WO2016002876A1 - Air-conditioning control device and air-conditioning control method for hybrid vehicle - Google Patents

Air-conditioning control device and air-conditioning control method for hybrid vehicle Download PDF

Info

Publication number
WO2016002876A1
WO2016002876A1 PCT/JP2015/069118 JP2015069118W WO2016002876A1 WO 2016002876 A1 WO2016002876 A1 WO 2016002876A1 JP 2015069118 W JP2015069118 W JP 2015069118W WO 2016002876 A1 WO2016002876 A1 WO 2016002876A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
passenger compartment
internal combustion
combustion engine
conditioning control
Prior art date
Application number
PCT/JP2015/069118
Other languages
French (fr)
Japanese (ja)
Inventor
久保 賢明
山室 毅
星二 橋本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2016002876A1 publication Critical patent/WO2016002876A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/03Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant

Definitions

  • the present invention relates to control of the temperature and humidity of the passenger compartment of a hybrid vehicle.
  • the vehicle compartment is generally heated by using heat generated by the internal combustion engine.
  • the internal combustion engine in order to maintain the calorific value necessary for heating the passenger compartment, the internal combustion engine is intermittently operated, and the cooling water temperature of the internal combustion engine is maintained within a certain temperature range.
  • JP2012-35689 discloses a vehicle air conditioner that increases the rotational speed of an internal combustion engine in response to a heating request at a different increase rate according to the output ratio of the electric motor and the internal combustion engine as a technology related to heating of the passenger compartment. According to this vehicle air conditioner, even when a heating request is issued in a state where the output ratio of the internal combustion engine is low, the cooling water temperature can be raised early to satisfy the heating request.
  • the air conditioner When heating the passenger compartment using the heat generated by the internal combustion engine, the air conditioner heats the passenger compartment in an outside air circulation mode in which air outside the vehicle is circulated to the passenger compartment. For this reason, in the winter when the outside air temperature is low, the temperature of the passenger compartment and the temperature of the cooling water decrease in a short time after the operation of the internal combustion engine is stopped.
  • the surplus output of the internal combustion engine is obtained from the battery. Used for power storage.
  • the surplus output of the internal combustion engine is wasted, causing a problem of deteriorating fuel consumption.
  • the present invention has been made by paying attention to the above-mentioned problems, and suppresses frequent repetition of starting and stopping of an internal combustion engine for heating a passenger compartment of a hybrid vehicle, and also provides a vehicle with high energy efficiency as a whole vehicle.
  • An object of the present invention is to provide an air conditioning control device and an air conditioning control method for a hybrid vehicle that realizes room heating.
  • an air-conditioning control device of the present invention operates as a power source using an internal combustion engine, a power storage device, and the power of the power storage device, while being able to charge the power storage device as a generator. And an air conditioner that heats the passenger compartment using the cooling water of the internal combustion engine.
  • the air conditioning control device includes a heating request detection unit that detects a heating request for a passenger compartment, and an optimal fuel consumption operation so that the cooling water temperature of the internal combustion engine is maintained in a predetermined heating temperature region in response to the heating request.
  • the internal combustion engine controller that intermittently operates the internal combustion engine, a humidity acquisition unit that estimates or detects the humidity of the passenger compartment, and the outside air in the passenger compartment so that the humidity of the passenger compartment is maintained in a predetermined humidity region.
  • a circulation switching unit that switches between an outside air circulation mode that takes in and circulates and an inside air circulation mode that circulates the air in the passenger compartment, and an electric motor generates power with the surplus output of the internal combustion engine during optimal fuel consumption operation according to heating requirements
  • a power storage control unit that stores power in the power storage device.
  • FIG. 1 is a schematic configuration diagram of a hybrid vehicle to which an air conditioning control device according to an embodiment of the present invention is applied.
  • FIG. 2 is a flowchart for explaining a heating control routine executed by the controller according to the present embodiment.
  • FIG. 3 is a flowchart for explaining an air conditioning control routine executed by the controller.
  • FIG. 4 is a timing chart showing the transition of the cooling water temperature and the battery charge amount SOC by the conventional vehicle compartment heating control.
  • FIG. 5 is a timing chart showing execution results of the air conditioning control routine and the heating control routine by the controller of the present embodiment.
  • FIG. 6 is a timing chart showing another execution result of the air conditioning control routine and the heating control routine by the controller of the present embodiment.
  • the air conditioning control device of this embodiment is applied to a hybrid vehicle including an engine and an electric motor as power sources.
  • FIG. 1 is a schematic configuration diagram of a hybrid vehicle to which an air conditioning control device according to an embodiment of the present invention is applied.
  • the hybrid vehicle 1 of the present embodiment includes an engine 2 and an electric motor 3 as power sources, a transmission 4 provided on the output side of the engine 2 and the motor 3, and an output side of the motor 3.
  • the inverter 5 provided, the battery 10 as an electrical storage apparatus, and the controller 20 which controls these apparatuses are provided.
  • the engine 2 is constituted by a water-cooled internal combustion engine.
  • a radiator 6 is provided to radiate heat from the cooling water that cools the engine 2.
  • the radiator 6 is connected to a water jacket (not shown) provided in the engine 2 by a cooling passage.
  • the cooling water is circulated between the water jacket and the radiator 6 through this cooling passage according to the operation of a water pump (not shown), and the engine 2 is cooled by heat radiation in the radiator 6.
  • the battery 10 is electrically connected to the electric motor 3 through the inverter 5.
  • the inverter 5 rotates the electric motor 3 using the stored electric power of the battery 10 and charges the battery 10 by operating the electric motor 3 as a generator with respect to the rotation input from the engine 2 or the driving wheel. Do.
  • the HVAC device 8 is mounted on the hybrid vehicle 1 for heating and air conditioning of the passenger compartment 7 of the hybrid vehicle 1.
  • HVAC is an abbreviation for heating, ventilation, and air conditioning (Heating, Ventilation, and Air Conditioning).
  • the HVAC device 8 is provided with a PTC heater 9 as an electric heating device that operates with the stored power of the battery 10.
  • the PTC heater 9 is a heater using a PTC element whose internal resistance increases as the temperature rises. Note that PTC is an abbreviation for positive temperature coefficient (Positive Temperature Coefficient).
  • the controller 20 controls the operation of the engine 2, the drive control of the electric motor 3 via the inverter 5, the charge control of the battery 10 via the inverter 5, the control of the HVAC device 8 and the PTC heater 9, and the shift control of the transmission 4. And so on.
  • the controller 20 includes a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and a microcomputer having an input / output interface (I / O interface). Note that the controller 20 can be constituted by a plurality of microcomputers.
  • the air conditioning control device of the present embodiment is configured by each function executed by the controller 20, that is, operation control of the engine 2, charge control of the battery 10 via the inverter 5, control of the HVAC device 8 and the PTC heater 9. .
  • the air conditioning control device includes a vehicle compartment temperature sensor 21 that detects the temperature of the vehicle compartment, a vehicle compartment humidity sensor 22 that detects the humidity of the vehicle compartment, An outside air temperature sensor 23 for detecting the temperature of the cooling water, and a cooling water temperature sensor 24 for detecting the temperature of the cooling water (hereinafter referred to as “cooling water temperature”).
  • the detection data of these sensors is output to the controller 20 via a signal circuit.
  • the controller 20 performs the following control when a heating request for the passenger compartment 7 is issued in the EV traveling mode in which the hybrid vehicle 1 is traveling by the operation of only the electric motor 3.
  • the heating request is issued, for example, when the temperature of the passenger compartment 7 detected by the passenger compartment temperature sensor 21 falls below a set temperature.
  • the control executed by the controller 20 includes heating control for raising the temperature of the passenger compartment 7 to a specified temperature range, an outside air circulation mode for taking outside air into the passenger compartment 7, and an inside air circulation mode for circulating the air in the passenger compartment 7. And air conditioning control for switching between.
  • the passenger compartment 7 is basically heated by using heat generated by the operation of the engine 2. Specifically, the cooling water discharged from the engine 2 is radiated by the radiator 6, and the temperature of the vehicle compartment 7 is raised by sending air warmed by this heat radiation to the vehicle compartment 7 using a blower fan. .
  • the controller 20 increases the cooling water temperature to a predetermined temperature range by causing the engine 2 to perform the optimum fuel consumption operation. During this time, the controller 20 maintains the passenger compartment 7 in the inside air circulation mode via the HVAC device 8. In the inside air circulation mode, since the outside air is not introduced into the compartment 7, the temperature in the compartment 7 is unlikely to decrease. Therefore, the heat generated by the operation of the engine 2 can be efficiently used for heating the passenger compartment 7.
  • the controller 20 charges the battery 10 via the inverter 5 by rotationally driving the electric motor 3 as a generator.
  • the humidity in the passenger compartment 7 increases due to water vapor generated by the driver and passengers in the passenger compartment 7.
  • the humidity in the passenger compartment 7 reaches the dew point (the point at which water vapor begins to condense due to the temperature in the passenger compartment 7)
  • the humidity in the compartment 7 reaches the dew point
  • the controller 20 switches the HVAC device 8 from the inside air circulation mode to the outside air circulation mode, thereby reducing the humidity inside the compartment 7.
  • the controller 20 performs control to intermittently operate the engine 2 so that the coolant temperature of the engine 2 is maintained in a predetermined temperature range, and maintains the humidity in the vehicle compartment 7 in the predetermined humidity region.
  • the switching control of the HVAC device 8 is performed. Therefore, by performing the inside-air circulation mode in a range where no condensation occurs in the passenger compartment 7, frequent repetition of intermittent operation of the engine 2 can be suppressed while suppressing a temperature drop in the passenger compartment 7.
  • the controller 20 operates the PTC heater 9 using the stored power of the battery 10 prior to the operation of the engine 2 for increasing the coolant temperature. Therefore, compared with the case where the PTC heater 9 is not used, the stop period of the engine 2 can be lengthened.
  • the controller 20 executes the heating control routine shown in FIG. 2 and the air conditioning control routine shown in FIG. 3 in parallel.
  • the heating control routine is executed using a heating request for the passenger compartment 7 as a trigger.
  • the controller 20 determines whether or not the cooling water temperature of the engine 2 is lower than the lower limit value ⁇ in response to the heating request of the passenger compartment 7 (step S1).
  • the lower limit value ⁇ corresponds to the lower limit value of the temperature range of the cooling water temperature required for heating the passenger compartment 7.
  • the coolant temperature of the engine 2 is a value detected by the coolant temperature sensor 24.
  • step S1 If it is determined that the cooling water temperature is equal to or higher than the lower limit value ⁇ , the controller 20 stands by in step S1 until the cooling water temperature falls below the lower limit value ⁇ . On the other hand, when it is determined in step S1 that the coolant temperature is lower than the lower limit value ⁇ , the controller 20 starts the optimum fuel consumption operation of the engine 2 (step S2). Specifically, the controller 20 refers to an optimal fuel consumption line map stored in advance in a ROM (not shown), and calculates an engine load that can realize the target cooling water temperature under the minimum fuel consumption. Then, the controller 20 controls the operation of the engine 2 based on the calculated engine load.
  • the controller 20 determines whether or not the coolant temperature is equal to or higher than the upper limit value ⁇ (step S3).
  • the upper limit value ⁇ corresponds to the upper limit value of the temperature range of the coolant temperature required for heating the passenger compartment 7.
  • step S3 When it is determined in step S3 that the cooling water temperature has not reached the upper limit value ⁇ , that is, the cooling water temperature is lower than the upper limit value ⁇ , the controller 20 continues the operation of the engine 2 while the cooling water temperature is the upper limit value. Wait in step S3 until ⁇ is reached. On the other hand, when it is determined in step S3 that the coolant temperature is equal to or higher than the upper limit value ⁇ , the controller 20 stops the operation of the engine 2 (step S4).
  • step S5 the controller 20 determines whether or not the coolant temperature is lower than the lower limit value ⁇ , similarly to step S1 (step S5).
  • the controller 20 stands by in step S5 until the cooling water temperature falls below the lower limit value ⁇ while the operation of the engine 2 is stopped.
  • step S6 the controller 20 determines whether or not the charge amount SOC of the battery 10 is equal to or higher than the lower limit value min (step S6).
  • the lower limit value min corresponds to a threshold value for determining whether to charge the battery 10 while the hybrid vehicle 1 is traveling.
  • step S7 the controller 20 turns on the PTC heater 9 (step S7).
  • the passenger compartment 7 is heated using the heat generated by the PTC heater 9.
  • step S8 the controller 20 performs the process of step S8.
  • step S6 determines whether the charge amount SOC is greater than or equal to the lower limit value min. If it is determined in step S6 that the charge amount SOC is not greater than or equal to the lower limit value min, the controller 20 returns the process flow to step S2 and repeats the processes in and after step 2. As described above, when the battery 10 is not charged as much as possible to operate the PTC heater 9, the controller 20 operates the engine 2 to heat the passenger compartment 7 by the heat generated by the engine 2.
  • the controller 20 can maintain the required temperature at the outlet of the HVAC device 8 required for heating the passenger compartment 7 only by the heat generated by the PTC heater 9 after the cooling water temperature falls below the lower limit value ⁇ .
  • a long time is calculated (step S8).
  • the required temperature of the outlet necessary for heating the passenger compartment 7 is determined in advance from the target temperature for heating the passenger compartment 7 input to the HVAC device 8 and the outside air temperature detected by the outside air temperature sensor 23. Further, the maintenance time of the outlet temperature is determined based on the difference between the required temperature of the outlet and the outside air temperature, the amount of heat generated by the PTC heater 9 for maintaining this difference, and the charge amount SOC of the battery 10. Is done.
  • step S9 the controller 20 counts (accumulates) the elapsed time since the PTC heater 9 is turned on in step S7 (step S9). Then, the controller 20 determines whether or not this elapsed time has reached the sustainable time calculated in step S8 (step S10).
  • the controller 20 repeats the processes of steps S9 and S10, whereby the PTC heater 9 Is kept on.
  • the controller 20 turns off the PTC heater 9 (step S11).
  • step S12 determines whether or not the heating request has been turned off. If it is determined that the heating request is not OFF, that is, if the heating request remains ON, the controller 20 repeats the processes after step S1. On the other hand, if it is determined that the heating request is OFF, the controller 20 ends this heating control routine.
  • FIG. 3 is a flowchart for explaining an air conditioning control routine executed by the controller 20.
  • This air conditioning control routine is executed at the same time as the blower switch provided in the HVAC device 8 is turned on. For example, if the HVAC device 8 is configured so that the air blowing switch is turned on in conjunction with the heating request, the air conditioning control routine is always executed in parallel when the heating control routine of FIG. 2 is executed. Become.
  • the controller 20 reads the humidity of the passenger compartment 7 detected by the passenger compartment humidity sensor 22 (step S21).
  • the controller 20 determines whether or not the read humidity of the passenger compartment 7 is less than the upper limit value A of the humidity region that is the control target (step S22).
  • the upper limit value A of the humidity region is set equal to, for example, the humidity corresponding to the dew point temperature at which the water vapor in the passenger compartment 7 starts to condense.
  • the controller 20 instructs the HVAC device 8 to enter the inside air circulation mode (step S23). Thereby, the HVAC device 8 performs air conditioning of the passenger compartment 7 in the inside air circulation mode in which the air in the passenger compartment 7 is circulated. For this reason, the temperature in the compartment 7 is not lowered.
  • the controller 20 determines whether or not the blower switch is turned off (step S26). If it is determined that the blower switch has been turned OFF, the controller 20 ends this air conditioning control routine. On the other hand, if it is determined that the blower switch remains ON, the controller 20 repeats the processes after step S21. In the present embodiment, the blower switch is turned off simultaneously with the heating request in step S12 of the heating control routine in conjunction with the heating request.
  • step S22 when it is determined in step S22 that the humidity of the passenger compartment 7 has reached the upper limit value A of the humidity region, the controller 20 instructs the HVAC device 8 to enter the outside air circulation mode (step S23). Thereby, the HVAC device 8 performs air conditioning of the passenger compartment 7 in the outdoor air circulation mode in which the outside air is taken into the passenger compartment 7.
  • the controller 20 detects the humidity of the passenger compartment 7 again (step S24). Then, the controller 20 determines whether or not the humidity of the passenger compartment 7 is equal to or higher than the lower limit value B of the humidity region based on the detected (read) humidity (step S25).
  • the lower limit value B of the humidity region is, for example, a humidity that the driver or passengers feel uncomfortable (dryness), etc.
  • Step S25 when it is determined that the humidity of the passenger compartment 7 is equal to or higher than the lower limit value B of the humidity region, the controller 20 repeats the processes after Step S23.
  • the controller 20 determines whether or not the blower switch has been turned off (step S26). If it is determined that the blower switch is OFF, the controller 20 ends this air conditioning control routine. On the other hand, if it is determined that the blower switch remains ON, the controller 20 repeats the processes after step S21.
  • the controller 20 executes the heating control routine (see FIG. 2) and the air conditioning control routine (see FIG. 3) in parallel. In other words, the controller 20 executes the heating control of the passenger compartment 7 in combination with the air conditioning control of the passenger compartment 7.
  • FIG. 4 is a timing chart showing the transition of the cooling water temperature and the battery charge amount SOC by the conventional vehicle compartment heating control.
  • FIG. 5 is a timing chart showing execution results of the air conditioning control routine and the heating control routine by the controller of the present embodiment.
  • FIG. 6 is a timing chart showing another execution result of the air conditioning control routine and the heating control routine by the controller of the present embodiment.
  • the heating control is performed depending on the heat radiation of the engine 2 in the outside air circulation mode.
  • An example of such conventional heating control will be first described below.
  • the air conditioning control device executes the heating control routine and the air conditioning control routine in parallel, so that the inside air circulation is performed until the humidity of the passenger compartment 7 reaches the upper limit value A.
  • Air conditioning is performed according to the mode.
  • the inside air circulation mode since cool outside air is not introduced into the passenger compartment 7, an increase in the coolant temperature due to the operation of the engine 2 is promoted, and a decrease in the coolant temperature after the engine 2 is stopped is suppressed. Therefore, the cooling water temperature can maintain a water temperature region necessary for heating the passenger compartment 7 for a relatively long time, that is, a temperature region between the upper limit value ⁇ and the lower limit value ⁇ in the figure. Accordingly, it is possible to suppress a problem that the engine 2 is frequently started and stopped for heating the passenger compartment 7 while traveling in the EV mode.
  • the engine 2 is operated in an optimum fuel consumption operation in which the target cooling water temperature is set to the upper limit value ⁇ .
  • the surplus output of the engine 2 is used to drive the electric motor 3 as a generator, and the battery 10 is charged using the generated power of the electric motor 3. Therefore, the output of the engine 2 operated for heating can be used effectively.
  • the charge amount SOC of the battery 10 has reached the lower limit value min in step S ⁇ b> 6 of the heating control routine, and the PTC heater 9 is not used. This corresponds to the case where the passenger compartment 7 is heated only by heat generated during operation of the engine 2.
  • step S6 of the heating control routine After the engine 2 is stopped, the control when the charge amount SOC of the battery 10 exceeds the lower limit value min in step S6 of the heating control routine will be described.
  • step S8 when the duration of the ON state of the PTC heater 9 reaches the sustainable time calculated in step S8, the controller 20 turns off the PTC heater 9 in step S11. Thereafter, when the controller 20 determines that the heating request is not OFF, the operation of the engine 2 is resumed in step S2.
  • the restart of the operation of the engine 2 can be delayed by heating the passenger compartment 7 by the PTC heater 9 using electric energy corresponding to the surplus. it can. That is, the stop period of the engine 2 can be lengthened by delaying the decrease in the temperature of the passenger compartment 7. As a result, frequent repetition of starting and stopping of the engine 2 can be further suppressed.
  • the controller 20 turns off the PTC heater 9. Therefore, the charging amount SOC of the battery 10 is not excessively consumed for heating the passenger compartment 7, and the charging power of the battery 10 can be utilized to the maximum extent possible.
  • the controller 20 calculates the required temperature of the air outlet to the passenger compartment 7 of the air conditioner in response to the heating request, the calculated required temperature of the air outlet, and the battery 10 Based on the charge amount SOC, the maintenance time of the required temperature of the outlet is calculated. Then, the controller 20 determines that the charge amount SOC has reached the lower limit value min when the sustainable time has elapsed since the PTC heater 9 was turned on. Therefore, in the air conditioning control device of the present embodiment, it is easily determined that the charge amount SOC has reached the lower limit value min without sequentially monitoring the charge amount SOC of the battery 10 by an output current sensor and an output voltage sensor (not shown). be able to.
  • the air conditioning control device for the hybrid vehicle 1 operates as a power source using the engine 2 as an internal combustion engine, the battery 10 as a power storage device, and the charging power of the battery 10,
  • An air conditioning control device for a hybrid vehicle 1 comprising an electric motor 3 capable of charging a battery 10 as a generator and an HVAC device 8 as an air conditioning device for heating the passenger compartment 7 using cooling water of the engine 2,
  • the HVAC device 8 that functions as a heating request detection unit that detects a heating request of the passenger compartment 7, a humidity sensor 22 that functions as a humidity acquisition unit that estimates or detects the humidity of the passenger compartment 7, and the engine 2 according to the heating request
  • the internal combustion engine control unit that intermittently operates the engine 2 by the optimum fuel consumption operation so that the cooling water temperature of the engine is maintained in a predetermined heating temperature range,
  • a circulation switching unit that switches between an outside air circulation mode in which outside air is circulated by being taken into the passenger compartment 7 and an inside air circulation mode in which the air in the passenger compartment 7 is circulated, and a heating request.
  • the inside air circulation of the air conditioning is performed so that the humidity in the passenger compartment 7 is maintained in a predetermined humidity region.
  • Switching between the mode and the outside air circulation mode In the heating in the inside air circulation mode, the heating efficiency of the passenger compartment 7 can be increased and the temperature in the passenger compartment 7 is not easily lowered even when the engine 2 is stopped. Therefore, the heating control is performed only in the outside air circulation mode.
  • the operation interval of the engine 2 can be expanded. As a result, frequent repetition of starting and stopping of the engine 2 for heating the passenger compartment 7 can be suppressed.
  • the air conditioning control device for the hybrid vehicle 1 further includes a PTC heater 9 as a PTC heater 9 that heats the passenger compartment 7 using the charging power of the battery 10, and the controller 10 has a charge amount of the battery 10.
  • the PTC heater 9 is activated to function as a PTC heater 9 controller that heats the passenger compartment.
  • the PTC heater 9 is first used by using the surplus storage amount of the charge amount SOC of the battery 10.
  • the vehicle compartment 7 is heated, and then the operation of the engine 2 is resumed. Therefore, it becomes possible to make the stop time of the engine 2 longer, and the frequent repetition of starting and stopping of the engine 2 for heating the passenger compartment 7 can be further suppressed.
  • the controller 10 stops the operation of the PTC heater 9 when the amount of charge of the battery 10 reaches a predetermined lower limit as a result of heating the passenger compartment 7 by the PTC heater 9. It is configured to be (OFF). Since it is configured in this manner, the battery 10 is not excessively discharged and the life of the battery 10 is not shortened.
  • the controller 10 calculates the required temperature of the air outlet to the passenger compartment 7 of the air conditioner in response to the heating request, detects the charge amount of the battery 10, Based on the required temperature of the mouth and the amount of charge of the battery 10, a sustainable time during which the required temperature of the outlet can be maintained is calculated, and it is determined that the amount of charge has reached a predetermined lower limit when the maintainable time has elapsed. Configured to do. By configuring the air conditioning control device of this embodiment in this way, the operation of the PTC heater 9 is turned off when the sustainable time has elapsed without sequentially monitoring the charge amount SOC of the battery 10. The battery 10 is not excessively discharged, and the life of the battery 10 is not shortened.
  • the upper limit value in the predetermined humidity region is the humidity corresponding to the dew point temperature at which condensation can occur in the passenger compartment.
  • the controller 10 operates in the room air circulation mode as long as the humidity of the passenger compartment 7 does not exceed a predetermined humidity region while the engine 2 is being operated in response to a heating request. Configured to apply.
  • the air conditioning control device of the present embodiment in this way, cool outside air is not introduced into the passenger compartment 7 unless the humidity of the passenger compartment 7 exceeds a predetermined humidity region. And the decrease in the coolant temperature after the engine 2 is stopped is suppressed. Therefore, the cooling water temperature can maintain a water temperature region necessary for heating the passenger compartment 7 for a relatively long time. Accordingly, it is possible to suppress a problem that the engine 2 is frequently started and stopped for heating the passenger compartment 7 while traveling in the EV mode.
  • the air conditioning control method for the hybrid vehicle 1 detects a heating request for the passenger compartment 7 in the hybrid vehicle 1 as described above, and the cooling water temperature of the engine 2 is set to a predetermined heating in response to the heating request.
  • the engine 2 is intermittently operated so as to be maintained in the temperature region, the humidity of the passenger compartment 7 is estimated or detected, and the outside air is supplied to the passenger compartment 7 so that the humidity of the passenger compartment 7 is maintained in a predetermined humidity region.
  • the engine 2 is operated in response to a heating request, the engine 2 is operated at an optimum fuel efficiency and the heating request is satisfied. Electricity is generated with the surplus output of the engine 2 during the optimum fuel consumption operation and is stored in the battery 10.
  • the air conditioning control method of the present embodiment the same effects as those of the above-described air conditioning control device can be achieved.
  • the present invention can also be applied to a hybrid vehicle that heats the passenger compartment 7 only by the heat generated by the engine 2.
  • the heating control routine in which steps S6 to S11 in FIG. 2 are omitted and the air conditioning control routine in FIG. 3 may be executed in parallel.
  • FIG. 5 an effect of suppressing frequent repetition of starting and stopping of the engine 2 for heating the passenger compartment 7 is obtained as compared with the conventional air conditioning control device. be able to.
  • the controller 20 turns off the PTC heater 9 based on the maintenance time of the outlet temperature.
  • the charge amount SOC of the battery 10 is successively monitored using an output current sensor, an output voltage sensor, or the like (not shown), and the PTC heater 9 is turned off when the charge amount SOC decreases to the lower limit value min. It is also possible to do.
  • the HVAC device 8 constitutes a heating request detection unit that detects a heating request for the passenger compartment.
  • the controller 20 constitutes an internal combustion engine control unit, a circulation switching unit, a power storage control unit, and an electric heating device control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 This air-conditioning control device for a hybrid vehicle is provided with a heating request detector for detecting a request to heat the vehicle interior, an internal combustion engine control unit for intermittently operating an internal combustion engine by optimal fuel consumption operation so that the cooling water temperature of the internal combustion engine is maintained in a prescribed heating temperature range in accordance with the heating request, a humidity acquisition unit for estimating or detecting the humidity of the vehicle interior, a circulation switching unit for switching between an outside air circulation mode for taking outside air into the vehicle interior and circulating the air and an inside air circulation mode for circulating the air in the vehicle interior so that the humidity of the vehicle interior is maintained in a prescribed humidity range, and an electrical storage control unit for storing electricity in an electrical storage device by using an electric motor to generate power at excess output of the internal combustion engine during optimal fuel consumption operation according to the heating request.

Description

ハイブリッド車両の空調制御装置及び空調制御方法Air conditioning control device and air conditioning control method for hybrid vehicle
 本発明は、ハイブリッド車両の車室の温度と湿度の制御に関する。 The present invention relates to control of the temperature and humidity of the passenger compartment of a hybrid vehicle.
 走行用動力源として電動モータと内燃機関とを備えるハイブリッド車両では、一般に内燃機関の発熱を利用することにより車室の暖房を行っている。このようなハイブリッド車両では、車室の暖房に必要な発熱量を維持するために、内燃機関を断続的に運転し、内燃機関の冷却水温を一定の温度範囲に維持している。 In a hybrid vehicle including an electric motor and an internal combustion engine as a driving power source, the vehicle compartment is generally heated by using heat generated by the internal combustion engine. In such a hybrid vehicle, in order to maintain the calorific value necessary for heating the passenger compartment, the internal combustion engine is intermittently operated, and the cooling water temperature of the internal combustion engine is maintained within a certain temperature range.
 JP2012-35689は、車室の暖房に関する技術として、電動モータと内燃機関の出力割合に応じた異なる上昇率で、暖房要求に対する内燃機関の回転速度を上昇させる車両用空調装置を開示する。この車両用空調装置によれば、内燃機関の出力割合が低い状態において暖房要求が発せられた場合でも、冷却水温を早期に上昇させて暖房要求を満たすことができる。 JP2012-35689 discloses a vehicle air conditioner that increases the rotational speed of an internal combustion engine in response to a heating request at a different increase rate according to the output ratio of the electric motor and the internal combustion engine as a technology related to heating of the passenger compartment. According to this vehicle air conditioner, even when a heating request is issued in a state where the output ratio of the internal combustion engine is low, the cooling water temperature can be raised early to satisfy the heating request.
 内燃機関の発熱を利用して車室を暖房する場合、空調装置は、車外の空気を車室に循環させる外気循環モードで車室の暖房を行っている。そのため、外気温が低い冬季には、内燃機関の運転停止後、車室の温度も冷却水温も短時間で低下してしまう。 When heating the passenger compartment using the heat generated by the internal combustion engine, the air conditioner heats the passenger compartment in an outside air circulation mode in which air outside the vehicle is circulated to the passenger compartment. For this reason, in the winter when the outside air temperature is low, the temperature of the passenger compartment and the temperature of the cooling water decrease in a short time after the operation of the internal combustion engine is stopped.
 こうした状況で冷却水温を所定の湿度領域に維持しようとすると、内燃機関の始動と停止が短い期間で繰り返されることとなり、車両のドライバや同乗者が煩わしく感じることがあるという問題がある。 In such a situation, if the cooling water temperature is maintained in a predetermined humidity range, the start and stop of the internal combustion engine are repeated in a short period of time, and there is a problem that the driver and passengers of the vehicle may feel troublesome.
 また、上記のような車両では、電動モータの出力のみでも走行用動力を賄うことができる状態において、車室の暖房のために内燃機関を運転する場合には、内燃機関の余剰出力はバッテリの蓄電に用いられる。しかしながら、バッテリの充電量(SOC)が上限に達した後は、内燃機関の余剰出力は無駄となってしまい、燃費の悪化をもたらす要因となるという問題もあった。 Further, in the vehicle as described above, when the internal combustion engine is operated for heating the passenger compartment in a state where the power for traveling can be covered only by the output of the electric motor, the surplus output of the internal combustion engine is obtained from the battery. Used for power storage. However, after the amount of charge (SOC) of the battery reaches the upper limit, the surplus output of the internal combustion engine is wasted, causing a problem of deteriorating fuel consumption.
 本発明は、上述の問題点に着目してなされたものであり、ハイブリッド車両の車室暖房のための内燃機関の始動と停止の頻繁な繰り返しを抑制するとともに、車両全体としてエネルギー効率の高い車室の暖房を実現するハイブリッド車両の空調制御装置及び空調制御方法を提供することを目的とする。 The present invention has been made by paying attention to the above-mentioned problems, and suppresses frequent repetition of starting and stopping of an internal combustion engine for heating a passenger compartment of a hybrid vehicle, and also provides a vehicle with high energy efficiency as a whole vehicle. An object of the present invention is to provide an air conditioning control device and an air conditioning control method for a hybrid vehicle that realizes room heating.
 本発明の一態様によれば、本発明の空調制御装置は、内燃機関と、蓄電装置と、蓄電装置の電力を用いて動力源として作動する一方、発電機として蓄電装置に充電可能な電動モータと、内燃機関の冷却水を用いて車室の暖房を行う空調装置と、を備えるハイブリッド車両に適用される。本発明の空調制御装置は、車室の暖房要求を検出する暖房要求検出部と、暖房要求に応じて、内燃機関の冷却水温度が所定の暖房温度領域に維持されるように、最適燃費運転により内燃機関を断続的に運転する内燃機関制御部と、車室の湿度を推定又は検出する湿度取得部と、車室の湿度が所定の湿度領域に維持されるように、外気を車室に取り入れて循環させる外気循環モードと、車室内の空気を循環させる内気循環モードとを切り換える循環切換部と、暖房要求に応じた最適燃費運転中の内燃機関の余剰出力で電動モータにより発電を行って、蓄電装置に蓄電する蓄電制御部とを備える。 According to one aspect of the present invention, an air-conditioning control device of the present invention operates as a power source using an internal combustion engine, a power storage device, and the power of the power storage device, while being able to charge the power storage device as a generator. And an air conditioner that heats the passenger compartment using the cooling water of the internal combustion engine. The air conditioning control device according to the present invention includes a heating request detection unit that detects a heating request for a passenger compartment, and an optimal fuel consumption operation so that the cooling water temperature of the internal combustion engine is maintained in a predetermined heating temperature region in response to the heating request. The internal combustion engine controller that intermittently operates the internal combustion engine, a humidity acquisition unit that estimates or detects the humidity of the passenger compartment, and the outside air in the passenger compartment so that the humidity of the passenger compartment is maintained in a predetermined humidity region. A circulation switching unit that switches between an outside air circulation mode that takes in and circulates and an inside air circulation mode that circulates the air in the passenger compartment, and an electric motor generates power with the surplus output of the internal combustion engine during optimal fuel consumption operation according to heating requirements And a power storage control unit that stores power in the power storage device.
図1は、本発明の一実施形態における空調制御装置を適用するハイブリッド車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a hybrid vehicle to which an air conditioning control device according to an embodiment of the present invention is applied. 図2は、本実施形態によるコントローラが実行する暖房制御ルーチンを説明するためのフローチャートである。FIG. 2 is a flowchart for explaining a heating control routine executed by the controller according to the present embodiment. 図3は、コントローラが実行する空調制御ルーチンを説明するためのフローチャートである。FIG. 3 is a flowchart for explaining an air conditioning control routine executed by the controller. 図4は、従来の車室暖房制御による冷却水温とバッテリの充電量SOCの推移を示すタイミングチャートである。FIG. 4 is a timing chart showing the transition of the cooling water temperature and the battery charge amount SOC by the conventional vehicle compartment heating control. 図5は、本実施形態のコントローラによる空調制御ルーチンと暖房制御ルーチンの実行結果を示すタイミングチャートである。FIG. 5 is a timing chart showing execution results of the air conditioning control routine and the heating control routine by the controller of the present embodiment. 図6は、本実施形態のコントローラによる空調制御ルーチンと暖房制御ルーチンの別の実行結果を示すタイミングチャートである。FIG. 6 is a timing chart showing another execution result of the air conditioning control routine and the heating control routine by the controller of the present embodiment.
 以下、添付図面を参照しつつ、本発明の実施形態について説明する。本実施形態の空調制御装置は、動力源としてエンジンと電動モータとを備えるハイブリッド車両に適用される。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The air conditioning control device of this embodiment is applied to a hybrid vehicle including an engine and an electric motor as power sources.
 図1は、本発明の一実施形態における空調制御装置を適用するハイブリッド車両の概略構成図である。図1に示すように、本実施形態のハイブリッド車両1は、動力源としてエンジン2及び電動モータ3と、エンジン2及びモータ3の出力側に設けられた変速機4と、モータ3の出力側に設けられたインバータ5と、蓄電装置としてのバッテリ10と、これらの装置を制御するコントローラ20と、を備える。 FIG. 1 is a schematic configuration diagram of a hybrid vehicle to which an air conditioning control device according to an embodiment of the present invention is applied. As shown in FIG. 1, the hybrid vehicle 1 of the present embodiment includes an engine 2 and an electric motor 3 as power sources, a transmission 4 provided on the output side of the engine 2 and the motor 3, and an output side of the motor 3. The inverter 5 provided, the battery 10 as an electrical storage apparatus, and the controller 20 which controls these apparatuses are provided.
 エンジン2及び電動モータ3の回転出力は、変速機4及び図示しないシャフト等を介して図示しない駆動輪に伝達される。エンジン2は、水冷式の内燃機関により構成される。エンジン2を冷却する冷却水から放熱するために、ラジエータ6が設けられる。ラジエータ6は、冷却通路により、エンジン2に設けられた図示しないウォータジャケットに接続される。冷却水は、図示しないウォータポンプの運転に応じて、この冷却通路を介してウォータジャケットとラジエータ6との間を循環させられ、ラジエータ6における放熱によりエンジン2の冷却を行う。 Rotational outputs of the engine 2 and the electric motor 3 are transmitted to drive wheels (not shown) via the transmission 4 and a shaft (not shown). The engine 2 is constituted by a water-cooled internal combustion engine. A radiator 6 is provided to radiate heat from the cooling water that cools the engine 2. The radiator 6 is connected to a water jacket (not shown) provided in the engine 2 by a cooling passage. The cooling water is circulated between the water jacket and the radiator 6 through this cooling passage according to the operation of a water pump (not shown), and the engine 2 is cooled by heat radiation in the radiator 6.
 バッテリ10は、インバータ5を介して電動モータ3に電気的に接続される。インバータ5は、バッテリ10の蓄電電力を用いて電動モータ3を回転駆動するとともに、エンジン2又は駆動輪からの回転入力に対して電動モータ3を発電機として稼働させることによりバッテリ10への充電を行う。 The battery 10 is electrically connected to the electric motor 3 through the inverter 5. The inverter 5 rotates the electric motor 3 using the stored electric power of the battery 10 and charges the battery 10 by operating the electric motor 3 as a generator with respect to the rotation input from the engine 2 or the driving wheel. Do.
 ハイブリッド車両1の車室7の暖房及び空調のために、ハイブリッド車両1にはHVAC装置8が搭載される。なお、HVACは、暖房、換気、及び空調(Heating, Ventilation, and Air Conditioning)の略語である。HVAC装置8には、バッテリ10の蓄電電力で作動する電気的暖房装置としてPTCヒータ9が付設される。PTCヒータ9は、温度上昇に伴って内部抵抗が増大するPTC素子を用いたヒータである。なお、PTCは、正温度係数(Positive Temperature Coefficient)の略語である。 The HVAC device 8 is mounted on the hybrid vehicle 1 for heating and air conditioning of the passenger compartment 7 of the hybrid vehicle 1. HVAC is an abbreviation for heating, ventilation, and air conditioning (Heating, Ventilation, and Air Conditioning). The HVAC device 8 is provided with a PTC heater 9 as an electric heating device that operates with the stored power of the battery 10. The PTC heater 9 is a heater using a PTC element whose internal resistance increases as the temperature rises. Note that PTC is an abbreviation for positive temperature coefficient (Positive Temperature Coefficient).
 コントローラ20は、エンジン2の運転制御、インバータ5を介した電動モータ3の駆動制御、インバータ5を介したバッテリ10の充電制御、HVAC装置8とPTCヒータ9の制御、及び変速機4の変速制御などを行う。 The controller 20 controls the operation of the engine 2, the drive control of the electric motor 3 via the inverter 5, the charge control of the battery 10 via the inverter 5, the control of the HVAC device 8 and the PTC heater 9, and the shift control of the transmission 4. And so on.
 コントローラ20は、図示しないが、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。なお、このコントローラ20を複数のマイクロコンピュータで構成することも可能である。 Although not shown, the controller 20 includes a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and a microcomputer having an input / output interface (I / O interface). Note that the controller 20 can be constituted by a plurality of microcomputers.
 本実施形態の空調制御装置は、コントローラ20により実行される各機能、すなわち、エンジン2の運転制御、インバータ5を介したバッテリ10の充電制御、HVAC装置8とPTCヒータ9の制御により構成される。この空調制御装置は、これらの制御を実行するために、コントローラ20に加えて、車室の温度を検出する車室温度センサ21と、車室の湿度を検出する車室湿度センサ22と、外気の温度を検出する外気温センサ23と、冷却水の温度(以下、「冷却水温」という)を検出する冷却水温センサ24とを備える。これらのセンサの検出データは、それぞれ信号回路を介してコントローラ20に出力される。 The air conditioning control device of the present embodiment is configured by each function executed by the controller 20, that is, operation control of the engine 2, charge control of the battery 10 via the inverter 5, control of the HVAC device 8 and the PTC heater 9. . In order to execute these controls, the air conditioning control device includes a vehicle compartment temperature sensor 21 that detects the temperature of the vehicle compartment, a vehicle compartment humidity sensor 22 that detects the humidity of the vehicle compartment, An outside air temperature sensor 23 for detecting the temperature of the cooling water, and a cooling water temperature sensor 24 for detecting the temperature of the cooling water (hereinafter referred to as “cooling water temperature”). The detection data of these sensors is output to the controller 20 via a signal circuit.
 次に、コントローラ20が実行するハイブリッド車両1における車室7の空調及び暖房の制御について説明する。 Next, control of air conditioning and heating of the passenger compartment 7 in the hybrid vehicle 1 executed by the controller 20 will be described.
 コントローラ20は、電動モータ3のみの運転によりハイブリッド車両1が走行しているEV走行モードにおいて、車室7の暖房要求が発せられた場合には、次のような制御を行う。なお、暖房要求は、例えば、車室温度センサ21により検出される車室7の温度が設定温度を下回った場合に発せられる。 The controller 20 performs the following control when a heating request for the passenger compartment 7 is issued in the EV traveling mode in which the hybrid vehicle 1 is traveling by the operation of only the electric motor 3. The heating request is issued, for example, when the temperature of the passenger compartment 7 detected by the passenger compartment temperature sensor 21 falls below a set temperature.
 コントローラ20により実行される制御は、車室7の温度を指定された温度域へ上昇させる暖房制御と、外気を車室7に取り入れる外気循環モードと車室7内の空気を循環させる内気循環モードとを切り換える空調制御とを含む。 The control executed by the controller 20 includes heating control for raising the temperature of the passenger compartment 7 to a specified temperature range, an outside air circulation mode for taking outside air into the passenger compartment 7, and an inside air circulation mode for circulating the air in the passenger compartment 7. And air conditioning control for switching between.
 まず、コントローラ20が実行する基本制御について説明する。車室7の暖房は、基本的にはエンジン2の運転に伴う発熱を利用して行われる。具体的には、エンジン2から排出される冷却水をラジエータ6で放熱させ、送風ファンを用いて、この放熱により暖められた空気を車室7に送り込むことにより、車室7の温度を上昇させる。 First, basic control executed by the controller 20 will be described. The passenger compartment 7 is basically heated by using heat generated by the operation of the engine 2. Specifically, the cooling water discharged from the engine 2 is radiated by the radiator 6, and the temperature of the vehicle compartment 7 is raised by sending air warmed by this heat radiation to the vehicle compartment 7 using a blower fan. .
 したがって、車室1の暖房要求に対して、コントローラ20は、エンジン2を最適燃費運転させることにより、冷却水温を所定の温度領域に上昇させる。この間、コントローラ20は、HVAC装置8を介して車室7を内気循環モードに維持する。内気循環モードでは車室7内に外気が導入されないため、車室7内の温度が低下しにくい。したがって、エンジン2の運転による発熱を効率良く車室7の暖房に用いることができる。最適燃費運転によりエンジン2の出力に余剰が生じた場合は、コントローラ20は、電動モータ3を発電機として回転駆動することによりインバータ5を介してバッテリ10の充電を行う。 Therefore, in response to the heating request of the passenger compartment 1, the controller 20 increases the cooling water temperature to a predetermined temperature range by causing the engine 2 to perform the optimum fuel consumption operation. During this time, the controller 20 maintains the passenger compartment 7 in the inside air circulation mode via the HVAC device 8. In the inside air circulation mode, since the outside air is not introduced into the compartment 7, the temperature in the compartment 7 is unlikely to decrease. Therefore, the heat generated by the operation of the engine 2 can be efficiently used for heating the passenger compartment 7. When surplus occurs in the output of the engine 2 due to the optimum fuel efficiency operation, the controller 20 charges the battery 10 via the inverter 5 by rotationally driving the electric motor 3 as a generator.
 一方、内気循環モードを継続すると、車室7内のドライバや同乗者が発する水蒸気により車室7内の湿度が上昇する。車室7内の湿度が結露点(車室7内の温度との関係により、水蒸気が結露を始める点)に達すると、水蒸気が結露して窓ガラスなどに曇りが生じる。そのため、車室7内の湿度が結露点に達すると、コントローラ20は、HVAC装置8を内気循環モードから外気循環モードに切り換えることにより、車室7内の湿度を低下させる。 On the other hand, when the inside air circulation mode is continued, the humidity in the passenger compartment 7 increases due to water vapor generated by the driver and passengers in the passenger compartment 7. When the humidity in the passenger compartment 7 reaches the dew point (the point at which water vapor begins to condense due to the temperature in the passenger compartment 7), the water vapor condenses and the window glass or the like becomes cloudy. Therefore, when the humidity in the compartment 7 reaches the dew point, the controller 20 switches the HVAC device 8 from the inside air circulation mode to the outside air circulation mode, thereby reducing the humidity inside the compartment 7.
 このように、コントローラ20は、エンジン2の冷却水温が所定の温度領域に維持されるようにエンジン2を断続的に運転する制御を行うとともに、車室7内の湿度が所定の湿度領域に維持されるようにHVAC装置8の切換制御を行う。したがって、車室7内に結露を生じない範囲で内気循環モードを行うことにより、車室7の温度低下を抑えつつ、エンジン2の断続運転の頻繁な繰り返しを抑制することができる。 As described above, the controller 20 performs control to intermittently operate the engine 2 so that the coolant temperature of the engine 2 is maintained in a predetermined temperature range, and maintains the humidity in the vehicle compartment 7 in the predetermined humidity region. Thus, the switching control of the HVAC device 8 is performed. Therefore, by performing the inside-air circulation mode in a range where no condensation occurs in the passenger compartment 7, frequent repetition of intermittent operation of the engine 2 can be suppressed while suppressing a temperature drop in the passenger compartment 7.
 さらに、コントローラ20は、バッテリ10の充電量SOCに余裕がある場合には、冷却水温を上昇させるためのエンジン2の運転に先立って、バッテリ10の蓄電電力を用いてPTCヒータ9を稼働させる。これにより、PTCヒータ9を用いない場合に比べ、エンジン2の停止期間を長くすることができる。 Furthermore, when the charge amount SOC of the battery 10 has a margin, the controller 20 operates the PTC heater 9 using the stored power of the battery 10 prior to the operation of the engine 2 for increasing the coolant temperature. Thereby, compared with the case where the PTC heater 9 is not used, the stop period of the engine 2 can be lengthened.
 以上の制御のために、コントローラ20は、図2に示す暖房制御ルーチンと図3に示す空調制御ルーチンとを並行して実行する。 For the above control, the controller 20 executes the heating control routine shown in FIG. 2 and the air conditioning control routine shown in FIG. 3 in parallel.
 まず、暖房制御ルーチンについて説明する。暖房制御ルーチンは、車室7の暖房要求をトリガとして実行される。 First, the heating control routine will be described. The heating control routine is executed using a heating request for the passenger compartment 7 as a trigger.
 図2を参照すると、コントローラ20は、車室7の暖房要求に対して、エンジン2の冷却水温が下限値βより低いか否かを判定する(ステップS1)。ここで、下限値βは、車室7の暖房のために必要な冷却水温の温度領域の下限値に相当する。エンジン2の冷却水温は、冷却水温センサ24により検出された値である。 Referring to FIG. 2, the controller 20 determines whether or not the cooling water temperature of the engine 2 is lower than the lower limit value β in response to the heating request of the passenger compartment 7 (step S1). Here, the lower limit value β corresponds to the lower limit value of the temperature range of the cooling water temperature required for heating the passenger compartment 7. The coolant temperature of the engine 2 is a value detected by the coolant temperature sensor 24.
 冷却水温が下限値β以上であると判定した場合には、コントローラ20は、冷却水温が下限値βを下回るまでステップS1で待機する。一方、ステップS1で冷却水温が下限値βより低いと判定した場合には、コントローラ20は、エンジン2の最適燃費運転を開始する(ステップS2)。具体的には、コントローラ20は、図示しないROMに予め格納された最適燃費線マップを参照して、最小の燃料消費下で目標冷却水温を実現することができるエンジン負荷を算出する。そして、コントローラ20は、算出したエンジン負荷に基づいて、でエンジン2を運転制御する。 If it is determined that the cooling water temperature is equal to or higher than the lower limit value β, the controller 20 stands by in step S1 until the cooling water temperature falls below the lower limit value β. On the other hand, when it is determined in step S1 that the coolant temperature is lower than the lower limit value β, the controller 20 starts the optimum fuel consumption operation of the engine 2 (step S2). Specifically, the controller 20 refers to an optimal fuel consumption line map stored in advance in a ROM (not shown), and calculates an engine load that can realize the target cooling water temperature under the minimum fuel consumption. Then, the controller 20 controls the operation of the engine 2 based on the calculated engine load.
 次いで、コントローラ20は、冷却水温が上限値α以上であるか否かを判定する(ステップS3)。上限値αは、車室7の暖房のために必要な冷却水温の温度領域の上限値に相当する。 Next, the controller 20 determines whether or not the coolant temperature is equal to or higher than the upper limit value α (step S3). The upper limit value α corresponds to the upper limit value of the temperature range of the coolant temperature required for heating the passenger compartment 7.
 ステップS3で冷却水温が上限値αに達していない、すなわち、冷却水温が上限値α未満であると判定した場合には、コントローラ20は、エンジン2の運転を続行しつつ、冷却水温が上限値αに達するまでステップS3で待機する。一方、ステップS3で冷却水温が上限値α以上であると判定した場合には、コントローラ20は、エンジン2の運転を停止する(ステップS4)。 When it is determined in step S3 that the cooling water temperature has not reached the upper limit value α, that is, the cooling water temperature is lower than the upper limit value α, the controller 20 continues the operation of the engine 2 while the cooling water temperature is the upper limit value. Wait in step S3 until α is reached. On the other hand, when it is determined in step S3 that the coolant temperature is equal to or higher than the upper limit value α, the controller 20 stops the operation of the engine 2 (step S4).
 次いで、コントローラ20は、ステップS1と同様に、冷却水温が下限値βより低いか否かを判定する(ステップS5)。冷却水温が下限値β以上であると判定した場合には、コントローラ20は、エンジン2の運転を停止したまま、冷却水温が下限値βを下回るまでステップS5で待機する。 Next, the controller 20 determines whether or not the coolant temperature is lower than the lower limit value β, similarly to step S1 (step S5). When it is determined that the cooling water temperature is equal to or higher than the lower limit value β, the controller 20 stands by in step S5 until the cooling water temperature falls below the lower limit value β while the operation of the engine 2 is stopped.
 その後、ステップS5において、冷却水温が下限値βより低いと判定した場合には、コントローラ20は、バッテリ10の充電量SOCが下限値min以上であるか否かを判定する(ステップS6)。下限値minは、ハイブリッド車両1の走行中にバッテリ10の充電を行うか否かを判定する閾値に相当する。 Thereafter, when it is determined in step S5 that the cooling water temperature is lower than the lower limit value β, the controller 20 determines whether or not the charge amount SOC of the battery 10 is equal to or higher than the lower limit value min (step S6). The lower limit value min corresponds to a threshold value for determining whether to charge the battery 10 while the hybrid vehicle 1 is traveling.
 充電量SOCが下限値min以上であると判定した場合には、コントローラ20は、PTCヒータ9をONにする(ステップS7)。これにより、PTCヒータ9の発熱を用いて、車室7の暖房が行われる。ステップS7の処理の後、コントローラ20は、ステップS8の処理を行う。 When it is determined that the charge amount SOC is equal to or greater than the lower limit value min, the controller 20 turns on the PTC heater 9 (step S7). Thus, the passenger compartment 7 is heated using the heat generated by the PTC heater 9. After the process of step S7, the controller 20 performs the process of step S8.
 一方、ステップS6で充電量SOCが下限値min以上ではないと判定した場合には、コントローラ20は、処理フローをステップS2に戻し、ステップ2以降の処理を繰り返す。このように、PTCヒータ9を運転することができるだけバッテリ10が充電されていない場合には、コントローラ20は、エンジン2を運転することで、エンジン2の発熱により車室7の暖房を行う。 On the other hand, if it is determined in step S6 that the charge amount SOC is not greater than or equal to the lower limit value min, the controller 20 returns the process flow to step S2 and repeats the processes in and after step 2. As described above, when the battery 10 is not charged as much as possible to operate the PTC heater 9, the controller 20 operates the engine 2 to heat the passenger compartment 7 by the heat generated by the engine 2.
 PTCヒータ9をONにすると、コントローラ20は、冷却水温が下限値αを下回った後に、車室7の暖房に必要なHVAC装置8の吹き出し口の必要温度をPTCヒータ9の発熱のみで維持可能な時間を算出する(ステップS8)。車室7の暖房に必要な吹き出し口の必要温度は、HVAC装置8に入力された車室7の暖房の目標温度と、外気温センサ23が検出する外気温とから予め決定される。また、吹き出し口の必要温度と外気温との差と、この差を維持するためのPTCヒータ9の発熱量と、バッテリ10の充電量SOCとに基づいて、吹き出し口温度の維持可能時間が決定される。言い換えれば、車室7の温度維持のためにPTCヒータ9の発熱により、充電量SOCの下限値minに対する余剰分相当のエネルギーを費やす場合に、吹き出し口の必要温度を維持することができる時間が、この吹き出し口温度の維持可能時間である。 When the PTC heater 9 is turned on, the controller 20 can maintain the required temperature at the outlet of the HVAC device 8 required for heating the passenger compartment 7 only by the heat generated by the PTC heater 9 after the cooling water temperature falls below the lower limit value α. A long time is calculated (step S8). The required temperature of the outlet necessary for heating the passenger compartment 7 is determined in advance from the target temperature for heating the passenger compartment 7 input to the HVAC device 8 and the outside air temperature detected by the outside air temperature sensor 23. Further, the maintenance time of the outlet temperature is determined based on the difference between the required temperature of the outlet and the outside air temperature, the amount of heat generated by the PTC heater 9 for maintaining this difference, and the charge amount SOC of the battery 10. Is done. In other words, when the energy corresponding to the surplus with respect to the lower limit value min of the charge amount SOC is consumed due to the heat generated by the PTC heater 9 to maintain the temperature of the passenger compartment 7, the time required to maintain the required temperature of the outlet is maintained. This is the time during which the outlet temperature can be maintained.
 次いで、コントローラ20は、ステップS7でPTCヒータ9をONにしてからの経過時間をカウント(積算)する(ステップS9)。そして、コントローラ20は、この経過時間がステップS8で算出した維持可能時間に達したか否かを判定する(ステップS10)。 Next, the controller 20 counts (accumulates) the elapsed time since the PTC heater 9 is turned on in step S7 (step S9). Then, the controller 20 determines whether or not this elapsed time has reached the sustainable time calculated in step S8 (step S10).
 PTCヒータ9をONにしてからの経過時間が吹き出し口の必要温度を維持可能な時間にまだ達してないと判定した場合、コントローラ20は、ステップS9、S10の処理を繰り返すことにより、PTCヒータ9がONの状態を継続させる。 When it is determined that the elapsed time since the PTC heater 9 is turned on has not yet reached the time at which the required temperature of the outlet can be maintained, the controller 20 repeats the processes of steps S9 and S10, whereby the PTC heater 9 Is kept on.
 一方、PTCヒータ9をONにしてからの経過時間が吹き出し口の必要温度を維持可能な時間に達したと判定した場合には、コントローラ20は、PTCヒータ9をOFFにする(ステップS11)。 On the other hand, if it is determined that the elapsed time since turning on the PTC heater 9 has reached the time at which the required temperature of the outlet can be maintained, the controller 20 turns off the PTC heater 9 (step S11).
 次いで、コントローラ20は、暖房要求がOFFになったか否かを判定する(ステップS12)。暖房要求がOFFではないと判定した場合、すなわち、暖房要求がONのままである場合には、コントローラ20は、ステップS1以降の処理を繰り返す。一方、暖房要求がOFFであると判定した場合には、コントローラ20は、この暖房制御ルーチンを終了する。 Next, the controller 20 determines whether or not the heating request has been turned off (step S12). If it is determined that the heating request is not OFF, that is, if the heating request remains ON, the controller 20 repeats the processes after step S1. On the other hand, if it is determined that the heating request is OFF, the controller 20 ends this heating control routine.
 次に、図3を参照して、コントローラ20が実行する空調制御ルーチンを説明する。図3は、コントローラ20が実行する空調制御ルーチンを説明するためのフローチャートである。この空調制御ルーチンは、HVAC装置8が備える送風スイッチがONになると同時に実行される。例えば、暖房要求に連動して送風スイッチがONになるようにHVAC装置8を構成しておけば、図2の暖房制御ルーチンの実行時には、この空調制御ルーチンが並行して常に実行されることになる。 Next, an air conditioning control routine executed by the controller 20 will be described with reference to FIG. FIG. 3 is a flowchart for explaining an air conditioning control routine executed by the controller 20. This air conditioning control routine is executed at the same time as the blower switch provided in the HVAC device 8 is turned on. For example, if the HVAC device 8 is configured so that the air blowing switch is turned on in conjunction with the heating request, the air conditioning control routine is always executed in parallel when the heating control routine of FIG. 2 is executed. Become.
 まず、コントローラ20は、車室湿度センサ22により検出した車室7の湿度を読み込む(ステップS21)。 First, the controller 20 reads the humidity of the passenger compartment 7 detected by the passenger compartment humidity sensor 22 (step S21).
 次いで、コントローラ20は、読み込んだ車室7の湿度が制御目標である湿度領域の上限値A未満であるか否かを判定する(ステップS22)。ここで、湿度領域の上限値Aは、例えば、車室7内の水蒸気が結露し始める露点温度に対応する湿度に等しく設定される。 Next, the controller 20 determines whether or not the read humidity of the passenger compartment 7 is less than the upper limit value A of the humidity region that is the control target (step S22). Here, the upper limit value A of the humidity region is set equal to, for example, the humidity corresponding to the dew point temperature at which the water vapor in the passenger compartment 7 starts to condense.
 車室7の湿度が湿度領域の上限値A未満であると判定した場合には、コントローラ20は、HVAC装置8に内気循環モードを指令する(ステップS23)。これにより、HVAC装置8は、車室7内の空気を循環させる内気循環モードで車室7の空調を行う。このため、車室7内の温度を下げてしまうことはない。 If it is determined that the humidity in the passenger compartment 7 is less than the upper limit value A of the humidity region, the controller 20 instructs the HVAC device 8 to enter the inside air circulation mode (step S23). Thereby, the HVAC device 8 performs air conditioning of the passenger compartment 7 in the inside air circulation mode in which the air in the passenger compartment 7 is circulated. For this reason, the temperature in the compartment 7 is not lowered.
 次いで、コントローラ20は、送風スイッチがOFFになったか否かを判定する(ステップS26)。送風スイッチがOFFになったと判定した場合には、コントローラ20は、この空調制御ルーチンを終了する。一方、送風スイッチがONのままであると判定した場合には、コントローラ20は、ステップS21以降の処理を繰り返す。なお、本実施形態では、送風スイッチは、暖房要求に連動して、暖房制御ルーチンのステップS12において暖房要求がOFFになったと同時にOFFされる。 Next, the controller 20 determines whether or not the blower switch is turned off (step S26). If it is determined that the blower switch has been turned OFF, the controller 20 ends this air conditioning control routine. On the other hand, if it is determined that the blower switch remains ON, the controller 20 repeats the processes after step S21. In the present embodiment, the blower switch is turned off simultaneously with the heating request in step S12 of the heating control routine in conjunction with the heating request.
 一方、ステップS22において、車室7の湿度が湿度領域の上限値Aに達していると判定した場合には、コントローラ20は、HVAC装置8に外気循環モードを指令する(ステップS23)。これにより、HVAC装置8は、外気を車室7に取り入れる外気循環モードで車室7の空調を行う。 On the other hand, when it is determined in step S22 that the humidity of the passenger compartment 7 has reached the upper limit value A of the humidity region, the controller 20 instructs the HVAC device 8 to enter the outside air circulation mode (step S23). Thereby, the HVAC device 8 performs air conditioning of the passenger compartment 7 in the outdoor air circulation mode in which the outside air is taken into the passenger compartment 7.
 次いで、コントローラ20は、車室7の湿度を再び検出する(ステップS24)。そして、コントローラ20は、検出した(読み込んだ)湿度に基づいて、車室7の湿度が湿度領域の下限値B以上であるか否かを判定する(ステップS25)。ここで、湿度領域の下限値Bは、例えば、ドライバや同乗者が不快に感じる湿度(乾燥度)等を考慮して、車室7内の湿度をこれ以下にする必要がないと考えられる湿度に設定される。 Next, the controller 20 detects the humidity of the passenger compartment 7 again (step S24). Then, the controller 20 determines whether or not the humidity of the passenger compartment 7 is equal to or higher than the lower limit value B of the humidity region based on the detected (read) humidity (step S25). Here, the lower limit value B of the humidity region is, for example, a humidity that the driver or passengers feel uncomfortable (dryness), etc. Set to
 ステップS25において、車室7の湿度が湿度領域の下限値B以上であると判定した場合には、コントローラ20は、ステップS23以降の処理を繰り返す。 In Step S25, when it is determined that the humidity of the passenger compartment 7 is equal to or higher than the lower limit value B of the humidity region, the controller 20 repeats the processes after Step S23.
 一方、車室7の湿度が湿度領域の下限値B未満になったと判定した場合には、コントローラ20は、送風スイッチがOFFになったか否かを判定する(ステップS26)。送風スイッチがOFFであると判定した場合には、コントローラ20は、この空調制御ルーチンを終了する。一方、送風スイッチがONのままであると判定した場合には、コントローラ20は、ステップS21以降の処理を繰り返す。 On the other hand, when it is determined that the humidity in the passenger compartment 7 has become less than the lower limit B of the humidity region, the controller 20 determines whether or not the blower switch has been turned off (step S26). If it is determined that the blower switch is OFF, the controller 20 ends this air conditioning control routine. On the other hand, if it is determined that the blower switch remains ON, the controller 20 repeats the processes after step S21.
 以上のように、本実施形態による空調制御装置では、コントローラ20は、暖房制御ルーチン(図2参照)と空調制御ルーチン(図3参照)とを並行して実行する。言い換えれば、コントローラ20は、車室7の空調制御と組み合せて、車室7の暖房制御を実行する。 As described above, in the air conditioning control device according to the present embodiment, the controller 20 executes the heating control routine (see FIG. 2) and the air conditioning control routine (see FIG. 3) in parallel. In other words, the controller 20 executes the heating control of the passenger compartment 7 in combination with the air conditioning control of the passenger compartment 7.
 次に、図4~図6を参照して、コントローラ20により実行される上記した暖房制御及び空調制御がもたらす作用を説明する。図4は、従来の車室暖房制御による冷却水温とバッテリの充電量SOCの推移を示すタイミングチャートである。図5は、本実施形態のコントローラによる空調制御ルーチンと暖房制御ルーチンの実行結果を示すタイミングチャートである。図6は、本実施形態のコントローラによる空調制御ルーチンと暖房制御ルーチンの別の実行結果を示すタイミングチャートである。 Next, with reference to FIG. 4 to FIG. 6, the operation brought about by the above-described heating control and air conditioning control executed by the controller 20 will be described. FIG. 4 is a timing chart showing the transition of the cooling water temperature and the battery charge amount SOC by the conventional vehicle compartment heating control. FIG. 5 is a timing chart showing execution results of the air conditioning control routine and the heating control routine by the controller of the present embodiment. FIG. 6 is a timing chart showing another execution result of the air conditioning control routine and the heating control routine by the controller of the present embodiment.
 従来、暖房制御は、外気循環モードでエンジン2の放熱に依存して行われていた。こうした従来の暖房制御の例を以下にまず説明する。 Conventionally, the heating control is performed depending on the heat radiation of the engine 2 in the outside air circulation mode. An example of such conventional heating control will be first described below.
 図4を参照すると、従来の暖房制御では、エンジン2の冷却水温がその上限値αに達すると、エンジン2の運転を停止し、エンジン2の冷却水温がその下限値βを下回ると、エンジン2の運転を行うというエンジン2の断続運転を外気循環モードで行っていた。外気循環モードでエンジン2の運転を停止すると、車室7内の温度も冷却水温度も短時間で低下してしまうため、結果として、エンジン2の運転と停止とを短いインターバルで繰り返し行わざるを得ないという問題があった。 Referring to FIG. 4, in the conventional heating control, when the coolant temperature of the engine 2 reaches the upper limit value α, the operation of the engine 2 is stopped, and when the coolant temperature of the engine 2 falls below the lower limit value β, the engine 2 The engine 2 was intermittently operated in the outside air circulation mode. If the operation of the engine 2 is stopped in the outside air circulation mode, the temperature in the passenger compartment 7 and the cooling water temperature are decreased in a short time. As a result, the operation and the stop of the engine 2 must be repeated at short intervals. There was a problem of not getting.
 一方、図5を参照すると、本実施形態による空調制御装置は、暖房制御ルーチンと空調制御ルーチンとを並行して実行することにより、車室7の湿度がその上限値Aに達するまでは内気循環モードにより空調を行う。内気循環モードでは、車室7に冷涼な外気が導入されないため、エンジン2の運転による冷却水温の上昇が促進され、かつ、エンジン2の停止後の冷却水温の低下が抑制される。したがって、冷却水温は、比較的長時間に亘って車室7の暖房に必要な水温領域、すなわち図の上限値αと下限値βの間の温度領域を維持することができる。これにより、EVモードで走行中、車室7の暖房のためにエンジン2の始動と停止が頻繁に繰り返されるという不具合を抑制することができる。 On the other hand, referring to FIG. 5, the air conditioning control device according to the present embodiment executes the heating control routine and the air conditioning control routine in parallel, so that the inside air circulation is performed until the humidity of the passenger compartment 7 reaches the upper limit value A. Air conditioning is performed according to the mode. In the inside air circulation mode, since cool outside air is not introduced into the passenger compartment 7, an increase in the coolant temperature due to the operation of the engine 2 is promoted, and a decrease in the coolant temperature after the engine 2 is stopped is suppressed. Therefore, the cooling water temperature can maintain a water temperature region necessary for heating the passenger compartment 7 for a relatively long time, that is, a temperature region between the upper limit value α and the lower limit value β in the figure. Accordingly, it is possible to suppress a problem that the engine 2 is frequently started and stopped for heating the passenger compartment 7 while traveling in the EV mode.
 なお、エンジン2の運転は、目標冷却水温をその上限値αに設定した最適燃費運転で行われる。エンジン2の運転中、エンジン2の余剰出力は、電動モータ3を発電機として駆動するために用いられ、電動モータ3の発電電力を用いてバッテリ10への充電が行われる。したがって、暖房のために運転されるエンジン2の出力を有効に活用することができる。 Note that the engine 2 is operated in an optimum fuel consumption operation in which the target cooling water temperature is set to the upper limit value α. During operation of the engine 2, the surplus output of the engine 2 is used to drive the electric motor 3 as a generator, and the battery 10 is charged using the generated power of the electric motor 3. Therefore, the output of the engine 2 operated for heating can be used effectively.
 なお、図5に示すタイミングチャートの一例は、エンジン2の運転を停止した後、暖房制御ルーチンのステップS6においてバッテリ10の充電量SOCが下限値minに達しており、PTCヒータ9を使用せずにエンジン2の運転時の発熱のみで車室7の暖房を行う場合に相当する。 In the example of the timing chart shown in FIG. 5, after stopping the operation of the engine 2, the charge amount SOC of the battery 10 has reached the lower limit value min in step S <b> 6 of the heating control routine, and the PTC heater 9 is not used. This corresponds to the case where the passenger compartment 7 is heated only by heat generated during operation of the engine 2.
 次に、図6を参照して、エンジン2の停止後、暖房制御ルーチンのステップS6においてバッテリ10の充電量SOCが下限値minを上回っている場合の制御を説明する。 Next, with reference to FIG. 6, after the engine 2 is stopped, the control when the charge amount SOC of the battery 10 exceeds the lower limit value min in step S6 of the heating control routine will be described.
 図5のタイミングチャートにおいては、エンジン2の運転を停止した後、冷却水温がその下限値βを下回ると、エンジン2の運転が行われていた。これに対して、図6に示すタイミングチャートの別の例は、エンジン2の運転を停止した後、暖房制御ルーチンのステップS6でバッテリ10の充電量SOCが下限値minを上回っている場合に、ステップS7~S11の処理が行われ、PTCヒータ9がONになる場合に相当する。暖房制御ルーチンのステップS7においてPTCヒータ9がONになった後、コントローラ20は、バッテリ10の充電量SOCの下限値minに対する余剰分相当のエネルギーがPTCヒータ9によって費やされるまで、PTCヒータ9による暖房を継続する。その結果、コントローラ20は、PTCヒータ9のON状態の継続時間がステップS8で算出した維持可能時間に達すると、ステップS11でPTCヒータ9をOFFにする。その後、コントローラ20は、暖房要求がOFFになっていないと判定した場合、ステップS2でエンジン2の運転を再開する。 In the timing chart of FIG. 5, after the operation of the engine 2 is stopped, the engine 2 is operated when the cooling water temperature falls below the lower limit value β. On the other hand, another example of the timing chart shown in FIG. 6 is when the charge amount SOC of the battery 10 exceeds the lower limit value min in step S6 of the heating control routine after the operation of the engine 2 is stopped. This corresponds to the case where the processing of steps S7 to S11 is performed and the PTC heater 9 is turned on. After the PTC heater 9 is turned on in step S <b> 7 of the heating control routine, the controller 20 uses the PTC heater 9 until the energy corresponding to the surplus with respect to the lower limit value min of the charge amount SOC of the battery 10 is consumed by the PTC heater 9. Continue heating. As a result, when the duration of the ON state of the PTC heater 9 reaches the sustainable time calculated in step S8, the controller 20 turns off the PTC heater 9 in step S11. Thereafter, when the controller 20 determines that the heating request is not OFF, the operation of the engine 2 is resumed in step S2.
 このように、バッテリ10の充電量SOCに余裕がある場合には、余剰分相当の電気エネルギーを用いてPTCヒータ9により車室7の暖房を行うことで、エンジン2の運転再開を遅らせることができる。つまり、車室7の温度の低下を遅らせることにより、エンジン2の停止期間を長くすることができる。その結果、エンジン2の始動と停止の頻繁な繰り返しをより一層抑制させることができる。 Thus, when there is a margin in the charge amount SOC of the battery 10, the restart of the operation of the engine 2 can be delayed by heating the passenger compartment 7 by the PTC heater 9 using electric energy corresponding to the surplus. it can. That is, the stop period of the engine 2 can be lengthened by delaying the decrease in the temperature of the passenger compartment 7. As a result, frequent repetition of starting and stopping of the engine 2 can be further suppressed.
 また、吹き出し口温度の維持可能時間を適用することにより、図6に示すように、バッテリ10の充電量SOCがその下限値minへと低下すると、コントローラ20は、PTCヒータ9をOFFにする。そのため、車室7の暖房のために、バッテリ10の充電量SOCを過度に消費することがなく、バッテリ10の充電電力を最大限有効に利用することができる。 Further, as shown in FIG. 6, when the charge amount SOC of the battery 10 is reduced to the lower limit value min by applying the maintenance time of the outlet temperature, the controller 20 turns off the PTC heater 9. Therefore, the charging amount SOC of the battery 10 is not excessively consumed for heating the passenger compartment 7, and the charging power of the battery 10 can be utilized to the maximum extent possible.
 また、本実施形態の空調制御装置では、コントローラ20は、暖房要求に応じて、空調装置の車室7への吹き出し口の必要温度を算出し、算出した吹き出し口の必要温度と、バッテリ10の充電量SOCとに基づいて、吹き出し口の必要温度の維持可能時間を算出している。そして、コントローラ20は、PTCヒータ9をONにしてから維持可能時間が経過すると、充電量SOCがその下限値minに達したと判定する。そのため、本実施形態の空調制御装置では、図示しない出力電流センサ及び出力電圧センサ等によりバッテリ10の充電量SOCを逐次モニターすることなく、充電量SOCの下限値minへの到達を容易に判定することができる。 Further, in the air conditioning control device of the present embodiment, the controller 20 calculates the required temperature of the air outlet to the passenger compartment 7 of the air conditioner in response to the heating request, the calculated required temperature of the air outlet, and the battery 10 Based on the charge amount SOC, the maintenance time of the required temperature of the outlet is calculated. Then, the controller 20 determines that the charge amount SOC has reached the lower limit value min when the sustainable time has elapsed since the PTC heater 9 was turned on. Therefore, in the air conditioning control device of the present embodiment, it is easily determined that the charge amount SOC has reached the lower limit value min without sequentially monitoring the charge amount SOC of the battery 10 by an output current sensor and an output voltage sensor (not shown). be able to.
 図6においても、エンジン2を最適燃費運転して冷却水温を上昇させる過程では、エンジン2の出力に余剰が生じた場合には、図示の「上乗せ発電」と記載された区間において、通常よりも長くバッテリの充電量SOCの利用可能範囲の最大値(MAX)まで、エンジン2の余剰出力で電動モータ3を発電機として駆動し、バッテリ10への充電を行う。これにより、エンジン2の余剰出力をさらに有効利用することができる。 Also in FIG. 6, in the process of increasing the coolant temperature by operating the engine 2 at the optimum fuel efficiency, if surplus is generated in the output of the engine 2, in the illustrated “additional power generation” section, The electric motor 3 is driven as a generator with the surplus output of the engine 2 until the maximum value (MAX) of the usable range of the charge amount SOC of the battery is long, and the battery 10 is charged. Thereby, the surplus output of the engine 2 can be used more effectively.
 以上説明したように、本実施形態によるハイブリッド車両1の空調制御装置は、内燃機関としてのエンジン2と、蓄電装置としてのバッテリ10と、バッテリ10の充電電力を用いて動力源として作動する一方、発電機としてバッテリ10に充電可能な電動モータ3と、エンジン2の冷却水を用いて車室7の暖房を行う空調装置としてのHVAC装置8とを備えるハイブリッド車両1の空調制御装置であって、車室7の暖房要求を検出する暖房要求検出部として機能するHVAC装置8と、車室7の湿度を推定又は検出する湿度取得部として機能する湿度センサ22と、暖房要求に応じて、エンジン2の冷却水温度が所定の暖房温度領域に維持されるように、最適燃費運転によりエンジン2を断続的に運転する内燃機関制御部、車室7の湿度が所定の湿度領域に維持されるように、外気を車室7に取り入れて循環させる外気循環モードと、車室7内の空気を循環させる内気循環モードとを切り換える循環切換部、及び、暖房要求に応じた最適燃費運転中のエンジン2の余剰出力で電動モータ3により発電を行って、バッテリ10に蓄電する蓄電制御部、として機能するコントローラ20と、を備えている。 As described above, the air conditioning control device for the hybrid vehicle 1 according to the present embodiment operates as a power source using the engine 2 as an internal combustion engine, the battery 10 as a power storage device, and the charging power of the battery 10, An air conditioning control device for a hybrid vehicle 1 comprising an electric motor 3 capable of charging a battery 10 as a generator and an HVAC device 8 as an air conditioning device for heating the passenger compartment 7 using cooling water of the engine 2, The HVAC device 8 that functions as a heating request detection unit that detects a heating request of the passenger compartment 7, a humidity sensor 22 that functions as a humidity acquisition unit that estimates or detects the humidity of the passenger compartment 7, and the engine 2 according to the heating request The internal combustion engine control unit that intermittently operates the engine 2 by the optimum fuel consumption operation so that the cooling water temperature of the engine is maintained in a predetermined heating temperature range, A circulation switching unit that switches between an outside air circulation mode in which outside air is circulated by being taken into the passenger compartment 7 and an inside air circulation mode in which the air in the passenger compartment 7 is circulated, and a heating request. And a controller 20 that functions as a power storage control unit that generates electric power with the electric motor 3 with the surplus output of the engine 2 during the optimum fuel consumption operation and stores the electric power in the battery 10.
 本実施形態のハイブリッド車両1の空調制御装置によれば、エンジン2の運転の断続による暖房制御と並行して、車室7内の湿度が所定の湿度領域に維持されるように空調の内気循環モードと外気循環モードとを切り換えている。内気循環モード中の暖房では、車室7の暖房効率を高められるとともに、エンジン2を停止しても車室7内の温度が低下しにくいので、外気循環モードのみで暖房制御を行う場合と比べて、エンジン2の運転間隔を拡げることができる。その結果、車室7の暖房のためのエンジン2の始動と停止の頻繁な繰り返しを抑制することができる。 According to the air conditioning control device for the hybrid vehicle 1 of the present embodiment, in parallel with the heating control by intermittent operation of the engine 2, the inside air circulation of the air conditioning is performed so that the humidity in the passenger compartment 7 is maintained in a predetermined humidity region. Switching between the mode and the outside air circulation mode. In the heating in the inside air circulation mode, the heating efficiency of the passenger compartment 7 can be increased and the temperature in the passenger compartment 7 is not easily lowered even when the engine 2 is stopped. Therefore, the heating control is performed only in the outside air circulation mode. Thus, the operation interval of the engine 2 can be expanded. As a result, frequent repetition of starting and stopping of the engine 2 for heating the passenger compartment 7 can be suppressed.
 本実施形態におけるハイブリッド車両1の空調制御装置では、バッテリ10の充電電力を用いて車室7の暖房を行うPTCヒータ9としてのPTCヒータ9をさらに備え、コントローラ10は、バッテリ10の充電量が所定値を上回っているか否かを判定する充電量判定部、及び、バッテリ10の充電量が所定値を上回っている状態において、冷却水温度が所定の暖房温度領域を下回った場合に、エンジン2の運転に先立ってPTCヒータ9を起動して車室の暖房を行うPTCヒータ9制御部、としても機能する。 The air conditioning control device for the hybrid vehicle 1 according to the present embodiment further includes a PTC heater 9 as a PTC heater 9 that heats the passenger compartment 7 using the charging power of the battery 10, and the controller 10 has a charge amount of the battery 10. When the cooling water temperature falls below a predetermined heating temperature range in a state where the charge amount determination unit for determining whether or not the charge amount exceeds the predetermined value and the charge amount of the battery 10 exceeds the predetermined value, the engine 2 Prior to the operation, the PTC heater 9 is activated to function as a PTC heater 9 controller that heats the passenger compartment.
 ハイブリッド車両1の空調制御装置をこのように構成したことにより、冷却水温の低下によりエンジン2の運転が必要になった場合でも、まずバッテリ10の充電量SOCの余剰蓄電量を用いてPTCヒータ9により車室7の暖房を行い、その後にエンジン2の運転を再開する。そのため、エンジン2の停止時間をより長くすることが可能となり、車室7の暖房のためのエンジン2の始動と停止の頻繁な繰り返しをより一層抑制することができる。 By configuring the air conditioning control device of the hybrid vehicle 1 in this way, even when the engine 2 needs to be operated due to a decrease in the cooling water temperature, the PTC heater 9 is first used by using the surplus storage amount of the charge amount SOC of the battery 10. Thus, the vehicle compartment 7 is heated, and then the operation of the engine 2 is resumed. Therefore, it becomes possible to make the stop time of the engine 2 longer, and the frequent repetition of starting and stopping of the engine 2 for heating the passenger compartment 7 can be further suppressed.
 本実施形態におけるハイブリッド車両1の空調制御装置は、コントローラ10は、PTCヒータ9による車室7の暖房の結果、バッテリ10の充電量が所定の下限値に達すると、PTCヒータ9の運転を停止(OFF)するように構成される。このように構成されているので、バッテリ10を過剰放電させることはなく、バッテリ10の寿命を縮めてしまうようなことはない。 In the air conditioning control device for the hybrid vehicle 1 according to the present embodiment, the controller 10 stops the operation of the PTC heater 9 when the amount of charge of the battery 10 reaches a predetermined lower limit as a result of heating the passenger compartment 7 by the PTC heater 9. It is configured to be (OFF). Since it is configured in this manner, the battery 10 is not excessively discharged and the life of the battery 10 is not shortened.
 本実施形態におけるハイブリッド車両1の空調制御装置では、コントローラ10は、暖房要求に応じて、空調装置の車室7への吹き出し口の必要温度を算出し、バッテリ10の充電量を検出し、吹き出し口の必要温度及びバッテリ10の充電量に基づいて、吹き出し口の必要温度を維持可能な維持可能時間を算出し、維持可能時間が経過した時点で充電量が所定の下限値に達したと判定するように構成される。本実施形態の空調制御装置をこのように構成したことにより、バッテリ10の充電量SOCを逐次モニターすることなく、維持可能時間が経過した時点でPTCヒータ9の運転をOFFしているので、バッテリ10を過剰放電させることはなく、バッテリ10の寿命を縮めてしまうようなことはない。 In the air conditioning control device for the hybrid vehicle 1 in the present embodiment, the controller 10 calculates the required temperature of the air outlet to the passenger compartment 7 of the air conditioner in response to the heating request, detects the charge amount of the battery 10, Based on the required temperature of the mouth and the amount of charge of the battery 10, a sustainable time during which the required temperature of the outlet can be maintained is calculated, and it is determined that the amount of charge has reached a predetermined lower limit when the maintainable time has elapsed. Configured to do. By configuring the air conditioning control device of this embodiment in this way, the operation of the PTC heater 9 is turned off when the sustainable time has elapsed without sequentially monitoring the charge amount SOC of the battery 10. The battery 10 is not excessively discharged, and the life of the battery 10 is not shortened.
 本実施形態におけるハイブリッド車両1の空調制御装置では、所定の湿度領域における上限値は、車室に結露が発生し得る露点温度に対応する湿度である。本実施形態の空調制御装置をこのように構成したことにより、車室7の湿度が過度に上昇することはなく、車室7の窓ガラスの曇りを効果的に防止することができる。 In the air conditioning control device for the hybrid vehicle 1 in the present embodiment, the upper limit value in the predetermined humidity region is the humidity corresponding to the dew point temperature at which condensation can occur in the passenger compartment. By configuring the air conditioning control device of this embodiment in this way, the humidity of the passenger compartment 7 does not rise excessively, and fogging of the window glass of the passenger compartment 7 can be effectively prevented.
 本実施形態におけるハイブリッド車両1の空調制御装置では、コントローラ10は、暖房要求に応じて、エンジン2を運転している間、車室7の湿度が所定の湿度領域を超えない限り、内気循環モードを適用するように構成される。本実施形態の空調制御装置をこのように構成したことにより、車室7の湿度が所定の湿度領域を超えない限り、車室7に冷涼な外気が導入されないため、エンジン2の運転による冷却水温の上昇が促進され、かつ、エンジン2の停止後の冷却水温の低下が抑制される。したがって、冷却水温は、比較的長時間に亘って車室7の暖房に必要な水温領域を維持することができる。これにより、EVモードで走行中、車室7の暖房のためにエンジン2の始動と停止が頻繁に繰り返されるという不具合を抑制することができる。 In the air conditioning control device for the hybrid vehicle 1 in the present embodiment, the controller 10 operates in the room air circulation mode as long as the humidity of the passenger compartment 7 does not exceed a predetermined humidity region while the engine 2 is being operated in response to a heating request. Configured to apply. By configuring the air conditioning control device of the present embodiment in this way, cool outside air is not introduced into the passenger compartment 7 unless the humidity of the passenger compartment 7 exceeds a predetermined humidity region. And the decrease in the coolant temperature after the engine 2 is stopped is suppressed. Therefore, the cooling water temperature can maintain a water temperature region necessary for heating the passenger compartment 7 for a relatively long time. Accordingly, it is possible to suppress a problem that the engine 2 is frequently started and stopped for heating the passenger compartment 7 while traveling in the EV mode.
 また、本実施形態によるハイブリッド車両1の空調制御方法は、上述のようなハイブリッド車両1において、車室7の暖房要求を検出し、暖房要求に応じて、エンジン2の冷却水温度が所定の暖房温度領域に維持されるようにエンジン2を断続的に運転し、車室7の湿度を推定又は検出し、車室7の湿度が所定の湿度領域に維持されるように、外気を車室7に取り入れる外気循環モードと、車室7内の空気を循環させる内気循環モードと、を切り換え、エンジン2を暖房要求に応じて運転する際はエンジン2を最適燃費運転するとともに、暖房要求に応じて最適燃費運転中のエンジン2の余剰出力で発電を行ってバッテリ10に蓄電することを特徴とする。本実施形態の空調制御方法によれば、上述の空調制御装置と同様の効果を奏することができる。 Further, the air conditioning control method for the hybrid vehicle 1 according to the present embodiment detects a heating request for the passenger compartment 7 in the hybrid vehicle 1 as described above, and the cooling water temperature of the engine 2 is set to a predetermined heating in response to the heating request. The engine 2 is intermittently operated so as to be maintained in the temperature region, the humidity of the passenger compartment 7 is estimated or detected, and the outside air is supplied to the passenger compartment 7 so that the humidity of the passenger compartment 7 is maintained in a predetermined humidity region. When the engine 2 is operated in response to a heating request, the engine 2 is operated at an optimum fuel efficiency and the heating request is satisfied. Electricity is generated with the surplus output of the engine 2 during the optimum fuel consumption operation and is stored in the battery 10. According to the air conditioning control method of the present embodiment, the same effects as those of the above-described air conditioning control device can be achieved.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 例えば、上述の実施形態では、車室7の暖房にエンジン2の発熱とPTCヒータ9の発熱を利用している場合を説明した。しかしながら、本発明は、エンジン2の発熱のみで車室7の暖房を行うハイブリッド車両にも適用可能である。その場合には、図2のステップS6~S11を省略した暖房制御ルーチンと、図3の空調制御ルーチンとを並行して実施すればよい。そのような構成であっても、図5に示すように、従来の空調制御装置と比べて、車室7の暖房のためのエンジン2の始動と停止の頻繁な繰り返しを抑制するという効果を得ることができる。 For example, in the above-described embodiment, the case where the heat generation of the engine 2 and the heat generation of the PTC heater 9 are used for heating the passenger compartment 7 has been described. However, the present invention can also be applied to a hybrid vehicle that heats the passenger compartment 7 only by the heat generated by the engine 2. In that case, the heating control routine in which steps S6 to S11 in FIG. 2 are omitted and the air conditioning control routine in FIG. 3 may be executed in parallel. Even in such a configuration, as shown in FIG. 5, an effect of suppressing frequent repetition of starting and stopping of the engine 2 for heating the passenger compartment 7 is obtained as compared with the conventional air conditioning control device. be able to.
 また、本実施形態では、図2に示す暖房制御ルーチンにおいて、コントローラ20は、吹き出し口温度の維持可能時間に基づいて、PTCヒータ9をOFFにしていた。しかしながら、図示しないバッテリ10の出力電流センサや出力電圧センサ等を用いて、バッテリ10の充電量SOCを逐次モニターし、充電量SOCがその下限値minまで低下した時点で、PTCヒータ9をOFFにすることも可能である。 In the present embodiment, in the heating control routine shown in FIG. 2, the controller 20 turns off the PTC heater 9 based on the maintenance time of the outlet temperature. However, the charge amount SOC of the battery 10 is successively monitored using an output current sensor, an output voltage sensor, or the like (not shown), and the PTC heater 9 is turned off when the charge amount SOC decreases to the lower limit value min. It is also possible to do.
 以上説明した実施形態では、上述のように、HVAC装置8が車室の暖房要求を検出する暖房要求検出部を構成する。また、コントローラ20は、内燃機関制御部と、循環切換部と、蓄電制御部と、電気的暖房装置制御部とを構成する。 In the embodiment described above, as described above, the HVAC device 8 constitutes a heating request detection unit that detects a heating request for the passenger compartment. The controller 20 constitutes an internal combustion engine control unit, a circulation switching unit, a power storage control unit, and an electric heating device control unit.
 本願は2014年7月3日に日本国特許庁に出願された特願2014-137648に基づく優先権を主張し、この出願のすべての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2014-137648 filed with the Japan Patent Office on July 3, 2014, the entire contents of which are incorporated herein by reference.

Claims (7)

  1.  内燃機関と、蓄電装置と、前記蓄電装置の電力を用いて動力源として作動する一方、発電機として前記蓄電装置に充電可能な電動モータと、前記内燃機関の冷却水を用いて車室の暖房を行う空調装置と、を備えるハイブリッド車両の空調制御装置であって、
     車室の暖房要求を検出する暖房要求検出部と、
     前記暖房要求に応じて、前記内燃機関の冷却水温度が所定の暖房温度領域に維持されるように、最適燃費運転により前記内燃機関を断続的に運転する内燃機関制御部と、
     車室の湿度を推定又は検出する湿度取得部と、
     車室の湿度が所定の湿度領域に維持されるように、外気を車室に取り入れて循環させる外気循環モードと、車室内の空気を循環させる内気循環モードとを切り換える循環切換部と、
     前記暖房要求に応じた前記最適燃費運転中の前記内燃機関の余剰出力で前記電動モータにより発電を行って、前記蓄電装置に蓄電する蓄電制御部と、
    を備えるハイブリッド車両の空調制御装置。
    An internal combustion engine, a power storage device, and an electric motor that operates as a power source using the power of the power storage device, while charging the power storage device as a generator, and heating of a passenger compartment using cooling water of the internal combustion engine An air conditioning control device for a hybrid vehicle comprising:
    A heating request detector for detecting a heating request in the passenger compartment;
    An internal combustion engine control unit that intermittently operates the internal combustion engine by optimal fuel consumption operation so that a cooling water temperature of the internal combustion engine is maintained in a predetermined heating temperature region in response to the heating request;
    A humidity acquisition unit that estimates or detects the humidity of the passenger compartment;
    A circulation switching unit that switches between an outside air circulation mode for taking outside air into the compartment and circulating it, and an inside air circulation mode for circulating the air inside the compartment so that the humidity of the passenger compartment is maintained in a predetermined humidity region;
    A power storage control unit configured to generate electric power with the electric motor with a surplus output of the internal combustion engine during the optimal fuel consumption operation according to the heating request, and store the power in the power storage device;
    An air conditioning control device for a hybrid vehicle.
  2.  請求項1に記載のハイブリッド車両の空調制御装置であって、
     前記蓄電装置の充電電力を用いて車室の暖房を行う電気的暖房装置と、
     前記蓄電装置の充電量が所定値を上回っているか否かを判定する充電量判定部と、
     前記充電量が前記所定値を上回っている状態において、前記冷却水温度が所定の暖房温度領域を下回った場合に、前記内燃機関の運転に先立って前記電気的暖房装置を起動して車室の暖房を行う電気的暖房装置制御部と、
     をさらに備える、
    ハイブリッド車両の空調制御装置。
    An air conditioning control device for a hybrid vehicle according to claim 1,
    An electric heating device for heating the passenger compartment using the charging power of the power storage device;
    A charge amount determination unit for determining whether or not a charge amount of the power storage device exceeds a predetermined value;
    In the state where the amount of charge exceeds the predetermined value, when the cooling water temperature falls below a predetermined heating temperature region, the electric heating device is activated prior to the operation of the internal combustion engine to An electric heating device controller for heating;
    Further comprising
    Air conditioning control device for hybrid vehicles.
  3.  請求項2に記載のハイブリッド車両の空調制御装置であって、
     前記電気的暖房装置制御部は、前記電気的暖房装置による車室の暖房の結果、前記蓄電装置の充電量が所定の下限値に達すると、前記電気的暖房装置の運転を停止するように構成される、
    ハイブリッド車両の空調制御装置。
    An air conditioning control device for a hybrid vehicle according to claim 2,
    The electric heating device control unit is configured to stop the operation of the electric heating device when a charge amount of the power storage device reaches a predetermined lower limit value as a result of heating the passenger compartment by the electric heating device. To be
    Air conditioning control device for hybrid vehicles.
  4.  請求項3に記載のハイブリッド車両の空調制御装置であって、
     前記電気的暖房装置制御部は、前記暖房要求に応じて、前記空調装置の車室への吹き出し口の必要温度を算出し、前記充電装置の充電量を検出し、前記吹き出し口の必要温度及び前記充電量に基づいて、前記吹き出し口の必要温度を維持可能な維持可能時間を算出し、前記維持可能時間が経過した時点で前記充電量が所定の下限値に達したと判定する、
    ハイブリッド車両の空調制御装置。
    An air conditioning control device for a hybrid vehicle according to claim 3,
    In response to the heating request, the electrical heating device control unit calculates a required temperature of the air outlet to the passenger compartment of the air conditioner, detects a charge amount of the charging device, Based on the amount of charge, calculate a maintainable time capable of maintaining the required temperature of the outlet, and determine that the amount of charge has reached a predetermined lower limit when the maintainable time has elapsed,
    Air conditioning control device for hybrid vehicles.
  5.  請求項1から請求項4のいずれか1項に記載のハイブリッド車両の空調制御装置であって、
     前記所定の湿度領域における上限値は、前記車室に結露が発生し得る露点温度に対応する湿度である、
    ハイブリッド車両の空調制御装置。
    The air conditioning control device for a hybrid vehicle according to any one of claims 1 to 4,
    The upper limit value in the predetermined humidity region is a humidity corresponding to a dew point temperature at which condensation can occur in the passenger compartment.
    Air conditioning control device for hybrid vehicles.
  6.  請求項1から請求項5のいずれか1項に記載のハイブリッド車両の空調制御装置であって、
     前記循環切換部は、前記暖房要求に応じて、前記内燃機関制御部が前記内燃機関を運転する間、車室の湿度が前記所定の湿度領域を超えない限り、前記内気循環モードを適用するように構成される、
    ハイブリッド車両の空調制御装置。
    An air conditioning control device for a hybrid vehicle according to any one of claims 1 to 5,
    In response to the heating request, the circulation switching unit applies the inside air circulation mode as long as the humidity of the passenger compartment does not exceed the predetermined humidity region while the internal combustion engine control unit operates the internal combustion engine. Composed of,
    Air conditioning control device for hybrid vehicles.
  7.  内燃機関と、蓄電装置と、前記蓄電装置の電力を用いて動力源として作動する一方、発電機として前記蓄電装置に充電可能な電動モータと、前記内燃機関の冷却水を用いて車室の暖房を行う空調装置と、を備えるハイブリッド車両の空調制御方法であって、
     車室の暖房要求を検出し、
     前記暖房要求に応じて、前記内燃機関の冷却水温度が所定の暖房温度領域に維持されるように前記内燃機関を断続的に運転し、
     車室の湿度を推定又は検出し、
     車室の湿度が所定の湿度領域に維持されるように、外気を車室に取り入れる外気循環モードと、車室内の空気を循環させる内気循環モードと、を切り換え、
     前記内燃機関を前記暖房要求に応じて、運転する際は前記内燃機関を最適燃費運転するとともに、
     前記暖房要求に応じて、最適燃費運転中の前記内燃機関の余剰出力で発電を行って前記蓄電装置に蓄電する、
    ハイブリッド車両の空調制御方法。
    An internal combustion engine, a power storage device, and an electric motor that operates as a power source using the power of the power storage device, while charging the power storage device as a generator, and heating of a passenger compartment using cooling water of the internal combustion engine An air conditioning control method for a hybrid vehicle comprising:
    Detects heating requests in the passenger compartment
    In response to the heating request, the internal combustion engine is intermittently operated so that the coolant temperature of the internal combustion engine is maintained in a predetermined heating temperature region,
    Estimate or detect the humidity in the passenger compartment,
    Switching between an outside air circulation mode for taking outside air into the passenger compartment and an inside air circulation mode for circulating the air inside the passenger compartment so that the humidity of the passenger compartment is maintained in a predetermined humidity range,
    When operating the internal combustion engine in response to the heating request, the internal combustion engine is operated for optimal fuel consumption,
    In response to the heating request, the power generation is performed with the surplus output of the internal combustion engine during the optimal fuel consumption operation, and the power storage device is charged.
    Air conditioning control method for hybrid vehicle.
PCT/JP2015/069118 2014-07-03 2015-07-02 Air-conditioning control device and air-conditioning control method for hybrid vehicle WO2016002876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-137648 2014-07-03
JP2014137648A JP6375731B2 (en) 2014-07-03 2014-07-03 Air conditioning control device and air conditioning control method for hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2016002876A1 true WO2016002876A1 (en) 2016-01-07

Family

ID=55019403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069118 WO2016002876A1 (en) 2014-07-03 2015-07-02 Air-conditioning control device and air-conditioning control method for hybrid vehicle

Country Status (2)

Country Link
JP (1) JP6375731B2 (en)
WO (1) WO2016002876A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042322B1 (en) * 2017-12-27 2019-11-07 현대자동차주식회사 Engine control method for heating of hybrid electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11245657A (en) * 1998-03-06 1999-09-14 Mitsubishi Motors Corp Engine control device for hybrid electric automobile
JP2005147050A (en) * 2003-11-18 2005-06-09 Toyota Motor Corp Automobile
JP2010255504A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Control device for hybrid vehicle
JP2012035689A (en) * 2010-08-05 2012-02-23 Nissan Motor Co Ltd Air conditioner for vehicle
WO2012176284A1 (en) * 2011-06-21 2012-12-27 トヨタ自動車 株式会社 Vehicle control apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151176A (en) * 2012-01-24 2013-08-08 Toyota Motor Corp Control device of hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11245657A (en) * 1998-03-06 1999-09-14 Mitsubishi Motors Corp Engine control device for hybrid electric automobile
JP2005147050A (en) * 2003-11-18 2005-06-09 Toyota Motor Corp Automobile
JP2010255504A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Control device for hybrid vehicle
JP2012035689A (en) * 2010-08-05 2012-02-23 Nissan Motor Co Ltd Air conditioner for vehicle
WO2012176284A1 (en) * 2011-06-21 2012-12-27 トヨタ自動車 株式会社 Vehicle control apparatus

Also Published As

Publication number Publication date
JP6375731B2 (en) 2018-08-22
JP2016013800A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6184481B2 (en) System and method for controlling idle stop and heater of vehicle
JP6119870B2 (en) Battery temperature control device
JP2012044813A (en) Vehicle power supply
KR101566735B1 (en) Method and system of heating cabin of hybrid electric vehicle
US20110246007A1 (en) Apparatus for controlling electric water pump of hybrid vehicle and method thereof
US9750085B2 (en) Apparatus and method for controlling vehicle
JP5545284B2 (en) Air conditioning control device for vehicles
JP2005319910A (en) Heating control system for automobile
JP4508281B2 (en) Battery control apparatus and storage battery charge / discharge control method
JP2015166204A (en) vehicle control device
US9718453B2 (en) Hybrid vehicle
JP2019193319A (en) Vehicular power supply device
JP2008049877A (en) Battery control device
JP2008126970A (en) Vehicle heater
JP2010023633A (en) Vehicle temperature raising device
KR101534739B1 (en) Apparatus and method of heating system of hybrid electric vehicle
JP2020108221A (en) Electric vehicle
KR101666557B1 (en) Air conditioning system for electric vehicle
WO2016002876A1 (en) Air-conditioning control device and air-conditioning control method for hybrid vehicle
JP6503649B2 (en) Control device and control method for hybrid vehicle
JP7027872B2 (en) vehicle
JPH10203145A (en) Heating control device for hybrid vehicle
JP2011195065A (en) Vehicular control device
JP6453629B2 (en) Vehicle control apparatus and vehicle control method
JP5602079B2 (en) Fuel cell system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815597

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815597

Country of ref document: EP

Kind code of ref document: A1