WO2016003146A1 - High heat-resistant polyamic acid solution and polyimide film - Google Patents

High heat-resistant polyamic acid solution and polyimide film Download PDF

Info

Publication number
WO2016003146A1
WO2016003146A1 PCT/KR2015/006666 KR2015006666W WO2016003146A1 WO 2016003146 A1 WO2016003146 A1 WO 2016003146A1 KR 2015006666 W KR2015006666 W KR 2015006666W WO 2016003146 A1 WO2016003146 A1 WO 2016003146A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid solution
polyamic acid
dianhydride
diamine compound
cte
Prior art date
Application number
PCT/KR2015/006666
Other languages
French (fr)
Korean (ko)
Inventor
민웅기
박효준
정학기
홍기일
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150091870A external-priority patent/KR102248994B1/en
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to EP15815907.9A priority Critical patent/EP3162838A4/en
Priority to JP2016575755A priority patent/JP6715406B2/en
Priority to US15/322,957 priority patent/US10538665B2/en
Priority to CN201580035000.8A priority patent/CN106536597A/en
Publication of WO2016003146A1 publication Critical patent/WO2016003146A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a high heat-resistant polyamic acid and a polyimide film, and more particularly, to a high heat-resistant polyimide film having improved thermal dimensional stability and a polyamic acid solution polymerized using a diamine having carboxylic acid introduced therein.
  • Polyimide exhibits excellent heat resistance, mechanical properties, and electrical properties compared to other general-purpose resins and engineering plastics, and thus is useful as a useful material in the manufacture of electric, electronic parts, and other products requiring high heat resistance.
  • polyimide resins are used in a wide range of fields such as heat-resistant high-tech materials such as automobile materials, aviation materials, and spacecraft materials, and electronic materials such as insulation coating agents, insulating films, semiconductors, and TFT-LCD electrode protective films. It is also used as a display material, such as an optical fiber and a liquid crystal aligning film, and the transparent electrode film which contained the conductive filler in the film, or coated on the surface.
  • the polyimide polymerizes dianhydride and diamine in a solvent to synthesize a polyamic acid, and heats it to synthesize polyimide through dehydration and cyclization, or dehydration by chemical dehydration using a dehydrating agent.
  • Polyimides are synthesized using a cyclization reaction.
  • a cast method of applying a polyamic acid derivative, which is a polyimide precursor, to a carrier plate and curing the polyimide film to obtain a polyimide film is common.
  • the said cast method consists of the process of apply
  • polyimide is excellent in physical properties such as heat resistance when producing a film, but as a rigid rod structure, it is difficult to form a film is difficult to break and difficult to manufacture.
  • a composition containing paraphenylenediamine and pyromellitic acid dianhydride there is often a problem that foaming or film forming and peeling do not occur when applied on a support and heat treated.
  • the polyimide film shrinks or expands due to the characteristics of the film when the temperature is changed at a high temperature, and the width of the change is not always constant, and thus the use of the polyimide film has been limited in fields requiring thermal dimensional stability.
  • the thermal stability in the high temperature process must be premised. That is, in the case of a glass substrate commonly used as a substrate of the display element, the coefficient of thermal expansion is about 4ppm / °C, in order to replace the glass substrate, the thermal expansion coefficient of polyimide film must be at least 10ppm / °C or less do.
  • the present invention is to provide a high heat-resistant polyamic acid solution useful for forming a high heat-resistant film and further to provide a polyimide film having excellent thermal dimensional stability.
  • a diamine compound and a dianhydride compound includes a polymer, wherein the diamine compound comprises a diamine compound having a carboxylic acid functional group in 1 mol% to 10 mol% based on the total moles of the total diamine compound It provides a polyamic acid solution.
  • the polymer may be obtained by reacting a diamine compound and a dianhydride compound in a 1: 0.95 to 1: 1 molar ratio.
  • the diamine compound having a carboxylic acid functional group is 1,3-diaminobenzoic acid (DABA), 3,5-diaminophthalic acid (DAPA), and 4,4 It may include one or more selected from the group consisting of -diaminobiphenyl-3,3-tetracarboxylic acid (DATA).
  • DABA 1,3-diaminobenzoic acid
  • DAPA 3,5-diaminophthalic acid
  • 4,4 It may include one or more selected from the group consisting of -diaminobiphenyl-3,3-tetracarboxylic acid (DATA).
  • DATA -diaminobiphenyl-3,3-tetracarboxylic acid
  • the diamine compound may include 90 to 99 mol% of the aromatic diamine compound based on the total number of moles of the diamine compound.
  • the aromatic diamine compound is oxydianiline (ODA), paraphenylenediamine (pPDA), m-phenylenediamine (mPDA), p-methylenediamine (pMDA) and meta One or more compounds selected from the group consisting of methylenediamine (mMDA) or mixtures thereof.
  • ODA oxydianiline
  • pPDA paraphenylenediamine
  • mPDA m-phenylenediamine
  • pMDA p-methylenediamine
  • the dianhydride compound is pyromellitic dianhydride (1,2,4,5-benzene tetracarboxylic dianhydride (PMDA)), benzophenone tetracarbide Cyclic dianhydride (BTDA), biphenyl tetracarboxylic dianhydride (BPDA), biscarboxyphenyl dimethyl silane dianhydride (SiDA), oxydiphthalic dianhydride (ODPA), bis dicarboxyphenoxy di
  • BPDA biphenyl tetracarboxylic dianhydride
  • SiDA biscarboxyphenyl dimethyl silane dianhydride
  • ODPA oxydiphthalic dianhydride
  • BDSDA phenyl sulfide dianhydride
  • SO 2 DPA sulfonyl diphthalic anhydride
  • the polymer may have a weight average molecular weight of 100,000 to 150,000.
  • the polyamic acid solution may have a viscosity of 50 to 200ps.
  • the polyimide film which is an imide of the polyamic acid solution according to the above embodiments, includes a polyimide crosslinked with an amide bond (-CONH-) between the main chain and the main chain. do.
  • the thermal expansion coefficient measured in the temperature range of 50 to 500 °C is 5ppm / °C or less, the thermal expansion coefficient increase index defined by the following equation 1 may be 10 or less.
  • 1 st CTE is the coefficient of thermal expansion obtained by the first measurement in the temperature range of 50 to 500 °C according to the TMA-method method
  • 2 nd CTE is the first measurement after cooling the first measured specimen to room temperature It is a coefficient of thermal expansion obtained by secondary measurement under the same conditions (however, 1 st CTE ⁇ 2 nd CTE is satisfied).
  • Polyimide film according to the embodiment may also be one of ASTM D882 standard tensile strength of 250 to 350 MPa, elastic modulus of 7.0 to 10.0GPa, elongation of 13 to 15%.
  • According to the present invention can provide a high heat-resistant polyamic acid solution that can easily form a high heat-resistant film, and furthermore, the polyimide film prepared using the same can exhibit excellent thermal dimensional stability.
  • a diamine compound and a dianhydride compound comprising a polymer, wherein the diamine compound comprises a diamine compound having a carboxylic acid functional group in 1 mol% to 10 mol% based on the total moles of the total diamine compound It provides a phosphorus polyamic acid solution.
  • the diamine compound contains the diamine compound which has a carboxylic acid functional group, it is a polyimide film excellent in thermal dimensional stability at the time of imidating and forming into a film from the obtained polyamic-acid solution. Can be easily obtained.
  • the carboxylic acid functional group included in the molecular chain of the diamine compound does not directly participate in the polymerization reaction with other diamines, but is thus used between side chains in the polymer.
  • the carboxylic acid functional groups derived from the residue are imidized and formed into a polyimide film, some of the carboxylic acid functional groups may be thermally decomposed at high temperature in the imidization process, but ultimately, It is possible to form network structures such as crosslinks, specifically amide bonds (-CONH-), between the main chains.
  • heat resistance in particular, thermal dimensional stability, can be remarkably improved as compared to the uncrosslinked polyimide. It can also improve mechanical properties.
  • Diamine having a carboxylic acid functional group to form such a cross-linking structure is preferably included 1 mol% to 10 mol% based on the total moles of the diamine compound, when added to less than 1 mol%, the part (connection point) that is connected between the main chain To crosslinking point) is too small compared to the original intended degree, there is a limit to the improvement of physical properties as expected, and if the content exceeds 10 mol%, the main chain forming the film is a ladder type linear arrangement, as intended.
  • the structure is not connected to each other but close to the net structure, which degrades the solubility of the polymer itself and, in severe cases, may precipitate as a solid in a solution or may cause a problem in that the film is broken during film formation due to local crosslinking. .
  • the thermal dimensional stability reflected in the polyimide film may be more excellent, and since the carboxylic acid functional groups are crosslinked in the film, tensile strength and elastic modulus of the entire film may be improved. Can be.
  • the diamine compound having a carboxylic acid functional group is 1,3-diaminobenzoic acid (DABA), 3,5-diaminophthalic acid (DAPA), 4,4-diaminobiphenyl It may include one or more selected from the group consisting of -3,3-tetracarboxylic acid (DATA), of which 4-diaminobiphenyl-3,3-tetracarboxylic acid (DATA) is used. Since it has two or more crosslinkable functional groups in the main chain, it may be most advantageous in terms of coefficient of thermal expansion and improvement of mechanical properties.
  • DABA 1,3-diaminobenzoic acid
  • DAPA 3,5-diaminophthalic acid
  • DATA 4,4-diaminobiphenyl
  • DATA 4-diaminobiphenyl-3,3-tetracarboxylic acid
  • 90 to 99 mol% of the diamine except for the diamine compound having a carboxylic acid functional group may be an aromatic diamine compound.
  • the aromatic diamine compound is selected from the group consisting of oxydianiline (ODA), paraphenylenediamine (pPDA), m-phenylenediamine (mPDA), p-methylenediamine (pMDA) and methmethylenediamine (mMDA). Preference is given to using at least two compounds or mixtures thereof.
  • the diamine and dianhydride may have a molar ratio of 1: 0.95 to 1: 1, more preferably 1: 0.96 to 1: 0.99, most preferably 1: 0.97 To 1: 0.98.
  • the mole number of diamine is 1, the molar number of dianhydride is less than 0.95.
  • the molecular weight is not good, so the basic physical properties of the film are not good. If the molar number of diamine is 1, the viscosity is too high. May occur.
  • the dianhydride compound is pyromellitic dianhydride (1,2,4,5-benzene tetracarboxylic dianhydride (PMDA)), benzophenone tetracarboxylic dianhydride Hydride (BTDA), biphenyl tetracarboxylic dianhydride (BPDA), biscarboxyphenyl dimethyl silane dianhydride (SiDA), oxydiphthalic dianhydride (ODPA), bis dicarboxyphenoxy diphenyl sulfide dianhydride It may be used alone or in combination of one or more selected from the group consisting of a lide (BDSDA) and sulfonyl diphthalic hydride (SO 2 DPA).
  • PMDA pyromellitic dianhydride
  • BTDA benzophenone tetracarboxylic dianhydride Hydride
  • BPDA biphenyl tetracarboxylic dianhydride
  • SiDA biscarboxypheny
  • Examples of the diamine compounds and dianhydride compounds are preferable ones in terms of heat resistance and mechanical properties, and the diamine compounds having carboxylic acid functional groups in combination with these compounds at a constant molar ratio facilitate film formation while maximizing heat resistance. It is possible to obtain a polyimide film having excellent mechanical properties.
  • the polyamic acid solution is m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide as an organic solvent. It may include one or more polar solvents selected from the side (DMSO), acetone, diethyl acetate.
  • the moisture content remaining in the solvent is preferably 1000 ppm or less in terms of preventing the deterioration of physical properties, and more preferably, the moisture content is 100 ppm or less.
  • the content of the solvent is preferably 50 to 95% by weight, more preferably 70 to 90% by weight of the total polyamic acid solution in order to obtain a viscosity suitable for film processing.
  • the polyamic acid solution of the present invention preferably contains a polyamic acid having a weight average molecular weight of 100,000 to 150,000, preferably a viscosity of 50 to 200 ps.
  • a polyamic acid solution of the present invention satisfies the above molecular weight and viscosity, the final film is prevented from warping and warping during processing, especially when exposed to high temperatures in the process when used for display element substrates. It is possible to minimize the dimensional change.
  • a polyimide film which is an imide of the polyamic acid solution described above, and comprises a polyimide crosslinked by an amide bond between the main chain and the main chain.
  • the polyimide film according to the present invention is obtained by imidating a polyamic acid solution which is a polymer of a diamine compound containing a diamine having a carboxylic acid functional group and a dianhydride compound, and a carboxylic acid functional group in a diamine having a carboxylic acid functional group. Does not directly participate in the polymerization reaction, and serves to crosslink the main chain and the main chain which are imidated in a high temperature process of imidating a polyamic acid. At this time, crosslinking may be by forming an amide bond.
  • the carboxylic acid functional group may thermally decompose in some high temperature air but substantially react with the amine functional group between the polyimide main chain and the main chain to form a crosslinking reaction at high temperature.
  • the degree of crosslinking of the polymer of the polyimide film is improved, thereby exhibiting properties such as high strength, high elasticity, and low shrinkage, and can easily form a film.
  • the polyimide film is a film having a thermal expansion coefficient measured at a temperature range of 50 to 500 ° C. or less and 5 ppm / ° C. or less, and a thermal expansion coefficient increasing index defined by Equation 1 below 10 or less.
  • 1 st CTE is the coefficient of thermal expansion obtained by the first measurement in the temperature range of 50 to 500 °C according to the TMA-method method
  • 2 nd CTE is the first measurement after cooling the first measured specimen to room temperature It is a coefficient of thermal expansion obtained by secondary measurement under the same conditions (however, 1 st CTE ⁇ 2 nd CTE is satisfied).
  • the coefficient of thermal expansion is a characteristic that numerically represents the change in the length of intermolecular or interatomic bonds as the temperature of the organic material increases with an average value of 5ppm / It is preferable that the thermal expansion coefficient increase index represented by Equation 1 is less than or equal to 10 ° C., in particular for thermal dimensional stability.
  • the coefficient of thermal expansion of polyimide film exceeds 5 ppm / °C or the coefficient of thermal expansion increase is more than 10 when used as a substrate film, it is likely to be warped or warped as it is exposed to high temperature in the process. Errors and dimensional changes can cause difficulties in practical use.
  • the measurement of the coefficient of thermal expansion is preferably measured by heating up to 50 to 500 °C at a rate of 5 to 10 °C per minute, 2 nd CTE immediately after cooling to room temperature to remove the thermal history after 1 st CTE measurement It is preferable to measure.
  • the room temperature may be defined as 25 ⁇ 50 °C.
  • the 2 nd coefficient of thermal expansion is measured under the same measurement conditions as that of the 1 st coefficient of thermal expansion, and if the film sample to be measured has a problem of absorbing moisture from external moisture, shrinkage behavior occurs in the temperature range where moisture flows, so that the CTE value is properly It should be noted that it cannot be measured.
  • the crosslinking between the polyimide main chain and the main chain satisfies high strength and high elasticity, specifically, the ASTM D882 standard tensile strength is 250 to 350 MPa, elastic modulus is 7.0 to 10.0 GPa , Polyimide film having an elongation of 13 to 15% can be provided.
  • the method for producing the polyimide film is not particularly limited, and (a) a diamine compound containing 1 mol% to 10 mol% of a diamine compound having a carboxylic acid functional group based on the total number of moles of the diamine compound; And copolymerizing the dianhydride compound to prepare a polyamic acid solution. (b) casting the polyamic acid solution of step (a) to the support to undergo imidization.
  • the method of preparing a polyamic acid solution through the step (a) is as described above, it will be omitted.
  • the reaction temperature is preferably -20 to 80 °C
  • the reaction time is preferably 2 to 48 hours.
  • the copolymerization reaction is more preferably carried out in an inert atmosphere such as argon or nitrogen.
  • a method of imidizing the polyamic acid solution by casting the polyamic acid solution in the step (b) is not limited thereto, and the method is not limited thereto, and thermal imidization, chemical imidization, or thermal imide
  • the compounding method and the chemical imidization method can be used in combination.
  • it is preferable to proceed only with the thermal imidization method in view of the fact that the molecular weight of the polymer, that is, the degree of polymerization is rapidly increased and the solubility decreases, that is, the solidification is prevented to prevent the film from breaking.
  • the thickness of the finally produced polyimide film is not specifically limited, It is preferable that it is the range of 10-20 micrometers, More preferably, it may be 10-15 micrometers.
  • DATA 4,4-diaminobiphenyl-3,3-tetracarboxylic acid
  • BPDA ric dianhydride
  • PMDA 1,2,4,5-benzene tetracarboxylic dianhydride
  • a polyimide film was obtained in the same manner as in Example 1, except that 42.12 g of p-PDA corresponding to 95 mol% of total diamine and 5.69 g of DATA corresponding to 5 mol% were used. However, at this time, the polyamic acid solution obtained in the preparation process of Example 2 had a solid content of 17 wt% and a viscosity of 135 ps.
  • a polyimide film was obtained in the same manner as in Example 1, except that 39.92 g of p-PDA corresponding to 90 mol% of diamine total mole number and 10.20 g of DATA corresponding to 10 mol% were used. However, at this time, the polyamic acid solution obtained in the manufacturing process of Example 3 had a solid content of 17 wt% and a viscosity of 138 ps.
  • a polyimide film was obtained in the same manner as in Example 1, except that 44.40 g of p-PDA corresponding to 99.1 mol% of diamine total moles and 0.93 g of DATA corresponding to 0.9 mol% were used. However, at this time, the polyamic acid solution obtained in the manufacturing process of Comparative Example 1 had a solid content of 17 wt% and a viscosity of 136 ps.
  • a polyimide film was obtained in the same manner as in Example 1, except that 39.48 g of p-PDA corresponding to 89 mol% of diamine total moles and 11.22 g of DATA corresponding to 11 mol% were used. At this time, the polyamic acid solution obtained in the preparation process of Comparative Example 2 had a solid content of 17 wt% and a viscosity of 140 ps.
  • the polyimide film was prepared in the same manner as in Example 1, except that 39.90 g of p-PDA corresponding to 85 mol% of diamine and 11.398 g of DATA corresponding to 15 mol% were used, but DATA was not dissolved in a solvent. Thus, the polyamic acid solution itself could not be obtained.
  • the coefficient of thermal expansion was measured twice according to TMA-Method using TMA (Perkin Elmer, Diamond TMA) and the temperature rising rate was 10 ° C / min and 100mN. At this time, the length of the specimen to be measured was measured by cutting width 4mm, length 23mm.
  • TMA Perkin Elmer, Diamond TMA
  • the temperature increase rate was raised to 500 ° C with a load of 10 ° C / min and 100mN
  • CTE was defined as the coefficient of thermal expansion of the film, and the number of measurement On the one hand it is called 1 st CTE). 1 st CTE measurement completed Cool to room temperature at 5 °C / min.
  • the coefficient of thermal expansion means a coefficient of linear expansion.
  • Equation 1 The obtained 1 st CTE and 2 nd CTE values were substituted into Equation 1 to calculate the coefficient of thermal expansion.
  • 1 st CTE is the coefficient of thermal expansion obtained by the first measurement in the temperature range of 50 to 500 °C according to the TMA-method method
  • 2 nd CTE is the first measurement after cooling the first measured specimen to room temperature It is a coefficient of thermal expansion obtained by secondary measurement under the same conditions (however, 1 st CTE ⁇ 2 nd CTE is satisfied).
  • Instron 5967 was used to measure tensile strength, modulus and elongation in accordance with ASTM-D882 standards.
  • the specimen size was 13mm * 100mm, Load cell 1KN, and tension rate was measured 7 times per specimen at 50mm / min and measured as the average value except the maximum and minimum values.
  • the polyimide film prepared according to the present invention was expected to ensure thermal dimensional stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention relates to a high heat-resistant polyamic acid solution and a polyimide film, and can provide a polyimide film which has improved heat dimensional stability by comprising a polyamic acid solution containing a polymer of a diamine compound and a dianhydride, the polymer containing a diamine compound having a carboxyl functional group in 1mol% to 10mol% on the basis of the total content of diamines; and, as an imide thereof, a polyimide in which main chains are cross-linked therebetween via an amide linkage.

Description

고내열 폴리아믹산 용액 및 폴리이미드 필름High heat resistant polyamic acid solution and polyimide film
본 발명은 고내열 폴리아믹산 및 폴리이미드 필름에 관한 것으로서, 보다 구체적으로는 카르복실산이 도입된 디아민을 사용하여 중합된 폴리아믹산 용액과 열 치수 안정성이 향상된 고내열 폴리이미드 필름에 관한 것이다.The present invention relates to a high heat-resistant polyamic acid and a polyimide film, and more particularly, to a high heat-resistant polyimide film having improved thermal dimensional stability and a polyamic acid solution polymerized using a diamine having carboxylic acid introduced therein.
폴리이미드는 다른 범용 수지나 엔지니어링 플라스틱에 비해 우수한 내열성, 기계적 특성, 전기적 특성을 나타내므로, 전기, 전자 부품을 비롯하여 기타 고내열 특성이 요구되는 제품의 제조에서 유용한 소재로 유용하게 사용되고 있다. 특히, 이러한 물성으로 인하여, 폴리이미드 수지는 자동차 재료, 항공소재, 우주선 소재 등의 내열 첨단소재 및 절연코팅제, 절연막, 반도체, TFT-LCD의 전극 보호막 등 전자재료 등 광범위한 분야에 사용되고 있고, 최근에는 광섬유나 액정 배향막 같은 표시재료 및 필름 내에 도전성 필러를 함유하거나 표면에 코팅한 투명전극필름으로도 이용되고 있다.Polyimide exhibits excellent heat resistance, mechanical properties, and electrical properties compared to other general-purpose resins and engineering plastics, and thus is useful as a useful material in the manufacture of electric, electronic parts, and other products requiring high heat resistance. In particular, due to such physical properties, polyimide resins are used in a wide range of fields such as heat-resistant high-tech materials such as automobile materials, aviation materials, and spacecraft materials, and electronic materials such as insulation coating agents, insulating films, semiconductors, and TFT-LCD electrode protective films. It is also used as a display material, such as an optical fiber and a liquid crystal aligning film, and the transparent electrode film which contained the conductive filler in the film, or coated on the surface.
일반적으로, 폴리이미드는 디안하이드라이드와 디아민을 용매 중에서 중합하여 폴리아믹산을 합성하고, 이를 가열하여 탈수 및 고리화 반응을 통해 폴리이미드를 합성하거나, 탈수화제를 이용하여 화학적 탈수방법에 의하여 탈수 및 고리화 반응을 이용하여 폴리이미드를 합성한다. In general, the polyimide polymerizes dianhydride and diamine in a solvent to synthesize a polyamic acid, and heats it to synthesize polyimide through dehydration and cyclization, or dehydration by chemical dehydration using a dehydrating agent. Polyimides are synthesized using a cyclization reaction.
상기 폴리이미드 합성 원리를 이용하여 폴리이미드 필름을 제조하는 방법으로는 폴리이미드 전구체인 폴리아믹산 유도체를 캐리어 플레이트에 도포하고 경화시켜 폴리이미드 필름을 얻는 캐스트(cast)법이 일반적이다. 상기 캐스트(cast)법은 수지 용액을 캐리어 플레이트에 도포하는 공정, 수지 중의 용제를 제거하는 건조공정, 폴리이미드 전구체 수지로부터 폴리이미드로 변환하는 이미드화 공정으로 이루어진다.As a method for producing a polyimide film using the polyimide synthesis principle, a cast method of applying a polyamic acid derivative, which is a polyimide precursor, to a carrier plate and curing the polyimide film to obtain a polyimide film is common. The said cast method consists of the process of apply | coating a resin solution to a carrier plate, the drying process of removing the solvent in resin, and the imidation process of converting from polyimide precursor resin to polyimide.
한편, 폴리이미드는 필름으로 제조시 내열성 등의 물성이 우수하나, 강직한 막대 구조로서 필름을 형성하기가 어렵고 깨지기 쉬워 제조가 까다롭다. 특히 파라페닐렌디아민과 피로멜리틱산 디안하이드라이드를 포함하는 조성의 경우 지지체 위에 도포를 하고 열처리할 경우 발포가 되거나 제막 및 박리가 되지 않는 문제도 종종 발생한다. 또한, 폴리이미드 필름은 고온에서 온도변화를 주게 되면 필름의 특성상 수축이나 팽창이 일어나는데, 그 변화의 폭이 항상 일정한 것이 아니어서, 열적 치수안정성을 필요로 하는 분야에서는 사용이 제한되어 왔다.On the other hand, polyimide is excellent in physical properties such as heat resistance when producing a film, but as a rigid rod structure, it is difficult to form a film is difficult to break and difficult to manufacture. In particular, in the case of a composition containing paraphenylenediamine and pyromellitic acid dianhydride, there is often a problem that foaming or film forming and peeling do not occur when applied on a support and heat treated. In addition, the polyimide film shrinks or expands due to the characteristics of the film when the temperature is changed at a high temperature, and the width of the change is not always constant, and thus the use of the polyimide film has been limited in fields requiring thermal dimensional stability.
이에 따라, 폴리이미드 필름이 최근 활발히 적용되고 있는 디스플레이 소자의 기판으로 사용될 경우에는, 고온공정에서의 열적안정성이 전제되어야 한다. 즉, 일반적으로 디스플레이 소자의 기판으로 통용되는 유리(glass)기판의 경우, 열팽창계수가 4ppm/℃정도이므로, 유리기판을 대체하기 위해서는 폴리이미드 필름의 경우 열팽창계수가 적어도 10ppm/℃이하는 만족하여야 한다.Accordingly, when the polyimide film is used as a substrate of a display element that is actively applied in recent years, the thermal stability in the high temperature process must be premised. That is, in the case of a glass substrate commonly used as a substrate of the display element, the coefficient of thermal expansion is about 4ppm / ℃, in order to replace the glass substrate, the thermal expansion coefficient of polyimide film must be at least 10ppm / ℃ or less do.
폴리이미드의 열팽창계수 또는 열치수안정성에 관한 기술의 일예로는, 국내특허공개 10-2012-0073909호에 기재된 발명('고온에서의 열적 치수안정성이 우수한 폴리이미드 필름 및 그를 이용한 디스플레이 소자용 기판')과 국제공개특허 WO2010/113412호에 기재된 발명(발명의 명칭 '저열팽창성 블록 폴리이미드 및 그의 전구체, 및 그 용도') 등을 들 수 있다. As an example of the technology regarding the thermal expansion coefficient or thermal dimension stability of polyimide, the invention described in Korean Patent Publication No. 10-2012-0073909 ('The polyimide film excellent in thermal dimensional stability at high temperature and the substrate for display elements using the same') ) And the invention described in International Publication No. WO2010 / 113412 (name of the invention 'low thermally expandable block polyimide and precursors thereof and uses thereof').
이에 본 발명은 고내열 필름을 형성하는 데 유용한 고내열 폴리아믹산 용액을 제공하고 나아가 열 치수 안정성이 우수한 폴리이미드 필름을 제공하고자 한다.Accordingly, the present invention is to provide a high heat-resistant polyamic acid solution useful for forming a high heat-resistant film and further to provide a polyimide film having excellent thermal dimensional stability.
본 발명에 따른 바람직한 일 구현예에서는, 디아민 화합물과 디안하이드라이드 화합물의 중합물을 포함하고, 상기 디아민 화합물은 카르복실산 작용기를 갖는 디아민 화합물을 전체 디아민 화합물 총몰수 기준으로 1mol% 내지 10mol%로 포함하는 것인 폴리아믹산 용액을 제공한다. In a preferred embodiment according to the present invention, a diamine compound and a dianhydride compound includes a polymer, wherein the diamine compound comprises a diamine compound having a carboxylic acid functional group in 1 mol% to 10 mol% based on the total moles of the total diamine compound It provides a polyamic acid solution.
상기 일 구현예에 의한 폴리아믹산 용액에 있어서, 상기 중합물은 디아민 화합물과 디안하이드라이드 화합물을 1:0.95 내지 1:1 몰비로 반응시켜 얻어진 것일 수 있다. In the polyamic acid solution according to the embodiment, the polymer may be obtained by reacting a diamine compound and a dianhydride compound in a 1: 0.95 to 1: 1 molar ratio.
상기 일 구현예에 의한 폴리아믹산 용액에 있어서, 상기 카르복실산 작용기를 갖는 디아민 화합물은 1,3-디아미노벤조산(DABA), 3,5-디아미노프탈릭실산(DAPA), 및 4,4-디아미노바이페닐-3,3-테트라카르복실산(DATA)으로 이루어진 그룹으로부터 선택된 1 종 이상의 것을 포함할 수 있다. In the polyamic acid solution according to the embodiment, the diamine compound having a carboxylic acid functional group is 1,3-diaminobenzoic acid (DABA), 3,5-diaminophthalic acid (DAPA), and 4,4 It may include one or more selected from the group consisting of -diaminobiphenyl-3,3-tetracarboxylic acid (DATA).
상기 일 구현예에 의한 폴리아믹산 용액에 있어서, 상기 디아민 화합물은 방향족 디아민 화합물을 전체 디아민 화합물 총 몰수 기준으로 90mol% 내지 99mol%로 포함하는 것일 수 있다. In the polyamic acid solution according to the embodiment, the diamine compound may include 90 to 99 mol% of the aromatic diamine compound based on the total number of moles of the diamine compound.
상기 일 구현예에 의한 폴리아믹산 용액에 있어서, 상기 방향족 디아민 화합물은 옥시디아닐린 (ODA), 파라페닐렌디아민 (pPDA), m-페닐렌디아민 (mPDA), p-메틸렌디아민 (pMDA) 및 메타메틸렌디아민 (mMDA)으로 이루어진 그룹으로부터 선택된 1 종 이상의 화합물 또는 이들의 혼합물을 포함할 수 있다. In the polyamic acid solution according to the embodiment, the aromatic diamine compound is oxydianiline (ODA), paraphenylenediamine (pPDA), m-phenylenediamine (mPDA), p-methylenediamine (pMDA) and meta One or more compounds selected from the group consisting of methylenediamine (mMDA) or mixtures thereof.
상기 일 구현예에 의한 폴리아믹산 용액에 있어서, 상기 디안하이드라이드 화합물은 피로멜리틱산 디안하이드라이드(1,2,4,5-벤젠 테트라카르복실릭 디안하이드라이드(PMDA)), 벤조페논 테트라카르복실릭 디안하이드라이드(BTDA), 비페닐 테트라카르복실릭 디안하이드라이드(BPDA), 비스카르복시페닐 디메틸 실란 디안하이드라이드(SiDA), 옥시디프탈릭 디안하이드라이드(ODPA), 비스 디카르복시페녹시 디페닐 설파이드 디안하이드라이드(BDSDA) 및 술포닐 디프탈릭안하이드라이드(SO2DPA)로 이루어진 그룹으로부터 선택된 1종 이상의 화합물 또는 이들의 혼합물을 포함할 수 있다. In the polyamic acid solution according to the embodiment, the dianhydride compound is pyromellitic dianhydride (1,2,4,5-benzene tetracarboxylic dianhydride (PMDA)), benzophenone tetracarbide Cyclic dianhydride (BTDA), biphenyl tetracarboxylic dianhydride (BPDA), biscarboxyphenyl dimethyl silane dianhydride (SiDA), oxydiphthalic dianhydride (ODPA), bis dicarboxyphenoxy di One or more compounds selected from the group consisting of phenyl sulfide dianhydride (BDSDA) and sulfonyl diphthalic anhydride (SO 2 DPA) or mixtures thereof.
상기 일 구현예에 의한 폴리아믹산 용액에 있어서, 상기 중합물은 중량 평균 분자량이 100,000 내지 150,000인 것일 수 있다. In the polyamic acid solution according to the embodiment, the polymer may have a weight average molecular weight of 100,000 to 150,000.
상기 일 구현예에 의한 폴리아믹산 용액에 있어서, 상기 폴리아믹산 용액은 점도가 50 내지 200ps인 것일 수 있다. In the polyamic acid solution according to the embodiment, the polyamic acid solution may have a viscosity of 50 to 200ps.
본 발명의 다른 일 구현예에서는, 상기 일 구현예들에 의한 폴리아믹산 용액의 이미드화물이며, 주쇄와 주쇄 사이가 아미드 결합(-CONH-)으로 가교된 폴리이미드을 포함하는, 폴리이미드 필름을 제공한다.In another embodiment of the present invention, the polyimide film, which is an imide of the polyamic acid solution according to the above embodiments, includes a polyimide crosslinked with an amide bond (-CONH-) between the main chain and the main chain. do.
상기 일 구현예에 의한 폴리이미드 필름은 50 내지 500℃ 온도범위에서 측정된 열팽창계수가 5ppm/℃ 이하이고, 다음 식 1로 정의되는 열팽창계수 증가지수가 10 이하인 것일 수 있다. Polyimide film according to the embodiment The thermal expansion coefficient measured in the temperature range of 50 to 500 ℃ is 5ppm / ℃ or less, the thermal expansion coefficient increase index defined by the following equation 1 may be 10 or less.
<식 1> <Equation 1>
열팽창계수 증가지수 = 2nd CTE / 1st CTECoefficient of thermal expansion = 2 nd CTE / 1 st CTE
상기 식에서, 1st CTE는 TMA-method법에 따라 50 내지 500℃ 온도범위에서 1차 측정하여 얻어진 열팽창계수 값이고, 2nd CTE는 1차 측정된 시편을 상온으로 냉각한 후 1차 측정에서와 동일한 조건으로 2차 측정하여 얻어진 열팽창계수 값이다(단, 1st CTE ≤ 2nd CTE를 만족한다). In the above formula, 1 st CTE is the coefficient of thermal expansion obtained by the first measurement in the temperature range of 50 to 500 ℃ according to the TMA-method method, and 2 nd CTE is the first measurement after cooling the first measured specimen to room temperature It is a coefficient of thermal expansion obtained by secondary measurement under the same conditions (however, 1 st CTE ≤ 2 nd CTE is satisfied).
상기 일 구현예에 의한 폴리이미드 필름은 또한 ASTM D882 기준 인장강도가 250 내지 350 MPa이고, 탄성율이 7.0 내지 10.0GPa이며, 신율이 13 내지 15%인 것일 수 있다. Polyimide film according to the embodiment may also be one of ASTM D882 standard tensile strength of 250 to 350 MPa, elastic modulus of 7.0 to 10.0GPa, elongation of 13 to 15%.
본 발명에 따르면 고내열 필름을 용이하게 형성할 수 있도록 하는 고내열 폴리아믹산 용액을 제공할 수 있고, 나아가 이를 이용하여 제조한 폴리이미드 필름은 우수한 열 치수 안정성을 나타낼 수 있다.According to the present invention can provide a high heat-resistant polyamic acid solution that can easily form a high heat-resistant film, and furthermore, the polyimide film prepared using the same can exhibit excellent thermal dimensional stability.
본 발명의 일 양태에 따르면, 디아민 화합물과 디안하이드라이드 화합물의 중합물을 포함하고, 상기 디아민 화합물은 카르복실산 작용기를 갖는 디아민 화합물을 전체 디아민 화합물 총몰수 기준으로 1mol% 내지 10mol%로 포함하는 것인 폴리아믹산 용액을 제공한다. According to an aspect of the present invention, a diamine compound and a dianhydride compound comprising a polymer, wherein the diamine compound comprises a diamine compound having a carboxylic acid functional group in 1 mol% to 10 mol% based on the total moles of the total diamine compound It provides a phosphorus polyamic acid solution.
디아민 화합물과 디안하이드라이드 화합물의 중합물에 있어서, 디아민 화합물로서 카르복실산 작용기를 갖는 디아민 화합물을 포함하면 얻어진 폴리아믹산 용액으로부터 통상의 방법에 따라 이미드화 및 제막하는 경우 열 치수안정성이 우수한 폴리이미드 필름을 용이하게 얻을 수 있다.In the polymer of a diamine compound and a dianhydride compound, when the diamine compound contains the diamine compound which has a carboxylic acid functional group, it is a polyimide film excellent in thermal dimensional stability at the time of imidating and forming into a film from the obtained polyamic-acid solution. Can be easily obtained.
다시 말해, 폴리아믹산 공중합시에 카르복실산 작용기를 갖는 디아민을 사용하면 디아민 화합물의 분자 사슬 내에 포함된 카르복실산 작용기는 직접 다른 디아민과의 중합 반응에 참여하지는 않으나, 중합물 중의 측쇄 사이 사이에 이로부터 유래된 카르복실산 작용기가 잔류하여 이미드화 및 제막하여 폴리이미드 필름을 형성하게 되면 일부의 카르복실산 작용기는 이미드화 과정의 고온에서 열적 분해가 수반되기는 하지만 궁극적으로는 이미드화된 고분자 주쇄와 주쇄 사이에 가교결합과 같은 네트워크 구조, 구체적으로는 아미드 결합(-CONH-)을 형성할 수 있도록 한다.In other words, when a diamine having a carboxylic acid functional group is used in the polyamic acid copolymerization, the carboxylic acid functional group included in the molecular chain of the diamine compound does not directly participate in the polymerization reaction with other diamines, but is thus used between side chains in the polymer. When the carboxylic acid functional groups derived from the residue are imidized and formed into a polyimide film, some of the carboxylic acid functional groups may be thermally decomposed at high temperature in the imidization process, but ultimately, It is possible to form network structures such as crosslinks, specifically amide bonds (-CONH-), between the main chains.
이와 같이 주쇄와 주쇄 사이가 가교된 폴리이미드의 경우는 가교되지 않은 폴리이미드와 대비하여 내열성, 특히 열 치수안정성이 현저히 향상될 수 있다. 또한 기계적 물성도 개선할 수 있다. As such, in the case of the polyimide crosslinked between the main chain and the main chain, heat resistance, in particular, thermal dimensional stability, can be remarkably improved as compared to the uncrosslinked polyimide. It can also improve mechanical properties.
이러한 가교구조를 형성할 수 있도록 하는 카르복실산 작용기를 갖는 디아민은 디아민 화합물 총 몰수 기준 1mol% 내지 10mol% 포함되는 것이 바람직한데, 1mol% 미만으로 첨가될 경우, 주쇄들 간의 연결이 되는 부분(연결점 내지 가교점)이 본래 의도하는 정도와 대비하여 너무 적어서 기대하는 만큼의 물성개선에 한계가 있으며, 10mol%를 초과하면 필름을 형성하는 주쇄의 배열이 의도하는 바와 같이 사다리 타입의 선형 배열이기는 하지만 주쇄간이 서로 연결이 되는 구조가 아닌 그물 구조에 가깝게 되고 이는 고분자 자체의 용해도를 저하시켜 심할 경우 용액 내에서 고형분으로 침전이 되거나, 국부적으로 가교가 진행되어 필름화시에 필름이 깨지는 문제가 있을 수 있다. 다만, 상기 범위내에서 mol%의 값이 증가할수록 폴리이미드 필름에 반영되는 열치수 안정성이 보다 우수해질 수 있고, 또한 카르복실산 작용기가 필름 내에서 가교되므로 필름 전체의 인장강도와 탄성율이 향상될 수 있다.Diamine having a carboxylic acid functional group to form such a cross-linking structure is preferably included 1 mol% to 10 mol% based on the total moles of the diamine compound, when added to less than 1 mol%, the part (connection point) that is connected between the main chain To crosslinking point) is too small compared to the original intended degree, there is a limit to the improvement of physical properties as expected, and if the content exceeds 10 mol%, the main chain forming the film is a ladder type linear arrangement, as intended. The structure is not connected to each other but close to the net structure, which degrades the solubility of the polymer itself and, in severe cases, may precipitate as a solid in a solution or may cause a problem in that the film is broken during film formation due to local crosslinking. . However, as the value of mol% increases within the above range, the thermal dimensional stability reflected in the polyimide film may be more excellent, and since the carboxylic acid functional groups are crosslinked in the film, tensile strength and elastic modulus of the entire film may be improved. Can be.
본 발명의 바람직한 양태에 따르면, 상기 카르복실산 작용기를 갖는 디아민 화합물은 1,3-디아미노벤조산(DABA), 3,5-디아미노프탈릭산(DAPA), 4,4-디아미노바이페닐-3,3-테트라카르복실산(DATA) 으로 이루어진 그룹으로부터 선택된 1 종 이상을 포함할 수 있고, 그 중, 4-디아미노바이페닐-3,3-테트라카르복실산(DATA)를 사용하는 것이 주 사슬에 두개 이상의 가교가능한 작용기를 갖기 때문에 열팽창 계수와 기계적 물성 개선 측면에서 가장 유리할 수 있다.According to a preferred embodiment of the invention, the diamine compound having a carboxylic acid functional group is 1,3-diaminobenzoic acid (DABA), 3,5-diaminophthalic acid (DAPA), 4,4-diaminobiphenyl It may include one or more selected from the group consisting of -3,3-tetracarboxylic acid (DATA), of which 4-diaminobiphenyl-3,3-tetracarboxylic acid (DATA) is used. Since it has two or more crosslinkable functional groups in the main chain, it may be most advantageous in terms of coefficient of thermal expansion and improvement of mechanical properties.
본 발명의 바람직한 양태에 따르면, 상기 디아민은 카르복실산 작용기를 갖는 디아민 화합물을 제외한 나머지 90 내지 99mol%가 방향족 디아민 화합물일 수 있다. 상기 방향족 디아민 화합물로는 옥시디아닐린 (ODA), 파라페닐렌디아민 (pPDA), m-페닐렌디아민 (mPDA), p-메틸렌디아민 (pMDA) 및 메타메틸렌디아민 (mMDA) 으로 이루어진 그룹으로부터 선택된 1 종 이상의 화합물 또는 이들의 혼합물을 사용하는 것이 바람직하다.According to a preferred embodiment of the present invention, 90 to 99 mol% of the diamine except for the diamine compound having a carboxylic acid functional group may be an aromatic diamine compound. The aromatic diamine compound is selected from the group consisting of oxydianiline (ODA), paraphenylenediamine (pPDA), m-phenylenediamine (mPDA), p-methylenediamine (pMDA) and methmethylenediamine (mMDA). Preference is given to using at least two compounds or mixtures thereof.
본 발명의 바람직한 양태에 따르면, 상기 디아민과 디안하이드라이드는 몰비가 1:0.95 내지 1:1 일 수 있고, 보다 바람직하게는 1:0.96 내지 1:0.99일 수 있고, 가장 바람직하게는 1:0.97 내지 1:0.98일 수 있다. 디아민의 몰수를 1로 기준 하였을 때, 디안하이드라이드의 몰수가 0.95 미만일 경우, 분자량이 작아 필름의 기본 물성이 좋지 못하여 바람직하지 못하고, 1을 초과할 경우 점도가 너무 높아 필름으로 가공할 수 없는 문제가 발생할 수 있다.According to a preferred embodiment of the present invention, the diamine and dianhydride may have a molar ratio of 1: 0.95 to 1: 1, more preferably 1: 0.96 to 1: 0.99, most preferably 1: 0.97 To 1: 0.98. When the mole number of diamine is 1, the molar number of dianhydride is less than 0.95. The molecular weight is not good, so the basic physical properties of the film are not good. If the molar number of diamine is 1, the viscosity is too high. May occur.
본 발명의 바람직한 양태에 따르면, 상기 디안하이드라이드 화합물은 피로멜리틱산 디안하이드라이드(1,2,4,5-벤젠 테트라카르복실릭 디안하이드라이드(PMDA)), 벤조페논 테트라카르복실릭 디안하이드라이드(BTDA), 비페닐 테트라카르복실릭 디안하이드라이드(BPDA), 비스카르복시페닐 디메틸 실란 디안하이드라이드(SiDA), 옥시디프탈릭 디안하이드라이드(ODPA), 비스 디카르복시페녹시 디페닐 설파이드 디안하이드라이드(BDSDA) 및 술포닐 디프탈릭안하이드라이드(SO2DPA)로 이루어진 그룹으로부터 선택된 1종 이상을 단독으로 혹은 혼합하여 사용할 수 있다.According to a preferred embodiment of the present invention, the dianhydride compound is pyromellitic dianhydride (1,2,4,5-benzene tetracarboxylic dianhydride (PMDA)), benzophenone tetracarboxylic dianhydride Hydride (BTDA), biphenyl tetracarboxylic dianhydride (BPDA), biscarboxyphenyl dimethyl silane dianhydride (SiDA), oxydiphthalic dianhydride (ODPA), bis dicarboxyphenoxy diphenyl sulfide dianhydride It may be used alone or in combination of one or more selected from the group consisting of a lide (BDSDA) and sulfonyl diphthalic hydride (SO 2 DPA).
상기한 디아민 화합물들과 디안하이드라이드 화합물들의 일예는 내열성과 기계적 특성 측면에서 바람직한 일예들이며, 이러한 화합물들에 상기한 카르복실산 작용기를 갖는 디아민 화합물을 일정 몰비로 병용함으로써 내열성을 극대화하면서도 필름화가 용이하며 기계적 특성 또한 우수한 폴리이미드 필름을 얻을 수 있다.Examples of the diamine compounds and dianhydride compounds are preferable ones in terms of heat resistance and mechanical properties, and the diamine compounds having carboxylic acid functional groups in combination with these compounds at a constant molar ratio facilitate film formation while maximizing heat resistance. It is possible to obtain a polyimide film having excellent mechanical properties.
또한, 본 발명의 바람직한 양태에 따르면, 폴리아믹산 용액은 유기용매로서 m-크레졸, N-메틸-2-피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 디메틸설폭사이드(DMSO), 아세톤, 디에틸아세테이트 중에서 선택된 하나 이상의 극성용매를 포함할 수 있다. 이때, 용매에 잔존하는 수분 함량은 1000ppm 이하인 것이 물성의 저하를 막는 측면에서 바람직하며, 더욱 좋게는 수분함량이 100ppm 이하인 것이 보다 바람직하다. 아울러, 상기 용매의 함량은 필름 가공에 적합한 점도를 얻기 위하여 전체 폴리아믹산 용액 중 50 내지 95중량%가 바람직하고, 더욱 좋게는 70 내지 90중량%인 것이 보다 바람직하다.In addition, according to a preferred embodiment of the present invention, the polyamic acid solution is m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide as an organic solvent. It may include one or more polar solvents selected from the side (DMSO), acetone, diethyl acetate. At this time, the moisture content remaining in the solvent is preferably 1000 ppm or less in terms of preventing the deterioration of physical properties, and more preferably, the moisture content is 100 ppm or less. In addition, the content of the solvent is preferably 50 to 95% by weight, more preferably 70 to 90% by weight of the total polyamic acid solution in order to obtain a viscosity suitable for film processing.
본 발명의 폴리아믹산 용액은 중량 평균 분자량이 100,000 내지 150,000 인 폴리아믹산을 포함하는 것이 바람직하며, 점도는 50 내지 200ps인 것이 바람직하다. 본 발명의 폴리아믹산 용액이 상기 분자량과 점도를 만족할 경우 최종적으로 제조된 필름이특히, 디스플레이 소자 기판용으로 사용될 때 공정 내에서 고온의 온도에 노출시 휨이나 뒤틀림이 방지되므로 공정 중 패턴의 오류 및 치수변화를 최소할 수 있게 된다.The polyamic acid solution of the present invention preferably contains a polyamic acid having a weight average molecular weight of 100,000 to 150,000, preferably a viscosity of 50 to 200 ps. When the polyamic acid solution of the present invention satisfies the above molecular weight and viscosity, the final film is prevented from warping and warping during processing, especially when exposed to high temperatures in the process when used for display element substrates. It is possible to minimize the dimensional change.
한편, 본 발명의 또 다른 양태에 따르면, 상술한 폴리아믹산 용액의 이미드화물이며, 주쇄와 주쇄 사이가 아미드 결합으로 가교된 폴리이미드를 포함하는, 폴리이미드 필름을 제공할 수 있다. On the other hand, according to another aspect of the present invention, it is possible to provide a polyimide film, which is an imide of the polyamic acid solution described above, and comprises a polyimide crosslinked by an amide bond between the main chain and the main chain.
본 발명에 따른 폴리이미드 필름은 카르복실산 작용기를 갖는 디아민이 포함된 디아민 화합물과 디안하이드라이드 화합물의 중합물인 폴리아믹산 용액을 이미드화하여 얻어지는 것으로, 카르복실산 작용기를 갖는 디아민 중의 카르복실산 작용기는 중합 반응에는 직접적으로 참여하지 않고, 폴리아믹산을 이미드화하는 고온의 공정에서 이미드화되는 주쇄와 주쇄 사이를 가교시키는 역할을 한다. 이때 가교는 아미드 결합을 형성하는 것에 의할 수 있다. 이때 카르복실산 작용기는 일부 고온의 공중 중에서 열적 분해가 일어날 여지도 있으나 실질적으로는 폴리이미드 주쇄와 주쇄 사이에서 아민 작용기와 반응하여 고온에서 가교 반응을 형성한다. 이에 따라, 폴리이미드 필름의 고분자의 가교도가 향상되어 고강도, 고탄성 및 저수축 등의 특성을 나타내며 제막을 용이하게 할 수 있다.The polyimide film according to the present invention is obtained by imidating a polyamic acid solution which is a polymer of a diamine compound containing a diamine having a carboxylic acid functional group and a dianhydride compound, and a carboxylic acid functional group in a diamine having a carboxylic acid functional group. Does not directly participate in the polymerization reaction, and serves to crosslink the main chain and the main chain which are imidated in a high temperature process of imidating a polyamic acid. At this time, crosslinking may be by forming an amide bond. In this case, the carboxylic acid functional group may thermally decompose in some high temperature air but substantially react with the amine functional group between the polyimide main chain and the main chain to form a crosslinking reaction at high temperature. As a result, the degree of crosslinking of the polymer of the polyimide film is improved, thereby exhibiting properties such as high strength, high elasticity, and low shrinkage, and can easily form a film.
특히, 본 발명의 바람직한 양태에 따르면, 상기 폴리이미드 필름은 50 내지 500℃ 온도범위에서 측정된 열팽창계수가 5ppm/℃ 이하이고, 다음 식 1로 정의되는 열팽창계수 증가지수가 10 이하인 필름이다. In particular, according to a preferred embodiment of the present invention, the polyimide film is a film having a thermal expansion coefficient measured at a temperature range of 50 to 500 ° C. or less and 5 ppm / ° C. or less, and a thermal expansion coefficient increasing index defined by Equation 1 below 10 or less.
<식 1> <Equation 1>
열팽창계수 증가지수 = 2nd CTE / 1st CTECoefficient of thermal expansion = 2 nd CTE / 1 st CTE
상기 식에서, 1stCTE는 TMA-method법에 따라 50 내지 500℃ 온도범위에서 1차 측정하여 얻어진 열팽창계수 값이고, 2ndCTE는 1차 측정된 시편을 상온으로 냉각한 후 1차 측정에서와 동일한 조건으로 2차 측정하여 얻어진 열팽창계수 값이다(단, 1stCTE≤ 2ndCTE를 만족한다). In the above formula, 1 st CTE is the coefficient of thermal expansion obtained by the first measurement in the temperature range of 50 to 500 ℃ according to the TMA-method method, and 2 nd CTE is the first measurement after cooling the first measured specimen to room temperature It is a coefficient of thermal expansion obtained by secondary measurement under the same conditions (however, 1 st CTE ≦ 2 nd CTE is satisfied).
본 발명에서 상기 열팽창계수(CTE, coefficient of thermal expansion)란, 유기 재료가 온도가 증가됨에 따라 분자간 혹은 원자간의 결합 길이의 변화를 수치적으로 나타내는 특성으로서 필름제조시 평균적으로 요구되는 값은 5ppm/℃ 미만이며, 특히 열치수 안정성을 위해서는 상기 식 1로 나타낸 열팽창계수 증가지수가 10 이하로 나타나는 것이 바람직하다. 폴리이미드 필름의 열팽창계수가 5ppm/℃를 초과하거나 열팽창계수 증가지수가 10을 초과할 경우 기판용 필름으로 사용될 때 공정 내에서 고온의 온도에 노출됨에 따라 휨이나 뒤틀림이 발생되기 쉬워 공정 중에 패턴의 오류 및 치수 변화를 일으켜 실제적으로 사용되기에 곤란할 수 있다.In the present invention, the coefficient of thermal expansion (CTE) is a characteristic that numerically represents the change in the length of intermolecular or interatomic bonds as the temperature of the organic material increases with an average value of 5ppm / It is preferable that the thermal expansion coefficient increase index represented by Equation 1 is less than or equal to 10 ° C., in particular for thermal dimensional stability. When the coefficient of thermal expansion of polyimide film exceeds 5 ppm / ℃ or the coefficient of thermal expansion increase is more than 10, when used as a substrate film, it is likely to be warped or warped as it is exposed to high temperature in the process. Errors and dimensional changes can cause difficulties in practical use.
보다 구체적으로 상기 열팽창계수의 측정은 분당 5 내지 10℃의 속도로 50 내지 500℃까지 승온하여 측정하는 것이 바람직하며, 1st CTE 측정후 열이력을 제거하도록 상온까지 냉각한 후에 바로 2nd CTE를 측정하여 하는 것이 바람직하다.More specifically, the measurement of the coefficient of thermal expansion is preferably measured by heating up to 50 to 500 ℃ at a rate of 5 to 10 ℃ per minute, 2 nd CTE immediately after cooling to room temperature to remove the thermal history after 1 st CTE measurement It is preferable to measure.
상기 및 이하의 기재에서 상온이라 함은 25~50℃로 정의될 수 있다. In the above and the following description, the room temperature may be defined as 25 ~ 50 ℃.
또한, 2nd 열팽창계수는 1st 열팽창계수와 동일한 측정 조건에서 측정하며, 측정하고자하는 필름 샘플이 외부의 수분으로부터 흡습하는 문제가 생기면 수분이 날아가는 온도 구간에서 수축거동이 발생하기 때문에 CTE 값을 제대로 측정할 수 없는 점에 유의하여야 한다.In addition, the 2 nd coefficient of thermal expansion is measured under the same measurement conditions as that of the 1 st coefficient of thermal expansion, and if the film sample to be measured has a problem of absorbing moisture from external moisture, shrinkage behavior occurs in the temperature range where moisture flows, so that the CTE value is properly It should be noted that it cannot be measured.
또한, 본 발명의 바람직한 양태에 따르면, 폴리이미드 주쇄와 주쇄 사이가 가교결합됨에 따라 고강도 및 고탄성을 만족하며, 구체적으로는 ASTM D882 기준 인장강도가 250 내지 350 MPa이고, 탄성율이 7.0 내지 10.0GPa이며, 신율이 13 내지 15%인 폴리이미드 필름을 제공할 수 있다. In addition, according to a preferred embodiment of the present invention, the crosslinking between the polyimide main chain and the main chain satisfies high strength and high elasticity, specifically, the ASTM D882 standard tensile strength is 250 to 350 MPa, elastic modulus is 7.0 to 10.0 GPa , Polyimide film having an elongation of 13 to 15% can be provided.
상기 폴리이미드 필름을 제조하기 위한 방법은 각별히 한정되는 것은 아니며, (a) 디아민 화합물의 총 몰수 기준 카르복실산 작용기를 갖는 디아민 화합물을 1mol% 내지 10mol% 포함하는 디아민 화합물; 및 디안하이드라이드 화합물을 공중합하여 폴리아믹산 용액을 제조하는 단계; (b) 상기 (a)단계의 폴리아믹산 용액을 지지체에 캐스팅하여 이미드화하는 단계를 거칠 수 있다. The method for producing the polyimide film is not particularly limited, and (a) a diamine compound containing 1 mol% to 10 mol% of a diamine compound having a carboxylic acid functional group based on the total number of moles of the diamine compound; And copolymerizing the dianhydride compound to prepare a polyamic acid solution. (b) casting the polyamic acid solution of step (a) to the support to undergo imidization.
이때, 상기 (a) 단계를 통하여 폴리아믹산 용액을 제조하는 방법은 상술한 바와 같으므로 생략한다. 다만, (a)단계의 공중합시, 반응 온도는 -20 내지 80℃가 바람직하고, 반응시간은 2 내지 48시간이 바람직하다. 또한 상기 공중합 반응은 아르곤이나 질소 등의 불활성 분위기에서 수행하는 것이 보다 바람직하다.At this time, the method of preparing a polyamic acid solution through the step (a) is as described above, it will be omitted. However, in the copolymerization of step (a), the reaction temperature is preferably -20 to 80 ℃, the reaction time is preferably 2 to 48 hours. The copolymerization reaction is more preferably carried out in an inert atmosphere such as argon or nitrogen.
본 발명에 있어서, 상기 (b)단계에서 폴리아믹산 용액을 지지체에 캐스팅하여 이미드화하는 방법으로는 통상적으로 적용되던 방법이면 이에 제한되지 않으며, 열이미드화법, 화학이미드화법, 또는 열이미드화법과 화학이미드화법을 병용하여 적용할 수 있다. 좋기로는 열이미드화법으로만 진행하는 것이 순간적으로 고분자의 분자량, 즉 중합도가 급격히 상승하여 급격한 용해도 감소 즉, 고형화가 이루어져 필름이 부서지는 것을 방지할 수 있는 측면에서 바람직할 수 있다. In the present invention, a method of imidizing the polyamic acid solution by casting the polyamic acid solution in the step (b) is not limited thereto, and the method is not limited thereto, and thermal imidization, chemical imidization, or thermal imide The compounding method and the chemical imidization method can be used in combination. Preferably, it is preferable to proceed only with the thermal imidization method in view of the fact that the molecular weight of the polymer, that is, the degree of polymerization is rapidly increased and the solubility decreases, that is, the solidification is prevented to prevent the film from breaking.
최종적으로 제조된 폴리이미드 필름의 두께는 특별히 한정되는 것은 아니지만, 10 내지 20㎛의 범위인 것이 바람직하고, 보다 바람직하게는 10 내지 15㎛일 수 있다.Although the thickness of the finally produced polyimide film is not specifically limited, It is preferable that it is the range of 10-20 micrometers, More preferably, it may be 10-15 micrometers.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, and the present invention is not limited thereto.
실시예 1Example 1
반응기로서 교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서 N,N-디메틸아세타아미드(DMAc) 715g을 채우고, 반응기의 온도를 35℃로 맞춘 후, 디아민 총 몰수(0.405mol, 이하, 실시예 2 내지 3 및 비교예 1 내지 3동일) 99mol%에 해당하는 파라페닐렌디아민(p-PDA) 43.92g을 용해하여 이 용액을 35℃로 유지하였다.715g of N, N-dimethylacetaamide (DMAc) was charged while passing nitrogen through a 1L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller, and a cooler as a reactor, and the temperature of the reactor was adjusted to 35 ° C. 43.92 g of paraphenylenediamine (p-PDA) corresponding to 99 mol% of the total number of moles of diamine (0.405 mol, hereinafter, Examples 2 to 3 and Comparative Examples 1 to 3) were dissolved to maintain the solution at 35 ° C.
여기에 디아민 총 몰수의 1mol%에 해당하는 4,4-디아미노바이페닐-3,3-테트라카르복실산(DATA) 1.02g과 디안하이드라이드 총 몰수 30 mol%에 해당하는 비페닐 테트라카르복실릭 디안하이드라이드(BPDA) 36.18g을 투입 후 2시간 동안 반응 후에 디안하이드라이드 총 몰수 67mol% 에 해당하는 1,2,4,5-벤젠 테트라카르복실릭 디안하이드라이드(PMDA) 62.60g을 투입 후에 12시간 동안 교반하여 용해 및 반응시켰다. 이때 용액의 온도는 35℃로 유지하였으며, 고형분의 농도는 17중량%이며, 점도가 140ps인 폴리아믹산 용액을 얻었다.Here, 1.02 g of 4,4-diaminobiphenyl-3,3-tetracarboxylic acid (DATA) corresponding to 1 mol% of the total moles of diamine and biphenyl tetracarboxyl corresponding to 30 mol% of the total moles of dianhydride. After 36.18 g of ric dianhydride (BPDA) was added, 62.60 g of 1,2,4,5-benzene tetracarboxylic dianhydride (PMDA) corresponding to 67 mol% of total moles of dianhydride was added after 2 hours of reaction. After stirring for 12 hours to dissolve and react. At this time, the temperature of the solution was maintained at 35 ℃, the concentration of the solid content was 17% by weight, and a polyamic acid solution having a viscosity of 140 ps was obtained.
반응이 종료된 후 수득된 용액을 지지체에 도포한 후 두께 20㎛로 캐스팅하고 열풍으로 200℃에서 30분 열처리하여 1차적으로 용매를 제거하고, 300℃에서 1시간, 500℃에서 2분 동안 추가적으로 열풍으로 건조한 다음, 서서히 냉각해 지지체로부터 분리하여, 두께 12㎛인 폴리이미드 필름을 수득하였다. After the reaction was completed with a cast coating the resulting solution on a support and then 20㎛ thickness and heat-treated in 200 ℃ 30 bun hot air to remove the solvent, and primarily, 300 ℃ 1 hour, an additional 2 minutes at 500 ℃ After drying with hot air, the mixture was slowly cooled to separate from the support to obtain a polyimide film having a thickness of 12 µm.
실시예 2Example 2
디아민 총 몰수 기준 95mol%에 해당하는 p-PDA 42.12g 및 5mol%에 해당하는 DATA 5.69g을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 폴리이미드 필름을 수득하였다. 다만, 이때 실시예 2의 제조과정에서 얻은 폴리아믹산 용액은 고형분의 농도가 17중량%이고, 점도가 135ps였다.A polyimide film was obtained in the same manner as in Example 1, except that 42.12 g of p-PDA corresponding to 95 mol% of total diamine and 5.69 g of DATA corresponding to 5 mol% were used. However, at this time, the polyamic acid solution obtained in the preparation process of Example 2 had a solid content of 17 wt% and a viscosity of 135 ps.
실시예 3Example 3
디아민 총 몰수 기준 90mol%에 해당하는 p-PDA 39.92g 및 10mol%에 해당하는 DATA 10.20g을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 폴리이미드 필름을 수득하였다. 다만, 이때 실시예 3의 제조과정에서 얻은 폴리아믹산 용액은 고형분의 농도가 17중량%이고, 점도가 138ps였다.A polyimide film was obtained in the same manner as in Example 1, except that 39.92 g of p-PDA corresponding to 90 mol% of diamine total mole number and 10.20 g of DATA corresponding to 10 mol% were used. However, at this time, the polyamic acid solution obtained in the manufacturing process of Example 3 had a solid content of 17 wt% and a viscosity of 138 ps.
비교예 1Comparative Example 1
디아민 총 몰수 기준 99.1mol%에 해당하는 p-PDA 44.40g 및 0.9mol%에 해당하는 DATA 0.93g을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 폴리이미드 필름을 수득하였다. 다만, 이때 비교예 1의 제조과정에서 얻은 폴리아믹산 용액은 고형분의 농도가 17중량%이고, 점도가 136ps였다. A polyimide film was obtained in the same manner as in Example 1, except that 44.40 g of p-PDA corresponding to 99.1 mol% of diamine total moles and 0.93 g of DATA corresponding to 0.9 mol% were used. However, at this time, the polyamic acid solution obtained in the manufacturing process of Comparative Example 1 had a solid content of 17 wt% and a viscosity of 136 ps.
비교예 2Comparative Example 2
디아민 총 몰수 기준 89mol%에 해당하는 p-PDA 39.48g 및 11mol%에 해당하는 DATA 11.22g을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 폴리이미드 필름을 수득하였다. 다만, 이때 비교예 2의 제조과정에서 얻은 폴리아믹산 용액은 고형분의 농도가 17중량%이고, 점도가 140ps였다.A polyimide film was obtained in the same manner as in Example 1, except that 39.48 g of p-PDA corresponding to 89 mol% of diamine total moles and 11.22 g of DATA corresponding to 11 mol% were used. At this time, the polyamic acid solution obtained in the preparation process of Comparative Example 2 had a solid content of 17 wt% and a viscosity of 140 ps.
비교예 3Comparative Example 3
디아민 총 몰수 기준 85mol%에 해당하는 p-PDA 39.90g 및 15mol%에 해당하는 DATA 11.398g을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 폴리이미드 필름을 제조하고자 하였으나, DATA가 용매에 용해되지 않아 폴리아믹산 용액 자체를 얻을 수 없었다.The polyimide film was prepared in the same manner as in Example 1, except that 39.90 g of p-PDA corresponding to 85 mol% of diamine and 11.398 g of DATA corresponding to 15 mol% were used, but DATA was not dissolved in a solvent. Thus, the polyamic acid solution itself could not be obtained.
비교예 4Comparative Example 4
N,N-디메틸아세타아미드(DMAc) 727g, 디아민 총 몰수(0.398mol. 이하 비교예 5 동일)의 95mol%에 해당하는 p-PDA 43.14g, 5mol%에 해당하는 4,4'-디아미노 바이페닐(DABP) 4.62g, 30 mol%에 해당하는 BPDA 37.07g 및 67mol% 에 해당하는 PMDA 61.37g을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 폴리이미드 필름을 수득하였다. 비교예 4의 제조과정에서 얻은 폴리아믹산 용액은 고형분의 농도가 17중량%이고, 점도가 148ps였다.727 g of N, N-dimethylacetaamide (DMAc), 43.14 g of p-PDA corresponding to 95 mol% of the total number of moles of diamine (0.398 mol. The same as Comparative Example 5 below), 4,4'-diamino corresponding to 5 mol% A polyimide film was obtained in the same manner as in Example 1, except that 4.62 g of biphenyl (DABP), 37.07 g of BPDA corresponding to 30 mol%, and 61.37 g of PMDA corresponding to 67 mol% were used. The polyamic acid solution obtained in the preparation process of Comparative Example 4 had a solid content of 17 wt% and a viscosity of 148 ps.
비교예 5Comparative Example 5
상기 비교예 4의 화합물 함량에서 N,N-디메틸아세타아미드(DMAc) 738g, 디아민 총 몰수 기준 90mol%에 해당하는 p-PDA 40.87g 및 10mol%에 해당하는 DABP 9.24g를 변경한 것을 제외하고 비교예 4와 같이 실시예 1과 동일한 방법으로 폴리이미드 필름을 수득하였다. 비교예 5의 제조과정에서 얻은 폴리아믹산 용액은 고형분의 농도가 17중량%이고, 점도가 125ps였다.Except for changing the compound content of Comparative Example 4 738g of N, N-dimethylacetaamide (DMAc), 40.87g of p-PDA corresponding to 90mol% based on the total moles of diamine and 9.24g of DABP corresponding to 10mol% A polyimide film was obtained in the same manner as in Example 1 as in Comparative Example 4. The polyamic acid solution obtained in the preparation process of Comparative Example 5 had a solid content of 17 wt% and a viscosity of 125 ps.
물성평가Property evaluation
상기 실시예 1 내지 3 및 비교예 1 내지 5에서 제조된 필름을 이용하여, 아래와 같은 방법으로 열팽창계수(CTE) 및 필름의 기계적 물성을 측정하고, 그 결과를 하기 표 1 및 2에 기재하였다.Using the films prepared in Examples 1 to 3 and Comparative Examples 1 to 5, the coefficient of thermal expansion (CTE) and the mechanical properties of the film were measured by the following method, and the results are shown in Tables 1 and 2 below.
(1) 열팽창계수(CTE)(1) coefficient of thermal expansion (CTE)
TMA(Perkin Elmer사, Diamond TMA)를 이용하여 TMA-Method에 따라 2번에 걸쳐 열팽창계수를 측정하였으며 승온속도는 10℃/min, 100mN의 하중을 가하였다. 이때, 측정하고자 하는 시편의 길이는 폭 4mm, 길이 23mm 재단하여 측정하였다. 1st CTE 측정시 50℃에서 등온 조건으로 1분간 유지하고 승온 속도는 10℃/min, 100mN의 하중으로 500℃까지 승온하여 CTE를 측정하였다(이를, 필름의 열팽창계수로 정의하며, 또한 측정횟수적 측면에서 1st CTE로 칭한다). 1st CTE 측정 완료 5℃/min로 상온까지 냉각한다. 2nd CTE를 측정하기 위하여 1st CTE 측정 조건과 동일하게 측정하였으며 2nd CTE 측정시 50℃에서 등온 조건으로 1분간 유지하고 승온 속도는 10℃/min, 100mN의 하중으로 500℃까지 승온하여 2nd CTE 를 측정하였다. The coefficient of thermal expansion was measured twice according to TMA-Method using TMA (Perkin Elmer, Diamond TMA) and the temperature rising rate was 10 ° C / min and 100mN. At this time, the length of the specimen to be measured was measured by cutting width 4mm, length 23mm. When measuring 1 st CTE, the temperature was maintained at 50 ° C for 1 minute under isothermal conditions, and the temperature increase rate was raised to 500 ° C with a load of 10 ° C / min and 100mN (CTE was defined as the coefficient of thermal expansion of the film, and the number of measurement On the one hand it is called 1 st CTE). 1 st CTE measurement completed Cool to room temperature at 5 ℃ / min. In order to measure 2 nd CTE, the measurement was carried out in the same manner as the 1 st CTE measurement conditions. For 2 nd CTE measurement, the temperature was maintained at 50 ° C. for 1 minute under isothermal conditions, and the temperature increase rate was 10 ° C./min. nd CTE was measured.
상기 및 이하의 기재에 있어서 열팽창계수는 선 팽창계수를 의미하는 것이다. In the above and the following descriptions, the coefficient of thermal expansion means a coefficient of linear expansion.
얻어진 1st CTE와 2nd CTE값을 다음 식 1에 대입하여 열팽창계수 증가지수로 산출하였다. The obtained 1 st CTE and 2 nd CTE values were substituted into Equation 1 to calculate the coefficient of thermal expansion.
<식 1><Equation 1>
열팽창계수 증가지수 = 2nd CTE / 1st CTECoefficient of thermal expansion = 2 nd CTE / 1 st CTE
상기 식에서, 1stCTE는 TMA-method법에 따라 50 내지 500℃ 온도범위에서 1차 측정하여 얻어진 열팽창계수 값이고, 2ndCTE는 1차 측정된 시편을 상온으로 냉각한 후 1차 측정에서와 동일한 조건으로 2차 측정하여 얻어진 열팽창계수 값이다(단, 1stCTE≤ 2ndCTE를 만족한다). In the above formula, 1 st CTE is the coefficient of thermal expansion obtained by the first measurement in the temperature range of 50 to 500 ℃ according to the TMA-method method, and 2 nd CTE is the first measurement after cooling the first measured specimen to room temperature It is a coefficient of thermal expansion obtained by secondary measurement under the same conditions (however, 1 st CTE ≦ 2 nd CTE is satisfied).
(2) 기계적 물성(2) mechanical properties
Instron사의 5967을 사용하여 ASTM-D882 기준에 맞추어 인장강도, 탄성율 및 신율을 측정하였다. 시편의 크기는 13mm*100mm, Load cell 1KN, Tension rate를 50mm/min으로 시편당 7회 측정하여 최대값 및 최소값을 제외한 평균값으로 측정하였다. Instron 5967 was used to measure tensile strength, modulus and elongation in accordance with ASTM-D882 standards. The specimen size was 13mm * 100mm, Load cell 1KN, and tension rate was measured 7 times per specimen at 50mm / min and measured as the average value except the maximum and minimum values.
표 1
조성 몰비 (mol%) 점도 (Ps) 1st CTE(ppm/℃) 2 ndCTE(ppm/℃) 열팽창계수 증가지수 (%)
실시예 1 pPDA+DATA+BPDA+PDMA 99:1:30:67 140 0.75 3.87 5.16
실시예 2 95:5:30:67 135 1.23 2.59 2.10
실시예 3 90:10:30:67 145 2.37 2.89 1.21
비교예 1 pPDA+DATA+BPDA+PDMA 99.1:0.9:30:67 138 0.35 5.15 14.71
비교예 2 89:11:30:67 136 1.38 15.66 11.34
비교예 3 85:15:30:67 평가 불가
비교예 4 pPDA+DABP+BPDA+PMDA 95:5:30:67 148 0.37 5.98 16
비교예 5 99:10:30:67 125 0.26 6.53 25
Table 1
Furtherance Molar ratio (mol%) Viscosity (Ps) 1 st CTE (ppm / ° C) 2 nd CTE (ppm / ° C) Thermal expansion coefficient increase index (%)
Example 1 pPDA + DATA + BPDA + PDMA 99: 1 : 30:67 140 0.75 3.87 5.16
Example 2 95: 5 : 30: 67 135 1.23 2.59 2.10
Example 3 90: 10 : 30:67 145 2.37 2.89 1.21
Comparative Example 1 pPDA + DATA + BPDA + PDMA 99.1: 0.9 : 30: 67 138 0.35 5.15 14.71
Comparative Example 2 89: 11 : 30:67 136 1.38 15.66 11.34
Comparative Example 3 85: 15 : 30:67 Not rated
Comparative Example 4 pPDA + DABP + BPDA + PMDA 95: 5: 30: 67 148 0.37 5.98 16
Comparative Example 5 99: 10: 30: 67 125 0.26 6.53 25
물성측정결과, 상기 표 1에 나타난 바와 같이, 카르복실산 작용기가 도입된 DATA의 함량이 디아민 화합물의 총 몰수 기준 1 내지 10ml%인 경우, 두 번째 측정된 CTE가 그 사용량이 상기 범위를 벗어나는 일예인 비교예 1 내지 3과 대비하여 낮고, 이에 따라 열팽창계수 증가지수 또한 현저하게 작음을 알 수 있다. As a result of physical property measurement, as shown in Table 1 above, when the content of DATA into which the carboxylic acid functional group was introduced is 1 to 10 ml% based on the total moles of the diamine compound, the second measured CTE was used out of the above range. Compared with Comparative Examples 1 to 3 which are examples, it can be seen that the coefficient of thermal expansion increase is also significantly small.
더욱이 디아민 단량체로서 DATA와 대비하여 카르복실산 작용기를 갖지 않는 DABP를 사용한 비교예 4 내지 5의 경우 두 번째 측정된 CTE값이 클 뿐만 아니라, 열팽창계수 증가지수 또한 월등히 커짐을 알 수 있다. Furthermore, in the case of Comparative Examples 4 to 5 using DABP having no carboxylic acid functional group as a diamine monomer, the second measured CTE value was not only large, but also the coefficient of thermal expansion increase was also significantly increased.
이에 따라, 본 발명에 따라 제조된 폴리이미드 필름은 열 치수 안정성이 확보될 것으로 예상되었다. Accordingly, the polyimide film prepared according to the present invention was expected to ensure thermal dimensional stability.
표 2
조성 몰비 (mol%) 두께 (㎛) 인장강도 (MPa) 탄성율 (GPa) 신율 (%)
실시예 1 pPDA+DATA+BPDA+PDMA 99:1:30:67 13 260 7.3 15
실시예 2 95:5:30:67 12 310 8.5 14
실시예 3 90:10:30:67 15 330 9.5 13
비교예 1 pPDA+DATA+BPDA+PDMA 99.1:0.9:30:67 11 258 7.2 10
비교예 2 89:11:30:67 13 333 9.6 11
비교예 3 85:15:30:67 평가 불가
비교예 4 pPDA+DABP+BPDA+PMDA 99:5:30:67 13 270 7.2 12
비교예 5 99:10:30:67 14 280 7.3 11
TABLE 2
Furtherance Molar ratio (mol%) Thickness (㎛) Tensile Strength (MPa) Modulus of elasticity (GPa) Elongation (%)
Example 1 pPDA + DATA + BPDA + PDMA 99: 1: 30: 67 13 260 7.3 15
Example 2 95: 5: 30: 67 12 310 8.5 14
Example 3 90: 10: 30: 67 15 330 9.5 13
Comparative Example 1 pPDA + DATA + BPDA + PDMA 99.1: 0.9 : 30: 67 11 258 7.2 10
Comparative Example 2 89: 11 : 30:67 13 333 9.6 11
Comparative Example 3 85: 15 : 30:67 Not rated
Comparative Example 4 pPDA + DABP + BPDA + PMDA 99: 5: 30: 67 13 270 7.2 12
Comparative Example 5 99: 10: 30: 67 14 280 7.3 11
한편, 기계적 물성 측정결과에 따르면, 상기 표 2에 나타난 바와 같이, 가교반응이 가능한 DATA의 몰 함량이 증가함에 따라 사슬간 형성되는 가교도의 증가로 인해 인장강도와 탄성율 모두 증가함을 확인할 수 있었다. 또한, 카르복실산이 도입된 디아민의 함량이 증가할수록 디아민의 Biphenyl 구조에 의해 필름이 다소 Brilttle해 질 수 있어 신율이 저하되는 경향은 나타났으나 이는 카르복실산이 도입되지 않은 디아민에 비해서는 우수한 수준으로 보였다. 다만, 본 발명의 바람직한 범위에서 벗어날 경우 신율이 급격히 저하되어 기계적 물성이 저하됨을 알 수 있었다.On the other hand, according to the mechanical property measurement results, as shown in Table 2, it was confirmed that both the tensile strength and the elastic modulus increase due to the increase in the crosslinking degree formed between the chains as the molar content of the crosslinking reaction possible increases. In addition, as the content of diamine introduced with carboxylic acid increased, the film could be more brittle due to the biphenyl structure of the diamine, so that the elongation tended to decrease, but this was superior to the diamine without carboxylic acid introduced. Seemed. However, when the deviation from the preferred range of the present invention elongation is sharply reduced it can be seen that the mechanical properties are lowered.

Claims (11)

  1. 디아민 화합물과 디안하이드라이드 화합물의 중합물을 포함하고,Containing a polymer of a diamine compound and a dianhydride compound,
    상기 디아민 화합물은 카르복실산 작용기를 갖는 디아민 화합물을 전체 디아민 화합물 총 몰수 기준으로 1mol% 내지 10mol%로 포함하는 것인 폴리아믹산 용액. The diamine compound is a polyamic acid solution comprising a diamine compound having a carboxylic acid functional group in 1 mol% to 10 mol% based on the total number of moles of the diamine compound.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 중합물은 디아민 화합물과 디안하이드라이드 화합물을 1:0.95 내지 1:1 몰비로 반응시켜 얻어진 것을 특징으로 하는 폴리아믹산 용액.The polymer is obtained by reacting a diamine compound and a dianhydride compound in a 1: 0.95 to 1: 1 molar ratio.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 카르복실산 작용기를 갖는 디아민 화합물은 1,3-디아미노벤조산(DABA), 3,5-디아미노프탈릭실산(DAPA) 및 4,4-디아미노바이페닐-3,3-테트라카르복실산(DATA)으로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는 것을 특징으로 하는 폴리아믹산 용액.The diamine compound having the carboxylic acid functional group is 1,3-diaminobenzoic acid (DABA), 3,5-diaminophthalic acid (DAPA) and 4,4-diaminobiphenyl-3,3-tetracarboxyl A polyamic acid solution, characterized in that it comprises one or more selected from the group consisting of acid (DATA).
  4. 제 1 항에 있어서,The method of claim 1,
    상기 디아민 화합물은 방향족 디아민 화합물을 전체 디아민 화합물 총 몰수 기준으로 90mol% 내지 99mol%로 포함하는 것을 특징으로 하는 폴리아믹산 용액.The diamine compound is a polyamic acid solution, characterized in that it comprises 90 to 99 mol% of the aromatic diamine compound based on the total number of moles of the diamine compound.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 방향족 디아민 화합물은 옥시디아닐린 (ODA), 파라페닐렌디아민 (pPDA), m-페닐렌디아민 (mPDA), p-메틸렌디아민 (pMDA) 및 메타메틸렌디아민 (mMDA)으로 이루어진 그룹으로부터 선택된 1 종 이상의 화합물 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 폴리아믹산 용액.The aromatic diamine compound is one selected from the group consisting of oxydianiline (ODA), paraphenylenediamine (pPDA), m-phenylenediamine (mPDA), p-methylenediamine (pMDA) and methmethylenediamine (mMDA) A polyamic acid solution comprising the above compound or a mixture thereof.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 디안하이드라이드 화합물은 피로멜리틱산 디안하이드라이드(1,2,4,5-벤젠 테트라카르복실릭 디안하이드라이드(PMDA)), 벤조페논 테트라카르복실릭 디안하이드라이드(BTDA), 비페닐 테트라카르복실릭 디안하이드라이드(BPDA), 비스카르복시페닐 디메틸 실란 디안하이드라이드(SiDA), 옥시디프탈릭 디안하이드라이드(ODPA), 비스 디카르복시페녹시 디페닐 설파이드 디안하이드라이드(BDSDA) 및 술포닐 디프탈릭안하이드라이드(SO2DPA)로 이루어진 그룹으로부터 선택된 1종 이상의 화합물 또는 이들의 혼합물인 것을 특징으로 하는 폴리아믹산 용액.The dianhydride compound is pyromellitic dianhydride (1,2,4,5-benzene tetracarboxylic dianhydride (PMDA)), benzophenone tetracarboxylic dianhydride (BTDA), biphenyl tetra Carboxylic dianhydride (BPDA), biscarboxyphenyl dimethyl silane dianhydride (SiDA), oxydiphthalic dianhydride (ODPA), bis dicarboxyphenoxy diphenyl sulfide dianhydride (BDSDA) and sulfonyl dip A polyamic acid solution, characterized in that at least one compound selected from the group consisting of talian hydride (SO 2 DPA) or a mixture thereof.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 중합물은 중량 평균 분자량이 100,000 내지 150,000인 것을 특징으로 하는 폴리아믹산 용액.The polymer is a polyamic acid solution, characterized in that the weight average molecular weight of 100,000 to 150,000.
  8. 제 1항에 있어서,The method of claim 1,
    상기 폴리아믹산 용액은 점도가 50 내지 200ps인 것을 특징으로 하는 폴리아믹산 용액.The polyamic acid solution is a polyamic acid solution, characterized in that the viscosity of 50 to 200ps.
  9. 제 1 항의 폴리아믹산 용액의 이미드화물이며,It is an imide of the polyamic-acid solution of Claim 1,
    주쇄와 주쇄 사이가 아미드 결합(-CONH-)으로 가교된 폴리이미드를 포함하는 폴리이미드 필름.A polyimide film comprising a polyimide crosslinked with an amide bond (-CONH-) between the main chain and the main chain.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 폴리이미드 필름은 50 내지 500℃ 온도범위에서 측정된 열팽창계수가 5ppm/℃ 이하이고, 다음 식 1로 정의되는 열팽창계수 증가지수가 10 이하인 것을 특징으로 하는 폴리이미드 필름. The polyimide film is a polyimide film, characterized in that the thermal expansion coefficient measured in the temperature range of 50 to 500 ℃ 5ppm / ℃ or less, the thermal expansion coefficient increase index defined by the following formula (1) 10 or less.
    <식 1> <Equation 1>
    열팽창계수 증가지수 = 2nd CTE / 1st CTECoefficient of thermal expansion = 2 nd CTE / 1 st CTE
    상기 식에서, 1st CTE는 TMA-method법에 따라 50 내지 500℃ 온도범위에서 1차 측정하여 얻어진 열팽창계수 값이고, 2nd CTE는 1차 측정된 시편을 상온으로 냉각한 후 1차 측정에서와 동일한 조건으로 2차 측정하여 얻어진 열팽창계수 값이다(단, 1st CTE ≤ 2nd CTE를 만족한다). In the above formula, 1 st CTE is the coefficient of thermal expansion obtained by the first measurement in the temperature range of 50 to 500 ℃ according to the TMA-method method, and 2 nd CTE is the first measurement after cooling the first measured specimen to room temperature It is a coefficient of thermal expansion obtained by secondary measurement under the same conditions (however, 1 st CTE ≤ 2 nd CTE is satisfied).
  11. 제 9 항에 있어서,The method of claim 9,
    상기 폴리이미드 필름은 ASTM D882 기준 인장강도가 250 내지 350 MPa이고, 탄성율이 7.0 내지 10.0GPa이며, 신율이 13 내지 15%인 것을 특징으로 하는 폴리이미드 필름.The polyimide film has a tensile strength of 250 to 350 MPa based on ASTM D882, an elastic modulus of 7.0 to 10.0 GPa, and an elongation of 13 to 15%.
PCT/KR2015/006666 2014-06-30 2015-06-30 High heat-resistant polyamic acid solution and polyimide film WO2016003146A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15815907.9A EP3162838A4 (en) 2014-06-30 2015-06-30 High heat-resistant polyamic acid solution and polyimide film
JP2016575755A JP6715406B2 (en) 2014-06-30 2015-06-30 High heat resistant polyimide film
US15/322,957 US10538665B2 (en) 2014-06-30 2015-06-30 High heat-resistant polyamic acid solution and polyimide film
CN201580035000.8A CN106536597A (en) 2014-06-30 2015-06-30 High heat-resistant polyamic acid solution and polyimide film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0081403 2014-06-30
KR20140081403 2014-06-30
KR1020150091870A KR102248994B1 (en) 2014-06-30 2015-06-29 Polyamic acid solution having high heat-resistance properties and Polyimide film
KR10-2015-0091870 2015-06-29

Publications (1)

Publication Number Publication Date
WO2016003146A1 true WO2016003146A1 (en) 2016-01-07

Family

ID=55019607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006666 WO2016003146A1 (en) 2014-06-30 2015-06-30 High heat-resistant polyamic acid solution and polyimide film

Country Status (1)

Country Link
WO (1) WO2016003146A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155167A (en) * 2016-03-03 2017-09-07 日立化成デュポンマイクロシステムズ株式会社 Resin composition and polyimide resin film
JP2017155168A (en) * 2016-03-03 2017-09-07 日立化成デュポンマイクロシステムズ株式会社 Resin composition and polyimide resin film
JP2020183540A (en) * 2020-07-09 2020-11-12 Hdマイクロシステムズ株式会社 Resin composition and polyimide resin film
JPWO2020066561A1 (en) * 2018-09-27 2021-03-11 富士フイルム株式会社 Polymer production method and flow reaction system for producing polymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778872A (en) * 1984-11-06 1988-10-18 Ube Industries, Ltd. Polyamic acid solution composition and polymide film made therefrom
US5741599A (en) * 1995-10-12 1998-04-21 Pi Materials Research Laboratory Polyimide compositions for electrodeposition and coatings formed of the same
US6790930B1 (en) * 1999-10-06 2004-09-14 Kaneka Corporation Process for producing polyimide resin
KR20050113235A (en) * 2003-04-18 2005-12-01 가부시키가이샤 가네카 Thermosetting resin composition, multilayer body using same, and circuit board
US20060009615A1 (en) * 2004-07-09 2006-01-12 Kenji Uhara Polyamic acids, polyimide films and polymide-metal laminates and methods for making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778872A (en) * 1984-11-06 1988-10-18 Ube Industries, Ltd. Polyamic acid solution composition and polymide film made therefrom
US5741599A (en) * 1995-10-12 1998-04-21 Pi Materials Research Laboratory Polyimide compositions for electrodeposition and coatings formed of the same
US6790930B1 (en) * 1999-10-06 2004-09-14 Kaneka Corporation Process for producing polyimide resin
KR20050113235A (en) * 2003-04-18 2005-12-01 가부시키가이샤 가네카 Thermosetting resin composition, multilayer body using same, and circuit board
US20060009615A1 (en) * 2004-07-09 2006-01-12 Kenji Uhara Polyamic acids, polyimide films and polymide-metal laminates and methods for making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3162838A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017155167A (en) * 2016-03-03 2017-09-07 日立化成デュポンマイクロシステムズ株式会社 Resin composition and polyimide resin film
JP2017155168A (en) * 2016-03-03 2017-09-07 日立化成デュポンマイクロシステムズ株式会社 Resin composition and polyimide resin film
JPWO2020066561A1 (en) * 2018-09-27 2021-03-11 富士フイルム株式会社 Polymer production method and flow reaction system for producing polymer
JP7012866B2 (en) 2018-09-27 2022-01-28 富士フイルム株式会社 A method for producing a polymer and a flow-type reaction system for producing a polymer.
JP2020183540A (en) * 2020-07-09 2020-11-12 Hdマイクロシステムズ株式会社 Resin composition and polyimide resin film

Similar Documents

Publication Publication Date Title
KR102248994B1 (en) Polyamic acid solution having high heat-resistance properties and Polyimide film
EP0276405B1 (en) Polyimide having a thermal dimensional stability
WO2018038309A1 (en) Polyimide precursor resin composition with improved resin stability and heat resistance and having transparency, method for producing polyimide film using same, and polyimide film produced thereby
CN107531902B (en) Polyimide resin and film using the same
WO2012091232A1 (en) Transparent polyimide film and preparation method thereof
WO2017003173A1 (en) Polyimide-polybenzoxazole precursor solution, polyimide-polybenzoxazole film, and preparation method therefor
WO2010036049A2 (en) Polyimide film
WO2017176000A1 (en) Polyimide film having improved heat resistance and method for manufacturing same
WO2012081763A1 (en) Polyimide film
WO2021060613A1 (en) Polyamic acid composition, method for preparing same, and polyimide film comprising same
WO2016003146A1 (en) High heat-resistant polyamic acid solution and polyimide film
CN111533909A (en) Polyamide-imide, polyamide-imide film and display device
WO2016108631A1 (en) Polyamide-imide precursor, polyamide-imide film and display device comprising same
US5260408A (en) Low thermal expansion coefficient polyimides with improved elongation
WO2021107294A1 (en) Polyimide film, method for producing same, and flexible metal foil clad laminate comprising same
WO2016209060A1 (en) Polyamide-imide precursor, polyamide-imide film, and display device comprising same
WO2016108675A1 (en) Polyamide-imide precursor, polyamide-imide film, and display device comprising same
WO2016129926A1 (en) Polyamic acid, polyimide resin and polyimide film
KR20210033925A (en) Method for producing polyimide film with excellent transparency and flexibility
KR101258432B1 (en) Polyimide film having excellent high temperature stability and substrate for display device using the same
KR101259544B1 (en) Polyimide film
WO2021060612A1 (en) Polyamic acid composition, method for preparing same, and polyimide film comprising same
KR101240955B1 (en) Polyimide film having excellent high temperature stability and substrate for display device using the same
WO2019132515A1 (en) Method for preparing polyamic acid, and polyamic acid, polyimide resin, and polyimide film which are manufactured thereby
WO2021112314A1 (en) Method for producing plate-shaped polyimide powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815907

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015815907

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815907

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016575755

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE