LY6G6D,
6p21.33- LY6G6C, C6orf25, DDAH2, CLIC1, MSH5, MSH5-C60RF26, C6orf26, C6orf27, VARS,
6 P 31563829 1041471 1.72 77 LSM2, HSPA1L, HSPA1A, HSPA1B, C6orf48, SNORD48, SNORD52, NEU1, SLC44A4, p21.32 EHMT2, ZBTB12, C2, CFB, RDBP, MIR1236, SKIV2L, DOM3Z, STK19, C4B, C4A, TNXA,
CYP21A2, TNXB, ATF6B, FKBPL, PRRT1, LOC100507547, PPT2, PPT2-EGFL8, EGFL8, AGP ATI, RNF5, RNF5P1, AGER, PBX2, GPSM3, NOTCH4, C6orfl0, BTNL2, HLA-DRA, HLA-DRB5
6 P 32713363 15124 0.02 6p21.32 1 HLA-DQA1
6 P 54037199 5535 0.01 6pl2.1 1 C6orfl42
7 q 1047636 71 0.00 7p22.3 1 C7orf50
7 q 127458264 1148 0.00 7q32.1 1 SND1
7 q 127508735 3952 0.00 7q32.1 2 SND1, MIR593
7 q 127633668 9801 0.01 7q32.1 1 MIR129-1
7q32.1- CALU, OPN1SW, CCDC136, FLNC, ATP6V1F, LOC100130705, KCP, IRF5, TNP03,
7 q 128194352 30626911 30.66 265 TPI1P2, LOC407835, TSPAN33, SMO, AHCYL2, FAM40B, LOC100287482, NRF1,
q36.3 MIR182, MIR96, MIR183, UBE2H, ZC3HC1, KLHDCIO, TMEM209, C7orf45, CPA2, CPA4,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Figure imgf000046_0001
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
SNORD87, TCF24, LRRC67, COPS5, CSPP1, ARFGEF1, CPA6, PREX2, C8orf34, SULF1, SLC05A1, PRDM14, NCOA2, TRAM1, LACTB2, XKR9, EYA1, MSC, LOC100132891, TRPA1, LOC392232, KCNB2, TERF1, C8orf84, LOC100130301, RPL7, RDH10, STAU2, UBE2W, TCEB1, TMEM70, LY96, JPH1, GDAP1, FLJ39080, MIR2052, PI15, CRISPLD1, HNF4G, LOC100192378, ZFHX4, PEX2, PKIA, FAM164A, IL7, STMN2, HEY1, MRPS28, TPD52, ZBTB10, ZNF704, PAG1, FABP5, PMP2, FABP9, FABP4, FABP12, IMPA1, SLC10A5, ZFAND1, CHMP4C, SNX16, RALYL, LRRCC1, E2F5, C8orf59, CA13, CA1, CA3, CA2, REX01L2P, REX01L1, PSKH2, ATP6V0D2, SLC7A13, WWP1, FAM82B, CPNE3, CNGB3, CNBD1, DCAF4L2, MMP16, RIPK2, OSGIN2, NBN, DECR1, CALB1, TMEM64, NECAB1, LOC100127983, TMEM55A, OTUD6B, LRRC69, SLC26A7, RUNXITI, C8orf83, LOC642924, FAM92A1, RBM12B, C8orf39, TMEM67, PDPl, CDH17, GEM, RAD54B, KIAA1429, LOC100288748, ESRPl, DPY19L4, INTS8, CCNE2, TP53INP1, C8orf38, MIR3150B, MIR3150, PLEKHF2, C8orf37, LOC100500773, GDF6, UQCRB, MTERFD1, PTDSS1, SDC2, PGCP, TSPYL5, MTDH, LAPTM4B, MATN2, RPL30, SNORA72, C8orf47, HRSP12, POP1, NIPAL2, KCNS2, STK3, OSR2, VPS13B, MIR599, MIR875, COX6C, RGS22, FBX043, POLR2K, SPAG1, RNF19A, ANKRD46, SNX31, PABPCl, YWHAZ, FLJ42969, ZNF706, NACAPl, GRHL2, NCALD, RRM2B, UBR5, ODFl, KLF10, AZIN1, ATP6V1C1, C8orf56, BAALC, MIR3151, LOC100499183, FZD6, CTHRC1, SLC25A32, DCAF13, RIMS2, TM7SF4, DPYS, LRP12, ZFPM2, OXR1, ABRA, ANGPT1, RSP02, EIF3E, TTC35, TMEM74, TRHR, NUDCD1, ENY2, PKHD1L1, EBAG9, SYBU, KCNV1, CSMD3, MIR2053, TRPS1, EIF3H, UTP23, RAD21, NCRNA00255, MIR3610, C8orf85, SLC30A8, MED30, EXT1, SAMD12, TNFRSF11B, COLECIO, MAL2, NOV, ENPP2, TAF2, DSCC1, DEPTOR, COL14A1, MRPL13, MTBP, SNTB1, HAS2, HAS2-AS1, ZHX2, DERL1, WDR67, FAM83A, LOC100131726, C8orf76, ZHX1, ATAD2, WDYHV1, FBX032, KLHL38, ANXA13, FAM91A1, FER1L6, TMEM65, TRMT12, RNF139, TATDNl, NDUFB9, MTSS1, LOC157381, ZNF572, SQLE, KIAA0196, NSMCE2, TRIB 1, FAM84B, POU5F1B, LOC727677, MYC, PVT1, MIR1204, MIR1205, MIR1206, MIR1207, MIR1208, LOC728724, GSDMC, FAM49B, ASAP1, ASAP1-IT, ADCY8, EFR3A, OC90, HHLA1, KCNQ3, HPYR1, LRRC6, TMEM71, PHF20L1, TG, SLA, WISP1, NDRG1, ST3GAL1, ZFAT, ZFAT-AS1, MIR30B, MIR30D, LOC286094, KHDRBS3, FAM135B, COL22A1, KCNK9, TRAPPC9, CHRAC1, EIF2C2, PTK2, DENND3, SLC45A4, LOC731779, GPR20, PTP4A3, FLJ43860, NCRNA00051, TSNARE1, BAI1, ARC, JRK, PSCA, LY6K, C8orf55, SLURP1, LYPD2, LYNX1, LY6D, GML, CYP11B 1, CYP11B2, LOC100133669, LY6E, C8orf31, LY6H, GPIHBP1, ZFP41, GLI4, ZNF696, TOP1MT, C8orf51, RHPN1, MAFA, ZC3H3, GSDMD, C8orf73, NAPRT1, EEF1D, TIGD5, PYCRL, TSTA3, ZNF623, ZNF707, BREA2, LOC100130274, MAPK15, FAM83H, LOC100128338, SCRIB, MIR937, PUF60, NRBP2, EPPK1, PLEC, MIR661, PARP10, GRINA, SPATC1, OPLAH, EXOSC4, GPAAl, CYC1, SHARPIN, MAF1, KIAA1875, C8orf30A, HEATR7A, SCXA, SCXB, BOP1, HSF1, DGAT1, SCRT1, C80RFK29, FBXL6, GPR172A, ADCK5, CPSF1, MIR939, MIR1234, SLC39A4, VPS28, TONSL, CYHR1, KIFC2, FOXH1, PPP1R16A, GPT, MFSD3, RECQL4, LRRC14, LRRC24, C8orf82, ARHGAP39, ZNF251, ZNF34, RPL8, ZNF517, ZNF7, COMMD5, ZNF250, ZNF16, ZNF252, TMED10P1, C8orf77, C8orf33
9 P 15805300 1823 0.00 9p22.3 1 C9orf93
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
9 q 70928471 2057 0.00 9q21.11 1 TJP2
10 P 27040181 1631 0.00 10pl2.1 1 PDSS1
10 q 77926390 2348 0.00 10q22.3 1 ClOorfl l
l lql3.5- GUCY2E, TSKU, ACER3, B3GNT6, CAPN5, OMP, MY07A, GDPD4, PAK1, AQP11,
11 q 76074403 2562103 3.16 24 CLNS1A, RSF1, Cl lorf67, INTS4, KCTD14, NDUFC2-KCTD14, THRSP, NDUFC2, ALG8, ql4.1 KCTD21, USP35, GAB2, NARS2, ODZ4
IQSEC3, LOC574538, SLC6A12, SLC6A13, KDM5A, CCDC77, B4GALNT3, NINJ2, WNKl, RAD52, ERC1, LOC100292680, FBXL14, WNT5B, MIR3649, ADIPOR2, CACNA2D4, LRTM2, LOC100271702, DCPIB, CACNAIC, LOC283440, FKBP4, ITFG2, NRIP2, FOXMl, C12orf32, TULP3, TEAD4, TSPAN9, PRMT8, EFCAB4B, PARP11, CCND2, C12orf5, FGF23, FGF6, C12orf4, RAD51AP1, DYRK4, AKAP3, NDUFA9, GALNT8, KCNA6, KCNA1, KCNA5, NTF3, AN02, VWF, CD9, PLEKHG6, TNFRSF1A, SCNN1A, LTBR, LOC678655, CD27, TAPBPL, VAMP1, MRPL51, NCAPD2, SCARNA10, GAPDH, IFFOl, NOP2, CHD4, SCARNA11, LPAR5, ACRBP, ING4, ZNF384, C12orf53, COPS7A, MLF2, PTMS, LAG3, CD4, GPR162, LEPREL2, GNB3, CDC A3, USP5, TPI1, SPSB2, RPL13P5, DSTNP2, LRRC23, EN02, ATN1, C12orf57, PTPN6, MIR200C, MIR141, PHB2,
SCARNA12, EMG1, LPCAT3, CIS, C1R, C1RL, LOC283314, RBP5, CLSTN3, PEX5, ACSM4, CD163L1, CD163, APOBEC1, GDF3, DPP A3, CLEC4C, NANOGNB, NANOG, SLC2A14, SLC2A3, FOXJ2, C3AR1, NECAP1, CLEC4A, POU5F1P3, ZNF705A, FAM66C, FAM90A1, LOC653113, LOC389634, CLEC6A, CLEC4D, CLEC4E, AICDA, MFAP5, RIMKLB, A2ML1, PHC1, M6PR, KLRG1, C12orG3, LOC144571, A2M, PZP,
LOC100499405, LOC642846, DDX12, KLRB 1, LOC374443, CLEC2D, CLECL1, CD69,
12pl3.33- KLRF1, CLEC2B, KLRF2, CLEC2A, CLEC12A, CLEC1B, CLEC12B, CLEC9A, CLEC1A,
12 P 33854 32885882 92.90 314 CLEC7A, OLRl, C12orf59, GABARAPL1, KLRD1, KLRK1, KLRC4-KLRK1, KLRC4, pl l .21 KLRC3, KLRC2, KLRC1, KLRAP1, MAGOHB, STYK1, CSDA, TAS2R7, TAS2R8,
TAS2R9, TAS2R10, PRR4, PRH1, TAS2R13, PRH2, TAS2R14, TAS2R50, TAS2R20, TAS2R19, TAS2R31, TAS2R46, TAS2R43, TAS2R30, LOC100129361, TAS2R42, PRB3, PRB4, PRB1, PRB2, LOC338817, ETV6, BCL2L14, LRP6, MANSC1, LOH12CR2, LOH12CR1, DUSP16, CREBL2, GPR19, CDKN1B, APOLD1, MIR613, DDX47,
RPL13AP20, GPRC5A, MIR614, GPRC5D, HEBP1, HTR7P1, KIAA1467, GSG1, EMP1, C12orf36, GRIN2B, ATF7IP, PLBD1, GUCY2C, HIST4H4, H2AFJ, WBP11, C12orf60, C12orf69, ART4, MGP, ERP27, ARHGDIB, PDE6H, RERG, PTPRO, EPS8, STRAP, DERA, SLC15A5, MGST1, LM03, LOC728622, RERGL, PIK3C2G, PLCZ1, CAPZA3, PLEKHA5, AEBP2, PDE3A, SLCOICI, SLC01B3, LST-3TM12, SLCOIB I, SLC01A2, IAPP, PYROXDl, RECQL, GOLTIB, C12orf39, GYS2, LDHB, KCNJ8, ABCC9, CMAS, ST8SIA1, KIAA0528, ETNKl, SOX5, MIR920, C12orf67, BCATl, C12orf77, LRMP, CASCl, LYRM5, KRAS, IFLTD1, MIR4302, RASSF8, BHLHE41, SSPN, ITPR2, C12orfl l, FGFR10P2, TM7SF3, MED21, C12orf71, STK38L, ARNTL2, C12orf70, PPFIBP1, REP 15, MRPS35, LOC100287284, KLHDC5, PTHLH, CCDC91, FAR2, ERGIC2, OVCHl, TMTC1, IP08, CAPRIN2, TSPAN11, DDX11, FAM60A, FLJ13224, DENND5B, C12orf72, AMN1, H3F3C, C12orf35, BICDl, FGD4, DNM1L, YARS2, PKP2
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
12 P 130944468 1780 0.00 12q24.33 1 ULKl
13 q 100692746 1146 0.00 13q33.1 1 NALCN
13 q 113792974 1695 0.00 13q34 1 RASA3
14 q 34676390 7420 0.01 14ql3.2 1 KIAA0391
14 q 73072457 19655 0.02 14q24.3 HEATR4, ACOT1
15 q 74678353 2086 0.00 15q24.3 1 SCAPER
15 q 99634434 1267 0.00 15q26.3 1 SELS
16 P 1299180 1161 0.00 16pl3.3 1 UBE2I
16 q 57204859 1913 0.00 16q21 1 CNOT1
16 q 75097331 3534 0.01 16q23.1 1 CNTNAP4
16 q 76929598 10620 0.02 16q23.1 1 WWOX
17 P 1906319 72 0.00 17pl3.3 1 HICl
19 P 241442 1584 0.01 19pl3.3 1 PPAP2C
19 P 9351476 73900 0.26 19pl3.2 3 ZNF559-ZNF177, ZNF177, ZNF266
ZNF560, ZNF426, ZNF121, ZNF561, ZNF562, ZNF812, ZNF846, FBXL12, UBL5, PIN1, OLFM2, COL5A3, RDH8, C3P1, C19orf66, ANGPTL6, PPAN, PPAN-P2RY11, SNORD105, SNORD105B, P2RY11, EIF3G, DNMT1, S1PR2, MIR4322, MRPL4, ICAM1, ICAM4, ICAM5, ZGLP1, FDX1L, RAVER 1, ICAM3, TYK2, CDC37, MIR1181, PDE4A, KEAP1, S1PR5, ATG4D, MIR1238, KRIl, CDKN2D, AP1M2, SLC44A2, LOC147727, ILF3, QTRTl, DNM2, MIR638, MIR1 A1, TMED1, C19orf38, CARM1, YIPF2, C19orf52, SMARCA4, LDLR, SPC24, KANK2, DOCK6, LOC55908, TSPAN16, RAB3D, TMEM205, CCDC159,
19pl3.2- LPPR2, C19orf39, EPOR, RGL3, CCDC151, PRKCSH, ELAVL3, ZNF653, ECSIT, CNN1,
19 P 9457512 10236513 35.92 323 ELOF1, ACP5, ZNF627, ZNF833P, ZNF823, ZNF441, ZNF491, ZNF440, ZNF439, ZNF69, pl3.11 ZNF700, ZNF763, ZNF433, ZNF878, ZNF844, ZNF788, ZNF20, ZNF625-ZNF20, ZNF625,
ZNF136, ZNF44, ZNF563, ZNF442, ZNF799, ZNF443, ZNF709, ZNF564, ZNF490, ZNF791, MAN2B1, WDR83, C19orf56, DHPS, FBXW9, TNP02, SNORD41, C19orf43, ASNA1, BEST2, HOOK2, JUNB, PRDX2, RNASEH2A, RTBDN, MAST1, DNASE2, KLF1, GCDH, SYCE2, FARSA, CALR, RAD23A, GADD45GIP1, DAND5, NFIX, LYLl, TRMTl, NACCl, STX10, IER2, CACNA1A, CCDC130, MRU, C19orf53, ZSWIM4, LOC284454, MIR24-2, MIR27A, MIR23A, MIR181C, MIR181D, NANOS3, C19orf57, CC2D1A, PODNLl, DCAF15, RFX1, RLN3, IL27RA, PALM3, LOCI 13230, SAMD1, PRKACA, ASF1B, LPHN1, CD97,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
DDX39A, PKN1, PTGER1, GIPCl, LOC100130932, DNAJB1, MIR639, TECR, NDUFB7, CLEC17A, EMR3, ZNF333, EMR2, OR7C1, OR7A5, OR7A10, OR7A17, OR7C2, SLC1A6, CCDC105, CASP14, OR1I1, SYDE1, ILVBL, NOTCH3, EPHX3, BRD4, AKAP8, AKAP8L, WIZ, MIR1470, RASAL3, PGLYRP2, CYP4F22, CYP4F8, CYP4F3, CYP4F12, OR10H2, OR10H3, CYP4F24P, OR10H5, ORIOHI, UCAl, CYP4F2, CYP4F11, OR10H4, LOC126536, FLJ25328, TPM4, RAB8A, HSH2D, CIB3, FAM32A, AP1M1, KLF2, EPS15L1, CALR3, C19orf44, CHERP, SLC35E1, MED26, C19orf42, TMEM38A, NWD1, SIN3B, F2RL3, CPAMD8, HAUS8, MY09B, USE1, OCEL1, NR2F6, USHBP1, BABAM1, ANKLE 1, ABHD8, MRPL34, DDAl, AN08, GTPBP3, PLVAP, BST2, FAM125A, TMEM221, NXNLl, SLC27A1, PGLS, FAM129C, GLT25D1, UNCI 3 A, MAP1S, FCHOl, B3GNT3, INSL3, JAK3, RPL18AP3, RPL18A, SNORA68, SLC5A5, CCDC124, KCNN1, ARRDC2, IL12RB1, MAST3, PIK3R2, IFI30, MPV17L2, RAB3A, PDE4C, LOC729966, KIAA1683, JUND, MIR3188, LSM4, PGPEP1, GDF15, MIR3189, LRRC25, SSBP4, ISYNA1, ELL, FKBP8, C19orf50, UBA52, C19orf60, CRLF1, TMEM59L, KLHL26, CRTC1, COMP, UPF1, GDF1, LASS1, COPE, DDX49, HOMER3, SUGP2, ARMC6, SLC25A42, TMEM161A, MEF2B, LOC729991-MEF2B, LOC729991, RFXANK, NR2C2AP, NCAN, HAPLN4, TM6SF2, SUGP1, MAU2, GATAD2A, TSSK6, NDUFA13, YJEFN3, CILP2, PBX4, LPAR2, GMIP, ATP13A1, ZNF101, ZNF14
19pl3.11- ZNF14, LOC284440, ZNF506, ZNF253, ZNF93, ZNF682, ZNF90, ZNF486, ZNF826P,
19 P 19702214 2191477 7.69 25 MIR1270-1, MIR1270-2, ZNF737, ZNF626, ZNF85, ZNF430, ZNF714, ZNF431, ZNF708, pl2 ZNF738, ZNF493, LOC400680, ZNF429, ZNF100, LOC641367, ZNF43
LOC148189, LOC148145, UQCRFS1, VSTM2B, POP4, PLEKHF1, C19orfl2, CCNE1, C19orf2, ZNF536, DKFZp566F0947, TSHZ3, ZNF507, DPY19L3, PDCD5, ANKRD27, RGS9BP, NUDT19, TDRD12, SLC7A9, CCDC123, C19orf40, RHPN2, GPATCH1, WDR88, LRP3, SLC7A10, CEBPA, LOC80054, CEBPG, PEPD, CHST8, KCTD15, LSM14A, KIAA0355, GPI, PDCD2L, UBA2, WTIP, LOC643719, SCGBL, ZNF302, ZNF181, ZNF599, LOC400685, ZNF30, ZNF792, GRAMD1A, SCN1B, HPN, LOC100128675, FXYD3, LGI4, FXYD1, FXYD7, FXYD5, FAM187B, LSR, USF2, HAMP, MAG, CD22, FFAR1, FFAR3, FFAR2, KRTDAP, DMKN, SBSN, GAPDHS, TMEM147, ATP4A, HAUS5, RBM42, ETV2, COX6B1, UPK1A, ZBTB32, MLL4, TMEM149, U2AF1L4, PSENEN, LIN37, HSPB6, C19orf55, ARHGAP33, PRODH2, NPHS1, KIRREL2, APLP1, NFKBID, HCST, TYROBP,
19ql2- LRFN3, SDHAF1, C19orf46, ALKBH6, CLIP3, THAP8, WDR62, POLR2I, TBCB, CAPNS1,
19 q 32545047 13265170 37.37 219 COX7A1, ZNF565, ZNF146, LOC100134317, ZFP14, ZFP82, LOC644189, ZNF566,
ql3.2 LOC728752, ZNF260, ZNF529, ZNF382, ZNF461, ZNF567, ZNF850, ZNF790, ZNF345,
ZNF829, ZNF568, ZNF420, ZNF585A, ZNF585B, ZNF383, LOC284412, HKR1, ZNF527, ZNF569, ZNF570, ZNF793, ZNF540, ZNF571, ZFP30, ZNF781, ZNF607, ZNF573, LOC728853, WDR87, SIPA1L3, DPF1, PPP1R14A, SPINT2, YIF1B, C19orf33, KCNK6, CATSPERG, PSMD8, GGN, SPRED3, FAM98C, RASGRP4, RYR1, MAP4K1, EIF3K, ACTN4, CAPN12, LGALS7, LGALS7B, LGALS4, ECHl, HNRNPL, RINL, SIRT2, NFKBIB, SARS2, MRPS12, FBX017, FBX027, PAPL, PAK4, NCCRP1, SYCN, IL28B, IL28A, IL29, LRFN1, GMFG, SAMD4B, PAF1, MED29, ZFP36, PLEKHG2, RPS16, SUPT5H, TIMM50, DLL3, SELV, EID2B, EID2, LGALS13, LOC100129935, LGALS16, LGALS17A, LGALS14, CLC, LEUTX, DYRK1B, FBL, FCGBP, PSMC4, ZNF546, ZNF780B, ZNF780A, MAP3K10, TTC9B, CNTD2, AKT2, MIR641, C19orf47, PLD3, HIPK4, PRX, SERTAD1, SERTAD3,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Figure imgf000051_0001
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
RBM39, PHF20, SCAND1, C20orfl52, LOC647979, EPB41L1, C20orf4, DLGAP4, MYL9, TGIF2, TGIF2-C20ORF24, C20orf24, SLA2, NDRG3, DSN1, C20orfl l7, C20orfl l8, SAMHD1, RBL1, C20orfl32, RPN2, GHRH, MANBAL, SRC, BLCAP, NNAT, CTNNBLl, VSTM2L, TTI1, RPRD1B, TGM2, KIAA1755, BPI, LBP, LOC388796, SNORA71B, SNORA71 A, SNORA71C, SNORA71D, SNHGl l, SNORA39, SNORA60, RALGAPB, ADIG, ARHGAP40, SLC32A1, ACTR5, PPP1R16B, FAM83D, DHX35, LOC339568, MAFB, TOPI, PLCG1, ZHX3, LPIN3, EMILIN3, CHD6, PTPRT, SRSF6, L3MBTL1, SGK2, IFT52, MYBL2, GTSF1L, TOX2, JPH2, C20orfl l l, GDAP1L1, FITM2, R3HDML, HNF4A, MIR3646, TTPAL, SERINC3, PKIG, ADA, LOC79015, WISP2, KCNK15, RIMS4, YWHAB, PABPC1L, TOMM34, STK4, KCNS1, WFDC5, WFDC12, PI3, SEMG1, SEMG2, SLPI, MATN4, RBPJL, SDC4, SYS1, SYS1-DBNDD2, TP53TG5, DBNDD2, PIGT, WFDC2, SPINT3, WFDC6, SPINLW1-WFDC6, SPINLW1, WFDC8, WFDC9, WFDCIOA, WFDC11, WFDCIOB, WFDC13, SPINT4, WFDC3, DNTTIP1, UBE2C, TNNC2, SNX21, ACOT8, ZSWIM3, ZSWIM1, C20orfl65, NEURL2, CTSA, PLTP, PCIF1, ZNF335, MMP9, SLC12A5, NCOA5, CD40, CDH22, SLC35C2, ELM02, LOC100240726, ZNF334, C20orfl23, SLC13A3, TP53RK, SLC2A10, EYA2, MIR3616, ZMYND8, LOC100131496, NCOA3, SULF2, LOC284749, PREX1, ARFGEF2, CSE1L, STAU1, DDX27, ZNFX1, NCRNA00275, SNORD12C, SNORD12B, SNORD12, KCNB1, PTGIS, B4GALT5, SLC9A8, SPATA2, RNF114, SNAI1, UBE2V1, TMEM189-UBE2V1, TMEM189, CEBPB, LOC284751, PTPN1, MIR645, FAM65C, PARD6B, BCAS4, ADNP, DPMI, MOCS3, KCNGl, NFATC2, MIR3194, ATP9A, SALL4, ZFP64, TSHZ2, ZNF217, SUM01P1, BCAS1, CYP24A1, PFDN4, DOK5, CBLN4, MC3R, C20orf 08, AURKA, CSTF1, CASS4, C20orf43, GCNT7, C20orfl06, C20orfl07, TFAP2C, BMP7, MIR4325, SPOl l, RAEl, MTRNR2L3, RBM38, CTCFL, PCKl, ZBP1, PMEPA1, C20orf85, PPP4R1L, RAB22A, VAPB, APCDD1L, LOC149773, STX16, NPEPL1, MIR296, MIR298, GNAS-AS1, GNAS, TH1L, CTSZ, TUBB1, ATP5E, SLM02, ZNF831, EDN3, PHACTR3, SYCP2, C20orfl77, PPP1R3D, CDH26, C20orfl97, MIR646, CDH4, MIR1257, TAF4, LSM14B, PSMA7, SS18L1, GTPBP5, HRH3, OSBPL2, ADRM1, LAMA5, RPS21, CABLES2, C20orfl51, GATA5, C20orf200, C20orfl66, MIRl-1, MIR133A2, SLC04A1, LOC100127888, NTSR1, C20orf20, OGFR, COL9A3, TCFL5, DPH3P1, DIDOl, C20orfl l, SLC17A9, BHLHE23, LOC63930, NCRNA00029,
LOC100144597, HAR1B, HAR1A, MIR124-3, YTHDF1, BIRC7, MIR3196, NKAIN4, FLJ16779, ARFGAP1, MIR4326, COL20A1, CHRNA4, KCNQ2, EEF1A2, PPDPF, PTK6, SRMS, C20orfl95, PRIC285, GMEB2, STMN3, RTEL1, TNFRSF6B, ARFRP1, ZGPAT, LIME1, SLC2A4RG, ZBTB46, ABHD16B, TPD52L2, DNAJC5, MIR941-1, MIR941-3, MIR941-2, UCKL1, MIR1914, MIR647, UCKL1-AS1, ZNF512B, SAMD10, PRPF6, NCRNA00176, SOX18, TCEA2, RGS19, OPRL1, C20orf201, NPBWR2, MYT1, PCMTD2
22 18127933 1261 0.00 22ql l .21 TBXl
Copy Number Losses
numbe
size/arm
chromosome arm start size cytoband r of gene symbol
(%) genes
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of arm start size cytoband gene symbol some (%) genes
1611047
1 q 39 0.00 lq23.3
52 1 Clorfl lO
1 P 1652866 1160 0.00 lp36.33 1 SLC35E2
1093747
1 P 1459 0.00 lpl3.3 WDR47
90 1
1138474
1 P 1506 0.00 lpl3.2 I3
79 1 MAG
1160316
1 P 1732 0.00 lpl3.1
70 1 VANGL1
1085358
1 P 2848 0.00 lpl3.3
14 1 SLC25A24
1730635
1 q 3800 0.00 lq25.1
37 1 RABGAPIL
1100330
1 P 6370 0.01 lpl3.3
18 1 GSTM1
1510287
1 q 7735 0.01 lq21.3
00 1 LCE1D
1674937
1 q 14130 0.01 lq24.2
68 1 NME7
1508230
1 q 28366 0.02 lq21.3
73 1 LCE3C
2468055
1 q 56508 0.05 lq44 2 OR2T10, OR2T11
21
1950093
1 q 56509 0.05 lq31.3 2 CFHR3, CFHR1
58
1546056
2 q 1322 0.00 2q24.1 1 GALNT13
21
1797778
2 q 1069 0.00 2q31.2 1 SESTD1
50
3307800
2 P 2432 0.00 2p22.3 1 LTBP1
5
2128928
2 q 5991 0.00 2q34 1 ERBB4
84
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
4746642
3 P 498 0.00 3p21.31
3 1 SCAP
1912217
3 q 1133 0.00 3q28
58 1 LEPREL1
3 P 7375107 1410 0.00 3p26.1 1 GRM7
1331918
3 q 2808 0.00 3q22.1
77 1 CPNE4
1138689
3 P 2732 0.00 3p25.3
2 1 ATG7
1925481
3 q 4599 0.00 3q28
35 1 CCDC50
3795481
3 P 6291 0.01 3p22.2
9 1 CTDSPL
5300313
3 P 8749 0.01 3p21.1
6 1 SFMBT1
GC, NPFFR2, ADAMTS3, COX18, ANKRD17, ALB, AFP, AFM, RASSF6, IL8, CXCL6, PF4V1, CXCL1, PF4, PPBP, CXCL5, CXCL3, PPBPL2, CXCL2, MTHFD2L, EPGN, EREG, AREG, BTC, PARM1, LOC441025, RCHY1, THAP6, C4orf26, CDKL2, G3BP2, USOl, PPEF2, NAAA, SDAD1, CXCL9, ART3, CXCL10, CXCL11, NUP54, SCARB2, FAM47E, STBD1, CCDC158, SHROOM3, ANKRD56, SEPT11, CCNI, CCNG2, CXCL13, CNOT6L, MRPL1, FRAS1, ANXA3, BMP2K, PAQR3, NAA11, GK2, GDEP, ANTXR2, PRDM8, FGF5, C4orf22, BMP3, PRKG2, RASGEF1B, HNRNPD, HNRPDL, ENOPH1, TMEM150C, C4orfl l, SCD5, MIR575, SEC31A, LOC100499177, THAP9, LIN54, COPS4, PLAC8, COQ2, HPSE, HELQ, MRPS18C, FAM175A, AGPAT9, NKX6-1, CDS1, WDFY3, NCRNA00247, ARHGAP24, MAPK10, PTPN13, SLC10A6, C4orf36, AFF1, KLHL8, HSD17B13, HSD17B11, NUDT9, SPARCL1, DSPP, DMP1, IBSP, MEPE, HSP90AB3P, SPP1, PKD2,
7272022 11843338 4ql3.3- ABCG2, PPMIK, HERC6, HERC5, PIGY, HERC3, NAP1L5, FAM13AOS, FAM13A, TIGD2,
4 q 84.47 479
8 5 q35.2 GPRIN3, SNCA, MMRN1, FAM190A, TMSL3, GRID2, ATOH1, SMARCADl, HPGDS,
PDLIM5, BMPR1B, UNC5C, PDHA2, C4orf37, RAP1GDS1, TSPAN5, EIF4E, METAP1, MIR3684, ADH5, ADH4, PCNAP1, ADH6, ADH1A, ADH1B, ADH1C, ADH7, C4orfl7, RG9MTD2, MTTP, DAPP1, MAPKSPl, DNAJB 14, H2AFZ, LOC256880, DDIT4L, EMCN, PPP3CA, FLJ20021, BANK1, SLC39A8, NFKB 1, MANBA, UBE2D3, CISD2, NHEDC1, NHEDC2, BDH2, CENPE, TACR3, CXXC4, TET2, PPA2, EEF1A1P9, ARHGEF38, INTS12, GSTCD, NPNT, TBCK, AIMP1, LOC100507096, DKK2, PAPSS1, SGMS2, CYP2U1, HADH, LEF1, LOC641518, LOC285456, RPL34, OSTC, AGXT2L1, COL25A1, SEC24B, CCDC109B, CASP6, PLA2G12A, CFI, GARi, RRH, LRIT3, EGF, ELOVL6, ENPEP, PITX2, C4orf32, APiAR, TIFA, ALPKi, NEUROG2, C4orm, LARP7, MIR367, MIR302D, MIR302A, MIR302C, MIR302B, ANK2, MHU243, CAMK2D, ARSJ, UGT8, MIR577, NDST4, MIR!973, TRAM!L!, NDST3, SNHG8, SNORA24, PRSS12, CEPHOP!, METTL!4,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
SEC24D, SYNP02, MYOZ2, USP53, C4orf3, FABP2, FLJ14186, LOC645513, PDE5A, MAD2L1, PRDM5, C4orf31, TNIP3, QRFPR, ANXA5, TMEM155, LOC100192379, EXOSC9, CCNA2, BBS7, TRPC3, KIAA1109, ADAD1, IL2, IL21, CETN4P, BBS12, FGF2, NUDT6, SPATA5, SPRY1, LOC285419, ANKRD50, FAT4, INTU, SLC25A31, HSPA4L, PLK4, MFSD8, C4orf29, LARPIB, PGRMC2, PHF17, SCLTl, C4orf33, PCDHIO, PABPC4L, PCDH18, SLC7A11, CCRN4L, ELF2, C4orf49, NDUFC1, NAA15, RAB33B, SETD7, MGST2, MAML3, SCOC, LOC100129858, CLGN, ELMOD2, UCP1, TBC1D9, RNF150, ZNF330, IL15, INPP4B, USP38, GAB1, MIR3139, SMARCA5, LOC441046, FREM3, GYPE, GYPB, GYP A, HHIP, ANAPC10, ABCE1, OTUD4, SMAD1, MMAA, C4orf51, ZNF827, LSM6, SLC10A7, POU4F2, TTC29, EDNRA, TMEM184C, PRMT10, ARHGAP10, NR3C2, DCLK2, LRBA, MAB21L2, RPS3A, SNORD73A, SH3D19, PRSS48, FAM160A1, PET112L, FBXW7, MIR3140, DKFZP434I0714, TMEM154, TIGD4, ARFIP1, FHDC1, TRIM2, ANXA2P1, MND1, KIAA0922, TLR2, RNF175, SFRP2, DCHS2, PLRG1, FGB, FGA, FGG, LRAT, RBM46, NPY2R, MAP9, GUCY1A3, GUCY1B3, ACCN5, TD02, CTSO, PDGFC, GLRB, GRIA2, LOC340017, FAM198B, TMEM144, RXFPl, C4orf46, ETFDH, PPID, FNIP2, C4orf45, MIR3688, RAPGEF2, FSTL5, NAF1, NPY1R, NPY5R, TKTL2, C4orf43, MARCH 1, ANP32C, TRIM61, C4orG9, TRIM60, TMEM192, KLHL2, GK3P, SC4MOL, CPE, MIR578, TLL1, SPOCK3, ANXA10, DDX60, DDX60L, PALLD, CBR4, SH3RF1, NEK1, CLCN3, C4orf27, MFAP3L, AADAT, HSP90AA6P, GALNTL6, GALNT7, HMGB2, SAP30, SCRG1, HAND2, NBLA00301, MORF4, FBX08, KIAA1712, MIR4276, HPGD, GLRA3, ADAM29, GPM6A, MIR1267, WDR17, SPATA4, ASB5, SPCS3, VEGFC, NEIL3, AGA, LOC285501, NCRNA00290, MGC45800, MIR1305, ODZ3, DCTD, FAM92A3, C4orf38, WWC2, CLDN22, CLDN24, CDKN2AIP, LOC389247, ING2, RWDD4, C4orf41, STOX2, ENPP6, IRF2, CASP3, CCDC111, MLF1IP, ACSL1, SLED1, MIR3945, HELT, SLC25A4, KIAA1430, SNX25, LRP2BP, ANKRD37, UFSP2, C4orf47, CCDC110, PDLIM3, SORBS2, TLR3, FAM149A, CYP4V2, KLKB1, Fl l, LOC285441, MTNR1A, FAT1, ZFP42, TRIML2, TRIML1, LOC401164, HSP90AA4P, FRG1, TUBB4Q
7251873
4 q 3272 0.00 4ql3.3
7 1 SLC4A4
3886979
4 P 2571 0.01 4pl4
6 1 WDR19
1719950
4 P 6065 0.01 4pl5.32
2 1 LAP3
6998008
4 q 18477 0.01 4ql3.2 UGT2B7
0 1
6972080
4 q 21644 0.02 4ql3.2
5 1 UGT2B10
7019068
4 q 103630 0.07 4ql3.2
2 1 UGT2B28
4 q 6890567 260144 0.19 4ql3.2 2 TMPRSS11E, UGT2B17
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
0
3836037
4 P 232761 0.46 4pl4 6 KLF3, TLR10, TLR1, TLR6, FAM114A1, MIR574
5
3938243
4 P 328209 0.65 4pl4 2 UBE2K, PDS5A
5
3983266
4 P 525382 1.03 4pl4 4 N4BP2, RHOH, CHRNA9, RBM47
5
3737488
4 P 846993 1.67 4pl4 3 PGM2, TBC1D1, PTTG2
7
SLIT2, MIR218-1, PACRGL, KCNIP4, NCRNA00099, GPR125, GBA3, PPARGC1A,
1865341 4pl5.31- MIR573, DHX15, SOD3, CCDC149, LGI2, SEPSECS, PI4K2B, ZCCHC4, ANAPC4,
4 P 18702180 36.82 31
8 pl4 SLC34A2, SEL1L3, C4orf52, RBPJ, CCKAR, TBC1D19, STIM2, MIR4275, PCDH7, ARAP2,
DTHD1, KIAA1239, C4orfl9, RELL1
PELO, ITGA1, ITGA2, MOCS2, LOC257396, FST, NDUFS4, ARL15, MIR581, HSPB3, SNX18, ESM1, GZMK, GZMA, CDC20B, GPX8, MIR449A, MIR449B, MIR449C, LOC345643, CCNO, DHX29, SKIV2L2, PPAP2A, RNF138P1, SLC38A9, DDX4, IL31RA, IL6ST, ANKRD55, MAP3K1, C5orf35, MIER3, GPBP1, ACTBL2, PLK2, GAPT, RAB3C, PDE4D, PARTI, DEPDC1B, ELOVL7, ERCC8, NDUFAF2, C5orf43, ZSWIM6, FLJ37543, KIF2A, DIMT1L, IPOl l, LRRC70, HTR1A, RNF180, RGS7BP, FAM159B, SREK1IP1, CWC27, ADAMTS6, CENPK, PPWD1, TRIM23, C5orf44, SGTB, NLN, ERBB2IP, LOC100303749, SREK1, MAST4, CD180, PIK3R1, SLC30A5, CCNB 1, CENPH, MRPS36, CDK7, CCDC125, TAF9, RAD17, MARVELD2, OCLN, LOC647859, GTF2H2B, GTF2H2C, GTF2H2, GTF2H2D, LOC100272216, GUSBP3, LOC100049076, SERFIA, SERFIB, SMN2, SMN1, LOC100170939, SMA5, NAIP, PMCHL2, BDP1, MCCC2, CARTPT, MAP IB,
5163255 5ql l .2- MRPS27, PTCD2, ZNF366, TNPOl, FCH02, TMEM171, TMEM174, FOXD1, BTF3,
5 q 47776009 35.84 225 ANKRA2, UTP15, RGNEF, ENC1, HEXB, GFM2, NSA2, FAM169A, GCNT4, ANKRD31,
4 q21.1 HMGCR, COL4A3BP, POLK, POC5, SV2C, IQGAP2, F2RL2, NCRUPAR, F2R, F2RL1,
S100Z, CRHBP, AGGF1, ZBED3, SNORA47, LOC728723, PDE8B, WDR41, OTP, TBCA, AP3B1, SCAMPI, LHFPL2, ARSB, DMGDH, BHMT2, BHMT, JMY, HOMER 1, PAPD4, CMYA5, MTX3, THBS4, SERINC5, LOC644936, SPZ1, CRSP8P, ZFYVE16, FAM151B, ANKRD34B, DHFR, MTRNR2L2, MSH3, RASGRF2, CKMT2, LOC100131067, ZCCHC9, ACOT12, SSBP2, ATG10, RPS23, ATP6AP1L, TMEM167A, SCARNA18, XRCC4, VCAN, HAPLN1, EDIL3, NBPF22P, COX7C, MIR3607, MIR4280, RASA1, CCNH, TMEM161B, LOC645323, MIR9-2, MEF2C, MIR3660, CETN3, MBLAC2, POLR3G, LYSMD3, GPR98, ARRDC3, LOC100129716, FLJ42709, NR2F1, FAM172A, MIR2277, POU5F2, C5orf36, ANKRD32, MCTP1, FAM81B, TTC37, ARSK, GPR150, RFESD, SPATA9, RHOBTB3, GLRX, C5orf27, ELL2, MIR583, PCSK1, CAST, ERAP1, ERAP2, LNPEP, LIX1, RIOK2, RGMB, FLJ35946, CHD1, LOC100289230
1723482
5 q 1701 0.00 5q35.2 1 ATP6V0E1
16
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Figure imgf000057_0001
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
TAAR3, TAAR2, TAAR1, VNN1, VNN3, VNN2, C6orfl92, RPS12, SNORD101, SNORDIOO, SNORA33, LOC285735, EYA4, MGC34034, TCF21, TBPLl, SLC2A12, SGKl, ALDH8A1, HBS1L, MIR3662, MYB, AHI1, MIR548H4, NCRNA00271, PDE7B, FAM54A, BCLAFl, MAP7, MAP3K5, PEX7, SLC35D3, NHEGl, IL20RA, IL22RA2, IFNGRl, OLIG3, TNFAIP3, PERP, KIAA1244, PBOV1, HEBP2, NHSL1, MIR3145, FLJ46906, CCDC28A, ECT2L, REPSl, C6orfl l5, HECA, TXLNB, CITED2, LOC645434, MIR3668, NMBR, VTAl, GPR126, LOC153910, HIVEP2, AIG1, ADAT2, PEX3, FUCA2, LOC285740, PHACTR2, LTV1, C6orf94, PLAGL1, HYMAI, SF3B5, STX11, UTRN, EPM2A, FBXO30, SHPRH, GRM1, RAB32, C6orfl03, LOC729176, LOC729178, STXBP5, SAMD5, SASH1, UST, TAB2, SUM04, ZC3H12D, PPIL4, C6orf72, KATNA1, LATS1, NUP43, PCMT1, LRP11, RAET1E, RAETIG, ULBP2, ULBP1, RAET1K, RAET1L, ULBP3, PPP1R14C, I YD, PLEKHG1, MTHFD1L, AKAP12, ZBTB2, RMND1, C6orf211, C6orf97, ESR1, SYNE1, MYCT1, VIP, FBX05, MTRF1L, RGS17, OPRM1, IPCEF1, CNKSR3, SCAF8, TIAM2, TFB1M, CLDN20, NOX3, ARID IB, ZDHHC14, MIR3692, SNX9, SYNJ2, SERAC1, GTF2H5, TULP4, TMEM181, DYNLT1, SYTL3, MIR3918, EZR, OSTCL, C6orf99, RSPH3, TAGAP, FNDC1, SOD2, WTAP, LOC100129518, ACAT2, TCP1, SNORA20, SNORA29, MRPL18, PNLDC1, MASl, IGF2R, LOC729603, SLC22A1, SLC22A2, SLC22A3, LPAL2, LPA, PLG, MAP3K4, AGPAT4, NCRNA00241, PARK2, PACRG, LOC285796,
DKFZp451B082, LOC100526820, QKI, C6orfl l8, PDE10A, C6orfl76, LOC441177, T, PRR18, SFT2D1, BRP44L, RPS6KA2, MIR1913, RNASET2, MIR3939, FGFRIOP, CCR6, GPR31, TCP10L2, UNC93A, TTLL2, TCP10, C6orfl23, C6orfl24, MLLT4, HGC6.3, KIF25, FRMD1, DACT2, SMOC2, THBS2, WDR27, C6orfl20, PHF10, TCTE3, C6orf70, NCRNA00242, C6orf208, LOC154449, DLL1, FAM120B, PSMB 1, TBP, PDCD2
7292089
6 q 3546 0.00 6ql3 1 RIMS1
4
6645625
6 q 4298 0.00 6ql2 1 EYS
0
5403719
6 P 5535 0.01 6pl2.1 1 C6orfl42
9
3271625
6 P 12232 0.02 6p21.32 1 HLA-DQA1
5
8983798
6 q 27339 0.02 6ql5 2 PNRC1, SRSF12
7
2997238
6 P 28608 0.05 6p21.33 2 HCG2P7, HCG4P6
2
3255867
6 P 75014 0.12 6p21.32 2 HLA-DRB5, HLA-DRB6
7
8926423
6 q 549324 0.50 6ql5 1 RNGTT
3
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
7191194
7 q 125 0.00 7ql l .23
0 1 TYW1B
1613857
7 P 1439 0.00 7p21.1 ISPD
9 1
1477042
7 q 4182 0.00 7q36.1
00 1 CNTNAP2
1001662
7 q 8734 0.01 7q22.1
57 1 ZAN
1421591
7 q 8735 0.01 7q34
73 1 TRY6
1414133
7 q 26832 0.03 7q34
52 1 MGAM
RPL23AP53, ZNF596, FBX025, C8orf42, ERICHl, LOC286083, DLGAP2, CLN8, MIR596, ARHGEF10, KBTBD11, MYOM2, CSMD1, MCPH1, ANGPT2, AGPAT5, XKR5, DEFB1, DEFA6, DEFA4, DEFA10P, DEFA1B, DEFA1, DEFT1P, DEFT1P2, DEFA3, DEFA5, FAM90A14, FAM90A13, LOC349196, FAM90A5, FAM90A20, FAM66B, DEFB109P1B, ZNF705G, DEFB103B, DEFB103A, SPAG11B, DEFB104B, DEFB104A, DEFB106B, DEFB 106A, DEFB 105B, DEFB 105A, DEFB107B, DEFB 107A, FAM90A7, FAM90A19, FAM90A18, FAM90A8, FAM90A9, FAM90A10, SPAG11A, DEFB4A, LOC100132396, FAM66E, MIR548I3, FLJ10661, SGK223, CLDN23, MFHAS1, ERI1, PPP1R3B, TNKS, MIR597, LOC157627, MIR124-1, MSRA, PRSS55, RP1L1, MIR4286, C8orf74, SOX7, PINX1, MIR1322, XKR6, MIR598, MTMR9, AMAC1L2, TDH, C8orfl2, FAM167A, BLK, GATA4, NEIL2, FDFTl, CTSB, DEFB136, DEFB 135, DEFB134, DEFB 130, LOC100133267, ZNF705D, FAM66D, LOC392196, USP17L2, FAM86B 1, FAM66A, DEFB 109P1, FAM90A25P, FAM86B2, LONRF1, MIR3926-1, MIR3926-2, LOC340357, C8orf79, DLC1,
8p23.3- C8orf48, SGCZ, MIR383, TUSC3, MSR1, FGF20, EFHA2, ZDHHC2, CNOT7, VP S37 A,
8 P 151472 37851200 83.74 249
pl2 MTMR7, SLC7A2, PDGFRL, MTUS1, FGL1, PCM1, ASAH1, NAT1, NAT2, PSD3,
SH2D4A, CSGALNACT1, INTS10, LPL, SLC18A1, ATP6V1B2, LZTS1, LOC286114, GFRA2, DOK2, XP07, NPM2, FGF17, EPB49, FAM160B2, NUDT18, HR, REEP4, LGI3, SFTPC, BMP1, PHYHIP, MIR320A, POLR3D, PIWIL2, SLC39A14, PPP3CC, SORB S3, PDLIM2, C8orf58, KIAA1967, BIN3, FLJ14107, EGR3, PEBP4, RHOBTB2, TNFRSF10B, TNFRSF10C, TNFRSF10D, TNFRSF10A, LOC389641, CHMP7, R3HCC1, LOXL2, ENTPD4, SLC25A37, NKX3-1, NKX2-6, STCl, ADAM28, ADAMDECl, ADAM7, NEFM, NEFL, DOCK5, GNRH1, KCTD9, CDCA2, EBF2, PPP2R2A, BNIP3L, PNMA2, DPYSL2, ADRA1A, STMN4, TRIM35, PTK2B, CHRNA2, EPHX2, CLU, SCARA3, MIR3622B, MIR3622A, CCDC25, ESC02, PBK, SCARA5, MIR4287, C8orf80, ELP3, PNOC, ZNF395, FBX016, FZD3, MIR4288, EXTL3, INTS9, HMBOX1, KIF13B, DUSP4, C8orf75, LOC286135, MIR3148, TMEM66, LEPROTLl, MBOAT4, DCTN6, RBPMS, GTF2E2, GSR, UBXN8, PPP2CB, TEX15, PURG, WRN, NRG1, FUT10, MAK16, C8orf41, RNF122, DUSP26, UNC5D, KCNU1, ZNF703, ERLIN2, LOC728024, PROSC, GPR124, BRF2,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Figure imgf000060_0001
LOC389705, TTC39B, SNAPC3, PSIP1, C9orf93
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
8962668
10 q 0 0.00 10q23.31
4 1 PTEN
5368651
10 q 1365 0.00 10q21.1
5 1 PRKG1
1327992
10 q 2251 0.00 10q26.3
12 1 TCERG1L
7792639
10 q 2348 0.00 10q22.3
0 1 ClOorfl l
1243378
10 q 2496 0.00 10q26.13
60 1 DMBT1
1141035
10 q 2913 0.00 10q25.2
47 1 GUCY2GP
2704018
10 P 1631 0.00 10pl2.1
1 1 PDSS1
1006788
10 q 7970 0.01 10q24.2
17 1 HPSE2
3128710
10 P 4424 0.01 10pl l .23
1 1 ZNF438
1067443
11 q 3583 0.00 l lq22.3 CWF19L2
37 1
2080197
11 P 4121 0.01 l lpl5.1
3 1 NELL1
11 P 5834025 5899 0.01 l lpl5.4 1 OR52E8
1890650
11 P 10686 0.02 l lpl5.1
5 1 MRGPRX1
11 P 7771593 11899 0.02 l lpl5.4 1 OR5P2
5512371
11 q 85907 0.11 l lql l 4 OR4C11, OR4P4, OR4S2, OR4C6
9
OR51A2, MMP26, OR51L1, OR52J3, OR52E2, OR52A4, OR52A5, OR52A1, OR51V1, HBB, HBD, HBBPl, HBGl, HBG2, HBEl, OR51B4, OR51B2, OR51B5, OR51B6, OR51M1,
11 P 4926583 838855 1.59 l lpl5.4 37 OR51Q1, OR51I1, OR51I2, OR52D1, UBQLN3, UBQLNL, OR52H1, OR52B6, TRIM6,
TRIM6-TRIM34, TRIM34, TRIM78P, TRIM5, TRIM22, OR56B 1, OR52N4, OR52N5
12 P 738240 4983 0.01 12pl3.33 1 WNK1
12 q 8066392 2828 0.00 12q21.31 1 PPFIA2
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
3
1006268
12 q 2995 0.00 12q23.2 1 CHPTl
37
1047482
12 P 11023 0.03 12pl3.2 1 KLRC2
5
1112120
12 P 19217 0.05 12pl3.2 2 PRH1, TAS2R43
4
LOC284232, LOC348021, PHF2P1, TUBA3C, LOC100101938, LOC100287114, TPTE2, MPHOSPH8, PSPC1, ZMYM5, ZMYM2, GJA3, GJB2, GJB6, CRYL1, IFT88, IL17D, N6AMT2, XP04, LATS2, SAP 18, SKA3, MRP63, ZDHHC20, EFHA1, FGF9, BASP1P1, SGCG, SACS, TNFRSF19, MIPEP, PCOTH, C1QTNF9B, SPATA13, MIR2276, C1QTNF9, PARP4, LOC374491, ATP 12 A, RNF17, CENPJ, TPTE2P1, PABPC3, FAM123A, MTMR6, NUPL1, ATP8A2, SHISA2, RNF6, CDK8, WASF3, GPR12, USP12, RPL21, RPL21P28, SNORD102, SNORA27, RASL11A, GTF3A, MTIF3, LNX2, POLR1D, GSX1, PDX1, ATP5EP2, CDX2, PRHOXNB, FLT3, LOC100288730, PAN3, FLT1, POMP, SLC46A3, MTUS2, SLC7A1, UBL3, LOC440131, KATNAL1, LOC100188949, HMGB1, USPL1, ALOX5AP, C13orf33, C13orf26, HSPH1, B3GALTL, RXFP2, EEF1DP3, FRY, ZAR1L, BRCA2, N4BP2L1, N4BP2L2, CG030, PDS5B, KL, STARD13, RFC3, NBEA, MAB21L1, MIR548F5, DCLK1, SOHLH2, C13orf38-SOHLH2, C13orf38, SPG20, CCNA1, C13orf36, RFXAP, SMAD9, ALG5, EXOSC8, FAM48A, CSNKIAIL, POSTN, TRPC4, UFMl, FREM2, STOML3, C13orf23, NHLRC3, LHFP, COG6, MIR4305, FLJ42392, LOC646982, FOXOl, MIR320D1, MRPS31, SLC25A15, SUGT1P3, MIR621, ELF1, WBP4, KBTBD6, KBTBD7, MTRF1, NAA16, OR7E37P, C13orfl5, KIAA0564, DGKH, AKAP11, TNFSF11, C13orf30,
1819454 13ql l- EPSTI1, DNAJC15, ENOX1, CCDC122, C13orf31, NCRNA00284, SERP2, TSC22D1,
13 q 95928796 97.89 382
4 q34 NUFIP1, KIAA1704, GTF2F2, KCTD4, TPT1, SNORA31, LOC100190939, SLC25A30,
COG3, FAM194B, SPERT, SIAH3, ZC3H13, CPB2, LCPl, C13orfl8, LRCHl, ESD, HTR2A, SUCLA2, NUDT15, MED4, ITM2B, RBI, LPAR6, RCBTB2, CYSLTR2, FNDC3A, MLNR, CDADC1, CAB39L, SETDB2, PHF11, RCBTB1, ARL11, EBPL, KPNA3, CTAGE10P, C13orfl, DLEU2, MIR3613, TRIM13, KCNRG, MIR16-1, MIR15A, DLEU1, ST13P4, DLEU7, RNASEH2B, GUCY1B2, FAM124A, SERPINE3, INTS6, WDFY2, DHRS12, NCRNA00282, CCDC70, ATP7B, ALG11, UTP14C, NEK5, NEK3, THSD1P1, TPTE2P2, THSD1, VPS36, CKAP2, TPTE2P3, HNRNPA1L2, SUGT1, LECT1, MIR759, PCDH8, OLFM4, MIR1297, PRR20B, PRR20C, PRR20D, PRR20E, PRR20A, PCDH17, DIAPH3, TDRD3, MIR3169, PCDH20, OR7E156P, PCDH9, KLHLl, ATXN80S, DACHl, MIR548I4, MZT1, C13orG4, DIS3, PIBF1, KLF5, KLF12, LOC338864, CTAGE11P, TBC1D4, COMMD6, UCHL3, LM07, KCTD12, BTF3P11, CLN5, FBXL3, MYCBP2, SCEL, MIR3665, SLAIN1, EDNRB, POU4F1, RNF219, MIR548A2, RBM26, NDFIP2, SPRY2, SLITRK1, MIR548F1, SLITRK6, LOC642345, SLITRK5, MIR622, LOC144776, MIR17HG, MIR17, MIR18A, MIR19A, MIR20A, MIR19B1, MIR92A1, GPC5, GPC6, DCT, TGDS, GPR180, SOX21, ABCC4, CLDN10, DZIP1, DNAJC3, UGGT2, HS6ST3, OXGR1, MBNL2, RAP2A, IP05, FARP1, RNF113B, MIR3170, STK24, SLC15A1, DOCK9, LOC100289373, UBAC2,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Figure imgf000063_0001
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
LOC100289656, LOC646278, APBA2, FAM189A1, NDNL2, TJP1, FAM7A1, FAM7A2, FAM7A3, LOC653075, DKFZP434L187, CHRFAM7A, ARHGAP11B, FAN1, MTMR10, TRPM1, MIR211, KLF13, OTUD7A, CHRNA7, LOC100288615, ARHGAP11A, SCG5, GREMl, FMNl, RYR3, AVEN, CHRM5, C15orf24, PGBD4, C15orf29, TMEM85, SLC12A6, NOP10, C15orf55, LPCAT4, GOLGA8A, MIR1233-1, MIR1233-2, GOLGA8B, GJD2, ACTC1, AQR, ZNF770, LOC723972, ATPBD4, MIR3942, C15orf41, CSNK1A1P1, LOC145845, MEIS2, TMC05A, SPRED1, FAM98B, RASGRP1, C15orf53, C15orf54, THBSl, FSIPl, GPR176, EIF2AK4, SRP14, BMF, BUB IB, PAK6, C15orf56, LOC100131244, PLCB2, C15orf52, PHGRl, DISP2, C15orf23, IVD, BAHDl, CHST14, MRPL42P5, C15orf57, RPUSD2, CASC5, RAD51, FAM82A2, GCHFR, DNAJC17, C15orf62, ZFYVE19, PPP1R14D, SPINT1, RHOV, VPS18, DLL4, CHAC1, INO80, EXD1, CHP, LOC729082, OIP5, NUSAP1, NDUFAF1, RTF1, ITPKA, LTK, RPAP1, TYR03, MGA, MIR626, MAPKBP1, JMJD7, JMJD7-PLA2G4B, PLA2G4B, SPTBN5, MIR4310, EHD4, PLA2G4E, PLA2G4D, PLA2G4F, VPS39, MIR627, TMEM87A, GANC, CAPN3, ZFP106, SNAP23, LRRC57, HAUS2, STARD9, CDANl, TTBK2, UBRl, TMEM62, CCNDBPl, EPB42, TGM5, TGM7, LCMT2, ADAL, ZSCAN29, TUBGCP4, TP53BP1, MAPI A, PPIP5K1, CKMT1B, STRC, CATSPER2, CKMT1A, CATSPER2P1, PDIA3, ELL3, SERF2, SERF2-C150RF63, MIR1282, SERINC4, C15orf63, MFAP1, WDR76, FRMD5, LOC728758, CASC4, CTDSPL2, LOC645212, EIF3J, SPG11, PATL2, B2M, TRIM69, C15orf43, SORD, DUOX2, DUOXA2, DUOXA1, DUOX1, SHF, SLC28A2, GATM, LOC145663, SPATA5L1, C15orf48, MIR147B, SLC30A4, HMGN2P46, PLDN, SQRDL, MIR548A3
5344288
15 q 859 0.00 15q21.3
3 1 CCPG1
7551969
15 q 981 0.00 15q24.3
1 1 HMG20A
8233369
15 q 1006 0.00 15q25.2
8 1 ADAMTSL3
4809675
15 q 1598 0.00 15q21.2
8 1 ATP8B4
4760950
15 q 2798 0.00 15q21.2
2 1 C15orf33
4530321
15 q 5532 0.01 15q21.1
0 1 SEMA6D
7467162
15 q 8813 0.01 15q24.3
6 1 SCAPER
5251907
15 q 14153 0.02 15q21.3
4 1 UNC13C
4619900
15 q 17431 0.02 15q21.1
6 1 SLC24A5
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Figure imgf000065_0001
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromosize/arm # of
arm start size cytoband gene symbol
some (%) genes
q21.2 OR1A2, OR1A1, OR1D4, OR3A2, OR3A1, OR3A4, OR1E1, OR3A3, OR1E2, SPATA22,
ASPA, TRPV3, TRPV1, SHPK, CTNS, TAX1BP3, TMEM93, P2RX5, ITGAE, GSG2, C17orf85, CAMKK1, P2RX1, ATP2A3, ZZEF1, CYB5D2, ANKFY1, UBE2G1, SPNS3, SPNS2, MYBBP1A, GGT6, SMTNL2, ALOX15, PELP1, ARRB2, MED11, CXCL16, ZMYND15, TM4SF5, VMOl, GLTPD2, PSMB6, PLD2, MINK1, CHRNE, C17orfl07, GP1BA, SLC25A11, RNF167, PFN1, EN03, SPAG7, CAMTA2, INCA1, KIF1C, GPR172B, ZFP3, ZNF232, USP6, ZNF594, LOC100130950, C17orf87, RABEP1, NUP88, RPAIN, C1QBP, DHX33, DERL2, MIS12, LOC728392, NLRP1, WSCD1, AIPL1, FAM64A, PITPNM3, KIAA0753, TXNDC17, MED31, C17orfl00, SLC13A5, XAF1, FBX039, TEKT1, ALOX12P2, ALOX12, RNASEK, RNASEK-C 170RF49, C17orf49, MIR195, MIR497, BCL6B, SLC16A13, SLC16A11, CLECIOA, ASGR2, ASGR1, DLG4, ACADVL, MIR324, DVL2, PHF23, GABARAP, CTDNEP1, C17orf81, CLDN7, SLC2A4, YBX2, EIF5A, GPS2, NEURL4, ACAP1, KCTD11, TMEM95, TNK1, PLSCR3, C17orf61-PLSCR3, C17orf61, NLGN2, SPEM1, C17orf74, TMEM102, FGF11, CHRNB1, ZBTB4, AMAC1L3, POLR2A, TNFSF12, TNFSF12-TNFSF13, TNFSF13, SENP3, EIF4A1, SNORA48, SNORD10, SNORA67, CD68, MPDUl, SOX15, FXR2, SHBG, SAT2, ATP1B2, TP53, WRAP53, EFNB3, DNAH2, RPL29P2, KDM6B, TMEM88, LSMD1, CYB5D1, CHD3, SCARNA21 , LOC284023, KCNAB3, TRAPPC1, CNTROB, GUCY2D, ALOX15B, ALOX12B, MIR4314, ALOXE3, HES7, PERI, VAMP2, TMEM107, MIR3676, C17orf59, AURKB, C17orf44, C17orf68, PFAS, SLC25A35, RANGRF, ARHGEF15, ODF4, LOC100128288, KRBA2, RPL26, RNF222, NDEL1, MYH10, CCDC42, SPDYE4, MFSD6L, PIK3R6, PIK3R5, NTN1, STX8, WDR16, USP43, DHRS7C, GLP2R, RCVRN, GAS7, MYH13, MYH8, MYH4, MYHl, MYH2, MYH3, SCOl, C17orf48, TMEM220, LOC100289255, PIRT, SHISA6, DNAH9, ZNF18, MAP2K4, MIR744, FLJ34690, MYOCD, ARHGAP44, ELAC2, HS3ST3A1, CDRT15P, COX10, CDRT15, HS3ST3B1, MGC12916, CDRT7, PMP22, TEKT3, CDRT4, FAM18B2, CDRT1, TRIM16, ZNF286A, TBC1D26, CDRT15L1, MEIS3P1, ADORA2B, ZSWIM7, TTC19, NCOR1, PIGL, MIR1288, CENPV, UBB, TRPV2, NCRNA00188, SNORD49B, SNORD49A, SNORD65, C17orf76, ZNF287, ZNF624, CCDC144A, LOC162632, FAM106C, KRT16P2, TNFRSF13B, MPRIP, PLD6, FLCN, COP S3, NT5M, MED9, RASD1, PEMT, RAI1, SMCR5, SREBF1, MIR33B, TOM1L2, LRRC48, ATPAF2, C17orf39, DRG2, MY015A, ALKBH5, LLGL1, FLU, SMCR7, TOP3A, SMCR8, SHMT1, EVPLL, LOC339240, LGALS9C, LOC220594, FAM106A, CCDC144B, TBC1D28, ZNF286B, FOX03B, TRIM16L, FBXW10, FAM18B1, PRPSAP2, SLC5A10, FAM83G, GRAP, GRAPL, EPN2, B9D1, MIR1180, MAPK7, MFAP4, RNF112, SLC47A1, ALDH3A2, SLC47A2, ALDH3A1, ULK2, AKAP10, SPECC1, CCDC144C, LGALS9B, KRT16P3, CDRT15L2, CCDC144NL, USP22, DHRS7B, TMEM11, C17orfl03, MAP2K3, KCNJ12, KCNJ18, C17orf51, FAM27L, FLJ36000, MTRNR2L1, WSB l, LOC440419, KSRl, LGALS9, NOS2, C17orfl08, NLK, PYY2, PPY2, FLJ40504, TMEM97, IFT20, TNFAIP1, POLDIP2, TMEM199, SEBOX, VTN, SARMl, SLC46A1, SLC13A2, FOXNl, UNCI 19, PIGS, ALDOC, SPAG5, SGK494, KIAAOIOO, SDF2, SUPT6H, PROCAl, RAB34, RPL23A, SNORD42B, SNORD4A, SNORD42A, SNORD4B, TLCD1, NEK8, TRAF4, C17orf63, ERAL1, MIR451, MIR144, FLOT2, DHRS13, PHF12, SEZ6, PIPOX, MY018A, TIAF1, CRYBA1, NUFIP2, TAOKl, ABHD15, TP53I13, GIT1, ANKRD13B, COR06, SSH2, EFCAB5, CCDC55, MIR423, MIR3184, SLC6A4, BLMH, TMIGD1, CPD, GOSR1, TBC1D29, LRRC37BP1,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
SH3GL1P2, SUZ12P, CRLF3, ATAD5, C17orf42, ADAP2, RNF135, DPRXP4, NF1, OMG, EVI2B, EVI2A, RAB11FIP4, MIR193A, MIR365-2, C17orf79, UTP6, SUZ12, LRRC37B, SH3GL1P1, RHOTl, ARGFXP2, RHBDL3, C17orf75, MIR632, ZNF207, PSMDl l, CDK5R1, MYOID, TMEM98, SPACA3, ACCN1, AA06, CCL2, CCL7, CCL11, CCL8, CCL13, CCL1, C17orfl02, TMEM132E, CCT6B, ZNF830, LIG3, RFFL, RAD51L3-RFFL, RAD51L3, FNDC8, NLEl, UNC45B, AMACl, SLFN5, SLFNl l, SLFN12, SLFN13, SLFN12L, SLFN14, SNORD7, PEX12, AP2B1, RASLIOB, GAS2L2, C17orf50, MMP28, TAF15, C17orf66, CCL5, RDM1, LYZL6, CCL16, CCL14, CCL14-CCL15, CCL15, CCL23, CCL18, CCL3, CCL4, TBC1D3B, CCL3L3, CCL3L1, CCL4L2, CCL4L1, TBC1D3C, TBC1D3F, TBC1D3H, TBC1D3G, ZNHIT3, MY019, PIGW, GGNBP2, DHRS11, MRM1, LHX1, AATF, MIR2909, ACACA, C17orf78, TADA2A, DUSP14, SYNRG, DDX52, HNF1B, LOC284100, TBC1D3, LOC440434, MRPL45, GPR179, SOCS7, ARHGAP23, SRCIN1, C17orf96, MLLT6, CISD3, PCGF2, PSMB3, PIP4K2B, CWC25, C17orf98, RPL23, SNORA21, LASP1, FBX047, FLJ43826, LOC100131347, PLXDC1, ARL5C, CACNB1, RPL19, STAC2, FBXL20, MED1, CDK12, NEUROD2, PPPIRIB, STARD3, TCAP, PNMT, PGAP3, ERBB2, C17orf37, GRB7, IKZF3, ZPBP2, GSDMB, ORMDL3, LOC728129, GSDMA, PSMD3, CSF3, MED24, SNORD124, THRA, NR1D1, MSL1, CASC3, RAPGEFL1, WIPF2, CDC6, RARA, GJD3, TOP2A, IGFBP4, TNS4, CCR7, SMARCE1, KRT222, KRT24, KRT25, KRT26, KRT27, KRT28, KRT10, TMEM99, KRT12, KRT20, KRT23, KRT39, KRT40, KRTAP3-3, KRTAP3- 2, KRTAP3-1, KRTAP1-5, KRTAP1-3, KRTAPl-1, KRTAP2-1, LOC730755, KRTAP2-4, KRTAP4-7, KRTAP4-8, KRTAP4-9, KRTAP4-11, KRTAP4-12, KRTAP4-5, KRTAP4-4, KRTAP4-3, KRTAP4-2, KRTAP4-1, KRTAP9-1, KRTAP9-2, KRTAP9-3, KRTAP9-8, KRTAP9-4, KRTAP9-9
3830810
17 q 0 0.00 17q21.31
9 1 G6PC
4024544
17 q 1434 0.00 17q21.31
4 1 GJC1
3828557
17 q 1444 0.00 17q21.31 LOC388387
7 1
3738639
17 q 2669 0.00 17q21.2
8 1 DNAJC7
6832735
17 q 4277 0.01 17q24.3
2 1 SLC39A11
3844323
17 q 7674 0.01 17q21.31
1 1 BRCA1
3786134
17 q 9114 0.02 17q21.31
0 1 ATP6V0A1
3672635
17 q 58936 0.10 17q21.2 2 KRT33A, KRT33B
0
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
4152154
17 q 188856 0.33 17q21.31 2 KIAA1267, LOC644246
4
BHLHA9, TUSC5, YWHAE, CRK, MYOIC, INPP5K, LOC100306951, PITPNA, SLC43A2,
17 P 1031233 873218 3.93 17pl3.3 25 SCARF1, RILP, PRPF8, TLCD2, C17orf91, MIR22, WDR81, SERPINF2, SERPINF1,
SMYD4, RPA1, RTN4RL1, DPH1, OVCA2, MIR132, MIR212
RPH3AL, C17orf97, FAM101B, VPS53, FAM57A, GEMIN4, DBIL5P, GLOD4, RNMTL1,
17 P 47546 981433 4.42 17pl3.3 13 NXN, TIMM22, ABR, MIR3183
LOC647946, KC6, PIK3C3, RIT2, SYT4, SETBP1, MIR4319, SLC14A2, SLC14A1, SIGLEC15, KIAA1632, PSTPIP2, ATP5A1, HAUS1, C18orf25, RNF165, LOXHD1, ST8SIA5, PIAS2, KATNAL2, TCEB3CL, TCEB3C, TCEB3B, HDHD2, IER3IP1, SMAD2, ZBTB7C, CTIF, SMAD7, DYM, C18orf32, RPL17-C180RF32, MIR1539, RPL17, SNORD58C, U58, SNORD58A, SNORD58B, LIPG, ACAA2, SCARNA17, MY05B, MIR4320, CCDC11, MBD1, CXXC1, SKA1, MAPK4, MRO, ME2, ELAC1, SMAD4, MEX3C, DCC, MBD2, SNORA37, POLI, STARD6, C18orf54, C18orf26, RAB27B, CCDC68, TCF4, TXNL1, WDR7, BOD1P, ST8SIA3, ONECUT2, FECH, NARS, ATP8B 1, NEDD4L,
3365986 18ql2.2- MIR122, ALPK2, MALT1, ZNF532, LOC390858, SEC11C, GRP, RAX, CPLX4, LMAN1,
18 q 42456164 70.88 151
2 q23 CCBE1, PMAIP1, MC4R, CDH20, RNF152, PIGN, KIAA1468, TNFRSF11A, ZCCHC2,
PHLPP1, BCL2, KDSR, VPS4B, SERPINB5, SERPINB12, SERPINB13, SERPINB4, SERPINB3, SERPINB 11, SERPINB7, SERPINB2, SERPINB 10, HMSD, SERPINB8, C18orf20, LOC284294, LOC400654, CDH7, CDH19, DSEL, LOC643542, TMX3, CCDC102B, DOK6, CD226, RTTN, SOCS6, CBLN2, NETOl, LOC400655, FBX015, C18orf55, CYB5A, DKFZP781G0119, FAM69C, CNDP2, CNDP1, LOC400657, ZNF407, ZADH2, TSHZl, C18orf62, ZNF516, LOC284276, ZNF236, MBP, GALRl, SALL3, ATP9B, NFATCl, CTDPl, KCNG2, PQLCl, HSBPILI, TXNL4A, RBFA, ADNP2, LOC100130522, PARD6G
3246071
18 q 1868 0.00 18ql2.2
8 1 FHOD3
3279120
18 q 7691 0.01 18ql2.2
6 1 KIAA1328
19 P 3592564 1082 0.00 19pl3.3 1 PIP5K1C
1969902
19 P 1596 0.01 19pl3.11 ZNF14
4 1
5924927
19 q 2552 0.01 19ql3.42
9 1 VSTM1
5949265
19 q 4399 0.01 19ql3.42
0 1 LILRA3
4153340
19 q 5244 0.01 19ql3.12
5 1 ZFP14
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Chromo- . . size/arm # of
arm start size cytoband gene symbol
some (%) genes
5942119
19 q 13005 0.04 19ql3.42 1 LILRA6
7
5682579
19 q 14552 0.04 19ql3.33 1 SIGLEC14
4
20 P 1511632 20801 0.08 20 l3 1 SIRPB1
RTDR1, GNAZ, RAB36, BCR, FBXW4P1, CES5AP1, ZDHHC8P1, IGLL1, C22orf43, LOC91316, RGL4, ZNF70, VPREB3, C22orfl5, CHCHD10, MMP11, SMARCB1, DERL3, SLC2A11, MIF, GSTT2B, GSTT2, DDTL, DDT, GSTTP1, LOC391322, GSTT1, GSTTP2, CABIN1, SUSD2, GGT5, POM121L9P, SPECC1L, ADORA2A, C22orf45, UPB1, C22orfl3, SNRPD3, GGT1, C22orf36, BCRP3, POM121L10P, PIWIL3, TOP1P2, SGSM1, TMEM211, KIAA1671, CRYBB3, CRYBB2, IGLL3P, LRP5L, CRYBB2P1, ADRBK2, MY018B, MIR1302-1, SEZ6L, ASPHD2, HPS4, SRRD, TFIPl l, TPST2, MIR548J, CRYBBl, CRYBA4, MIAT, MN1, PITPNB, TTC28-AS1, MIR3199-1, MIR3199-2, TTC28, CHEK2, HSCB, CCDC117, XBP1, ZNRF3, C22orf31, KREMEN1, EMID1, RHBDD3, EWSR1, GAS2L1, RASL10A, AP1B1, MIR3653, SNORD125, RFPL1S, RFPL1, NEFH, THOC5, NIPSNAP1, NF2, CABP7, ZMAT5, UQCR10, ASCC2, MTMR3, HORMAD2, LIF, OSM, GATSL3, TBC1D10A, SF3A1, CCDC157, RNF215, SEC14L2, MTFP1, SEC14L3, SDC4P, SEC14L4, LOC730005, GAL3ST1, PES1, TCN2, SLC35E4, DUSP18, OSBP2, MIR3200, C22orf27, MORC2, TUG1, SMTN, SELM, INPP5J, PLA2G3, MIR3928, RNF185, LIMK2, PIK3IP1, PATZ1, DRG1, EIF4ENIF1, SFI1, PISD, PRR14L, DEPDC5, C22orf24, YWHAH, SLC5A1, C22orf42, RFPL2, SLC5A4, RFPL3, RFPL3S, C22orf28, BPIL2, FBX07, SYN3, TIMP3, LARGE, ISX, HMGXB4, TOMl, MIR3909, HMOXl, MCM5, RASD2, MB, APOL6, APOL5,
2157964 22ql l.22- RBFOX2, APOL3, APOL4, APOL2, APOL1, MYH9, TXN2, FOXRED2, EIF3D, CACNG2,
22 q 27991419 73.28 402 IFT27, PVALB, NCF4, CSF2RB, C22orf33, TST, MPST, KCTD17, TMPRSS6, IL2RB,
9 ql3.33 C1QTNF6, SSTR3, RAC2, CYTH4, ELFN2, MFNG, CARDIO, CDC42EP1, LGALS2, GGAl,
SH3BP1, PDXP, LGALS1, NOL12, TRIOBP, H1F0, GCAT, GALR3, ANKRD54, MIR658, MIR659, EIF3L, MIC ALL 1, C22orf23, POLR2F, SOX10, PICKl, SLC16A8, BAIAP2L2, PLA2G6, MAFF, TMEM184B, CSNK1E, LOC400927, KCNJ4, KDELR3, DDX17, DMC1, LOC646851, CBY1, TOMM22, JOSD1, GTPBP1, SUN2, DNAL4, NPTXR, CBX6, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, APOBEC3H, CBX7, PDGFB, RPL3, SNORD83B, SNORD83A, RNU86, SNORD43, SYNGR1, TAB1, MGAT3, SMCR7L, ATF4, RPS19BP1, CACNA1I, ENTHD1, GRAP2, FAM83F, TNRC6B, ADSL, SGSM3, MKL1, MCHR1, SLC25A17, ST13, XPNPEP3, DNAJB7, RBX1, MIR1281, EP300, L3MBTL2, CHADL, RANGAP1, ZC3H7B, TEF, TOB2, PHF5A, AC02, POLR3H, CSDC2, PMM1, PPPDE2, XRCC6, NHP2L1, C22orf46, MEI1, CCDC134, SREBF2, MIR33A, TNFRSF13C, CENPM, LOC339674, SEPT3, WBP2NL, NAGA, FAM109B, C22orG2, NDUFA6, LOC100132273, CYP2D6, CYP2D7P1, TCF20, LOC388906, NFAM1, SERHL, RRP7A, SERHL2, RRP7B, POLDIP3, RNU12, CYB5R3, ATP5L2, A4GALT, ARFGAP3, PACSIN2, TTLL1, BIK, MCAT, TSPO, TTLL12, SCUBE1, MPPEDl, EFCAB6, SULT4A1, PNPLA5, PNPLA3, SAMM50, PARVB, PARVG, KIAA1644, LDOCIL, NCRNA00207, PRR5, PRR5-ARHGAP8, ARHGAP8, PHF21B, NUP50, C22orf9, MIR1249, UPK3A, FAM118A, SMC1B, RIBC2, FBLN1, ATXN10, WNT7B, LOC730668,
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Figure imgf000070_0001
W:\DOCS\1877\MOF.155XPCT\APPL\2FB7243.DOC/maj
Table 4: Genes with significant correlation between copy number and gene expression
Correlation
Gene Symbol Location p-value qFDR
Coefficient
AARS Chrl6q 0.4619 <0.0001 <0.0001
AATF Chrl7q 0.3449 <0.0001 <0.0001
ABCB8 Chr7q 0.3092 <0.0001 <0.0001
ABCC4 Chrl3q 0.2712 <0.0001 <0.0001
ABCC5 Chr3q 0.3705 <0.0001 <0.0001
ABCE1 Chr4q 0.6457 <0.0001 <0.0001
ABCF2 Chr7q 0.6552 <0.0001 <0.0001
ABCF3 Chr3q 0.5184 <0.0001 <0.0001
ABHD8 Chrl9p 0.3976 <0.0001 <0.0001
ACAA2 Chrl 8q 0.3178 <0.0001 <0.0001
ACACA Chrl7q 0.2391 <0.0001 <0.0001
ACADVL Chrl7p 0.4644 <0.0001 <0.0001
ACAP2 Chr3q 0.5527 <0.0001 <0.0001
ACAT2 Chr6q 0.3644 <0.0001 <0.0001
ACD Chrl6q 0.4438 <0.0001 <0.0001
AC02 Chr22q 0.4073 <0.0001 <0.0001
ACOT8 Chr20q 0.4373 <0.0001 <0.0001
ACP5 Chrl9p 0.214 <0.0001 <0.0001
ACP6 Chrlq 0.2179 <0.0001 <0.0001
ACPP Chr3q 0.189 <0.0001 <0.0001
ACSL1 Chr4q 0.3251 <0.0001 <0.0001
ACTL6A Chr3q 0.5644 <0.0001 <0.0001
ACTN4 Chrl9q 0.52 <0.0001 <0.0001
ACTR3B Chr7q 0.4442 <0.0001 <0.0001
ACTR5 Chr20q 0.4324 <0.0001 <0.0001
ADA Chr20q 0.2801 <0.0001 <0.0001
ADAM28 Chr8p 0.2265 <0.0001 <0.0001
ADAMTS3 Chr4q 0.2091 <0.0001 <0.0001
ADAR Chrlq 0.3479 <0.0001 <0.0001
AD ATI Chrl6q 0.5053 <0.0001 <0.0001
ADCK2 Chr7q 0.5075 <0.0001 <0.0001
ADH5 Chr4q 0.4747 <0.0001 <0.0001
ADIPOR2 Chrl2p 0.6525 <0.0001 <0.0001
ADNP Chr20q 0.4587 <0.0001 <0.0001
ADNP2 Chrl 8q 0.4196 <0.0001 <0.0001
ADRBK2 Chr22q 0.2857 <0.0001 <0.0001
ADRM1 Chr20q 0.448 <0.0001 <0.0001
ADSL Chr22q 0.4728 <0.0001 <0.0001
AFF1 Chr4q 0.359 <0.0001 <0.0001
AGA Chr4q 0.4572 <0.0001 <0.0001
AGGF1 Chr5q 0.5457 <0.0001 <0.0001
AGK Chr7q 0.6475 <0.0001 <0.0001
AGPAT1 Chr6p 0.4683 <0.0001 <0.0001
AGPAT4 Chr6q 0.3856 <0.0001 <0.0001
AGPAT5 Chr8p 0.5659 <0.0001 <0.0001
AHCY Chr20q 0.3404 <0.0001 <0.0001
AHCYL2 Chr7q 0.4234 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
AHI1 Chr6q 0.4554 <0.0001 <0.0001
AIM1 Chr6q 0.3584 <0.0001 <0.0001
AIMP1 Chr4q 0.5422 <0.0001 <0.0001
AKAP10 Chrl7p 0.3294 <0.0001 <0.0001
AKAP11 Chrl3q 0.5966 <0.0001 <0.0001
AKAP12 Chr6q 0.1851 <0.0001 <0.0001
AKAP3 Chrl2p 0.2036 <0.0001 <0.0001
AKAP7 Chr6q 0.3398 <0.0001 <0.0001
AKAP8 Chrl9p 0.605 <0.0001 <0.0001
AKAP8L Chrl9p 0.4093 <0.0001 <0.0001
AKR1B1 Chr7q 0.1769 <0.0001 <0.0001
AKT2 Chrl9q 0.3224 <0.0001 <0.0001
ALDH3A2 Chrl7p 0.3281 <0.0001 <0.0001
ALDH8A1 Chr6q 0.1714 <0.0001 <0.0001
ALG12 Chr22q 0.4343 <0.0001 <0.0001
ALG3 Chr3q 0.5702 <0.0001 <0.0001
ALG5 Chrl3q 0.5157 <0.0001 <0.0001
ALG8 Chrl lq 0.549 <0.0001 <0.0001
AMD1 Chr6q 0.4768 <0.0001 <0.0001
AMFR Chrl6q 0.4191 <0.0001 <0.0001
AMOTL2 Chr3q 0.2451 <0.0001 <0.0001
ANAPC10 Chr4q 0.5973 <0.0001 <0.0001
ANAPC13 Chr3q 0.218 <0.0001 <0.0001
ANKFY1 Chrl7p 0.3135 <0.0001 <0.0001
ANKRA2 Chr5q 0.4791 <0.0001 <0.0001
ANKRD10 Chrl3q 0.4811 <0.0001 <0.0001
ANKRD11 Chrl6q 0.3372 <0.0001 <0.0001
ANKRD17 Chr4q 0.5592 <0.0001 <0.0001
ANKRD27 Chrl9q 0.5348 <0.0001 <0.0001
ANKRD46 Chr8q 0.4272 <0.0001 <0.0001
ANKRD6 Chr6q 0.1939 <0.0001 <0.0001
AN02 Chrl2p 0.3104 <0.0001 <0.0001
ANP32E Chrlq 0.2936 <0.0001 <0.0001
ANXA13 Chr8q 0.178 <0.0001 <0.0001
ANXA3 Chr4q 0.2619 <0.0001 <0.0001
ANXA5 Chr4q 0.3499 <0.0001 <0.0001
AP1AR Chr4q 0.6057 <0.0001 <0.0001
AP1B1 Chr22q 0.5454 <0.0001 <0.0001
AP1G1 Chrl6q 0.5115 <0.0001 <0.0001
AP1M2 Chrl9p 0.5202 <0.0001 <0.0001
AP2B1 Chrl7q 0.4048 <0.0001 <0.0001
AP2M1 Chr3q 0.557 <0.0001 <0.0001
AP3B1 Chr5q 0.4454 <0.0001 <0.0001
AP3M2 Chr8p 0.4095 <0.0001 <0.0001
APH1A Chrlq 0.2978 <0.0001 <0.0001
APLP1 Chrl9q 0.2344 <0.0001 <0.0001
APOBEC3B Chr22q 0.1874 <0.0001 <0.0001
APOBEC3C Chr22q 0.2078 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
APOBEC3F Chr22q 0.2401 <0.0001 <0.0001
APOBEC3G Chr22q 0.2554 <0.0001 <0.0001
APOL1 Chr22q 0.3459 <0.0001 <0.0001
APOL2 Chr22q 0.411 <0.0001 <0.0001
APOL3 Chr22q 0.2675 <0.0001 <0.0001
APOL6 Chr22q 0.3472 <0.0001 <0.0001
APOM Chr6p 0.1936 <0.0001 <0.0001
APRT Chrl6q 0.5262 <0.0001 <0.0001
AQR Chrl5q 0.6553 <0.0001 <0.0001
AREG Chr4q 0.2698 <0.0001 <0.0001
ARFGAP1 Chr20q 0.4174 <0.0001 <0.0001
ARFGAP3 Chr22q 0.5268 <0.0001 <0.0001
ARFGEF1 Chr8q 0.4584 <0.0001 <0.0001
ARFGEF2 Chr20q 0.4457 <0.0001 <0.0001
ARFIP1 Chr4q 0.5941 <0.0001 <0.0001
ARFRP1 Chr20q 0.3209 <0.0001 <0.0001
ARGLU1 Chrl3q 0.5121 <0.0001 <0.0001
ARHGAP11A Chrl5q 0.2363 <0.0001 <0.0001
ARHGAP33 Chrl9q 0.307 <0.0001 <0.0001
ARHGEF10 Chr8p 0.5529 <0.0001 <0.0001
ARHGEF11 Chrlq 0.4231 <0.0001 <0.0001
ARHGEF2 Chrlq 0.4052 <0.0001 <0.0001
ARHGEF5 Chr7q 0.51 <0.0001 <0.0001
ARHGEF7 Chrl3q 0.6847 <0.0001 <0.0001
ARL15 Chr5q 0.2727 <0.0001 <0.0001
ARL2BP Chrl6q 0.5243 <0.0001 <0.0001
ARMC1 Chr8q 0.4766 <0.0001 <0.0001
ARMC6 Chrl9p 0.4769 <0.0001 <0.0001
ARMC8 Chr3q 0.5123 <0.0001 <0.0001
ARNT Chrlq 0.3439 <0.0001 <0.0001
ARNTL2 Chrl2p 0.2835 <0.0001 <0.0001
ARRB2 Chrl7p 0.3072 <0.0001 <0.0001
ARSA Chr22q 0.3024 <0.0001 <0.0001
ASAH1 Chr8p 0.5582 <0.0001 <0.0001
ASAP1 Chr8q 0.4013 <0.0001 <0.0001
ASAP 1 -IT Chr8q 0.1929 <0.0001 <0.0001
ASCC2 Chr22q 0.5655 <0.0001 <0.0001
ASCC3 Chr6q 0.5611 <0.0001 <0.0001
ASF1A Chr6q 0.5883 <0.0001 <0.0001
ASF1B Chrl9p 0.4603 <0.0001 <0.0001
ASH1L Chrlq 0.1813 <0.0001 <0.0001
ASNA1 Chrl9p 0.4948 <0.0001 <0.0001
ASPH Chr8q 0.2332 <0.0001 <0.0001
ASXL1 Chr20q 0.4453 <0.0001 <0.0001
ATAD2 Chr8q 0.4986 <0.0001 <0.0001
ATAD5 Chrl7q 0.1969 <0.0001 <0.0001
ATF4 Chr22q 0.3676 <0.0001 <0.0001
ATF6 Chrlq 0.4663 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
ATF6B Chr6p 0.3333 <0.0001 <0.0001
ATF7IP Chrl2p 0.3739 <0.0001 <0.0001
ATG5 Chr6q 0.6146 <0.0001 <0.0001
ATMIN Chrl6q 0.6514 <0.0001 <0.0001
ATN1 Chrl2p 0.3697 <0.0001 <0.0001
ATP11A Chrl3q 0.2916 <0.0001 <0.0001
ATP 1 IB Chr3q 0.3486 <0.0001 <0.0001
ATP13A1 Chrl9p 0.4966 <0.0001 <0.0001
ATP13A3 Chr3q 0.5146 <0.0001 <0.0001
ATP1B3 Chr3q 0.2494 <0.0001 <0.0001
ATP5A1 Chrl 8q 0.6072 <0.0001 <0.0001
ATP5E Chr20q 0.484 <0.0001 <0.0001
ATP6V0D1 Chrl6q 0.4633 <0.0001 <0.0001
ATP6V0E2 Chr7q 0.4478 <0.0001 <0.0001
ATP6V1B2 Chr8p 0.4713 <0.0001 <0.0001
ATP6V1C1 Chr8q 0.5859 <0.0001 <0.0001
ATP6V1F Chr7q 0.5082 <0.0001 <0.0001
ATP6V1H Chr8q 0.4899 <0.0001 <0.0001
ATP7B Chrl3q 0.2776 <0.0001 <0.0001
ATP8A2 Chrl3q 0.1653 <0.0001 1.00E-04
ATP9A Chr20q 0.3725 <0.0001 <0.0001
ATP9B Chrl 8q 0.5118 <0.0001 <0.0001
ATPAF2 Chrl7p 0.4131 <0.0001 <0.0001
ATR Chr3q 0.4911 <0.0001 <0.0001
ATRN Chr20p 0.5045 <0.0001 <0.0001
ATXN1 Chr6p 0.2275 <0.0001 <0.0001
ATXN10 Chr22q 0.4536 <0.0001 <0.0001
AURKA Chr20q 0.398 <0.0001 <0.0001
AURKB Chrl7p 0.2362 <0.0001 <0.0001
AVEN Chrl5q 0.4614 <0.0001 <0.0001
AZIN1 Chr8q 0.6147 <0.0001 <0.0001
B2M Chrl5q 0.2286 <0.0001 <0.0001
B3GALNT1 Chr3q 0.2928 <0.0001 <0.0001
B4GALT3 Chrlq 0.4241 <0.0001 <0.0001
B4GALT5 Chr20q 0.3738 <0.0001 <0.0001
BABAM1 Chrl9p 0.6165 <0.0001 <0.0001
BACH 2 Chr6q 0.3155 <0.0001 <0.0001
BAG6 Chr6p 0.5952 <0.0001 <0.0001
BAHD1 Chrl5q 0.342 <0.0001 <0.0001
BANK1 Chr4q 0.2128 <0.0001 <0.0001
BANP Chrl6q 0.359 <0.0001 <0.0001
BBS7 Chr4q 0.2843 <0.0001 <0.0001
BCAS4 Chr20q 0.3379 <0.0001 <0.0001
BCL2 Chrl 8q 0.2084 <0.0001 <0.0001
BCL2L1 Chr20q 0.2521 <0.0001 <0.0001
BCL2L14 Chrl2p 0.2227 <0.0001 <0.0001
BCL9 Chrlq 0.22 <0.0001 <0.0001
BCLAF1 Chr6q 0.3929 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
BCMOl Chrl6q 0.1986 <0.0001 <0.0001
BCR Chr22q 0.5047 <0.0001 <0.0001
BDH1 Chr3q 0.399 <0.0001 <0.0001
BDH2 Chr4q 0.3594 <0.0001 <0.0001
BGLAP Chrlq 0.2624 <0.0001 <0.0001
BHLHE41 Chrl2p 0.2052 <0.0001 <0.0001
BICDl Chrl2p 0.2885 <0.0001 <0.0001
BIK Chr22q 0.2217 <0.0001 <0.0001
BIN3 Chr8p 0.6667 <0.0001 <0.0001
BLCAP Chr20q 0.3476 <0.0001 <0.0001
BLMH Chrl7q 0.4554 <0.0001 <0.0001
BLVRB Chrl9q 0.3552 <0.0001 <0.0001
BMP1 Chr8p 0.3439 <0.0001 <0.0001
BMP2K Chr4q 0.4342 <0.0001 <0.0001
BMP7 Chr20q 0.213 <0.0001 <0.0001
BNIP3L Chr8p 0.5836 <0.0001 <0.0001
BOLA1 Chrlq 0.2615 <0.0001 <0.0001
BOP1 Chr8q 0.6495 <0.0001 <0.0001
BPGM Chr7q 0.4023 <0.0001 <0.0001
BRAF Chr7q 0.3788 <0.0001 <0.0001
BRCA2 Chrl3q 0.364 <0.0001 <0.0001
BRD1 Chr22q 0.4168 <0.0001 <0.0001
BRD4 Chrl9p 0.5353 <0.0001 <0.0001
BRF2 Chr8p 0.5096 <0.0001 <0.0001
BRP44L Chr6q 0.4235 <0.0001 <0.0001
BST2 Chrl9p 0.1986 <0.0001 <0.0001
BTC Chr4q 0.3195 <0.0001 <0.0001
BTF3 Chr5q 0.5007 <0.0001 <0.0001
BUB1B Chrl5q 0.2166 <0.0001 <0.0001
Cl lorf67 Chrl lq 0.4625 <0.0001 <0.0001
CUorfll Chrl2p 0.4928 <0.0001 <0.0001
C12orfi5 Chrl2p 0.1851 <0.0001 <0.0001
C12orf4 Chrl2p 0.5372 <0.0001 <0.0001
C12orf5 Chrl2p 0.4429 <0.0001 <0.0001
C13orfl Chrl3q 0.3951 <0.0001 <0.0001
C13orfl5 Chrl3q 0.202 <0.0001 <0.0001
C13orf23 Chrl3q 0.5443 <0.0001 <0.0001
C13orf27 Chrl3q 0.506 <0.0001 <0.0001
C13orfi4 Chrl3q 0.4106 <0.0001 <0.0001
C15orf24 Chrl5q 0.5746 <0.0001 <0.0001
C15orf29 Chrl5q 0.3772 <0.0001 <0.0001
C16orf57 Chrl6q 0.3723 <0.0001 <0.0001
C16orf61 Chrl6q 0.4661 <0.0001 <0.0001
C16orf7 Chrl6q 0.2716 <0.0001 <0.0001
C16orf80 Chrl6q 0.492 <0.0001 <0.0001
C17orfl08 Chrl7q 0.2128 <0.0001 <0.0001
CI 7ο 9 Chrl7p 0.1908 <0.0001 <0.0001
CI 7orf42 Chrl7q 0.3854 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
CI 7orf48 Chrl7p 0.368 <0.0001 <0.0001
CI 7orf63 Chrl7q 0.4661 <0.0001 <0.0001
CI 7orf75 Chrl7q 0.2984 <0.0001 <0.0001
CI 7ονβ1 Chrl7p 0.2249 <0.0001 <0.0001
CI 7ονβ5 Chrl7p 0.4401 <0.0001 <0.0001
C18orf25 Chrl 8q 0.4242 <0.0001 <0.0001
C19orf2 Chrl9q 0.5609 <0.0001 <0.0001
C19orf40 Chrl9q 0.3101 <0.0001 <0.0001
C19orf42 Chrl9p 0.5739 <0.0001 <0.0001
C19orf50 Chrl9p 0.6062 <0.0001 <0.0001
C19orf53 Chrl9p 0.5636 <0.0001 <0.0001
C19orf56 Chrl9p 0.5699 <0.0001 <0.0001
C19orf57 Chrl9p 0.3667 <0.0001 <0.0001
C19orf60 Chrl9p 0.41 <0.0001 <0.0001
C19orf66 Chrl9p 0.4162 <0.0001 <0.0001
Clorf56 Chrlq 0.2594 <0.0001 <0.0001
Clorf77 Chrlq 0.314 <0.0001 <0.0001
C1QBP Chrl7p 0.4791 <0.0001 <0.0001
C1RL Chrl2p 0.2799 <0.0001 <0.0001
C20orfll Chr20q 0.4635 <0.0001 <0.0001
C20orflll Chr20q 0.4252 <0.0001 <0.0001
C20orf20 Chr20q 0.5314 <0.0001 <0.0001
C20orf24 Chr20q 0.3478 <0.0001 <0.0001
C20orf27 Chr20p 0.4156 <0.0001 <0.0001
C20orf29 Chr20p 0.4113 <0.0001 <0.0001
C20orf4 Chr20q 0.5289 <0.0001 <0.0001
C20orf43 Chr20q 0.5479 <0.0001 <0.0001
C22orf28 Chr22q 0.6209 <0.0001 <0.0001
C22orf46 Chr22q 0.1866 <0.0001 <0.0001
C4orf27 Chr4q 0.4985 <0.0001 <0.0001
C4orf29 Chr4q 0.3127 <0.0001 <0.0001
C4orf41 Chr4q 0.6588 <0.0001 <0.0001
C4orf43 Chr4q 0.5388 <0.0001 <0.0001
C5orf44 Chr5q 0.3835 <0.0001 <0.0001
C6orfl20 Chr6q 0.5876 <0.0001 <0.0001
C6orfl24 Chr6q 0.2034 <0.0001 <0.0001
C6orf211 Chr6q 0.46 <0.0001 <0.0001
C6orf26 Chr6p 0.2344 <0.0001 <0.0001
C6orf47 Chr6p 0.3802 <0.0001 <0.0001
C6orf48 Chr6p 0.2824 <0.0001 <0.0001
C7orf49 Chr7q 0.4512 <0.0001 <0.0001
C8orfl3 Chr8q 0.5673 <0.0001 <0.0001
C8orf41 Chr8p 0.5889 <0.0001 <0.0001
C8orf44 Chr8q 0.2471 <0.0001 <0.0001
C8orf51 Chr8q 0.3607 <0.0001 <0.0001
C8orf55 Chr8q 0.5902 <0.0001 <0.0001
C8orfi4 Chr8q 0.2263 <0.0001 <0.0001
CA2 Chr8q 0.2057 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
CAS Chr8q 0.2072 <0.0001 <0.0001
CAB39L Chrl3q 0.1703 <0.0001 <0.0001
CABIN1 Chr22q 0.52 <0.0001 <0.0001
CACNA1A Chrl9p 0.4293 <0.0001 <0.0001
CALR Chrl9p 0.4227 <0.0001 <0.0001
CALU Chr7q 0.2851 <0.0001 <0.0001
CAMTA2 Chrl7p 0.3765 <0.0001 <0.0001
CAPN3 Chrl5q 0.2384 <0.0001 <0.0001
CAPN5 Chrl lq 0.327 <0.0001 <0.0001
CAPNS1 Chrl9q 0.5079 <0.0001 <0.0001
CAPRIN2 Chrl2p 0.3512 <0.0001 <0.0001
CARD10 Chr22q 0.28 <0.0001 <0.0001
CAKKD Chrl3q 0.7139 <0.0001 <0.0001
CARM1 Chrl9p 0.613 <0.0001 <0.0001
CARS2 Chrl3q 0.5911 <0.0001 <0.0001
CASC1 Chrl2p 0.3348 <0.0001 <0.0001
CASC3 Chrl7q 0.4183 <0.0001 <0.0001
CASP2 Chr7q 0.2678 <0.0001 <0.0001
CASP3 Chr4q 0.5403 <0.0001 <0.0001
CASP6 Chr4q 0.4481 <0.0001 <0.0001
CASP8AP2 Chr6q 0.6294 <0.0001 <0.0001
CAST Chr5q 0.5568 <0.0001 <0.0001
CBFA2T2 Chr20q 0.4499 <0.0001 <0.0001
CBFB Chrl6q 0.5611 <0.0001 <0.0001
CBR4 Chr4q 0.4776 <0.0001 <0.0001
CBX6 Chr22q 0.2621 <0.0001 <0.0001
CBX7 Chr22q 0.3636 <0.0001 <0.0001
CBY1 Chr22q 0.4007 <0.0001 <0.0001
CC2D1A Chrl9p 0.513 <0.0001 <0.0001
CCDC109B Chr4q 0.3906 <0.0001 <0.0001
CCDC130 Chrl9p 0.6303 <0.0001 <0.0001
CCDC25 Chr8p 0.5875 <0.0001 <0.0001
CCDC28A Chr6q 0.4722 <0.0001 <0.0001
CCDC68 Chrl 8q 0.2303 <0.0001 <0.0001
CCDC90A Chr6p 0.526 <0.0001 <0.0001
CCDC91 Chrl2p 0.4547 <0.0001 <0.0001
CCL11 Chrl7q 0.1853 <0.0001 <0.0001
CCNA2 Chr4q 0.3178 <0.0001 <0.0001
CCNB1 Chr5q 0.253 <0.0001 <0.0001
CCNC Chr6q 0.5992 <0.0001 <0.0001
CCNE1 Chrl9q 0.5179 <0.0001 <0.0001
CCNE2 Chr8q 0.2902 <0.0001 <0.0001
CCNG2 Chr4q 0.4489 <0.0001 <0.0001
CCNH Chr5q 0.5195 <0.0001 <0.0001
CCNI Chr4q 0.419 <0.0001 <0.0001
CCNL1 Chr3q 0.3298 <0.0001 <0.0001
CCNO Chr5q 0.1808 <0.0001 <0.0001
CCR7 Chrl7q 0.1857 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
CCT3 Chrlq 0.4266 <0.0001 <0.0001
CD164 Chr6q 0.5646 <0.0001 <0.0001
CD83 Chr6p 0.2457 <0.0001 <0.0001
CD9 Chrl2p 0.3511 <0.0001 <0.0001
CD97 Chrl9p 0.247 <0.0001 <0.0001
CDADC1 Chrl3q 0.2327 <0.0001 <0.0001
CDC 16 Chrl3q 0.6866 <0.0001 <0.0001
CDC25B Chr20p 0.1951 <0.0001 <0.0001
CDC37 Chrl9p 0.574 <0.0001 <0.0001
CDC40 Chr6q 0.6916 <0.0001 <0.0001
CDC42EP1 Chr22q 0.3071 <0.0001 <0.0001
CDC42SE1 Chrlq 0.1947 <0.0001 <0.0001
CDC6 Chrl7q 0.2488 <0.0001 <0.0001
CDCA3 Chrl2p 0.4058 <0.0001 <0.0001
CDH1 Chrl6q 0.361 <0.0001 <0.0001
CDH3 Chrl6q 0.1794 <0.0001 <0.0001
CDK10 Chrl6q 0.3511 <0.0001 <0.0001
CDK12 Chrl7q 0.4196 <0.0001 <0.0001
CDK19 Chr6q 0.6173 <0.0001 <0.0001
CDK5 Chr7q 0.5275 <0.0001 <0.0001
CDK5RAP1 Chr20q 0.4556 <0.0001 <0.0001
CDK7 Chr5q 0.469 <0.0001 <0.0001
CDK8 Chrl3q 0.5222 <0.0001 <0.0001
CDKN1B Chrl2p 0.3696 <0.0001 <0.0001
CDKN2AIP Chr4q 0.6029 <0.0001 <0.0001
CDKN2D Chrl9p 0.2916 <0.0001 <0.0001
CDS1 Chr4q 0.4064 <0.0001 <0.0001
CDT1 Chrl6q 0.1682 <0.0001 <0.0001
CDV3 Chr3q 0.3856 <0.0001 <0.0001
CEBPA Chrl9q 0.176 <0.0001 <0.0001
CEBPB Chr20q 0.2489 <0.0001 <0.0001
CEBPG Chrl9q 0.4618 <0.0001 <0.0001
CELSR1 Chr22q 0.3299 <0.0001 <0.0001
CENPB Chr20p 0.2563 <0.0001 <0.0001
CENPE Chr4q 0.231 <0.0001 <0.0001
CENPJ Chrl3q 0.4084 <0.0001 <0.0001
CENPM Chr22q 0.2539 <0.0001 <0.0001
CENPN Chrl6q 0.2834 <0.0001 <0.0001
CENPT Chrl6q 0.3344 <0.0001 <0.0001
CEP250 Chr20q 0.2632 <0.0001 <0.0001
CEP63 Chr3q 0.4185 <0.0001 <0.0001
CEP70 Chr3q 0.3122 <0.0001 <0.0001
CEKK Chr22q 0.3222 <0.0001 <0.0001
CES2 Chrl6q 0.4714 <0.0001 <0.0001
CETN3 Chr5q 0.4357 <0.0001 <0.0001
CFDP1 Chrl6q 0.4743 <0.0001 <0.0001
CFI Chr4q 0.2586 <0.0001 <0.0001
CHCHD3 Chr7q 0.4911 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
CHCHD7 Chr8q 0.4487 <0.0001 <0.0001
CHD1 Chr5q 0.6029 <0.0001 <0.0001
CHD1L Chrlq 0.3067 <0.0001 <0.0001
CHD3 Chrl7p 0.3144 <0.0001 <0.0001
CHD4 Chrl2p 0.304 <0.0001 <0.0001
CHD7 Chr8q 0.3419 <0.0001 <0.0001
CHEK2 Chr22q 0.2965 <0.0001 <0.0001
CHERP Chrl9p 0.5588 <0.0001 <0.0001
CHKB Chr22q 0.3477 <0.0001 <0.0001
CHMP1A Chrl6q 0.5452 <0.0001 <0.0001
CHMP7 Chr8p 0.6451 <0.0001 <0.0001
CHP Chrl5q 0.5027 <0.0001 <0.0001
CHPF2 Chr7q 0.5259 <0.0001 <0.0001
CHRNB1 Chrl7p 0.4379 <0.0001 <0.0001
CHST4 Chrl6q 0.195 <0.0001 <0.0001
CIAPIN1 Chrl6q 0.5191 <0.0001 <0.0001
CITED2 Chr6q 0.3427 <0.0001 <0.0001
CKAP2 Chrl3q 0.4677 <0.0001 <0.0001
CKLF Chrl6q 0.4366 <0.0001 <0.0001
CKMT2 Chr5q 0.2002 <0.0001 <0.0001
CKS1B Chrlq 0.2033 <0.0001 <0.0001
CLCN2 Chr3q 0.2944 <0.0001 <0.0001
CLCN3 Chr4q 0.5822 <0.0001 <0.0001
CLDN7 Chrl7p 0.2993 <0.0001 <0.0001
CLGN Chr4q 0.2901 <0.0001 <0.0001
CLIC1 Chr6p 0.4104 <0.0001 <0.0001
CLIP3 Chrl9q 0.3014 <0.0001 <0.0001
CLK2 Chrlq 0.442 <0.0001 <0.0001
CLN5 Chrl3q 0.4799 <0.0001 <0.0001
CLN8 Chr8p 0.5411 <0.0001 <0.0001
CLNS1A Chrl lq 0.5216 <0.0001 <0.0001
CLSTN3 Chrl2p 0.3028 <0.0001 <0.0001
CLU Chr8p 0.237 <0.0001 <0.0001
CMAS Chrl2p 0.4467 <0.0001 <0.0001
CNDP2 Chrl 8q 0.4528 <0.0001 <0.0001
CNOT1 Chrl6q 0.5126 <0.0001 <0.0001
CNOT4 Chr7q 0.5341 <0.0001 <0.0001
CNOT7 Chr8p 0.6982 <0.0001 <0.0001
COG4 Chrl6q 0.4878 <0.0001 <0.0001
COL4A2 Chrl3q 0.2366 <0.0001 <0.0001
COL4A3BP Chr5q 0.3034 <0.0001 <0.0001
COL9A3 Chr20q 0.2194 <0.0001 <0.0001
COPA Chrlq 0.3618 <0.0001 <0.0001
COPB2 Chr3q 0.4688 <0.0001 <0.0001
COPE Chrl9p 0.476 <0.0001 <0.0001
COPS3 Chrl7p 0.3156 <0.0001 <0.0001
COPS4 Chr4q 0.4707 <0.0001 <0.0001
COPS5 Chr8q 0.5598 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
COPS7A Chrl2p 0.4816 <0.0001 <0.0001
COQ2 Chr4q 0.4046 <0.0001 <0.0001
COQ3 Chr6q 0.4972 <0.0001 <0.0001
COQ9 Chrl6q 0.4997 <0.0001 <0.0001
COX10 Chrl7p 0.3853 <0.0001 <0.0001
COX4I1 Chrl6q 0.5402 <0.0001 <0.0001
COX4NB Chrl6q 0.5425 <0.0001 <0.0001
COX6B1 Chrl9q 0.5543 <0.0001 <0.0001
COX6C Chr8q 0.6505 <0.0001 <0.0001
COX7C Chr5q 0.5379 <0.0001 <0.0001
CP Chr3q 0.1767 <0.0001 <0.0001
CPD Chrl7q 0.1968 <0.0001 <0.0001
CPE Chr4q 0.1857 <0.0001 <0.0001
CPNE1 Chr20q 0.4919 <0.0001 <0.0001
CPNE3 Chr8q 0.5044 <0.0001 <0.0001
CPSF1 Chr8q 0.5715 <0.0001 <0.0001
CREB3L2 Chr7q 0.2582 <0.0001 <0.0001
CKEBL2 Chrl2p 0.427 <0.0001 <0.0001
CKELD2 Chr22q 0.5261 <0.0001 <0.0001
CKLF3 Chrl7q 0.4253 <0.0001 <0.0001
CRTC1 Chrl9p 0.4058 <0.0001 <0.0001
CRYBB2P1 Chr22q 0.2516 <0.0001 <0.0001
CRYL1 Chrl3q 0.2283 <0.0001 <0.0001
CSDA Chrl2p 0.4359 <0.0001 <0.0001
CSE1L Chr20q 0.5525 <0.0001 <0.0001
CSF2RB Chr22q 0.2506 <0.0001 <0.0001
CSGALNACTl Chr8p 0.334 <0.0001 <0.0001
CSNK1E Chr22q 0.4182 <0.0001 <0.0001
CSNK2A1 Chr20p 0.6334 <0.0001 <0.0001
CSNK2A2 Chrl6q 0.4165 <0.0001 <0.0001
CSNK2B Chr6p 0.6262 <0.0001 <0.0001
CSPP1 Chr8q 0.4515 <0.0001 <0.0001
CSTF1 Chr20q 0.5106 <0.0001 <0.0001
CTCF Chrl6q 0.4371 <0.0001 <0.0001
CTDNEP1 Chrl7p 0.463 <0.0001 <0.0001
CTDP1 Chrl 8q 0.3984 <0.0001 <0.0001
CTIF Chrl 8q 0.3249 <0.0001 <0.0001
CTNNBL1 Chr20q 0.513 <0.0001 <0.0001
CTNS Chrl7p 0.5192 <0.0001 <0.0001
CTSA Chr20q 0.2807 <0.0001 <0.0001
CTSB Chr8p 0.4214 <0.0001 <0.0001
CTSO Chr4q 0.5636 <0.0001 <0.0001
CUL1 Chr7q 0.6023 <0.0001 <0.0001
CUL4A Chrl3q 0.6859 <0.0001 <0.0001
CWC25 Chrl7q 0.4247 <0.0001 <0.0001
CX3CL1 Chrl6q 0.2146 <0.0001 <0.0001
CXCL10 Chr4q 0.3034 <0.0001 <0.0001
CXCL11 Chr4q 0.274 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
CXCL9 Chr4q 0.1916 <0.0001 <0.0001
CXXC1 Chrl 8q 0.6706 <0.0001 <0.0001
CYB5A Chrl 8q 0.4454 <0.0001 <0.0001
CYB5B Chrl6q 0.4584 <0.0001 <0.0001
CYB5R3 Chr22q 0.5343 <0.0001 <0.0001
CYBA Chrl6q 0.3409 <0.0001 <0.0001
CYC1 Chr8q 0.5986 <0.0001 <0.0001
CYFIP1 Chrl5q 0.5566 <0.0001 <0.0001
CYHR1 Chr8q 0.5652 <0.0001 <0.0001
DACH1 Chrl3q 0.1947 <0.0001 <0.0001
DAP3 Chrlq 0.3884 <0.0001 <0.0001
DAPP1 Chr4q 0.2043 <0.0001 <0.0001
DBNDD1 Chrl6q 0.3126 <0.0001 <0.0001
DBR1 Chr3q 0.2861 <0.0001 <0.0001
DCAF13 Chr8q 0.2134 <0.0001 <0.0001
DCAF15 Chrl9p 0.5484 <0.0001 <0.0001
DCAF8 Chrlq 0.3908 <0.0001 <0.0001
DCLK1 Chrl3q 0.2099 <0.0001 <0.0001
DCTD Chr4q 0.5704 <0.0001 <0.0001
DCTN6 Chr8p 0.6624 <0.0001 <0.0001
DCUN1D1 Chr3q 0.5656 <0.0001 <0.0001
DCUN1D2 Chrl3q 0.5001 <0.0001 <0.0001
DDA1 Chrl9p 0.4629 <0.0001 <0.0001
DDAH2 Chr6p 0.4276 <0.0001 <0.0001
DDRGK1 Chr20p 0.3355 <0.0001 <0.0001
DDT Chr22q 0.5934 <0.0001 <0.0001
DDX11 Chrl2p 0.3596 <0.0001 <0.0001
DDX17 Chr22q 0.3549 <0.0001 <0.0001
DDX19A Chrl6q 0.5416 <0.0001 <0.0001
DDX27 Chr20q 0.4758 <0.0001 <0.0001
DDX28 Chrl6q 0.4311 <0.0001 <0.0001
DDX39A Chrl9p 0.5791 <0.0001 <0.0001
DDX39B Chr6p 0.3962 <0.0001 <0.0001
DDX47 Chrl2p 0.601 <0.0001 <0.0001
DDX49 Chrl9p 0.5969 <0.0001 <0.0001
DDX52 Chrl7q 0.4754 <0.0001 <0.0001
DDX60 Chr4q 0.3312 <0.0001 <0.0001
DECR1 Chr8q 0.3877 <0.0001 <0.0001
DEDD Chrlq 0.403 <0.0001 <0.0001
DEF8 Chrl6q 0.3803 <0.0001 <0.0001
DEFB1 Chr8p 0.1657 <0.0001 1.00E-04
DENND3 Chr8q 0.255 <0.0001 <0.0001
DENND4B Chrlq 0.3401 <0.0001 <0.0001
DENND5B Chrl2p 0.2385 <0.0001 <0.0001
DEPDC5 Chr22q 0.3877 <0.0001 <0.0001
DEPTOR Chr8q 0.3214 <0.0001 <0.0001
DERA Chrl2p 0.4628 <0.0001 <0.0001
DERL1 Chr8q 0.6801 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
DERL2 Chrl7p 0.5006 <0.0001 <0.0001
DGAT1 Chr8q 0.63 <0.0001 <0.0001
DHFR Chr5q 0.3519 <0.0001 <0.0001
DHODH Chrl6q 0.2738 <0.0001 <0.0001
DHPS Chrl9p 0.5488 <0.0001 <0.0001
DHRS11 Chrl7q 0.2244 <0.0001 <0.0001
DHRS12 Chrl3q 0.3888 <0.0001 <0.0001
DHRS7B Chrl7p 0.2373 <0.0001 <0.0001
DHX29 Chr5q 0.5573 <0.0001 <0.0001
DHX35 Chr20q 0.522 <0.0001 <0.0001
DHX38 Chrl6q 0.4367 <0.0001 <0.0001
DIDOl Chr20q 0.3328 <0.0001 <0.0001
DIMT1L Chr5q 0.4511 <0.0001 <0.0001
DIS3 Chrl3q 0.5239 <0.0001 <0.0001
DLC1 Chr8p 0.1943 <0.0001 <0.0001
DLEU1 Chrl3q 0.3349 <0.0001 <0.0001
DLEU2 Chrl3q 0.1944 <0.0001 <0.0001
DLG1 Chr3q 0.6742 <0.0001 <0.0001
DLGAP4 Chr20q 0.383 <0.0001 <0.0001
DLL3 Chrl9q 0.3029 <0.0001 <0.0001
DNAJBl Chrl9p 0.512 <0.0001 <0.0001
DNAJB14 Chr4q 0.5658 <0.0001 <0.0001
DNAJB6 Chr7q 0.4905 <0.0001 <0.0001
DNAJC13 Chr3q 0.4803 <0.0001 <0.0001
DNAJC15 Chrl3q 0.1793 <0.0001 <0.0001
DNAJC17 Chrl5q 0.3813 <0.0001 <0.0001
DNAJC3 Chrl3q 0.4759 <0.0001 <0.0001
DNAL4 Chr22q 0.4045 <0.0001 <0.0001
DNASE2 Chrl9p 0.4439 <0.0001 <0.0001
DNM1L Chrl2p 0.4038 <0.0001 <0.0001
DNM2 Chrl9p 0.5525 <0.0001 <0.0001
DNMT1 Chrl9p 0.4671 <0.0001 <0.0001
DNMT3B Chr20q 0.259 <0.0001 <0.0001
DOCK6 Chrl9p 0.3791 <0.0001 <0.0001
DOCK9 Chrl3q 0.3754 <0.0001 <0.0001
DOK4 Chrl6q 0.2997 <0.0001 <0.0001
DOM3Z Chr6p 0.4571 <0.0001 <0.0001
DPMI Chr20q 0.477 <0.0001 <0.0001
DPM3 Chrlq 0.1999 <0.0001 <0.0001
DPY19L4 Chr8q 0.4351 <0.0001 <0.0001
DPYSL2 Chr8p 0.3641 <0.0001 <0.0001
DRG1 Chr22q 0.6343 <0.0001 <0.0001
DRG2 Chrl7p 0.3331 <0.0001 <0.0001
DSCC1 Chr8q 0.4489 <0.0001 <0.0001
DSE Chr6q 0.2381 <0.0001 <0.0001
DSN1 Chr20q 0.3822 <0.0001 <0.0001
DSTNP2 Chrl2p 0.1843 <0.0001 <0.0001
DUS2L Chrl6q 0.4259 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
DUSP12 Chrlq 0.3756 <0.0001 <0.0001
DUSP14 Chrl7q 0.382 <0.0001 <0.0001
DUSP4 Chr8p 0.2214 <0.0001 <0.0001
DVL2 Chrl7p 0.5142 <0.0001 <0.0001
DVL3 Chr3q 0.5462 <0.0001 <0.0001
DYM Chrl 8q 0.2211 <0.0001 <0.0001
DYNC1LI2 Chrl6q 0.4859 <0.0001 <0.0001
DYNLKB1 Chr20q 0.4663 <0.0001 <0.0001
DYNLT1 Chr6q 0.542 <0.0001 <0.0001
DYRK1B Chrl9q 0.2773 <0.0001 <0.0001
DYRK4 Chrl2p 0.5228 <0.0001 <0.0001
DZIP1 Chrl3q 0.2796 <0.0001 <0.0001
E2F1 Chr20q 0.2641 <0.0001 <0.0001
E2F4 Chrl6q 0.2622 <0.0001 <0.0001
E2F5 Chr8q 0.355 <0.0001 <0.0001
EBAG9 Chr8q 0.7124 <0.0001 <0.0001
ECH1 Chrl9q 0.5774 <0.0001 <0.0001
ECHDC1 Chr6q 0.537 <0.0001 <0.0001
ECSIT Chrl9p 0.5399 <0.0001 <0.0001
ECT2 Chr3q 0.5011 <0.0001 <0.0001
EDC4 Chrl6q 0.4352 <0.0001 <0.0001
EDEM2 Chr20q 0.418 <0.0001 <0.0001
EDNRA Chr4q 0.228 <0.0001 <0.0001
EEF1D Chr8q 0.5553 <0.0001 <0.0001
EFHA1 Chrl3q 0.6179 <0.0001 <0.0001
EFNA1 Chrlq 0.203 <0.0001 <0.0001
EFNA3 Chrlq 0.2427 <0.0001 <0.0001
EFNA4 Chrlq 0.2401 <0.0001 <0.0001
EFNB2 Chrl3q 0.3861 <0.0001 <0.0001
EFNB3 Chrl7p 0.2272 <0.0001 <0.0001
EFR3A Chr8q 0.6146 <0.0001 <0.0001
EHD4 Chrl5q 0.4402 <0.0001 <0.0001
EHHADH Chr3q 0.3418 <0.0001 <0.0001
EHMT2 Chr6p 0.5652 <0.0001 <0.0001
EIF2B5 Chr3q 0.5671 <0.0001 <0.0001
EIF2C2 Chr8q 0.5696 <0.0001 <0.0001
EIF2S2 Chr20q 0.4058 <0.0001 <0.0001
EIF3D Chr22q 0.4336 <0.0001 <0.0001
EIF3E Chr8q 0.5294 <0.0001 <0.0001
EIF3G Chrl9p 0.5852 <0.0001 <0.0001
EIF3H Chr8q 0.5936 <0.0001 <0.0001
EIF3J Chrl5q 0.6286 <0.0001 <0.0001
EIF3K Chrl9q 0.5546 <0.0001 <0.0001
EIF3L Chr22q 0.423 <0.0001 <0.0001
EIF4A1 Chrl7p 0.4765 <0.0001 <0.0001
EIF4A2 Chr3q 0.3811 <0.0001 <0.0001
EIF4E Chr4q 0.5149 <0.0001 <0.0001
EIF4ENIF1 Chr22q 0.59 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
EIF4G1 Chr3q 0.4719 <0.0001 <0.0001
EIF5A Chrl7p 0.3975 <0.0001 <0.0001
EIF5A2 Chr3q 0.2075 <0.0001 <0.0001
EIF6 Chr20q 0.3821 <0.0001 <0.0001
ELAC1 Chrl 8q 0.3321 <0.0001 <0.0001
EL AC 2 Chrl7p 0.3446 <0.0001 <0.0001
ELF1 Chrl3q 0.5919 <0.0001 <0.0001
ELF2 Chr4q 0.5671 <0.0001 <0.0001
ELL Chrl9p 0.3286 <0.0001 <0.0001
ELL2 Chr5q 0.1712 <0.0001 <0.0001
ELM02 Chr20q 0.5534 <0.0001 <0.0001
ELM03 Chrl6q 0.394 <0.0001 <0.0001
ELOVL6 Chr4q 0.3053 <0.0001 <0.0001
ELP3 Chr8p 0.5416 <0.0001 <0.0001
EMG1 Chrl2p 0.5385 <0.0001 <0.0001
ENC1 Chr5q 0.2045 <0.0001 <0.0001
EN02 Chrl2p 0.2828 <0.0001 <0.0001
EN03 Chrl7p 0.1903 <0.0001 <0.0001
ENOPH1 Chr4q 0.5631 <0.0001 <0.0001
ENOX1 Chrl3q 0.1862 <0.0001 <0.0001
ENPEP Chr4q 0.185 <0.0001 <0.0001
ENPP1 Chr6q 0.1911 <0.0001 <0.0001
ENSA Chrlq 0.4234 <0.0001 <0.0001
ENTPD4 Chr8p 0.6046 <0.0001 <0.0001
ENY2 Chr8q 0.5903 <0.0001 <0.0001
EP300 Chr22q 0.3232 <0.0001 <0.0001
EPB41L1 Chr20q 0.185 <0.0001 <0.0001
EPB41L2 Chr6q 0.268 <0.0001 <0.0001
EPB49 Chr8p 0.3504 <0.0001 <0.0001
EPHA1 Chr7q 0.4344 <0.0001 <0.0001
EPHB3 Chr3q 0.3191 <0.0001 <0.0001
EPHB6 Chr7q 0.3347 <0.0001 <0.0001
EPHX2 Chr8p 0.5066 <0.0001 <0.0001
EPM2A Chr6q 0.3632 <0.0001 <0.0001
EPN2 Chrl7p 0.3657 <0.0001 <0.0001
EPOR Chrl9p 0.3587 <0.0001 <0.0001
EPPK1 Chr8q 0.3434 <0.0001 <0.0001
EPS15L1 Chrl9p 0.4869 <0.0001 <0.0001
EPS8 Chrl2p 0.1994 <0.0001 <0.0001
ERAL1 Chrl7q 0.4568 <0.0001 <0.0001
ERAP1 Chr5q 0.4791 <0.0001 <0.0001
ERAP2 Chr5q 0.2217 <0.0001 <0.0001
ERBB2 Chrl7q 0.3963 <0.0001 <0.0001
ERBB2IP Chr5q 0.5111 <0.0001 <0.0001
ERC1 Chrl2p 0.5116 <0.0001 <0.0001
ERCC5 Chrl3q 0.5123 <0.0001 <0.0001
ERCC8 Chr5q 0.3312 <0.0001 <0.0001
ERGIC2 Chrl2p 0.4145 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
ERGIC3 Chr20q 0.4536 <0.0001 <0.0001
ERICH1 Chr8p 0.1985 <0.0001 <0.0001
ERLIN2 Chr8p 0.4963 <0.0001 <0.0001
ESD Chrl3q 0.6589 <0.0001 <0.0001
ESR1 Chr6q 0.1684 <0.0001 1.00E-04
ESRP1 Chr8q 0.583 <0.0001 <0.0001
ESRP2 Chrl6q 0.3633 <0.0001 <0.0001
ETFDH Chr4q 0.4412 <0.0001 <0.0001
ETNK1 Chrl2p 0.4352 <0.0001 <0.0001
ETV6 Chrl2p 0.3377 <0.0001 <0.0001
EVI2A Chrl7q 0.1749 <0.0001 <0.0001
EWSR1 Chr22q 0.2923 <0.0001 <0.0001
EXOSC4 Chr8q 0.6509 <0.0001 <0.0001
EXOSC8 Chrl3q 0.4829 <0.0001 <0.0001
EXOSC9 Chr4q 0.4666 <0.0001 <0.0001
EXT1 Chr8q 0.4741 <0.0001 <0.0001
EXTL3 Chr8p 0.4047 <0.0001 <0.0001
EZH2 Chr7q 0.3574 <0.0001 <0.0001
EZR Chr6q 0.5028 <0.0001 <0.0001
F10 Chrl3q 0.1987 <0.0001 <0.0001
FUR Chrlq 0.2586 <0.0001 <0.0001
F2R Chr5q 0.2392 <0.0001 <0.0001
F2RL1 Chr5q 0.294 <0.0001 <0.0001
FAIM Chr3q 0.3183 <0.0001 <0.0001
FAM115A Chr7q 0.2192 <0.0001 <0.0001
FAM118A Chr22q 0.2153 <0.0001 <0.0001
FAM131A Chr3q 0.5027 <0.0001 <0.0001
FAM13A Chr4q 0.2987 <0.0001 <0.0001
FAM149A Chr4q 0.2415 <0.0001 <0.0001
FAM160B2 Chr8p 0.5373 <0.0001 <0.0001
F AM 164 A Chr8q 0.2961 <0.0001 <0.0001
FAM172A Chr5q 0.5272 <0.0001 <0.0001
FAM184A Chr6q 0.2812 <0.0001 <0.0001
FAM189B Chrlq 0.3715 <0.0001 <0.0001
FAM18B1 Chrl7p 0.3734 <0.0001 <0.0001
FAM192A Chrl6q 0.5083 <0.0001 <0.0001
FAM32A Chrl9p 0.5955 <0.0001 <0.0001
FAM38A Chrl6q 0.186 <0.0001 <0.0001
FAM48A Chrl3q 0.5951 <0.0001 <0.0001
FAM49B Chr8q 0.5404 <0.0001 <0.0001
FAM60A Chrl2p 0.3936 <0.0001 <0.0001
FAM63A Chrlq 0.2222 <0.0001 <0.0001
FAM64A Chrl7p 0.2503 <0.0001 <0.0001
FAM65A Chrl6q 0.4441 <0.0001 <0.0001
FAM82A2 Chrl5q 0.5989 <0.0001 <0.0001
FAM82B Chr8q 0.4813 <0.0001 <0.0001
FAM86B1 Chr8p 0.1762 <0.0001 <0.0001
FAM90A1 Chrl2p 0.4142 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
FAM96B Chrl6q 0.5365 <0.0001 <0.0001
FAN1 Chrl5q 0.5254 <0.0001 <0.0001
FANCA Chrl6q 0.2324 <0.0001 <0.0001
FARP1 Chrl3q 0.5648 <0.0001 <0.0001
FARSA Chrl9p 0.6027 <0.0001 <0.0001
FASTK Chr7q 0.6162 <0.0001 <0.0001
FASTKD5 Chr20p 0.4914 <0.0001 <0.0001
FAT1 Chr4q 0.2951 <0.0001 <0.0001
FBI Chrl9q 0.536 <0.0001 <0.0001
FBLN1 Chr22q 0.186 <0.0001 <0.0001
FBXL12 Chrl9p 0.6686 <0.0001 <0.0001
FBXL14 Chrl2p 0.6397 <0.0001 <0.0001
FBXL4 Chr6q 0.5876 <0.0001 <0.0001
FBXL6 Chr8q 0.5281 <0.0001 <0.0001
FBX031 Chrl6q 0.3533 <0.0001 <0.0001
FBX05 Chr6q 0.4162 <0.0001 <0.0001
FBX07 Chr22q 0.6677 <0.0001 <0.0001
FBXW4P1 Chr22q 0.196 <0.0001 <0.0001
FBXW7 Chr4q 0.3558 <0.0001 <0.0001
FCHOl Chrl9p 0.2918 <0.0001 <0.0001
FDFT1 Chr8p 0.5497 <0.0001 <0.0001
FDPS Chrlq 0.1841 <0.0001 <0.0001
FECH Chrl 8q 0.5676 <0.0001 <0.0001
FGF12 Chr3q 0.1785 <0.0001 <0.0001
FGF9 Chrl3q 0.2505 <0.0001 <0.0001
FGFRIOP Chr6q 0.5684 <0.0001 <0.0001
FHOD1 Chrl6q 0.2478 <0.0001 <0.0001
FIG4 Chr6q 0.6349 <0.0001 <0.0001
FKBP1A Chr20p 0.479 <0.0001 <0.0001
FKBP4 Chrl2p 0.5991 <0.0001 <0.0001
FKBP8 Chrl9p 0.4521 <0.0001 <0.0001
FKBPL Chr6p 0.4958 <0.0001 <0.0001
FLAD1 Chrlq 0.3663 <0.0001 <0.0001
FLCN Chrl7p 0.2018 <0.0001 <0.0001
FLU Chrl7p 0.4327 <0.0001 <0.0001
FLOT2 Chrl7q 0.4146 <0.0001 <0.0001
FNDC3A Chrl3q 0.5577 <0.0001 <0.0001
FNDC3B Chr3q 0.3804 <0.0001 <0.0001
FNTA Chr8p 0.4589 <0.0001 <0.0001
FOXJ2 Chrl2p 0.3441 <0.0001 <0.0001
FOXM1 Chrl2p 0.3956 <0.0001 <0.0001
FOXOl Chrl3q 0.4523 <0.0001 <0.0001
FOX03 Chr6q 0.5382 <0.0001 <0.0001
FOXRED2 Chr22q 0.2107 <0.0001 <0.0001
FRG1 Chr4q 0.541 <0.0001 <0.0001
FRK Chr6q 0.4088 <0.0001 <0.0001
FRY Chrl3q 0.2748 <0.0001 <0.0001
FXR1 Chr3q 0.532 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
FXR2 Chrl7p 0.4538 <0.0001 <0.0001
FXYD1 Chrl9q 0.2057 <0.0001 <0.0001
FXYD3 Chrl9q 0.1992 <0.0001 <0.0001
FXYD7 Chrl9q 0.1935 <0.0001 <0.0001
FYN Chr6q 0.2763 <0.0001 <0.0001
FZD3 Chr8p 0.4385 <0.0001 <0.0001
FZD6 Chr8q 0.3918 <0.0001 <0.0001
G3BP2 Chr4q 0.5735 <0.0001 <0.0001
GAB1 Chr4q 0.2851 <0.0001 <0.0001
GAB2 Chrl lq 0.3766 <0.0001 <0.0001
GABARAP Chrl7p 0.5133 <0.0001 <0.0001
GABARAPL1 Chrl2p 0.2994 <0.0001 <0.0001
GABARAPL2 Chrl6q 0.5358 <0.0001 <0.0001
GADD45GIP1 Chrl9p 0.5352 <0.0001 <0.0001
GALNS Chrl6q 0.377 <0.0001 <0.0001
G ALNT 11 Chr7q 0.5617 <0.0001 <0.0001
GALNT7 Chr4q 0.4663 <0.0001 <0.0001
GALNT8 Chrl2p 0.1739 <0.0001 <0.0001
GAPDH Chrl2p 0.4911 <0.0001 <0.0001
GAR1 Chr4q 0.4956 <0.0001 <0.0001
GAS2L1 Chr22q 0.4669 <0.0001 <0.0001
GAS6 Chrl3q 0.3141 <0.0001 <0.0001
GAS7 Chrl7p 0.2428 <0.0001 <0.0001
GAS8 Chrl6q 0.3694 <0.0001 <0.0001
GATAD2A Chrl9p 0.5069 <0.0001 <0.0001
GBAP1 Chrlq 0.3227 <0.0001 <0.0001
GCAT Chr22q 0.3079 <0.0001 <0.0001
GCDH Chrl9p 0.5693 <0.0001 <0.0001
GCHFR Chrl5q 0.1847 <0.0001 <0.0001
GCNT2 Chr6p 0.1722 <0.0001 <0.0001
GDF15 Chrl9p 0.182 <0.0001 <0.0001
GFOD2 Chrl6q 0.4517 <0.0001 <0.0001
GGA1 Chr22q 0.4676 <0.0001 <0.0001
GGH Chr8q 0.2593 <0.0001 <0.0001
GGNBP2 Chrl7q 0.443 <0.0001 <0.0001
GGT1 Chr22q 0.2477 <0.0001 <0.0001
GGT5 Chr22q 0.2767 <0.0001 <0.0001
GINS2 Chrl6q 0.2021 <0.0001 <0.0001
GINS3 Chrl6q 0.2853 <0.0001 <0.0001
GINS4 Chr8p 0.24 <0.0001 <0.0001
GIPCl Chrl9p 0.5091 <0.0001 <0.0001
GJA1 Chr6q 0.294 <0.0001 <0.0001
GLG1 Chrl6q 0.5272 <0.0001 <0.0001
GLRB Chr4q 0.271 <0.0001 <0.0001
GLRX Chr5q 0.166 <0.0001 1.00E-04
GLT25D1 Chrl9p 0.4504 <0.0001 <0.0001
GMEB2 Chr20q 0.4077 <0.0001 <0.0001
GMIP Chrl9p 0.3425 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
GMPR Chr6p 0.2417 <0.0001 <0.0001
GMPS Chr3q 0.4704 <0.0001 <0.0001
GNAS Chr20q 0.4733 <0.0001 <0.0001
GNAZ Chr22q 0.2359 <0.0001 <0.0001
GNRH1 Chr8p 0.2413 <0.0001 <0.0001
GOLGA 7 Chr8p 0.3998 <0.0001 <0.0001
GOLGA8A Chrl5q 0.1975 <0.0001 <0.0001
GOLGA8B Chrl5q 0.2468 <0.0001 <0.0001
GOLIM4 Chr3q 0.2841 <0.0001 <0.0001
GOLPH3L Chrlq 0.383 <0.0001 <0.0001
GOLT1B Chrl2p 0.3816 <0.0001 <0.0001
GON4L Chrlq 0.3635 <0.0001 <0.0001
GOSR1 Chrl7q 0.4657 <0.0001 <0.0001
GOT2 Chrl6q 0.5558 <0.0001 <0.0001
GPAA1 Chr8q 0.6865 <0.0001 <0.0001
GPATCH1 Chrl9q 0.5421 <0.0001 <0.0001
GPC5 Chrl3q 0.1699 <0.0001 <0.0001
GPI Chrl9q 0.4389 <0.0001 <0.0001
GPR126 Chr6q 0.1647 <0.0001 1.00E-04
GPR172A Chr8q 0.6508 <0.0001 <0.0001
GPR19 Chrl2p 0.3479 <0.0001 <0.0001
GPR56 Chrl6q 0.3755 <0.0001 <0.0001
GPS2 Chrl7p 0.5236 <0.0001 <0.0001
GPT Chr8q 0.2303 <0.0001 <0.0001
GRAMD4 Chr22q 0.36 <0.0001 <0.0001
GRB7 Chrl7q 0.3213 <0.0001 <0.0001
GRHL2 Chr8q 0.3554 <0.0001 <0.0001
GRINA Chr8q 0.5955 <0.0001 <0.0001
GSDMB Chrl7q 0.1986 <0.0001 <0.0001
GSDMD Chr8q 0.6047 <0.0001 <0.0001
GSR Chr8p 0.4522 <0.0001 <0.0001
GSS Chr20q 0.258 <0.0001 <0.0001
GSTK1 Chr7q 0.5749 <0.0001 <0.0001
GSTT1 Chr22q 0.7096 <0.0001 <0.0001
GSTT2 Chr22q 0.1658 <0.0001 1.00E-04
GTF2E2 Chr8p 0.6764 <0.0001 <0.0001
GTF2F2 Chrl3q 0.5724 <0.0001 <0.0001
GTF2H5 Chr6q 0.5314 <0.0001 <0.0001
GTF3A Chrl3q 0.5648 <0.0001 <0.0001
GTPBP1 Chr22q 0.3067 <0.0001 <0.0001
GTPBP3 Chrl9p 0.485 <0.0001 <0.0001
GTSE1 Chr22q 0.2797 <0.0001 <0.0001
GUCY1A3 Chr4q 0.2947 <0.0001 <0.0001
GUCY1B2 Chrl3q 0.2298 <0.0001 <0.0001
GUCY1B3 Chr4q 0.3651 <0.0001 <0.0001
GYG1 Chr3q 0.3483 <0.0001 <0.0001
H2AFJ Chrl2p 0.1999 <0.0001 <0.0001
H2AFZ Chr4q 0.3817 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
HADH Chr4q 0.4034 <0.0001 <0.0001
HAUS5 Chrl9q 0.3978 <0.0001 <0.0001
HAX1 Chrlq 0.4164 <0.0001 <0.0001
HBS1L Chr6q 0.6717 <0.0001 <0.0001
HDAC2 Chr6q 0.5867 <0.0001 <0.0001
HDDC2 Chr6q 0.5347 <0.0001 <0.0001
HDGF Chrlq 0.4055 <0.0001 <0.0001
HEBP1 Chrl2p 0.418 <0.0001 <0.0001
HEBP2 Chr6q 0.5081 <0.0001 <0.0001
HECA Chr6q 0.5392 <0.0001 <0.0001
HERC2 Chrl5q 0.5101 <0.0001 <0.0001
HERC3 Chr4q 0.1751 <0.0001 <0.0001
HERC5 Chr4q 0.2442 <0.0001 <0.0001
HERC6 Chr4q 0.2566 <0.0001 <0.0001
HERPUD1 Chrl6q 0.5038 <0.0001 <0.0001
HEXB Chr5q 0.45 <0.0001 <0.0001
HEY2 Chr6q 0.1954 <0.0001 <0.0001
HGSNAT Chr8p 0.3347 <0.0001 <0.0001
HIPK2 Chr7q 0.2964 <0.0001 <0.0001
HIVEP1 Chr6p 0.4124 <0.0001 <0.0001
HIVEP2 Chr6q 0.362 <0.0001 <0.0001
HLTF Chr3q 0.4849 <0.0001 <0.0001
HMBOX1 Chr8p 0.509 <0.0001 <0.0001
HMGB1 Chrl3q 0.5749 <0.0001 <0.0001
HMGB2 Chr4q 0.3572 <0.0001 <0.0001
HMGCR Chr5q 0.3982 <0.0001 <0.0001
HMGXB4 Chr22q 0.5626 <0.0001 <0.0001
HMOX1 Chr22q 0.2729 <0.0001 <0.0001
HNRNPD Chr4q 0.364 <0.0001 <0.0001
HNRNPL Chrl9q 0.3598 <0.0001 <0.0001
HNRPDL Chr4q 0.2078 <0.0001 <0.0001
HOMER1 Chr5q 0.2873 <0.0001 <0.0001
HOMER3 Chrl9p 0.2606 <0.0001 <0.0001
HOOK2 Chrl9p 0.4848 <0.0001 <0.0001
HPN Chrl9q 0.1899 <0.0001 <0.0001
HPS4 Chr22q 0.5675 <0.0001 <0.0001
HPSE Chr4q 0.1794 <0.0001 <0.0001
HRASLS Chr3q 0.401 <0.0001 <0.0001
HRSP12 Chr8q 0.4804 <0.0001 <0.0001
HSBP1 Chrl6q 0.5543 <0.0001 <0.0001
HSD11B2 Chrl6q 0.1841 <0.0001 <0.0001
HSD17B11 Chr4q 0.2413 <0.0001 <0.0001
HSD17B7 Chrlq 0.2058 <0.0001 <0.0001
HSF1 Chr8q 0.7013 <0.0001 <0.0001
HSF2 Chr6q 0.5726 <0.0001 <0.0001
HSPA1L Chr6p 0.1782 <0.0001 <0.0001
HSPA4L Chr4q 0.2203 <0.0001 <0.0001
HSPB6 Chrl9q 0.215 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
HSPH1 Chrl3q 0.4666 <0.0001 <0.0001
ICAM1 Chrl9p 0.1813 <0.0001 <0.0001
ICAM3 Chrl9p 0.4418 <0.0001 <0.0001
ICAM5 Chrl9p 0.1772 <0.0001 <0.0001
IDH3B Chr20p 0.4961 <0.0001 <0.0001
IER2 Chrl9p 0.425 <0.0001 <0.0001
IER3IP1 Chrl 8q 0.5332 <0.0001 <0.0001
IFNGR1 Chr6q 0.3686 <0.0001 <0.0001
IFT20 Chrl7q 0.419 <0.0001 <0.0001
IFT27 Chr22q 0.2794 <0.0001 <0.0001
IFT52 Chr20q 0.5429 <0.0001 <0.0001
IFT88 Chrl3q 0.3929 <0.0001 <0.0001
IGF2BP2 Chr3q 0.2178 <0.0001 <0.0001
IGF2R Chr6q 0.571 <0.0001 <0.0001
IGFBP4 Chrl7q 0.3091 <0.0001 <0.0001
IGLL3P Chr22q 0.1858 <0.0001 <0.0001
IKBKB Chr8p 0.428 <0.0001 <0.0001
IL12A Chr3q 0.2025 <0.0001 <0.0001
III 5 Chr4q 0.3995 <0.0001 <0.0001
ILIRAP Chr3q 0.3068 <0.0001 <0.0001
IL27RA Chrl9p 0.2779 <0.0001 <0.0001
IL2RB Chr22q 0.1933 <0.0001 <0.0001
IL6ST Chr5q 0.4896 <0.0001 <0.0001
ILF2 Chrlq 0.3322 <0.0001 <0.0001
ILF3 Chrl9p 0.457 <0.0001 <0.0001
ILVBL Chrl9p 0.5091 <0.0001 <0.0001
IMPA1 Chr8q 0.4294 <0.0001 <0.0001
IMPAD1 Chr8q 0.394 <0.0001 <0.0001
ING1 Chrl3q 0.6201 <0.0001 <0.0001
ING2 Chr4q 0.4712 <0.0001 <0.0001
ING4 Chrl2p 0.4296 <0.0001 <0.0001
INPP4B Chr4q 0.3856 <0.0001 <0.0001
INPP5J Chr22q 0.262 <0.0001 <0.0001
INSIG1 Chr7q 0.333 <0.0001 <0.0001
INTS12 Chr4q 0.5044 <0.0001 <0.0001
INTS3 Chrlq 0.1979 <0.0001 <0.0001
INTS6 Chrl3q 0.5829 <0.0001 <0.0001
INTS8 Chr8q 0.6066 <0.0001 <0.0001
INTS9 Chr8p 0.6736 <0.0001 <0.0001
IP05 Chrl3q 0.6486 <0.0001 <0.0001
IPOS Chrl2p 0.2435 <0.0001 <0.0001
IPW Chrl5q 0.2072 <0.0001 <0.0001
IQCG Chr3q 0.2155 <0.0001 <0.0001
IQSEC3 Chrl2p 0.2449 <0.0001 <0.0001
IRF2 Chr4q 0.504 <0.0001 <0.0001
IRF5 Chr7q 0.1783 <0.0001 <0.0001
IRS2 Chrl3q 0.4844 <0.0001 <0.0001
ISG20L2 Chrlq 0.46 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
ISYNA1 Chrl9p 0.4197 <0.0001 <0.0001
ITCH Chr20q 0.2973 <0.0001 <0.0001
ITFG2 Chrl2p 0.3804 <0.0001 <0.0001
ITGA2 Chr5q 0.1898 <0.0001 <0.0001
ITGAE Chrl7p 0.3992 <0.0001 <0.0001
ITM2B Chrl3q 0.4627 <0.0001 <0.0001
ITPA Chr20p 0.4528 <0.0001 <0.0001
ITPR2 Chrl2p 0.261 <0.0001 <0.0001
IVD Chrl5q 0.5418 <0.0001 <0.0001
JARID2 Chr6p 0.5044 <0.0001 <0.0001
JHDM1D Chr7q 0.3155 <0.0001 <0.0001
JOSD1 Chr22q 0.493 <0.0001 <0.0001
JRK Chr8q 0.3548 <0.0001 <0.0001
JTB Chrlq 0.3523 <0.0001 <0.0001
JUNB Chrl9p 0.2803 <0.0001 <0.0001
JUND Chrl9p 0.4545 <0.0001 <0.0001
KANK2 Chrl9p 0.414 <0.0001 <0.0001
KARS Chrl6q 0.5892 <0.0001 <0.0001
KATNA1 Chr6q 0.5768 <0.0001 <0.0001
KATNB1 Chrl6q 0.4498 <0.0001 <0.0001
KBTBD11 Chr8p 0.1752 <0.0001 <0.0001
KCNB2 Chr8q 0.1655 <0.0001 1.00E-04
KCNG1 Chr20q 0.3416 <0.0001 <0.0001
KCNH2 Chr7q 0.2067 <0.0001 <0.0001
KCNMB3 Chr3q 0.334 <0.0001 <0.0001
KCNN3 Chrlq 0.1887 <0.0001 <0.0001
KCNS1 Chr20q 0.1931 <0.0001 <0.0001
KCTD12 Chrl3q 0.264 <0.0001 <0.0001
KCTD14 Chrl lq 0.2671 <0.0001 <0.0001
KCTD15 Chrl9q 0.1928 <0.0001 <0.0001
KCTD9 Chr8p 0.5953 <0.0001 <0.0001
KDELC1 Chrl3q 0.4151 <0.0001 <0.0001
KDELR3 Chr22q 0.3215 <0.0001 <0.0001
KDM5A Chrl2p 0.5949 <0.0001 <0.0001
KDM6B Chrl7p 0.3465 <0.0001 <0.0001
KDSR Chrl 8q 0.6781 <0.0001 <0.0001
KEAP1 Chrl9p 0.6473 <0.0001 <0.0001
KHDRBS3 Chr8q 0.2482 <0.0001 <0.0001
KIAA0100 Chrl7q 0.5177 <0.0001 <0.0001
KIAA0146 Chr8q 0.314 <0.0001 <0.0001
KIAA0174 Chrl6q 0.6032 <0.0001 <0.0001
KIAA0182 Chrl6q 0.4242 <0.0001 <0.0001
KIAA0196 Chr8q 0.6256 <0.0001 <0.0001
KIAA0226 Chr3q 0.5622 <0.0001 <0.0001
KIAA0355 Chrl9q 0.4918 <0.0001 <0.0001
KIAA0528 Chrl2p 0.5195 <0.0001 <0.0001
KIAA0564 Chrl3q 0.5885 <0.0001 <0.0001
KIAA0664 Chrl7p 0.299 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
KIAA0753 Chrl7p 0.3524 <0.0001 <0.0001
KIAA0776 Chr6q 0.6389 <0.0001 <0.0001
KIAA0907 Chrlq 0.3407 <0.0001 <0.0001
KIAA0922 Chr4q 0.293 <0.0001 <0.0001
KIAA1109 Chr4q 0.4828 <0.0001 <0.0001
KIAA1467 Chrl2p 0.3422 <0.0001 <0.0001
KIAA1609 Chrl6q 0.4801 <0.0001 <0.0001
KIAA1644 Chr22q 0.1792 <0.0001 <0.0001
KIAA1704 Chrl3q 0.4745 <0.0001 <0.0001
KIF13B Chr8p 0.4579 <0.0001 <0.0001
KIF1C Chrl7p 0.2837 <0.0001 <0.0001
KIF2A Chr5q 0.4117 <0.0001 <0.0001
KIF3B Chr20q 0.3392 <0.0001 <0.0001
KLF1 Chrl9p 0.1729 <0.0001 <0.0001
KLF10 Chr8q 0.3744 <0.0001 <0.0001
KLF12 Chrl3q 0.4141 <0.0001 <0.0001
KLF13 Chrl5q 0.3322 <0.0001 <0.0001
KLF5 Chrl3q 0.4469 <0.0001 <0.0001
KLHDC10 Chr7q 0.3959 <0.0001 <0.0001
KLHDC4 Chrl6q 0.3758 <0.0001 <0.0001
KLHL2 Chr4q 0.3952 <0.0001 <0.0001
KLHL24 Chr3q 0.485 <0.0001 <0.0001
KLHL26 Chrl9p 0.525 <0.0001 <0.0001
KLHL36 Chrl6q 0.3179 <0.0001 <0.0001
KLRAP1 Chrl2p 0.1827 <0.0001 <0.0001
KLKF1 Chrl2p 0.3205 <0.0001 <0.0001
KLRG1 Chrl2p 0.2491 <0.0001 <0.0001
KPNA3 Chrl3q 0.62 <0.0001 <0.0001
KPNA4 Chr3q 0.3352 <0.0001 <0.0001
KPNA5 Chr6q 0.3726 <0.0001 <0.0001
KRAS Chrl2p 0.6034 <0.0001 <0.0001
KRI1 Chrl9p 0.5895 <0.0001 <0.0001
KRT10 Chrl7q 0.3625 <0.0001 <0.0001
L3MBTL1 Chr20q 0.2534 <0.0001 <0.0001
LACTB2 Chr8q 0.3328 <0.0001 <0.0001
LAMA5 Chr20q 0.3184 <0.0001 <0.0001
LAMP1 Chrl3q 0.5399 <0.0001 <0.0001
LAMP3 Chr3q 0.2087 <0.0001 <0.0001
LAPTM4B Chr8q 0.5908 <0.0001 <0.0001
LARGE Chr22q 0.2917 <0.0001 <0.0001
LARP7 Chr4q 0.451 <0.0001 <0.0001
LASP1 Chrl7q 0.4256 <0.0001 <0.0001
LASS2 Chrlq 0.2874 <0.0001 <0.0001
LCMT2 Chrl5q 0.5582 <0.0001 <0.0001
LDHB Chrl2p 0.4754 <0.0001 <0.0001
LDLR Chrl9p 0.2458 <0.0001 <0.0001
LEPROTL1 Chr8p 0.6381 <0.0001 <0.0001
LGALS1 Chr22q 0.3035 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
LHFP Chrl3q 0.2077 <0.0001 <0.0001
LHFPL2 Chr5q 0.2289 <0.0001 <0.0001
LIF Chr22q 0.2516 <0.0001 <0.0001
LIG3 Chrl7q 0.3132 <0.0001 <0.0001
LIG4 Chrl3q 0.2464 <0.0001 <0.0001
LIMK2 Chr22q 0.5815 <0.0001 <0.0001
LIN 37 Chrl9q 0.5696 <0.0001 <0.0001
LIPG Chrl 8q 0.2441 <0.0001 <0.0001
LMAN1 Chrl 8q 0.3529 <0.0001 <0.0001
LMF2 Chr22q 0.4487 <0.0001 <0.0001
LM07 Chrl3q 0.3697 <0.0001 <0.0001
LNPEP Chr5q 0.3639 <0.0001 <0.0001
LOCI 00129361 Chrl2p 0.5527 <0.0001 <0.0001
LOC100134713 Chr7q 0.421 <0.0001 <0.0001
LOCI 00170939 Chr5q 0.2138 <0.0001 <0.0001
LOCI 00289410 Chrl3q 0.2214 <0.0001 <0.0001
LOCI 55060 Chr7q 0.4553 <0.0001 <0.0001
LOC220594 Chrl7p 0.1688 <0.0001 <0.0001
LOC388796 Chr20q 0.2112 <0.0001 <0.0001
LOC440434 Chrl7q 0.2006 <0.0001 <0.0001
LOC729991 Chrl9p 0.3522 <0.0001 <0.0001
LOC91316 Chr22q 0.2165 <0.0001 <0.0001
LPAR2 Chrl9p 0.4331 <0.0001 <0.0001
LPCAT3 Chrl2p 0.5614 <0.0001 <0.0001
LPCAT4 Chrl5q 0.4685 <0.0001 <0.0001
LPHN1 Chrl9p 0.2751 <0.0001 <0.0001
LPP Chr3q 0.4005 <0.0001 <0.0001
LPPR2 Chrl9p 0.2794 <0.0001 <0.0001
LRBA Chr4q 0.5369 <0.0001 <0.0001
LRCH3 Chr3q 0.5211 <0.0001 <0.0001
LRFN3 Chrl9q 0.357 <0.0001 <0.0001
LRP12 Chr8q 0.3029 <0.0001 <0.0001
LRP2BP Chr4q 0.3148 <0.0001 <0.0001
LRP3 Chrl9q 0.2789 <0.0001 <0.0001
LRP5L Chr22q 0.2913 <0.0001 <0.0001
LRP6 Chrl2p 0.5054 <0.0001 <0.0001
LRRC14 Chr8q 0.4561 <0.0001 <0.0001
LRRC23 Chrl2p 0.3769 <0.0001 <0.0001
LRRC6 Chr8q 0.3806 <0.0001 <0.0001
LRRC61 Chr7q 0.3847 <0.0001 <0.0001
LSG1 Chr3q 0.6657 <0.0001 <0.0001
LSM14A Chrl9q 0.5469 <0.0001 <0.0001
LSM14B Chr20q 0.445 <0.0001 <0.0001
LSM2 Chr6p 0.4774 <0.0001 <0.0001
LSM4 Chrl9p 0.4973 <0.0001 <0.0001
LSM6 Chr4q 0.5652 <0.0001 <0.0001
LSR Chrl9q 0.4138 <0.0001 <0.0001
LTBP4 Chrl9q 0.2069 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
LTBR Chrl2p 0.4216 <0.0001 <0.0001
LUC7L2 Chr7q 0.4573 <0.0001 <0.0001
LY6E Chr8q 0.4615 <0.0001 <0.0001
LY6G5C Chr6p 0.1885 <0.0001 <0.0001
LYN Chr8q 0.2316 <0.0001 <0.0001
LYPLA1 Chr8q 0.3653 <0.0001 <0.0001
LYRM2 Chr6q 0.6427 <0.0001 <0.0001
M6PR Chrl2p 0.5859 <0.0001 <0.0001
MAD2L1 Chr4q 0.3642 <0.0001 <0.0001
MAF Chrl6q 0.1694 <0.0001 <0.0001
MAFF Chr22q 0.3535 <0.0001 <0.0001
MAGEF1 Chr3q 0.4946 <0.0001 <0.0001
MAGOHB Chrl2p 0.4889 <0.0001 <0.0001
MAK Chr6p 0.2356 <0.0001 <0.0001
MAK16 Chr8p 0.6691 <0.0001 <0.0001
MALT1 Chrl 8q 0.4562 <0.0001 <0.0001
MAN1A1 Chr6q 0.1789 <0.0001 <0.0001
MAN2B1 Chrl9p 0.3983 <0.0001 <0.0001
MANBA Chr4q 0.3787 <0.0001 <0.0001
MANEA Chr6q 0.5058 <0.0001 <0.0001
MANSC1 Chrl2p 0.3564 <0.0001 <0.0001
MAP1B Chr5q 0.2231 <0.0001 <0.0001
MAP1LC3B Chrl6q 0.6239 <0.0001 <0.0001
MAP1S Chrl9p 0.5157 <0.0001 <0.0001
MAP2K3 Chrl7p 0.2655 <0.0001 <0.0001
MAP2K4 Chrl7p 0.4097 <0.0001 <0.0001
MAP3K1 Chr5q 0.2397 <0.0001 <0.0001
MAP3K13 Chr3q 0.1899 <0.0001 <0.0001
MAP3K4 Chr6q 0.5125 <0.0001 <0.0001
MAP3K5 Chr6q 0.336 <0.0001 <0.0001
MAP3K7 Chr6q 0.5956 <0.0001 <0.0001
MAP4K1 Chrl9q 0.3068 <0.0001 <0.0001
MAP6D1 Chr3q 0.3095 <0.0001 <0.0001
MAP7 Chr6q 0.6255 <0.0001 <0.0001
MAP9 Chr4q 0.4715 <0.0001 <0.0001
MAPK11 Chr22q 0.1779 <0.0001 <0.0001
MAPK7 Chrl7p 0.2955 <0.0001 <0.0001
MAPKBP1 Chrl5q 0.4061 <0.0001 <0.0001
MAPRE1 Chr20q 0.4061 <0.0001 <0.0001
MARCKS Chr6q 0.266 <0.0001 <0.0001
MAST1 Chrl9p 0.2231 <0.0001 <0.0001
MAST3 Chrl9p 0.4565 <0.0001 <0.0001
MAST4 Chr5q 0.2104 <0.0001 <0.0001
MAW 2 Chr8q 0.2897 <0.0001 <0.0001
MAU2 Chrl9p 0.5606 <0.0001 <0.0001
MA YS Chr20p 0.32 <0.0001 <0.0001
MB Chr22q 0.1633 <0.0001 1.00E-04
MBD1 Chrl 8q 0.6503 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
MBD2 Chrl 8q 0.5684 <0.0001 <0.0001
MBNL1 Chr3q 0.3461 <0.0001 <0.0001
MBNL2 Chrl3q 0.5378 <0.0001 <0.0001
MBP Chrl 8q 0.4282 <0.0001 <0.0001
MBTPS1 Chrl6q 0.5079 <0.0001 <0.0001
MC1R Chrl6q 0.1678 <0.0001 <0.0001
MCAT Chr22q 0.3905 <0.0001 <0.0001
MCCC1 Chr3q 0.4982 <0.0001 <0.0001
MCCC2 Chr5q 0.4269 <0.0001 <0.0001
MCF2L Chrl3q 0.2584 <0.0001 <0.0001
MCL1 Chrlq 0.2254 <0.0001 <0.0001
MCM4 Chr8q 0.2814 <0.0001 <0.0001
MCM5 Chr22q 0.3577 <0.0001 <0.0001
MCM9 Chr6q 0.5497 <0.0001 <0.0001
MCPH1 Chr8p 0.3344 <0.0001 <0.0001
MCTP1 Chr5q 0.1679 <0.0001 1.00E-04
MDN1 Chr6q 0.5448 <0.0001 <0.0001
ME2 Chrl 8q 0.4321 <0.0001 <0.0001
MECOM Chr3q 0.286 <0.0001 <0.0001
MED1 Chrl7q 0.3761 <0.0001 <0.0001
MED21 Chrl2p 0.5062 <0.0001 <0.0001
MED23 Chr6q 0.5995 <0.0001 <0.0001
MED24 Chrl7q 0.38 <0.0001 <0.0001
MED4 Chrl3q 0.5222 <0.0001 <0.0001
MED9 Chrl7p 0.2837 <0.0001 <0.0001
MEF2C Chr5q 0.1701 <0.0001 <0.0001
MEF2D Chrlq 0.3098 <0.0001 <0.0001
MEIS2 Chrl5q 0.2329 <0.0001 <0.0001
MEIS3P1 Chrl7p 0.3455 <0.0001 <0.0001
METAP1 Chr4q 0.568 <0.0001 <0.0001
MEX3C Chrl 8q 0.586 <0.0001 <0.0001
MFAP1 Chrl5q 0.5473 <0.0001 <0.0001
MFAP3L Chr4q 0.1926 <0.0001 <0.0001
MFHAS1 Chr8p 0.4546 <0.0001 <0.0001
MFN1 Chr3q 0.5356 <0.0001 <0.0001
MFNG Chr22q 0.2455 <0.0001 <0.0001
MFSD1 Chr3q 0.3033 <0.0001 <0.0001
MGA Chrl5q 0.3607 <0.0001 <0.0001
MGC2889 Chr3q 0.2359 <0.0001 <0.0001
MGST2 Chr4q 0.4789 <0.0001 <0.0001
MICALl Chr6q 0.2987 <0.0001 <0.0001
MICALL1 Chr22q 0.419 <0.0001 <0.0001
MIF Chr22q 0.5178 <0.0001 <0.0001
MINK1 Chrl7p 0.3177 <0.0001 <0.0001
MIPEP Chrl3q 0.5282 <0.0001 <0.0001
MSI 2 Chrl7p 0.4724 <0.0001 <0.0001
MKL1 Chr22q 0.4283 <0.0001 <0.0001
MKLN1 Chr7q 0.3791 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
MKRN1 Chr7q 0.6388 <0.0001 <0.0001
MLF1 Chr3q 0.3595 <0.0001 <0.0001
MLF1IP Chr4q 0.2847 <0.0001 <0.0001
MLF2 Chrl2p 0.6234 <0.0001 <0.0001
MLL4 Chrl9q 0.3779 <0.0001 <0.0001
MLLT4 Chr6q 0.2156 <0.0001 <0.0001
MLYCD Chrl6q 0.477 <0.0001 <0.0001
MMP15 Chrl6q 0.1753 <0.0001 <0.0001
MMP24 Chr20q 0.2293 <0.0001 <0.0001
MN1 Chr22q 0.1927 <0.0001 <0.0001
MNT Chrl7p 0.3635 <0.0001 <0.0001
MNX1 Chr7q 0.2357 <0.0001 <0.0001
MOCS2 Chr5q 0.5717 <0.0001 <0.0001
MOCS3 Chr20q 0.3225 <0.0001 <0.0001
MON1B Chrl6q 0.5206 <0.0001 <0.0001
MORC2 Chr22q 0.2869 <0.0001 <0.0001
MPDU1 Chrl7p 0.3452 <0.0001 <0.0001
MPHOSPH6 Chrl6q 0.5197 <0.0001 <0.0001
MPHOSPH8 Chrl3q 0.5718 <0.0001 <0.0001
MPRIP Chrl7p 0.3257 <0.0001 <0.0001
MPST Chr22q 0.3444 <0.0001 <0.0001
MRAS Chr3q 0.2037 <0.0001 <0.0001
MRP63 Chrl3q 0.4371 <0.0001 <0.0001
MRPL13 Chr8q 0.5403 <0.0001 <0.0001
MRPL15 Chr8q 0.487 <0.0001 <0.0001
MRPL18 Chr6q 0.6017 <0.0001 <0.0001
MRPL24 Chrlq 0.2716 <0.0001 <0.0001
MRPL34 Chrl9p 0.4989 <0.0001 <0.0001
MRPL4 Chrl9p 0.5953 <0.0001 <0.0001
MRPL9 Chrlq 0.4282 <0.0001 <0.0001
MRPS12 Chrl9q 0.5446 <0.0001 <0.0001
MRPS18C Chr4q 0.2901 <0.0001 <0.0001
MRPS22 Chr3q 0.502 <0.0001 <0.0001
MRPS27 Chr5q 0.458 <0.0001 <0.0001
MRPS28 Chr8q 0.4486 <0.0001 <0.0001
MRPS31 Chrl3q 0.683 <0.0001 <0.0001
MRPS33 Chr7q 0.4989 <0.0001 <0.0001
MRPS35 Chrl2p 0.4822 <0.0001 <0.0001
MSH3 Chr5q 0.5298 <0.0001 <0.0001
MSL1 Chrl7q 0.3725 <0.0001 <0.0001
MSL2 Chr3q 0.3431 <0.0001 <0.0001
MSRA Chr8p 0.43 <0.0001 <0.0001
MT1E Chrl6q 0.1644 <0.0001 1.00E-04
MT1X Chrl6q 0.1923 <0.0001 <0.0001
MT2A Chrl6q 0.1952 <0.0001 <0.0001
MTDH Chr8q 0.6719 <0.0001 <0.0001
MTERFD1 Chr8q 0.5966 <0.0001 <0.0001
MTFR1 Chr8q 0.3825 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
MTHFD2L Chr4q 0.4244 <0.0001 <0.0001
MTHFSD Chrl6q 0.4354 <0.0001 <0.0001
MTMR3 Chr22q 0.5415 <0.0001 <0.0001
MTMR6 Chrl3q 0.4877 <0.0001 <0.0001
MTMR9 Chr8p 0.6372 <0.0001 <0.0001
MTRF1 Chrl3q 0.5222 <0.0001 <0.0001
MTSS1 Chr8q 0.1983 <0.0001 <0.0001
MTUS1 Chr8p 0.4115 <0.0001 <0.0001
MTX1 Chrlq 0.4113 <0.0001 <0.0001
MVD Chrl6q 0.1699 <0.0001 <0.0001
MYB Chr6q 0.2285 <0.0001 <0.0001
MYBBP1A Chrl7p 0.3502 <0.0001 <0.0001
MYBL1 Chr8q 0.2934 <0.0001 <0.0001
MYBL2 Chr20q 0.3004 <0.0001 <0.0001
MYC Chr8q 0.2347 <0.0001 <0.0001
MYCBP2 Chrl3q 0.5478 <0.0001 <0.0001
MYH10 Chrl7p 0.2754 <0.0001 <0.0001
MYH9 Chr22q 0.4428 <0.0001 <0.0001
MYLIP Chr6p 0.3906 <0.0001 <0.0001
MYNN Chr3q 0.5063 <0.0001 <0.0001 mow Chrl7q 0.2864 <0.0001 <0.0001
MY07A Chrl lq 0.2286 <0.0001 <0.0001
MY09B Chrl9p 0.5137 <0.0001 <0.0001
MYST3 Chr8p 0.4292 <0.0001 <0.0001
N4BP2L1 Chrl3q 0.3118 <0.0001 <0.0001
N4BP2L2 Chrl3q 0.5826 <0.0001 <0.0001
NAA15 Chr4q 0.5664 <0.0001 <0.0001
NAA16 Chrl3q 0.4969 <0.0001 <0.0001
NAAA Chr4q 0.3155 <0.0001 <0.0001
NAE1 Chrl6q 0.486 <0.0001 <0.0001
NAGA Chr22q 0.5233 <0.0001 <0.0001
NAIP Chr5q 0.2677 <0.0001 <0.0001
NARS Chrl 8q 0.6997 <0.0001 <0.0001
NARS2 Chrl lq 0.5305 <0.0001 <0.0001
NAT1 Chr8p 0.4568 <0.0001 <0.0001
NBEA Chrl3q 0.218 <0.0001 <0.0001
NBN Chr8q 0.5347 <0.0001 <0.0001
NCALD Chr8q 0.3617 <0.0001 <0.0001
NCAPD2 Chrl2p 0.4966 <0.0001 <0.0001
NCAPG2 Chr7q 0.4213 <0.0001 <0.0001
NCAPH2 Chr22q 0.303 <0.0001 <0.0001
NCBP2 Chr3q 0.6609 <0.0001 <0.0001
NCF4 Chr22q 0.2155 <0.0001 <0.0001
NCK1 Chr3q 0.3178 <0.0001 <0.0001
NCOA2 Chr8q 0.4563 <0.0001 <0.0001
NCOA3 Chr20q 0.3563 <0.0001 <0.0001
NCOA6 Chr20q 0.4313 <0.0001 <0.0001
NCOR1 Chrl7p 0.4443 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
NCSTN Chrlq 0.4239 <0.0001 <0.0001
NDEL1 Chrl7p 0.5236 <0.0001 <0.0001
NDRG1 Chr8q 0.423 <0.0001 <0.0001
NDRG3 Chr20q 0.5229 <0.0001 <0.0001
NDUFA6 Chr22q 0.4273 <0.0001 <0.0001
NDUFA9 Chrl2p 0.6021 <0.0001 <0.0001
NDUFAF1 Chrl5q 0.5392 <0.0001 <0.0001
NDUFAF4 Chr6q 0.5275 <0.0001 <0.0001
NDUFB2 Chr7q 0.5247 <0.0001 <0.0001
NDUFB5 Chr3q 0.4277 <0.0001 <0.0001
NDUFB7 Chrl9p 0.4955 <0.0001 <0.0001
NDUFC1 Chr4q 0.5791 <0.0001 <0.0001
NDUFC2 Chrl lq 0.5126 <0.0001 <0.0001
NDUFS2 Chrlq 0.4123 <0.0001 <0.0001
NDUFS4 Chr5q 0.5438 <0.0001 <0.0001
NECAB3 Chr20q 0.3341 <0.0001 <0.0001
NECAP1 Chrl2p 0.5573 <0.0001 <0.0001
NEDD4L Chrl 8q 0.5003 <0.0001 <0.0001
NEDD9 Chr6p 0.1977 <0.0001 <0.0001
NEIL3 Chr4q 0.2607 <0.0001 <0.0001
NEK1 Chr4q 0.5092 <0.0001 <0.0001
NEK3 Chrl3q 0.4717 <0.0001 <0.0001
NEW Chr6p 0.2601 <0.0001 <0.0001
NF1 Chrl7q 0.4698 <0.0001 <0.0001
NF2 Chr22q 0.5446 <0.0001 <0.0001
NFAT5 Chrl6q 0.3348 <0.0001 <0.0001
NFATC1 Chrl 8q 0.2294 <0.0001 <0.0001
NFATC3 Chrl6q 0.4407 <0.0001 <0.0001
NFIX Chrl9p 0.2706 <0.0001 <0.0001
NFKB1 Chr4q 0.4023 <0.0001 <0.0001
NFKBIB Chrl9q 0.4687 <0.0001 <0.0001
NFKBIL1 Chr6p 0.4655 <0.0001 <0.0001
NFS1 Chr20q 0.4368 <0.0001 <0.0001
NHP2L1 Chr22q 0.378 <0.0001 <0.0001
NINJ2 Chrl2p 0.1642 <0.0001 1.00E-04
NIP7 Chrl6q 0.4864 <0.0001 <0.0001
NIPA2 Chrl5q 0.5702 <0.0001 <0.0001
NIPAL2 Chr8q 0.2797 <0.0001 <0.0001
NIPSNAP1 Chr22q 0.5072 <0.0001 <0.0001
NIT1 Chrlq 0.4125 <0.0001 <0.0001
NKX3-1 Chr8p 0.1982 <0.0001 <0.0001
NLE1 Chrl7q 0.2939 <0.0001 <0.0001
NLK Chrl7q 0.4133 <0.0001 <0.0001
NMD3 Chr3q 0.2533 <0.0001 <0.0001
NOL12 Chr22q 0.1828 <0.0001 <0.0001
NOL3 Chrl6q 0.3555 <0.0001 <0.0001
NOL7 Chr6p 0.5984 <0.0001 <0.0001
NOP 10 Chrl5q 0.4931 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
NOP2 Chrl2p 0.5794 <0.0001 <0.0001
NOP56 Chr20p 0.4519 <0.0001 <0.0001
NOTCH3 Chrl9p 0.3908 <0.0001 <0.0001
NOTCH4 Chr6p 0.2214 <0.0001 <0.0001
NOV Chr8q 0.2 <0.0001 <0.0001
NPTXR Chr22q 0.2704 <0.0001 <0.0001
NQOl Chrl6q 0.1917 <0.0001 <0.0001
NR2F6 Chrl9p 0.5169 <0.0001 <0.0001
NR3C2 Chr4q 0.2504 <0.0001 <0.0001
NRF1 Chr7q 0.2064 <0.0001 <0.0001
NRSN2 Chr20p 0.3873 <0.0001 <0.0001
NSA2 Chr5q 0.5155 <0.0001 <0.0001
NSFL1C Chr20p 0.6112 <0.0001 <0.0001
NSMAF Chr8q 0.3423 <0.0001 <0.0001
NTF3 Chrl2p 0.2922 <0.0001 <0.0001
NUDT15 Chrl3q 0.5109 <0.0001 <0.0001
NUDT18 Chr8p 0.3274 <0.0001 <0.0001
NUDT21 Chrl6q 0.4768 <0.0001 <0.0001
NUDT6 Chr4q 0.3954 <0.0001 <0.0001
NUDT9 Chr4q 0.5363 <0.0001 <0.0001
NUFIP1 Chrl3q 0.6523 <0.0001 <0.0001
NUP205 Chr7q 0.5086 <0.0001 <0.0001
NUP43 Chr6q 0.6423 <0.0001 <0.0001
NUP50 Chr22q 0.4373 <0.0001 <0.0001
NUP54 Chr4q 0.5797 <0.0001 <0.0001
NUP88 Chrl7p 0.471 <0.0001 <0.0001
NUP93 Chrl6q 0.4523 <0.0001 <0.0001
NUPL1 Chrl3q 0.4098 <0.0001 <0.0001
NUSAP1 Chrl5q 0.1756 <0.0001 <0.0001
NUTF2 Chrl6q 0.3861 <0.0001 <0.0001
OCEL1 Chrl9p 0.4679 <0.0001 <0.0001
OCLN Chr5q 0.2971 <0.0001 <0.0001
OGFOD1 Chrl6q 0.4935 <0.0001 <0.0001
OGFR Chr20q 0.2052 <0.0001 <0.0001
OIP5 Chrl5q 0.2293 <0.0001 <0.0001
OPA1 Chr3q 0.5467 <0.0001 <0.0001
OPLAH Chr8q 0.4851 <0.0001 <0.0001
OR7C2 Chrl9p 0.172 <0.0001 <0.0001
OSBPL2 Chr20q 0.5344 <0.0001 <0.0001
OSGIN2 Chr8q 0.4125 <0.0001 <0.0001
OSTM1 Chr6q 0.3232 <0.0001 <0.0001
OTUD4 Chr4q 0.5934 <0.0001 <0.0001
OXR1 Chr8q 0.5207 <0.0001 <0.0001
PABPC1 Chr8q 0.584 <0.0001 <0.0001
PACSIN2 Chr22q 0.4948 <0.0001 <0.0001
PAF1 Chrl9q 0.6163 <0.0001 <0.0001
PAFAH1B1 Chrl7p 0.5739 <0.0001 <0.0001
PARI Chrl lq 0.4015 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
PAK1IP1 Chr6p 0.613 <0.0001 <0.0001
PAK2 Chr3q 0.6687 <0.0001 <0.0001
PAK4 Chrl9q 0.5868 <0.0001 <0.0001
PAK6 Chrl5q 0.2328 <0.0001 <0.0001
PALLD Chr4q 0.2971 <0.0001 <0.0001
PANK2 Chr20p 0.4834 <0.0001 <0.0001
PAPSS1 Chr4q 0.4092 <0.0001 <0.0001
PAQR3 Chr4q 0.3434 <0.0001 <0.0001
PAQR6 Chrlq 0.1887 <0.0001 <0.0001
PAR5 Chrl5q 0.1884 <0.0001 <0.0001
PARD6A Chrl6q 0.2481 <0.0001 <0.0001
PARI Chr3q 0.6202 <0.0001 <0.0001
PARP11 Chrl2p 0.3047 <0.0001 <0.0001
PARP12 Chr7q 0.3003 <0.0001 <0.0001
PARP4 Chrl3q 0.5499 <0.0001 <0.0001
PARTI Chr5q 0.2126 <0.0001 <0.0001
PARVB Chr22q 0.228 <0.0001 <0.0001
PATZ1 Chr22q 0.4561 <0.0001 <0.0001
PAXIP1 Chr7q 0.5303 <0.0001 <0.0001
PBK Chr8p 0.3669 <0.0001 <0.0001
PBX2 Chr6p 0.4954 <0.0001 <0.0001
PBXIP1 Chrlq 0.3255 <0.0001 <0.0001
PCCA Chrl3q 0.5204 <0.0001 <0.0001
PCCB Chr3q 0.3071 <0.0001 <0.0001
PCDH9 Chrl3q 0.2601 <0.0001 <0.0001
PCGF2 Chrl7q 0.2286 <0.0001 <0.0001
PCID2 Chrl3q 0.5809 <0.0001 <0.0001
PCIF1 Chr20q 0.3466 <0.0001 <0.0001
PCM1 Chr8p 0.6643 <0.0001 <0.0001
PCMT1 Chr6q 0.5975 <0.0001 <0.0001
PCMTD2 Chr20q 0.5092 <0.0001 <0.0001
PCOTH Chrl3q 0.2276 <0.0001 <0.0001
PCYT1A Chr3q 0.5117 <0.0001 <0.0001
PDCD10 Chr3q 0.5108 <0.0001 <0.0001
PDCD2 Chr6q 0.5869 <0.0001 <0.0001
PDCD5 Chrl9q 0.5066 <0.0001 <0.0001
PDE3A Chrl2p 0.215 <0.0001 <0.0001
PDE4A Chrl9p 0.2731 <0.0001 <0.0001
PDE4D Chr5q 0.2416 <0.0001 <0.0001
PDGFB Chr22q 0.2367 <0.0001 <0.0001
PDGFC Chr4q 0.3737 <0.0001 <0.0001
PDGFRL Chr8p 0.2992 <0.0001 <0.0001
PDIA3 Chrl5q 0.4991 <0.0001 <0.0001
PDIA4 Chr7q 0.4305 <0.0001 <0.0001
PDLIM2 Chr8p 0.2972 <0.0001 <0.0001
PDLIM3 Chr4q 0.263 <0.0001 <0.0001
PDLIM5 Chr4q 0.3398 <0.0001 <0.0001
PDP1 Chr8q 0.482 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
PDPR Chrl6q 0.1871 <0.0001 <0.0001
PDS5B Chrl3q 0.5414 <0.0001 <0.0001
PDSS2 Chr6q 0.5887 <0.0001 <0.0001
PEA15 Chrlq 0.1847 <0.0001 <0.0001
PELO Chr5q 0.4872 <0.0001 <0.0001
PELP1 Chrl7p 0.4458 <0.0001 <0.0001
PEMT Chrl7p 0.2927 <0.0001 <0.0001
PEPD Chrl9q 0.4458 <0.0001 <0.0001
PERI Chrl7p 0.221 <0.0001 <0.0001
PERP Chr6q 0.3544 <0.0001 <0.0001
PES1 Chr22q 0.5859 <0.0001 <0.0001
PET112L Chr4q 0.5586 <0.0001 <0.0001
PEX11B Chrlq 0.2717 <0.0001 <0.0001
PEX12 Chrl7q 0.2733 <0.0001 <0.0001
PEX19 Chrlq 0.3862 <0.0001 <0.0001
PEX2 Chr8q 0.3574 <0.0001 <0.0001
PEX3 Chr6q 0.6144 <0.0001 <0.0001
PEX5 Chrl2p 0.6405 <0.0001 <0.0001
PEX7 Chr6q 0.5015 <0.0001 <0.0001
PFAS Chrl7p 0.3757 <0.0001 <0.0001
PFDN2 Chrlq 0.44 <0.0001 <0.0001
PFDN4 Chr20q 0.3499 <0.0001 <0.0001
PFN1 Chrl7p 0.4471 <0.0001 <0.0001
PGAP3 Chrl7q 0.3799 <0.0001 <0.0001
PGCP Chr8q 0.3561 <0.0001 <0.0001
PGLS Chrl9p 0.5396 <0.0001 <0.0001
PGPEP1 Chrl9p 0.1986 <0.0001 <0.0001
PGRMC2 Chr4q 0.5956 <0.0001 <0.0001
PHACTR2 Chr6q 0.4431 <0.0001 <0.0001
PHB2 Chrl2p 0.5572 <0.0001 <0.0001
PHC1 Chrl2p 0.4728 <0.0001 <0.0001
PHC3 Chr3q 0.2055 <0.0001 <0.0001
PHF10 Chr6q 0.5571 <0.0001 <0.0001
PHF11 Chrl3q 0.3687 <0.0001 <0.0001
PHF17 Chr4q 0.3956 <0.0001 <0.0001
PHF20 Chr20q 0.3294 <0.0001 <0.0001
PHF20L1 Chr8q 0.4719 <0.0001 <0.0001
PHLPP1 Chrl 8q 0.4403 <0.0001 <0.0001
PHLPP2 Chrl6q 0.2697 <0.0001 <0.0001
PI3 Chr20q 0.1689 <0.0001 <0.0001
PI4KB Chrlq 0.4086 <0.0001 <0.0001
PIAS2 Chrl 8q 0.4887 <0.0001 <0.0001
PIAS3 Chrlq 0.2558 <0.0001 <0.0001
PIBF1 Chrl3q 0.6359 <0.0001 <0.0001
PICKl Chr22q 0.1756 <0.0001 <0.0001
PIGN Chrl 8q 0.5365 <0.0001 <0.0001
PIGT Chr20q 0.5742 <0.0001 <0.0001
PIGZ Chr3q 0.2805 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
PIK3C3 Chrl 8q 0.6232 <0.0001 <0.0001
PIK3CA Chr3q 0.4862 <0.0001 <0.0001
PIK3CB Chr3q 0.3858 <0.0001 <0.0001
PIK3IP1 Chr22q 0.436 <0.0001 <0.0001
PIK3R1 Chr5q 0.1709 <0.0001 <0.0001
PIK3R2 Chrl9p 0.3736 <0.0001 <0.0001
PIN1 Chrl9p 0.6191 <0.0001 <0.0001
PIP4K2B Chrl7q 0.368 <0.0001 <0.0001
PIP5K1A Chrlq 0.3314 <0.0001 <0.0001
PISD Chr22q 0.4917 <0.0001 <0.0001
PITPNB Chr22q 0.6746 <0.0001 <0.0001
PKD2 Chr4q 0.3412 <0.0001 <0.0001
PKIG Chr20q 0.4412 <0.0001 <0.0001
PKN1 Chrl9p 0.4088 <0.0001 <0.0001
PKP2 Chrl2p 0.3477 <0.0001 <0.0001
PLA2G12A Chr4q 0.3509 <0.0001 <0.0001
PLA2G15 Chrl6q 0.369 <0.0001 <0.0001
PL AC 8 Chr4q 0.192 <0.0001 <0.0001
PLAG1 Chr8q 0.2759 <0.0001 <0.0001
PLAGL1 Chr6q 0.2608 <0.0001 <0.0001
PLAGL2 Chr20q 0.2792 <0.0001 <0.0001
PLBD1 Chrl2p 0.2177 <0.0001 <0.0001
PLCG1 Chr20q 0.4128 <0.0001 <0.0001
PLCG2 Chrl6q 0.3445 <0.0001 <0.0001
PLD1 Chr3q 0.2967 <0.0001 <0.0001
PLD2 Chrl7p 0.2316 <0.0001 <0.0001
PLD3 Chrl9q 0.3334 <0.0001 <0.0001
PLEC Chr8q 0.4556 <0.0001 <0.0001
PLEKHA5 Chrl2p 0.4615 <0.0001 <0.0001
PLEKHF1 Chrl9q 0.3238 <0.0001 <0.0001
PLEKHF2 Chr8q 0.5203 <0.0001 <0.0001
PLEKHG6 Chrl2p 0.3319 <0.0001 <0.0001
PLK2 Chr5q 0.2727 <0.0001 <0.0001
PLK4 Chr4q 0.2914 <0.0001 <0.0001
PLLP Chrl6q 0.21 <0.0001 <0.0001
PLOD2 Chr3q 0.1902 <0.0001 <0.0001
PLS1 Chr3q 0.1751 <0.0001 <0.0001
PLSCR1 Chr3q 0.2072 <0.0001 <0.0001
PLSCR2 Chr3q 0.1853 <0.0001 <0.0001
PLSCR3 Chrl7p 0.4591 <0.0001 <0.0001
PLTP Chr20q 0.273 <0.0001 <0.0001
PLXNB2 Chr22q 0.4677 <0.0001 <0.0001
PMAIP1 Chrl 8q 0.3016 <0.0001 <0.0001
PMF1 Chrlq 0.3549 <0.0001 <0.0001
PMM1 Chr22q 0.2863 <0.0001 <0.0001
PMP22 Chrl7p 0.213 <0.0001 <0.0001
PMVK Chrlq 0.2621 <0.0001 <0.0001
PNMA2 Chr8p 0.2172 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
PNPLA3 Chr22q 0.2027 <0.0001 <0.0001
PODXL Chr7q 0.2659 <0.0001 <0.0001
POFUT1 Chr20q 0.3039 <0.0001 <0.0001
POGZ Chrlq 0.2692 <0.0001 <0.0001
POLB Chr8p 0.4381 <0.0001 <0.0001
POLDIP2 Chrl7q 0.4253 <0.0001 <0.0001
POLDIP3 Chr22q 0.4131 <0.0001 <0.0001
POLI Chrl 8q 0.491 <0.0001 <0.0001
POLR1D Chrl3q 0.455 <0.0001 <0.0001
POLR2A Chrl7p 0.181 <0.0001 <0.0001
POLR2C Chrl6q 0.5767 <0.0001 <0.0001
POLR2F Chr22q 0.4554 <0.0001 <0.0001
POLR2H Chr3q 0.6037 <0.0001 <0.0001
POLR2I Chrl9q 0.5519 <0.0001 <0.0001
POLR2K Chr8q 0.6035 <0.0001 <0.0001
POLR3C Chrlq 0.4397 <0.0001 <0.0001
POLR3D Chr8p 0.5014 <0.0001 <0.0001
POLR3G Chr5q 0.2161 <0.0001 <0.0001
POMP Chrl3q 0.6219 <0.0001 <0.0001
POP1 Chr8q 0.2701 <0.0001 <0.0001
POP4 Chrl9q 0.5135 <0.0001 <0.0001
PPA2 Chr4q 0.447 <0.0001 <0.0001
PPAN Chrl9p 0.5684 <0.0001 <0.0001
PPAP2A Chr5q 0.2339 <0.0001 <0.0001
PPARA Chr22q 0.2413 <0.0001 <0.0001
PPDPF Chr20q 0.2461 <0.0001 <0.0001
PPFIBP1 Chrl2p 0.297 <0.0001 <0.0001
PPID Chr4q 0.5028 <0.0001 <0.0001
PPIP5K1 Chrl5q 0.391 <0.0001 <0.0001
PPOX Chrlq 0.3716 <0.0001 <0.0001
PPP1R2 Chr3q 0.6213 <0.0001 <0.0001
PPP1R3D Chr20q 0.3767 <0.0001 <0.0001
PPP2CB Chr8p 0.5779 <0.0001 <0.0001
PPP2R2A Chr8p 0.6874 <0.0001 <0.0001
PPP2R3A Chr3q 0.3955 <0.0001 <0.0001
PPP3CA Chr4q 0.4033 <0.0001 <0.0001
PPP3CC Chr8p 0.4056 <0.0001 <0.0001
PPP6R2 Chr22q 0.3953 <0.0001 <0.0001
PPPDE2 Chr22q 0.5186 <0.0001 <0.0001
PPT2 Chr6p 0.3421 <0.0001 <0.0001
PPWD1 Chr5q 0.52 <0.0001 <0.0001
PQLC1 Chrl 8q 0.5789 <0.0001 <0.0001
PRCC Chrlq 0.4194 <0.0001 <0.0001
PRDX2 Chrl9p 0.5604 <0.0001 <0.0001
PREP Chr6q 0.6296 <0.0001 <0.0001
PRKAB2 Chrlq 0.2975 <0.0001 <0.0001
PRKACA Chrl9p 0.5489 <0.0001 <0.0001
PRKAG2 Chr7q 0.4727 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
PRKCI Chr3q 0.3183 <0.0001 <0.0001
PRKCSH Chrl9p 0.5832 <0.0001 <0.0001
PRKDC Chr8q 0.2949 <0.0001 <0.0001
PRMT7 Chrl6q 0.3688 <0.0001 <0.0001
PRNP Chr20p 0.1804 <0.0001 <0.0001
ProSAPiPl Chr20p 0.3245 <0.0001 <0.0001
PROSC Chr8p 0.5566 <0.0001 <0.0001
PRPF3 Chrlq 0.2934 <0.0001 <0.0001
PRPF6 Chr20q 0.3761 <0.0001 <0.0001
PRPSAP2 Chrl7p 0.3221 <0.0001 <0.0001
PRR14L Chr22q 0.306 <0.0001 <0.0001
PRR4 Chrl2p 0.3574 <0.0001 <0.0001
PRR5 Chr22q 0.3416 <0.0001 <0.0001
PRRC2A Chr6p 0.3463 <0.0001 <0.0001
PRSS1 Chr7q 0.2403 <0.0001 <0.0001
PRSS2 Chr7q 0.2671 <0.0001 <0.0001
PRUNE Chrlq 0.4089 <0.0001 <0.0001
PSCA Chr8q 0.2344 <0.0001 <0.0001
PSD3 Chr8p 0.3984 <0.0001 <0.0001
PSENEN Chrl9q 0.4657 <0.0001 <0.0001
PSKH1 Chrl6q 0.3659 <0.0001 <0.0001
PSMA7 Chr20q 0.4618 <0.0001 <0.0001
PSMB1 Chr6q 0.6927 <0.0001 <0.0001
PSMB10 Chrl6q 0.2965 <0.0001 <0.0001
PSMB3 Chrl7q 0.4113 <0.0001 <0.0001
PSMB4 Chrlq 0.422 <0.0001 <0.0001
PSMB6 Chrl7p 0.5424 <0.0001 <0.0001
PSMC4 Chrl9q 0.5732 <0.0001 <0.0001
PSMD11 Chrl7q 0.3926 <0.0001 <0.0001
PSMD2 Chr3q 0.6598 <0.0001 <0.0001
PSMD3 Chrl7q 0.4035 <0.0001 <0.0001
PSMD4 Chrlq 0.453 <0.0001 <0.0001
PSMD7 Chrl6q 0.5401 <0.0001 <0.0001
PSMD8 Chrl9q 0.5579 <0.0001 <0.0001
PSMF1 Chr20p 0.6065 <0.0001 <0.0001
PSPC1 Chrl3q 0.5517 <0.0001 <0.0001
PSTPIP2 Chrl 8q 0.2677 <0.0001 <0.0001
PTCD2 Chr5q 0.3798 <0.0001 <0.0001
PTDSS1 Chr8q 0.5292 <0.0001 <0.0001
PTGER1 Chrl9p 0.1889 <0.0001 <0.0001
PTK2 Chr8q 0.5862 <0.0001 <0.0001
PTK2B Chr8p 0.2723 <0.0001 <0.0001
PTMS Chrl2p 0.4117 <0.0001 <0.0001
PTP4A3 Chr8q 0.4293 <0.0001 <0.0001
PTPN1 Chr20q 0.3784 <0.0001 <0.0001
PTPN6 Chrl2p 0.3178 <0.0001 <0.0001
PTPRA Chr20p 0.5384 <0.0001 <0.0001
PTPRK Chr6q 0.4337 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
PTX3 Chr3q 0.192 <0.0001 <0.0001
PUF60 Chr8q 0.6827 <0.0001 <0.0001
PVT1 Chr8q 0.1707 <0.0001 <0.0001
PYCRL Chr8q 0.6345 <0.0001 <0.0001
PYROXD1 Chrl2p 0.4272 <0.0001 <0.0001
QKI Chr6q 0.4397 <0.0001 <0.0001
QRSL1 Chr6q 0.517 <0.0001 <0.0001
QTRT1 Chrl9p 0.5272 <0.0001 <0.0001
R3HCC1 Chr8p 0.648 <0.0001 <0.0001
RABllFIPl Chr8p 0.425 <0.0001 <0.0001
RAB13 Chrlq 0.2663 <0.0001 <0.0001
RAB20 Chrl3q 0.4296 <0.0001 <0.0001
RAB22A Chr20q 0.5608 <0.0001 <0.0001
RAB2A Chr8q 0.5461 <0.0001 <0.0001
RAB32 Chr6q 0.315 <0.0001 <0.0001
RAB33B Chr4q 0.4031 <0.0001 <0.0001
RAB36 Chr22q 0.2992 <0.0001 <0.0001
RAB3A Chrl9p 0.2698 <0.0001 <0.0001
RAB3D Chrl9p 0.1771 <0.0001 <0.0001
RAB8A Chrl9p 0.484 <0.0001 <0.0001
RABEPl Chrl7p 0.3126 <0.0001 <0.0001
RAC2 Chr22q 0.2385 <0.0001 <0.0001
RAD 17 Chr5q 0.4909 <0.0001 <0.0001
RAD21 Chr8q 0.6355 <0.0001 <0.0001
RAD23A Chrl9p 0.6252 <0.0001 <0.0001
RAD51 Chrl5q 0.2075 <0.0001 <0.0001
RAD51AP1 Chrl2p 0.4472 <0.0001 <0.0001
RAD51L3 Chrl7q 0.287 <0.0001 <0.0001
RAD52 Chrl2p 0.4306 <0.0001 <0.0001
RAD54B Chr8q 0.2613 <0.0001 <0.0001
RAEl Chr20q 0.5473 <0.0001 <0.0001
RALGAPB Chr20q 0.5567 <0.0001 <0.0001
RALY Chr20q 0.3873 <0.0001 <0.0001
RANBPIO Chrl6q 0.4811 <0.0001 <0.0001
RANBP9 Chr6p 0.4725 <0.0001 <0.0001
RANGAPl Chr22q 0.3139 <0.0001 <0.0001
RANGRF Chrl7p 0.4173 <0.0001 <0.0001
RAP1GAP2 Chrl7p 0.2793 <0.0001 <0.0001
RAP 1 CDS 1 Chr4q 0.3906 <0.0001 <0.0001
RAP2A Chrl3q 0.5808 <0.0001 <0.0001
RAP2B Chr3q 0.3138 <0.0001 <0.0001
RAPGEF2 Chr4q 0.449 <0.0001 <0.0001
RARA Chrl7q 0.205 <0.0001 <0.0001
RARRESl Chr3q 0.18 <0.0001 <0.0001
RASAl Chr5q 0.4912 <0.0001 <0.0001
RASA2 Chr3q 0.2207 <0.0001 <0.0001
RASGRP1 Chrl5q 0.3082 <0.0001 <0.0001
RBI Chrl3q 0.4121 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
KB1CC1 Chr8q 0.491 <0.0001 <0.0001
KBCK1 Chr20p 0.4608 <0.0001 <0.0001
RBFA Chrl 8q 0.4752 <0.0001 <0.0001
KBFOX2 Chr22q 0.3369 <0.0001 <0.0001
RBLl Chr20q 0.2381 <0.0001 <0.0001
KBM12 Chr20q 0.2859 <0.0001 <0.0001
KBM12B Chr8q 0.3514 <0.0001 <0.0001
RBM26 Chrl3q 0.6122 <0.0001 <0.0001
KBM38 Chr20q 0.3392 <0.0001 <0.0001
KBM39 Chr20q 0.3352 <0.0001 <0.0001
KBM42 Chrl9q 0.5622 <0.0001 <0.0001
KBM8A Chrlq 0.2456 <0.0001 <0.0001
RBPMS Chr8p 0.3678 <0.0001 <0.0001
RBXl Chr22q 0.3919 <0.0001 <0.0001
RCBTB1 Chrl3q 0.4438 <0.0001 <0.0001
RCBTB2 Chrl3q 0.428 <0.0001 <0.0001
RCHY1 Chr4q 0.4641 <0.0001 <0.0001
RDBP Chr6p 0.5771 <0.0001 <0.0001
RECQL Chrl2p 0.5072 <0.0001 <0.0001
RECQL4 Chr8q 0.4156 <0.0001 <0.0001
REEP4 Chr8p 0.4368 <0.0001 <0.0001
REPIN1 Chr7q 0.5943 <0.0001 <0.0001
REPS1 Chr6q 0.3229 <0.0001 <0.0001
REV3L Chr6q 0.4972 <0.0001 <0.0001
RFC3 Chrl3q 0.4125 <0.0001 <0.0001
RFC4 Chr3q 0.5576 <0.0001 <0.0001
RFWD3 Chrl6q 0.3707 <0.0001 <0.0001
RFX5 Chrlq 0.1891 <0.0001 <0.0001
RFXANK Chrl9p 0.4644 <0.0001 <0.0001
RFXAP Chrl3q 0.1905 <0.0001 <0.0001
RGNEF Chr5q 0.2476 <0.0001 <0.0001
RGS19 Chr20q 0.2891 <0.0001 <0.0001
RHBDD3 Chr22q 0.3797 <0.0001 <0.0001
RHEB Chr7q 0.5809 <0.0001 <0.0001
RHOBTB2 Chr8p 0.4091 <0.0001 <0.0001
RHOBTB3 Chr5q 0.1812 <0.0001 <0.0001
RHOT1 Chrl7q 0.5077 <0.0001 <0.0001
RIOK2 Chr5q 0.5894 <0.0001 <0.0001
RIPK2 Chr8q 0.4828 <0.0001 <0.0001
RIT1 Chrlq 0.2473 <0.0001 <0.0001
RMNDl Chr6q 0.4773 <0.0001 <0.0001
RNASEH2A Chrl9p 0.531 <0.0001 <0.0001
RNASEH2B Chrl3q 0.4045 <0.0001 <0.0001
RNASET2 Chr6q 0.3358 <0.0001 <0.0001
RNF114 Chr20q 0.4057 <0.0001 <0.0001
RNF115 Chrlq 0.4053 <0.0001 <0.0001
RNF122 Chr8p 0.2803 <0.0001 <0.0001
RNF13 Chr3q 0.2854 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
RNF139 Chr8q 0.6463 <0.0001 <0.0001
RNF146 Chr6q 0.4386 <0.0001 <0.0001
RNF167 Chrl7p 0.342 <0.0001 <0.0001
RNF170 Chr8p 0.3713 <0.0001 <0.0001
RNF19A Chr8q 0.4788 <0.0001 <0.0001
RNF219 Chrl3q 0.6383 <0.0001 <0.0001
RNF24 Chr20p 0.3461 <0.0001 <0.0001
RNF32 Chr7q 0.1839 <0.0001 <0.0001
RNF5 Chr6p 0.4786 <0.0001 <0.0001
RNF6 Chrl3q 0.5814 <0.0001 <0.0001
RNF7 Chr3q 0.4496 <0.0001 <0.0001
RPAIN Chrl7p 0.3027 <0.0001 <0.0001
RPAP1 Chrl5q 0.4597 <0.0001 <0.0001
RPL13 Chrl6q 0.4828 <0.0001 <0.0001
RPL13P5 Chrl2p 0.3327 <0.0001 <0.0001
RPL17 Chrl 8q 0.5407 <0.0001 <0.0001
RPL19 Chrl7q 0.4444 <0.0001 <0.0001
RPL21 Chrl3q 0.5377 <0.0001 <0.0001
RPL23 Chrl7q 0.2893 <0.0001 <0.0001
RPL23A Chrl7q 0.3906 <0.0001 <0.0001
RPL26 Chrl7p 0.3744 <0.0001 <0.0001
RPL3 Chr22q 0.3196 <0.0001 <0.0001
RPL30 Chr8q 0.6326 <0.0001 <0.0001
RPL34 Chr4q 0.4588 <0.0001 <0.0001
RPL35A Chr3q 0.2784 <0.0001 <0.0001
RPL39L Chr3q 0.5212 <0.0001 <0.0001
RPL7 Chr8q 0.4097 <0.0001 <0.0001
RPL8 Chr8q 0.6422 <0.0001 <0.0001
RPN2 Chr20q 0.5579 <0.0001 <0.0001
RPKD2 Chrlq 0.3094 <0.0001 <0.0001
RPS12 Chr6q 0.2583 <0.0001 <0.0001
RPS16 Chrl9q 0.543 <0.0001 <0.0001
RPS20 Chr8q 0.4247 <0.0001 <0.0001
RPS21 Chr20q 0.2093 <0.0001 <0.0001
RPS23 Chr5q 0.4948 <0.0001 <0.0001
RPS27 Chrlq 0.274 <0.0001 <0.0001
RPS3A Chr4q 0.3823 <0.0001 <0.0001
RPS6KA2 Chr6q 0.3177 <0.0001 <0.0001
RPUSD2 Chrl5q 0.4659 <0.0001 <0.0001
KRAGD Chr6q 0.2328 <0.0001 <0.0001
RRNAD1 Chrlq 0.2282 <0.0001 <0.0001
RRP7A Chr22q 0.418 <0.0001 <0.0001
RRS1 Chr8q 0.4558 <0.0001 <0.0001
RSF1 Chrl lq 0.4383 <0.0001 <0.0001
RSRC1 Chr3q 0.4851 <0.0001 <0.0001
RTF1 Chrl5q 0.577 <0.0001 <0.0001
RUSC1 Chrlq 0.3775 <0.0001 <0.0001
RWDD1 Chr6q 0.5977 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
RYK Chr3q 0.2999 <0.0001 <0.0001
RYR1 Chrl9q 0.3503 <0.0001 <0.0001
SACS Chrl3q 0.4176 <0.0001 <0.0001
SAMM50 Chr22q 0.3696 <0.0001 <0.0001
SAP18 Chrl3q 0.6132 <0.0001 <0.0001
SAP30 Chr4q 0.3867 <0.0001 <0.0001
SARS2 Chrl9q 0.479 <0.0001 <0.0001
SASH1 Chr6q 0.4877 <0.0001 <0.0001
SBF1 Chr22q 0.3577 <0.0001 <0.0001
SC4MOL Chr4q 0.505 <0.0001 <0.0001
SCAF8 Chr6q 0.5308 <0.0001 <0.0001
SCAMPI Chr5q 0.4996 <0.0001 <0.0001
SCAMP3 Chrlq 0.4209 <0.0001 <0.0001
SCAND1 Chr20q 0.3348 <0.0001 <0.0001
SCARA3 Chr8p 0.3152 <0.0001 <0.0001
SCARB2 Chr4q 0.4387 <0.0001 <0.0001
SCEL Chrl3q 0.2592 <0.0001 <0.0001
SCHIP1 Chr3q 0.1982 <0.0001 <0.0001
SCNM1 Chrlq 0.4216 <0.0001 <0.0001
SCNN1A Chrl2p 0.3397 <0.0001 <0.0001
SC02 Chr22q 0.4486 <0.0001 <0.0001
SCRIB Chr8q 0.5093 <0.0001 <0.0001
SDAD1 Chr4q 0.4856 <0.0001 <0.0001
SDCBP Chr8q 0.3303 <0.0001 <0.0001
SDF2 Chrl7q 0.4009 <0.0001 <0.0001
SDHAF1 Chrl9q 0.5516 <0.0001 <0.0001
SDHC Chrlq 0.3728 <0.0001 <0.0001
SEC14L2 Chr22q 0.2714 <0.0001 <0.0001
SEC22B Chrlq 0.2603 <0.0001 <0.0001
SEC24B Chr4q 0.6527 <0.0001 <0.0001
SEC24D Chr4q 0.3888 <0.0001 <0.0001
SEC31A Chr4q 0.4701 <0.0001 <0.0001
SEC62 Chr3q 0.5459 <0.0001 <0.0001
SEC63 Chr6q 0.602 <0.0001 <0.0001
SELENBP1 Chrlq 0.1639 <0.0001 1.00E-04
SELT Chr3q 0.2675 <0.0001 <0.0001
SENP2 Chr3q 0.3501 <0.0001 <0.0001
SENP3 Chrl7p 0.5339 <0.0001 <0.0001
SENP5 Chr3q 0.6995 <0.0001 <0.0001
SERF2 Chrl5q 0.5255 <0.0001 <0.0001
SERHL2 Chr22q 0.1918 <0.0001 <0.0001
SERINC1 Chr6q 0.5068 <0.0001 <0.0001
SERINC3 Chr20q 0.3845 <0.0001 <0.0001
SERINC5 Chr5q 0.3101 <0.0001 <0.0001
SERP1 Chr3q 0.4251 <0.0001 <0.0001
SERPINB7 Chrl 8q 0.1789 <0.0001 <0.0001
SERPINB8 Chrl 8q 0.3425 <0.0001 <0.0001
SERPINU Chr3q 0.237 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
SERTAD3 Chrl9q 0.3632 <0.0001 <0.0001
SESN1 Chr6q 0.3684 <0.0001 <0.0001
SETBP1 Chrl 8q 0.2786 <0.0001 <0.0001
SETD6 Chrl6q 0.3705 <0.0001 <0.0001
SETDB1 Chrlq 0.4283 <0.0001 <0.0001
SF3A1 Chr22q 0.5057 <0.0001 <0.0001
SF3B3 Chrl6q 0.4744 <0.0001 <0.0001
SF3B4 Chrlq 0.3794 <0.0001 <0.0001
SF3B5 Chr6q 0.5703 <0.0001 <0.0001
SFI1 Chr22q 0.2366 <0.0001 <0.0001
SFRS18 Chr6q 0.4672 <0.0001 <0.0001
SGCG Chrl3q 0.1822 <0.0001 <0.0001
SGK1 Chr6q 0.2347 <0.0001 <0.0001
SGSM2 Chrl7p 0.3649 <0.0001 <0.0001
SGSM3 Chr22q 0.3757 <0.0001 <0.0001
SH2D2A Chrlq 0.2049 <0.0001 <0.0001
SH2D4A Chr8p 0.4151 <0.0001 <0.0001
SHARPIN Chr8q 0.6747 <0.0001 <0.0001
SHC1 Chrlq 0.3089 <0.0001 <0.0001
SHPK Chrl7p 0.2919 <0.0001 <0.0001
SIAH2 Chr3q 0.3963 <0.0001 <0.0001
SIN3B Chrl9p 0.5201 <0.0001 <0.0001
SIPA1L3 Chrl9q 0.4616 <0.0001 <0.0001
SIRT2 Chrl9q 0.4577 <0.0001 <0.0001
SIRT5 Chr6p 0.4706 <0.0001 <0.0001
SKA1 Chrl 8q 0.2406 <0.0001 <0.0001
SKIL Chr3q 0.2695 <0.0001 <0.0001
SKIV2L Chr6p 0.4902 <0.0001 <0.0001
SKIV2L2 Chr5q 0.5952 <0.0001 <0.0001
SLC16A10 Chr6q 0.2886 <0.0001 <0.0001
SLC20A2 Chr8p 0.2887 <0.0001 <0.0001
SLC23A2 Chr20p 0.3019 <0.0001 <0.0001
SLC25A11 Chrl7p 0.4561 <0.0001 <0.0001
SLC25A15 Chrl3q 0.4455 <0.0001 <0.0001
SLC25A17 Chr22q 0.4656 <0.0001 <0.0001
SLC25A32 Chr8q 0.6547 <0.0001 <0.0001
SLC25A36 Chr3q 0.4725 <0.0001 <0.0001
SLC25A37 Chr8p 0.4503 <0.0001 <0.0001
SLC25A4 Chr4q 0.4397 <0.0001 <0.0001
SLC25A44 Chrlq 0.4557 <0.0001 <0.0001
SLC27A3 Chrlq 0.224 <0.0001 <0.0001
SLC2A10 Chr20q 0.3114 <0.0001 <0.0001
SLC2A11 Chr22q 0.2735 <0.0001 <0.0001
SLC2A4RG Chr20q 0.3451 <0.0001 <0.0001
SLC30A5 Chr5q 0.5077 <0.0001 <0.0001
SLC33A1 Chr3q 0.4596 <0.0001 <0.0001
SLC35C2 Chr20q 0.3718 <0.0001 <0.0001
SLC35E1 Chrl9p 0.4198 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
SLC38A 7 Chrl6q 0.4306 <0.0001 <0.0001
SLC39A1 Chrlq 0.261 <0.0001 <0.0001
SLC39A14 Chr8p 0.4207 <0.0001 <0.0001
SLC39A4 Chr8q 0.5691 <0.0001 <0.0001
SLC39A8 Chr4q 0.1953 <0.0001 <0.0001
SLC46A3 Chrl3q 0.3656 <0.0001 <0.0001
SLC4A2 Chr7q 0.4475 <0.0001 <0.0001
SLC50A1 Chrlq 0.2467 <0.0001 <0.0001
SLC5A5 Chrl9p 0.2004 <0.0001 <0.0001
SLC6A12 Chrl2p 0.2397 <0.0001 <0.0001
SLC6A13 Chrl2p 0.1739 <0.0001 <0.0001
SLC7A1 Chrl3q 0.5129 <0.0001 <0.0001
SLC7A11 Chr4q 0.3082 <0.0001 <0.0001
SLC7A5 Chrl6q 0.2818 <0.0001 <0.0001
SLC7A6 Chrl6q 0.3674 <0.0001 <0.0001
SLC7A9 Chrl9q 0.3615 <0.0001 <0.0001
SLC9A8 Chr20q 0.2062 <0.0001 <0.0001
SLC01A2 Chrl2p 0.3173 <0.0001 <0.0001
SLFN12 Chrl7q 0.1658 <0.0001 1.00E-04
SLM02 Chr20q 0.4337 <0.0001 <0.0001
SLPI Chr20q 0.1677 <0.0001 <0.0001
SMAD1 Chr4q 0.5348 <0.0001 <0.0001
SMAD2 Chrl 8q 0.6769 <0.0001 <0.0001
SMAD4 Chrl 8q 0.5534 <0.0001 <0.0001
SMAD7 Chrl 8q 0.3308 <0.0001 <0.0001
SMARCA4 Chrl9p 0.5559 <0.0001 <0.0001
SMARCA5 Chr4q 0.6295 <0.0001 <0.0001
SMARCB1 Chr22q 0.51 <0.0001 <0.0001
SMARCD3 Chr7q 0.1731 <0.0001 <0.0001
SMARCE1 Chrl7q 0.5252 <0.0001 <0.0001
SMC4 Chr3q 0.4608 <0.0001 <0.0001
SMCR7L Chr22q 0.5027 <0.0001 <0.0001
SMG5 Chrlq 0.3243 <0.0001 <0.0001
SMG6 Chrl7p 0.197 <0.0001 <0.0001
SMO Chr7q 0.2386 <0.0001 <0.0001
SMPD2 Chr6q 0.3585 <0.0001 <0.0001
SMPDL3A Chr6q 0.1687 <0.0001 <0.0001
SMTN Chr22q 0.3341 <0.0001 <0.0001
SNAP23 Chrl5q 0.4726 <0.0001 <0.0001
SNCA Chr4q 0.1689 <0.0001 <0.0001
SNORA21 Chrl7q 0.2278 <0.0001 <0.0001
SNPH Chr20p 0.1754 <0.0001 <0.0001
SNRPB Chr20p 0.4415 <0.0001 <0.0001
SNRPD3 Chr22q 0.6616 <0.0001 <0.0001
SNTA1 Chr20q 0.2126 <0.0001 <0.0001
SNTB1 Chr8q 0.344 <0.0001 <0.0001
SNTB2 Chrl6q 0.4131 <0.0001 <0.0001
SNX16 Chr8q 0.4068 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
SNX27 Chrlq 0.3688 <0.0001 <0.0001
SNX3 Chr6q 0.5593 <0.0001 <0.0001
SOCS6 Chrl 8q 0.4631 <0.0001 <0.0001
SOD2 Chr6q 0.2216 <0.0001 <0.0001
SORBS3 Chr8p 0.3661 <0.0001 <0.0001
SORD Chrl5q 0.4457 <0.0001 <0.0001
SOX12 Chr20p 0.443 <0.0001 <0.0001
SPAG1 Chr8q 0.3432 <0.0001 <0.0001
SPAG5 Chrl7q 0.2657 <0.0001 <0.0001
SPAG7 Chrl7p 0.4111 <0.0001 <0.0001
SPATA2 Chr20q 0.5022 <0.0001 <0.0001
SPATA2L Chrl6q 0.4331 <0.0001 <0.0001
SPATA5L1 Chrl5q 0.5685 <0.0001 <0.0001
SPCS3 Chr4q 0.4887 <0.0001 <0.0001
SPECC1L Chr22q 0.5335 <0.0001 <0.0001
SPG 11 Chrl5q 0.6094 <0.0001 <0.0001
SPG20 Chrl3q 0.3605 <0.0001 <0.0001
SPG7 Chrl6q 0.5101 <0.0001 <0.0001
SPINT1 Chrl5q 0.5413 <0.0001 <0.0001
SPINT2 Chrl9q 0.5441 <0.0001 <0.0001
SPRY1 Chr4q 0.2088 <0.0001 <0.0001
SPRY 2 Chrl3q 0.2585 <0.0001 <0.0001
SQLE Chr8q 0.5045 <0.0001 <0.0001
SQRDL Chrl5q 0.2797 <0.0001 <0.0001
SRC Chr20q 0.3333 <0.0001 <0.0001
SREBF1 Chrl7p 0.1733 <0.0001 <0.0001
SREBF2 Chr22q 0.4597 <0.0001 <0.0001
SREK1 Chr5q 0.4719 <0.0001 <0.0001
SREK1IP1 Chr5q 0.3893 <0.0001 <0.0001
SRP14 Chrl5q 0.5167 <0.0001 <0.0001
SRPRB Chr3q 0.2837 <0.0001 <0.0001
SRR Chrl7p 0.237 <0.0001 <0.0001
SRRD Chr22q 0.5683 <0.0001 <0.0001
SRSF6 Chr20q 0.2344 <0.0001 <0.0001
SS18L1 Chr20q 0.4892 <0.0001 <0.0001
SSBP1 Chr7q 0.5541 <0.0001 <0.0001
SSBP2 Chr5q 0.3386 <0.0001 <0.0001
SSPN Chrl2p 0.2931 <0.0001 <0.0001
SSR2 Chrlq 0.3827 <0.0001 <0.0001
SSR3 Chr3q 0.2957 <0.0001 <0.0001
ST13 Chr22q 0.4269 <0.0001 <0.0001
ST3GAL1 Chr8q 0.2989 <0.0001 <0.0001
ST3GAL2 Chrl6q 0.2278 <0.0001 <0.0001
ST6GAL1 Chr3q 0.2896 <0.0001 <0.0001
STAG1 Chr3q 0.3391 <0.0001 <0.0001
STARD13 Chrl3q 0.2874 <0.0001 <0.0001
STARD3 Chrl7q 0.293 <0.0001 <0.0001
ST AVI Chr20q 0.5549 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
STAU2 Chr8q 0.3636 <0.0001 <0.0001
STBD1 Chr4q 0.3611 <0.0001 <0.0001
STC1 Chr8p 0.2001 <0.0001 <0.0001
STK19 Chr6p 0.3834 <0.0001 <0.0001
STK24 Chrl3q 0.6656 <0.0001 <0.0001
STK3 Chr8q 0.6555 <0.0001 <0.0001
STK38L Chrl2p 0.4266 <0.0001 <0.0001
STK4 Chr20q 0.3925 <0.0001 <0.0001
STRAP Chrl2p 0.6159 <0.0001 <0.0001
STX10 Chrl9p 0.57 <0.0001 <0.0001
STX16 Chr20q 0.3686 <0.0001 <0.0001
STX7 Chr6q 0.5655 <0.0001 <0.0001
STX8 Chrl7p 0.413 <0.0001 <0.0001
SUCLA2 Chrl3q 0.5857 <0.0001 <0.0001
SUGP1 Chrl9p 0.5438 <0.0001 <0.0001
SUGP2 Chrl9p 0.3807 <0.0001 <0.0001
SUN2 Chr22q 0.4059 <0.0001 <0.0001
SUPT5H Chrl9q 0.5707 <0.0001 <0.0001
SUPT6H Chrl7q 0.4849 <0.0001 <0.0001
SUZ12 Chrl7q 0.4699 <0.0001 <0.0001
SYBU Chr8q 0.3181 <0.0001 <0.0001
SYCP2 Chr20q 0.1842 <0.0001 <0.0001
SYDE1 Chrl9p 0.2761 <0.0001 <0.0001
SYNE1 Chr6q 0.1649 <0.0001 1.00E-04
SYNGR1 Chr22q 0.2984 <0.0001 <0.0001
SYNJ2 Chr6q 0.3259 <0.0001 <0.0001
SYNRG Chrl7q 0.4966 <0.0001 <0.0001
SYT11 Chrlq 0.2827 <0.0001 <0.0001
TAB1 Chr22q 0.2654 <0.0001 <0.0001
TAB2 Chr6q 0.5887 <0.0001 <0.0001
TADA2A Chrl7q 0.2745 <0.0001 <0.0001
TAF1C Chrl6q 0.3625 <0.0001 <0.0001
TAF2 Chr8q 0.6289 <0.0001 <0.0001
TAF4 Chr20q 0.4811 <0.0001 <0.0001
TAF9 Chr5q 0.5125 <0.0001 <0.0001
TAGLN2 Chrlq 0.1832 <0.0001 <0.0001
TAPBPL Chrl2p 0.1723 <0.0001 <0.0001
TARS2 Chrlq 0.3789 <0.0001 <0.0001
TAS2R14 Chrl2p 0.1847 <0.0001 <0.0001
TAX1BP3 Chrl7p 0.4722 <0.0001 <0.0001
TBC1D22A Chr22q 0.5641 <0.0001 <0.0001
TBC1D4 Chrl3q 0.2713 <0.0001 <0.0001
TBC1D9 Chr4q 0.5069 <0.0001 <0.0001
TBCA Chr5q 0.54 <0.0001 <0.0001
TBCB Chrl9q 0.5864 <0.0001 <0.0001
TBCCD1 Chr3q 0.5179 <0.0001 <0.0001
TBL1XR1 Chr3q 0.3401 <0.0001 <0.0001
TBP Chr6q 0.5954 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
TBPL1 Chr6q 0.5711 <0.0001 <0.0001
TCEA1 Chr8q 0.4624 <0.0001 <0.0001
TCEA2 Chr20q 0.3342 <0.0001 <0.0001
TCEB1 Chr8q 0.5089 <0.0001 <0.0001
TCF20 Chr22q 0.3651 <0.0001 <0.0001
TCF25 Chrl6q 0.5792 <0.0001 <0.0001
TCF4 Chrl 8q 0.1753 <0.0001 <0.0001
TCFL5 Chr20q 0.3502 <0.0001 <0.0001
TCN2 Chr22q 0.396 <0.0001 <0.0001
TCP1 Chr6q 0.6722 <0.0001 <0.0001
TD02 Chr4q 0.2535 <0.0001 <0.0001
TDKD12 Chrl9q 0.2319 <0.0001 <0.0001
TDRD3 Chrl3q 0.6046 <0.0001 <0.0001
TDRKH Chrlq 0.2803 <0.0001 <0.0001
TEAD4 Chrl2p 0.4707 <0.0001 <0.0001
TECR Chrl9p 0.5819 <0.0001 <0.0001
TERF1 Chr8q 0.5711 <0.0001 <0.0001
TERF2 Chrl6q 0.4386 <0.0001 <0.0001
TERF2IP Chrl6q 0.5911 <0.0001 <0.0001
TFB1M Chr6q 0.495 <0.0001 <0.0001
TFDP1 Chrl3q 0.5316 <0.0001 <0.0001
TFDP2 Chr3q 0.4275 <0.0001 <0.0001
TFIP11 Chr22q 0.6042 <0.0001 <0.0001
TFRC Chr3q 0.3511 <0.0001 <0.0001
TGDS Chrl3q 0.6193 <0.0001 <0.0001
TGIF2 Chr20q 0.389 <0.0001 <0.0001
TGS1 Chr8q 0.4724 <0.0001 <0.0001 mil Chr20q 0.4961 <0.0001 <0.0001
THAPl Chr8p 0.2837 <0.0001 <0.0001
THAP11 Chrl6q 0.4764 <0.0001 <0.0001
THAP9 Chr4q 0.2191 <0.0001 <0.0001
THBS1 Chrl5q 0.1816 <0.0001 <0.0001
THBS3 Chrlq 0.2483 <0.0001 <0.0001
THOC5 Chr22q 0.5266 <0.0001 <0.0001
THRA Chrl7q 0.1955 <0.0001 <0.0001
TIAM2 Chr6q 0.2276 <0.0001 <0.0001
TIMM50 Chrl9q 0.3635 <0.0001 <0.0001
TIMP3 Chr22q 0.1931 <0.0001 <0.0001
TIPARP Chr3q 0.2814 <0.0001 <0.0001
TJP1 Chrl5q 0.3839 <0.0001 <0.0001
TK2 Chrl6q 0.3971 <0.0001 <0.0001
TLR2 Chr4q 0.2371 <0.0001 <0.0001
TLR3 Chr4q 0.3835 <0.0001 <0.0001
TM4SF1 Chr3q 0.1944 <0.0001 <0.0001
TM7SF3 Chrl2p 0.4011 <0.0001 <0.0001
TM7SF4 Chr8q 0.1678 <0.0001 1.00E-04
TM9SF2 Chrl3q 0.5657 <0.0001 <0.0001
TM9SF4 Chr20q 0.3308 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
TMC03 Chrl3q 0.4782 <0.0001 <0.0001
TMED1 Chrl9p 0.5378 <0.0001 <0.0001
TMEM11 Chrl7p 0.37 <0.0001 <0.0001
TMEM144 Chr4q 0.2082 <0.0001 <0.0001
TMEM147 Chrl9q 0.5776 <0.0001 <0.0001
TMEM149 Chrl9q 0.2408 <0.0001 <0.0001
TMEM14B Chr6p 0.4981 <0.0001 <0.0001
TMEM161A Chrl9p 0.5463 <0.0001 <0.0001
TMEM184B Chr22q 0.492 <0.0001 <0.0001
TMEM184C Chr4q 0.5373 <0.0001 <0.0001
TMEM208 Chrl6q 0.5175 <0.0001 <0.0001
TMEM209 Chr7q 0.4157 <0.0001 <0.0001
TMEM231 Chrl6q 0.3354 <0.0001 <0.0001
TMEM62 Chrl5q 0.3595 <0.0001 <0.0001
TMEM66 Chr8p 0.5704 <0.0001 <0.0001
TMEM70 Chr8q 0.4634 <0.0001 <0.0001
TMEM87A Chrl5q 0.5831 <0.0001 <0.0001
TMEM93 Chrl7p 0.518 <0.0001 <0.0001
TMEM97 Chrl7q 0.2023 <0.0001 <0.0001
TNFAIP1 Chrl7q 0.5425 <0.0001 <0.0001
TNFRSF10B Chr8p 0.5735 <0.0001 <0.0001
TNFRSF11B Chr8q 0.319 <0.0001 <0.0001
TNFRSF1A Chrl2p 0.3109 <0.0001 <0.0001
TNFSF10 Chr3q 0.24 <0.0001 <0.0001
TNFSF12 Chrl7p 0.233 <0.0001 <0.0001
TNFSF13 Chrl7p 0.2252 <0.0001 <0.0001
TNK1 Chrl7p 0.2838 <0.0001 <0.0001
TNK2 Chr3q 0.3202 <0.0001 <0.0001
TNKS Chr8p 0.6283 <0.0001 <0.0001
TNPOl Chr5q 0.4776 <0.0001 <0.0001
TNP02 Chrl9p 0.5516 <0.0001 <0.0001
TNP03 Chr7q 0.5213 <0.0001 <0.0001
TNRC6B Chr22q 0.4574 <0.0001 <0.0001
TOB2 Chr22q 0.3377 <0.0001 <0.0001
TOM1 Chr22q 0.4228 <0.0001 <0.0001
TOMM22 Chr22q 0.3727 <0.0001 <0.0001
TOMM34 Chr20q 0.4463 <0.0001 <0.0001
TOPI Chr20q 0.3582 <0.0001 <0.0001
TOP2A Chrl7q 0.2327 <0.0001 <0.0001
TOP3A Chrl7p 0.1664 <0.0001 1.00E-04
TOPBP1 Chr3q 0.4965 <0.0001 <0.0001
TOX Chr8q 0.1697 <0.0001 <0.0001
TP53 Chrl7p 0.1719 <0.0001 <0.0001
TP53BP1 Chrl5q 0.4204 <0.0001 <0.0001
TPD52 Chr8q 0.5477 <0.0001 <0.0001
TPD52L1 Chr6q 0.4086 <0.0001 <0.0001
TPD52L2 Chr20q 0.4955 <0.0001 <0.0001
TPI1 Chrl2p 0.5523 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
TPM4 Chrl9p 0.3406 <0.0001 <0.0001
TPP2 Chrl3q 0.6531 <0.0001 <0.0001
TPPP3 Chrl6q 0.1695 <0.0001 <0.0001
TPST2 Chr22q 0.4795 <0.0001 <0.0001
TPT1 Chrl3q 0.5543 <0.0001 <0.0001
TPX2 Chr20q 0.3211 <0.0001 <0.0001
TRA2B Chr3q 0.4576 <0.0001 <0.0001
TRABD Chr22q 0.3889 <0.0001 <0.0001
TRADD Chrl6q 0.4826 <0.0001 <0.0001
TRAF3IP2 Chr6q 0.3462 <0.0001 <0.0001
TRAF4 Chrl7q 0.2908 <0.0001 <0.0001
TRAM1 Chr8q 0.4474 <0.0001 <0.0001
TRAPPC2L Chrl6q 0.4988 <0.0001 <0.0001
TRAPPC9 Chr8q 0.533 <0.0001 <0.0001
TRIB1 Chr8q 0.3517 <0.0001 <0.0001
TRIB3 Chr20p 0.2215 <0.0001 <0.0001
TRIM13 Chrl3q 0.4754 <0.0001 <0.0001
TRIM 16 Chrl7p 0.2626 <0.0001 <0.0001
TRIM2 Chr4q 0.2882 <0.0001 <0.0001
TRIM23 Chr5q 0.5109 <0.0001 <0.0001
TRIM24 Chr7q 0.4512 <0.0001 <0.0001
TRIOBP Chr22q 0.4292 <0.0001 <0.0001
TRMT1 Chrl9p 0.5993 <0.0001 <0.0001
TRMT11 Chr6q 0.4649 <0.0001 <0.0001
TRMT12 Chr8q 0.6408 <0.0001 <0.0001
TRMU Chr22q 0.2429 <0.0001 <0.0001
TRPC4AP Chr20q 0.4372 <0.0001 <0.0001
TRPSl Chr8q 0.3923 <0.0001 <0.0001
TRPVl Chrl7p 0.226 <0.0001 <0.0001
TSC22D1 Chrl3q 0.3893 <0.0001 <0.0001
TSC22D2 Chr3q 0.2996 <0.0001 <0.0001
TSGA14 Chr7q 0.178 <0.0001 <0.0001
TSKU Chrl lq 0.2154 <0.0001 <0.0001
TSPAN9 Chrl2p 0.2785 <0.0001 <0.0001
TSPO Chr22q 0.4371 <0.0001 <0.0001
TSPYL1 Chr6q 0.495 <0.0001 <0.0001
TSPYL4 Chr6q 0.4703 <0.0001 <0.0001
TSPYL5 Chr8q 0.1833 <0.0001 <0.0001
TSR1 Chrl7p 0.4834 <0.0001 <0.0001
TST Chr22q 0.2846 <0.0001 <0.0001
TSTA3 Chr8q 0.5699 <0.0001 <0.0001
TTBK2 Chrl5q 0.3696 <0.0001 <0.0001
TTC19 Chrl7p 0.2931 <0.0001 <0.0001
TTC26 Chr7q 0.2629 <0.0001 <0.0001
TTC28 Chr22q 0.2718 <0.0001 <0.0001
TTC35 Chr8q 0.6547 <0.0001 <0.0001
TTC37 Chr5q 0.5828 <0.0001 <0.0001
TTC38 Chr22q 0.2814 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
TTI1 Chr20q 0.5227 <0.0001 <0.0001
TTLL1 Chr22q 0.3494 <0.0001 <0.0001
TTLL12 Chr22q 0.3514 <0.0001 <0.0001
TTPAL Chr20q 0.4204 <0.0001 <0.0001
TUBGCP3 Chrl3q 0.6454 <0.0001 <0.0001
TUBGCP4 Chrl5q 0.4712 <0.0001 <0.0001
TUBGCP5 Chrl5q 0.3681 <0.0001 <0.0001
TUFT1 Chrlq 0.314 <0.0001 <0.0001
TUG1 Chr22q 0.4867 <0.0001 <0.0001
TULP3 Chrl2p 0.62 <0.0001 <0.0001
TULP4 Chr6q 0.5068 <0.0001 <0.0001
TUSC3 Chr8p 0.5272 <0.0001 <0.0001
TXN2 Chr22q 0.5151 <0.0001 <0.0001
TXNL1 Chrl 8q 0.7011 <0.0001 <0.0001
TXNL4A Chrl 8q 0.574 <0.0001 <0.0001
TXNL4B Chrl6q 0.3329 <0.0001 <0.0001
TYK2 Chrl9p 0.6295 <0.0001 <0.0001
TYMP Chr22q 0.2915 <0.0001 <0.0001
TYRO 3 Chrl5q 0.2821 <0.0001 <0.0001
U2SURP Chr3q 0.3552 <0.0001 <0.0001
UAP1 Chrlq 0.4456 <0.0001 <0.0001
UBA2 Chrl9q 0.5027 <0.0001 <0.0001
UBA5 Chr3q 0.3834 <0.0001 <0.0001
UBA52 Chrl9p 0.5947 <0.0001 <0.0001
UBAP2L Chrlq 0.4148 <0.0001 <0.0001
UBE2C Chr20q 0.4077 <0.0001 <0.0001
UBE2D3 Chr4q 0.6164 <0.0001 <0.0001
UBE2G1 Chrl7p 0.5241 <0.0001 <0.0001
UBE2H Chr7q 0.3398 <0.0001 <0.0001
UBE2J1 Chr6q 0.5624 <0.0001 <0.0001
UBE2Q1 Chrlq 0.5289 <0.0001 <0.0001
UBE2V2 Chr8q 0.4185 <0.0001 <0.0001
UBE2W Chr8q 0.5539 <0.0001 <0.0001
UBE3A Chrl5q 0.6126 <0.0001 <0.0001
UBE3C Chr7q 0.6314 <0.0001 <0.0001
UBL3 Chrl3q 0.5944 <0.0001 <0.0001
UBL5 Chrl9p 0.583 <0.0001 <0.0001
UBOX5 Chr20p 0.3959 <0.0001 <0.0001
UBR5 Chr8q 0.6444 <0.0001 <0.0001
UBXN2B Chr8q 0.4613 <0.0001 <0.0001
UBXN7 Chr3q 0.5464 <0.0001 <0.0001
UBXN8 Chr8p 0.4402 <0.0001 <0.0001
UCHL3 Chrl3q 0.5361 <0.0001 <0.0001
UCKL1 Chr20q 0.4794 <0.0001 <0.0001
UFC1 Chrlq 0.4207 <0.0001 <0.0001
UFM1 Chrl3q 0.6254 <0.0001 <0.0001
UFSP2 Chr4q 0.5945 <0.0001 <0.0001
UGGT2 Chrl3q 0.5486 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
UGT8 Chr4q 0.2328 <0.0001 <0.0001
ULK2 Chrl7p 0.2465 <0.0001 <0.0001
UNCI 19 Chrl7q 0.3329 <0.0001 <0.0001
UPF1 Chrl9p 0.4698 <0.0001 <0.0001
UPF3A Chrl3q 0.5867 <0.0001 <0.0001
UQCC Chr20q 0.4656 <0.0001 <0.0001
UQCR10 Chr22q 0.5748 <0.0001 <0.0001
UQCKB Chr8q 0.5379 <0.0001 <0.0001
UQCRFS1 Chrl9q 0.4455 <0.0001 <0.0001
USE1 Chrl9p 0.5385 <0.0001 <0.0001
USF2 Chrl9q 0.5393 <0.0001 <0.0001
USOl Chr4q 0.5988 <0.0001 <0.0001
USP10 Chrl6q 0.6084 <0.0001 <0.0001
USP12 Chrl3q 0.4944 <0.0001 <0.0001
USP13 Chr3q 0.2438 <0.0001 <0.0001
USP21 Chrlq 0.4071 <0.0001 <0.0001
USP22 Chrl7p 0.3176 <0.0001 <0.0001
USP5 Chrl2p 0.485 <0.0001 <0.0001
USP53 Chr4q 0.2087 <0.0001 <0.0001
USPL1 Chrl3q 0.5707 <0.0001 <0.0001
UTP14C Chrl3q 0.6694 <0.0001 <0.0001
UTP6 Chrl7q 0.4574 <0.0001 <0.0001
UTRN Chr6q 0.3347 <0.0001 <0.0001
VAC14 Chrl6q 0.3979 <0.0001 <0.0001
VAMP1 Chrl2p 0.2838 <0.0001 <0.0001
VAMP2 Chrl7p 0.32 <0.0001 <0.0001
VAPB Chr20q 0.4928 <0.0001 <0.0001
VARS Chr6p 0.4842 <0.0001 <0.0001
VCAN Chr5q 0.1802 <0.0001 <0.0001
VCPIP1 Chr8q 0.3168 <0.0001 <0.0001
VDAC3 Chr8p 0.4275 <0.0001 <0.0001
VEGFC Chr4q 0.1867 <0.0001 <0.0001
VPS13B Chr8q 0.5452 <0.0001 <0.0001
VPS 16 Chr20p 0.478 <0.0001 <0.0001
VPS28 Chr8q 0.6385 <0.0001 <0.0001
VPS39 Chrl5q 0.5146 <0.0001 <0.0001
VPS45 Chrlq 0.3814 <0.0001 <0.0001
VPS4A Chrl6q 0.5448 <0.0001 <0.0001
VPS4B Chrl 8q 0.6674 <0.0001 <0.0001
VPS72 Chrlq 0.4783 <0.0001 <0.0001
VPS8 Chr3q 0.5814 <0.0001 <0.0001
WASF1 Chr6q 0.4607 <0.0001 <0.0001
WASF3 Chrl3q 0.2951 <0.0001 <0.0001
WBP11 Chrl2p 0.6238 <0.0001 <0.0001
WBP4 Chrl3q 0.6713 <0.0001 <0.0001
WDFY3 Chr4q 0.4924 <0.0001 <0.0001
WDR41 Chr5q 0.3739 <0.0001 <0.0001
WDR59 Chrl6q 0.5045 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
WDR60 Chr7q 0.4442 <0.0001 <0.0001
WDR62 Chrl9q 0.2129 <0.0001 <0.0001
WDR67 Chr8q 0.461 <0.0001 <0.0001
WDR7 Chrl 8q 0.6214 <0.0001 <0.0001
WDR76 Chrl5q 0.1773 <0.0001 <0.0001
WDR91 Chr7q 0.4291 <0.0001 <0.0001
WDYHV1 Chr8q 0.5211 <0.0001 <0.0001
WFDC2 Chr20q 0.2589 <0.0001 <0.0001
WIPF2 Chrl7q 0.4474 <0.0001 <0.0001
WISP3 Chr6q 0.1667 <0.0001 1.00E-04
WIZ Chrl9p 0.6238 <0.0001 <0.0001
WNK1 Chrl2p 0.4556 <0.0001 <0.0001
WNT5B Chrl2p 0.1935 <0.0001 <0.0001
WRAP53 Chrl7p 0.3466 <0.0001 <0.0001
WRN Chr8p 0.5364 <0.0001 <0.0001
WSB1 Chrl7q 0.3452 <0.0001 <0.0001
WTAP Chr6q 0.5334 <0.0001 <0.0001
WWC2 Chr4q 0.2881 <0.0001 <0.0001
WWOX Chrl6q 0.3208 <0.0001 <0.0001
WWP1 Chr8q 0.5381 <0.0001 <0.0001
WWP2 Chrl6q 0.4782 <0.0001 <0.0001
WWTR1 Chr3q 0.3898 <0.0001 <0.0001
XBP1 Chr22q 0.432 <0.0001 <0.0001
XPNPEP3 Chr22q 0.3516 <0.0001 <0.0001
XP04 Chrl3q 0.2953 <0.0001 <0.0001
XP07 Chr8p 0.5924 <0.0001 <0.0001
XRCC2 Chr7q 0.2351 <0.0001 <0.0001
XRCC4 Chr5q 0.4534 <0.0001 <0.0001
XRCC6 Chr22q 0.5122 <0.0001 <0.0001
YARS2 Chrl2p 0.4505 <0.0001 <0.0001
YEATS 2 Chr3q 0.5349 <0.0001 <0.0001
YIPF2 Chrl9p 0.4891 <0.0001 <0.0001
YTHDF1 Chr20q 0.5344 <0.0001 <0.0001
YTHDF3 Chr8q 0.5712 <0.0001 <0.0001
YWHAB Chr20q 0.502 <0.0001 <0.0001
YWHAH Chr22q 0.4971 <0.0001 <0.0001
YWHAZ Chr8q 0.559 <0.0001 <0.0001
YY1AP1 Chrlq 0.4193 <0.0001 <0.0001
ZBED4 Chr22q 0.2944 <0.0001 <0.0001
ZBTB10 Chr8q 0.4354 <0.0001 <0.0001
ZBTB24 Chr6q 0.5802 <0.0001 <0.0001
ZBTB38 Chr3q 0.3691 <0.0001 <0.0001
ZC3H13 Chrl3q 0.5899 <0.0001 <0.0001
ZC3H3 Chr8q 0.6158 <0.0001 <0.0001
ZC3HAV1 Chr7q 0.2625 <0.0001 <0.0001
ZCCHC14 Chrl6q 0.4267 <0.0001 <0.0001
ZCCHC2 Chrl 8q 0.5389 <0.0001 <0.0001
ZDHHC14 Chr6q 0.2474 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
ZDHHC7 Chrl6q 0.5933 <0.0001 <0.0001
ZFAND1 Chr8q 0.4245 <0.0001 <0.0001
ZFHX3 Chrl6q 0.294 <0.0001 <0.0001
ZFP106 Chrl5q 0.5551 <0.0001 <0.0001
ZFP30 Chrl9q 0.4802 <0.0001 <0.0001
ZFP64 Chr20q 0.4918 <0.0001 <0.0001
ZFPM2 Chr8q 0.1689 <0.0001 <0.0001
ZFYVE16 Chr5q 0.4906 <0.0001 <0.0001
ZGPAT Chr20q 0.4484 <0.0001 <0.0001
ZHX3 Chr20q 0.1827 <0.0001 <0.0001
ZMAT5 Chr22q 0.4939 <0.0001 <0.0001
ZMYM2 Chrl3q 0.4452 <0.0001 <0.0001
ZMYM5 Chrl3q 0.5217 <0.0001 <0.0001
ZMYND8 Chr20q 0.2691 <0.0001 <0.0001
ZNF136 Chrl9p 0.5829 <0.0001 <0.0001
ZNF14 Chrl9p 0.4582 <0.0001 <0.0001
ZNF146 Chrl9q 0.4841 <0.0001 <0.0001
ZNF16 Chr8q 0.6829 <0.0001 <0.0001
ZNF207 Chrl7q 0.2614 <0.0001 <0.0001
ZNF212 Chr7q 0.5951 <0.0001 <0.0001
ZNF23 Chrl6q 0.5098 <0.0001 <0.0001
ZNF232 Chrl7p 0.3628 <0.0001 <0.0001
ZNF236 Chrl 8q 0.4293 <0.0001 <0.0001
ZNF250 Chr8q 0.5683 <0.0001 <0.0001
ZNF276 Chrl6q 0.3657 <0.0001 <0.0001
ZNF282 Chr7q 0.5685 <0.0001 <0.0001
ZNF302 Chrl9q 0.4301 <0.0001 <0.0001
ZNF330 Chr4q 0.5836 <0.0001 <0.0001
ZNF334 Chr20q 0.22 <0.0001 <0.0001
ZNF335 Chr20q 0.1821 <0.0001 <0.0001
ZNF34 Chr8q 0.6149 <0.0001 <0.0001
ZNF345 Chrl9q 0.3625 <0.0001 <0.0001
ZNF384 Chrl2p 0.567 <0.0001 <0.0001
ZNF395 Chr8p 0.5423 <0.0001 <0.0001
ZNF426 Chrl9p 0.5451 <0.0001 <0.0001
ZNF44 Chrl9p 0.4874 <0.0001 <0.0001
ZNF440 Chrl9p 0.257 <0.0001 <0.0001
ZNF442 Chrl9p 0.2641 <0.0001 <0.0001
ZNF443 Chrl9p 0.4554 <0.0001 <0.0001
ZNF467 Chr7q 0.3142 <0.0001 <0.0001
ZNF512B Chr20q 0.3907 <0.0001 <0.0001
ZNF516 Chrl 8q 0.333 <0.0001 <0.0001
ZNF529 Chrl9q 0.388 <0.0001 <0.0001
ZNF532 Chrl 8q 0.3647 <0.0001 <0.0001
ZNF562 Chrl9p 0.5805 <0.0001 <0.0001
ZNF571 Chrl9q 0.5094 <0.0001 <0.0001
ZNF573 Chrl9q 0.3888 <0.0001 <0.0001
ZNF623 Chr8q 0.6133 <0.0001 <0.0001 Correlation
Gene Symbol Location p-value qFDR
Coefficient
ZNF639 Chr3q 0.316 <0.0001 <0.0001
ZNF696 Chr8q 0.4866 <0.0001 <0.0001
ZNF7 Chr8q 0.6699 <0.0001 <0.0001
ZNF706 Chr8q 0.66 <0.0001 <0.0001
ZNF767 Chr7q 0.3539 <0.0001 <0.0001
ZNF770 Chrl5q 0.2485 <0.0001 <0.0001
ZNF778 Chrl6q 0.172 <0.0001 <0.0001
ZNF821 Chrl6q 0.2157 <0.0001 <0.0001
ZNF862 Chr7q 0.3799 <0.0001 <0.0001
ZNHIT3 Chrl7q 0.3299 <0.0001 <0.0001
ZSWIM1 Chr20q 0.2247 <0.0001 <0.0001
ZYX Chr7q 0.36 <0.0001 <0.0001
ZZEF1 Chrl7p 0.3768 <0.0001 <0.0001
Table 5: Gene expression signature predictive of complete response (CR) versus incomplete response (IR) using the CI VA-Correlated-Pathway (CCP) gene subset.
Fold- p-value Symbol Name
change
.91E-05 0.88 RHOT1 ras homolog gene family, member Tl
.92E-04 0.67 TIMP3 TIMP metallopeptidase inhibitor 3
.92E-04 0.82 PPP3CA protein phosphatase 3, catalytic subunit, alpha isozyme
.41E-04 0.87 DNAJB14 DnaJ (Hsp40) homolog, subfamily B, member 14
.88E-04 0.88 PKD2 polycystic kidney disease 2 (autosomal dominant)
.41E-04 0.85 UBL3 ubiquitin-like 3
.45E-04 0.84 WDR41 WD repeat domain 41
.16E-03 0.88 NUDT9 nudix (nucleoside diphosphate linked moiety X)-type motif 9 .51E-03 0.84 PGCP plasma glutamate carboxypeptidase
.64E-03 0.87 RASA1 RAS p21 protein activator (GTPase activating protein) 1
COP9 constitutive photomorphogenic homolog subunit 4 .12E-03 0.87 COPS4 (Arabidopsis)
.51E-03 0.77 PDLIM3 PDZ and LIM domain 3
.62E-03 0.89 AGGF1 angiogenic factor with G patch and FHA domains 1
.74E-03 0.94 RPL34 ribosomal protein L34
.76E-03 0.93 RPL23 ribosomal protein L23
.80E-03 0.91 UBE2D3 ubiquitin-conjugating enzyme E2D 3 (UBC4/5 homolog, yeast) .00E-03 0.91 EIF3E eukaryotic translation initiation factor 3, subunit E
.09E-03 0.89 SLC30A5 solute carrier family 30 (zinc transporter), member 5
.23E-03 0.9 DUSP14 dual specificity phosphatase 14
.37E-03 0.84 KDELC1 KDEL (Lys-Asp-Glu-Leu) containing 1
.44E-03 0.89 NSA2 NSA2 ribosome biogenesis homolog (S. cerevisiae)
.44E-03 0.88 SLC25A32 solute carrier family 25, member 32
.62E-03 0.91 RPL26 ribosomal protein L26
.80E-03 0.93 TTBK2 tau tubulin kinase 2
.95E-03 0.85 RBI retinoblastoma 1
.08E-03 0.92 SCAMP3 secretory carrier membrane protein 3
.48E-03 0.88 THAP1 THAP domain containing, apoptosis associated protein 1 Fold- p-value Symbol Name
change
.53E-03 0.93 SLC25A44 solute carrier family 25, member 44
.89E-03 0.87 FAM18B1 family with sequence similarity 18, member Bl
.20E-03 0.8 SNCA synuclein, alpha (non A4 component of amyloid precursor) .26E-03 0.9 MANBA mannosidase, beta A, lysosomal
.30E-03 0.89 CCNH cyclin H
.81E-03 0.88 FECH ferrochelatase
.85E-03 0.89 PGRMC2 progesterone receptor membrane component 2
.85E-03 0.92 TBCA tubulin folding cofactor A
.18E-03 0.83 HSD17B11 hydroxysteroid (17-beta) dehydrogenase 11
.44E-03 0.84 ERLIN2 ER lipid raft associated 2
.45E-03 0.91 MAPKBP1 mitogen-activated protein kinase binding protein 1
.28E-03 0.9 SERINC3 serine incorporator 3
.39E-03 0.91 ENOPH1 enolase-phosphatase 1
.65E-03 0.89 SLFN12 schlafen family member 12
.74E-03 0.96 RPS23 ribosomal protein S23
.96E-03 0.93 C20orf4 chromosome 20 open reading frame 4
.34E-03 0.9 HEXB hexosaminidase B (beta polypeptide)
.93E-03 0.89 USP22 ubiquitin specific peptidase 22
.02E-03 0.92 SEC31A SEC31 homolog A (S. cerevisiae)
.79E-03 0.89 SERINC1 serine incorporator 1
.96E-03 1.1 1 MRPL15 mitochondrial ribosomal protein LI 5
.53E-03 1.15 SARS2 seryl-tRNA synthetase 2, mitochondrial
.34E-03 1.23 CDH3 cadherin 3, type 1, P-cadherin (placental)
.50E-03 1.18 RNASEH2A ribonuclease H2, subunit A
.49E-03 1.14 SPINT2 serine peptidase inhibitor, Kunitz type, 2
.26E-03 1.08 NOTCH4 notch 4
.17E-03 1.1 U2SURP U2 snRNP-associated SURP domain containing
.82E-03 1.08 E2F1 E2F transcription factor 1
.76E-03 1.14 NUDT15 nudix (nucleoside diphosphate linked moiety X)-type motif 15 .19E-03 1.12 AARS alanyl-tRNA synthetase
.30E-03 1.19 GPR19 G protein-coupled receptor 19
.16E-03 1.21 EZH2 enhancer of zeste homolog 2 (Drosophila)
.10E-03 1.13 DDX11 DEAD/H (Asp-Glu- Ala- Asp/His) box polypeptide 11
.86E-03 1.16 HIPK2 homeodomain interacting protein kinase 2
.85E-03 1.39 PRSS2 protease, serine, 2 (trypsin 2)
.78E-03 1.1 1 GINS3 GINS complex subunit 3 (PsG homolog)
.71E-03 1.13 PAK4 p21 protein (Cdc42/Rac)-activated kinase 4
.61E-03 1.21 PARP12 poly (ADP-ribose) polymerase family, member 12
.58E-03 1.22 MECOM MDS1 and EVI1 complex locus
.86E-03 1.19 EPHA1 EPH receptor Al
.75E-03 1.14 ZNF767 zinc finger family member 767
.43E-03 1.19 SLC27A3 solute carrier family 27 (fatty acid transporter), member 3 .30E-03 1.21 RAD54B RAD54 homolog B (S. cerevisiae)
.58E-03 1.17 NCAPG2 non- SMC condensin II complex, subunit G2 Fold- p-value Symbol Name
change
.69E-04 1.16 WDR91 WD repeat domain 91
.13E-04 1.36 PRSS1 protease, serine, 1 (trypsin 1)
.83E-04 1.21 MCM5 mmichromosome maintenance complex component 5 .15E-04 1.23 MCM4 mmichromosome maintenance complex component 4
Table 6: Differentially methylated genes between the CR and IR groups
Parametric Fold-
Unique-ID Accession Symbol p-value change
3.10E-06 0.74 cg26873164 NM 005985 SNAI1
9.40E-06 1.24 cg06006444 NM 003340 UBE2D3
1.93E-05 1.24 cgl2411068 NM 003072 SMARCA4
3.02E-05 1.21 cg02832245 NM 005033 EXOSC9
3.71E-05 1.2 cg02675896 NM 033211 LOC90355
4.65E-05 1.19 cg22968727 NM 000975 RPL11
4.85E-05 1.2 cg02782630 NM 139076 FLJ13614
5.54E-05 0.77 cgl 1086066 NM 173091 NFATC2
6.18E-05 1.2 cg03761560 NM 017626 DNAJB12
7.54E-05 1.15 cg26413355 NM 205548 UNQ9217
8.75E-05 1.25 cgO 1620569 NM 001625 AK2
1.07E-04 1.16 cg21559783 NM 152571 FLJ36779
1.12E-04 0.78 cg09017174 NM 004171 SLC1A2
1.15E-04 1.22 cg01254459 NM 002806 PSMC6
1.24E-04 1.17 cg24974477 NM 030821 PLA2G12A
1.72E-04 1.23 cg24323434 NM 001018108 SERF2
1.81E-04 0.8 cg06911113 NM 152376 UBXD3
2.06E-04 1.25 cg23248587 NM 003401 XRCC4
2.40E-04 1.23 cgl7506742 NM 000628 IL10RB
2.55E-04 1.21 cgl2099357 NM 152660 FAM76A
2.69E-04 1.23 cgl 1821147 NM 031435 THAP2
2.71E-04 1.19 cgl2477119 NM 016507 CRKRS
2.78E-04 1.19 cgl5507817 NM 058238 WNT7B
3.23E-04 0.82 cg00564163 NM 024636 STEAP4
3.28E-04 1.19 cgl7881637 NM 003776 MRPL40
3.31E-04 1.18 cgl5757271 NM 003392 WNT5A
3.42E-04 1.21 cg21284880 NM 005780 LHFP
3.60E-04 0.82 cg25457331 NM 006877 GMPR
3.79E-04 1.15 cgl 8497960 NM 006047 RBM12
3.83E-04 1.18 cg00948524 NM 032322 RNF135
3.94E-04 1.13 cg00763679 NM 001008491 SEPT2
3.98E-04 1.17 cgl 8042079 NM 018428 C17orf40 Parametric Fold-
Unique-ID Accession Symbol p-value change
3.98E-04 0.75 cg06038133 NM 032854 COR06
4.04E-04 1.21 cg27441551 NM 005700 DPP3
4.07E-04 1.2 cgO 1522721 NM 007065 CDC37
4.22E-04 1.19 cgl5785580 NM 005881 BCKDK
4.74E-04 1.19 cg01222684 NM 003314 TTC1
4.86E-04 1.2 cgO 1990225 NM 030805 LMAN2L
4.99E-04 1.18 cg22816171 NM 024045 DDX50
5.17E-04 1.21 cgl7895873 NM 006062 SMYD5
6.00E-04 1.15 cgl5484019 NM 014673 KIAA0103
6.12E-04 1.19 cgl 1603096 NM 003753 EIF3S7
6.23E-04 0.78 cg06834875 NM 032425 KIAA1822
6.28E-04 0.77 cgl 1521965 NM 002825 PTN
6.30E-04 1.2 cg06470552 NM 005445 CSPG6
6.50E-04 1.2 cgl 1220635 NM 016026 RDH11
6.62E-04 1.18 cg06999776 NM 004263 SEMA4F
6.64E-04 1.21 cg05401645 NM 178126 LOCI 62427
6.77E-04 1.19 cg27323780 NM 152912 MTIF3
7.04E-04 0.79 cg25947945 NM 005558 LAD1
7.12E-04 1.17 cg25853833 NM 017546 C2orf29
7.47E-04 1.16 cgl8181070 NM 013247 HTRA2
7.49E-04 1.18 cg01618083 NM 021117 CRY2
7.56E-04 1.13 cgl2448934 NM 014718 CLSTN3
7.67E-04 1.21 cgl6091845 NM 003601 SMARCA5
7.70E-04 1.17 cg05389183 NM 000943 PPIC
7.98E-04 1.14 cg03805364 NM 002572 PAFAH1B2
8.01E-04 1.2 cg00636639 NM 138777 MRRF
8.01E-04 1.16 cg06242000 NM 032331 MGC2408
8.24E-04 1.19 cg01634119 NM 003875 GMPS
8.67E-04 1.2 cg25232934 NM 153332 THEX1
8.90E-04 1.21 cg24403722 NM 004430 EGR3
9.01E-04 0.82 cg04219321 NM 002126 HLF
9.08E-04 1.25 cg02147791 NM 005870 SAP18
9.18E-04 0.88 cgl7009433 NM 000170 GLDC
9.26E-04 1.15 cg01465641 NM 003024 ITSN1
9.44E-04 1.16 cg06565684 NM 001033025 EXTL2
9.54E-04 1.17 cg24587268 NM 014835 OSBPL2
9.84E-04 1.16 cgl 1108432 NM 017884 PINX1 7: Different ially expressed miRNA between the CR and IR groups
Parametric
Fold-change Symbol Chromosomal Location p-value
1.72E-04 1.35 hsa-miR-lOb* chr2: 176723363-176723345
7.92E-04 1.36 hsa-miR-lOb chr2: 176723325-176723305
3.43E-03 1.4 hsa-miR-592 chr7: 126485438-126485457
4.61E-03 1.24 hsa-miR-129-3p chrl 1 :043559597-043559579
7.42E-03 1.19 hsa-miR-424 chrX: 133508376-133508397
8.27E-03 1.24 hsa-miR-302b chr4: l 13789094-113789113
8.32E-03 1.22 hsa-miR-135b chrl :203684112-203684134
8.91E-03 1.22 hsa-miR-182 chr7: 129197523-129197539
9.45E-03 1.3 ebv-miR-B ART 15 unmapped
1.06E-02 1.68 hsa-miR-509-3-5p chrX: 146148906-146148922
1.15E-02 1.38 hsa-miR-488 chrl : 175265133-175265152
1.30E-02 1.15 hsa-miR-371-5p chrl9:058982765-058982755
1.87E-02 1.26 hsa-miR-34b chrl l : 110888943-110888927
1.94E-02 1.22 hsa-miR-641 chrl9:045480350-045480368
2.04E-02 1.16 hsa-miR-498 chrl9:058869318-058869303
2.07E-02 1.25 hsa-miR-431 * chrl4: 100417180-100417167
2.14E-02 0.93 hsa-miR- 193a-3p chrl7:026911203-026911187
2.18E-02 0.8 hsa-miR-22 chrl7:001563958-001563976
2.45E-02 1.15 hsa-miR- 148a chr7:025956067-025956086
2.64E-02 1.19 hsa-miR-513a-5p chrX: 146102748-146102763
2.64E-02 1.31 hsa-miR-517b chrl9:058907409-058907390
2.68E-02 1.17 hsa-miR-7 chrl5:086956113-086956092
2.79E-02 1.17 hsa-miR-96 chr7: 129201815-129201836
2.88E-02 1.22 hsa-miR-200b chrl :001092424-001092408
3.01E-02 1.2 hsa-miR-708 chrl 1 :078790769-078790784
3.27E-02 0.78 hsa-miR- 1233 chrl 5:032461562-032461574 Parametric
Fold-change Symbol Chromosomal Location p-value
3.30E-02 1.09 hsa-miR-30a* chr6 :072169978-072169994
3.37E-02 1.16 hsa-miR-491-5p chr9:020706140-020706125
3.40E-02 0.87 NC2 00092197
3.53E-02 1.16 hsa-miR-7-1 * chr9:085774506-085774524
3.57E-02 1.14 hsa-miR-625* chrl4:065007645-065007627
3.61E-02 1.13 hsa-miR-545 chrX:073423686-073423707
3.91E-02 1.16 hsa-miR-628-5p chrl5:053452481-053452501
3.92E-02 1.15 hsa-miR-183 chr7: 129202043-129202062
3.99E-02 0.83 hsa-miR-33b chrl7:017657936-017657955
4.69E-02 1.17 hsa-miR-597 chr8:009636628-009636612
4.78E-02 1.16 hsa-miR-492 chrl2:093752356-093752339
4.89E-02 1.11 hsa-miR-629* chrl5:068158780-068158795
Table 8: Differentially expressed genes (CR versus IR) from the 1,772 genes identified to
Parametric Fold-
Symbol Name
p-value change
1.00E-06 0.87 RHOT1 ras homo log gene family, member Tl
1.81E-04 0.75 OLFML3 olfactomedin-like 3
2.17E-04 0.81 OLFML1 olfactomedin-like 1
2.98E-04 0.88 DUSP14 dual specificity phosphatase 14
3.43E-04 1.20 MCM4 minichromosome maintenance complex
component 4
3.55E-04 1.34 PRSS1 protease, serine, 1 (trypsin 1)
4.73E-04 0.70 TIMP3 TIMP metallopeptidase inhibitor 3
4.88E-04 0.88 RIN2 Ras and Rab interactor 2
5.99E-04 1.18 C19orf54 chromosome 19 open reading frame 54
6.21E-04 1.15 MCM7 minichromosome maintenance complex
component 7
6.93E-04 0.86 PGAP3 post-GPI attachment to proteins 3
7.65E-04 0.83 KDELC1 KDEL (Lys-Asp-Glu-Leu) containing 1
7.69E-04 0.85 PPP3CA protein phosphatase 3, catalytic subunit, alpha
isozyme
7.89E-04 0.86 UBL3 ubiquitin-like 3
1.10E-03 1.17 HIPK2 homeodomain interacting protein kinase 2
1.56E-03 1.16 NCAPG2 non-SMC condensin II complex, subunit G2 Parametric Fold-
Symbol Name
p-value change
1.77E-03 1.21 ZBTB10 zinc finger and BTB domain containing 10
1.83E-03 0.78 PDLIM3 PDZ and LIM domain 3
2.84E-03 0.91 RPL26 ribosomal protein L26
2.93E-03 1.26 CDH3 cadherin 3, type 1, P-cadherin (placental)
3.12E-03 0.95 RPL19 ribosomal protein LI 9
3.22E-03 0.93 RPL23 ribosomal protein L23
3.35E-03 0.90 YTHDF1 YTH domain family, member 1
3.62E-03 1.12 AARS alanyl-tRNA synthetase
4.19E-03 0.88 FECH ferrochelatase
4.83E-03 1.08 NOTCH4 notch 4
4.91E-03 0.90 SYNRG synergin, gamma
5.57E-03 0.92 TNFSF12 tumor necrosis factor (ligand) superfamily, member 12
5.67E-03 0.91 TPD52L2 tumor protein D52-like 2
5.73E-03 0.90 NDRG3 NDRG family member 3
6.02E-03 1.04 PDPR pyruvate dehydrogenase phosphatase regulatory subunit
6.07E-03 0.88 BGLAP bone gamma-carboxyglutamate (gla) protein
6.24E-03 0.88 SLM02 slowmo homolog 2 (Drosophila)
6.31E-03 0.89 RASA1 RAS p21 protein activator (GTPase activating protein) 1
6.42E-03 0.89 STX8 syntaxin 8
6.44E-03 1.19 PARP12 poly (ADP-ribose) polymerase family, member
12
6.76E-03 0.88 BLMH bleomycin hydrolase
6.83E-03 1.19 MECOM MDS1 and EVI1 complex locus
6.94E-03 0.89 COPS4 COP9 constitutive photomorphogenic homolog subunit 4 (Arabidopsis)
6.94E-03 0.90 DNAJB14 DnaJ (Hsp40) homolog, subfamily B, member
14
7.01E-03 1.09 COG4 component of oligomeric golgi complex 4
7.12E-03 1.36 PRSS2 protease, serine, 2 (trypsin 2)
7.37E-03 0.96 RPS23 ribosomal protein S23
7.50E-03 0.90 KRT10 keratin 10
7.57E-03 0.89 ALG5 asparagine-linked glycosylation 5, dolichyl- phosphate beta-glucosyltransferase homolog (S. cerevisiae)
7.65E-03 0.88 FAM172A family with sequence similarity 172, member A
7.83E-03 1.10 GINS3 GINS complex subunit 3 (Psf3 homolog)
8.16E-03 0.93 C20orf4 chromosome 20 open reading frame 4
8.18E-03 0.90 PPP1R3D protein phosphatase 1 , regulatory (inhibitor) subunit 3D
8.30E-03 1.11 TRIM24 tripartite motif containing 24 Parametric Fold-
Symbol Name
p-value change
8.39E-03 0.88 PPAP2A phosphatidic acid phosphatase type 2A
8.41E-03 1.08 MY07A myosin VIIA
8.41E-03 1.07 GAS 8 growth arrest-specific 8
8.43E-03 0.92 PTPN1 protein tyrosine phosphatase, non-receptor type
1
8.51E-03 1.19 EZH2 enhancer of zeste homolog 2 (Drosophila)
9.15E-03 1.23 SLC7A11 solute carrier family 7, (cationic amino acid
transporter, y+ system) member 1 1
9.41E-03 0.87 ENPP1 ectonucleotide
pyrophosphatase/phosphodiesterase 1
9.75E-03 0.91 RWDD1 RWD domain containing 1
9.96E-03 0.93 TDRKH tudor and KH domain containing
Table 9: 422 significant genes included in the final model or signature. CR/IR value indicates the ratio of the natural logarithm of the average of the expression level of an mRNA in good responders (ie. complete responders (CR)) to the natural logarithm of the average of the expression level of the mRNA in bad responders (i.e. incomplete
Figure imgf000127_0001
Symbol CR/IR Name Entrez ID
MYB 1.17 v-myb myeloblastosis viral oncogene homolog (avian) 4602
DROSHA 1.16 drosha, ribonuclease type III 29102
MCM7 1.16 minichromosome maintenance complex component 7 4176
ZNF85 1.16 zinc finger protein 85 7639
GPR19 1.16 G protein-coupled receptor 19 2842
PTN 1.16 pleiotrophin 5764
MARCH6 1.15 membrane-associated ring finger (C3HC4) 6 10299
ISYNA1 1.15 inositol-3 -phosphate synthase 1 51477
POLE 1.14 polymerase (DNA directed), epsilon 5426
PLAGL2 1.14 pleomorphic adenoma gene-like 2 5326
ENTPD5 1.13 ectonucleoside triphosphate diphosphohydrolase 5 957
LRRC8D 1.13 leucine rich repeat containing 8 family, member D 55144
BRD9 1.13 bromodomain containing 9 65980
WDR91 1.13 WD repeat domain 91 29062
MTAP 1.12 methylthioadenosine phosphorylase 4507
TRIM24 1.12 tripartite motif containing 24 8805
AARS 1.12 alanyl-tRNA synthetase 16
ZNF467 1.12 zinc finger protein 467 168544
CHD7 1.12 chromodomain helicase DNA binding protein 7 55636
STX17 1.11 syntaxin 17 55014
RFWD3 1.11 ring finger and WD repeat domain 3 55159
ZNF767 1.11 zinc finger family member 767 79970
PRRC2A 1.11 proline-rich coiled-coil 2A 7916
Cl lorf67 1.11 chromosome 11 open reading frame 67 28971
NARS2 1.11 asparaginyl-tRNA synthetase 2, mitochondrial (putative) 79731
JARID2 1.11 jumonji, AT rich interactive domain 2 3720
GINS3 1.1 GINS complex subunit 3 (Psf3 homolog) 64785
AKAP8L 1.1 A kinase (PRKA) anchor protein 8 -like 26993
MAK 1.1 male germ cell-associated kinase 4117
COG4 1.09 component of oligomeric golgi complex 4 25839
UBAP2L 1.09 ubiquitin associated protein 2-like 9898
PAK4 1.09 p21 protein (Cdc42/Rac)-activated kinase 4 10298
DDX11 1.09 DEAD/H (Asp-Glu- Ala- Asp/His) box polypeptide 11 1663
ODZ1 1.09 odz, odd Oz/ten-m homolog l(Drosophila) 10178
C6orf26 1.09 chromosome 6 open reading frame 26 401251
RBM38 1.09 RNA binding motif protein 38 55544 v-myb myeloblastosis viral oncogene homolog (avian)-like
MYBL2 1.09 4605
2
TPX2 1.09 TPX2, microtubule-associated, homolog (Xenopus laevis) 22974
PLSCR1 1.09 phospholipid scramblase 1 5359 Symbol CR/IR Name Entrez ID
NOTCH4 1.08 notch 4 4855
MY07A 1.08 myosin VIIA 4647
WIZ 1.08 widely interspaced zinc finger motifs 58525
EHMT2 1.08 euchromatic histone-lysine N-methyltransferase 2 10919
ZC3HAV1 1.08 zinc finger CCCH-type, antiviral 1 56829
BRAF 1.08 v-raf murine sarcoma viral oncogene homo log Bl 673
WDR59 1.08 WD repeat domain 59 79726
PBX2 1.08 pre-B-cell leukemia homeobox 2 5089
ZNF395 1.08 zinc finger protein 395 55893
CEBPA 1.08 CCAAT/enhancer binding protein (C/EBP), alpha 1050
FXYD1 1.08 FXYD domain containing ion transport regulator 1 5348
TP53 1.08 tumor protein p53 7157
GAS 8 1.07 growth arrest-specific 8 2622
MMP15 1.07 matrix metallopeptidase 15 (membrane -inserted) 4324
FASTK 1.07 Fas-activated serine/threonine kinase 10922
FAM86B1 1.07 family with sequence similarity 86, member Bl 85002
SPAG5 1.07 sperm associated antigen 5 10615
TATA box binding protein (TBP)-associated factor, RNA
TAF1C 1.06 9013 polymerase I, C, 1 lOkDa
LIPG 1.06 lipase, endothelial 9388
CASP2 1.06 caspase 2, apopto sis-related cysteine peptidase 835
ZNF282 1.06 zinc finger protein 282 8427
DNASE2 1.06 deoxyribonuclease II, lysosomal 1777
TCN2 1.06 transcobalamin II 6948 human immunodeficiency virus type I enhancer binding
HIVEP2 1.06 3097 protein 2
DPM3 1.06 dolichyl-phosphate mannosyltransferase polypeptide 3 54344
WNT5A 1.06 wingless-type MMTV integration site family, member 5A 7474
CLSTN3 1.05 calsyntenin 3 9746
LRRC61 1.05 leucine rich repeat containing 61 65999
RAD52 1.05 RAD52 homo log (S. cerevisiae) 5893
CHD4 1.05 chromodomain helicase DNA binding protein 4 1108
PTMS 1.05 parathymosin 5763
KIAA0753 1.05 KIAA0753 9851 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
YWHAH 1.05 7533 activation protein, eta polypeptide
LAD1 1.05 ladinin 1 3898
ARGLU1 1.05 arginine and glutamate rich 1 55082
SETBP1 1.05 SET binding protein 1 26040
LSR 1.05 lipolysis stimulated lipoprotein receptor 51599
ZNF334 1.05 zinc finger protein 334 55713 Symbol CR/IR Name Entrez ID
BCL2 1.05 B-cell CLL/lymphoma 2 596
CASC1 1.05 cancer susceptibility candidate 1 55259
WISP3 1.05 WNT1 inducible signaling pathway protein 3 8838
CXCL9 1.05 chemokine (C-X-C motif) ligand 9 4283
ZNF695 1.04 zinc finger protein 695 57116
PDPR 1.04 pyruvate dehydrogenase phosphatase regulatory subunit 55066
E2F1 1.04 E2F transcription factor 1 1869
PLD1 1.04 phospho lipase Dl, phosphatidylcho line-specific 5337
AKT2 1.04 v-akt murine thymoma viral oncogene homolog 2 208
NRF 1 1.04 nuclear respiratory factor 1 4899
ZNF384 1.04 zinc finger protein 384 171017
BANP 1.04 BTG3 associated nuclear protein 54971
MDN1 1.04 MDN1, midasin homolog (yeast) 23195
GTPBP3 1.04 GTP binding protein 3 (mitochondrial) 84705
PRP3 pre-mRNA processing factor 3 homolog (S.
PRPF3 1.04 9129 cerevisiae)
KIAA0907 1.04 KIAA0907 22889
POGZ 1.04 pogo transposable element with ZNF domain 23126
ECH1 1.04 enoyl CoA hydratase 1 , peroxisomal 1891
CHERP 1.04 calcium homeostasis endoplasmic reticulum protein 10523
DENND5B 1.04 DENN/MADD domain containing 5B 160518
NAA16 1.04 N(alpha)-acetyltransferase 16, NatA auxiliary subunit 79612
SIAH2 1.04 seven in absentia homolog 2 (Drosophila) 6478
PSTPIP2 1.04 proline-serine-threonine phosphatase interacting protein 2 9050
TYRO 3 1.04 TYR03 protein tyrosine kinase 7301
SWI/SNF related, matrix associated, actin dependent
SMARCA4 1.04 6597 regulator of chromatin, subfamily a, member 4
SPRY2 1.04 sprouty homolog 2 (Drosophila) 10253
FAM76A 1.03 family with sequence similarity 76, member A 199870
ZNF778 1.03 zinc finger protein 778 197320 solute carrier family 1 (glial high affinity glutamate
SLC1A2 1.03 6506 transporter), member 2
CRTC1 1.03 CREB regulated transcription coactivator 1 23373
TMEM209 1.03 transmembrane protein 209 84928 solute carrier organic anion transporter family, member
SLC01A2 1.03 6579
1A2
SMO 1.03 smoothened homolog (Drosophila) 6608
PAFAH1B platelet-activating factor acetylhydrolase lb, catalytic
1.03 5049 2 subunit 2 (30kDa)
RNA binding protein, autoantigenic (hnRNP-associated
RALY 1.03 22913 with lethal yellow homolog (mouse)) Symbol CR/IR Name Entrez ID
AKAP3 1.03 A kinase (PRKA) anchor protein 3 10566
COX4I1 1.03 cytochrome c oxidase subunit IV isoform 1 1327
TARS2 1.03 threonyl-tRNA synthetase 2, mitochondrial (putative) 80222 microtubule associated monoxygenase, calponin and LIM
MICALl 1.03 64780 domain containing 1
DPP3 1.03 dipeptidyl-peptidase 3 10072
USP21 1.03 ubiquitin specific peptidase 21 27005
SETDB1 1.03 SET domain, bifurcated 1 9869
WDR60 1.03 WD repeat domain 60 55112
VPS72 1.03 vacuolar protein sorting 72 homo log (S. cerevisiae) 6944
MYH9 1.03 myosin, heavy chain 9, non-muscle 4627
PTK2 1.03 PTK2 protein tyrosine kinase 2 5747
PGLS 1.03 6-phosphogluconolactonase 25796
DCAF15 1.03 DDB1 and CUL4 associated factor 15 90379
APOL2 1.03 apolipoprotein L, 2 23780
ZNF44 1.03 zinc finger protein 44 51710
TRMT1 1.03 TRMl tRNA methyltransferase 1 homo log (S. cerevisiae) 55621
AURKB 1.03 aurora kinase B 9212
ADAM metallopeptidase with thrombospondin type 1
ADAMTS3 1.03 9508 motif, 3
TMEM231 1.03 transmembrane protein 231 79583
APOL1 1.03 apolipoprotein L, 1 8542
KLRAP 1 1.02 killer cell lectin-like receptor subfamily A pseudogene 1 10748
RPS20 1.02 ribosomal protein S20 6224
PIP5K1A 1.02 phosphatidylinositol-4-phosphate 5-kinase, type I, alpha 8394
RBM12 1.02 RNA binding motif protein 12 10137
SEC62 1.02 SEC62 homo log (S. cerevisiae) 7095
ZNF212 1.02 zinc finger protein 212 7988
CLK2 1.02 CDC-like kinase 2 1196
PFDN2 1.02 prefoldin subunit 2 5202
ACTR3B 1.02 ARP3 actin-related protein 3 homolog B (yeast) 57180
PCM1 1.02 pericentriolar material 1 5108
SYNE1 1.02 spectrin repeat containing, nuclear envelope 1 23345 leukemia inhibitory factor (cholinergic differentiation
LIF 1.02 3976 factor)
JUNB 1.02 jun B proto-oncogene 3726
HMBOX1 1.02 homeobox containing 1 79618
AURKA 1.02 aurora kinase A 6790
DERL1 1.02 Deri -like domain family, member 1 79139
LRRC23 1.02 leucine rich repeat containing 23 10233
DUSP4 1.02 dual specificity phosphatase 4 1846 Symbol CR/IR Name Entrez ID
SNAI1 1.01 snail homolog 1 (Drosophila) 6615
OR7C2 1.01 olfactory receptor, family 7, subfamily C, member 2 26658
TSGA14 1.01 testis specific, 14 95681
HAUS5 1.01 HAUS augmin-like complex, subunit 5 23354
APOM 1.01 apolipoprotein M 55937
JR 1.01 jerky homolog (mouse) 8629
LPPR2 1.01 lipid phosphate phosphatase-related protein type 2 64748
ZNF236 1.01 zinc finger protein 236 7776
SUGP2 1.01 SURP and G patch domain containing 2 10147
NFIX 1.01 nuclear factor I/X (CCAAT -binding transcription factor) 4784
MGA 1.01 MAX gene associated 23269
HLF 1.01 hepatic leukemia factor 3131
AKAP8 1.01 A kinase (PRKA) anchor protein 8 10270
RAP2B 1.01 RAP2B, member of RAS oncogene family 5912
TYMP 1.01 thymidine phosphorylase 1890
CCDC130 1.01 coiled-coil domain containing 130 81576
SIN3B 1.01 SIN3 homolog B, transcription regulator (yeast) 23309
MARCH6 1.01 membrane-associated ring finger (C3HC4) 7 64844
ATF6B 1.01 activating transcription factor 6 beta 1388
DLGAP4 1.01 discs, large (Drosophila) homolog-associated protein 4 22839
DCLK1 1.01 doublecortin-like kinase 1 9201
SFRS18 1.01 splicing factor, arginine/serine-rich 18 25957
LHFPL2 1.01 lipoma HMGIC fusion partner-like 2 10184
PHC1 1.01 polyhomeotic homolog 1 (Drosophila) 1911
MTERFD1 1.01 MTERF domain containing 1 51001
MRPL40 1.01 mitochondrial ribosomal protein L40 64976
CCDC109
1.01 coiled-coil domain containing 109B 55013 B
WRAP53 1 WD repeat containing, antisense to TP53 55135
UBOX5 1 U-box domain containing 5 22888
AP1B1 1 adaptor-related protein complex 1 , beta 1 subunit 162 guanine nucleotide binding protein (G protein), alpha z
GNAZ 1 2781 polypeptide
MAU2 1 MAU2 chromatid cohesion factor homolog (C. elegans) 23383
RNF13 1 ring finger protein 13 11342
EFNA3 1 ephrin-A3 1944
PPP3CC 1 protein phosphatase 3, catalytic subunit, gamma isozyme 5533
GGT5 1 gamma-glutamyltransferase 5 2687
ZNF516 1 zinc finger protein 516 9658
PEPD 1 peptidase D 5184 Symbol CR/IR Name Entrez ID
HMOX1 1 heme oxygenase (decycling) 1 3162
CAPRIN2 1 caprin family member 2 65981
LRP6 1 low density lipoprotein receptor-related protein 6 4040
AN02 1 anoctamin 2 57101
CCR7 1 chemokine (C-C motif) receptor 7 1236
DCN1, defective in cullin neddylation 1, domain
DCUN1D2 1 55208 containing 2 (S. cerevisiae)
MFAP3L 1 micro fibrillar-associated protein 3 -like 9848
TULP3 1 tubby like protein 3 7289
NCF4 1 neutrophil cytosolic factor 4, 40kDa 4689
SWI/SNF related, matrix associated, actin dependent
SMARCA5 1 8467 regulator of chromatin, subfamily a, member 5
FAM65A 1 family with sequence similarity 65, member A 79567
DNAJC3 1 DnaJ (Hsp40) homolog, subfamily C, member 3 5611
TPT1 0.99 tumor protein, translationally-controlled 1 7178
ELL2 0.99 elongation factor, RNA polymerase II, 2 22936
SERF2 0.99 small EDR -rich factor 2 10169 platelet-derived growth factor beta polypeptide (simian
PDGFB 0.99 5155 sarcoma viral (v-sis) oncogene homolog)
SCNM1 0.99 sodium channel modifier 1 79005
L3MBTL1 0.99 l(3)mbt-like 1 (Drosophila) 26013
LAPTM4B 0.99 lysosomal protein transmembrane 4 beta 55353 translocase of outer mitochondrial membrane 22 homolog
TOMM22 0.99 56993
(yeast)
CHD1 0.99 chromodomain helicase DNA binding protein 1 1105
MRAS 0.99 muscle RAS oncogene homolog 22808
BCKDK 0.99 branched chain ketoacid dehydrogenase kinase 10295
SMYD5 0.99 SMYD family member 5 10322
NSFL1C 0.99 NSFL1 (p97) cofactor (p47) 55968
PPOX 0.99 protoporphyrinogen oxidase 5498
IL2RB 0.99 interleukin 2 receptor, beta 3560
QTRT1 0.99 queuine tRNA-ribosyltransferase 1 81890
PSD3 0.99 pleckstrin and Sec7 domain containing 3 23362
NAGA 0.99 N-acetylgalactosaminidase, alpha- 4668
KIAA0528 0.99 KIAA0528 9847
INPP4B 0.99 inositol polyphosphate-4-phosphatase, type II, 105kDa 8821
SCHIP1 0.99 schwannomin interacting protein 1 29970
PEX5 0.99 peroxisomal biogenesis factor 5 5830 glucuronidase, beta/immunoglobulin lambda-like
LOC91316 0.99 91316 polypeptide 1 pseudogene
ZSWIM1 0.98 zinc finger, SWIM-type containing 1 90204 Symbol CR/IR Name Entrez ID
LOC72999
0.98 hypothetical protein LOC729991 729991 1
PTCD2 0.98 pentatricopeptide repeat domain 2 79810
KLHL26 0.98 kelch-like 26 (Drosophila) 55295
ASXL1 0.98 additional sex combs like 1 (Drosophila) 171023
OSBPL2 0.98 oxysterol binding protein-like 2 9885
TBC1D22
0.98 TBC 1 domain family, member 22A 25771 A
SYDE1 0.98 synapse defective 1, Rho GTPase, homo log 1 (C. elegans) 85360
EFNA4 0.98 ephrin-A4 1945 core-binding factor, runt domain, alpha subunit 2;
CBFA2T2 0.98 9139 translocated to, 2
SC4MOL 0.98 sterol-C4-methyl oxidase-like 6307
CTSO 0.98 cathepsin O 1519
EPS8 0.98 epidermal growth factor receptor pathway substrate 8 2059
C6orfl24 0.98 chromosome 6 open reading frame 124 653483
PLLP 0.98 plasmolipin 51090 colony stimulating factor 2 receptor, beta, low-affinity
CSF2RB 0.98 1439
(granulocyte-macrophage)
SLC39A8 0.98 solute carrier family 39 (zinc transporter), member 8 64116 suppression of tumorigenicity 18 (breast carcinoma) (zinc
ST18 0.97 9705 finger protein)
STEAP4 0.97 STEAP family member 4 79689
ARL15 0.97 ADP-ribosylation factor- like 15 54622
SIRT2 0.97 sirtuin 2 22933
SERHL2 0.97 serine hydrolase-like 2 253190
RGNEF 0.97 190 kDa guanine nucleotide exchange factor 64283
DNAJC13 0.97 DnaJ (Hsp40) homolog, subfamily C, member 13 23317 proteasome (prosome, macropain) 26S subunit, non-
PSMD3 0.97 5709
ATPase, 3
ANKRD27 0.97 ankyrin repeat domain 27 (VPS9 domain) 84079
SYNGR1 0.97 synaptogyrin 1 9145
ARFGAP3 0.97 ADP-ribosylation factor GTPase activating protein 3 26286
CDC40 0.97 cell division cycle 40 homolog (S. cerevisiae) 51362
MEF2C 0.97 myocyte enhancer factor 2C 4208
GOLT1B 0.97 golgi transport IB 51026
GAS2L1 0.97 growth arrest-specific 2 like 1 10634 sprouty homolog 1, antagonist of FGF signaling
SPRY1 0.97 10252
(Drosophila)
SMPDL3A 0.97 sphingomyelin phosphodiesterase, acid-like 3 A 10924
DLC1 0.97 deleted in liver cancer 1 10395
KDELR3 0.97 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein 1 1015 Symbol CR/IR Name Entrez ID
retention receptor 3
RPS23 0.96 ribosomal protein S23 6228
ENOX1 0.96 ecto-NOX disulfide-thiol exchanger 1 55068 eukaryotic translation initiation factor 2B, subunit 5
EIF2B5 0.96 8893 epsilon, 82kDa
B2M 0.96 beta-2 -microglobulin 567
Clorf77 0.96 chromosome 1 open reading frame 77 26097
ARL2BP 0.96 ADP-ribosylation factor-like 2 binding protein 23568
AP3M2 0.96 adaptor-related protein complex 3, mu 2 subunit 10947
TUBGCP4 0.96 tubulin, gamma complex associated protein 4 27229
MAVS 0.96 mitochondrial antiviral signaling protein 57506
NQOl 0.96 NAD(P)H dehydrogenase, quinone 1 1728
ZFPM2 0.96 zinc finger protein, multitype 2 23414
RPL19 0.95 ribosomal protein LI 9 6143
SHC (Src homology 2 domain containing) transforming
SHC1 0.95 6464 protein 1
EIF3J 0.95 eukaryotic translation initiation factor 3, subunit J 8669
FGFRIOP 0.95 FGFR1 oncogene partner 11116
ADP-ribosylation factor guanine nucleotide-exchange
ARFGEF2 0.95 10564 factor 2 (brefeldin A-inhibited)
ITM2B 0.95 integral membrane protein 2B 9445
TRIM 13 0.95 tripartite motif containing 13 10206
MSL1 0.95 male-specific lethal 1 homolog (Drosophila) 339287
SRSF6 0.95 serine/arginine-rich splicing factor 6 6431
SREBF1 0.95 sterol regulatory element binding transcription factor 1 6720
CSNK2A2 0.95 casein kinase 2, alpha prime polypeptide 1459
TTC37 0.95 tetratricopeptide repeat domain 37 9652
MARCKS 0.95 myristoylated alanine-rich protein kinase C substrate 4082
PLOD2 0.95 procollagen- lysine, 2-oxoglutarate 5-dioxygenase 2 5352
TOM1 0.94 target of mybl (chicken) 10043
TDRKH 0.94 tudor and KH domain containing 11022
MCTP1 0.94 multiple C2 domains, transmembrane 1 79772
CTSA 0.94 cathepsin A 5476
IFT52 0.94 intraflagellar transport 52 homolog (Chlamydomonas) 51098 signal sequence receptor, gamma (translocon-associated
SSR3 0.94 6747 protein gamma)
GAS7 0.94 growth arrest-specific 7 8522
GLRX 0.94 glutaredoxin (thioltransferase) 2745
GUCY1A3 0.94 guanylate cyclase 1 , soluble, alpha 3 2982
PDGFRL 0.94 platelet-derived growth factor receptor-like 5157
MATK 0.93 megakaryocyte-associated tyrosine kinase 4145 Symbol CR/IR Name Entrez ID
RPL23 0.93 ribosomal protein L23 9349
TNFSF12 0.93 tumor necrosis factor (ligand) superfamily, member 12 8742
C20orf4 0.93 chromosome 20 open reading frame 4 25980
C15orf24 0.93 chromosome 15 open reading frame 24 56851
PEX11B 0.93 peroxisomal biogenesis factor 11 beta 8799
MN1 0.93 meningioma (disrupted in balanced translocation) 1 4330
C6orfl20 0.93 chromosome 6 open reading frame 120 387263
ANAPC10 0.93 anaphase promoting complex subunit 10 10393
AP1M2 0.93 adaptor-related protein complex 1 , mu 2 subunit 10053
SLC46A3 0.93 solute carrier family 46, member 3 283537
MEIS3P1 0.93 Meis homeobox 3 pseudogene 1 4213
ICAM1 0.93 intercellular adhesion molecule 1 3383
AKAP12 0.93 A kinase (PRKA) anchor protein 12 9590
IGLL3P 0.93 immunoglobulin lambda-like polypeptide 3, pseudogene 91353
PTPN1 0.92 protein tyrosine phosphatase, non-receptor type 1 5770
SNAP23 0.92 synaptosomal-associated protein, 23kDa 8773
DNAJB12 0.92 DnaJ (Hsp40) homo log, subfamily B, member 12 54788
HEXB 0.92 hexosaminidase B (beta polypeptide) 3074
UFM1 0.92 ubiquitin-fold modifier 1 51569
ATP6V1B ATPase, H+ transporting, lysosomal 56/58kDa, VI subunit
0.92 526 2 B2
SEC24D 0.92 SEC24 family, member D (S. cerevisiae) 9871
PDLIM5 0.92 PDZ and LIM domain 5 10611
OSTM1 0.92 osteopetrosis associated transmembrane protein 1 28962
PDLIM2 0.92 PDZ and LIM domain 2 (mystique) 64236
TSPO 0.92 translocator protein (18kDa) 706
NAAA 0.92 N-acylethanolamine acid amidase 27163
ATP6V1C ATPase, H+ transporting, lysosomal 42kDa, VI subunit
0.92 528 1 CI
TLR2 0.92 toll-like receptor 2 7097
LHFP 0.92 lipoma HMGIC fusion partner 10186
DSE 0.92 dermatan sulfate epimerase 29940
ATP6V1A 0.91 ATPase, H+ transporting, lysosomal 70kDa, VI subunit A 523
RPL26 0.91 ribosomal protein L26 6154
MAPKBP1 0.91 mitogen-activated protein kinase binding protein 1 23005
TPD52L2 0.91 tumor protein D52-like 2 7165
NADH dehydrogenase (ubiquinone) 1 alpha subcomplex,
NDUFAF1 0.91 51103 assembly factor 1
AGGF1 0.91 angiogenic factor with G patch and FHA domains 1 55109
NDRG3 0.91 NDRG family member 3 57446
PDE4A 0.91 phosphodiesterase 4A, cAMP-specific 5141 Symbol CR/IR Name Entrez ID
RWDD1 0.91 RWD domain containing 1 51389
PPP1R3D 0.91 protein phosphatase 1, regulatory (inhibitor) subunit 3D 5509
PGRMC2 0.91 progesterone receptor membrane component 2 10424
MFSD1 0.91 major facilitator superfamily domain containing 1 64747
SERINC1 0.91 serine incorporator 1 57515 interleukin 6 signal transducer (gpl30, oncostatin M
IL6ST 0.91 3572 receptor)
SUCLA2 0.91 succinate-CoA ligase, ADP-forming, beta subunit 8803
PLK2 0.91 polo-like kinase 2 10769
DPT 0.9 dermatopontin 1805
PKD2 0.9 polycystic kidney disease 2 (autosomal dominant) 5311
YTHDF1 0.9 YTH domain family, member 1 54915
SYNRG 0.9 synergin, gamma 11276
NSA2 0.9 NSA2 ribosome biogenesis homolog (S. cerevisiae) 10412
DNAJB14 0.9 DnaJ (Hsp40) homolog, subfamily B, member 14 79982
STX8 0.9 syntaxin 8 9482
KRT10 0.9 keratin 10 3858
PGCP 0.9 plasma glutamate carboxypeptidase 10404 ras-related C3 botulinum toxin substrate 2 (rho family,
RAC2 0.9 5880 small GTP binding protein Rac2)
F2R 0.9 coagulation factor II (thrombin) receptor 2149
MAN1A1 0.9 mannosidase, alpha, class 1A, member 1 4121
CCNH 0.89 cyclin H 902
FECH 0.89 ferrochelatase 2235
RASA1 0.89 RAS p21 protein activator (GTPase activating protein) 1 5921 asparagine-linked glycosylation 5, dolichyl-phosphate
ALG5 0.89 29880 beta-glucosyltransferase homolog (S. cerevisiae)
COP9 constitutive photomorphogenic homolog subunit 4
COPS4 0.89 51138
(Arabidopsis)
BGLAP 0.89 bone gamma-carboxyglutamate (gla) protein 632
WTAP 0.89 Wilms tumor 1 associated protein 9589
MLX 0.88 MAX-like protein X 6945
DUSP14 0.88 dual specificity phosphatase 14 11072
RIN2 0.88 Ras and Rab interactor 2 54453
MFAP3 0.88 microfibrillar-associated protein 3 4238
SLM02 0.88 slowmo homolog 2 (Drosophila) 51012
PPAP2A 0.88 phosphatidic acid phosphatase type 2A 8611
FAM172A 0.88 family with sequence similarity 172, member A 83989
TPST2 0.88 tyrosylprotein sulfotransferase 2 8459 v-maf musculoaponeurotic fibrosarcoma oncogene
MAF 0.88 4094 homolog (avian) Symbol CR/IR Name Entrez ID
IGFBP4 0.88 insulin-like growth factor binding protein 4 3487
ACSL1 0.88 acyl-CoA synthetase long-chain family member 1 2180
C13orfl5 0.88 chromosome 13 open reading frame 15 28984
RHOBTB3 0.88 Rho-related BTB domain containing 3 22836
THBS1 0.88 thrombospondin 1 7057
RHOT1 0.87 ras homo log gene family, member Tl 55288
C10orf26 0.87 chromosome 10 open reading frame 26 54838
BLMH 0.87 bleomycin hydrolase 642
RAB32 0.87 RAB32, member RAS oncogene family 10981
UBL3 0.86 ubiquitin-like 3 5412
PGAP3 0.86 post-GPI attachment to proteins 3 93210
ENPP1 0.86 ectonucleotide pyrophosphatase/phosphodiesterase 1 5167
EVI2A 0.86 ecotropic viral integration site 2A 2123
FBLN1 0.86 fibulin 1 2192
PPP3CA 0.85 protein phosphatase 3, catalytic subunit, alpha isozyme 5530
CCL11 0.85 chemokine (C-C motif) ligand 11 6356
TD02 0.85 tryptophan 2,3-dioxygenase 6999
CCPG1 0.84 cell cycle progression 1 9236
RBI 0.84 retinoblastoma 1 5925
PPIC 0.84 peptidylprolyl isomerase C (cyclophilin C) 5480
PMP22 0.84 peripheral myelin protein 22 5376
KDELC1 0.83 KDEL (Lys-Asp-Glu-Leu) containing 1 79070
EDNRA 0.83 endothelin receptor type A 1909
OLFML1 0.82 olfactomedin-like 1 283298
FZD1 0.81 frizzled homolog 1 (Drosophila) 8321
OMD 0.79 osteomodulin 4958
COPZ2 0.78 coatomer protein complex, subunit zeta 2 51226
PDLIM3 0.78 PDZ and LIM domain 3 27295
OLFML3 0.76 olfactomedin-like 3 56944
PDGFD 0.76 platelet derived growth factor D 80310
NUAK1 0.75 NUAK family, SNFl-like kinase, 1 9891
TIMP3 0.7 TIMP metallopeptidase inhibitor 3 7078
FAP 0.7 fibroblast activation protein, alpha 2191
Table 10: Pathways and biological processes identified with the software for enrichment analysis GeneGo. These pathways were overrepresented in cluster #1 of the NMF consensus clustering
Maps p-value FDR Network Objects
Immune response Oncostatin M 3.755E-05 6.709E-03 Eotaxin, LIFR, gpl30, LIF signaling via JAK-Stat in human receptor
cells
Figure imgf000139_0001
Table 11: Pathways and biological processes identified with the software for enrichment analysis GeneGo. These pathways overrepresented in cluster #2 of the NMF consensus
Maps p-value FDR Network Objects from
Active Data
Cell cycle_Chromosome 3.101E-05 8.735E-03 Aurora-B, AKAP8, CAP-G/G2, condensation in prometaphase Aurora-A
G-protein signaling_Cross-talk 4.526E-05 8.735E-03 B-Raf, PLD1, AKT(PKB), between Ras-family GTPases pl20GAP Maps p-value FDR Network Objects from
Active Data
Immune response_C5a signaling 7.605E-05 9.785E-03 G-protein alpha-i family, B-Raf,
Bcl-2, PLD1, AKT(PKB)
Cell adhesion_Ephrin signaling 6.566E-04 4.989E-02 Ephrin-A, G-protein alpha-i family, FAK1, pl20GAP
DNA damagejnhibition of 6.941E-04 4.989E-02 p53, AKT(PKB), E2F1 telomerase activity and cellular
senescence
Development_Leptin signaling via 7.755E-04 4.989E-02 PTP-1B, C/EBPalpha,
PI3K-dependent pathway AKT(PKB), AKT2
Chemotaxis_Inhibitory action of 1.058E-03 5.346E-02 G-protein alpha-i family, lipoxins on IL-8- and Leukotriene PIP5KI, PLD1, AKT(PKB) B4-induced neutrophil migration
Development_WNT signaling 1.223E-03 5.346E-02 Casein kinase II, alpha chains, pathway. Part 2 SNAIL1, BRG1, WNT
Apoptosis and survival_Apoptotic 1.356E-03 5.346E-02 p53, AKT(PKB), pl20GAP Activin A signaling
Impaired inhibitory action of 1.503E-03 5.346E-02 G-protein alpha-i family, lipoxins on neutrophil migration PIP5KI, PLD1, AKT(PKB) in CF
Cell adhesion_Cadherin-mediated 1.524E-03 5.346E-02 P-cadherin, M-cadherin, FAK1 cell adhesion
Cell adhesion_Chemokines and 1.913E-03 5.846E-02 TRIO, G-protein alpha-i family, adhesion B-Raf, AKT(PKB), FAK1
Apoptosis and survival_p53- 2.101E-03 5.846E-02 p53, Bcl-2, E2F1
dependent apoptosis
Immune response_IL-15 signaling 2.465E-03 5.846E-02 Bcl-2, c-Myb, AKT(PKB), FAK1
Development_Regulation of 2.465E-03 5.846E-02 SNAIL1, NOTCH4, Bcl-2, WNT epithelial-to-mesenchymal
transition (ΈΜΤ)
Development_Transcription 2.797E-03 5.846E-02 c-Myb, C/EBPalpha, E2F1 regulation of granulocyte
development
Cell cycle_Start of DNA replication 2.797E-03 5.846E-02 MCM4, MCM5, E2F1 in early S phase
Cytoskeleton remodeling_TGF, 3.019E-03 5.846E-02 Casein kinase II, alpha chains, WNT and cytoskeletal remodeling p53, AKT(PKB), FAK1, WNT
Cell cycle_Spindle assembly and 3.057E-03 5.846E-02 Aurora-B, TPX2, Aurora-A chromosome separation
Apoptosis and survival_Role of 3.332E-03 5.846E-02 p53, Bcl-2, AKT(PKB)
CDK5 in neuronal death and
survival
G-protein signaling_RhoA 3.332E-03 5.846E-02 Ephrin-A, PLD1, FAK1 regulation pathway Maps p-value FDR Network Objects from
Active Data
Chemotaxis_CXCR4 signaling 3.332E-03 5.846E-02 G-protein alpha-i family, FAK1, pathway pl20GAP
G-protein signaling_SlP2 receptor 3.621E-03 6.077E-02 G-protein alpha-i family, signaling AKT(PKB), FAK1
Development_SSTR2 in regulation 3.925E-03 6.313E-02 G-protein alpha-i family, B-Raf, of cell proliferation AKT(PKB)
Chemotaxis_Leukocyte 4.381E-03 6.561E-02 G-protein alpha-i family, chemotaxis PIP5KI, PLD1, PIP5K1A
Transcription_Sin3 and NuRD in 4.579E-03 6.561E-02 Sin3B, Mi-2 beta, Mi-2 alpha transcription regulation
Transcription_P53 signaling 4.929E-03 6.561E-02 p53, Bcl-2, E2F1
pathway
Translation .Regulation of EIF2 4.929E-03 6.561E-02 Casein kinase II, alpha chains, activity eIF2B5, AKT(PKB)
Cell adhesion_PLAU signaling 4.929E-03 6.561E-02 Casein kinase II, alpha chains,
AKT(PKB), FAK1
G-protein signaling_RaplA 5.295E-03 6.593E-02 G-protein alpha-i family, B-Raf, regulation pathway pl20GAP
Development_Neurotrophin 5.295E-03 6.593E-02 B-Raf, p53, AKT(PKB) family signaling
Apoptosis and survival_Anti- 6.489E-03 7.367E-02 Bcl-2, AKT(PKB), FAK1 apoptotic action of Gastrin
Apoptosis and survival_TNF- 6.489E-03 7.367E-02 Caspase-2, AKT(PKB), AKT2 alpha-induced Caspase-8
signaling
Chemotaxis_C5a-induced 6.489E-03 7.367E-02 G-protein alpha-i family, B-Raf, chemotaxis PLD1
Neurophysiological 7.368E-03 7.751E-02 Ephrin-A, Pleiotrophin (OSF1), process_Receptor-mediated axon B-Raf
growth repulsion
Apoptosis and survival_DNA- 7.626E-03 7.751E-02 p53, E2F1
damage-induced apoptosis
Development_G-Proteins 7.832E-03 7.751E-02 SynGAP, G-protein alpha-i mediated regulation MAPK-ERK family, B-Raf
signaling
Chemotaxis_Lipoxin inhibitory 7.832E-03 7.751E-02 G-protein alpha-i family, PLD1, action on fMLP-induced AKT(PKB)
neutrophil chemotaxis
Signal transduction_PTEN 7.832E-03 7.751E-02 p53, AKT(PKB), FAK1 pathway
Regulation of lipid 8.313E-03 8.022E-02 eIF2B5, AKT(PKB), AKT2 metabolism_Insulin
signaling:generic cascades Maps p-value FDR Network Objects from
Active Data
Muscle contraction_Relaxin 8.811E-03 8.273E-02 G-protein alpha-i family, B-Raf, signaling pathway AKT(PKB)
Development_Thromboxane A2 9.326E-03 8.273E-02 G-protein alpha-i family, B-Raf, pathway signaling AKT(PKB)
Cytoskeleton remodelingjntegrin 9.326E-03 8.273E-02 TRIO, AKT(PKB), FAK1 outside-in signaling
DNA damage_Role of SUMO in p53 9.765E-03 8.273E-02 p53, AKT(PKB)
regulation
Apoptosis and survival_HTRlA 9.859E-03 8.273E-02 G-protein alpha-i family, Bcl-2, signaling AKT(PKB)
Development_EDNRB signaling 9.859E-03 8.273E-02 G-protein alpha-i family, B-Raf,
AKT(PKB)
Signal transduction_PKA signaling 1.041E-02 8.371E-02 G-protein alpha-i family,
AKAP3, AKAP8
Some pathways of EMT in cancer 1.041E-02 8.371E-02 SNAIL1, Bcl-2, AKT(PKB) cells
G-protein signaling_Proinsulin C- 1.098E-02 8.647E-02 G-protein alpha-i family, Bcl-2, peptide signaling AKT(PKB)
Cell cyclejnfluence of Ras and 1.156E-02 8.926E-02 AKT(PKB), FAK1, E2F1 Rho proteins on Gl/S Transition
DNA damage_NHEJ mechanisms 1.214E-02 9.010E-02 Casein kinase II, alpha chains, of DSBs repair Sirtuin
Development_NOTCH-induced 1.214E-02 9.010E-02 SNAIL1, NOTCH4
EMT
Neurophysiological 1.341E-02 9.766E-02 AN02, Olfactory receptor process_01factory transduction
Table 12: 233 significant genes included in the final model or signature. CR/IR value indicates the ratio of the natural logarithm of the average of the expression level of an mRNA in good responders (le. complete responders (CR)) to the natural logarithm of the average of the expression level of the mRNA in bad responders (Le. incomplete responders (] [R)).
Entrez
Symbol CR/IR Name
ID
PRSS2 1.34 protease, serine, 2 (trypsin 2) 5645
PRSS1 1.32 protease, serine, 1 (trypsin 1) 5644
CDH3 1.26 cadherin 3, type 1 , P-cadherin (placental) 1001 solute carrier family 7, (cationic amino acid
SLC7A1 1 1.21 23657 transporter, y+ system) member 1 1
MCM4 1.2 minichromosome maintenance complex component 4 4173
ZBTB 10 1.2 zinc finger and BTB domain containing 10 65986 Entrez
Symbol CR/IR Name
ID
MECOM 1.2 MDS1 and EVI1 complex locus 2122 prostate androgen-regulated transcript 1 (non-protein
PARTI 1.2 25859 coding)
KIAA0020 1.19 KIAA0020 9933
MCM5 1.19 minichromosome maintenance complex component 5 4174
EZH2 1.19 enhancer of zeste homolog 2 (Drosophila) 2146
GMPR 1.19 guanosine monophosphate reductase 2766
TRIO 1.18 triple functional domain (PTPRF interacting) 7204
C19orf54 1.18 chromosome 19 open reading frame 54 284325
HIPK2 1.18 homeodomain interacting protein kinase 2 28996
PARP12 1.18 poly (ADP-ribose) polymerase family, member 12 64761
GCNT1 1.17 glucosaminyl (N-acetyl) transferase 1 , core 2 2650
C9orf82 1.17 chromosome 9 open reading frame 82 79886
NCAPG2 1.17 non-SMC condensin II complex, subunit G2 54892
SIRT5 1.17 sirtuin 5 23408 v-myb myeloblastosis viral oncogene homolog
MYB 1.17 4602
(avian)
DROSHA 1.16 drosha, ribonuclease type III 29102
MCM7 1.16 minichromosome maintenance complex component 7 4176
ZNF85 1.16 zinc finger protein 85 7639
GPR19 1.16 G protein-coupled receptor 19 2842
PTN 1.16 pleiotrophin 5764
MARCH6 1.15 membrane-associated ring finger (C3HC4) 6 10299
ISYNA1 1.15 inositol-3 -phosphate synthase 1 51477
POLE 1.14 polymerase (DNA directed), epsilon 5426
PLAGL2 1.14 pleomorphic adenoma gene-like 2 5326
ENTPD5 1.13 ectonucleoside triphosphate diphosphohydrolase 5 957
LRRC8D 1.13 leucine rich repeat containing 8 family, member D 55144
BRD9 1.13 bromodomain containing 9 65980
WDR91 1.13 WD repeat domain 91 29062
MTAP 1.12 methylthioadenosine phosphorylase 4507
TRIM24 1.12 tripartite motif containing 24 8805
AARS 1.12 alanyl-tRNA synthetase 16
ZNF467 1.12 zinc finger protein 467 168544
CHD7 1.12 chromodomain helicase DNA binding protein 7 55636
STX17 1.11 syntaxin 17 55014
RFWD3 1.11 ring finger and WD repeat domain 3 55159
ZNF767 1.11 zinc finger family member 767 79970
PRRC2A 1.11 proline-rich coiled-coil 2A 7916
Cl lorf67 1.11 chromosome 11 open reading frame 67 28971 Entrez
Symbol CR/IR Name
ID
asparaginyl-tRNA synthetase 2, mitochondrial
NARS2 1.11 79731
(putative)
JARID2 1.11 jumonji, AT rich interactive domain 2 3720
GINS3 1.1 GINS complex subunit 3 (Psf3 homolog) 64785
AKAP8L 1.1 A kinase (PRKA) anchor protein 8 -like 26993
MAK 1.1 male germ cell-associated kinase 4117
COG4 1.09 component of oligomeric golgi complex 4 25839
UBAP2L 1.09 ubiquitin associated protein 2-like 9898
PAK4 1.09 p21 protein (Cdc42/Rac)-activated kinase 4 10298
DDX11 1.09 DEAD/H (Asp-Glu- Ala-Asp/His) box polypeptide 11 1663
ODZ1 1.09 odz, odd Oz/ten-m homolog l(Drosophila) 10178
C6orf26 1.09 chromosome 6 open reading frame 26 401251
RBM38 1.09 RNA binding motif protein 38 55544 v-myb myeloblastosis viral oncogene homolog
MYBL2 1.09 4605
(avian)-like 2
TPX2, microtubule-associated, homolog (Xenopus
TPX2 1.09 22974 laevis)
PLSCR1 1.09 phospholipid scramblase 1 5359
NOTCH4 1.08 notch 4 4855
MY07A 1.08 myosin VIIA 4647
WIZ 1.08 widely interspaced zinc finger motifs 58525
EHMT2 1.08 euchromatic histone-lysine N-methyltransferase 2 10919
ZC3HAV1 1.08 zinc finger CCCH-type, antiviral 1 56829
BRAF 1.08 v-raf murine sarcoma viral oncogene homolog Bl 673
WDR59 1.08 WD repeat domain 59 79726
PBX2 1.08 pre-B-cell leukemia homeobox 2 5089
ZNF395 1.08 zinc finger protein 395 55893
CEBPA 1.08 CCAAT/enhancer binding protein (C/EBP), alpha 1050
FXYD1 1.08 FXYD domain containing ion transport regulator 1 5348
TP53 1.08 tumor protein p53 7157
GAS 8 1.07 growth arrest-specific 8 2622
MMP15 1.07 matrix metallopeptidase 15 (membrane-inserted) 4324
FASTK 1.07 Fas-activated serine/threonine kinase 10922
FAM86B1 1.07 family with sequence similarity 86, member Bl 85002
SPAG5 1.07 sperm associated antigen 5 10615
TATA box binding protein (TBP)-associated factor,
TAF1C 1.06 9013
RNA polymerase I, C, 1 lOkDa
LIPG 1.06 lipase, endothelial 9388
CASP2 1.06 caspase 2, apoptosis-related cysteine peptidase 835
ZNF282 1.06 zinc finger protein 282 8427 Entrez
Symbol CR/IR Name
ID
DNASE2 1.06 deoxyribonuclease II, lysosomal 1777
TCN2 1.06 transcobalamin II 6948 human immunodeficiency virus type I enhancer
HIVEP2 1.06 3097 binding protein 2
dolichyl-phosphate mannosyltransferase polypeptide
DPM3 1.06 54344
3
wingless-type MMTV integration site family,
WNT5A 1.06 7474 member 5A
CLSTN3 1.05 calsyntenin 3 9746
LRRC61 1.05 leucine rich repeat containing 61 65999
RAD52 1.05 RAD52 homo log (S. cerevisiae) 5893
CHD4 1.05 chromodomain helicase DNA binding protein 4 1108
PTMS 1.05 parathymosin 5763
KIAA0753 1.05 KIAA0753 9851 tyrosine 3-monooxygenase/tryptophan 5-
YWHAH 1.05 7533 monooxygenase activation protein, eta polypeptide
LAD1 1.05 ladinin 1 3898
ARGLU1 1.05 arginine and glutamate rich 1 55082
SETBP1 1.05 SET binding protein 1 26040
LSR 1.05 lipolysis stimulated lipoprotein receptor 51599
ZNF334 1.05 zinc finger protein 334 55713
BCL2 1.05 B-cell CLL/lymphoma 2 596
CASC1 1.05 cancer susceptibility candidate 1 55259
WISP3 1.05 WNT1 inducible signaling pathway protein 3 8838
CXCL9 1.05 chemokine (C-X-C motif) ligand 9 4283
RPL19 0.95 ribosomal protein L19 6143
SHC (Src homology 2 domain containing)
SHC1 0.95 6464 transforming protein 1
EIF3J 0.95 eukaryotic translation initiation factor 3, subunit J 8669
FGFR10P 0.95 FGFR1 oncogene partner 11116
ADP-ribosylation factor guanine nucleotide-
ARFGEF2 0.95 10564 exchange factor 2 (brefeldin A-inhibited)
ITM2B 0.95 integral membrane protein 2B 9445
TRIM 13 0.95 tripartite motif containing 13 10206
MSL1 0.95 male-specific lethal 1 homolog (Drosophila) 339287
SRSF6 0.95 serine/arginine-rich splicing factor 6 6431 sterol regulatory element binding transcription factor
SREBFl 0.95 6720
1
CSNK2A2 0.95 casein kinase 2, alpha prime polypeptide 1459
TTC37 0.95 tetratricopeptide repeat domain 37 9652
MARCKS 0.95 myristoylated alanine-rich protein kinase C substrate 4082 Entrez
Symbol CR/IR Name
ID
PLOD2 0.95 procollagen- lysine, 2-oxoglutarate 5-dioxygenase 2 5352
TOM1 0.94 target of mybl (chicken) 10043
TDRKH 0.94 tudor and KH domain containing 11022
MCTP1 0.94 multiple C2 domains, transmembrane 1 79772
CTSA 0.94 cathepsin A 5476 intrafiagellar transport 52 homolog
IFT52 0.94 51098
(Chlamydomonas)
signal sequence receptor, gamma (translocon-
SSR3 0.94 6747 associated protein gamma)
GAS 7 0.94 growth arrest-specific 7 8522
GLPvX 0.94 glutaredoxin (thioltransferase) 2745
GUCY1A3 0.94 guanylate cyclase 1 , soluble, alpha 3 2982
PDGFRL 0.94 platelet-derived growth factor receptor-like 5157
MATK 0.93 megakaryocyte-associated tyrosine kinase 4145
RPL23 0.93 ribosomal protein L23 9349 tumor necrosis factor (ligand) superfamily, member
TNFSF12 0.93 8742
12
C20orf4 0.93 chromosome 20 open reading frame 4 25980
C15orf24 0.93 chromosome 15 open reading frame 24 56851
PEX11B 0.93 peroxisomal biogenesis factor 11 beta 8799
MN1 0.93 meningioma (disrupted in balanced translocation) 1 4330
C6orfl20 0.93 chromosome 6 open reading frame 120 387263
ANAPC10 0.93 anaphase promoting complex subunit 10 10393
AP1M2 0.93 adaptor-related protein complex 1 , mu 2 subunit 10053
SLC46A3 0.93 solute carrier family 46, member 3 283537
MEIS3P1 0.93 Meis homeobox 3 pseudogene 1 4213
ICAM1 0.93 intercellular adhesion molecule 1 3383
AKAP12 0.93 A kinase (PRKA) anchor protein 12 9590 immunoglobulin lambda- like polypeptide 3,
IGLL3P 0.93 91353 pseudogene
PTPN1 0.92 protein tyrosine phosphatase, non-receptor type 1 5770
SNAP23 0.92 synaptosomal-associated protein, 23kDa 8773
DNAJB12 0.92 DnaJ (Hsp40) homolog, subfamily B, member 12 54788
HEXB 0.92 hexosaminidase B (beta polypeptide) 3074
UFM1 0.92 ubiquitin-fold modifier 1 51569
ATP6V1B ATPase, H+ transporting, lysosomal 56/58kDa, VI
0.92 526 2 subunit B2
SEC24D 0.92 SEC24 family, member D (S. cerevisiae) 9871
PDLIM5 0.92 PDZ and LIM domain 5 10611
OSTM1 0.92 osteopetrosis associated transmembrane protein 1 28962 Entrez
Symbol CR/IR Name
ID
PDLIM2 0.92 PDZ and LIM domain 2 (mystique) 64236
TSPO 0.92 translocator protein (18kDa) 706
NAAA 0.92 N-acylethanolamine acid amidase 27163
ATP6V1C ATPase, H+ transporting, lysosomal 42kDa, VI
0.92 528 1 subunit CI
TLR2 0.92 toll-like receptor 2 7097
LHFP 0.92 lipoma HMGIC fusion partner 10186
DSE 0.92 dermatan sulfate epimerase 29940
ATPase, H+ transporting, lysosomal 70kDa, VI
ATP6V1A 0.91 523 subunit A
RPL26 0.91 ribosomal protein L26 6154
MAPKBP1 0.91 mitogen-activated protein kinase binding protein 1 23005
TPD52L2 0.91 tumor protein D52-like 2 7165
NADH dehydrogenase (ubiquinone) 1 alpha
NDUFAF1 0.91 51103 subcomplex, assembly factor 1
AGGF1 0.91 angiogenic factor with G patch and FHA domains 1 55109
NDRG3 0.91 NDRG family member 3 57446
PDE4A 0.91 phosphodiesterase 4A, cAMP-specific 5141
RWDD1 0.91 RWD domain containing 1 51389 protein phosphatase 1 , regulatory (inhibitor) subunit
PPP1R3D 0.91 5509
3D
PGRMC2 0.91 progesterone receptor membrane component 2 10424
MFSD1 0.91 major facilitator superfamily domain containing 1 64747
SERINC1 0.91 serine incorporator 1 57515 interleukin 6 signal transducer (gpl30, oncostatin M
IL6ST 0.91 3572 receptor)
SUCLA2 0.91 succinate-CoA ligase, ADP-forming, beta subunit 8803
PLK2 0.91 polo-like kinase 2 10769
DPT 0.9 dermatopontin 1805
PKD2 0.9 polycystic kidney disease 2 (autosomal dominant) 5311
YTHDF1 0.9 YTH domain family, member 1 54915
SYNRG 0.9 synergin, gamma 11276
NSA2 0.9 NSA2 ribosome biogenesis homo log (S. cerevisiae) 10412
DNAJB14 0.9 DnaJ (Hsp40) homo log, subfamily B, member 14 79982
STX8 0.9 syntaxin 8 9482
KRT10 0.9 keratin 10 3858
PGCP 0.9 plasma glutamate carboxypeptidase 10404 ras-related C3 botulinum toxin substrate 2 (rho
RAC2 0.9 5880 family, small GTP binding protein Rac2)
F2R 0.9 coagulation factor II (thrombin) receptor 2149
MAN1A1 0.9 mannosidase, alpha, class 1A, member 1 4121 Entrez
Symbol CR/IR Name
ID
CCNH 0.89 cyclin H 902
FECH 0.89 ferrochelatase 2235
RAS p21 protein activator (GTPase activating
RASA1 0.89 5921 protein) 1
asparagine-linked glycosylation 5, dolichyl-
ALG5 0.89 phosphate beta-glucosyltransferase homo log (S. 29880 cerevisiae)
COP9 constitutive photomorphogenic homolog
COPS4 0.89 51138 subunit 4 (Arabidopsis)
BGLAP 0.89 bone gamma-carboxyglutamate (gla) protein 632
WTAP 0.89 Wilms tumor 1 associated protein 9589
MLX 0.88 MAX-like protein X 6945
DUSP14 0.88 dual specificity phosphatase 14 11072
RIN2 0.88 Ras and Rab interactor 2 54453
MFAP3 0.88 microfibrillar-associated protein 3 4238
SLM02 0.88 slowmo homolog 2 (Drosophila) 51012
PPAP2A 0.88 phosphatidic acid phosphatase type 2A 8611
FAM172A 0.88 family with sequence similarity 172, member A 83989
TPST2 0.88 tyrosylprotein sulfotransferase 2 8459 v-maf musculoaponeurotic fibrosarcoma oncogene
MAF 0.88 4094 homolog (avian)
IGFBP4 0.88 insulin-like growth factor binding protein 4 3487
ACSL1 0.88 acyl-CoA synthetase long-chain family member 1 2180
C13orfl5 0.88 chromosome 13 open reading frame 15 28984
RHOBTB3 0.88 Rho-related BTB domain containing 3 22836
THBS1 0.88 thrombospondin 1 7057
RHOT1 0.87 ras homolog gene family, member Tl 55288
C10orf26 0.87 chromosome 10 open reading frame 26 54838
BLMH 0.87 bleomycin hydrolase 642
RAB32 0.87 RAB32, member RAS oncogene family 10981
UBL3 0.86 ubiquitin-like 3 5412
PGAP3 0.86 post-GPI attachment to proteins 3 93210
ENPP1 0.86 ectonucleotide pyrophosphatase/phosphodiesterase 1 5167
EVI2A 0.86 ecotropic viral integration site 2A 2123
FBLN1 0.86 fibulin 1 2192 protein phosphatase 3, catalytic subunit, alpha
PPP3CA 0.85 5530 isozyme
CCL11 0.85 chemokine (C-C motif) ligand 11 6356
TD02 0.85 tryptophan 2,3-dioxygenase 6999
CCPG1 0.84 cell cycle progression 1 9236 Entrez
Symbol CR/IR Name
ID
RBI 0.84 retinoblastoma 1 5925
PPIC 0.84 peptidylprolyl isomerase C (cyclophilin C) 5480
PMP22 0.84 peripheral myelin protein 22 5376
KDELC1 0.83 KDEL (Lys-Asp-Glu-Leu) containing 1 79070
EDNRA 0.83 endothelin receptor type A 1909
OLFML1 0.82 olfactomedin-like 1 283298
FZD1 0.81 frizzled homolog 1 (Drosophila) 8321
OMD 0.79 osteomodulin 4958
COPZ2 0.78 coatomer protein complex, subunit zeta 2 51226
PDLIM3 0.78 PDZ and LIM domain 3 27295
OLFML3 0.76 olfactomedin-like 3 56944
PDGFD 0.76 platelet derived growth factor D 80310
NUAK1 0.75 NUAK family, SNFl-like kinase, 1 9891
TIMP3 0.7 TIMP metallopeptidase inhibitor 3 7078
FAP 0.7 fibroblast activation protein, alpha 2191
REFERENCES
1. ACS. Cancer Facts & Figures 2012. Atlanta: American Cancer Society; 2012.
. Barnholtz-Sloan JS, Schwartz AG, Qureshi F, Jacques S, Malone J, Munkarah AR.
Ovarian cancer: changes in patterns at diagnosis and relative survival over the last three decades. Am J Obstet Gynecol 2003; 189: 1120-7.
3. Friedlander ML, Stockier MR, Butow P, et al. Clinical trials of palliative chemotherapy in platinum-resistant or -refractory ovarian cancer: time to think differently? J Clin Oncol 2013;31 :2362.
. Baker VV. Salvage therapy for recurrent epithelial ovarian cancer. Hematol Oncol Clin North Am 2003;17:977-88.
5. Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, Anderson ME. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A 1992;89:3070-4.
6. Johnson SW, Laub PB, Beesley JS, Ozols RF, Hamilton TC. Increased platinum-DNA damage tolerance is associated with cisplatin resistance and cross-resistance to various chemotherapeutic agents in unrelated human ovarian cancer cell lines. Cancer Res 1997;57:850-6.
7. Johnson SW, Swiggard PA, Handel LM, et al. Relationship between platinum-DNA adduct formation and removal and cisplatin cytotoxicity in cisplatin-sensitive and - resistant human ovarian cancer cells. Cancer Res 1994;54:5911-6.
8. Colombo PE, Fabbro M, Theillet C, Bibeau F, Rouanet P, Ray-Coquard I. Sensitivity and resistance to treatment in the primary management of epithelial ovarian cancer. Crit Rev Oncol Hematol 2013.
9. Hiss D. Optimizing molecular-targeted therapies in ovarian cancer: the renewed surge of interest in ovarian cancer biomarkers and cell signaling pathways. J Oncol
2012;2012:737981.
10. Zgheib NB, Xiong Y, Marchion DC, et al. The O-glycan pathway is associated with in vitro sensitivity to gemcitabine and overall survival from ovarian cancer. Int J Oncol 2012;41 : 179-88.
11. Bicaku E, Xiong Y, Marchion DC, et al. In vitro analysis of ovarian cancer response to cisplatin, carboplatin, and paclitaxel identifies common pathways that are also associated with overall patient survival. Br J Cancer 2012.
12. Marchion DC, Cottrill HM, Xiong Y, et al. BAD phosphorylation determines ovarian cancer chemosensitivity and patient survival. Clin Cancer Res 2011 ; 17:6356-66.
13. Bansal N, Marchion DC, Bicaku E, et al. BCL2 antagonist of cell death kinases, phosphatases, and ovarian cancer sensitivity to cisplatin. J Gynecol Oncol 2012;23:35-
42.
14. Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006;439:353-7.
15. Tothill RW, Tinker AV, George J, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res 2008;14:5198- 208.
16. Trinh XB, Tjalma WA, Dirix LY, et al. Microarray-based oncogenic pathway profiling in advanced serous papillary ovarian carcinoma. PLoS One 201 l;6:e22469.
17. Yoshihara K, Tajima A, Yahata T, et al. Gene expression profile for predicting survival in advanced-stage serous ovarian cancer across two independent datasets. PLoS One 2010;5:e9615. 18. Bonome T, Levine DA, Shih J, et al. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res 2008;68:5478-86.
19. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J
Natl Cancer Inst 2000;92:205-16.
20. Friedlander M, Butow P, Stockier M, et al. Symptom control in patients with recurrent ovarian cancer: measuring the benefit of palliative chemotherapy in women with platinum refractory/resistant ovarian cancer. Int J Gynecol Cancer 2009; 19 Suppl 2:S44- 8.
21. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 2004;5:557-72.
22. Beroukhim R, Getz G, Nghiemphu L, et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A 2007;104:20007-12.
23. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma.
Nature 2011;474:609-15.
24. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003;100:9440-5.
25. Wingender E, Chen X, Hehl R, et al. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 2000;28:316-9.
26. Maurano MT, Wang H, Kutyavin T, Stamatoyannopoulos JA. Widespread site- dependent buffering of human regulatory polymorphism. PLoS Genet 2012;8:el002599.
27. Moyer BD, Allan BB, Balch WE. Rabl interaction with a GM130 effector complex regulates COPII vesicle cis~Golgi tethering. Traffic 2001;2:268-76.
28. Zahraoui A, Touchot N, Chardin P, Tavitian A. The human Rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion. J Biol Chem 1989;264: 12394-401.
29. Ben-Hamo R, Efroni S. Biomarker robustness reveals the PDGF network as driving disease outcome in ovarian cancer patients in multiple studies. BMC Syst Biol 2012;6:3.
30. Bulavin DV, Higashimoto Y, Popoff IJ, et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001 ;411 : 102-7.
31. Wingender E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinform 2008;9:326-32.
32. Wingender E, Chen X, Fricke E, et al. The TRANSFAC system on gene expression regulation. Nucleic Acids Res 2001;29:281-3.
33. Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature 2013;502:333-9.
34. Peifer M, Fernandez-Cuesta L, Sos ML, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 2012;44: 1104-10.
35. Stephens PJ, Tarpey PS, Davies H, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012;486:400-4.
36. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet 1999;21 : 163-7.
37. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012;16:284-7.
38. Spriggs DR. Drug development for chronic cancers: time to think differently? J Clin Oncol 2012;30:3779-80. 39. Dutta S, Wang FQ, Phalen A, Fishman DA. Biomarkers for ovarian cancer detection and therapy. Cancer Biol Ther 2010;9:668-77.
40. Helleman J, Smid M, Jansen MP, van der Burg ME, Berns EM. Pathway analysis of gene lists associated with platinum-based chemotherapy resistance in ovarian cancer: the big picture. Gynecol Oncol 2010;117: 170-6.
41. Gevaert O, Villalobos V, Sikic BI, Plevritis SK. Identification of ovarian cancer driver genes by using module network integration of multi-omics data. Interface Focus 2013;3:20130013.
42. Verhaak RG, Tamayo P, Yang JY, et al. Prognostically relevant gene signatures of high- grade serous ovarian carcinoma. J Clin Invest 2013;123:517-25.
43. Zhang W, Liu Y, Sun N, et al. Integrating genomic, epigenomic, and transcriptomic features reveals modular signatures underlying poor prognosis in ovarian cancer. Cell Rep 2013;4:542-53.
44. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646- 74.
45. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005;4:307-20.
46. Qu J, Li X, Novitch BG, et al. PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol Cell Biol 2003;23:7122-33.
47. Trahey M, Wong G, Halenbeck R, et al. Molecular cloning of two types of GAP complementary DNA from human placenta. Science 1988;242: 1697-700.
48. Yang SH, Sharrocks AD, Whitmarsh AJ. Transcriptional regulation by the MAP kinase signaling cascades. Gene 2003;320:3-21.
49. Aono N, Sutani T, Tomonaga T, Mochida S, Yanagida M. Cnd2 has dual roles in mitotic condensation and interphase. Nature 2002;417:197-202.
50. Audeh MW, Carmichael J, Penson RT, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 2010;376:245-51.
51. Burger RA, Brady MF, Bookman MA, et al. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 2011 ;365 :2473-83.
52. Tortora G, Ciardiello F, Gasparini G. Combined targeting of EGFR-dependent and VEGF-dependent pathways: rationale, preclinical studies and clinical applications. Nat Clin Pract Oncol 2008;5:521-30.
53. Pestell KE, Hobbs SM, Titley JC, Kelland LR, Walton MI. Effect of p53 status on sensitivity to platinum complexes in a human ovarian cancer cell line. Mol Pharmacol
2000;57:503-11.

Claims

CLAIMS We claim:
1. A method of treating a subject suffering from a cancer, the method comprising the steps of:
a) comparing the expression of mRNAs corresponding to the proteins identified in Table 9 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
b) identifying the subject as a good candidate for a chemotherapy or a bad candidate for the chemotherapy, wherein, the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 are not significantly different than the corresponding reference values for the good responder, and/or
the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 are significantly different than the corresponding reference value for a bad responder, and
c) administering the chemotherapy to the subject if the subject is identified as the good candidate for the chemotherapy or withholding the administration of the chemotherapy to the subject identified as the bad candidate for the chemotherapy, and optionally, administering a cancer treatment other than the chemotherapy to the subject identified as the bad candidate for the chemotherapy.
2. The method of claim 1, wherein the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 80%>, 85%, 90%, 95% or 99% of the mRNAs corresponding to the proteins identified in Table 9 are not significantly different than the corresponding reference values for the good responder and/or the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 20%, 15%), 10%), 5%) or 1%) of the mRNAs corresponding to the proteins identified in Table 9 are significantly different than the corresponding reference value for a bad responder.
3. The method of claim 1 or 2, wherein the good responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 in a sample from a person known to be responsive to the chemotherapy, wherein the sample from the person known to be responsive to the chemotherapy is obtained before the administration of the chemotherapy.
4. The method of claim 1 or 2, wherein the bad responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 9 in a sample from a person known to be non-responsive to the chemotherapy, wherein the sample from the person known to be non-responsive to the chemotherapy is obtained before the administration of the chemotherapy.
5. The method of claim 1 or 2, wherein the chemotherapy comprises administering a platinum based drug and/or taxane to the subject.
6. The method of claim 5, wherein the platinum based drug is cisplatin, carboplatin, oxaliplatin or a combination of two or more of the foregoing.
7. The method of claim 5, wherein the taxane is paclitaxel and/or docetaxel.
8. The method of claim 1 or 2, wherein the cancer is epithelial ovarian cancer, serous ovarian cancer, endometrial ovarian cancer, uterine cancer or breast cancer.
9. The method of claim 1 or 2, wherein said method comprises identifying the subject as a good candidate for a chemotherapy; and administering the chemotherapy to the subject identified as the good candidate for the chemotherapy.
10. The method of claim 1 or 2, wherein said method comprises identifying the subject as a bad candidate for a chemotherapy; and administering a cancer treatment other than the chemotherapy to the subject identified as the bad candidate for the chemotherapy.
11. The method of claim 1, wherein the step of comparing the expression of mRNAs corresponding to the proteins identified in Table 9 in the sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy comprises:
a) obtaining the sample the subject,
b) detecting and quantifying the expression of mRNAs by northern blot analysis, micro-array based method, real-time quantitative PCR, or semi-quantitative RT-PCR
d) comparing the expression of mRNAs corresponding to the proteins identified in Table 9 in the sample obtained from the subject to the reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to the reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy.
12. The method of claim 1, wherein the sample is a tissue sample or a body fluid sample.
13. The method of claim 12, wherein the sample is a body fluid sample that is amniotic fluid, aqueous humor, vitreous humor, bile, cerebrospinal fluid, chyle, endolymph, perilymph, female ejaculate, male ejaculate, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sputum, synovial fluid, vaginal secretion, pancreatic juice or aspirate, pancreatic cyst fluid, serum, plasma, or blood.
14. The method of claim 12, wherein the sample is a tissue sample comprising or consisting of tissue of the brain, eyes, Pineal gland, Pituitary gland, Thyroid gland, Parathyroid glands, thorax, heart, lungs, esophagus, Thymus gland, pleura, Adrenal glands, Appendix, Gall bladder, urinary bladder, large intestine, small intestine, kidneys, liver, pancreas, spleen, stoma, Prostate gland, Testes, ovaries, or uterus.
15. The method of claim 1 or 2, wherein the subject is human.
16. A method of treating a subject suffering from a cancer, the method comprising the steps of:
a) comparing the expression of mRNAs corresponding to the proteins identified in Table 12 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
b) identifying the subject as a good candidate for a chemotherapy or a bad candidate for the chemotherapy, wherein, the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 12 are significantly different than the corresponding reference value for a bad responder, and
c) administering the chemotherapy to the subject if the subject is identified as the good candidate for the chemotherapy or withholding the administration of the chemotherapy to the subject identified as the bad candidate for the chemotherapy, and optionally, administering a cancer treatment other than the chemotherapy to the subject identified as the bad candidate for the chemotherapy.
17. The method of claim 16, wherein the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 80%>, 85%, 90%, 95% or 99% of the mRNAs corresponding to the proteins identified in Table 12 are not significantly different than the corresponding reference values for the good responder and/or the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 20%), 15%, 10%>, 5% or 1% of the mRNAs corresponding to the proteins identified in Table 12 are significantly different than the corresponding reference value for a bad responder.
18. The method of claim 16 or 17, wherein the good responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 12 in a sample from a person known to be responsive to the chemotherapy, wherein the sample from the person known to be responsive to the chemotherapy is obtained before the administration of the chemotherapy.
19. The method of claim 16 or 17, wherein the bad responder reference values are obtained by estimating the expression of the mRNAs corresponding to the proteins identified in Table 12 in a sample from a person known to be non-responsive to the chemotherapy, wherein the sample from the person known to be non-responsive to the chemotherapy is obtained before the administration of the chemotherapy.
20. The method of claim 16 or 17, wherein the chemotherapy comprises administering a platinum based drug and/or taxane to the subject.
21. The method of claim 20, wherein the platinum based drug is cisp latin, carboplatin, oxalaplatin or a combination of two or more of the foregoing.
22. The method of claim 21, wherein the taxane is paclitaxel and/or docetaxel.
23. The method of claim 16 or 17, wherein the cancer is epithelial ovarian cancer, serous ovarian cancer, endometrial ovarian cancer, uterine cancer or breast cancer.
24. The method of claim 16, wherein the step of comparing the expression of mRNAs corresponding to the proteins identified in Table 12 in the sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy comprises:
a) obtaining the sample the subject,
b) detecting and quantifying the expression of mRNAs by northern blot analysis, micro-array based method, real-time quantitative PCR, or semi-quantitative RT-PCR
d) comparing the expression of mRNAs corresponding to the proteins identified in Table 12 in the sample obtained from the subject to the reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to the reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy.
25. The method claim 16 or 17, wherein the subject is human.
26. The method of claim 16 or 17, wherein the sample is a tissue sample or a body fluid sample.
27. The method of claim 26, wherein the same is a tissue sample comprising or consisting of a tissue of the brain, eyes, Pineal gland, Pituitary gland, Thyroid gland, Parathyroid glands, thorax, heart, lungs, esophagus, Thymus gland, pleura, Adrenal glands, Appendix, Gall bladder, urinary bladder, large intestine, small intestine, kidneys, liver, pancreas, spleen, stoma, Prostate gland, Testes, ovaries, or uterus.
28. The method of claim 26, wherein the sample is a body fluid sample that is amniotic fluid, aqueous humor, vitreous humor, bile, cerebrospinal fluid, chyle, endolymph, perilymph, female ejaculate, male ejaculate, lymph, mucus (including nasal drainage and phlegm), pericardial fluid, peritoneal fluid, pleural fluid, pus, rheum, saliva, sputum, synovial fluid, vaginal secretion, pancreatic juice or aspirate, pancreatic cyst fluid, serum, plasma, or blood.
29. A microarray chip comprising mRNAs corresponding to proteins involved in cellular signaling pathways directly associated with responsiveness to chemotherapy for treatment of a cancer, the microarray chip comprises oligonucleotides corresponding to the mRNAs corresponding to the proteins identified in Table 9 or Table 12, or both.
30. The microarray chip of claim 29, wherein the chemotherapy comprises administering a platinum based drug and/or taxane to the subject.
31. The microarray chip of claim 30, wherein the platinum based drug is cisplatin, carboplatin, oxaliplatin or a combination thereof.
32. The microarray chip of claim 30, wherein the taxane is paclitaxel and/or docetaxel.
33. The microarray chip of claim 29, wherein the cancer is epithelial ovarian cancer, serous ovarian cancer, endometrial ovarian cancer, uterine cancer or breast cancer.
34. The microarray chip of claim 29, wherein the microarray chip has no more than one thousand different oligonucleotides.
35. The microarray chip of claim 29, wherein the microarray chip has no more than nine hundred different oligonucleotides.
36. The microarray chip of claim 29, wherein the microarray chip has no more than eight hundred different oligonucleotides.
37. The microarray chip of claim 29, wherein the microarray chip has no more than seven hundred different oligonucleotides.
38. The microarray chip of claim 29, wherein the microarray chip has no more than six hundred different oligonucleotides.
39. The microarray chip of claim 29, wherein the microarray chip has no more than five hundred different oligonucleotides.
40. The microarray chip of claim 29, wherein the microarray chip consists essentially of oligonucleotides corresponding to the mRNAs corresponding to the proteins identified in Table 9 or Table 12, or both
41. A method for determining whether a subject suffering from a cancer is a good candidate or bad candidate for a chemotherapy for the cancer, the method comprising the steps of:
a) comparing the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample obtained from the subject to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy,
b) identifying the subject as the good candidate for the chemotherapy or the bad candidate for the chemotherapy,
wherein, the subject is the good candidate for the chemotherapy if the expression in the sample of the subject of at least 75% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are not significantly different than the corresponding reference values for the good responder, and/or
the subject is the bad candidate for the chemotherapy if the expression in the subject of more than 25% of the mRNAs corresponding to the proteins identified in Table 9 or Table 12 are significantly different than the corresponding reference value for a bad responder.
42. A method for gene expression analysis, comprising:
a) measuring the expression of mRNAs corresponding to the proteins identified in Table 9 or Table 12 in a sample obtained from a subject having cancer; and
b) optionally, comparing the measured expression to reference values corresponding to the mRNAs expression in a good responder to the chemotherapy and/or to reference values corresponding to the mRNAs expression in a bad responder to the chemotherapy.
43. The method of claim 42, further comprising providing a report of the outcome of a).
44. The method of claim 43, further comprising providing a report of the outcome of b).
PCT/US2015/039108 2014-07-02 2015-07-02 Gene expression signature for cancer prognosis WO2016004387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462020310P 2014-07-02 2014-07-02
US62/020,310 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016004387A1 true WO2016004387A1 (en) 2016-01-07

Family

ID=55020027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/039108 WO2016004387A1 (en) 2014-07-02 2015-07-02 Gene expression signature for cancer prognosis

Country Status (1)

Country Link
WO (1) WO2016004387A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483271A (en) * 2016-01-29 2016-04-13 中南大学 Application of reagent for detecting long-chain non-coding RNA LOC284454 expression quantity in nasopharynx cancer tissue
CN105483273A (en) * 2016-01-29 2016-04-13 中南大学 Application of reagent for detecting long-chain non-coding RNA LOC284454 expression quantity in serum of patients with nasopharynx cancer
CN106498062A (en) * 2016-11-04 2017-03-15 邱宾涛 A kind of product of diagnosis of prostate cancer and its application
WO2019050478A1 (en) * 2017-09-05 2019-03-14 Agency For Science, Technology And Research Clear cell renal cell carcinoma biomarkers
JP2019076068A (en) * 2017-10-26 2019-05-23 公立大学法人福島県立医科大学 Ovarian cancer tissue type discrimination method
CN110172512A (en) * 2019-05-27 2019-08-27 清华大学深圳研究生院 A kind of application of carcinoma of endometrium biomarker in cancer diagnosis and the prediction of prognosis situation
CN110331211A (en) * 2019-07-09 2019-10-15 浙江省农业科学院 The molecular marker SNP 732 and its application of sheep MC4R gene
CN110331198A (en) * 2019-03-27 2019-10-15 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) It is a kind of for the SNP marker of tumor prognosis and its application
CN110456065A (en) * 2019-07-31 2019-11-15 四川大学华西医院 CCDC130 autoantibody detection reagent is preparing the purposes in screening lung cancer kit
WO2020033585A1 (en) * 2018-08-07 2020-02-13 The Broad Institute, Inc. Methods for combinatorial screening and use of therapeutic targets thereof
CN110846414A (en) * 2019-11-27 2020-02-28 浙江省肿瘤医院 Ovarian cancer prognosis diagnosis marker combination and application thereof
CN111041096A (en) * 2019-07-15 2020-04-21 江苏医药职业学院 Application of reagent for detecting expression level of open reading frame 33 of chromosome 8 and kit
CN111909994A (en) * 2020-07-07 2020-11-10 浙江大学 Application of CCDC157 gene and mutant gene thereof as molecular marker in diagnosis of male infertility diseases
EP3544605A4 (en) * 2016-11-22 2020-11-25 Prime Genomics, Inc. Methods for cancer detection
CN112048521A (en) * 2019-06-05 2020-12-08 上海市东方医院(同济大学附属东方医院) Preparation method of USP10 mimic polypeptide for inhibiting EIF4G1 expression
CN112229999A (en) * 2020-09-01 2021-01-15 浙江省肿瘤医院 Prognostic diagnosis marker Claudin21 for ovarian cancer and application thereof
WO2021034444A1 (en) * 2019-08-22 2021-02-25 Nantomics, Llc Genomic-driven targeted therapies
CN112684174A (en) * 2021-01-21 2021-04-20 四川大学华西第二医院 Application of LINC00305 autoantibody detection reagent in preparation of lung cancer screening kit
CN113249474A (en) * 2021-04-29 2021-08-13 中山大学附属第一医院 Application of PCDH20 in prediction of liver cancer chemotherapy sensitivity
WO2021173952A1 (en) * 2020-02-28 2021-09-02 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Compositions and methods for detecting bcl2l14 and etv6 gene fusions for determining increased drug resistance
CN113430267A (en) * 2021-06-29 2021-09-24 复旦大学附属中山医院 Application of chemotherapy-related gene expression characteristics in prediction of pancreatic cancer prognosis
US11136583B2 (en) 2017-01-10 2021-10-05 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
CN114164272A (en) * 2021-12-14 2022-03-11 浙江大学 BREA2 gene detection kit and application thereof
WO2022075775A1 (en) * 2020-10-08 2022-04-14 가톨릭대학교 산학협력단 Marker for predicting responsiveness of pancreatic cancer patient to treatment with anticancer agent
CN114835776A (en) * 2022-04-08 2022-08-02 陕西师范大学 Smad4/PELO interaction-targeted small molecule polypeptide for resisting tumor metastasis and application
US11479802B2 (en) 2017-04-11 2022-10-25 Regeneron Pharmaceuticals, Inc. Assays for screening activity of modulators of members of the hydroxy steroid (17-beta) dehydrogenase (HSD17B) family
US11485958B2 (en) 2017-01-23 2022-11-01 Regeneron Pharmaceuticals, Inc. HSD17B13 variants and uses thereof
US11702700B2 (en) 2017-10-11 2023-07-18 Regeneron Pharmaceuticals, Inc. Inhibition of HSD17B13 in the treatment of liver disease in patients expressing the PNPLA3 I148M variation
CN117089621A (en) * 2023-09-28 2023-11-21 上海爱谱蒂康生物科技有限公司 Biomarker combinations and their use in predicting colorectal cancer efficacy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034317A1 (en) * 2009-02-16 2012-02-09 Jirstroem Karin Prediction of Response to Platinum-Based Therapy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034317A1 (en) * 2009-02-16 2012-02-09 Jirstroem Karin Prediction of Response to Platinum-Based Therapy

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Design and Performance of the GeneChip® Human Genome U 133 Plus 2.0 and Human Genome U133A 2.0 Arrays", TECHNICAL NOTES, 2003, pages 1 - 9, Retrieved from the Internet <URL:hftp://media.affymetrix.com/support/technical/technotes/hgul33_p2_technote.pdf> *
GONZALEZ BOSQUET ET AL.: "Analysis of Chemotherapeutic Response in Ovarian Cancers Using Publicly Available High-Throughput Data", CANCER RESEARCH, vol. 74, no. 14, 21 May 2014 (2014-05-21), pages 3902 - 3912, XP055250434 *
HISS, D.: "Optimizing Molecular-Targeted Therapies in Ovarian Cancer: The Renewed Surge of Interest in Ovarian Cancer Biomarkers and Cell Signaling Pathways", JOURNAL OF ONCOLOGY, vol. 16, no. 8, 6 February 2012 (2012-02-06), pages 395 - 23, XP055250436, ISSN: 1687-8450 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483271A (en) * 2016-01-29 2016-04-13 中南大学 Application of reagent for detecting long-chain non-coding RNA LOC284454 expression quantity in nasopharynx cancer tissue
CN105483273A (en) * 2016-01-29 2016-04-13 中南大学 Application of reagent for detecting long-chain non-coding RNA LOC284454 expression quantity in serum of patients with nasopharynx cancer
CN105483271B (en) * 2016-01-29 2018-09-25 中南大学 Detect the application of the reagent of long-chain non-coding RNA LOC284454 expression quantity in tissues of nasopharyngeal carcinoma
CN105483273B (en) * 2016-01-29 2018-10-26 中南大学 Detect the application of the reagent of long-chain non-coding RNA LOC284454 expression quantity in patients with nasopharyngeal carcinoma
CN106498062A (en) * 2016-11-04 2017-03-15 邱宾涛 A kind of product of diagnosis of prostate cancer and its application
EP3544605A4 (en) * 2016-11-22 2020-11-25 Prime Genomics, Inc. Methods for cancer detection
US11136583B2 (en) 2017-01-10 2021-10-05 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer
US11485958B2 (en) 2017-01-23 2022-11-01 Regeneron Pharmaceuticals, Inc. HSD17B13 variants and uses thereof
US11845963B2 (en) 2017-01-23 2023-12-19 Regeneron Pharmaceuticals, Inc. HSD17B13 variants and uses thereof
US11753628B2 (en) 2017-01-23 2023-09-12 Regeneron Pharmaceuticals, Inc. HSD17B13 variants and uses thereof
US11479802B2 (en) 2017-04-11 2022-10-25 Regeneron Pharmaceuticals, Inc. Assays for screening activity of modulators of members of the hydroxy steroid (17-beta) dehydrogenase (HSD17B) family
EP3679161A4 (en) * 2017-09-05 2021-06-02 Agency for Science, Technology and Research Clear cell renal cell carcinoma biomarkers
CN111630183A (en) * 2017-09-05 2020-09-04 新加坡科技研究局 Clear cell renal cell carcinoma biomarkers
WO2019050478A1 (en) * 2017-09-05 2019-03-14 Agency For Science, Technology And Research Clear cell renal cell carcinoma biomarkers
US11702700B2 (en) 2017-10-11 2023-07-18 Regeneron Pharmaceuticals, Inc. Inhibition of HSD17B13 in the treatment of liver disease in patients expressing the PNPLA3 I148M variation
JP2019076068A (en) * 2017-10-26 2019-05-23 公立大学法人福島県立医科大学 Ovarian cancer tissue type discrimination method
WO2020033585A1 (en) * 2018-08-07 2020-02-13 The Broad Institute, Inc. Methods for combinatorial screening and use of therapeutic targets thereof
CN110331198A (en) * 2019-03-27 2019-10-15 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) It is a kind of for the SNP marker of tumor prognosis and its application
CN110331198B (en) * 2019-03-27 2023-03-21 中山大学肿瘤防治中心(中山大学附属肿瘤医院、中山大学肿瘤研究所) SNP marker for tumor prognosis and application thereof
CN110172512A (en) * 2019-05-27 2019-08-27 清华大学深圳研究生院 A kind of application of carcinoma of endometrium biomarker in cancer diagnosis and the prediction of prognosis situation
CN112048521A (en) * 2019-06-05 2020-12-08 上海市东方医院(同济大学附属东方医院) Preparation method of USP10 mimic polypeptide for inhibiting EIF4G1 expression
CN110331211A (en) * 2019-07-09 2019-10-15 浙江省农业科学院 The molecular marker SNP 732 and its application of sheep MC4R gene
CN110331211B (en) * 2019-07-09 2022-04-29 浙江省农业科学院 Molecular marker SNP732 of Hu sheep MC4R gene and application thereof
CN111041096A (en) * 2019-07-15 2020-04-21 江苏医药职业学院 Application of reagent for detecting expression level of open reading frame 33 of chromosome 8 and kit
CN110456065A (en) * 2019-07-31 2019-11-15 四川大学华西医院 CCDC130 autoantibody detection reagent is preparing the purposes in screening lung cancer kit
WO2021034444A1 (en) * 2019-08-22 2021-02-25 Nantomics, Llc Genomic-driven targeted therapies
CN110846414A (en) * 2019-11-27 2020-02-28 浙江省肿瘤医院 Ovarian cancer prognosis diagnosis marker combination and application thereof
WO2021173952A1 (en) * 2020-02-28 2021-09-02 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Compositions and methods for detecting bcl2l14 and etv6 gene fusions for determining increased drug resistance
WO2022007512A1 (en) * 2020-07-07 2022-01-13 浙江大学 Application of ccdc157 gene and mutant gene thereof as molecular marker in diagnosis of male infertility diseases
CN111909994A (en) * 2020-07-07 2020-11-10 浙江大学 Application of CCDC157 gene and mutant gene thereof as molecular marker in diagnosis of male infertility diseases
CN112229999A (en) * 2020-09-01 2021-01-15 浙江省肿瘤医院 Prognostic diagnosis marker Claudin21 for ovarian cancer and application thereof
CN112229999B (en) * 2020-09-01 2022-04-22 浙江省肿瘤医院 Prognostic diagnosis marker Claudin21 for ovarian cancer and application thereof
WO2022075775A1 (en) * 2020-10-08 2022-04-14 가톨릭대학교 산학협력단 Marker for predicting responsiveness of pancreatic cancer patient to treatment with anticancer agent
CN112684174B (en) * 2021-01-21 2022-05-24 四川大学华西第二医院 Application of LINC00305 autoantibody detection reagent in preparation of lung cancer screening kit
CN112684174A (en) * 2021-01-21 2021-04-20 四川大学华西第二医院 Application of LINC00305 autoantibody detection reagent in preparation of lung cancer screening kit
CN113249474A (en) * 2021-04-29 2021-08-13 中山大学附属第一医院 Application of PCDH20 in prediction of liver cancer chemotherapy sensitivity
CN113430267B (en) * 2021-06-29 2023-03-10 复旦大学附属中山医院 Application of chemotherapy-related gene expression characteristics in prediction of pancreatic cancer prognosis
CN113430267A (en) * 2021-06-29 2021-09-24 复旦大学附属中山医院 Application of chemotherapy-related gene expression characteristics in prediction of pancreatic cancer prognosis
CN114164272A (en) * 2021-12-14 2022-03-11 浙江大学 BREA2 gene detection kit and application thereof
CN114164272B (en) * 2021-12-14 2024-02-06 浙江大学 BREA2 gene detection kit and application thereof
CN114835776A (en) * 2022-04-08 2022-08-02 陕西师范大学 Smad4/PELO interaction-targeted small molecule polypeptide for resisting tumor metastasis and application
CN114835776B (en) * 2022-04-08 2023-09-01 陕西师范大学 Small molecule polypeptide for targeting Smad4/PELO interaction and resisting tumor metastasis and application thereof
CN117089621A (en) * 2023-09-28 2023-11-21 上海爱谱蒂康生物科技有限公司 Biomarker combinations and their use in predicting colorectal cancer efficacy

Similar Documents

Publication Publication Date Title
WO2016004387A1 (en) Gene expression signature for cancer prognosis
US20200399714A1 (en) Cancer-related biological materials in microvesicles
US11644466B2 (en) Methods for treating, preventing and predicting risk of developing breast cancer
US20210047694A1 (en) Methods for predicting outcomes and treating colorectal cancer using a cell atlas
US20230349000A1 (en) Classification and prognosis of cancer
US8492328B2 (en) Biomarkers and methods for determining sensitivity to insulin growth factor-1 receptor modulators
CN113025713B (en) Use of biomarkers for predicting the sensitivity of a tumor patient to a specific anti-tumor drug
US8877445B2 (en) Methods for identification of tumor phenotype and treatment
US10166210B2 (en) Methods of subtyping CRC and their association with treatment of colon cancer patients with oxaliplatin
US20220401460A1 (en) Modulating resistance to bcl-2 inhibitors
US20140256564A1 (en) Methods of using hur-associated biomarkers to facilitate the diagnosis of, monitoring the disease status of, and the progression of treatment of breast cancers
US20210325387A1 (en) Cell atlas of the healthy and ulcerative colitis human colon
US20130022974A1 (en) Dna methylation profiles in cancer
US20210115519A1 (en) Methods and kits for diagnosis and triage of patients with colorectal liver metastases
AU2010326066A1 (en) Classification of cancers
WO2019079647A2 (en) Statistical ai for advanced deep learning and probabilistic programing in the biosciences
WO2012104642A1 (en) Method for predicting risk of developing cancer
WO2019008412A1 (en) Utilizing blood based gene expression analysis for cancer management
US9970056B2 (en) Methods and kits for diagnosing, prognosing and monitoring parkinson&#39;s disease
US20160186270A1 (en) Signature of cycling hypoxia and use thereof for the prognosis of cancer
WO2019008415A1 (en) Exosome and pbmc based gene expression analysis for cancer management
WO2008086182A2 (en) Use of gene signatures to design novel cancer treatment regimens
WO2019008414A1 (en) Exosome based gene expression analysis for cancer management
US20200370132A1 (en) Robust genomic predictor of breast and lung cancer metastasis
Zhang et al. Comprehensive analysis of prognostic value of MEX3A and its relationship with immune infiltrates in ovarian cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814855

Country of ref document: EP

Kind code of ref document: A1