WO2016003079A1 - 흡입 독성 시험용 폐 모델 장치 - Google Patents

흡입 독성 시험용 폐 모델 장치 Download PDF

Info

Publication number
WO2016003079A1
WO2016003079A1 PCT/KR2015/005615 KR2015005615W WO2016003079A1 WO 2016003079 A1 WO2016003079 A1 WO 2016003079A1 KR 2015005615 W KR2015005615 W KR 2015005615W WO 2016003079 A1 WO2016003079 A1 WO 2016003079A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
air
nanoparticles
lung
inner space
Prior art date
Application number
PCT/KR2015/005615
Other languages
English (en)
French (fr)
Inventor
이규홍
양효선
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to US15/322,894 priority Critical patent/US10338059B2/en
Publication of WO2016003079A1 publication Critical patent/WO2016003079A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5014Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing toxicity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/14Suction devices, e.g. pumps; Ejector devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a lung model device for inhalation toxicity testing. More specifically, by placing a panel of a plurality of mesh tissue attached to the lung cells to have a structure similar to the human lung inside the case, and supplying air and nanoparticles inside the case through a separate breathing operation unit, the actual experimental animal Inhalation toxicity tests on nanoparticles can be performed simply and conveniently in an indirect way of detecting changes in the state of lung cells without the need for a conventional nanoparticle inhalation toxicity test device. By placing the mesh tissue panel in a sequential order along the inflow direction of the nanoparticles, the mesh tissue panel with a small lattice spacing can achieve a structure similar to the actual lung structure, thus inhalation toxicity without the use of experimental animals. In lung model devices for inhalation toxicity testing to improve test accuracy. One will.
  • Nanotechnology can be classified into nanomaterials, nanodevices, and environmental and biotechnology-based technologies according to their applications.
  • nanotechnology offers many benefits and benefits that can be recognized as a new technological revolution throughout the industry, it is also well known that there are potential risks. This is due to the nature of nanotechnology.
  • some nanoparticles such as titanium dioxide, carbon powder, diesel particles, etc. It has already been found in academic experiments that the smaller the size, the stronger the toxicity.
  • ultra-fine nanoparticles can be lodged deep into the alveoli or migrate to the brain without being trapped by the airways or mucous membranes. Furthermore, recent studies have reported that the accumulation of nanoparticles in the body causes diseases or central nervous system disorders. .
  • nanoparticle inhalation toxicity test that evaluates the toxicity generated when nanoparticles are inhaled and accumulated in the human body has been conducted in various experimental animals. Is being studied. Human hazard data obtained through the nanoparticle inhalation toxicity test is used as various basic data on nanoparticles throughout the industry such as nanofibers, cosmetics, semiconductors, and drug carriers.
  • the nanoparticles are present in the aerosol state, and the test for the nanoparticles can be equally applied to the particles having a particle size of the submicron zone that exists in the aerosol state, so the nanoparticles will be described below. Use as a concept that includes.
  • nanoparticles Since these nanoparticles have a very fine size, they can be transported directly to deep lungs and attached to lung tissue during human breathing. Therefore, inhalation toxicity tests on nanoparticles generally generate nanoparticles in an aerosol state and supply them to an exposure chamber of a certain size. It is proceeding by measuring.
  • the nanoparticles are exposed to the experimental animals to inhale deep into the lungs of the experimental animals, and as the nanoparticles are inhaled and attached to the deep lungs, the health change state of the experimental animals is measured.
  • an object of the present invention is to place a plurality of mesh tissue panel to which the lung cells are attached to the inside of the case to have a structure similar to the human lung, and a separate respiratory operation unit
  • inhalation toxicity tests on nanoparticles can be performed simply and conveniently in an indirect manner that detects changes in the state of lung cells without the use of actual laboratory animals.
  • the present invention provides a lung model device for inhalation toxicity test that can replace a general nanoparticle inhalation toxicity test device.
  • Another object of the present invention is to arrange a plurality of mesh tissue panels in a sequential order along the inflow flow direction of the nanoparticles mesh panels, the size of the mesh structure can be similar to the actual lung structure, accordingly
  • a lung model device for inhalation toxicity testing that can improve the accuracy of inhalation toxicity testing without the use of laboratory animals.
  • the case is formed in the accommodation space;
  • a breathing operation unit for introducing nanoparticles together with air to the case inner space in such a manner as to repeatedly perform the inflow and the discharge operation of the air into the case inner space;
  • a mesh tissue panel mounted in a plurality of inner spaces of the case, each having a different sized grid spacing, and to which each of the grid lines is attached human or animal lung cells.
  • a lung model device for inhalation toxicity test characterized in that the lattice spacing mesh panels of smaller size are arranged sequentially along the inflow direction of the nanoparticles in the inner space.
  • the breathing operation unit is a particle supply module for generating nanoparticles to flow into the inner space of the case with air; And an air discharge module for discharging air from the inner space of the case, and the particle supply module and the air discharge module may be repeatedly operated alternately.
  • the particle supply module includes a particle generator for generating nanoparticles; And an air inflow pump for introducing air into the inner space of the case so that the nanoparticles generated from the particle generator are introduced into the inner space of the case together with the air.
  • the air discharge module includes a buffer bag which is mounted in communication with the inner space of the case so that the air flowing into the inner space of the case through the particle supply module passes through the plurality of mesh tissue panels to be introduced therein;
  • the buffer bag is formed of an elastic material so as to recover its shape, and the air introduced into the inner space of the case may be discharged from the inner space of the case by the elastic restoring force of the buffer bag.
  • the air discharge module is a buffer bag which is mounted in communication with the inner space of the case so that the air introduced into the space inside the case through the particle supply module passes through a plurality of the mesh tissue panel; And it may include an air discharge pump for discharging the air from the inner space of the case.
  • the case is mounted to the main pipe in communication with the internal space so that the air flow into and out of the inner space, the main pipe is branched into the inlet pipe and the discharge pipe, the inlet pipe is air and into the case inner space
  • the particle supply module may be connected to allow the nanoparticles to flow therein, and the discharge pipe may be formed to have an open end to allow air to be discharged from the space inside the case.
  • the branched portion of the main pipe is equipped with a flow path switching valve for selectively opening the inlet pipe and the discharge pipe, the flow path switching valve is operated in conjunction with the operating state of the particle supply module and the air discharge module. can do.
  • the mesh tissue panel may be formed by uniformly culturing human or animal lung cells in each grid line.
  • each mesh tissue panel is arranged at least four or more in the form of a grid spacing of each different size, each mesh tissue panel is to be cultured organ, bronchus, bronchioles and alveolar cells of human or animal lung cells, respectively Can be.
  • a plurality of mesh tissue panels to which lung cells are attached to have a structure similar to that of a human lung is disposed inside the case, and the air and nanoparticles are supplied to the inside of the case through a separate respiratory operation unit.
  • Inhalation toxicity tests on nanoparticles can be performed simply and conveniently in an indirect way of detecting changes in the state of lung cells without the use of animals, thus replacing the conventional nanoparticle inhalation toxicity test apparatus. have.
  • Figure 1 is a perspective view schematically showing the appearance of the lung model device for inhalation toxicity test according to an embodiment of the present invention
  • FIG. 2 is a view schematically showing an arrangement state of a mesh tissue panel according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view schematically showing the internal structure of the lung model device for inhalation toxicity test according to an embodiment of the present invention
  • FIG. 4 and 5 is a view schematically showing the operating state of the lung model device for inhalation toxicity test according to an embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing the appearance of the lung model device for inhalation toxicity test according to an embodiment of the present invention
  • Figure 2 is a schematic view showing the layout of the mesh tissue panel according to an embodiment of the present invention
  • 3 is a cross-sectional view schematically showing the internal structure of the lung model device for inhalation toxicity test according to an embodiment of the present invention
  • Figure 4 and Figure 5 is a lung model device for inhalation toxicity test according to an embodiment of the present invention
  • Figure is a diagram schematically showing the operating state of.
  • the lung model device for inhalation toxicity test can replace the inhalation toxicity test device using an experimental animal, so that the inhalation toxicity test for nanoparticles can be performed without using the actual experimental animal. Lung model device.
  • the lungs are semi-conical as a whole, there is a pair of left and right, and occupies most of the thoracic cavity facing each other with the mediastinum in between.
  • the right lung is divided into three upper and lower lobes, and the left lung is divided into two upper and lower lobes.
  • lungs are responsible for the respiratory function
  • the left and right lungs are connected to the organs ( ⁇ ), respectively.
  • the trachea is divided into left and right bronchus at the height of the fifth thoracic vertebrae and enters the lungs from each of the lung gates. Branched and thinned, eventually reaching a bag-shaped alveoli.
  • the parenchyma of the lungs is a collection of countless vesicles called alveoli, and the capillary network surrounds these countless alveoli tightly, and gas exchange with red blood cells occurs through the alveoli.
  • Inhalation toxicity tests on nanoparticles are performed by breathing the nanoparticles deep into the lungs of the test animal and checking for changes in health status.
  • the lung model device for inhalation toxicity test enables the inhalation toxicity test for nanoparticles without an experimental animal by allowing the inhalation nanoparticles to be inhaled through a structure similar to a human lung.
  • Apparatus which comprises a case 100, a respiratory actuating unit 200 and a mesh tissue panel 300.
  • the case 100 may be formed in a general box shape in which a receiving space is formed therein. Since the air flow by the breathing operation unit 200 to be described later is generated in the case 100, the internal space is formed to form a cylindrical shape so that the air flows smoothly or as shown in Figure 1 and the square pillar Various modifications are possible, such as being formed in the same polygonal pillar shape.
  • the breathing operation unit 200 is configured to perform a breathing operation by alternately repeating the inflow and outflow operation of the air into the space inside the case 100, and through such a breathing operation, the air into the space inside the case 100. It is configured to introduce the nanoparticles with.
  • the respiratory operation unit 200 is a particle supply module 210 for generating nanoparticles to flow into the inner space of the case 100 together with air, and an air exhaust module for discharging air from the inner space of the case 100 ( 220).
  • the inhalation function of the breathing operation is performed by the particle supply module 210, and the exhalation function of the breathing operation is performed by the air exhaust module 220.
  • the mesh tissue panel 300 is formed in a mesh lattice shape and mounted in the space inside the case 100. Each lattice line 301 is attached with lung cells C of human or animal.
  • One such mesh tissue panel 300 may be mounted in the inner space of the case 100, but a plurality of mesh tissue panels 300 may be mounted to have a structure similar to that of a human or animal lung.
  • the plurality of mesh tissue panels 300 are formed to have different lattice spacings d1, d2, d3, and d4, respectively, as shown in FIGS. 2 and 3, and breathe in the space inside the case 100.
  • the mesh tissue panel 300 having a smaller lattice spacing is sequentially disposed along the inflow flow direction of the nanoparticles by the operation unit 200.
  • the mesh tissue panel 300 is formed in a mesh lattice shape and lung cells C are attached to each lattice line 301, which is a human or animal lung cell C to each lattice line 301. ) May be formed by uniformly culturing. As such, the method of culturing and attaching the cells may be achieved through various known cell culture methods, and thus a detailed description thereof will be omitted.
  • a plurality of such mesh tissue panels 300 are mounted, and are formed to have different lattice spacings (d1, d2, d3, d4) of different sizes, and meshes having a smaller lattice spacing along the inflow direction of the nanoparticles are provided.
  • the tissue panel 300 is arranged to be sequentially placed.
  • the mesh tissue panel 300 having a smaller grid spacing is sequentially disposed.
  • four mesh tissue panels 310, 320, 330, and 340 may be arranged in a line along the inflow direction of the nanoparticles, and may be disposed at the most upstream of the inflow flow direction of the nanoparticles.
  • the mesh tissue panel 310 positioned is relatively large with a grid spacing d1, and then mesh tissue panels 320, 330, and 340 may be arranged in a row so that the grid spacing is gradually reduced to d2, d3, and d4 toward downstream.
  • the air and nanoparticles when air and nanoparticles are introduced into the space inside the case 100 by the respiratory operation unit 200, the air and nanoparticles are arranged in the order of lattice sizes of the plurality of mesh tissue panels 300: 310, 320, 330, 340. It shows the flow passing sequentially.
  • the mesh tissue panel 310 located at the most upstream has a relatively large lattice spacing d1
  • a relatively large amount of nanoparticles pass, but the mesh tissue panels 320, 330, 340 located downstream have a lattice spacing ( Since d2, d3, and d4 become smaller, the amount of nanoparticles passing through the mesh tissue panels 320, 330, and 340 decreases sequentially.
  • the nanoparticles introduced into the space inside the case 100 by the respiratory operation unit 200 partially pass through the mesh tissue panels 300: 310, 320, 330, 340 in the course of passing through the plurality of mesh tissue panels 300: 310, 320, 330, 340.
  • the nanoparticles are attached to each other to pass through a plurality of mesh tissue panels (300: 310, 320, 330, 340).
  • the lattice spacing of the plurality of mesh tissue panels 300: 310, 320, 330, 340 decreases sequentially, the passage amount of the nanoparticles is further reduced in the process of passing through the mesh tissue panels 300: 310, 320, 330, 340.
  • the relatively large nanoparticles are difficult to pass through the mesh tissue panel 300, so it is easy to attach to the mesh tissue panel 300 located upstream, but the relatively small nanoparticles are mesh tissue panel 300. It may be relatively easy to pass through to reach and attach to the mesh tissue panel 300 located downstream.
  • the arrangement structure of such a mesh tissue panel 300 is similar to the lung structure. As described above, air is inhaled into the trachea, bronchus, bronchioles and alveoli during inhalation during respiration, and the trachea, bronchus, bronchioles and alveoli sequentially form a finer tissue structure. Similarly, in the mesh tissue panel 300 according to the exemplary embodiment of the present invention, the mesh tissue panel 300 having a smaller grid spacing is disposed along the inflow flow direction of the nanoparticles.
  • the lung model device may have a structure similar to the actual lung structure, and in this structure, the breathing operation may be performed through the respiratory operation unit 200, and thus, the actual lung structure. And in a form very similar in function. That is, the lung model device according to an embodiment of the present invention has a structure similar to the lung through a plurality of mesh tissue panel 300, and by performing the respiratory function of the lung through the breathing operation unit 200, It is shaped very similar to the structure and function of the lungs and can be used to perform a variety of tests.
  • the inhalation toxicity test for the nanoparticles is performed without experiment animals in a manner of grasping the state change of the lung cells (C) according to the inhalation of the nanoparticles. can do.
  • each mesh tissue panel 300 may be provided as described above.
  • organ, bronchus, bronchiole, and alveolar cells are sequentially cultured.
  • the mesh tissue panel 300 may represent the trachea, bronchus, bronchiole and alveolar tissue, respectively.
  • the mesh tissue panel 300 is mounted in the space inside the case 100, and air and nanoparticles are introduced into the space inside the case 100 through the respiratory operation unit 200, the nanoparticles attached to the suction surface are inhaled.
  • the lung tissue of the mesh tissue panel 300 may be damaged, and the inhalation toxicity test for the nanoparticles may be performed by examining whether the lung tissue is damaged or active.
  • the lung tissue includes a wide variety of tissues such as alveolar ducts and alveolar cysts.
  • the lung tissues may be classified into 23 detailed tissues.
  • the number of mesh tissue panels 300 and the type of cell tissue may be variously changed according to a user's needs, such as being cultured and attached to the lattice lines 301.
  • the respiratory operation unit 200 alternately repeats the inflow and outflow of air to the space inside the case 100, and generates a nanoparticle to supply the air together with the air to the space inside the case 100 to supply the particle 210.
  • an air exhaust module 220 for discharging air from the inner space of the case 100. At this time, the particle supply module 210 and the air discharge module 220 alternately operates repeatedly.
  • the nanoparticles are introduced into the inner space of the case 100 together with the air through the particle supply module 210, and after the air is introduced, the air is discharged through the air exhaust module 220. Nano particles may be discharged together with the air discharged through the air discharge module 220.
  • the nanoparticles are introduced into the inner space of the case 100 together with air through the particle supply module 210, while passing through the plurality of mesh tissue panels 300 while being introduced, and in this process, some nanoparticles are tactical.
  • each lung cell C attached to the plurality of mesh tissue panels 300 may be attached.
  • the air is discharged through the air exhaust module 220 to the lung cells (C).
  • the attached nanoparticles are not discharged and remain attached to the lung cells (C).
  • some nanoparticles that are not attached to the lung cells (C) may be discharged to the outside with the air during the air discharge process.
  • the respiratory operation unit 200 since the nanoparticles repeatedly enter the inner space of the case 100 and adhere to the lung cells C of the mesh tissue panel 300, when the respiratory operation unit 200 operates, The amount of nanoparticles attached to the cells (C) is increased, and thus the lung cells (C) may be damaged or die. In addition, the characteristics of the lung cells (C) may be determined to identify the nanoparticles. Toxicity assessments can be performed.
  • the particle supply module 210 includes a particle generator 211 that generates nanoparticles, and an inner space of the case 100 so that nanoparticles generated from the particle generator 211 flow into the inner space of the case 100 together with air. It may be configured to include an air inlet pump 212 for introducing air to the. In this case, as shown in FIG. 3, the nanoparticles generated from the particle generator 211 are introduced into a separate mixing chamber 213, mixed with air by the air inflow pump 212 in the mixing chamber 213, and the case. 100 may be introduced into the interior space.
  • the air discharge module 220 includes a buffer bag 221 mounted in communication with the inner space of the case 100, and the buffer bag 221 is inside the case 100 through the particle supply module 210.
  • the air flowing into the space is arranged to be introduced after passing through the plurality of mesh tissue panels 300.
  • air is introduced from the upper layer into the inner space of the case 100 based on the direction shown in FIG. 4, and the introduced air is buffered to enter the buffer bag 221 after passing through the plurality of mesh tissue panels 300.
  • the bag 221 is mounted in communication with the lower end of the case 100.
  • air and nanoparticles introduced into the space inside the case 100 by the particle supply module 210 must be introduced into the buffer bag 221 after passing through the mesh tissue panel 300, thereby introducing air and nanoparticles.
  • the flow is stably maintained in a form that passes through all of the plurality of mesh tissue panels 300.
  • the buffer bag 221 is formed of an elastic material so that the shape can be restored, it may be formed in the form of a kind of rubber balloon. Therefore, when the operation of the particle supply module 210 is completed and the inflow of air is stopped, as shown in Figure 5 by the elastic restoring force of the buffer bag 221 from the inner space of the buffer bag 221 and the case 100 Air is exhausted to the outside.
  • the air discharge module 220 may be sufficiently configured in the form having a buffer bag 221 of such an elastic material, but, further, an air discharge pump (not shown) that discharges air from the space inside the case 100. It may be configured to include.
  • the buffer bag 221 need not be formed of an elastic material, it will be sufficient to simply be formed of a flexible material capable of changing the volume.
  • the buffer bag 221 is in communication with the inner space of the case 100 is formed so that the volume change, in the process of introducing air and nanoparticles into the inner space of the case 100 by the particle supply module 210 It is possible to prevent the pressure rise of the inner space of the case 100, thereby performing a function of smoothly maintaining the inflow of air and nanoparticles by the particle supply module 210.
  • the main pipe 410 is mounted in the case 100 to communicate with the internal space so that air can flow in and out of the internal space, and the main pipe 410 branches into the inflow pipe 411 and the discharge pipe 412.
  • the inlet pipe 411 is connected to the particle supply module 210 to allow air and nanoparticles to flow into the space inside the case 100, and the discharge pipe 412 discharges air from the space inside the case 100.
  • the end is formed in an open shape so that it can be.
  • the branched portion of the main pipe 410 is equipped with a flow path switching valve 420 that can selectively open the inlet pipe 411 and the discharge pipe 412, as shown in Figure 3, the flow path switching valve 420 is configured to operate in conjunction with the operating state of the particle supply module 210 and the air discharge module 220. That is, the flow path switching valve 420 operates to open the inlet pipe 411 while the particle supply module 210 operates, and to open the discharge pipe 412 while the air discharge module 220 operates. .
  • air and nanoparticles supplied from the particle supply module 210 are introduced into the inner space of the case 100 through the inflow pipe 411 and the main pipe 410 as shown in FIG. 4, and the case (100) After passing through a plurality of mesh tissue panel 300 in the internal space sequentially enters the buffer bag 221. During the inflow of air and nanoparticles, the nanoparticles are attached to the lung cells C of the mesh tissue panel 300. Thereafter, when the operation of the particle supply module 210 is completed, air is discharged from the inner space of the case 100 by the elastic restoring force of the buffer bag 221 as shown in FIG. 5. The path through which air is discharged is discharged through the main pipe 410 and the discharge pipe 412 from the space inside the case 100.
  • the nanoparticles are continuously introduced into the space inside the case 100, and then the inhalation toxicity of the nanoparticles is examined by examining the characteristic change of the lung cells (C) attached to the mesh tissue panel 300. Tests may be performed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 흡입 독성 시험용 폐 모델 장치에 관한 것으로, 사람의 폐와 유사한 구조를 갖도록 폐 세포가 부착된 다수개의 메쉬 조직 패널을 케이스 내부에 배치하고, 별도의 호흡 작동 유닛을 통해 케이스 내부에 공기 및 나노 입자를 공급함으로써, 실제 실험 동물을 이용하지 않고도 폐 세포의 상태 변화를 파악하는 간접적인 방식으로 나노 입자에 대한 흡입 독성 시험을 간단하고 편리하게 수행할 수 있고, 이에 따라 일반적인 나노 입자 흡입 독성 시험 장치를 대체할 수 있으며, 다수개의 메쉬 조직 패널을 나노 입자의 유입 흐름 방향을 따라 순차적으로 격자 간격이 작은 크기의 메쉬 조직 패널이 위치하도록 배치함으로써, 실제 폐 구조와 유사한 구조를 이룰 수 있고, 이에 따라 실험 동물을 이용하지 않고도 흡입 독성 시험의 정확도를 향상시킬 수 있는 흡입 독성 시험용 폐 모델 장치를 제공한다.

Description

흡입 독성 시험용 폐 모델 장치
본 발명은 흡입 독성 시험용 폐 모델 장치에 관한 것이다. 보다 상세하게는 사람의 폐와 유사한 구조를 갖도록 폐 세포가 부착된 다수개의 메쉬 조직 패널을 케이스 내부에 배치하고, 별도의 호흡 작동 유닛을 통해 케이스 내부에 공기 및 나노 입자를 공급함으로써, 실제 실험 동물을 이용하지 않고도 폐 세포의 상태 변화를 파악하는 간접적인 방식으로 나노 입자에 대한 흡입 독성 시험을 간단하고 편리하게 수행할 수 있고, 이에 따라 일반적인 나노 입자 흡입 독성 시험 장치를 대체할 수 있으며, 다수개의 메쉬 조직 패널을 나노 입자의 유입 흐름 방향을 따라 순차적으로 격자 간격이 작은 크기의 메쉬 조직 패널이 위치하도록 배치함으로써, 실제 폐 구조와 유사한 구조를 이룰 수 있고, 이에 따라 실험 동물을 이용하지 않고도 흡입 독성 시험의 정확도를 향상시킬 수 있는 흡입 독성 시험용 폐 모델 장치에 관한 것이다.
20세기가 마이크로로 대별되는 시대였다면 21세기는 나노 시대라 할 수 있는데, 나노기술은 그 응용분야에 따라 나노소재와 나노소자, 그리고 환경 및 생명공학 기반기술 등으로 크게 분류할 수 있다.
이러한 나노기술은 원자나 분자단위의 극미세 물질을 인위적으로 조작하여 새로운 성질과 기능을 갖는 물질이나 장치를 만드는 것으로, 이는 오늘날 정보기술(Information Technology : IT) 및 기타 생명공학기술(bio technology : BT)을 실현시키기 위한 하나의 최첨단 기술로 추앙받고 있는 실정이다.
하지만, 나노기술은 산업분야 전반에 걸쳐 새로운 기술혁명이라 인식될 정도로 많은 이로움과 유익함을 제공하는 것이기는 하나, 그 반면에 잠재적 위험성을 지니고 있는 것 또한 주지의 사실인 바, 이러한 잠재적 위험성은 바로 나노기술의 특성에 기인한다고 볼 수 있다.
즉, 작은 입자일수록 비표면적비는 넓어지고, 이와 같이 비표면적비가 넓어진 작은 입자는 생체조직과 반응시 독성이 증가하게 되는데, 그 일 예로서 이산화티타늄, 탄소분말, 디젤입자 등과 같은 몇 가지 나노입자는 크기가 줄어들수록 염증을 유발하는 등 독성이 강해진다는 것이 그동안의 학문적 실험을 통해 이미 밝혀진 사실이다. 또한, 초미세 나노입자는 기도나 점막에 걸러지지 않고 폐포 깊숙이 박히거나 뇌로 이동할 수도 있고, 더욱이 최근 여러 연구에 의하면 나노입자가 체내에 축적될 경우 질병이나 중추신경 장애를 일으킨다는 이론들이 보고되고 있다.
따라서, 최근에는 나노 기술의 발전과 함께 나노 기술에 대한 안정성 평가 또한 활발히 진행되고 있는데, 대표적으로 나노 입자가 인체에 흡입 축적되는 경우에 발생하는 독성에 대해 평가하는 나노 입자 흡입 독성 시험이 다양한 실험 동물들을 상대로 연구되고 있다. 이러한 나노 입자 흡입 독성 시험을 통해 얻어진 인체 유해성 자료들은 나노 섬유, 화장품, 반도체, 약물 전달체 등 산업 전반에 걸쳐 나노 입자에 대한 다양한 기초 자료로 활용되고 있다.
최근에는 이러한 나노 기술에 대한 중요성이 부각됨에 따라 나노 입자의 흡입 독성에 대한 시험 뿐만 아니라 나노 입자의 인체에 대한 효능, 안전성, 환경 영향 평가 등 다양한 형태의 시험이 수행되고 있는데, 이러한 다양한 형태의 시험들은 모두 나노 입자의 인체에 대한 영향을 평가한다는 점에서 흡입 독성 시험과 대부분 동일한 방식으로 진행되므로, 이하에서는 이와 같은 나노 입자에 대한 다양한 시험을 흡입 독성 시험이라고 통칭하여 기술한다.
또한, 나노 입자는 에어로졸 상태로 존재하며, 나노 입자에 대한 시험은 에어로졸 상태로 존재하는 서브마이크론 대의 입경을 갖는 입자에 대해서도 동일하게 적용될 수 있으므로, 이하에서 나노 입자는 특별한 설명이 없는 한 서브마이크론 입자를 포함하는 개념으로 사용한다.
이러한 나노 입자는 매우 미세한 크기를 가지므로, 사람의 호흡 과정에서 폐의 깊숙한 곳까지 직접 이동하여 폐 조직에 부착될 수 있다. 따라서, 나노 입자에 대한 흡입 독성 시험은 일반적으로 나노 입자를 에어로졸 상태로 발생시켜 일정 크기의 노출 챔버에 공급하고, 이러한 노출 챔버에 실험 동물을 투입시켜 나노 입자에 노출시킨 후 실험 동물의 다양한 변화 상태를 측정하는 방식으로 진행되고 있다.
즉, 나노 입자를 실험 동물에 노출시켜 실험 동물의 폐 깊숙한 곳까지 흡입되도록 하고, 나노 입자가 폐 깊숙한 곳까지 흡입되어 부착됨에 따라 실험 동물의 건강 변화 상태를 측정하는 방식으로 진행된다.
이와 같은 흡입 독성 시험은 실험 동물을 이용하여 수행해야 하는데, 최근에는 동물 실험에 대한 윤리적인 문제 등이 대두되어 실험 동물을 이용한 시험 방식에 대해서는 그 규제가 계속해서 확대되고 있는 추세이다. 또한, 실험 동물을 이용한 흡입 독성 시험 장치는 그 규모가 크고 설치 및 운영 비용이 고가이며 복잡한 구조를 가지므로 이러한 시험 장치를 구비하는 것 또한 용이하지 않다는 등의 문제가 있었다.
본 발명은 종래 기술의 문제점을 해결하기 위해 발명한 것으로서, 본 발명의 목적은 사람의 폐와 유사한 구조를 갖도록 폐 세포가 부착된 다수개의 메쉬 조직 패널을 케이스 내부에 배치하고, 별도의 호흡 작동 유닛을 통해 케이스 내부에 공기 및 나노 입자를 공급함으로써, 실제 실험 동물을 이용하지 않고도 폐 세포의 상태 변화를 파악하는 간접적인 방식으로 나노 입자에 대한 흡입 독성 시험을 간단하고 편리하게 수행할 수 있고, 이에 따라 일반적인 나노 입자 흡입 독성 시험 장치를 대체할 수 있는 흡입 독성 시험용 폐 모델 장치를 제공하는 것이다.
본 발명의 다른 목적은 다수개의 메쉬 조직 패널을 나노 입자의 유입 흐름 방향을 따라 순차적으로 격자 간격이 작은 크기의 메쉬 조직 패널이 위치하도록 배치함으로써, 실제 폐 구조와 유사한 구조를 이룰 수 있고, 이에 따라 실험 동물을 이용하지 않고도 흡입 독성 시험의 정확도를 향상시킬 수 있는 흡입 독성 시험용 폐 모델 장치를 제공하는 것이다.
본 발명은, 내부에 수용 공간이 형성되는 케이스; 상기 케이스 내부 공간에 대한 공기의 유입 및 배출 동작을 교대로 반복 수행하는 방식으로 상기 케이스 내부 공간에 공기와 함께 나노 입자를 유입시키는 호흡 작동 유닛; 및 상기 케이스 내부 공간에 다수개 장착되고, 각각 서로 다른 크기의 격자 간격을 가지며 각각의 격자 라인에는 사람 또는 동물의 폐 세포가 부착되는 메쉬 조직 패널을 포함하고, 다수개의 상기 메쉬 조직 패널은 상기 케이스 내부 공간에서 나노 입자의 유입 흐름 방향을 따라 격자 간격이 더 작은 크기의 메쉬 조직 패널이 순차적으로 위치하도록 배치되는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치를 제공한다.
이때, 상기 호흡 작동 유닛은 나노 입자를 발생시켜 공기와 함께 상기 케이스의 내부 공간으로 유입시키는 입자 공급 모듈; 및 상기 케이스의 내부 공간으로부터 공기를 배출시키는 공기 배출 모듈을 포함하고, 상기 입자 공급 모듈과 공기 배출 모듈은 교대로 반복하여 작동할 수 있다.
또한, 상기 입자 공급 모듈은 나노 입자를 발생시키는 입자 발생기; 및 상기 입자 발생기로부터 발생된 나노 입자가 공기와 함께 상기 케이스의 내부 공간에 유입되도록 상기 케이스의 내부 공간에 공기를 유입시키는 공기 유입 펌프를 포함할 수 있다.
또한, 상기 공기 배출 모듈은 상기 입자 공급 모듈을 통해 상기 케이스 내부 공간으로 유입되는 공기가 다수개의 상기 메쉬 조직 패널을 통과한 후 유입될 수 있도록 상기 케이스 내부 공간에 연통되게 장착되는 완충백을 포함하고, 상기 완충백은 형상 복원 가능하도록 탄성 재질로 형성되며, 상기 케이스 내부 공간에 유입된 공기는 상기 완충백의 탄성 복원력에 의해 상기 케이스의 내부 공간으로부터 배출될 수 있다.
또한, 상기 공기 배출 모듈은 상기 입자 공급 모듈을 통해 상기 케이스 내부 공간으로 유입되는 공기가 다수개의 상기 메쉬 조직 패널을 통과한 후 유입될 수 있도록 상기 케이스 내부 공간에 연통되게 장착되는 완충백; 및 상기 케이스 내부 공간으로부터 공기를 배출하는 공기 배출 펌프를 포함할 수 있다.
또한, 상기 케이스에는 내부 공간에 대한 공기의 유출입이 가능하도록 메인 배관이 내부 공간과 연통되게 장착되고, 상기 메인 배관은 유입 배관 및 배출 배관으로 분기되며, 상기 유입 배관은 상기 케이스 내부 공간으로 공기 및 나노 입자가 유입될 수 있도록 상기 입자 공급 모듈과 연결되고, 상기 배출 배관은 상기 케이스 내부 공간으로부터 공기가 배출될 수 있도록 끝단이 개방된 형태로 형성될 수 있다.
또한, 상기 메인 배관의 분기된 부위에는 상기 유입 배관 및 배출 배관을 선택적으로 개방할 수 있는 유로 전환 밸브가 장착되고, 상기 유로 전환 밸브는 상기 입자 공급 모듈 및 공기 배출 모듈의 작동 상태와 연동하여 작동할 수 있다.
또한, 상기 메쉬 조직 패널은 각각의 격자 라인에 사람 또는 동물의 폐 세포를 균일하게 배양시키는 방식으로 형성될 수 있다.
또한, 상기 메쉬 조직 패널은 각각 서로 다른 크기의 격자 간격을 갖는 형태로 적어도 4개 이상 배치되며, 각각의 메쉬 조직 패널에는 사람 또는 동물의 폐 세포 중 기관, 기관지, 세기관지 및 폐포 세포가 각각 배양될 수 있다.
본 발명에 의하면, 사람의 폐와 유사한 구조를 갖도록 폐 세포가 부착된 다수개의 메쉬 조직 패널을 케이스 내부에 배치하고, 별도의 호흡 작동 유닛을 통해 케이스 내부에 공기 및 나노 입자를 공급함으로써, 실제 실험 동물을 이용하지 않고도 폐 세포의 상태 변화를 파악하는 간접적인 방식으로 나노 입자에 대한 흡입 독성 시험을 간단하고 편리하게 수행할 수 있고, 이에 따라 일반적인 나노 입자 흡입 독성 시험 장치를 대체할 수 있는 효과가 있다.
또한, 다수개의 메쉬 조직 패널을 나노 입자의 유입 흐름 방향을 따라 순차적으로 격자 간격이 작은 크기의 메쉬 조직 패널이 위치하도록 배치함으로써, 실제 폐 구조와 유사한 구조를 이룰 수 있고, 이에 따라 실험 동물을 이용하지 않고도 흡입 독성 시험의 정확도를 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 흡입 독성 시험용 폐 모델 장치의 외형을 개략적으로 도시한 사시도,
도 2는 본 발명의 일 실시예에 따른 매쉬 조직 패널의 배치 상태를 개략적으로 도시한 도면,
도 3은 본 발명의 일 실시예에 따른 흡입 독성 시험용 폐 모델 장치의 내부 구조를 개략적으로 도시한 단면도,
도 4 및 도 5는 본 발명의 일 실시예에 따른 흡입 독성 시험용 폐 모델 장치의 작동 상태를 개략적으로 도시한 도면이다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 흡입 독성 시험용 폐 모델 장치의 외형을 개략적으로 도시한 사시도이고, 도 2는 본 발명의 일 실시예에 따른 매쉬 조직 패널의 배치 상태를 개략적으로 도시한 도면이고, 도 3은 본 발명의 일 실시예에 따른 흡입 독성 시험용 폐 모델 장치의 내부 구조를 개략적으로 도시한 단면도이고, 도 4 및 도 5는 본 발명의 일 실시예에 따른 흡입 독성 시험용 폐 모델 장치의 작동 상태를 개략적으로 도시한 도면이다.
본 발명의 일 실시예에 따른 흡입 독성 시험용 폐 모델 장치는 실험 동물을 이용한 흡입 독성 시험 장치를 대체할 수 있는 것으로, 실제 실험 동물을 이용하지 않고 나노 입자에 대한 흡입 독성 시험을 수행할 수 있도록 하기 위한 폐 모델 장치이다.
먼저, 사람의 폐의 구조 및 기능에 대해 살펴보면, 폐는 전체적으로 볼 때 반원추형으로, 좌우 1쌍이 있는데 종격(縱隔)을 사이에 두고 마주 대하여 흉강의 대부분을 차지한다. 우폐는 상중하 3엽으로 나누어지고 좌폐는 상하 2엽으로 나누어진다.
이러한 폐는 호흡 기능을 담당하는 것으로, 좌폐와 우폐는 각각 기관(氣管)과 연결된다. 기관(氣管)은 제5흉추 높이에서 좌우의 기관지로 나누어지고 각각의 폐문에서 폐로 들어가는데, 기관지는 폐문부에서 폐엽기관지로 갈라져 폐 속에서는 다시 기관지지(氣管支枝)로부터 세기관지(細氣管支)로 분지하여 가늘어지고, 최후에는 주머니 모양의 폐포(肺胞)에 이른다. 즉 폐의 실질은 폐포라고 하는 소포가 무수히 모인 것으로 이 무수하게 있는 폐포를 모세혈관망이 빽빽하게 둘러싸고 있으며, 폐포를 통해 적혈구와의 가스 교환이 이루어진다.
사람의 호흡 중 흡기 과정에서 공기는 기도로부터 기관을 거쳐 폐로 들어가 기관지, 세기관지, 폐포에 이르게 되는데, 이러한 흡기 과정에서 공기 중의 나노 입자가 사람의 폐 깊숙한 곳까지 흡입될 수 있다. 기관, 기관지, 세기관지, 폐포는 순차적으로 더 미세한 조직을 이루게 되는데, 일반적으로 직경이 큰 입자들은 기관이나 기관지 등에 부착되어 폐의 깊숙한 곳까지 흡입되지 않지만, 나노 입자와 같이 매우 미세한 크기의 입자들은 세기관지 및 폐포에까지 흡입될 수 있다.
나노 입자에 대한 흡입 독성 시험은 호흡을 통해 실험 동물의 폐 깊숙한 곳까지 나노 입자를 흡입시키고, 이로 인한 건강 상태 변화를 체크하는 방식으로 진행된다.
본 발명의 일 실시예에 따른 흡입 독성 시험용 폐 모델 장치는 사람의 폐와 유사한 형태의 구조를 통해 호흡 방식으로 나노 입자를 흡입할 수 있도록 하여 실험 동물 없이도 나노 입자에 대한 흡입 독성 시험을 수행할 수 있는 장치로서, 케이스(100), 호흡 작동 유닛(200) 및 메쉬 조직 패널(300)을 포함하여 구성된다.
케이스(100)는 내부에 수용 공간이 형성되는 형태로 일반적인 박스 형상으로 형성될 수 있다. 이러한 케이스(100) 내부에는 후술하는 호흡 작동 유닛(200)에 의한 공기 흐름이 발생하므로, 공기 흐름이 원활하게 이루어지도록 내부 공간이 원통 형상을 이루도록 형성되거나 또는 도 1에 도시된 바와 같이 사각 기둥과 같은 다각형 기둥 형태로 형성될 수 있는 등 다양하게 변경 가능하다.
호흡 작동 유닛(200)은 케이스(100) 내부 공간에 대한 공기의 유입 및 배출 동작을 교대로 반복 수행하는 방식으로 호흡 동작을 수행하도록 구성되며, 이러한 호흡 동작을 통해 케이스(100) 내부 공간에 공기와 함께 나노 입자가 유입되도록 구성된다. 이러한 호흡 작동 유닛(200)은 나노 입자를 발생시켜 공기와 함께 케이스(100)의 내부 공간으로 유입시키는 입자 공급 모듈(210)과, 케이스(100)의 내부 공간으로부터 공기를 배출시키는 공기 배출 모듈(220)을 포함하여 구성될 수 있다. 입자 공급 모듈(210)에 의해 호흡 동작의 흡기 기능이 수행되고, 공기 배출 모듈(220)에 의해 호흡 동작의 호기 기능이 수행된다.
메쉬 조직 패널(300)은 메쉬 격자 형태로 형성되어 케이스(100) 내부 공간에 장착되는데, 각각의 격자 라인(301)에는 사람 또는 동물의 폐 세포(C)가 부착된다. 이러한 메쉬 조직 패널(300)은 케이스(100) 내부 공간에 하나 장착될 수도 있으나, 실제 사람 또는 동물의 폐 구조와 유사한 구조를 가질 수 있도록 다수개 장착되는 것이 바람직하다.
다수개의 메쉬 조직 패널(300:310,320,330,340)은 도 2 및 도 3에 도시된 바와 같이 각각 서로 다른 크기의 격자 간격(d1,d2,d3,d4)을 갖도록 형성되며, 케이스(100) 내부 공간에서 호흡 작동 유닛(200)에 의한 나노 입자의 유입 흐름 방향을 따라 격자 간격이 더 작은 크기의 메쉬 조직 패널(300)이 순차적으로 위치하도록 배치된다.
좀더 자세히 살펴보면, 메쉬 조직 패널(300)은 메쉬 격자 형태로 형성되고 각 격자 라인(301)에는 폐 세포(C)가 부착되는데, 이는 각각의 격자 라인(301)에 사람 또는 동물의 폐 세포(C)를 균일하게 배양시키는 방식으로 형성될 수 있다. 이와 같이 세포를 배양하여 부착하는 방식은 공지된 다양한 세포 배양 방식을 통해 달성할 수 있으므로, 이에 대한 상세한 설명은 생략한다.
이러한 메쉬 조직 패널(300)은 다수개 장착되며, 각각 서로 다른 크기의 격자 간격(d1,d2,d3,d4)을 갖도록 형성되는데, 나노 입자의 유입 흐름 방향을 따라 격자 간격이 더 작은 크기의 메쉬 조직 패널(300)이 순차적으로 위치하도록 배치된다.
즉, 케이스(100) 내부 공간에는 전술한 바와 같이 호흡 작동 유닛(200)의 입자 공급 모듈(210)에 의해 외부로부터 공기 및 나노 입자가 유입되는데, 이때 나노 입자의 유입 흐름 방향을 따라 도 2 및 도 3에 도시된 바와 같이 격자 간격이 더 작은 크기의 메쉬 조직 패널(300)이 순차적으로 배치된다. 예를 들면, 도 2 및 도 3에 도시된 바와 같이 나노 입자의 유입 흐름 방향을 따라 4개의 메쉬 조직 패널(310,320,330,340)이 일렬 배치될 수 있는데, 이때, 나노 입자의 유입 흐름 방향을 기준으로 최상류에 위치한 메쉬 조직 패널(310)은 격자 간격인 d1으로 상대적으로 크고, 이후 하류로 갈수록 격자 간격이 d2, d3, d4로 순차적으로 작아지는 메쉬 조직 패널(320,330,340)이 일렬 배치될 수 있다.
이와 같은 구조에 따라 호흡 작동 유닛(200)에 의해 케이스(100) 내부 공간으로 공기 및 나노 입자가 유입되면, 공기 및 나노 입자는 다수개의 메쉬 조직 패널(300:310,320,330,340)을 격자 크기가 큰 순서대로 순차적으로 통과하는 흐름을 나타내게 된다. 이때, 최상류에 위치한 메쉬 조직 패널(310)은 상대적으로 격자 간격(d1)이 크기 때문에, 상대적으로 많은 양의 나노 입자가 통과하게 되지만, 하류에 위치한 메쉬 조직 패널(320,330,340)은 순차적으로 격자 간격(d2,d3,d4)이 작아지기 때문에, 해당 메쉬 조직 패널(320,330,340)을 통과하는 나노 입자의 양이 순차적으로 감소하게 된다.
즉, 호흡 작동 유닛(200)에 의해 케이스(100) 내부 공간으로 유입된 나노 입자는 다수개의 메쉬 조직 패널(300:310,320,330,340)을 통과하는 과정에서 각각의 메쉬 조직 패널(300:310,320,330,340)에 각각 일부 나노 입자가 부착되는 방식으로 다수개의 메쉬 조직 패널(300:310,320,330,340)을 통과하게 된다. 특히, 다수개의 메쉬 조직 패널(300:310,320,330,340)은 그 격자 간격이 순차적으로 작아지기 때문에, 각각의 메쉬 조직 패널(300:310,320,330,340)을 통과하는 과정에서 나노 입자의 통과량은 더욱 감소하게 된다.
또한, 상대적으로 크기가 큰 나노 입자는 메쉬 조직 패널(300)을 통과하기가 어려워 상류측에 위치한 메쉬 조직 패널(300)에 부착되기 쉽지만, 상대적으로 크기가 작은 나노 입자는 메쉬 조직 패널(300)을 통과하기가 상대적으로 용이하여 하류측에 위치한 메쉬 조직 패널(300)에 도달하여 부착될 수 있다.
이와 같은 메쉬 조직 패널(300)의 배치 구조는 폐 구조와 유사하다. 전술한 바와 같이 호흡 동작 중 흡기 과정에서 공기는 기관, 기관지, 세기관지 및 폐포로 흡입되는데, 기관, 기관지, 세기관지 및 폐포는 순차적으로 더 미세한 조직 구조를 이루고 있다. 이와 마찬가지로 본 발명의 일 실시예에 따른 메쉬 조직 패널(300)은 나노 입자의 유입 흐름 방향을 따라 격자 간격이 더 작은 크기의 메쉬 조직 패널(300)이 배치된다.
이러한 구조에 따라 본 발명의 일 실시예에 따른 폐 모델 장치는 실제 폐 구조와 유사한 구조를 가질 수 있으며, 이러한 구조에서 호흡 작동 유닛(200)을 통해 호흡 동작을 수행할 수 있으므로, 실제 폐의 구조 및 기능과 매우 유사한 형태로 형성된다. 즉, 본 발명의 일 실시예에 따른 폐 모델 장치는 다수개의 메쉬 조직 패널(300)을 통해 폐와 유사한 구조를 이루게 되며, 호흡 작동 유닛(200)을 통해 폐의 호흡 기능을 수행하도록 함으로써, 실제 폐의 구조 및 기능과 매우 유사한 형태로 형성되며, 이를 이용하여 다양한 방식의 테스트를 수행할 수 있다.
특히, 메쉬 조직 패널(300)에는 폐 세포(C)가 부착되어 있으므로, 나노 입자의 흡입에 따른 폐 세포(C)의 상태 변화를 파악하는 방식으로 나노 입자에 대한 흡입 독성 시험을 실험 동물 없이 수행할 수 있다.
예를 들면, 메쉬 조직 패널(300)은 전술한 바와 같이 4개 구비될 수 있는데, 각각의 메쉬 조직 패널(300)의 격자 라인(301)에는 기관, 기관지, 세기관지 및 폐포 세포가 각각 순차적으로 배양되어 부착될 수 있으며, 이러한 메쉬 조직 패널(300)은 각각 기관, 기관지, 세기관지 및 폐포 조직을 대표할 수 있다. 이와 같은 메쉬 조직 패널(300)을 케이스(100) 내부 공간에 장착하고, 호흡 작동 유닛(200)을 통해 케이스(100) 내부 공간에 공기 및 나노 입자를 유입시키게 되면, 흡입 부착된 나노 입자에 의해 메쉬 조직 패널(300)의 폐 조직이 손상될 수 있는데, 이러한 폐 조직의 손상 여부, 활성 상태 등을 검사하는 방식으로 나노 입자에 대한 흡입 독성 시험을 수행할 수 있다.
한편, 폐 조직은 이상에서 설명한 4가지 조직 이외에도 폐포관, 폐포낭 등 매우 다양한 조직들이 있는데, 예를 들면 23가지의 세부 조직으로 분류될 수 있으며, 이러한 다양한 폐 조직들의 세포를 메쉬 조직 패널(300)의 격자 라인(301)에 각각 배양시켜 부착할 수도 있는 등 사용자의 필요에 따라 메쉬 조직 패널(300)의 개수 및 세포 조직의 종류는 다양하게 변경할 수 있다.
다음으로, 폐의 호흡 기능을 수행하는 호흡 작동 유닛(200)의 구성에 대해 좀더 자세히 살펴본다.
호흡 작동 유닛(200)은 케이스(100) 내부 공간에 대한 공기의 유입 및 배출 동작을 교대로 반복 수행하는데, 나노 입자를 발생시켜 공기와 함께 케이스(100) 내부 공간으로 유입시키는 입자 공급 모듈(210)과, 케이스(100)의 내부 공간으로부터 공기를 배출시키는 공기 배출 모듈(220)을 포함하여 구성된다. 이때, 입자 공급 모듈(210)과 공기 배출 모듈(220)은 교대로 반복하여 작동한다.
이러한 구조에 따라 입자 공급 모듈(210)을 통해 나노 입자가 공기와 함께 케이스(100) 내부 공간으로 유입되고, 유입된 이후에는 공기 배출 모듈(220)을 통해 공기가 배출된다. 공기 배출 모듈(220)을 통해 공기가 배출되는 과정에서 나노 입자가 함께 배출될 수 있다.
즉, 나노 입자는 입자 공급 모듈(210)을 통해 공기와 함께 케이스(100) 내부 공간으로 유입되는데, 유입되는 동안 다수개의 메쉬 조직 패널(300)을 통과하게 되고, 이 과정에서 일부 나노 입자가 전술한 바와 같이 다수개의 메쉬 조직 패널(300)에 부착된 각각의 폐 세포(C)에 부착될 수 있다. 이와 같이 나노 입자의 유입 과정에서 일부 나노 입자가 메쉬 조직 패널(300)의 폐 세포(C)에 부착되기 때문에, 이후 공기 배출 모듈(220)을 통해 공기가 배출되는 과정에서 폐 세포(C)에 부착된 나노 입자는 배출되지 않고 그대로 폐 세포(C)에 부착된 상태로 남아있게 된다. 물론, 폐 세포(C)에 부착되지 않은 일부 나노 입자들은 공기 배출 과정에서 공기와 함께 외부로 배출될 수도 있을 것이다.
따라서, 호흡 작동 유닛(200)이 작동하게 되면, 나노 입자가 반복적으로 케이스(100) 내부 공간으로 유입되어 메쉬 조직 패널(300)의 폐 세포(C)에 부착되기 때문에, 장시간 경과하게 되면, 폐 세포(C)에 부착되는 나노 입자의 양이 많아지게 되고, 이에 따라 폐 세포(C)가 손상되거나 죽게 되는 현상이 발생할 수 있으며, 이러한 폐 세포(C)의 특성 변화를 파악하여 나노 입자에 대한 독성 평가를 수행할 수 있다.
입자 공급 모듈(210)은 나노 입자를 발생시키는 입자 발생기(211)와, 입자 발생기(211)로부터 발생된 나노 입자가 공기와 함께 케이스(100)의 내부 공간에 유입되도록 케이스(100)의 내부 공간에 공기를 유입시키는 공기 유입 펌프(212)를 포함하여 구성될 수 있다. 이때, 도 3에 도시된 바와 같이 입자 발생기(211)로부터 발생된 나노 입자는 별도의 믹싱 챔버(213)로 유입되고, 믹싱 챔버(213)에서 공기 유입 펌프(212)에 의한 공기와 혼합되어 케이스(100) 내부 공간으로 유입될 수 있다.
공기 배출 모듈(220)은 케이스(100)의 내부 공간과 연통되게 장착되는 완충백(221)을 포함하여 구성되는데, 이러한 완충백(221)은 입자 공급 모듈(210)을 통해 케이스(100) 내부 공간으로 유입되는 공기가 다수개의 메쉬 조직 패널(300)을 통과한 후 유입될 수 있도록 배치된다.
즉, 도 4에 도시된 방향을 기준으로 케이스(100) 내부 공간에는 상층부로부터 공기가 유입되고, 유입된 공기가 다수개의 메쉬 조직 패널(300)를 통과한 후 완충백(221)에 유입되도록 완충백(221)은 케이스(100)의 하단부에 연통되게 장착된다.
따라서, 입자 공급 모듈(210)에 의해 케이스(100) 내부 공간으로 유입되는 공기 및 나노 입자는 반드시 메쉬 조직 패널(300)을 통과한 이후 완충백(221)으로 유입되므로, 공기 및 나노 입자의 유입 흐름은 다수개의 메쉬 조직 패널(300)을 모두 통과하는 형태로 안정적으로 유지된다.
한편, 완충백(221)은 형상 복원 가능하도록 탄성 재질로 형성되는데, 일종의 고무 풍선 형태로 형성될 수 있다. 따라서, 입자 공급 모듈(210)의 동작이 완료되고 공기의 유입이 중단되면, 도 5에 도시된 바와 같이 완충백(221)의 탄성 복원력에 의해 완충백(221) 및 케이스(100) 내부 공간으로부터 공기가 외부로 배출된다.
공기 배출 모듈(220)은 이러한 탄성 재질의 완충백(221)을 구비하는 형태로도 충분히 구성할 수 있으나, 이와는 별도로 케이스(100) 내부 공간으로부터 공기를 배출시키는 공기 배출 펌프(미도시)를 더 포함하여 구성될 수도 있다. 이 경우, 완충백(221)은 탄성 재질로 형성될 필요가 없으며, 단순히 부피 변화가 가능한 연성 재질로 형성되면 충분할 것이다.
또한, 완충백(221)은 케이스(100) 내부 공간과 연통되어 부피 변화가 가능하도록 형성되기 때문에, 입자 공급 모듈(210)에 의해 케이스(100) 내부 공간으로 공기 및 나노 입자를 유입시키는 과정에서 케이스(100) 내부 공간의 압력 상승을 방지할 수 있고, 이에 따라 입자 공급 모듈(210)에 의한 공기 및 나노 입자의 유입을 원활하게 유지시키는 기능을 수행한다.
한편, 케이스(100)에는 내부 공간에 대한 공기의 유출입이 가능하도록 메인 배관(410)이 내부 공간과 연통되게 장착되고, 메인 배관(410)은 유입 배관(411) 및 배출 배관(412)으로 분기되며, 유입 배관(411)은 케이스(100) 내부 공간으로 공기 및 나노 입자가 유입될 수 있도록 입자 공급 모듈(210)과 연결되고, 배출 배관(412)은 케이스(100) 내부 공간으로부터 공기가 배출될 수 있도록 끝단이 개방된 형태로 형성된다.
이때, 메인 배관(410)의 분기된 부위에는 도 3에 도시된 바와 같이 유입 배관(411) 및 배출 배관(412)을 선택적으로 개방할 수 있는 유로 전환 밸브(420)가 장착되고, 유로 전환 밸브(420)는 입자 공급 모듈(210) 및 공기 배출 모듈(220)의 작동 상태와 연동하여 작동하도록 구성된다. 즉, 유로 전환 밸브(420)는 입자 공급 모듈(210)이 작동하는 동안에는 유입 배관(411)을 개방하도록 작동하고, 공기 배출 모듈(220)이 작동하는 동안에는 배출 배관(412)을 개방하도록 작동한다.
이와 같은 구조에 따라 입자 공급 모듈(210)로부터 공급된 공기 및 나노 입자는 도 4에 도시된 바와 같이 유입 배관(411) 및 메인 배관(410)을 통해 케이스(100) 내부 공간으로 유입되고, 케이스(100) 내부 공간에서 다수개의 메쉬 조직 패널(300)을 순차적으로 통과한 후 완충백(221)으로 유입된다. 이와 같은 공기 및 나노 입자의 유입 과정에서 나노 입자가 메쉬 조직 패널(300)의 폐 세포(C)에 부착된다. 이후, 입자 공급 모듈(210)의 동작이 완료되면, 도 5에 도시된 바와 같이 완충백(221)의 탄성 복원력에 의해 케이스(100) 내부 공간으로부터 공기가 배출된다. 공기가 배출되는 경로는 케이스(100) 내부 공간으로부터 메인 배관(410) 및 배출 배관(412)을 통해 배출된다.
이러한 과정을 반복적으로 수행함으로써, 나노 입자를 케이스(100) 내부 공간으로 계속적으로 유입시키고, 이후 메쉬 조직 패널(300)에 부착된 폐 세포(C)의 특성 변화를 검사하여 나노 입자에 대한 흡입 독성 시험을 수행할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (9)

  1. 내부에 수용 공간이 형성되는 케이스;
    상기 케이스 내부 공간에 대한 공기의 유입 및 배출 동작을 교대로 반복 수행하는 방식으로 상기 케이스 내부 공간에 공기와 함께 나노 입자를 유입시키는 호흡 작동 유닛; 및
    상기 케이스 내부 공간에 다수개 장착되고, 각각 서로 다른 크기의 격자 간격을 가지며 각각의 격자 라인에는 사람 또는 동물의 폐 세포가 부착되는 메쉬 조직 패널
    을 포함하고, 다수개의 상기 메쉬 조직 패널은 상기 케이스 내부 공간에서 나노 입자의 유입 흐름 방향을 따라 격자 간격이 더 작은 크기의 메쉬 조직 패널이 순차적으로 위치하도록 배치되는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치.
  2. 제 1 항에 있어서,
    상기 호흡 작동 유닛은
    나노 입자를 발생시켜 공기와 함께 상기 케이스의 내부 공간으로 유입시키는 입자 공급 모듈; 및
    상기 케이스의 내부 공간으로부터 공기를 배출시키는 공기 배출 모듈
    을 포함하고, 상기 입자 공급 모듈과 공기 배출 모듈은 교대로 반복하여 작동하는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치.
  3. 제 2 항에 있어서,
    상기 입자 공급 모듈은
    나노 입자를 발생시키는 입자 발생기; 및
    상기 입자 발생기로부터 발생된 나노 입자가 공기와 함께 상기 케이스의 내부 공간에 유입되도록 상기 케이스의 내부 공간에 공기를 유입시키는 공기 유입 펌프
    를 포함하는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치.
  4. 제 2 항에 있어서,
    상기 공기 배출 모듈은
    상기 입자 공급 모듈을 통해 상기 케이스 내부 공간으로 유입되는 공기가 다수개의 상기 메쉬 조직 패널을 통과한 후 유입될 수 있도록 상기 케이스 내부 공간에 연통되게 장착되는 완충백
    을 포함하고, 상기 완충백은 형상 복원 가능하도록 탄성 재질로 형성되며, 상기 케이스 내부 공간에 유입된 공기는 상기 완충백의 탄성 복원력에 의해 상기 케이스의 내부 공간으로부터 배출되는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치.
  5. 제 2 항에 있어서,
    상기 공기 배출 모듈은
    상기 입자 공급 모듈을 통해 상기 케이스 내부 공간으로 유입되는 공기가 다수개의 상기 메쉬 조직 패널을 통과한 후 유입될 수 있도록 상기 케이스 내부 공간에 연통되게 장착되는 완충백; 및
    상기 케이스 내부 공간으로부터 공기를 배출하는 공기 배출 펌프
    를 포함하는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치.
  6. 제 2 항에 있어서,
    상기 케이스에는 내부 공간에 대한 공기의 유출입이 가능하도록 메인 배관이 내부 공간과 연통되게 장착되고,
    상기 메인 배관은 유입 배관 및 배출 배관으로 분기되며, 상기 유입 배관은 상기 케이스 내부 공간으로 공기 및 나노 입자가 유입될 수 있도록 상기 입자 공급 모듈과 연결되고, 상기 배출 배관은 상기 케이스 내부 공간으로부터 공기가 배출될 수 있도록 끝단이 개방된 형태로 형성되는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치.
  7. 제 6 항에 있어서,
    상기 메인 배관의 분기된 부위에는 상기 유입 배관 및 배출 배관을 선택적으로 개방할 수 있는 유로 전환 밸브가 장착되고, 상기 유로 전환 밸브는 상기 입자 공급 모듈 및 공기 배출 모듈의 작동 상태와 연동하여 작동하는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 메쉬 조직 패널은
    각각의 격자 라인에 사람 또는 동물의 폐 세포를 균일하게 배양시키는 방식으로 형성되는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치.
  9. 제 8 항에 있어서,
    상기 메쉬 조직 패널은 각각 서로 다른 크기의 격자 간격을 갖는 형태로 적어도 4개 이상 배치되며,
    각각의 메쉬 조직 패널에는 사람 또는 동물의 폐 세포 중 기관, 기관지, 세기관지 및 폐포 세포가 각각 배양되는 것을 특징으로 하는 흡입 독성 시험용 폐 모델 장치.
PCT/KR2015/005615 2014-07-01 2015-06-04 흡입 독성 시험용 폐 모델 장치 WO2016003079A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/322,894 US10338059B2 (en) 2014-07-01 2015-06-04 Lung model device for inhalation toxicity testing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0081774 2014-07-01
KR1020140081774A KR101614151B1 (ko) 2014-07-01 2014-07-01 흡입 독성 시험용 폐 모델 장치

Publications (1)

Publication Number Publication Date
WO2016003079A1 true WO2016003079A1 (ko) 2016-01-07

Family

ID=55019563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005615 WO2016003079A1 (ko) 2014-07-01 2015-06-04 흡입 독성 시험용 폐 모델 장치

Country Status (3)

Country Link
US (1) US10338059B2 (ko)
KR (1) KR101614151B1 (ko)
WO (1) WO2016003079A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092669A (zh) * 2016-07-27 2016-11-09 广东工业大学 一种基于粒径的栅格分级分离空气中颗粒物的方法和装置
WO2018138591A1 (en) 2017-01-24 2018-08-02 Pfizer Inc. Calicheamicin derivatives and antibody drug conjugates thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318115B1 (ko) * 2018-11-14 2021-10-27 주식회사 아모그린텍 세포 대량배양 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120102180A (ko) * 2011-03-07 2012-09-18 한양대학교 산학협력단 인비트로 나노 물질 위해성 평가 방법
KR101221106B1 (ko) * 2010-10-11 2013-01-11 (주)에이치시티 케이지형 흡입 독성 평가 시험 장치
JP2014102186A (ja) * 2012-11-21 2014-06-05 Nagoya Univ ナノマテリアルの拡散評価装置、評価方法及び陰圧発生装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9074980B2 (en) 2011-01-20 2015-07-07 Industry-University Corporation Foundation Hanyang University Method for the toxicity assessments of nano-materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221106B1 (ko) * 2010-10-11 2013-01-11 (주)에이치시티 케이지형 흡입 독성 평가 시험 장치
KR20120102180A (ko) * 2011-03-07 2012-09-18 한양대학교 산학협력단 인비트로 나노 물질 위해성 평가 방법
JP2014102186A (ja) * 2012-11-21 2014-06-05 Nagoya Univ ナノマテリアルの拡散評価装置、評価方法及び陰圧発生装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERUBE, K. ET AL.: "In vitro models of inhalation toxicity and disease.", ALTERNATIVES TO LABORATORY ANIMALS, vol. 37, no. 1, February 2009 (2009-02-01), pages 89 - 141, XP002677010, ISSN: 0261-1929 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106092669A (zh) * 2016-07-27 2016-11-09 广东工业大学 一种基于粒径的栅格分级分离空气中颗粒物的方法和装置
CN106092669B (zh) * 2016-07-27 2019-08-09 广东工业大学 一种基于粒径的栅格分级分离空气中颗粒物的方法和装置
WO2018138591A1 (en) 2017-01-24 2018-08-02 Pfizer Inc. Calicheamicin derivatives and antibody drug conjugates thereof
US11993625B2 (en) 2017-01-24 2024-05-28 Pfizer, Inc. Calicheamicin derivatives and antibody drug conjugates thereof

Also Published As

Publication number Publication date
KR101614151B1 (ko) 2016-04-22
US10338059B2 (en) 2019-07-02
US20170160268A1 (en) 2017-06-08
KR20160003947A (ko) 2016-01-12

Similar Documents

Publication Publication Date Title
WO2016104859A1 (ko) 복수 농도 나노 입자 흡입 독성 시험 챔버 장치
Oberdörster et al. Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): Methodology and dosimetry
KR100784763B1 (ko) 이중노출챔버수단 및 이를 구비한 나노입자 흡입 독성평가용 장치
Shang et al. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone
WO2016003079A1 (ko) 흡입 독성 시험용 폐 모델 장치
WO2010107204A2 (ko) 나노 입자 흡입 독성 평가용 노출 챔버 장치
KR101463908B1 (ko) 흡입 독성 시험용 다층 케이지형 챔버 장치
Aufderheide et al. The CULTEX RFS: A Comprehensive Technical Approach for the In Vitro Exposure of Airway Epithelial Cells to the Particulate Matter at the Air‐Liquid Interface
KR101221106B1 (ko) 케이지형 흡입 독성 평가 시험 장치
Abouali et al. Micro and nanoparticle deposition in human nasal passage pre and post virtual maxillary sinus endoscopic surgery
KR20170124616A (ko) 마이크로채널을 갖는 기관 모방 장치 및 그 사용 및 제조 방법
CN106018235A (zh) 一种口罩的防护效果测试仓室及测试方法
WO2016003080A1 (ko) 폐 모델을 이용한 실시간 흡입 독성 시험 장치
WO2014017825A1 (ko) 영장류에 대한 나노 입자 흡입 독성 평가 시험용 노출 챔버 장치
CN105973784A (zh) 一种固体颗粒物防护服检测实验舱
KR20130101905A (ko) 나노 입자 흡입 독성 평가 시험용 케이지형 챔버 장치
Matida et al. A new add-on spacer design concept for dry-powder inhalers
Radhakrishnan et al. CFD modeling of turbulent flow and particle deposition in human lungs
Lennon et al. Experiments on particle deposition in the human upper respiratory system
CN115297942A (zh) 过滤器
KR20220066538A (ko) 금속 산화물 흡입 독성 체외 스크리닝 시험 장치
Kenjereš Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications
KR20240077171A (ko) 마스크 시험을 위한 호흡 모사 장치 및 방법
KR102270008B1 (ko) 세포 배양 장치 및 이를 이용한 인비트로 방식의 유해물질 독성 다중 평가 장치
Sznitman et al. CFD investigation of respiratory flows in a space-filling pulmonary acinus model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15816047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15322894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15816047

Country of ref document: EP

Kind code of ref document: A1