WO2016002470A1 - 繊維強化プラスチックの製造方法 - Google Patents

繊維強化プラスチックの製造方法 Download PDF

Info

Publication number
WO2016002470A1
WO2016002470A1 PCT/JP2015/066900 JP2015066900W WO2016002470A1 WO 2016002470 A1 WO2016002470 A1 WO 2016002470A1 JP 2015066900 W JP2015066900 W JP 2015066900W WO 2016002470 A1 WO2016002470 A1 WO 2016002470A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
composite composition
reinforced plastic
thermoplastic resin
resin
Prior art date
Application number
PCT/JP2015/066900
Other languages
English (en)
French (fr)
Inventor
祐介 間嶋
卓夫 神崎
正人 大木
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to US14/392,154 priority Critical patent/US20160271860A1/en
Priority to JP2015548513A priority patent/JPWO2016002470A1/ja
Publication of WO2016002470A1 publication Critical patent/WO2016002470A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • B29C70/506Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands and impregnating by melting a solid material, e.g. sheet, powder, fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • B29C51/082Deep drawing or matched-mould forming, i.e. using mechanical means only by shaping between complementary mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/48Endless belts
    • B29C2043/483Endless belts cooperating with a second endless belt, i.e. double band presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/48Endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • B29C48/155Partial coating thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets

Definitions

  • the present invention relates to a production method for producing a sheet-like fiber reinforced plastic from a composite composition containing a thermoplastic resin and a reinforced fiber.
  • Patent Document 1 proposes.
  • Patent Document 1 describes a method of forming a web (corresponding to the composite composition in the present invention) composed of opened reinforcing fibers and thermoplastic resin particles into a sheet by a so-called double belt press method. ing. This technology pre-heats the web to a temperature of ⁇ 20 ° C. relative to the melting point of the thermoplastic resin before feeding the web to the double belt press, and then makes the web more rapid with the top roll of the double belt press. Pressurizing while heating.
  • Patent Document 2 describes a method of manufacturing a fiber-reinforced thermoplastic resin material by sealing and pressing the sides in order to reduce waste at the end when manufacturing a fiber-reinforced thermoplastic.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 5-245866
  • Patent Document 2 Japanese Patent Application Laid-Open No. 6-190944
  • Patent Document 3 Japanese Patent Application Laid-Open No. 9-277387
  • an object of the present invention is to provide a method for producing a fiber reinforced plastic capable of making a composite composition into a sheet while suppressing outflow of a thermoplastic resin.
  • thermoplastic resin when the thermoplastic resin is crystalline, the thermoplastic resin is at a temperature lower than 30 degrees below the melting point. In the case of non-crystallinity, the manufacturing method of the fiber reinforced plastic which raises the bulk density of the said composite composition below 100 degree higher than a glass transition temperature.
  • the composite composition with an increased bulk density is either above the melting point, and when the thermoplastic resin is amorphous, either the glass transition temperature or the temperature when the bulk density is increased.
  • 3. The method for producing a fiber-reinforced plastic according to 1 or 2, wherein the heating is performed at a temperature higher than the higher temperature. 4). 4. The method for producing fiber-reinforced plastic according to 3 above, wherein the heating is performed while maintaining a state in which the bulk density is increased. 5. 5. The method for producing a fiber-reinforced plastic according to any one of 1 to 4, wherein the reinforcing fiber is a cut discontinuous fiber. 6). 5.
  • weight per unit area of composite composition ⁇ ⁇ (density of thermoplastic resin ⁇ Wm + density of reinforcing fiber ⁇ Wf) ⁇ thickness of composite composition ⁇ Formula (x) Wm: weight ratio of the thermoplastic resin contained in the composite composition Wf: weight ratio of the reinforcing fiber contained in the composite composition ⁇ : 0.020 to 0.82 10. 10.
  • the composite composition is densified in a state where the thermoplastic resin hardly flows, so that the outflow of the thermoplastic resin is suppressed.
  • FIG. It is the schematic which shows the manufacturing apparatus of the fiber reinforced plastic which concerns on Embodiment 1.
  • FIG. It is the schematic which shows an example of the manufacturing method of the composite composition which concerns on Embodiment 2, and a fiber reinforced plastic.
  • A It is a figure explaining the process of manufacturing a fiber reinforced plastic from a composite composition.
  • B It is a figure explaining the temperature profile of the composite composition before and after bulk density-ization.
  • the fiber-reinforced plastic according to the present invention is produced in a sheet form from a composite composition containing a thermoplastic resin and reinforcing fibers.
  • Type of thermoplastic resin (1) The thermoplastic resin in the present invention is used as a matrix component of a composite composition.
  • thermoplastic resin contained in the composite composition examples include polyolefin resin, polystyrene resin, polyamide resin, polyester resin, polyacetal resin (polyoxymethylene resin), polycarbonate resin, (meth) acrylic resin, polyarylate resin, polyphenylene ether resin,
  • thermoplastic polyimide resin examples include a thermoplastic polyimide resin, a polyether nitrile resin, a phenoxy resin, a polyphenylene sulfide resin, a polysulfone resin, a polyketone resin, a polyether ketone resin, a thermoplastic urethane resin, a fluorine resin, and a thermoplastic polybenzimidazole resin.
  • polystyrene resin examples include polyethylene resin, polypropylene resin, polybutadiene resin, polymethylpentene resin, vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, and polyvinyl alcohol resin.
  • polystyrene resin examples include polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin), and the like.
  • polyamide resin examples include polyamide 6 resin (nylon 6), polyamide 11 resin (nylon 11), polyamide 12 resin (nylon 12), polyamide 46 resin (nylon 46), polyamide 66 resin (nylon 66), and polyamide 610.
  • Resin (nylon 610) etc. can be mentioned.
  • polyester resin examples include polyethylene terephthalate resin, polyethylene naphthalate resin, boribylene terephthalate resin, polytrimethylene terephthalate resin, and liquid crystal polyester.
  • Examples of the (meth) acrylic resin include polymethyl methacrylate.
  • Examples of the modified polyphenylene ether resin include modified polyphenylene ether.
  • Examples of the thermoplastic polyimide resin include thermoplastic polyimide, polyamideimide resin, polyetherimide resin, and the like.
  • polysulfone resin examples include a modified polysulfone resin and a polyethersulfone resin.
  • polyetherketone resin polyetherketone resin, polyetheretherketone resin, polyetherketoneketone resin etc. can be mentioned, for example.
  • fluororesin polytetrafluoroethylene etc. can be mentioned, for example.
  • thermoplastic resin used in the composite composition may be only one type or two or more types.
  • Examples of the mode in which two or more types of thermoplastic resins are used together include, for example, a mode in which thermoplastic resins having different softening points, melting points, glass transition temperatures, etc. are used in combination, and thermoplastic resins having different average molecular weights in combination. Although an aspect etc. can be mentioned, it is not this limitation.
  • the thermoplastic resin may be a new material (so-called virgin material) or a recycled material. Moreover, what mixed these may be used.
  • (2) Form The form of the thermoplastic resin is not particularly limited. Examples of the form include a particulate shape, a lump shape, a fiber shape, and a sheet shape. Specific examples of the particulate shape include a spherical shape and an elliptical spherical shape.
  • the block shape includes a spherical shape, an elliptical spherical shape, a cylindrical shape, a strip shape, and the like.
  • the particle shape is smaller than the lump shape. Specifically, particles having a diameter of less than 3 mm are particles, and particles having a diameter of 3 mm or more are lump. 2.
  • Carbon fibers are generally polyacrylonitrile (PAN) carbon fiber, petroleum / coal pitch carbon fiber, rayon carbon fiber, cellulosic carbon fiber, lignin carbon fiber, phenolic carbon fiber, vapor growth carbon. Although fibers and the like are known, any of these carbon fibers can be suitably used.
  • the fiber length of the reinforcing fiber is not particularly limited. That is, the reinforcing fiber may be a continuous fiber, a fiber cut to a certain length or an indefinite length (hereinafter, also simply referred to as “cut fiber”), or a combination of continuous fiber and cut fiber. It may be. Moreover, in the cut fiber of a fixed length, the fixed length may be one type or a plurality of types.
  • the form of the reinforcing fiber may be a fiber bundle in which a single yarn is a bundle-like part, may be a single yarn alone, or may include both.
  • the number of fibers constituting the bundle is not particularly limited.
  • the number of fibers in the fiber bundle may be one or more.
  • the orientation of the reinforcing fibers may be one direction, two directions, or three or more directions in the two-dimensional direction (in-plane thickness direction of the fiber reinforced plastic). It may be random orientation.
  • the random arrangement in the two-dimensional direction means that the reinforcing fiber is a discontinuous reinforcing fiber, and the orientation of the reinforcing fiber in a specific two-dimensional direction orthogonal to each other is the orientation in the other direction. This means that there is little difference compared to.
  • the orientation of the reinforcing fibers may be randomly oriented in three dimensions. Random orientation in three dimensions means that the orientation of carbon fibers in specific three-dimensional directions orthogonal to each other has a smaller difference than the orientation in other directions. 3. Ratio of thermoplastic resin
  • the abundance of the thermoplastic resin in the composite composition is preferably 5 parts by weight or more and 1000 parts by weight or less with respect to 100 parts by weight of the reinforcing fibers. If it is less than 5 parts by weight, the function of binding the reinforcing fibers is lowered, and an unimpregnated part is produced when the molded product is formed. On the other hand, if it exceeds 1000 parts by weight, the reinforcing effect of the reinforcing fiber is reduced.
  • the abundance of the thermoplastic resin is preferably 20 parts by weight or more and 500 parts by weight or less with respect to 100 parts by weight of the reinforcing fibers. 4).
  • fill following formula (x) it is preferable to satisfy
  • thermoplastic resin Weight ratio of the thermoplastic resin included in the composite composition
  • Wf Weight ratio of the reinforcing fiber included in the composite composition ⁇ : 0.020 to 0.82 If the thickness of the composite composition is less than 82% (the above ⁇ is less than 0.82) compared to the theoretical thickness where there is no gap in the composite composition, the thermoplastic resin will flow out in the process of increasing the bulk density. This is because the amount can be easily suppressed.
  • the ⁇ is 0.020 or more
  • the bulk density of the composite composition is high, and the operability of the composite composition does not deteriorate.
  • the thermoplastic resin may flow out before the bulk density is increased (in other words, if ⁇ is too small, the cut fiber bundle having an increased bulk density). Etc. do not hinder the flow of the thermoplastic resin), ⁇ is preferably 0.020% or more.
  • the value of ⁇ is more preferably 0.025 to 0.60, still more preferably 0.045 to 0.30.
  • the weight ratio of the reinforcing fiber contained in the Wf: composite composition is a ratio in which the total of the resin and the fiber is 100%, and does not include other additive components. (Hereafter, the same applies to Wf ′). 5. Manufacturing method As a manufacturing method of the composite composition, various methods can be used corresponding to the form of the thermoplastic resin and the fiber reinforcement. In addition, the manufacturing method of a composite composition is not limited to the method demonstrated below. (1) Production Example 1 When a composite composition is comprised from a short fiber and a thermoplastic resin, it can manufacture by depositing the resin piece containing a short fiber, for example.
  • a composite composition having a predetermined width and continuous in the longitudinal direction can be obtained by arranging a plurality of discharge nozzles in the TD direction with respect to the support that moves in the MD direction.
  • the MD direction refers to the longitudinal direction of the sheet (Machine Direction)
  • the TD direction refers to the width direction of the sheet (Transverse Direction).
  • (2) Production Example 2 When cut fibers are used as the reinforcing fibers included in the composite composition, and the cut fibers are mainly composed of a reinforcing fiber mat and a thermoplastic resin that are randomly arranged in a two-dimensional direction, for example, a pair of fibers is used. It can manufacture by pinching with the sheet material made from a thermoplastic resin.
  • the composite composition is formed by discharging a cut reinforcing fiber (cut fiber) from a discharge nozzle toward a lower sheet material to form a reinforcing fiber mat, and then forming a thermoplastic resin on the reinforcing fiber mat. Obtained by placing sheet material.
  • the cut fiber is mainly composed of a reinforcing fiber mat and a thermoplastic resin that are randomly arranged in a two-dimensional direction, for example, a product made of a thermoplastic resin
  • a reinforcing fiber mat is placed on the thermoplastic resin sheet material, and a molten thermoplastic resin (softened thermoplastic resin in the case of an amorphous resin) is applied onto the reinforcing fiber mat.
  • the composite composition is formed by discharging cut reinforcing fibers (cut fibers) from a fiber discharge nozzle toward a lower thermoplastic resin sheet material to form a reinforcing fiber mat, and then on the reinforcing fiber mat. It is obtained by discharging a thermoplastic resin (softened thermoplastic resin in the case of an amorphous resin) from a resin discharge nozzle.
  • a composite composition having a predetermined width and continuous in the longitudinal direction is obtained.
  • the composite composition is composed of a reinforcing fiber mat in which continuous reinforcing fibers are aligned in one direction and a thermoplastic resin, for example, by arranging a resin powder made of a thermoplastic resin on the reinforcing fiber mat. Can be manufactured. Specifically, the composite composition is obtained by discharging resin powder from a discharge nozzle onto a reinforcing fiber mat. A resin piece can be used instead of the resin powder.
  • the fiber reinforced plastic in the present invention includes a thermoplastic resin and a reinforced fiber constituting the composite composition.
  • the fiber reinforced plastic may be composed only of the thermoplastic resin and the reinforcing fiber of the composite composition, or may be composed of the thermoplastic resin of the composite composition, the reinforcing fiber, and materials other than these materials.
  • Sheet means that the smallest dimension among the three dimensions (for example, length, width and thickness) indicating the size of the fiber reinforced plastic is the thickness, and the largest dimension is the length. It means a flat shape whose length is 10 times or more of the thickness.
  • thermoplastic resins and reinforcing fibers different from the materials constituting the composite composition, inorganic materials, and the like.
  • another material is good also as a reinforcing fiber from which fiber length differs.
  • a fiber bundle is used as the reinforcing fiber, a fiber bundle having a number of fibers different from that of the reinforcing fiber of the composite composition may be included.
  • weight per unit area of the composite composition ⁇ ⁇ (thermoplastic resin density ⁇ Wm ′ + reinforced fiber density ⁇ Wf ′) ⁇ fiber reinforced plastic thickness ⁇
  • Wm ′ Weight ratio of thermoplastic resin contained in fiber reinforced plastic
  • Wf ′ Weight ratio of reinforcing fiber contained in fiber reinforced plastic ⁇ : 0.82 or more ⁇ is 0.82 or more (the bulk density of the composite composition is a gap) If the thickness is 82% or more compared to the theoretical thickness without the presence of fiber, the mechanical strength of the fiber-reinforced plastic or a molded body obtained by press-molding the fiber-reinforced plastic, for example, is stabilized. The value of ⁇ is more preferably 0.9 or more.
  • Manufacturing method A fiber reinforced plastic is made into a sheet form using the composite composition described above. As a method for forming a sheet, various methods can be used in the step of increasing the bulk density.
  • the bulk densification step in the present invention is performed at a temperature not higher than 30 ° C. below the melting point when the thermoplastic resin is crystalline, and at a temperature not higher than 100 ° C. above the glass transition temperature when the thermoplastic resin is non-crystalline. Is called.
  • the temperature is 30 degrees below the melting point, and when the thermoplastic resin is non-crystalline, the temperature below 100 degrees higher than the glass transition temperature is simply referred to as “preheating temperature”. There is.
  • the lower limit of the preheating temperature is not particularly limited, but a temperature higher than room temperature is preferable, and a temperature higher by 30 ° C. than room temperature is more preferable. By preheating at a temperature higher than room temperature, temperature control in the subsequent heating zone becomes easy.
  • the fiber reinforced plastic In the production method of the fiber reinforced plastic in the present invention, it is preferable from the viewpoint of productivity that the fiber reinforced plastic is produced continuously, not batchwise.
  • the composite composition When producing fiber reinforced plastics continuously, the composite composition will have a continuous form.
  • the manufacturing method of the fiber reinforced plastic which raises the bulk density in this invention means the manufacturing method of the fiber reinforced plastic including the process of raising the bulk density of the said composite composition.
  • a compression device can be used. Specifically, after the composite composition is disposed between the pair of upper and lower press surfaces of the compression device, the pair of press surfaces are brought close to each other, thereby reducing the thickness of the composite composition and increasing the bulk density.
  • a method of moving the composite composition for example, a drawing method of pulling out the composite composition in the mold from the downstream side, an extrusion method of extruding the composite composition from the upstream side, and a composite composition placed on the moving body There is a conveyor system that passes between the molds together with the moving body.
  • a pair of rollers one set with an adjusted interval can be used.
  • the bulk density of the composite composition can be increased by moving the composite composition and passing it between at least one pair of rollers.
  • the plurality of sets of rollers may be arranged so that the distance between the pair of rollers decreases as the composite composition moves from the upstream side to the downstream side.
  • Process example 4 When the composite composition has a continuous form, it is possible to use a pair of belts whose distances are adjusted (a so-called double belt press method).
  • the bulk density of the composite composition can be increased by passing the composite composition between the belts arranged so that the belt interval becomes narrower as the belt moves from the upstream side to the downstream side at the portion where the pair of belts face each other.
  • the adjustment of the belt interval can be performed by a roller or a support plate disposed on the back side of the belt.
  • step examples 1 to 4 for example, when the composite composition needs to be heated at the time of compression, a compression device, a mold, a roller, a belt, or the like provided with heating means may be used. . Heating may be performed before the step of increasing the bulk density or during the step of increasing the bulk density.
  • the step of increasing the bulk density is not limited to the above-described step examples 1 to 4, and a part of them may be combined.
  • (4) Use of fiber reinforced plastic The fiber reinforced plastic in the present invention may be used as a molding material for producing a molded body, or may be used as it is as a sheet material. When used with a molding material, the fiber reinforced plastic is molded using a press.
  • CFRP carbon fibers cut to a predetermined length
  • resin powder a powdery thermoplastic resin
  • the composite composition may be formed by randomly arranging cut fibers and resin powder. A mat-like material in which cut fibers are randomly arranged is also referred to as a reinforcing fiber mat.
  • Composite Composition (1) Carbon Fiber The fiber length, fiber diameter, and form of carbon fiber are the same as those in [Embodiment 2].
  • the fiber length of the carbon fiber is 5 mm or more and 60 mm or less. More preferably, the fiber length is 8 mm or more and 50 mm or less. Furthermore, 10 mm or more and 40 mm or less are preferable.
  • the average fiber length of the carbon fiber when the carbon fiber is cut into a certain length with a rotary cutter or the like, the cut length corresponds to the average fiber length, which is also the number average fiber length and the weight average fiber length. .
  • the number average fiber length (Ln) and the weight average fiber length (Lw) are obtained by the following formulas (3) and (4) (constant In the case of the cut length, the weight average fiber length (Lw) is calculated by the calculation formula (3) of the number average fiber length (Ln)).
  • the measurement of the average fiber length in the present invention may be a number average fiber length or a weight average fiber length.
  • the average fiber diameter of the carbon fiber is not particularly limited, but is preferably 3 ⁇ m or more and 12 ⁇ m or less, and more preferably 5 ⁇ m or more and 7 ⁇ m or less.
  • Form The carbon fiber is in the form of a bundle in which thousands to tens of thousands of filaments are gathered. The cut fibers contained in the composite composition are roughly classified into fiber bundles composed of the number of critical single yarns defined by the formula (1) and other fibers.
  • the other fibers consist of a single yarn and a fiber bundle having a number of fibers smaller than the critical number of single yarns.
  • the fiber bundle and the single yarn are The cut fiber that is included is a cut fiber bundle or the like.
  • Critical single yarn count 600 / D (1) “D” is the average fiber diameter ( ⁇ m) of the carbon fibers.
  • the ratio of the fiber bundle is preferably 20 Vol% or more and 99 Vol% or less with respect to the total amount of carbon fibers in the composite composition.
  • the ratio of the fiber bundle is less than 20 Vol%, it is difficult to increase the bulk density, and it is impossible to reduce the pressure applied when the fiber reinforced plastic is molded into a molded body using a press.
  • the ratio of the fiber bundle is larger than 99 Vol%, single yarn or the like is not included, and it becomes difficult to obtain a molded body excellent in mechanical strength when formed into a molded body.
  • the ratio of the fiber bundle is more preferably 30 Vol% or more and less than 95 Vol%, and further preferably 50 Vol% or more and less than 90 Vol%.
  • the average number of fibers (N) in the fiber bundle is within the range defined by the formula (2).
  • D is the average fiber diameter ( ⁇ m) of the carbon fibers as described above.
  • the average number of fibers (N) As a preferable range of the average number of fibers (N), 1.0 ⁇ 10 4 / D 2 or more and 1.0 ⁇ 10 5 / D 2 or less are preferable, and more preferably 5.0 ⁇ 10 4 / D 2 or more and 1 0.0 ⁇ 10 5 / D 2 or less.
  • Thermoplastic resin The average particle size of the resin powder is not particularly limited, but is preferably in the range of 200 ⁇ m to 900 ⁇ m. This is because the resin powder easily enters a gap in the reinforcing fiber mat generated by the fiber bundle. More preferably, the average particle size is 500 ⁇ m or more and 600 ⁇ m or less.
  • Manufacturing method A composite composition is manufactured by discharging a cut fiber bundle etc.
  • the support is continuously moved in the MD direction, a continuous mat continuous in the MD direction is formed.
  • the MD direction has a predetermined width in the TD direction. A continuous composite composition is formed.
  • Manufacturing Method (1) of Fiber Reinforced Plastic A fiber reinforced plastic is manufactured from the composite composition 1 described above. The fiber reinforced plastic has a bulk density of the composite composition that is 30 ° C. or less below the melting point when the thermoplastic resin is crystalline, and 100 ° C. or less above the glass transition temperature when the thermoplastic resin is non-crystalline. Including a step of increasing.
  • FIG. 1 is a schematic view showing a fiber-reinforced plastic manufacturing device according to the first embodiment.
  • the manufacturing apparatus 53 is a so-called double belt press, and includes endless belts 63 and 65 installed between a pair of main rollers 55, 57, 59, and 61 in a state of facing each other. Note that at least one of the endless belts is rotationally driven so as to rotate in the same direction at the facing portion.
  • the front in the direction (MD direction) in which the endless belts 63 and 65 travel is downstream and the rear is upstream, the composite composition 1 is supplied from the upstream side, and the fiber reinforced plastic 51 is sent from the downstream side.
  • the endless belt 65 disposed on the lower side is referred to as a lower endless belt 65
  • the endless belt 63 disposed on the upper side is referred to as an upper endless belt 63
  • the plurality of sub rollers 71 disposed on the back side of the lower endless belt 65 are referred to as lower sub rollers 71
  • the plurality of sub rollers 73 disposed on the inner side of the upper endless belt 63 are referred to as upper sub rollers 73.
  • the upper and lower endless belts 63 and 65 are provided with a plurality of sub-rollers 71 and 73 on the inner side of the opposed portions, so that a constant rotating track is formed.
  • the upper auxiliary roller 73 is disposed above the lower auxiliary roller 71 as shown in FIG.
  • the distance between the sub-rollers 71 and 73 becomes narrower in the upstream region as it moves from the upstream side to the downstream side.
  • the vertical intervals between the upper and lower secondary rollers 71b, 73a, 71c, 73b from the upstream side become smaller as they move downstream.
  • the vertical intervals of the third and subsequent upper and lower sub-rollers 71d to 71i and 73c to 73g from the upstream side are equal.
  • the region where the upper and lower endless belts 63 and 65 face each other has at least a preheating zone Z1 on the upstream side.
  • the region where the two upstream secondary rollers 71b, 71c, 73a, 73b are located belongs to the preheating zone Z1.
  • the region where the endless belts 63 and 65 are opposed has three zones from the upstream side: a preheating zone Z1, a heating zone Z2, and a cooling zone Z3.
  • the third to fifth sub rollers 71d to 71f and 73c to 73e from the upstream side belong to the heating zone Z2, and the subsequent sub rollers 71g to 71i and 73f to 73g belong to the cooling zone Z3.
  • Each sub-roller 71, 73 has a heating means.
  • the temperatures of the sub-rollers 71 and 73 in the zones Z1, Z2 and Z3 are set so that the temperature of the material (here, the composite composition 1) passing between the upper and lower endless belts 63 and 65 becomes a predetermined temperature. Has been.
  • Table 2 shows the temperature distribution of the composite composition before and after the bulk density in the production apparatus.
  • the material temperature of the preheating zone Z1 is set to be the preheating temperature.
  • the material temperature of the heating zone Z2 is the higher of the glass transition temperature or the temperature when the bulk density is increased when the thermoplastic resin is non-crystalline so that the temperature is higher than the melting point when the thermoplastic resin is crystalline. It is set so that it heats more than this temperature.
  • the thermoplastic resin is crystalline, the range above the melting point, and when the thermoplastic resin is non-crystalline, the range above the higher one of the glass transition temperature or the temperature when the bulk density is increased, Sometimes referred to as “temperature”.
  • the material temperature of the cooling zone Z3 is not more than 50 degrees below the melting point when the thermoplastic resin is crystalline, and not more than 30 degrees below the glass transition temperature when the thermoplastic resin is non-crystalline. So that it is set.
  • the temperature below 50 ° C. below the melting point, and when the thermoplastic resin is non-crystalline the range below 30 ° C. below the glass transition temperature may be referred to as “cooling temperature”. is there.
  • the space between the upper and lower secondary rollers 71b, 73a, 71c, 73b becomes narrower as it moves from the upstream side to the downstream side.
  • the composite composition 1 passing through the zone Z1 is compressed. Thereby, the thickness of the composite composition 1 becomes thin and the bulk density can be increased.
  • the composite composition 1 is thinned while the temperature of the composite composition 1 is within the preheating temperature range. For this reason, the resin powder (thermoplastic resin) in the composite composition 1 moves to a gap such as a cut fiber bundle that is randomly deposited, and at least a part of the gap is filled with the resin powder. In addition, since the resin powder at the time of compression is not melted (softened in the case of an amorphous resin), outflow of the resin powder to the outside of the composite composition 1 is suppressed.
  • the intervals between the upper and lower sub-rollers 71d to 71f and 73c to 73e are substantially constant, and in this state, the bulk composition 1 is heated to the range of “heating temperature”.
  • the thermoplastic resin is in a molten state (in the case of an amorphous resin, it is in a softened state, the same applies hereinafter), but the intervals between the sub rollers 71d to 71f and 73c to 73e are constant, so that the heat in the molten state There is no change in the pressure applied to the plastic resin.
  • the heating zone Z2 it is preferable to produce a fiber reinforced plastic while maintaining a state in which the bulk density is increased. At this time, even if pressure is applied to the composite composition 1 having a bulk density, it is not added. Also good.
  • the cut fiber bundle having an increased bulk density hinders the flow of the molten thermoplastic resin, and the outflow of the thermoplastic resin is suppressed. Thereby, the molten thermoplastic resin stays and permeates between fiber bundles such as cut fiber bundles.
  • the distance between the upper and lower sub-rollers 71g to 71i and 73f to 73g is constant, and in this state, the bulk composition 1 is cooled to the “cooling temperature”. Thereby, the molten thermoplastic resin is solidified, and the fiber reinforced plastic 51 is obtained.
  • a thermoplastic resin sheet is used as the thermoplastic resin.
  • the composite composition is formed by placing a thermoplastic resin sheet on the upper surface of a mat-like reinforcing fiber mat in which cutting fibers are randomly arranged.
  • FIG. 2 is a schematic view showing an example of a method for producing a fiber-reinforced plastic according to Embodiment 2, and a composite composition is formed by placing a thermoplastic resin sheet 105 on the reinforcing fiber mat 103. At this time, the thermoplastic fiber sheet may be formed on the reinforcing fiber mat, or the reinforcing fiber mat may be formed on the thermoplastic resin sheet. In Embodiment 2, the reinforcing fiber mat is formed first.
  • the forming step of the reinforcing fiber mat in the second embodiment is such that the resin powder is not discharged in the method for producing the composite composition described in the first embodiment. That is, in the reinforcing fiber mat 103, the supplied strand is cut into a predetermined length by a cutting unit, and the cut fiber bundle is discharged from the discharge nozzle 107 onto the conveyor 109 as a support using the cut fiber cut. It is manufactured by doing. The conveyor 109 is moved in the MD direction (right hand direction in FIG. 2).
  • the composite composition forming step is performed using, for example, a screw extruder 111 and a T-shaped die 113.
  • the extruder 111 melts the pulverized material 117 and the resin pellets supplied from the popper 115 with the heating cylinder 119, and the screw main body 121 rotates to be melted thermoplastic resin (hereinafter also referred to as "molten resin").
  • molten resin thermoplastic resin
  • a crystalline resin it is a softened resin.
  • [Embodiment 2] is extruded from the nozzle 123 of the heating cylinder 119 to the T-shaped die 113.
  • the T-shaped die 113 is a mold having a T-shaped passage inside, and receives the resin sheet 105 from an end portion (the upper end in FIG. 2) 113a opposite to the horizontal portion in the vertical portion of the T-shape. , A horizontal portion of the T-shape (lower end in FIG. 2) 113b is discharged in a straight line extending in a direction perpendicular to the paper surface of FIG.
  • the resin sheet 105 flows down on the reinforcing fiber mat 103 on the conveyor 109 moving in the MD direction which is a predetermined direction. As a result, the thermoplastic resin sheet 105 is formed on the reinforcing fiber mat 103 in the moving direction of the conveyor 109 (the right direction in FIG. 2), and the composite composition 101 is formed. The thermoplastic resin sheet 105 is gradually lowered in temperature by being transferred on the conveyor 109.
  • the composite composition 101 produced as described above is supplied to the apparatus 131 for increasing the bulk density shown in FIG. Thereby, a sheet-like fiber reinforced plastic 133 with an increased bulk density is obtained.
  • the device 131 for increasing the bulk density is composed of a pair of rollers 135 and 137 arranged on the front and back of the conveyor 109.
  • the roller 137 on the back side of the conveyer 109 also has a function of a support roller that supports the conveyer 109 from below, and can be replaced by a support plate, for example.
  • the rollers 135 and 137 include heating means, and the temperatures of the rollers 135 and 137 are set so that the temperature of the composite composition 101 becomes the preheating temperature.
  • the passage of the composite composition 101 between the pair of rollers 135 and 137 is a step of increasing the bulk density, and corresponds to the preheating zone Z1 of the first embodiment. Further, the passage after the composite composition 101 is a cooling step, which corresponds to the cooling zone Z3 of the first embodiment. In the case of the second embodiment, the heating zone Z2 referred to in the first embodiment does not exist.
  • the composite composition 101 passes between the pair of rollers 135 and 137 together with the conveyor 109.
  • the distance between the pair of rollers 135 and 137 is set smaller than the sum of the thickness of the conveyor 109 and the thickness of the composite composition 101.
  • the composite composition 101 receives a compressive load and can increase the bulk density.
  • the bulk density of the composite composition 101 immediately before being supplied to the pair of rollers 135 and 137 is increased to some extent by the weight of the thermoplastic resin sheet 105.
  • the distance obtained by subtracting the thickness of the conveyor 109 between the pair of rollers 135 and 137 is preferably 1.1 times or more the thickness of the composite composition in the state where the gap in the composite composition 101 is eliminated. This is because if the interval of the rollers 135 and 137 excluding the thickness of the conveyor 109 is 1.1 times or more, the gap between the reinforcing fiber mats 103 becomes large, and the resin does not have a place in the reinforcing fiber mats 103, so that the reinforcing fibers This is because the fear of flowing out of the mat 103 is reduced.
  • thermoplastic resin in the bulk density process was evaluated as follows.
  • thermoplastic resin contained in the composite composition was less than 10%.
  • thermoplastic resin contained in the composite composition was 10% or more and less than 20%.
  • thermoplastic resin contained in the composite composition was 20% or more and less than 25%.
  • thermoplastic resin contained in the composite composition was 25% or more and 30% or less.
  • thermoplastic resin contained in the composite composition exceeded 30%.
  • the amount of outflow was measured when the thermoplastic resin came out from the carbon fiber mat. When the thermoplastic resin spreads and the reinforcing fiber mat spreads, the thermoplastic resin did not flow out from the reinforcing fiber mat.
  • the weight ratio (Wf%) of the reinforcing fiber contained in the composite composition and the weight ratio (Wf ′%) of the reinforcing fiber contained in the fiber-reinforced plastic were measured in the air after measuring the weight W0 of each measurement object. It is heated at 500 ° C. for 1 hour, the weight W1 (g) of the carbon fiber remaining after burning and removing the resin component is measured, and the fiber weight fraction (Wf) is obtained using the following formula (5).
  • Wf ′ When measuring Wf ′ of fiber reinforced plastic, ignoring the presence or absence of outflow of the thermoplastic resin, Wf ′ was determined using all the full width direction (TD direction) as target samples.
  • Wf (Wf ′) (weight of carbon fiber W1 / weight of thermoplastic resin layer W0) ⁇ 100 (5) (Value of ⁇ )
  • the thickness of the composite composition was adjusted, and various composite compositions having different bulk densities were prepared. Therefore, the value of ⁇ in each example and comparative example was adjusted by the thickness of the composite composition.
  • carbon fiber “Tenax” registered trademark
  • STS40-24KS average fiber diameter 7 ⁇ m, number of single yarns 24,000 manufactured by Toho Tenax Co., Ltd. cut to an average fiber length of 20 mm was used as a cut fiber.
  • nylon 6 resin A1030 (crystalline resin having a melting point of 230 degrees) manufactured by Unitika as a resin
  • a composite composition in which carbon fibers were randomly oriented was obtained based on the method described in the WO2012 / 105080 pamphlet.
  • the obtained composite composition has a fiber length such as a cut fiber bundle of 20 mm, and among the cut fiber bundles, the ratio of the cut fiber bundle whose average fiber number (N) is defined by the formula (2) is 85 Vol% (remaining Are single yarns etc.).
  • the thickness of the composite composition was 100 mm, and the weight per unit area was 3600 g / m 2 (0.36 g / cm 2 ).
  • the volume ratio of the reinforcing fiber in the composite composition was 35 vol%, and the weight ratio was 46 wt% (the remainder was a thermoplastic resin).
  • a process for increasing the bulk density, a heating process, and a cooling process are performed on the produced composite composition.
  • FIG. 3A is a diagram for explaining a process for producing a fiber reinforced plastic from the composite composition
  • FIG. 4 shows a bulk density of the composite composition before and after the bulk density during the production process of FIG. It is a figure which shows the thickness in a formation process.
  • FIG. 3B shows a temperature distribution in the manufacturing apparatus.
  • the composite composition is supplied to the manufacturing apparatus 53 as shown in FIG.
  • the manufacturing apparatus 53 has three regions (zones Z1 to Z3) having different temperature distributions.
  • the distance between the sub-rollers 71 and 73 arranged above and below substantially corresponds to the thickness of the fiber reinforced plastic 51 shown in FIG.
  • “distance X” in FIG. 4 is a distance moved to the downstream side based on the position where the step of increasing the bulk density is started (see FIG. 3A).
  • the temperature of the composite composition is heated to 120 to 180 degrees, and the bulk density of the composite composition having a thickness of 100 mm can be increased to a thickness of 3 mm.
  • the temperature of the thermoplastic resin was lower by 30 degrees or more than the melting point (230 degrees) of the thermoplastic resin.
  • the heating zone Z2 it is heated to 180 to 340 degrees. Then, the upper and lower sub-rollers 71d and 73c disposed on the upstream side of the heating zone Z2 (see FIG. 1) reduce the thickness of 3 mm to 2.6 mm. At this time, the thickness of the composite composition that has been bulk-density is thinned in a state where the temperature is higher than the melting point, but the thickness to be thinned is 0.4 mm, and the ratio of the bulk density being increased in the preheating zone Z1 (from 100 mm 97mm thinner to 3mm.) Less than.
  • the outflow of the thermoplastic resin in the heating zone Z2 is small, and the outflow of the thermoplastic resin is 20 based on the composite composition having a thickness of 100 mm before the bulk density can be increased. % could be suppressed to less than%.
  • the composite composition that has been bulk-density at a temperature higher than 50 ° C. with respect to the melting temperature is heated, and is sandwiched by the belts 63 and 65 from both the upper and lower sides (the interval is constant). Therefore, the molten resin penetrates into the cut fiber bundle.
  • the weight ratio (Wf ′) of the reinforced fiber contained in the fiber reinforced plastic is measured for the entire fiber reinforced plastic prepared regardless of the outflow of the resin, so it is included in the composite composition. It became 46% which is the same as the weight ratio (Wf) of the reinforcing fiber.
  • Example 2 The weight per unit area of the composite composition remains 3600 g / m 2 (0.36 g / cm 2 ), and the average number of carbon fibers (N) contained in the obtained composite composition is expressed by the formula (2) Example 1 except that the composite fiber thickness was reduced to 50 mm (thickness was reduced) by increasing the ratio of the cut fiber bundle defined by the above to 95 Vol% (the remainder is single yarn or the like).
  • Example 3 A polycarbonate resin (polycarbonate manufactured by Teijin Limited: L-1225WX, glass transition temperature 150 ° C.) is used as the thermoplastic resin, the temperature of the preheating zone Z1 is 150 to 180 ° C., the temperature of the heating zone Z2 is 180 to 220 ° C., and cooling is performed.
  • a fiber reinforced plastic was prepared in the same manner as in Example 1 except that the temperature of the zone Z3 was 220 to 100 ° C. The results are shown in Table 1.
  • Example 4 The weight per unit area of the composite composition is 3600 g / m 2 (0.36 g / cm 2 ), and the average number of carbon fibers (N) contained in the obtained composite composition is expressed by the formula (2).
  • the fiber reinforced plastic was removed in the same manner as in Example 1 except that the thickness of the composite composition was changed to 130 mm by reducing the ratio of the cut fiber bundle defined by the above to 65 Vol% (the remainder is a single yarn or the like). Created. The results are shown in Table 1. (Example 5) A fiber reinforced plastic was prepared in the same manner as in Example 1 except that the composite composition having a thickness of 100 mm described in Example 1 was previously crushed at room temperature until the thickness became 2.8 mm, and then passed through the preheating zone Z1.
  • Example 6 A fiber reinforced plastic was prepared in the same manner as in Example 1 except that the composite composition described in Example 1 was previously crushed at room temperature until the thickness reached 5 mm, and then passed through the preheating zone Z1. The results are shown in Table 3.
  • Example 7 A fiber-reinforced plastic was prepared in the same manner as in Example 1 except that the composite composition described in Example 1 was previously crushed at room temperature until the thickness became 10 mm, and then passed through the preheating zone Z1. The results are shown in Table 3.
  • Example 8 A unidirectional material made of continuous fibers of carbon fiber (manufactured by Toho Tenax Co., Ltd., Tenax (registered trademark) STS40-24KS (fiber diameter 7 ⁇ m, tensile strength 4000 MPa), and 100 parts by volume of resin with respect to 100 parts by volume of carbon fiber; As shown, MXD Nylon Mitsubishi Gas Chemical Co., Ltd. Reny 6007 (registered trademark) film is placed and bonded with a heating roller of 260 ° C., thickness 1.0 mm, Vf 50% (Wf 61%) unidirectional material A composite composition was obtained, and a sheet-like fiber reinforced plastic was prepared in the same manner as in Example 1 except that this unidirectional composite composition was used.
  • Example 9 A fiber reinforced plastic was prepared in the same manner as in Example 1 except that the thickness was reduced to 2.5 mm by thinning in the heating zone Z2. The value of ⁇ of the fiber reinforced plastic was 1.00, but the evaluation of the resin outflow amount was C.
  • Example 10 A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the resin used was polybutylene terephthalate (manufactured by Polyplastics Co., Ltd., Juranex 700FP). The results are shown in Table 3. (Comparative Example 1) A fiber reinforced plastic was prepared in the same manner as in Example 1 except that the temperature condition of the preheating zone Z1 was 280 to 300 ° C.
  • Example 1 Step of increasing bulk density (1) Ratio of increasing bulk density In Example 1, the bulk density is increased by compressing a composite composition having a thickness of 100 mm to a thickness of 3 mm. However, this example is an example of this embodiment, and the present invention is not limited to this.
  • a composite composition having a thickness of 100 mm may have a thickness greater than 3 mm, for example, 5 mm or 10 mm, under preheating temperature conditions.
  • the thickness of the composite composition is not limited to 100 mm, and the thickness may be less than 100 mm or more than 100 mm by increasing or decreasing the amount of reinforcing fibers or the amount of thermoplastic resin.
  • the thickness is preferably 60% or less and 2.5% or more with respect to the thickness before the process.
  • the density is preferably in the range of 1.6 times to 40 times the density before the process.
  • the lower limit will be described.
  • the thickness of the composite composition in Example 1 is 3 mm in the step of increasing the bulk density.
  • the step of increasing the bulk density if the composite composition is further compressed to a thickness of 2.5 mm or less, the outflow of the resin increases, and the amount of the resin outflow increases with respect to the composite composition before the bulk density is increased. It becomes 20% or more.
  • thermoplastic resin exceeds 30%, the variation in the fiber volume content of the fiber reinforced plastic to be produced becomes large, or the outflow amount increases and the density cannot be increased.
  • thermoplastic resin in the composite composition is powdery and the average particle size is 900 ⁇ m or less, when compressed, in the gap generated by the accumulation of cut fiber bundles and the like in the composite composition Enter. At this time, even if the resin powder is not softened and deformable, the resin powder enters the gap if the particle size is small.
  • Heating step (1) Presence / absence of heating step
  • the composite composition is heated to the range of “heating temperature” after the step of increasing the bulk density. Thereby, the molten resin (softened resin in the case of an amorphous resin) enters between the reinforcing fibers, and a good fiber-reinforced plastic is obtained.
  • the production method for obtaining fiber reinforced plastic from the composite composition may or may not be performed after the step of increasing the bulk density.
  • molten resin softened resin in the case of amorphous resin
  • the same effect as the heating step can be obtained.
  • the thickness is not reduced from 100 mm to 3 mm as much as 97 mm as in the process of increasing the bulk density, but only 0.4 mm. For this reason, the outflow of the molten thermoplastic resin can also be reduced.
  • thermoplastic resin In the heating process of Example 1, the thermoplastic resin is melted and a gap remains in the composite composition. For this reason, since the molten resin can move to the inside of the gap along the fiber, the outflow of the molten resin to the outside is suppressed. 3. Cooling Step In the examples, a cooling step for lowering the temperature of the composite composition is performed after the heating step. Thereby, the productivity of fiber reinforced plastic can be improved.
  • the manufacturing method for obtaining fiber reinforced plastic from the composite composition may or may not be performed after the heating step.
  • the manufacturing method which obtains a fiber reinforced plastic from a composite composition may perform a cooling process after the process of raising a bulk density, and does not need to perform it. For example, in the case of the double belt press as in the first embodiment, when fed from the upper and lower endless belts, air lower than the temperature of the fiber reinforced plastic exists around the fiber reinforced plastic, and the fiber reinforced by this air. This is because the plastic is cooled.
  • the fiber reinforced plastic obtained by the production method of the present invention has excellent continuous productivity, and can be used, for example, for structural parts of automobiles, and can reliably reduce the weight of the vehicle body. Shall.
  • Cutting unit 51 Fiber reinforced plastic 53. Fiber reinforced plastic manufacturing equipment 55, 57, 59, 61. A set of main rollers 63. Upper endless belt 65. Lower endless belt 71. Lower secondary roller 73. Upper secondary roller 71a-71i. Lower secondary roller 73a-73g. Upper secondary roller 75. Melting point in the case of crystalline resin, glass transition temperature in the case of amorphous resin Z0. Before the preheating zone Z1. Preheating zone Z2. Heating zone Z3. Cooling zone 101. Composite composition 103. Reinforcing fiber mat 105. Thermoplastic resin sheet 107. Discharge nozzle 109. Conveyor 111. Screw extruder 113. T-shaped dice 113a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 熱可塑性樹脂と強化繊維とを含む複合組成物からシート状の繊維強化プラスチックを製造する製造方法において、前記熱可塑性樹脂が結晶性の場合は融点より30度低い温度以下で、前記熱可塑性樹脂が非結晶性の場合はガラス転移温度より100度高い温度以下で、前記複合組成物の嵩密度を高める繊維強化プラスチックの製造方法。

Description

繊維強化プラスチックの製造方法
 本発明は、熱可塑性樹脂と強化繊維とを含む複合組成物からシート状の繊維強化プラスチックを製造する製造方法に関する。
 繊維強化熱可塑性樹脂の成形材料に使用される繊維強化プラスチックとして、熱可塑性樹脂と強化繊維とを含む複合組成物に対して加熱加圧してシート状に薄くしたものがある。このようなシート状の繊維強化プラスチックの製造方法としては、例えば、特許文献1で提案されている。
 特許文献1では、開繊された強化繊維と熱可塑性樹脂粒子とからなるウェブ(本願発明における複合組成物に相当する。)を、所謂、ダブルベルトプレス方式によりシート状に形成する方法が記載されている。この技術は、ウェブをダブルベルトプレスに供給する前段階で、熱可塑性樹脂の融点に対して±20℃の温度にウェブを予備加熱し、その後、ダブルベルトプレスのトップロールで、ウェブをさらに急速加熱しながら加圧している。
 これにより、ダブルベルトプレスに供給されたウェブは、予備加熱されているため、加圧段階で樹脂が流動して高密度化(薄肉化)される。
 特許文献2では、繊維強化熱可塑性プラスチックを製造する際、端部のむだを少なくするために、側方をシーリングしてプレスし、繊維強化熱可塑性樹脂材料を製造する方法が記載されている。
 特許文献3では、繊維強化熱可塑性樹脂シートを製造する際に、繊維重量含有率の変動を防止し、溶融樹脂を流出させないために、予備成形体を予め作成してからダブルベルトプレス成形することが記載されている。
  特許文献1:日本国特開平5-245866号公報
  特許文献2:日本国特開平6-190944号公報
  特許文献3:日本国特開平9-277387号公報
 しかしながら、上記特許文献1の製造方法では、ウェブが熱可塑性樹脂の融点に対して±20度まで予備加熱されているため、シート状にする際に樹脂の流出が多いという課題がある。なお、樹脂の流出が多いと、繊維強化プラスチックの繊維体積含有率等のばらつきが大きくなる傾向にある。
 また、特許文献2に記載の製造方法では、シーリング装置を新たに設ける必要があるためにコスト増であるばかりか、製造設備の制御因子も増えてしまう。特許文献3に記載の方法では、予備成形体を一度作成する必要があるため、製造工程が1つ増加する事になり、やはりコストアップとなってしまう。
 本発明は、上記した課題に鑑み、熱可塑性樹脂の流出を抑えつつ、複合組成物をシート状にすることができる繊維強化プラスチックの製造方法を提供することを目的とする。
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
 1. 熱可塑性樹脂と強化繊維とを含む複合組成物からシート状の繊維強化プラスチックを製造する製造方法において、前記熱可塑性樹脂が結晶性の場合は融点より30度低い温度以下で、前記熱可塑性樹脂が非結晶性の場合はガラス転移温度より100度高い温度以下で、前記複合組成物の嵩密度を高める繊維強化プラスチックの製造方法。
2. 前記嵩密度を高める工程は、嵩密度を高める前の複合組成物に対して、前記熱可塑性樹脂が20%以上流出する前に終わらせる
前記1に記載の繊維強化プラスチックの製造方法。
3. 前記嵩密度を高められた複合組成物を、熱可塑性樹脂が結晶性の場合は融点以上に、熱可塑性樹脂が非結晶性の場合はガラス転移温度または嵩密度を高めたときの温度のいずれか高い方の温度以上に加熱する、前記1又は2に記載の繊維強化プラスチックの製造方法。
4. 前記加熱は、前記嵩密度が高められた状態を維持しながら行う、前記3に記載の繊維強化プラスチックの製造方法。
5. 前記強化繊維は、切断された不連続繊維である前記1~4いずれかに記載の繊維強化プラスチックの製造方法。
6. 前記強化繊維は、切断されて2次元方向にランダムに配されている繊維を含む前記1~4の何れか1項に記載の繊維強化プラスチックの製造方法。
7. 前記強化繊維は、一方向連続繊維である前記1~4の何れか1項に記載の繊維強化プラスチックの製造方法。
8. 前記嵩密度を高める工程は、移動する前記複合組成物に対して行う前記1~7の何れか1項に記載の繊維強化プラスチックの製造方法。
9. 複合組成物の厚みが、下記式(x)を満たす、前記1~8いずれかに記載の繊維強化プラスチックの製造方法。
α = 複合組成物の単位面積当たりの重量÷{(熱可塑性樹脂の密度×Wm+強化繊維の密度×Wf)×複合組成物の厚み} 式(x)
Wm:複合組成物に含まれる熱可塑性樹脂の重量割合
Wf:複合組成物に含まれる強化繊維の重量割合
α:0.020~0.82
10. 前記1~9いずれかに記載の繊維強化プラスチックの厚みが、下記式(y)を満たす、繊維強化プラスチックの製造方法。
β= 複合組成物の単位面積当たりの重量÷{(熱可塑性樹脂の密度×Wm’+強化繊維の密度×Wf’)×繊維強化プラスチックの厚み} 式(y)
Wm’:繊維強化プラスチックに含まれる熱可塑性樹脂の重量割合
Wf’:繊維強化プラスチックに含まれる強化繊維の重量割合
β:0.82以上
 本発明における製造方法では、熱可塑性樹脂が流動しにくい状態で複合組成物が高密度化されるため、熱可塑性樹脂の流出が抑制される。
実施形態1に係る繊維強化プラスチックの製造装置を示す概略図である。 実施形態2に係る複合組成物及び繊維強化プラスチックの製造方法の一例を示す概略図である。 (a)複合組成物から繊維強化プラスチックを製造する工程を説明する図である。(b)嵩密度化前後の複合組成物の温度プロファイルを説明する図である。(縦軸:温度、横軸:各ゾーンと距離) 図3のシート状の繊維強化プラスチックを製造する工程中の嵩密度化前後の複合組成物の厚みを示す図である。(縦軸:複合組成物の厚み(mm)、横軸:距離X)
[概要]
 本発明に係る繊維強化プラスチックは、熱可塑性樹脂と強化繊維とを含む複合組成物からシート状に製造される。
<複合組成物>
1.熱可塑性樹脂
(1)種類
 本発明における熱可塑性樹脂は、複合組成物のマトリックス成分として用いられるものである。
 複合組成物に含まれる熱可塑性樹脂としては、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂(ポリオキシメチレン樹脂)、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、熱可塑性ポリイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、熱可塑性ウレタン樹脂、フッ素系樹脂、熱可塑性ポリベンゾイミダゾール樹脂等を挙げることができる。
 上記ポリオレフィン樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリメチルペンテン樹脂、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂等を挙げることができる。
 上記ポリスチレン樹脂としては、例えば、ポリスチレン樹脂、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)等を挙げることができる。
 上記ポリアミド樹脂としては、例えば、ポリアミド6樹脂(ナイロン6)、ポリアミド11樹脂(ナイロン11)、ポリアミド12樹脂(ナイロン12)、ポリアミド46樹脂(ナイロン46)、ポリアミド66樹脂(ナイロン66)、ポリアミド610樹脂(ナイロン610)等を挙げることができる。
上記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、液晶ポリエステル等を挙げることができる。
 上記(メタ)アクリル樹脂としては、例えば、ポリメチルメタクリレートを挙げることができる。上記変性ポリフェニレンエーテル樹脂としては、例えば、変性ポリフェニレンエーテル等を挙げることができる。上記熱可塑性ポリイミド樹脂としては、例えば、熱可塑性ポリイミド、ポリアミドイミド樹脂、ポリエーテルイミド樹脂等を挙げることができる。
 上記ポリスルホン樹脂としては、例えば、変性ポリスルホン樹脂、ポリエーテルスルホン樹脂等を挙げることができる。上記ポリエーテルケトン樹脂としては、例えば、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂等を挙げることができる。上記フッ素系樹脂としては、例えば、ポリテトラフルオロエチレン等を挙げることができる。
 複合組成物に用いられる熱可塑性樹脂は1種類のみであってもよく、2種類以上であってもよい。2種類以上の熱可塑性樹脂を併用する態様としては、例えば、相互に軟化点、融点、ガラス転移温度等が異なる熱可塑性樹脂を併用する態様や、相互に平均分子量が異なる熱可塑性樹脂を併用する態様等を挙げることができるが、この限りではない。
 熱可塑性樹脂は、新材(所謂、バージン材である。)であっても良いし、リサイクル材であってもよい。また、これらを混合させたものであってもよい。
(2)形態
 熱可塑性樹脂の形態は、特に限定するものでない。形態としては、粒子状、塊状、繊維状、シート状等がある。粒子状の具体的な形状として、例えば、球状、楕円球状等がある。塊状は、球状、楕円球状、円柱状、短冊状等がある。粒子状は、塊状よりも小さいものをいい、具体的には、直径が3mm未満のものを粒子とし、3mm以上のものを塊としている。
2.強化繊維
(1)種類
 強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、ポリエチレン繊維等がある。比機械特性を考慮すると炭素繊維を好適に用いることができる。また、コストを考慮するとガラス繊維を好適に用いることができる。複合組成物に用いられる強化繊維は1種類のみであってもよく、2種類以上であってもよい。
 炭素繊維としては、一般的にポリアクリロニトリル(PAN)系炭素繊維、石油・石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、気相成長系炭素繊維などが知られているが、これらのいずれの炭素繊維であっても好適に用いることができる。
(2)繊維長
 強化繊維の繊維長は特に限定するものではない。つまり、強化繊維は連続繊維でもよいし、一定長さあるいは不定長さに切断された繊維(以下、単に、「切断繊維」ともいう。)でもよいし、連続繊維と切断繊維とを組み合わせたものであってもよい。また、一定長さの切断繊維において、一定長さは1種類でもよいし、複数種類でもよい。
(3)繊維の形態
 強化繊維の形態は、単糸を束状部とした繊維束であってもよいし、単糸のみであってもよいし、両方を含んでもよい。繊維束の場合、束を構成する繊維数は特に限定されるものではない。繊維束の繊維数は、1種類でもよいし、複数種類でもよい。
(4)配向
 強化繊維の配向は、2次元方向(繊維強化プラスチックの板厚面内方向)において、1方向であっても良いし、2方向であってもよいし、3以上の方向であっても良いし、ランダム配向であってもよい。ここで、2次元方向にランダムに配されているとは、強化繊維が不連続な強化繊維であって、互いに直交する特定の2次元方向への強化繊維の配向が、他の方向への配向に比べて差が少ないことを意味している。
 さらに、強化繊維の配向は、3次元においてランダム配向されてもよい。3次元におけるランダム配向とは、互いに直交する特定の3次元方向への炭素繊維の配向が、他の方向への配向に比べて差が少ないことを意味している。
3.熱可塑性樹脂の割合
 複合組成物における熱可塑性樹脂の存在量は、強化繊維100重量部に対し、5重量部以上1000重量部以下であることが好ましい。5重量部未満だと、強化繊維を結合する機能が低下し、成形品としたときに未含浸部分が生じる。逆に1000重量部超だと、強化繊維の補強効果が薄れる。特に、熱可塑性樹脂の存在量は、強化繊維100重量部に対し、20重量部以上500重量部以下であることが好ましい。
4.複合組成物の厚み
 本発明における複合組成物の厚みに特に限定は無いが、下記式(x)を満たすことが好ましい。
 α = 複合組成物の単位面積当たりの重量÷{(熱可塑性樹脂の密度×Wm+強化繊維の密度×Wf)×複合組成物の厚み} 式(X)
 Wm:複合組成物に含まれる熱可塑性樹脂の重量割合
 Wf:複合組成物に含まれる強化繊維の重量割合
 α:0.020~0.82
 複合組成物の厚みが、複合組成物中に間隙が存在しない理論上の厚みに比べて82%未満(上記αが0.82未満)だと、嵩密度を高める工程で、熱可塑性樹脂の流出量が抑えやすくなるからである。逆に2.0%以上(上記αが0.020以上)だと、複合組成物の嵩密度が高く、複合組成物の操作性が低下しない。また、αの値が小さすぎると、嵩密度を高める前に、熱可塑性樹脂が先に流出してしまうこともあるため(換言すると、αが小さすぎると、嵩密度を高められた切断繊維束等が、熱可塑性樹脂の流動の妨げとならないために)、やはりαは0.020%以上であることが好ましい。αの値は、0.025~0.60がより好ましく、0.045~0.30が更に好ましい。
 なお、Wf:複合組成物に含まれる強化繊維の重量割合とは、樹脂と繊維との合計を100%とした割合であり、その他添加剤の成分は含まない。(以下、Wf’においても同じ)。
5.製造方法
 複合組成物の製造方法は、熱可塑性樹脂と繊維強化との形態等に対応して種々の方法を用いることができる。なお、複合組成物の製造方法は、以下で説明する方法に限定されない。
(1)製造例1
 複合組成物が、短繊維と熱可塑性樹脂とから構成される場合、例えば、短繊維を含有する樹脂片を堆積させることで製造できる。
 なお、MD方向に移動する支持体に対して、TD方向に吐出ノズルを複数配することで、所定幅であって長手方向に連続する複合組成物が得られる。ここで、MD方向とは、シートの長尺方向(Machine Direction)、TD方向とはシートの幅方向(Transverse Direction)のことをいう。
(2)製造例2
 複合組成物に含まれる強化繊維として切断繊維が用いられ、該切断繊維が主に2次元方向にランダムに配されてなる強化繊維マットと熱可塑性樹脂とから構成される場合、例えば、繊維を一対の熱可塑性樹脂製のシート材により挟むことで製造できる。具体的には、複合組成物は、切断状態の強化繊維(切断繊維)を吐出ノズルから下方のシート材に向けて吐出して強化繊維マットを形成した後、当該強化繊維マット上に熱可塑性樹脂シート材を配することで得られる。
(3)製造例3
 複合組成物に含まれる強化繊維として切断繊維が用いられ、切断繊維が主に2次元方向にランダムに配されてなる強化繊維マットと熱可塑性樹脂とから構成される場合、例えば、熱可塑性樹脂製の熱可塑性樹脂シート材上に強化繊維マットを配置し、当該強化繊維マット上に溶融した熱可塑性樹脂(非晶性樹脂の場合は軟化した熱可塑性樹脂)を塗布することで製造できる。具体的には、複合組成物は、切断状態の強化繊維(切断繊維)を繊維吐出ノズルから下方の熱可塑性樹脂シート材に向けて吐出して強化繊維マットを形成した後、当該強化繊維マット上に溶融した熱可塑性樹脂(非晶性樹脂の場合は軟化した熱可塑性樹脂)を樹脂吐出ノズルから吐出することで得られる。
 なお、MD方向に移動するシート材に対して、MD方向と直交するTD方向にTD方向に繊維吐出ノズルや樹脂吐出ノズルを複数配することで、所定幅であって長手方向に連続する複合組成物が得られる。
(4)製造例4
 複合組成物が、連続した強化繊維が一方向に引き揃えられた強化繊維マットと熱可塑性樹脂とから構成される場合、例えば、熱可塑性樹脂からなる樹脂パウダーを強化繊維マット上に配することで製造できる。具体的には、複合組成物は、強化繊維マット上に樹脂パウダーを吐出ノズルから吐出することで得られる。樹脂パウダーの代わりに樹脂片を利用することもできる。
<繊維強化プラスチック>
(1)構成
 本発明における繊維強化プラスチックは、複合組成物を構成している熱可塑性樹脂及び強化繊維を含む。繊維強化プラスチックは、複合組成物の熱可塑性樹脂及び強化繊維からのみ構成されてもよいし、複合組成物の熱可塑性樹脂、強化繊維及びこれらの材料以外の材料から構成されてもよい。
 「シート状」とは、繊維強化プラスチックの大きさを示す3つの寸法(例えば、長さ、幅、厚みである。)の内、最も小さい寸法を厚みとし、最も大きい寸法を長さとした場合、この長さが厚みに対して、10倍以上あるような、平面状の形状のものを意味する。
 他の材料としては、複合組成物を構成する材料と異なる別の熱可塑性樹脂及び強化繊維、無機材料等がある。また、他の材料を、複合組成物を構成する強化繊維と同じ強化繊維であっても繊維長が異なる強化繊維としてもよい。強化繊維として繊維束を利用する場合、複合組成物の強化繊維の繊維束と異なる繊維数の繊維束を含んでもよい。
(2)繊維強化プラスチックの厚み
 本発明における繊維強化プラスチックの厚みに特に限定は無いが、下記式(y)を満たすことが好ましい。
 β= 複合組成物の単位面積当たりの重量÷{(熱可塑性樹脂の密度×Wm’+強化繊維の密度×Wf’)×繊維強化プラスチックの厚み} 式(y)
 Wm’:繊維強化プラスチックに含まれる熱可塑性樹脂の重量割合
 Wf’:繊維強化プラスチックに含まれる強化繊維の重量割合
 β:0.82以上
 βが0.82以上(複合組成物の嵩密度が間隙の存在しない理論上の厚みに比べて82%以上)であれば、繊維強化プラスチックや、繊維強化プラスチックを例えばプレス成形して得られた成形体の機械強度が安定する。βの値は、0.9以上であるとより好ましい。
(3)製造方法
 繊維強化プラスチックは、上記した複合組成物を利用してシート状にされる。シート状にする方法として、嵩密度を高める工程では、種々の方法を用いることができる。
 本発明における嵩密度化工程は、前記熱可塑性樹脂が結晶性の場合は融点より30度低い温度以下で、前記熱可塑性樹脂が非結晶性の場合はガラス転移温度より100度高い温度以下で行われる。以下、熱可塑性樹脂が結晶性の場合は融点より30度低い温度以下、熱可塑性樹脂が非結晶性の場合はガラス転移温度より100度高い温度以下のことを単に「予熱温度」と、述べる場合がある。
 本発明における嵩密度を高める工程において、予熱温度の下限に特に限定は無いが、室温より高い温度が好ましく、室温より30℃高い温度以上がより好ましい。室温より高い温度で予熱することで、後に続く加熱ゾーンでの温度制御が容易となる。
 本発明における繊維強化プラスチックの製造方法は、バッチ式ではなく連続して製造することが、生産性の観点より好ましい。連続して繊維強化プラスチックを製造する場合、複合組成物が連続状の形態を有することとなる。
 なお、本願発明における嵩密度を高める繊維強化プラスチックの製造方法とは、前記複合組成物の嵩密度を高める工程を含む繊維強化プラスチックの製造方法という意味である。
 また、嵩密度を高める工程は、前記熱可塑性樹脂の流出を伴い、嵩密度を高める前の複合組成物に対して、前記熱可塑性樹脂が20%以上流出する前に終わらせることが好ましい。
(i)工程例1
 複合組成物が所定の大きさの場合、圧縮装置(プレス装置)を利用することができる。具体的には、圧縮装置の上下一対のプレス面の間に複合組成物を配置した後、一対のプレス面を近づけることにより、複合組成物の厚みを薄くして嵩密度を高めることができる。
(ii)工程例2
 複合組成物が長尺状をし、複合組成物を所定方向に移動させている場合、MD方向における上流側から下流側に移るに従って間隔が狭くなるような型(嵩密度を高める装置)を利用することができる。具体的には、間隔が狭くなる型の間を上流側から下流側に複合組成物を移動(通過)させることにより、複合組成物の厚みを薄くして嵩密度を高めることができる。
 複合組成物を移動させる方法としては、例えば、型内の複合組成物を下流側から引き抜く引抜方式と、複合組成物を上流側から押し出す押出方式と、移動体上に載置された複合組成物を移動体と一緒に型の間を通過させるコンベア方式等がある。
(iii)工程例3
 複合組成物が連続状の形態を有している場合、間隔が調整された一対のローラ(1組とする)を利用することができる。例えば、複合組成物を移動させて少なくとも1組のローラ間を通すことで、当該複合組成物の嵩密度を高めることができる。複数組のローラを用いる場合は、複合組成物の移動方向における上流側から下流側に移るに従って一対のローラの間隔が狭くなるように、複数組のローラを配するようにしてもよい。
(iv)工程例4
 複合組成物が連続状の形態を有している場合、間隔が調整された一対のベルトを利用する(所謂、ダブルベルトプレス方式である。)ことができる。一対のベルトが互いに対向し合う部分において上流側から下流側に移るに従ってベルト間隔が狭くなるように配されたベルト間に複合組成物を通すことにより、複合組成物の嵩密度を高めることができる。ベルト間隔の調整は、ベルトの裏側に配されたローラや支持板により行うことができる。
(v)その他
 上記の工程例1~4において、例えば、圧縮する際に、複合組成物を加熱する必要がある場合は、加熱手段を備える圧縮装置、型、ローラ、ベルト等を利用すればよい。加熱は、嵩密度を高める工程前にしてもよいし、嵩密度を高める工程中にしてもよい。嵩密度を高める工程は、上記の工程例1~4に限定するものではなく、これらの一部を組み合わせて行ってもよい。
(4)繊維強化プラスチックの利用
 本発明における繊維強化プラスチックは、成形体を製造するための成形材料として利用しても良いし、そのままシート材として利用しても良い。成形材料と使用する場合には、繊維強化プラスチックはプレス機を用いて成形される。
[実施形態1]
 本実施形態では、強化繊維として所定長さに切断された炭素繊維(以下、「切断繊維」とする。)を用い、熱可塑性樹脂としてパウダー状のもの(以下、「樹脂パウダー」とする。)を用いる。複合組成物は、切断繊維と樹脂パウダーとをランダムに配されてなるとよい。なお、切断繊維がランダムに配されてなるマット状のものを強化繊維マットともいう。
1. 複合組成物
(1)炭素繊維
 炭素繊維の繊維長、繊維径、形態に関しては、[実施形態2]おいて同じである。
(i)繊維長
 炭素繊維の繊維長は、特に限定しないが、3mm以上100mm以下が好ましい。繊維長が3mmより短い場合、炭素繊維の機械特性を有効に発揮することができず、繊維強化プラスチックの機械特性を損なう場合がある。繊維長が100mmより長い場合、成形体が均質な機械強度を有することが難しくなる。
 好ましくは炭素繊維の繊維長が5mm以上60mm以下である。より好ましくは繊維長が8mm以上50mm以下である。さらには、10mm以上40mm以下が好ましい。
 炭素繊維の平均繊維長は、ロータリーカッター等で炭素繊維を一定長に切断して用いた場合は、そのカット長が平均繊維長にあたり、これは数平均繊維長でもあり、重量平均繊維長でもある。個々の炭素繊維の繊維長をLi、測定本数をjとすると、数平均繊維長(Ln)と重量平均繊維長(Lw)とは、以下の式(3),(4)により求められる(一定カット長の場合は、数平均繊維長(Ln)の計算式(3)で重量平均繊維長(Lw)を算出していることにもなる)。
 Ln=ΣLi/j ・・・式(3)
 Lw=(ΣLi)/(ΣLi) ・・・式(4)
 なお、本発明における平均繊維長の測定は、数平均繊維長であっても、重量平均繊維長であっても良い。
(ii)繊維径
 炭素繊維の平均繊維径は、特に限定しないが、3μm以上12μm以下が好ましく、より好ましくは5μm以上7μm以下である。
(iii)形態
 炭素繊維は、数千本以上数万本以下のフィラメントが集合した束形態をしている。複合組成物に含まれる切断繊維は、式(1)で定義する臨界単糸数以上で構成される繊維束と、それ以外の繊維とに大別される。
 「それ以外の繊維」は、単糸と、臨界単糸数より少ない繊維数の繊維束とからなる。「それ以外の繊維」を、臨界単糸数以上の繊維束と区別するため、以下、「単糸等」とする。また、所定長さに単に切断された切断繊維と、上記の臨界単糸数以上の繊維で構成される繊維束と単糸等とを含む切断繊維とを区別するため、繊維束と単糸等を含む切断繊維を切断繊維束等とする。
 臨界単糸数=600/D ・・・ (1)
 なお、「D」は炭素繊維の平均繊維径(μm)である。
 繊維束の割合は、複合組成物中の炭素繊維全量に対して、20Vol%以上99Vol%以下が好ましい。繊維束の割合が20Vol%より小になると、嵩密度を高めることが難しく、繊維強化プラスチックを、プレス機を用いて成形体に成形する際の加圧力を低減させることができない。繊維束の割合が99Vol%より大になると、単糸等が含まれなくなり、成形体としたときに、機械強度に優れた成形体が得られにくくなる。さらに、繊維束の割合が、30Vol%以上95Vol%未満であることがより好ましく、50Vol%以上90Vol%未満であることが更に好ましい。
 繊維束中の平均繊維数(N)は、式(2)で定義される範囲内にある。
 0.6×10/D<N<2.0×10/D・・・(2)
なお、「D」は、上述のように、炭素繊維の平均繊維径(μm)である。
 平均繊維数(N)の好ましい範囲としては、1.0×10/D以上1.0×10/D以下が好ましく、より好ましくは、5.0×10/D以上1.0×10/D以下である。
(2)熱可塑性樹脂
 樹脂パウダーの平均粒径等は、特に限定しないが、200μm以上900μm以下の範囲が好ましい。これは、繊維束により生じた強化繊維マット中の間隙に樹脂パウダーが入りやすくなるためである。より好ましくは平均粒径が500μm以上600μm以下である。
(3)製造方法
 複合組成物は、例えば切断繊維束等と樹脂パウダーとを支持体上に吐出することで製造される。このとき、支持体をMD方向に連続的に移動させると、MD方向に連続する連続マットが形成される。また、切断繊維束等と樹脂パウダーとの吐出に吐出ノズルを利用し、当該吐出ノズルを、MD方向と直交するTD方向に複数配置することで、TD方向に所定の幅を有し、MD方向に連続する複合組成物が形成される。
 複合組成物1の製造方法の一例は、国際公開第2013/094706号公報に記載を参照にできるが、供給されたストランドを所定長さに切断して吐出ノズルに供給する繊維供給工程と、樹脂パウダーを吐出ノズルに供給する樹脂供給工程と、供給された切断繊維と樹脂パウダーとを混在させて移動支持体上に吐出する吐出工程とを含む。
2.繊維強化プラスチックの製造方法
(1)概略
 繊維強化プラスチックは、上記の複合組成物1から製造される。繊維強化プラスチックは、熱可塑性樹脂が結晶性の場合は融点より30度低い温度以下で、熱可塑性樹脂が非結晶性の場合はガラス転移温度より100度高い温度以下で、複合組成物の嵩密度を高める工程を含む。本実施形態1においては、繊維強化プラスチックの製造方法は、上記工程以外に、加熱工程と冷却工程とを含み、製造装置が利用される。
(2)製造装置
 図1は、実施形態1に係る繊維強化プラスチックの製造装置を示す概略図である。
 製造装置53は、所謂、ダブルベルトプレスであり、一組の主ローラ55,57、59,61間に架設された無端ベルト63,65を対向する状態で上下に備える。なお、少なくとも一方の無端ベルトは、対向する部分では同方向に回転するように、回転駆動される。
 対向する部分において、無端ベルト63,65が進む方向(MD方向)の前方を下流、後方を上流とし、複合組成物1は上流側から供給され、繊維強化プラスチック51が下流側から送出される。
 また、下側に配された無端ベルト65を下無端ベルト65といい、上側に配された無端ベルト63を上無端ベルト63という。さらに、下側の無端ベルト65の裏側に配された複数の副ローラ71を下副ローラ71といい、上無端ベルト63の内側に配された複数の副ローラ73を上副ローラ73という。
 上下の無端ベルト63,65は、対向する部分の内側に複数本の副ローラ71,73を備え、一定の回転軌道が形成される。上副ローラ73は、図1に示すように、下副ローラ71の上方に配されている。両副ローラ71,73の間隔は、上流領域において、上流から下流側に移るに従って、狭くなっている。例えば、図1では、上流側から2番目までの上下副ローラ71b,73a、71c,73bにおける上下方向の間隔は下流側に移るに従って小さくなっている。上流側から3番目以降の上下副ローラ71d~71i,73c~73gにおける上下方向の間隔は等しくなっている。
 上下の無端ベルト63,65が対向する領域は、上流側に予熱ゾーンZ1を少なくとも有している。ここでは、上流側の2つの副ローラ71b,71c,73a,73bが位置する領域が予熱ゾーンZ1に属する。実施形態1では、無端ベルト63,65が対向する領域は、上流側から予熱ゾーンZ1、加熱ゾーンZ2、冷却ゾーンZ3の3つのゾーンを有している。
 ここでは、上流側から3番目から5番目までの副ローラ71d~71f,73c~73eが加熱ゾーンZ2に属し、それ以降の副ローラ71g~71i,73f~73gが冷却ゾーンZ3に属する。
 各副ローラ71,73は加熱手段を有している。各ゾーンZ1,Z2,Z3の副ローラ71,73の温度は、上下の無端ベルト63,65間を通過する材料(ここでは複合組成物1である。)の温度が所定温度となるように設定されている。
 表2に、製造装置中の嵩密度化前後の複合組成物の温度分布を示す。同表に示すように、予熱ゾーンZ1の材料温度は、予熱温度になるように設定されている。(以下、別段の定めをする場合を除き、ゾーンZ1~Z3の温度を示す場合、複合組成物そのものの温度を指す。)
 加熱ゾーンZ2の材料温度は、熱可塑性樹脂が結晶性の場合は融点以上となるように、熱可塑性樹脂が非結晶性の場合はガラス転移温度または嵩密度を高めたときの温度のいずれか高い方の温度以上に加熱するように、設定されている。なお、熱可塑性樹脂が結晶性の場合は融点以上、熱可塑性樹脂が非結晶性の場合はガラス転移温度または嵩密度を高めたときの温度のいずれか高い方の温度以上の範囲を、「加熱温度」と述べる場合がある。
 冷却ゾーンZ3の材料温度は、熱可塑性樹脂が結晶性の場合は融点より50度低い温度以下となるように、熱可塑性樹脂が非結晶性の場合はガラス転移温度より30度低い温度以下となるように、設定されている。なお、熱可塑性樹脂が結晶性の場合は融点より50度低い温度以下、熱可塑性樹脂が非結晶性の場合はガラス転移温度より30度低い温度以下の範囲を、「冷却温度」と述べる場合がある。
(3)製造工程
 複合組成物1は、上記製造装置53において、上流側から供給されると、予熱ゾーンZ1で嵩密度を高める工程が行われ、加熱ゾーンZ2で加熱工程が行われ、冷却ゾーンZ3で冷却工程が行われた後、シート状の繊維強化プラスチック51として下流側から送り出される。
 予熱ゾーンZ1では、上下の副ローラ71b,73a、71c,73b間が上流側から下流側へと移るに従って狭くなっている。本ゾーンZ1を通過する複合組成物1は圧縮される。これにより、複合組成物1の厚みが薄くなり嵩密度を高められる。
 この工程では、複合組成物1の温度が予熱温度の範囲で、複合組成物1が薄くされる。このため、複合組成物1中の樹脂パウダー(熱可塑性樹脂)は、ランダムに堆積する切断繊維束等の間隙に移動し、間隙の少なくとも一部が樹脂パウダーにより充填されることとなる。なお、圧縮時の樹脂パウダーは溶融(非晶性樹脂の場合は軟化)していないため、当該樹脂パウダーの複合組成物1の外部への流出は抑制される。
 加熱ゾーンZ2では、上下の副ローラ71d~71f,73c~73eの間隔は略一定であり、この状態で、嵩密度化された複合組成物1は「加熱温度」の範囲に加熱される。このときの熱可塑性樹脂は溶融した状態であるが(非晶性樹脂の場合は軟化した状態、以下同じ)、副ローラ71d~71f,73c~73eの間隔が一定であるため、溶融状態の熱可塑性樹脂が受ける圧力に変化がない。
 また、加熱ゾーンZ2では、嵩密度が高められた状態を維持しながら繊維強化プラスチックを製造することが好ましいが、この際、嵩密度化された複合組成物1に圧力を加えても加えなくても良い。
 また、嵩密度を高められた切断繊維束等が溶融した熱可塑性樹脂の流動の妨げとなり、熱可塑性樹脂の流出が抑えられる。これにより、溶融した熱可塑性樹脂が切断繊維束等の繊維束間に留まり浸透する。
 冷却ゾーンZ3では、上下の副ローラ71g~71i,73f~73gの間隔は一定であり、この状態で、嵩密度化された複合組成物1は「冷却温度」に冷却される。これにより、溶融していた熱可塑性樹脂が固化して、繊維強化プラスチック51が得られる。
[実施形態2]
 本実施形態2では、強化繊維として所定長さに切断された炭素繊維(以下、「切断繊維」とする。)を用い、熱可塑性樹脂として熱可塑性樹脂シートを用いる。複合組成物は、切断繊維をランダムに配されてなるマット状の強化繊維マットの上面に熱可塑性樹脂シートを載せてなる。
 図2は、実施形態2に係る繊維強化プラスチックの製造方法の一例を示す概略図であり、強化繊維マット103の上から熱可塑性樹脂シート105を載せて複合組成物を形成する。
この際、強化繊維マット上に熱可塑性樹脂シートを載せても形成してもよいし、熱可塑性樹脂シート状の上に強化繊維マットを形成してもよい。実施形態2では強化繊維マットを先に形成している。
 実施形態2における強化繊維マットの形成工程は、実施形態1で説明した複合組成物の製造方法において、樹脂パウダーを吐出しないようにしたものである。つまり、強化繊維マット103は、供給されたストランドを切断ユニットで所定長さに切断し、切断された切断繊維を利用して吐出ノズル107から支持体であるコンベア109上に切断繊維束が吐出されることで製造される。なお、コンベア109は、MD方向(図2の右手方向)に移動している。
 複合組成物形成工程は、例えば、スクリュー押出機111とT型ダイス113とを利用して行われる。押出機111は、ポッパー115から供給された粉砕材117や樹脂ペレットを加熱シリンダ119で溶融して、スクリュー本体121が回転して、溶融した熱可塑性樹脂(以下、「溶融樹脂」ともいう。非晶性樹脂の場合は軟化した樹脂である。以下、[実施形態2]において同じ。)を加熱シリンダ119のノズル123からT型ダイス113へと押し出す。
 T型ダイス113は、内部にT字形状の通路を有する型であり、樹脂シート105を、T字の縦部分における横部分と反対側の端部(図2では上端である。)113aから受け入れ、T字の横部分(図2では下端である。)113bから図2の紙面に直交する方向に延びる直線状に吐出される。
 樹脂シート105は、所定方向であるMD方向に移動しているコンベア109上の強化繊維マット103上に流下される。これにより、コンベア109の移動方向(図2では右方向である。)に熱可塑性樹脂シート105が強化繊維マット103上に形成されるとともに複合組成物101が形成される。なお、熱可塑性樹脂シート105は、コンベア109上を移送されることで、徐々に降温する。
 上述のようにして製造された複合組成物101は、図2に示す嵩密度を高める装置131に供給される。これにより、嵩密度を高められたシート状の繊維強化プラスチック133が得られる。
 嵩密度を高める装置131は、コンベア109の表裏に配された一対のローラ135,137により構成されている。なお、コンベア109の裏側のローラ137は、コンベア109を下方から支持する支持ローラの機能も有し、例えば支持板等により代用することもできる。
 ローラ135,137は加熱手段を備え、ローラ135,137の温度は、複合組成物101の温度が予熱温度になるように設定されている。一対のローラ135,137間の複合組成物101の通過が、嵩密度を高める工程であり、実施形態1の予熱ゾーンZ1に相当する。また、複合組成物101の通過後が、冷却工程であり、実施形態1の冷却ゾーンZ3に相当する。実施形態2の場合、実施形態1でいう加熱ゾーンZ2は存在しない。
 複合組成物101は、一対のローラ135,137間をコンベア109と共に通過する。一対のローラ135,137の間隔は、コンベア109の厚みと複合組成物101の厚みの和より小さく設定されている。これにより、複合組成物101は圧縮負荷を受け、嵩密度を高められる。一対のローラ135,137に供給される直前の複合組成物101は、熱可塑性樹脂シート105の重みよりある程度嵩密度を高められている。
 一対のローラ135,137においてコンベア109の厚みを差し引いた間隔は、複合組成物101中の間隙がなくなった状態の複合組成物の厚みに対して、1.1倍以上が好ましい。これは、ローラ135,137のコンベア109の厚みを除いた間隔が1.1倍以上であれば、強化繊維マット103の間隙が大きくなり、強化繊維マット103内で樹脂の行き場がなくなって強化繊維マット103の外部へと流出する懸念が減少するからである。
(樹脂流出量の評価)
 嵩密度工程における、熱可塑性樹脂の流出量は以下のように評価した。
 A:複合組成物に含まれる熱可塑性樹脂の流出量が10%未満であった。
 B:複合組成物に含まれる熱可塑性樹脂の流出量が10%以上20%未満であった。
 C:複合組成物に含まれる熱可塑性樹脂の流出量が20%以上25%未満であった。
 D:複合組成物に含まれる熱可塑性樹脂の流出量が25%以上30%以下であった。
 E:複合組成物に含まれる熱可塑性樹脂の流出量が30%超えであった。
 流出量は、炭素繊維マットから外側に熱可塑性樹脂が出たものを測定した。熱可塑性樹脂が広がると同時に、強化繊維マットが広がることによって、強化繊維マットから熱可塑性樹脂が流出しなかった場合は、流出しなかったものとした。
(強化繊維の重量割合)
 複合組成物に含まれる強化繊維の重量割合(Wf%)、繊維強化プラスチックに含まれる強化繊維の重量割合(Wf’%)は、それぞれの測定対象物の重量W0を測定した後、空気中で500℃×1時間加熱し、樹脂成分を燃焼除去して残った炭素繊維の重量W1(g)を測定し、下記式(5)を用いて、繊維重量分率(Wf)を求める。
 なお、繊維強化プラスチックのWf’を測定する場合、熱可塑性樹脂の流出有無を無視して、全幅方向(TD方向)全てを対象サンプルとし、Wf’を求めた。
 Wf(Wf’)=(炭素繊維の重量W1/熱可塑性樹脂層の重量W0)×100 ・・・式(5)
(αの値)
 各実施例、比較例では、複合組成物の厚みを調整し、嵩密度の異なる種々の複合組成物を準備した。従い、各実施例、比較例のαの値は、複合組成物の厚みにより調節した。
(実施例1)
 強化繊維である炭素繊維として、平均繊維長20mmにカットした東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40-24KS(平均繊維径7μm、単糸数24000本)を切断繊維として使用し、樹脂として、ユニチカ社製のナイロン6樹脂A1030(融点230度の結晶性樹脂)を用いて、WO2012/105080パンフレットに記載された方法に基づき、ランダムに炭素繊維が配向した複合組成物を得た。
 得られた複合組成物の切断繊維束等の繊維長は20mm、切断繊維束等のうち、平均繊維数(N)が式(2)で定義される切断繊維束の割合は、85Vol%(残りが単糸等である。)であった。また、複合組成物の厚みは100mmであり、単位面積当たりの重量は、3600g/m(0.36g/cm)であった。複合組成物中の強化繊維の体積割合は35vol%、重量割合は46wt%であった(残りが熱可塑性樹脂である)。作製した複合組成物に対して、嵩密度を高める工程、加熱工程、冷却工程を行う。
 図3(a)は、複合組成物から繊維強化プラスチックを製造する工程を説明する図であり、図4は、図3(a)の製造工程中の嵩密度化前後の複合組成物の嵩密度化工程における厚みを示す図である。図3(b)は、製造装置内での温度分布を示す。
 複合組成物は、図3(a)に示すように、製造装置53に供給される。製造装置53は、上述したように、温度分布が異なる3つの領域(ゾーンZ1~Z3)を有している。上下に配されている副ローラ71,73の間隔は、図3(a)に示す、繊維強化プラスチック51の厚みに略対応している。なお、図4における「距離X」は嵩密度を高める工程が開始した位置を基準にした下流側へ移った距離である(図3(a)参照)。
 予熱ゾーンZ1では、複合組成物の温度を120度~180度に加熱し、100mmの厚みの複合組成物が、3mmの厚みまで嵩密度を高められる。このとき、熱可塑性樹脂の温度は熱可塑性樹脂の融点(230度)よりも30度以上低い温度であった。
 加熱ゾーンZ2では、180度~340度に加熱する。そして、加熱ゾーンZ2の上流側に配された上下の副ローラ71d,73cにより(図1参照)、3mmの厚みを2.6mmにまで薄くされる。このとき、嵩密度化された複合組成物の温度が融点より高い状態で薄肉化されるが、薄くされる厚みが0.4mmであり、予熱ゾーンZ1で嵩密度が高められた割合(100mmから3mmへと97mm薄くする。)よりも少ない。
 最初の予熱ゾーンZ1で嵩密度を高められるため、加熱ゾーンZ2での熱可塑性樹脂の流出が少なく、嵩密度を高められる前の厚み100mmの複合組成物を基準にして、熱可塑性樹脂流出を20%未満に抑えることができた。
 また、加熱ゾーンZ2では、溶融温度に対して50度以上も高い温度で嵩密度化された複合組成物が加熱され、上下両側からベルト63,65により狭持(間隔は一定である。)されているため、溶融した樹脂が切断繊維束等に浸透する。
 冷却ゾーンZ3では、330度から100度に降温させ、溶融状態にあった熱可塑性樹脂を固化させる。これにより、厚み100mmの複合組成物から、厚み、2.6mmのシート状の繊維強化プラスチック51が得られる。結果を表1に示す。
 なお前述の通り、繊維強化プラスチックに含まれる強化繊維の重量割合(Wf’)は、樹脂の流出に云々に関わらず、作成された繊維強化プラスチック全体で測定しているため、複合組成物に含まれる強化繊維の重量割合(Wf)と同じ46%となった。
(実施例2)
 複合組成物の単位面積当たりの重量は、3600g/m(0.36g/cm)のまま、 得られた複合組成物に含まれる炭素繊維の平均繊維数(N)に関して、式(2)で定義される切断繊維束の割合を、95Vol%(残りが単糸等である。)へ増加することで、複合組成物の厚みを50mmとした(厚みを薄くした)こと以外は実施例1と同様にしてシート状の繊維強化プラスチックを作成した。結果を表1に示す。
(実施例3)
 熱可塑性樹脂として、ポリカーボネート樹脂(帝人株式会社製ポリカーボネート:L-1225WX、ガラス転移温度150℃)を用い、予熱ゾーンZ1の温度を150~180℃、加熱ゾーンZ2の温度を180~220℃、冷却ゾーンZ3の温度を220~100℃としたこと以外は、実施例1と同様に繊維強化プラスチックを作成した。結果を表1に示す。
(実施例4)
 複合組成物の単位面積当たりの重量は、3600g/m(0.36g/cm)のまま、得られた複合組成物に含まれる炭素繊維の平均繊維数(N)に関して、式(2)で定義される切断繊維束の割合を、65Vol%(残りが単糸等である。)へ減少することで、複合組成物の厚みを130mmとした以外は実施例1と同様に繊維強化プラスチックを作成した。結果を表1に示す。
(実施例5)
 実施例1に記載の厚さ100mmの複合組成物を、厚み2.8mmになるまで予め室温で潰した後、予熱ゾーンZ1を通すこと以外は実施例1と同様に繊維強化プラスチックを作成した。結果を表1に示す。
(実施例6)
 実施例1に記載の複合組成物を、厚み5mmになるまで予め室温で潰した後、予熱ゾーンZ1を通すこと以外は実施例1と同様に繊維強化プラスチックを作成した。結果を表3に示す。
(実施例7)
 実施例1に記載の複合組成物を、厚み10mmになるまで予め室温で潰した後、予熱ゾーンZ1を通すこと以外は実施例1と同様に繊維強化プラスチックを作成した。結果を表3に示す。
(実施例8)
 炭素繊維(東邦テナックス(株)製、テナックス(登録商標)STS40-24KS(繊維径7μm、引張強度4000MPa)の連続繊維からなる一方向材とし、炭素繊維100体積部に対して樹脂100体積部となるように、MXDナイロン三菱ガス化学(株)製レニー6007(登録商標)のフィルムを乗せ、260℃の加熱ローラにて貼り合わせ、厚み1.0mm、Vf50%(Wf61%)の一方向材の複合組成物を得た。この一方向材の複合組成物を用いたこと以外は実施例1と同様にしてシート状の繊維強化プラスチックを作成した。樹脂流出量は抑制できたものの、βの値が0.90と、実施例1よりも小さい値となった。結果を表3に示す。
(実施例9)
 加熱ゾーンZ2で薄肉化して、繊維強化プラスチックの厚みを2.5mmにまで薄くしたこと以外は、実施例1と同様にして繊維強化プラスチックを作成した。繊維強化プラスチックのβの値は1.00となったが、樹脂流出量の評価がCとなった。
(実施例10)
 用いた樹脂をポリブチレンテレフタレート(ポリプラスチックス株式会社製、ジュラネックス700FP)としたこと以外は、実施例1と同様にして繊維強化プラスチックを得た。結果を表3に示す。
(比較例1)
 予熱ゾーンZ1の温度条件を280~300℃、加熱ゾーンZ2の温度を300~340℃としたこと以外は実施例1と同様に繊維強化プラスチックを作成した。結果を表1に示す。
[その他]
1.嵩密度を高める工程
(1)嵩密度を高める割合
 実施例1では、厚み100mmの複合組成物が厚み3mmに圧縮されることにより嵩密度が高められている。しかしながら、当該実施例は本実施形態の1例であり、これに限定するものではない。
 例えば、厚み100mmの複合組成物を、予熱温度の条件下で、3mmより大きい厚み、例えば5mmや10mmにしてもよい。
 また、複合組成物の厚みも100mmに限定するものではなく、強化繊維量や熱可塑性樹脂量を増減させて、100mm未満の厚みや100mm超の厚みにしてもよい。
 嵩密度を高める目安としては、切断された強化繊維をランダムに配した複合組成物の場合、工程前の厚みに対して、好ましくは60%以下2.5%以上の範囲である。密度について言えば、工程前の密度に対して、好ましくは1.6倍以上40倍以下の範囲である。
以下、下限について説明する。
 実施例1における複合組成物は、嵩密度を高める工程において、厚みが3mmにされている。この嵩密度を高める工程において、さらに複合組成物を圧縮して厚みを2.5mm以下にしようとすると、樹脂の流出が多くなり、樹脂流出量が嵩密度を高める前の複合組成物に対して20%以上になってしまう。
 なお、熱可塑性樹脂の流出量が30%超になると、製造される繊維強化プラスチックの繊維体積含有率のばらつきが大きくなったり、流出量が増加するだけで高密度化できなかったりする。
 多数の切断繊維束等がランダムに堆積されてなる複合組成物が圧縮されると、切断繊維束等の間に存在していた間隙が小さくなると共に熱可塑性樹脂により前記間隙が充填され、やがて、間隙が埋まると、熱可塑性樹脂は外部へと流動する。このような観点から、複合組成物に含まれる間隙が、複合組成物に対して6vol%以上存在していれば、熱可塑性樹脂の流出が抑制されると考えられる。
(2)樹脂の形態
 複合組成物中の熱可塑性樹脂がパウダー状であって平均粒径が900μm以下の場合、圧縮されると、複合組成物中の切断繊維束等の堆積によって生じた間隙中へと進入する。このとき、樹脂パウダーは、軟化して変形可能な状態でなくても、粒径が小さければ間隙へと進入する。
 嵩密度が高められ、間隙が樹脂パウダーにより埋まると、樹脂パウダーは間隙に進入できない。このため、さらに嵩密度を高めようとすると、樹脂パウダーが複合組成物から流出することとなる。
 従って、樹脂パウダーの大きさ、樹脂パウダーの形状、切断繊維束等の厚み等によって異なるが、複合組成物中の間隙が樹脂パウダーで充填されるまでを嵩密度を高める工程とすると、樹脂パウダーの外部への流出を抑制できる。
 なお、複合組成物の温度が上昇して、樹脂パウダーが軟化すると樹脂が変形可能な状態となるため、樹脂パウダーが進入できないような間隙にも変形して進入できる。このため、変形可能でない樹脂パウダーの状態に比べて、樹脂パウダーの流出なしに嵩密度を高めることができる。
2.加熱工程
(1)加熱工程の有無
 実施例では、嵩密度を高める工程の後に、複合組成物を「加熱温度」の範囲に加熱している。これにより、溶融した樹脂(非晶性樹脂の場合は軟化した樹脂)が強化繊維間に入り、良好な繊維強化プラスチックが得られる。
 複合組成物から繊維強化プラスチックを得る製造方法は、嵩密度を高める工程の後に、加熱工程を行ってもよいし、行わなくてもよい。例えば、繊維強化プラスチックを所定形状に圧縮成形する場合、圧縮成形の工程で加熱と加圧をすることにより、溶融した樹脂(非晶性樹脂の場合は軟化した樹脂)が強化繊維間に浸入でき、加熱工程と同様の効果が得られる。
(2)工程中での圧縮
 実施例1では、嵩密度を高める工程において100mmの厚みの複合組成物を3mmまで薄肉化し、加熱工程でさらに2.6mmの厚みまで薄くしている。しかしながら、加熱工程では、嵩密度を高める工程のように厚みを100mmから3mmに97mmも薄くしておらず、0.4mmだけ薄くしているだけである。このため、溶融した熱可塑性樹脂の流出も少なくできる。
 実施例1の加熱工程では、熱可塑性樹脂が溶融し、複合組成物中に間隙が残存している。このため、溶融した樹脂が繊維に沿って間隙の内部へと移動することができるため、溶融した樹脂の外部への流出が抑制される。
3.冷却工程
 実施例では、加熱工程の後に、複合組成物の温度を下げる冷却工程を行っている。これにより、繊維強化プラスチックの生産性を向上させることができる。しかしながら、複合組成物から繊維強化プラスチックを得る製造方法は、加熱工程の後に、冷却工程を行ってもよいし、行わなくてもよい。また、複合組成物から繊維強化プラスチックを得る製造方法は、嵩密度を高める工程後に、冷却工程を行ってもよいし、行わなくてもよい。例えば、実施例1のようなダブルベルトプレスの場合、上下の無端ベルトから送出されると、繊維強化プラスチックの周辺には、繊維強化プラスチックの温度よりも低い空気が存在し、この空気によって繊維強化プラスチックが冷却されるからである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の製造方法により得られた繊維強化プラスチックは、優れた連続生産性を有しており、例えば、自動車の構造部品等の用途に用いることが可能であり、車体の軽量化などを確実なものとする。
 1.複合組成物
 7.切断繊維束
 13.切断ユニット
 51.繊維強化プラスチック
 53.繊維強化プラスチックの製造装置
 55,57、59,61.一組の主ローラ
 63.上無端ベルト
 65.下無端ベルト
 71.下副ローラ
 73.上副ローラ
 71a~71i.下副ローラ
 73a~73g.上副ローラ
 75.結晶性樹脂の場合は融点、非晶性樹脂の場合はガラス転移温度
 Z0.予熱ゾーン前
 Z1.予熱ゾーン
 Z2.加熱ゾーン
 Z3.冷却ゾーン
 101.複合組成物
 103.強化繊維マット
 105.熱可塑性樹脂シート
 107. 吐出ノズル
 109.コンベア
 111.スクリュー押出機
 113.T型ダイス
 113a.T字の縦部分における横部分と反対側の端部(図2では上端である。)
 113b.T字の横部分(図2では下端である。)
 115.ポッパー
 117.粉砕材
 119.加熱シリンダ
 121.スクリュー本体
 123.ノズル
 131.嵩密度を高める装置
 133.繊維強化プラスチック
 135、137.一対のローラ
 

Claims (10)

  1.  熱可塑性樹脂と強化繊維とを含む複合組成物からシート状の繊維強化プラスチックを製造する製造方法において、
     前記熱可塑性樹脂が結晶性の場合は融点より30度低い温度以下で、前記熱可塑性樹脂が非結晶性の場合はガラス転移温度より100度高い温度以下で、前記複合組成物の嵩密度を高める
     繊維強化プラスチックの製造方法。
  2.  前記嵩密度を高める工程は、嵩密度を高める前の複合組成物に対して、前記熱可塑性樹脂が20%以上流出する前に終わらせる
     請求項1に記載の繊維強化プラスチックの製造方法。
  3.  前記嵩密度を高められた複合組成物を、
     熱可塑性樹脂が結晶性の場合は融点以上に、熱可塑性樹脂が非結晶性の場合はガラス転移温度または嵩密度を高めたときの温度のいずれか高い方の温度以上に加熱する、
     請求項1又は2に記載の繊維強化プラスチックの製造方法。
  4.  前記加熱は、前記嵩密度が高められた状態を維持しながら行う、請求項3に記載の繊維強化プラスチックの製造方法。
  5.  前記強化繊維は、切断された不連続繊維である請求項1~4いずれかに記載の繊維強化プラスチックの製造方法。
  6.  前記強化繊維は、切断されて2次元方向にランダムに配されている繊維を含む請求項1~4の何れか1項に記載の繊維強化プラスチックの製造方法。
  7.  前記強化繊維は、一方向連続繊維である請求項1~4の何れか1項に記載の繊維強化プラスチックの製造方法。
  8.  前記嵩密度を高める工程は、移動する前記複合組成物に対して行う請求項1~7の何れか1項に記載の繊維強化プラスチックの製造方法。
  9.  複合組成物の厚みが、下記式(x)を満たす、請求項1~8いずれかに記載の繊維強化プラスチックの製造方法。
    α = 複合組成物の単位面積当たりの重量÷{(熱可塑性樹脂の密度×Wm+強化繊維の密度×Wf)×複合組成物の厚み} 式(X)
     Wm:複合組成物に含まれる熱可塑性樹脂の重量割合
     Wf:複合組成物に含まれる強化繊維の重量割合
     α:0.020~0.82
  10.  請求項1~9いずれかに記載の繊維強化プラスチックの厚みが、下記式(y)を満たす、繊維強化プラスチックの製造方法。
     β= 複合組成物の単位面積当たりの重量÷{(熱可塑性樹脂の密度×Wm’+強化繊維の密度×Wf’)×繊維強化プラスチックの厚み} 式(y)
     Wm’:繊維強化プラスチックに含まれる熱可塑性樹脂の重量割合
     Wf’:繊維強化プラスチックに含まれる強化繊維の重量割合
     β:0.82以上
PCT/JP2015/066900 2014-07-01 2015-06-11 繊維強化プラスチックの製造方法 WO2016002470A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/392,154 US20160271860A1 (en) 2014-07-01 2015-06-11 Production Method of Fiber-Reinforced Plastic
JP2015548513A JPWO2016002470A1 (ja) 2014-07-01 2015-06-11 繊維強化プラスチックの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014136033 2014-07-01
JP2014-136033 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016002470A1 true WO2016002470A1 (ja) 2016-01-07

Family

ID=55019019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066900 WO2016002470A1 (ja) 2014-07-01 2015-06-11 繊維強化プラスチックの製造方法

Country Status (3)

Country Link
US (1) US20160271860A1 (ja)
JP (2) JPWO2016002470A1 (ja)
WO (1) WO2016002470A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012313A (ja) * 2016-07-22 2018-01-25 三菱製紙株式会社 炭素短繊維樹脂構造体及び炭素短繊維樹脂構造体の製造方法
JP2020049938A (ja) * 2018-09-25 2020-04-02 東芝機械株式会社 複合材料シート製造装置及び複合材料シートの製造方法
JP2020097145A (ja) * 2018-12-17 2020-06-25 芝浦機械株式会社 ロールニップ機構及び複合材料シート製造装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3077759B1 (fr) * 2018-02-09 2020-03-06 Institut De Recherche Technologique Jules Verne Procede de fabrication d'une piece preimpregnee en materiau composite
EP3705251B1 (de) 2019-03-07 2023-05-03 KARL MAYER Technische Textilien GmbH Imprägnieranlage und verfahren zum imprägnieren eines textilen flächengebildes für kompositbauteile
US11241861B2 (en) 2019-07-02 2022-02-08 Johns Manville System for producing chopped roving thermoplastic composite sheets
US11090839B2 (en) 2019-07-02 2021-08-17 Johns Manville System for producing a lightweight thermoplastic composite sheet
JP2022131035A (ja) * 2021-02-26 2022-09-07 セイコーエプソン株式会社 三次元造形物の製造方法、および、三次元造形装置
EP4286461A1 (en) * 2021-04-26 2023-12-06 Toray Industries, Inc. Prepreg

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275127A (ja) * 1991-02-28 1992-09-30 Takiron Co Ltd 結晶性熱可塑性合成樹脂薄板とその製造方法
JPH05245866A (ja) * 1992-03-03 1993-09-24 Nippon Steel Corp 繊維強化熱可塑性樹脂シートの連続強化成形方法及び装置
JPH08267484A (ja) * 1995-03-28 1996-10-15 Sekisui Chem Co Ltd 繊維複合シートの製造方法
JPH10296865A (ja) * 1997-04-25 1998-11-10 Sekisui Chem Co Ltd 繊維強化シートの製造方法及び製造装置
JP2000141523A (ja) * 1998-11-05 2000-05-23 Sekisui Chem Co Ltd 繊維強化熱可塑性シート、その製造方法及びそれを用いた積層成形品
JP2005329593A (ja) * 2004-05-19 2005-12-02 Fuji Heavy Ind Ltd 自動積層装置
JP2012050567A (ja) * 2010-08-31 2012-03-15 Unicharm Corp 吸収性物品に係るプレス装置、及びプレス方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923691B2 (ja) * 1981-12-01 1984-06-04 山川工業株式会社 樹脂シ−トの連続プレス成形法
JPS6362713A (ja) * 1986-09-03 1988-03-19 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai 繊維補強樹脂連続成形体の製造方法及びその装置
JP2542007B2 (ja) * 1987-10-14 1996-10-09 山川工業株式会社 樹脂シ―トの連続樹脂プレス成形法
JPH01285315A (ja) * 1988-05-13 1989-11-16 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai 繊維補強樹脂成形体の連続賦形方法及びその装置
JPH01286823A (ja) * 1988-05-14 1989-11-17 Kouseinou Jushi Shinseizou Gijutsu Kenkyu Kumiai 繊維補強樹脂成形体の連続賦形方法及びその装置
JPH07205373A (ja) * 1994-01-17 1995-08-08 Toray Ind Inc 極薄複合連続シートおよびその製造方法
JPH0911404A (ja) * 1995-06-29 1997-01-14 Idemitsu Petrochem Co Ltd 多層シート及びその製造方法
US5872067A (en) * 1997-03-21 1999-02-16 Ppg Industries, Inc. Glass fiber strand mats, thermoplastic composites reinforced with the same and methods for making the same
US5911932A (en) * 1997-07-09 1999-06-15 R. Charles Balmer Method of prepregging with resin
TW540177B (en) * 2000-07-14 2003-07-01 Mitsubishi Rayon Co Device and method for manufacturing resin-impregnated hard sheet
JP4789940B2 (ja) * 2005-08-18 2011-10-12 帝人テクノプロダクツ株式会社 等方性の繊維強化熱可塑性樹脂シートとその製造方法並びに成形板
JP6020826B2 (ja) * 2013-07-12 2016-11-02 パナソニックIpマネジメント株式会社 繊維強化複合材の成形方法および繊維強化複合材の成形装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04275127A (ja) * 1991-02-28 1992-09-30 Takiron Co Ltd 結晶性熱可塑性合成樹脂薄板とその製造方法
JPH05245866A (ja) * 1992-03-03 1993-09-24 Nippon Steel Corp 繊維強化熱可塑性樹脂シートの連続強化成形方法及び装置
JPH08267484A (ja) * 1995-03-28 1996-10-15 Sekisui Chem Co Ltd 繊維複合シートの製造方法
JPH10296865A (ja) * 1997-04-25 1998-11-10 Sekisui Chem Co Ltd 繊維強化シートの製造方法及び製造装置
JP2000141523A (ja) * 1998-11-05 2000-05-23 Sekisui Chem Co Ltd 繊維強化熱可塑性シート、その製造方法及びそれを用いた積層成形品
JP2005329593A (ja) * 2004-05-19 2005-12-02 Fuji Heavy Ind Ltd 自動積層装置
JP2012050567A (ja) * 2010-08-31 2012-03-15 Unicharm Corp 吸収性物品に係るプレス装置、及びプレス方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012313A (ja) * 2016-07-22 2018-01-25 三菱製紙株式会社 炭素短繊維樹脂構造体及び炭素短繊維樹脂構造体の製造方法
JP2020049938A (ja) * 2018-09-25 2020-04-02 東芝機械株式会社 複合材料シート製造装置及び複合材料シートの製造方法
JP7154183B2 (ja) 2018-09-25 2022-10-17 芝浦機械株式会社 複合材料シート製造装置
JP2020097145A (ja) * 2018-12-17 2020-06-25 芝浦機械株式会社 ロールニップ機構及び複合材料シート製造装置
JP7072495B2 (ja) 2018-12-17 2022-05-20 芝浦機械株式会社 ロールニップ機構及び複合材料シート製造装置

Also Published As

Publication number Publication date
JPWO2016002470A1 (ja) 2017-04-27
US20160271860A1 (en) 2016-09-22
JP2016185704A (ja) 2016-10-27

Similar Documents

Publication Publication Date Title
WO2016002470A1 (ja) 繊維強化プラスチックの製造方法
CN111163921B (zh) 通过3d打印制造由复合材料制成的制品的方法
JP5985085B2 (ja) 多層構造の成形材料及び多層構造の成形体
TWI448596B (zh) Random felt and reinforced fiber composites
JP5722732B2 (ja) 熱可塑性複合材料形成用等方性ランダムマットの製造方法
KR101529849B1 (ko) 랜덤 매트 및 섬유 강화 복합재료 성형체
US9353231B2 (en) Composite base material
US11306195B2 (en) Discontinuous-fiber composites and methods of making the same
KR101529850B1 (ko) 랜덤 매트 및 섬유 강화 복합재료 성형체
JP5969714B2 (ja) 射出成形、押出成形、又は引抜成形用の成形材料の集合体、炭素繊維強化熱可塑性樹脂ペレット、成形体、及び射出成形体の製造方法
JP6106810B2 (ja) 炭素繊維強化樹脂複合材料
JP5608818B2 (ja) 炭素繊維複合材料およびそれを用いてなる成形品、ならびにそれらの製造方法
EP3195995B1 (en) Production method for fiber-reinforced thermoplastic resin composite material
US20150258762A1 (en) Method of Producing Isotropic Random Mat for Forming Thermoplastic Composite Material
CN103358516A (zh) 单聚合物复合材料制品熔融包覆辊压成型方法及设备
US20160368184A1 (en) Belt confined continuous molding apparatus and method
CN102848560A (zh) Pp发泡板、成型方法、聚丙烯发泡板材及成型方法
WO2023115768A1 (zh) 一种连续纤维增强热塑性头盔外壳材料及制备方法
CN203438522U (zh) 单聚合物复合材料制品熔融包覆辊压成型设备
JP2001521449A (ja) 複合体およびその製造方法
JP6369900B2 (ja) 繊維強化熱可塑性プラスチックのリサイクル方法及び当該リサイクル方法で得られた繊維強化熱可塑性プラスチック成形体
US11325281B2 (en) Rapid manufacturing of tailored preforms
KR101462881B1 (ko) 장섬유강화 열가소성 수지 제조장치
US20200114550A1 (en) Thermoplastic Molding Process and Apparatus
Throne Processing thermoplastic composites

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015548513

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14392154

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815801

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815801

Country of ref document: EP

Kind code of ref document: A1