WO2016002374A1 - Optical device, and optical module - Google Patents

Optical device, and optical module Download PDF

Info

Publication number
WO2016002374A1
WO2016002374A1 PCT/JP2015/064617 JP2015064617W WO2016002374A1 WO 2016002374 A1 WO2016002374 A1 WO 2016002374A1 JP 2015064617 W JP2015064617 W JP 2015064617W WO 2016002374 A1 WO2016002374 A1 WO 2016002374A1
Authority
WO
WIPO (PCT)
Prior art keywords
cladding
light
resin member
clad
optical device
Prior art date
Application number
PCT/JP2015/064617
Other languages
French (fr)
Japanese (ja)
Inventor
真一 阪本
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2016002374A1 publication Critical patent/WO2016002374A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present invention relates to an optical device including an optical fiber and an optical module including such an optical device.
  • optical fibers In the fields of optical processing and optical communication, optical devices equipped with optical fibers are widely used.
  • the optical fiber includes a core, a clad surrounding the core, and a coating surrounding the clad, and light incident from one end face (hereinafter also referred to as “incident end face”) is transmitted to the other end face (hereinafter referred to as “exit”). The light is emitted from the “end face”.
  • the light propagating from the incident end face to the exit end face in the optical fiber is light having an incident angle smaller than the light receiving angle of the optical fiber among the light incident on the core at the incident end face.
  • Other light that is, light incident on the clad at the incident end face and light leaking from the core to the clad after entering the core at the incident end face (light whose incident angle is larger than the receiving angle of the optical fiber) Leaks from the cladding in the vicinity of the incident end face. Light leaked from the cladding in the vicinity of the incident end face is absorbed by the coating and converted into heat. This heat causes deterioration or burnout of the coating and reduces the reliability of the optical device.
  • Patent Document 1 describes a fusion splicing structure in which an output end face of a double clad fiber and an incident end face of a single clad fiber are fusion spliced.
  • the following configuration is adopted for a single clad fiber.
  • the outer surface of the clad exposed in the coating removal section is covered with a resin member, and the resin member is surrounded by an aluminum block.
  • the resin member covering the outer surface of the clad is made of a resin material having a refractive index higher than that of the clad. For this reason, light incident on the clad (light incident on the clad at the incident end face and light leaked from the core to the clad after entering the core at the incident end face) is transferred from the clad to the resin member in the coating removal section. And leak.
  • the light leaked from the clad to the resin member in the coating removal section is absorbed by the aluminum block and converted into heat. In this way, by heating the light incident on the clad within the coating removal section, the possibility of coating deterioration or burning outside the coating removal section decreases.
  • Japanese Published Patent Publication Japanese Patent Laid-Open No. 2008-310277 (Released on Dec. 25, 2008)
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical fiber having a coating removal section in the vicinity of an incident end face, and an outer surface of the cladding of the optical fiber exposed in the coating removal section.
  • an optical device provided with a covering resin member there is a possibility of reducing the possibility of coating deterioration or burning, and reducing the possibility of deterioration of the resin member, thereby improving its reliability.
  • an optical device includes an optical fiber provided with a coating removal section in the vicinity of an incident end surface, and a resin that covers an outer surface of the cladding of the optical fiber exposed in the coating removal section.
  • the present invention it is possible to reduce the possibility of coating deterioration or burnout and the possibility of local deterioration or burnout of the resin member, thereby improving the reliability of the optical device.
  • FIG. 3 is a cross-sectional view showing a configuration of an LD module including optical devices according to first to third embodiments of the present invention.
  • FIG. 1 is a longitudinal sectional view showing a configuration of an optical device 1 according to the present embodiment.
  • the optical device 1 includes an optical fiber 10, a resin member 20, a transparent member 30, and a heat dissipation member 40.
  • the optical fiber 10 includes (1) a core 11, (2) a clad 12 having a lower refractive index than the core 11 surrounding the core 11, and (3) a coating (not shown) surrounding the clad 12.
  • a coating removal section from which the coating has been removed is provided in the vicinity of the incident end face 10a of the optical fiber 10.
  • FIG. 1 shows a coating removal section of the optical fiber 10.
  • Laser light having a wavelength ⁇ emitted from a light source such as an LD (Laser Diode) enters the optical fiber 10 through the incident end face 10a.
  • the incident end face 10a is polished and further AR (Anti-Reflective) coating is applied.
  • Part of the light incident on the optical fiber 10 through the incident end face 10 a is incident on the cladding 12.
  • light having an incident angle larger than the light receiving angle of the optical fiber 10 leaks from the core 11 to the cladding 12 in the vicinity of the incident end face 10a.
  • the coating heats up, leading to deterioration or burnout of the coating. For this reason, it is necessary to remove the light incident on the clad 12 at or near the incident end face 10a in the coating removal section.
  • the resin member 20 is a resin member having a refractive index lower than that of the cladding 12 and covering the outer surface of the cladding 12 exposed in the coating removal section.
  • an adhesive that bonds the clad 12 and the transparent member 30 is used as the resin member 20. Since the refractive index of the resin member 20 is lower than the refractive index of the cladding 12, the light incident on the cladding 12 propagates through the cladding 12 without leaking to the resin member 20 in the vicinity of the incident end face 10a.
  • a part of the light propagating through the clad 12 oozes out as evanescent light outside the outer surface of the clad 12 serving as a total reflection boundary.
  • the region where the evanescent light permeates from the clad 12 is a region where the distance from the outer surface of the clad 12 is equal to or less than the wavelength ⁇ of the light propagating through the clad 12.
  • the resin member 20 is surrounded by a transparent member 30 in which particulate scatterers 31 are embedded.
  • the refractive index of the transparent member 30 is higher than the refractive index of the resin member 20.
  • the material of the transparent member 30 is not particularly limited, but is desirably a material having a low absorptance at the wavelength ⁇ of light propagating through the cladding 12.
  • a resin ferrule in which a through hole for inserting the optical fiber 10 is formed is used as the transparent member 30.
  • the scatterer 31 is a particle having a refractive index different from that of the transparent member 30 scattered inside the transparent member 30.
  • the material of the scatterer 31 is not particularly limited, but a material having a low absorptance at the wavelength ⁇ propagating through the cladding 12 is desirable. Suitable materials for the scatterer 31 include quartz, silica, alumina, and the like. Further, bubbles may be used as the scatterer 31.
  • the thickness d1 of the resin member 20 is made thinner than the wavelength ⁇ of the light propagating through the cladding. Therefore, the scatterers 31 embedded in the transparent member 30 are scattered in a region where the distance from the outer surface of the clad 12 is equal to or less than the wavelength ⁇ of light propagating through the clad 12, that is, a region where evanescent light penetrates. become. As a result, the evanescent light that has oozed out of the outer surface of the cladding 12 is scattered by the scatterer 31 and, as a result, is converted into propagating light that travels away from the outer surface of the cladding 12 in a random direction. .
  • the heat dissipating member 40 is disposed so as to contact the transparent member 30, and converts the evanescent light scattered by the scatterer 31, that is, the propagating light propagating in a random direction away from the outer surface of the clad 12 into heat. To do.
  • the material of the heat radiating member 40 is desirably a material having high thermal conductivity, for example, a metal.
  • the optical device 1 configured as described above, leakage of light from the clad 12 is not caused intensively at the end portion on the incident side of the section where the clad 12 is covered with the resin member 20,
  • the resin member 20 can be generated in a distributed manner throughout the entire section covered with the transparent member 30. Therefore, it is possible to reduce not only the possibility of coating deterioration or burning outside the coating removal section, but also the possibility of local deterioration or burning of the resin member 20 within the coating removal section.
  • the optical device 1 includes a heat radiating member 40. Since the light incident on the heat radiating member 40 is scattered by the scatterer 31, the light does not concentrate on a part of the heat radiating member 40 and local heat is not generated. Thereby, the situation where the optical device 1 deteriorates due to local heat generation of the heat radiating member 40 can be prevented.
  • the present invention is not limited to this. That is, for example, a configuration in which light emitted from another optical fiber fusion-connected to the optical fiber 10 is incident on the optical fiber 10 may be employed.
  • the other optical fiber is a double clad fiber for amplification
  • the pumping light residual pumping light
  • the optical fiber 10 The light enters the clad 12. In this case, the residual excitation light can be gradually leaked in the coating removal section.
  • this invention is not limited to this.
  • the same effect as described above can be obtained. This is because grain boundaries are scattered inside the polycrystalline structure, and these grain boundaries function in the same manner as the particulate scatterers 31 embedded in the transparent member 30.
  • a zirconia ferrule is an example of such a polycrystalline structure.
  • FIG. 2 is a longitudinal sectional view showing the configuration of the optical device 1 according to this embodiment.
  • the same components as those in the above-described embodiment are denoted by the same member numbers, and the description thereof is omitted.
  • the thickness of the resin member 20 ' is different from that of the resin member 20 of the optical device 1 according to the first embodiment.
  • the resin member 20 ′ has a thickness d ⁇ b> 2 larger than the wavelength ⁇ of light propagating through the cladding 12 on the incident end face 10 a side of the optical fiber 10.
  • the thickness of the resin member 20 ′ decreases as it moves away from the incident end face 10 a of the optical fiber 10, and has a structure that converges to a specific thickness (thickness d 1 in FIG. 2) that is thinner than the wavelength ⁇ of light propagating through the cladding 12. ing.
  • the structure of the resin member 20 ′ is not limited to the structure shown in FIG. 2, and the thickness of at least a part of the section surrounded by the transparent member 30 is greater than the wavelength ⁇ of light propagating through the cladding 12. Should be thinner. In a section where the thickness of the resin member 20 ′ is thinner than the wavelength ⁇ of light propagating through the cladding 12, the scatterer 31 embedded in the transparent member 30 is light whose distance from the outer surface of the cladding 12 propagates through the cladding 12. Are scattered in a region where the wavelength ⁇ is equal to or less than the wavelength ⁇ , that is, a region where evanescent light oozes out.
  • the leakage of light from the clad 12 is not caused intensively at the incident side end of the section where the clad 12 is covered with the resin member 20 ′, but the resin.
  • the thickness of the member 20 ′ can be generated in a dispersive manner in the entire section where the thickness of the member 20 ′ is thinner than the wavelength ⁇ of light propagating through the cladding 12. Therefore, similarly to the optical device 1 according to the first embodiment, not only the deterioration or burning of the coating may occur outside the coating removal section, but also the local deterioration or burning of the resin member 20 ′ may occur within the coating removal section. The possibility of occurring can also be reduced.
  • the configuration in which the resin member 20 is surrounded by the transparent member 30 in which the particulate scatterers 31 are embedded may be replaced with a configuration in which the resin member 20 is surrounded by a polycrystalline structure. Good.
  • FIG. 3 is a longitudinal sectional view showing the configuration of the optical device 1 according to this embodiment.
  • the same components as those in the above-described embodiment are denoted by the same member numbers, and the description thereof is omitted.
  • the optical device 1 according to this embodiment is the first in that a scatterer 21 is embedded in a resin member 20 ′′ and a protective body 50 is provided instead of the transparent member 30. This is different from the optical device 1 according to the first embodiment.
  • the resin member 20 ′′ is a resin member that covers the outer surface of the cladding 12 exposed in the coating removal section.
  • the refractive index of the resin member 20 ′′ is lower than the refractive index of the cladding 12. Therefore, the light incident on the clad 12 propagates through the clad 12 without leaking to the resin member 20 ′′ in the vicinity of the incident end face 10a.
  • the thickness of the resin member 20 ′′ is the light propagating through the clad 12. It is not necessary to be thinner than the wavelength ⁇ .
  • the scatterer 21 is a particle having a refractive index different from that of the resin member 20 ′′ scattered inside the resin member 20 ′′.
  • the material of the scatterer 21 is not particularly limited, but a material having a low absorptance at the wavelength ⁇ propagating through the cladding 12 is desirable. Suitable materials for the scatterer 21 include quartz, silica, alumina and the like. In addition, bubbles may be used as the scatterer 21.
  • the scatterer 21 is embedded in the resin member 20 ′′ that covers the outer surface of the clad 12 exposed in the coating removal section.
  • the scatterers 21 embedded in the member 20 ′′ are scattered in a region where the distance from the outer surface of the clad 12 is equal to or less than the wavelength ⁇ of light propagating through the clad 12, that is, a region where evanescent light oozes out. .
  • the evanescent light that has oozed out of the outer surface of the clad 12 is scattered by the scatterer 21, and as a result, is converted into propagating light that leaves the outer surface of the clad 12 and propagates in a random direction. .
  • the protector 50 is a member for protecting the optical fiber 10 and is provided so as to surround the resin member 20 ′′.
  • the optical device 1 According to the optical device 1 according to the present embodiment, light leakage from the clad 12 is not caused in a concentrated manner at the incident side end of the section in which the clad 12 is covered with the resin member 20 ′′. 12 can be generated in a distributed manner throughout the entire section covered with the resin member 20 ′′. Therefore, similarly to the optical device 1 according to the above-described embodiment, not only the coating deterioration or burning may occur outside the coating removal section, but also the local deterioration or burning of the resin member 20 may occur within the coating removal section. The sex can also be reduced.
  • FIG. 4 is a cross-sectional view of the LD module 100.
  • the LD module 100 includes an optical device 1 according to the first embodiment, a housing 2, an LD (Laser Diode) mount 3, an LD (Laser Diode) 4, an electrode 5, and a conductor 6. , A lens mount 7, a lens 8, and a sleeve 60.
  • the sleeve 60 is a cylindrical member that houses the optical device 1.
  • the sleeve 60 is made of metal, (1) a cylindrical small-diameter portion 61, and (2) a central axis coincides with the small-diameter portion 61, and an inner diameter and an outer diameter are smaller than those of the small-diameter portion 61.
  • the section that is not covered with the resin member 20 and the transparent member 30 among the covering removal section of the optical device 1 is inserted into the small diameter portion 61 of the sleeve 60.
  • the inner diameter of the small diameter portion 61 is designed to be larger than the cladding diameter of the optical fiber 10.
  • the gap between the inner surface of the sleeve 60 and the outer surface of the optical fiber 10 is filled with an adhesive.
  • a section covered with the resin member 20 and the transparent member 30 among the covering removal section of the optical device 1 is inserted into the large diameter portion 62 of the sleeve 60.
  • the inner diameter of the large-diameter portion 62 is designed to substantially match the outer diameter of the transparent member 30.
  • the sleeve 60 also functions as the heat dissipation member 40 described above.
  • the housing 2 is a rectangular parallelepiped box-shaped housing composed of a bottom plate 2a, a front side wall 2b, a rear side wall 2c, a right side wall (not shown), a left side wall (not shown), and a top plate 2d.
  • the optical device 1 is inserted into the front side wall 2 b of the housing 2 via the sleeve 60 described above, and the front side wall 2 b also functions as the heat dissipation member 40 described above together with the sleeve 60.
  • the LD mount 3 is placed on the bottom plate 2 a of the housing 2, and the LD 4 is placed on the LD mount 3.
  • the LD 4 functions as a light source that outputs a laser beam L having a wavelength ⁇ .
  • a lens mount 7 is placed on the bottom plate 2 a of the housing 2, and a lens 8 is placed on the lens mount 7. The lens 8 focuses the laser light L output from the LD 4.
  • the optical device 1 is inserted into the front side wall 2 b of the housing 2 so that the incident end face 10 a of the optical fiber 10 faces the emission end face of the LD 4 through the lens 8.
  • the laser light L focused by the lens 8 is incident on both the core 11 and the clad 12 of the optical fiber 10.
  • the electrode 5 is inserted into the rear side wall 2 c of the housing 2, and the LD 4 is connected to the electrode 5 through the conductive wire 6. If the electrode 5 is connected to a current source outside the housing 2, current can be supplied to the LD 4.
  • the optical device that can be mounted on the LD module 100 is not limited to the optical device 1 according to the first embodiment. . That is, instead of the optical device 1 according to the first embodiment, for example, the optical device 1 according to the second embodiment or the optical device 1 according to the third embodiment can be mounted on the LD module.
  • the optical device is an optical fiber provided with a coating removal section in the vicinity of an incident end face, and a resin member that covers an outer surface of the cladding of the optical fiber exposed in the coating removal section.
  • the outer surface of the cladding exposed in the coating removal section is covered with the resin member having a refractive index lower than that of the cladding. For this reason, the light incident on the clad (light incident on the clad at the incident end face and light leaked from the core into the clad after being incident on the core of the optical fiber at the incident end face)
  • the clad propagates without leaking from the clad intensively at the incident side end of the section covered with the resin member.
  • the light propagating through the clad oozes out as evanescent light outside the outer surface of the clad that becomes a total reflection boundary.
  • the region where the evanescent light oozes from the cladding is a region where the distance from the outer surface of the cladding is equal to or less than the wavelength of light incident on the cladding in the region outside the outer surface of the cladding.
  • the scatterer may be a particle embedded in the resin member (see the third embodiment), or may be a particle embedded in a transparent member surrounding the resin member. It is also possible (see the first embodiment and the second embodiment). In the latter case, if the thickness of the resin member is made thinner than the wavelength of light incident on the clad in all or part of the section where the resin member is surrounded by the transparent member, the evanescent light is emitted from the clad.
  • the scatterers (particles) can be scattered in the area where the oozes out.
  • the scatterer may be a grain boundary of a polycrystalline structure surrounding the resin member.
  • the thickness of the resin member is made thinner than the wavelength of light incident on the clad in all or part of the section surrounded by the polycrystalline structure, the clad is evanescent from the clad.
  • the scatterers can be scattered in the region where light oozes out.
  • the optical device further includes a heat dissipation member that converts the light scattered by the scatterer into heat and dissipates it.
  • the light scattered by the scatterer can be efficiently heated and dissipated.
  • an optical module including the optical device and a light source that outputs light incident on the optical fiber is also included in the scope of the present invention.
  • the scatterers may be dispersed in a region where the distance from the outer surface of the cladding is equal to or less than the wavelength of the light output from the light source in a region outside the outer surface of the cladding. .
  • the present invention can be widely applied to optical devices having optical fibers that transmit laser light.
  • it is suitable for an optical device used in an optical module for communication or processing.

Abstract

An optical device (1) comprises: an optical fiber having a core (11) and cladding (12) that surrounds the core; and a resin member (20) that surrounds the cladding and has a refractive index lower than that of the cladding. In a region that is outside of the cladding and is such that the distance from the periphery of the cladding is not more than the wavelength of light propagating through the cladding, scatterers (21, 31) for scattering light are dispersed. Due to this configuration, the potential for a coating to deteriorate or burn and the potential for the resin member to deteriorate are both reduced, and reliability is improved.

Description

光デバイス、及び、光モジュールOptical device and optical module
 本発明は、光ファイバを備えた光デバイス、及び、そのような光デバイスを備えた光モジュールに関する。 The present invention relates to an optical device including an optical fiber and an optical module including such an optical device.
 光加工や光通信などの分野では、光ファイバを備えた光デバイスが広く用いられている。光ファイバは、コアと、コアを取り囲むクラッドと、クラッドを取り囲む被覆とを備えており、一方の端面(以下、「入射端面」とも記載)から入射した光を、他方の端面(以下、「出射端面」とも記載)から出射する。 In the fields of optical processing and optical communication, optical devices equipped with optical fibers are widely used. The optical fiber includes a core, a clad surrounding the core, and a coating surrounding the clad, and light incident from one end face (hereinafter also referred to as “incident end face”) is transmitted to the other end face (hereinafter referred to as “exit”). The light is emitted from the “end face”.
 光ファイバにおいて入射端面から出射端面まで伝播する光は、入射端面においてコアに入射した光のうち、入射角が光ファイバの受光角よりも小さい光である。それ以外の光、すなわち、入射端面においてクラッドに入射した光、及び、入射端面においてコアに入射した後、コアからクラッドへと漏出する光(入射角が光ファイバの受光角よりも大きい光)は、入射端面近傍においてクラッドから漏出する。入射端面近傍においてクラッドから漏出した光は、被覆に吸収され、熱に変換される。この熱は、被覆の劣化又は焼損の原因となり、光デバイスの信頼性を低下させる。 The light propagating from the incident end face to the exit end face in the optical fiber is light having an incident angle smaller than the light receiving angle of the optical fiber among the light incident on the core at the incident end face. Other light, that is, light incident on the clad at the incident end face and light leaking from the core to the clad after entering the core at the incident end face (light whose incident angle is larger than the receiving angle of the optical fiber) Leaks from the cladding in the vicinity of the incident end face. Light leaked from the cladding in the vicinity of the incident end face is absorbed by the coating and converted into heat. This heat causes deterioration or burnout of the coating and reduces the reliability of the optical device.
 このような問題は、光源と光ファイバとを備えた光モジュールにおいて、光源から出射された光を光ファイバに入射させる場合のみならず、2本の光ファイバを備えた各種光デバイスにおいて、第1の光ファイバから出射された光を第2の光ファイバに入射させる場合にも生じ得る。このような問題の解決策を記載した文献としては、例えば、特許文献1が挙げられる。特許文献1には、ダブルクラッドファイバの出射端面とシングルクラッドファイバの入射端面とを融着接続した融着接続構造が記載されている。 Such a problem is not only in the case where the light emitted from the light source is incident on the optical fiber in the optical module including the light source and the optical fiber, but also in various optical devices including two optical fibers. This may also occur when light emitted from the optical fiber is incident on the second optical fiber. An example of a document describing a solution to such a problem is Patent Document 1. Patent Document 1 describes a fusion splicing structure in which an output end face of a double clad fiber and an incident end face of a single clad fiber are fusion spliced.
 特許文献1に記載の融着接続構造においては、シングルクラッドファイバに関して以下の構成が採用されている。被覆除去区間において露出したクラッドの外側面を樹脂部材で覆い、更に、樹脂部材の周囲をアルミブロックで囲む構成である。ここで、クラッドの外側面を被覆する樹脂部材は、屈折率がクラッドよりも高い樹脂材料により構成されている。このため、クラッドに入射した光(入射端面においてクラッドに入射した光、及び、入射端面においてコアに入射した後、コアからクラッドへと漏出した光)は、被覆除去区間内においてクラッドから樹脂部材へと漏出する。そして、被覆除去区間内においてクラッドから樹脂部材へと漏出した光は、アルミブロックに吸収され、熱に変換される。このように、クラッドに入射した光を被覆除去区間内において熱化することにより、被覆除去区間外において被覆の劣化又は焼損が生じる可能性が低下する。 In the fusion splicing structure described in Patent Document 1, the following configuration is adopted for a single clad fiber. The outer surface of the clad exposed in the coating removal section is covered with a resin member, and the resin member is surrounded by an aluminum block. Here, the resin member covering the outer surface of the clad is made of a resin material having a refractive index higher than that of the clad. For this reason, light incident on the clad (light incident on the clad at the incident end face and light leaked from the core to the clad after entering the core at the incident end face) is transferred from the clad to the resin member in the coating removal section. And leak. The light leaked from the clad to the resin member in the coating removal section is absorbed by the aluminum block and converted into heat. In this way, by heating the light incident on the clad within the coating removal section, the possibility of coating deterioration or burning outside the coating removal section decreases.
日本国公開特許公報「特開2008-310277号」(2008年12月25日公開)Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2008-310277” (Released on Dec. 25, 2008)
 しかしながら、特許文献1に記載の融着接続構造において、クラッドに入射した光は、樹脂部材で覆われた区間の入射側の端部において集中的にクラッドから漏出する。このため、特許文献1に記載の融着接続構造においては、被覆除去区間内において樹脂部材の局所的な劣化又は焼損が生じる可能性があった。なお、樹脂部材の局所的な劣化又は焼損が生じる原因としては、クラッドから漏出した光を樹脂部材が吸収することより生じる樹脂部材の発熱、及び、クラッドから漏出した光をアルミブロックが吸収することにより生じるアルミブロックの発熱の双方が挙げられる。 However, in the fusion splicing structure described in Patent Document 1, light incident on the cladding is intensively leaked from the cladding at the incident side end of the section covered with the resin member. For this reason, in the fusion splicing structure described in Patent Document 1, there is a possibility that local deterioration or burnout of the resin member may occur in the coating removal section. The cause of local deterioration or burnout of the resin member is that the resin member generates heat when the resin member absorbs light leaked from the clad and the aluminum block absorbs light leaked from the clad. Both of the heat generation of the aluminum block caused by
 本発明は、上記の問題に鑑みてなされたものであり、その目的は、入射端面近傍に被覆除去区間が設けられた光ファイバと、被覆除去区間において露出した該光ファイバのクラッドの外側面を覆う樹脂部材とを備えた光デバイスにおいて、被覆の劣化又は焼損が生じる可能性、及び、樹脂部材の劣化が生じる可能性を低下させ、その信頼性を向上させることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical fiber having a coating removal section in the vicinity of an incident end face, and an outer surface of the cladding of the optical fiber exposed in the coating removal section. In an optical device provided with a covering resin member, there is a possibility of reducing the possibility of coating deterioration or burning, and reducing the possibility of deterioration of the resin member, thereby improving its reliability.
 上記の課題を解決するために、本発明に係る光デバイスは、入射端面近傍に被覆除去区間が設けられた光ファイバと、上記被覆除去区間において露出した上記光ファイバのクラッドの外側面を覆う樹脂部材であって、上記クラッドよりも屈折率の低い樹脂部材と、上記クラッドの外側面よりも外側の領域において、上記クラッドの外側面からの距離が上記クラッドに入射する光の波長以下となる領域に散在する散乱体と、を備えている、ことを特徴としている。 In order to solve the above problems, an optical device according to the present invention includes an optical fiber provided with a coating removal section in the vicinity of an incident end surface, and a resin that covers an outer surface of the cladding of the optical fiber exposed in the coating removal section. A member, a resin member having a refractive index lower than that of the cladding, and a region where a distance from the outer surface of the cladding is equal to or less than a wavelength of light incident on the cladding in a region outside the outer surface of the cladding And a scatterer scattered in the space.
 本発明によれば、被覆の劣化又は焼損が生じる可能性、及び、樹脂部材の局所的な劣化又は焼損が生じる可能性を低下させ、光デバイスの信頼性を向上させることができる。 According to the present invention, it is possible to reduce the possibility of coating deterioration or burnout and the possibility of local deterioration or burnout of the resin member, thereby improving the reliability of the optical device.
本発明の第1の実施形態に係る光デバイスの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the optical device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光デバイスの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the optical device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る光デバイスの構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the optical device which concerns on the 3rd Embodiment of this invention. 本発明の第1~第3の実施形態に係る光デバイスを含むLDモジュールの構成を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration of an LD module including optical devices according to first to third embodiments of the present invention.
 〔第1の実施形態〕
 本発明の第1の実施形態について、図面に基づいて説明すれば以下の通りである。
[First Embodiment]
The first embodiment of the present invention will be described below with reference to the drawings.
 (光デバイス1の構成)
 図1は、本実施形態に係る光デバイス1の構成を示す縦断面図である。図1に示すように、光デバイス1は、光ファイバ10、樹脂部材20、透明部材30、及び放熱部材40を備えている。
(Configuration of optical device 1)
FIG. 1 is a longitudinal sectional view showing a configuration of an optical device 1 according to the present embodiment. As shown in FIG. 1, the optical device 1 includes an optical fiber 10, a resin member 20, a transparent member 30, and a heat dissipation member 40.
 光ファイバ10は、(1)コア11と、(2)コア11を取り囲む、コア11よりも屈折率の低いクラッド12と、(3)クラッド12を取り囲む被覆(不図示)とを備えている。光ファイバ10の入射端面10aの近傍には、被覆が除去された被覆除去区間が設けられている。図1には、光ファイバ10の被覆除去区間が示されている。 The optical fiber 10 includes (1) a core 11, (2) a clad 12 having a lower refractive index than the core 11 surrounding the core 11, and (3) a coating (not shown) surrounding the clad 12. In the vicinity of the incident end face 10a of the optical fiber 10, a coating removal section from which the coating has been removed is provided. FIG. 1 shows a coating removal section of the optical fiber 10.
 光ファイバ10には、LD(Laser Diode)等の光源から出射された波長λのレーザ光が入射端面10aを介して入射する。入射端面10aには、研磨加工が施されており、更に、AR(Anti Reflective)コーティングが施されている。 Laser light having a wavelength λ emitted from a light source such as an LD (Laser Diode) enters the optical fiber 10 through the incident end face 10a. The incident end face 10a is polished and further AR (Anti-Reflective) coating is applied.
 入射端面10aを介して光ファイバ10に入射する光の一部は、クラッド12に入射する。また、入射端面10aを介して光ファイバ10のコア11に入射した光のうち、入射角が光ファイバ10の受光角よりも大きい光は、入射端面10aの近傍においてコア11からクラッド12に漏出する。このように入射端面10a又はその近傍においてクラッド12に入射した光は、被覆除去区間外に到達すると被覆を発熱させ、被覆の劣化や焼損を招く。このため、入射端面10a又はその近傍においてクラッド12に入射した光は、被覆除去区間内において除去する必要がある。 Part of the light incident on the optical fiber 10 through the incident end face 10 a is incident on the cladding 12. Of the light incident on the core 11 of the optical fiber 10 through the incident end face 10a, light having an incident angle larger than the light receiving angle of the optical fiber 10 leaks from the core 11 to the cladding 12 in the vicinity of the incident end face 10a. . Thus, when the light incident on the clad 12 at or near the incident end face 10a reaches the outside of the coating removal section, the coating heats up, leading to deterioration or burnout of the coating. For this reason, it is necessary to remove the light incident on the clad 12 at or near the incident end face 10a in the coating removal section.
 樹脂部材20は、被覆除去区間において露出したクラッド12の外側面を覆う、クラッド12よりも屈折率の低い樹脂製の部材である。本実施形態においては、クラッド12と透明部材30とを接着する接着剤を樹脂部材20として用いる。樹脂部材20の屈折率がクラッド12の屈折率よりも低いため、クラッド12に入射した光は、入射端面10aの近傍において樹脂部材20へと漏出することなく、クラッド12を伝播する。 The resin member 20 is a resin member having a refractive index lower than that of the cladding 12 and covering the outer surface of the cladding 12 exposed in the coating removal section. In the present embodiment, an adhesive that bonds the clad 12 and the transparent member 30 is used as the resin member 20. Since the refractive index of the resin member 20 is lower than the refractive index of the cladding 12, the light incident on the cladding 12 propagates through the cladding 12 without leaking to the resin member 20 in the vicinity of the incident end face 10a.
 クラッド12を伝播する光の一部は、全反射境界となるクラッド12の外側面よりも外側にエバネッセント光として浸み出す。クラッド12からエバネッセント光が浸み出す領域は、クラッド12の外側面からの距離がクラッド12を伝播する光の波長λ以下となる領域である。 A part of the light propagating through the clad 12 oozes out as evanescent light outside the outer surface of the clad 12 serving as a total reflection boundary. The region where the evanescent light permeates from the clad 12 is a region where the distance from the outer surface of the clad 12 is equal to or less than the wavelength λ of the light propagating through the clad 12.
 樹脂部材20は、粒子状の散乱体31を埋設した透明部材30により取り囲まれている。透明部材30の屈折率は、樹脂部材20の屈折率よりも高い。透明部材30の材料は特に限定されないが、クラッド12を伝播する光の波長λにおける吸収率が低い材料であることが望ましい。本実施形態においては、光ファイバ10を挿通するための貫通孔が形成された樹脂製のフェルールを透明部材30として用いる。 The resin member 20 is surrounded by a transparent member 30 in which particulate scatterers 31 are embedded. The refractive index of the transparent member 30 is higher than the refractive index of the resin member 20. The material of the transparent member 30 is not particularly limited, but is desirably a material having a low absorptance at the wavelength λ of light propagating through the cladding 12. In the present embodiment, a resin ferrule in which a through hole for inserting the optical fiber 10 is formed is used as the transparent member 30.
 散乱体31は、透明部材30の内部に散在する、透明部材30とは異なる屈折率を有する粒子である。散乱体31の材料は特に限定されないが、クラッド12を伝播する波長λにおける吸収率が低い材料であることが望ましい。散乱体31の好適材料としては、石英、シリカ、アルミナなどが挙げられる。また、気泡を散乱体31として用いても構わない。 The scatterer 31 is a particle having a refractive index different from that of the transparent member 30 scattered inside the transparent member 30. The material of the scatterer 31 is not particularly limited, but a material having a low absorptance at the wavelength λ propagating through the cladding 12 is desirable. Suitable materials for the scatterer 31 include quartz, silica, alumina, and the like. Further, bubbles may be used as the scatterer 31.
 光デバイス1においては、図1に示すように、樹脂部材20の厚みd1を、クラッドを伝播する光の波長λよりも薄くしている。したがって、透明部材30に埋設された散乱体31は、クラッド12の外側面からの距離がクラッド12を伝播する光の波長λ以下となる領域、すなわち、エバネッセント光が浸み出す領域に散在することになる。これにより、クラッド12の外側面よりも外側に浸み出したエバネッセント光は、散乱体31に散乱され、その結果、クラッド12の外側面を離れてランダムな方向に伝播する伝播光に変換される。 In the optical device 1, as shown in FIG. 1, the thickness d1 of the resin member 20 is made thinner than the wavelength λ of the light propagating through the cladding. Therefore, the scatterers 31 embedded in the transparent member 30 are scattered in a region where the distance from the outer surface of the clad 12 is equal to or less than the wavelength λ of light propagating through the clad 12, that is, a region where evanescent light penetrates. become. As a result, the evanescent light that has oozed out of the outer surface of the cladding 12 is scattered by the scatterer 31 and, as a result, is converted into propagating light that travels away from the outer surface of the cladding 12 in a random direction. .
 放熱部材40は、透明部材30に当接するように配置されており、散乱体31により散乱されたエバネッセント光、すなわち、クラッド12の外側面を離れてランダムな方向に伝播する伝播光を熱に変換する。放熱部材40の材料は、熱伝導率が高い材料、例えば金属であることが望ましい。 The heat dissipating member 40 is disposed so as to contact the transparent member 30, and converts the evanescent light scattered by the scatterer 31, that is, the propagating light propagating in a random direction away from the outer surface of the clad 12 into heat. To do. The material of the heat radiating member 40 is desirably a material having high thermal conductivity, for example, a metal.
 上記のように構成された光デバイス1によれば、クラッド12からの光の漏出を、クラッド12が樹脂部材20で覆われた区間の入射側の端部で集中的に生じさせるのではなく、樹脂部材20が透明部材30で覆われた区間の全体で分散的に生じさせることができる。したがって、被覆除去区間外において被覆の劣化又は焼損が生じる可能性のみならず、被覆除去区間内において樹脂部材20の局所的な劣化又は焼損が生じる可能性をも低下させることができる。 According to the optical device 1 configured as described above, leakage of light from the clad 12 is not caused intensively at the end portion on the incident side of the section where the clad 12 is covered with the resin member 20, The resin member 20 can be generated in a distributed manner throughout the entire section covered with the transparent member 30. Therefore, it is possible to reduce not only the possibility of coating deterioration or burning outside the coating removal section, but also the possibility of local deterioration or burning of the resin member 20 within the coating removal section.
 さらに、光デバイス1は、放熱部材40を備えている。放熱部材40に入射する光は、散乱体31により散乱されているので、放熱部材40の一部分に光が集中して局所的な発熱を生じることがない。これにより、放熱部材40の局所的な発熱により、光デバイス1が劣化する事態を防止することができる。 Furthermore, the optical device 1 includes a heat radiating member 40. Since the light incident on the heat radiating member 40 is scattered by the scatterer 31, the light does not concentrate on a part of the heat radiating member 40 and local heat is not generated. Thereby, the situation where the optical device 1 deteriorates due to local heat generation of the heat radiating member 40 can be prevented.
 なお、本実施形態においてはLD等の光源から出射されたレーザ光を光ファイバ10に入射させる構成が想定されているが、本発明はこれに限定されるものではない。すなわち、例えば、光ファイバ10に融着接続された他の光ファイバから出射された光を光ファイバ10に入射させる構成を採用しても構わない。上記の他の光ファイバが増幅用のダブルクラッドファイバである場合には、このダブルクラッドファイバのコアに添加された活性元素に吸収されずに残った励起光(残留励起光)が光ファイバ10のクラッド12に入射することになる。この場合には、この残留励起光を被覆除去区間において徐々に漏出させることができる。 In the present embodiment, it is assumed that a laser beam emitted from a light source such as an LD is incident on the optical fiber 10, but the present invention is not limited to this. That is, for example, a configuration in which light emitted from another optical fiber fusion-connected to the optical fiber 10 is incident on the optical fiber 10 may be employed. When the other optical fiber is a double clad fiber for amplification, the pumping light (residual pumping light) remaining without being absorbed by the active element added to the core of the double clad fiber is the optical fiber 10. The light enters the clad 12. In this case, the residual excitation light can be gradually leaked in the coating removal section.
 なお、本実施形態に係る光デバイス1においては、粒子状の散乱体31が埋設された透明部材30で樹脂部材20を取り囲む構成を採用しているが、本発明はこれに限定されない。例えば、多結晶構造体で樹脂部材20を取り囲む構成を採用しても、上述したものと同じ効果が得られる。多結晶構造体の内部には、粒界が散在しており、この粒界が、透明部材30に埋設された粒子状の散乱体31と同様に機能するためである。ジルコニア製のフェルールは、このような多結晶構造体の一例である。 In addition, in the optical device 1 which concerns on this embodiment, although the structure which surrounds the resin member 20 with the transparent member 30 with which the particulate-form scatterer 31 was embedded is employ | adopted, this invention is not limited to this. For example, even if a configuration in which the resin member 20 is surrounded by a polycrystalline structure is employed, the same effect as described above can be obtained. This is because grain boundaries are scattered inside the polycrystalline structure, and these grain boundaries function in the same manner as the particulate scatterers 31 embedded in the transparent member 30. A zirconia ferrule is an example of such a polycrystalline structure.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について、図面に基づいて説明する。図2は、本実施形態に係る光デバイス1の構成を示す縦断面図である。なお、以下の説明において、上述の実施形態と同様の構成については、同じ部材番号を付し、その説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described based on the drawings. FIG. 2 is a longitudinal sectional view showing the configuration of the optical device 1 according to this embodiment. In the following description, the same components as those in the above-described embodiment are denoted by the same member numbers, and the description thereof is omitted.
 図2に示すように、本実施形態に係る光デバイス1においては、樹脂部材20’の厚みが、第1の実施形態に係る光デバイス1の樹脂部材20と異なっている。図2に示すように、樹脂部材20’は、光ファイバ10の入射端面10a側において、厚みd2がクラッド12を伝播する光の波長λよりも大きくなっている。樹脂部材20’の厚みは、光ファイバ10の入射端面10aから遠ざかるにつれて薄くなり、クラッド12を伝播する光の波長λよりも薄い特定の厚み(図2における厚みd1)に収束する構造を有している。 As shown in FIG. 2, in the optical device 1 according to the present embodiment, the thickness of the resin member 20 'is different from that of the resin member 20 of the optical device 1 according to the first embodiment. As shown in FIG. 2, the resin member 20 ′ has a thickness d <b> 2 larger than the wavelength λ of light propagating through the cladding 12 on the incident end face 10 a side of the optical fiber 10. The thickness of the resin member 20 ′ decreases as it moves away from the incident end face 10 a of the optical fiber 10, and has a structure that converges to a specific thickness (thickness d 1 in FIG. 2) that is thinner than the wavelength λ of light propagating through the cladding 12. ing.
 なお、樹脂部材20’の構造は、図2に示す構造に限定されるものではなく、透明部材30により取り囲まれた区間の少なくとも一部において、その厚みがクラッド12を伝播する光の波長λよりも薄くなればよい。樹脂部材20’の厚みがクラッド12を伝播する光の波長λよりも薄くなる区間では、透明部材30に埋設された散乱体31が、クラッド12の外側面からの距離がクラッド12を伝播する光の波長λ以下となる領域、すなわち、エバネッセント光が浸み出す領域に散在することになる。 The structure of the resin member 20 ′ is not limited to the structure shown in FIG. 2, and the thickness of at least a part of the section surrounded by the transparent member 30 is greater than the wavelength λ of light propagating through the cladding 12. Should be thinner. In a section where the thickness of the resin member 20 ′ is thinner than the wavelength λ of light propagating through the cladding 12, the scatterer 31 embedded in the transparent member 30 is light whose distance from the outer surface of the cladding 12 propagates through the cladding 12. Are scattered in a region where the wavelength λ is equal to or less than the wavelength λ, that is, a region where evanescent light oozes out.
 本実施形態に係る光デバイス1によれば、クラッド12からの光の漏出を、クラッド12が樹脂部材20’で覆われた区間の入射側の端部で集中的に生じさせるのではなく、樹脂部材20’の厚みがクラッド12を伝播する光の波長λよりも薄くなる区間の全体で分散的に生じさせることができる。したがって、第1の実施形態に係る光デバイス1と同様、被覆除去区間外において被覆の劣化又は焼損が生じる可能性のみならず、被覆除去区間内において樹脂部材20’の局所的な劣化又は焼損が生じる可能性をも低下させることができる。 According to the optical device 1 according to the present embodiment, the leakage of light from the clad 12 is not caused intensively at the incident side end of the section where the clad 12 is covered with the resin member 20 ′, but the resin. The thickness of the member 20 ′ can be generated in a dispersive manner in the entire section where the thickness of the member 20 ′ is thinner than the wavelength λ of light propagating through the cladding 12. Therefore, similarly to the optical device 1 according to the first embodiment, not only the deterioration or burning of the coating may occur outside the coating removal section, but also the local deterioration or burning of the resin member 20 ′ may occur within the coating removal section. The possibility of occurring can also be reduced.
 なお、本実施形態に係る光デバイス1においても、粒子状の散乱体31が埋設された透明部材30で樹脂部材20を取り囲む構成を、多結晶構造体で樹脂部材20を取り囲む構成に置き換えてもよい。 In the optical device 1 according to the present embodiment, the configuration in which the resin member 20 is surrounded by the transparent member 30 in which the particulate scatterers 31 are embedded may be replaced with a configuration in which the resin member 20 is surrounded by a polycrystalline structure. Good.
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について、図面に基づいて説明する。図3は、本実施形態に係る光デバイス1の構成を示す縦断面図である。なお、以下の説明において、上述の実施形態と同様の構成については、同じ部材番号を付し、その説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a longitudinal sectional view showing the configuration of the optical device 1 according to this embodiment. In the following description, the same components as those in the above-described embodiment are denoted by the same member numbers, and the description thereof is omitted.
 図3に示すように、本実施形態に係る光デバイス1は、樹脂部材20”の内部に散乱体21が埋設されており、透明部材30に代えて保護体50を備えている点において、第1の実施形態に係る光デバイス1と異なっている。 As shown in FIG. 3, the optical device 1 according to this embodiment is the first in that a scatterer 21 is embedded in a resin member 20 ″ and a protective body 50 is provided instead of the transparent member 30. This is different from the optical device 1 according to the first embodiment.
 樹脂部材20”は、被覆除去区間において露出したクラッド12の外側面を覆う樹脂製の部材である。樹脂部材20”の屈折率は、クラッド12の屈折率よりも低い。このため、クラッド12に入射した光は、入射端面10aの近傍において樹脂部材20”へと漏出することなく、クラッド12を伝播する。なお、樹脂部材20”の厚みは、クラッド12を伝播する光の波長λよりも薄いことを要さない。 The resin member 20 ″ is a resin member that covers the outer surface of the cladding 12 exposed in the coating removal section. The refractive index of the resin member 20 ″ is lower than the refractive index of the cladding 12. Therefore, the light incident on the clad 12 propagates through the clad 12 without leaking to the resin member 20 ″ in the vicinity of the incident end face 10a. The thickness of the resin member 20 ″ is the light propagating through the clad 12. It is not necessary to be thinner than the wavelength λ.
 散乱体21は、樹脂部材20”の内部に散在する、樹脂部材20”とは異なる屈折率を有する粒子である。散乱体21の材料は特に限定されないが、クラッド12を伝播する波長λにおける吸収率が低い材料であることが望ましい。散乱体21の好適材料としては、石英、シリカ、アルミナなどが挙げられる。また、気泡を散乱体21として用いても構わない。 The scatterer 21 is a particle having a refractive index different from that of the resin member 20 ″ scattered inside the resin member 20 ″. The material of the scatterer 21 is not particularly limited, but a material having a low absorptance at the wavelength λ propagating through the cladding 12 is desirable. Suitable materials for the scatterer 21 include quartz, silica, alumina and the like. In addition, bubbles may be used as the scatterer 21.
 本実施形態に係る光デバイス1においては、図3に示すように、被覆除去区間において露出したクラッド12の外側面を覆う樹脂部材20”の内部に散乱体21を埋設している。したがって、樹脂部材20”に埋設された散乱体21は、クラッド12の外側面からの距離がクラッド12を伝播する光の波長λ以下となる領域、すなわち、エバネッセント光が浸み出す領域に散在することになる。これにより、クラッド12の外側面よりも外側に浸み出したエバネッセント光は、散乱体21に散乱され、その結果、クラッド12の外側面を離れてランダムな方向に伝播する伝播光に変換される。 In the optical device 1 according to the present embodiment, as shown in FIG. 3, the scatterer 21 is embedded in the resin member 20 ″ that covers the outer surface of the clad 12 exposed in the coating removal section. The scatterers 21 embedded in the member 20 ″ are scattered in a region where the distance from the outer surface of the clad 12 is equal to or less than the wavelength λ of light propagating through the clad 12, that is, a region where evanescent light oozes out. . As a result, the evanescent light that has oozed out of the outer surface of the clad 12 is scattered by the scatterer 21, and as a result, is converted into propagating light that leaves the outer surface of the clad 12 and propagates in a random direction. .
 保護体50は、光ファイバ10を保護するための部材であり、樹脂部材20”を取り囲むように設けられる。 The protector 50 is a member for protecting the optical fiber 10 and is provided so as to surround the resin member 20 ″.
 本実施形態に係る光デバイス1によれば、クラッド12からの光の漏出を、クラッド12が樹脂部材20”で覆われた区間の入射側の端部で集中的に生じさせるのではなく、クラッド12が樹脂部材20”で覆われた区間の全体で分散的に生じさせることができる。したがって、上述の実施形態に係る光デバイス1と同様、被覆除去区間外において被覆の劣化又は焼損が生じる可能性のみならず、被覆除去区間内において樹脂部材20の局所的な劣化又は焼損が生じる可能性をも低下させることができる。 According to the optical device 1 according to the present embodiment, light leakage from the clad 12 is not caused in a concentrated manner at the incident side end of the section in which the clad 12 is covered with the resin member 20 ″. 12 can be generated in a distributed manner throughout the entire section covered with the resin member 20 ″. Therefore, similarly to the optical device 1 according to the above-described embodiment, not only the coating deterioration or burning may occur outside the coating removal section, but also the local deterioration or burning of the resin member 20 may occur within the coating removal section. The sex can also be reduced.
 〔光モジュール〕
 次に、第1の実施形態に係る光デバイス1を備えたLDモジュール100について、図4を参照して説明する。図4は、LDモジュール100の断面図である。
[Optical module]
Next, the LD module 100 including the optical device 1 according to the first embodiment will be described with reference to FIG. FIG. 4 is a cross-sectional view of the LD module 100.
 図4に示すように、LDモジュール100は、第1の実施形態に係る光デバイス1の他に、筐体2、LD(Laser Diode)マウント3、LD(Laser Diode)4、電極5、導線6、レンズマウント7、レンズ8、及びスリーブ60を備えている。 As shown in FIG. 4, the LD module 100 includes an optical device 1 according to the first embodiment, a housing 2, an LD (Laser Diode) mount 3, an LD (Laser Diode) 4, an electrode 5, and a conductor 6. , A lens mount 7, a lens 8, and a sleeve 60.
 スリーブ60は、光デバイス1を収容する筒状の部材である。本実施形態において、スリーブ60は、金属製であり、(1)円筒状の小径部61と、(2)中心軸が小径部61と一致し、かつ、内径及び外径が小径部61よりも大きい円筒状の大径部62と、(3)大径部62の外側面の端部(小径部側と反対側の端部)に設けられた鍔部63とにより構成されている。 The sleeve 60 is a cylindrical member that houses the optical device 1. In this embodiment, the sleeve 60 is made of metal, (1) a cylindrical small-diameter portion 61, and (2) a central axis coincides with the small-diameter portion 61, and an inner diameter and an outer diameter are smaller than those of the small-diameter portion 61. A large cylindrical large-diameter portion 62 and (3) a flange portion 63 provided at an end of the outer surface of the large-diameter portion 62 (an end opposite to the small-diameter portion).
 スリーブ60の小径部61には、光デバイス1の被覆除去区間のうち、樹脂部材20及び透明部材30により被覆されていない区間が挿入される。このため、小径部61の内径は、光ファイバ10のクラッド径よりも大きくなるように設計されている。なお、スリーブ60の内側面と光ファイバ10の外側面との間の隙間には、接着剤が充填される。一方、スリーブ60の大径部62には、光デバイス1の被覆除去区間のうち、樹脂部材20及び透明部材30により被覆されている区間が挿嵌される。このため、大径部62の内径は、透明部材30の外径と略一致するように設計されている。スリーブ60は、上述した放熱部材40としても機能する。 The section that is not covered with the resin member 20 and the transparent member 30 among the covering removal section of the optical device 1 is inserted into the small diameter portion 61 of the sleeve 60. For this reason, the inner diameter of the small diameter portion 61 is designed to be larger than the cladding diameter of the optical fiber 10. The gap between the inner surface of the sleeve 60 and the outer surface of the optical fiber 10 is filled with an adhesive. On the other hand, a section covered with the resin member 20 and the transparent member 30 among the covering removal section of the optical device 1 is inserted into the large diameter portion 62 of the sleeve 60. For this reason, the inner diameter of the large-diameter portion 62 is designed to substantially match the outer diameter of the transparent member 30. The sleeve 60 also functions as the heat dissipation member 40 described above.
 筐体2は、底板2a、前側壁2b、後側壁2c、右側壁(不図示)、左側壁(不図示)、及び天板2dにより構成される直方体の箱状筐体である。筐体2の前側壁2bには、上述したスリーブ60を介して光デバイス1が挿嵌され、前側壁2bは、スリーブ60と共に、上述した放熱部材40としても機能する。 The housing 2 is a rectangular parallelepiped box-shaped housing composed of a bottom plate 2a, a front side wall 2b, a rear side wall 2c, a right side wall (not shown), a left side wall (not shown), and a top plate 2d. The optical device 1 is inserted into the front side wall 2 b of the housing 2 via the sleeve 60 described above, and the front side wall 2 b also functions as the heat dissipation member 40 described above together with the sleeve 60.
 筐体2の底板2aには、LDマウント3が載置され、更に、LDマウント3には、LD4が載置される。このLD4は、波長λのレーザ光Lを出力する光源として機能する。また、筐体2の底板2aには、レンズマウント7が載置され、更に、レンズマウント7には、レンズ8が載置される。このレンズ8は、LD4から出力されたレーザ光Lを集束する。 The LD mount 3 is placed on the bottom plate 2 a of the housing 2, and the LD 4 is placed on the LD mount 3. The LD 4 functions as a light source that outputs a laser beam L having a wavelength λ. A lens mount 7 is placed on the bottom plate 2 a of the housing 2, and a lens 8 is placed on the lens mount 7. The lens 8 focuses the laser light L output from the LD 4.
 筐体2の前側壁2bには、光ファイバ10の入射端面10aがレンズ8を介してLD4の出射端面と対向するように、光デバイス1が挿嵌される。レンズ8により集束されたレーザ光Lは、光ファイバ10のコア11及びクラッド12の両方に入射する。 The optical device 1 is inserted into the front side wall 2 b of the housing 2 so that the incident end face 10 a of the optical fiber 10 faces the emission end face of the LD 4 through the lens 8. The laser light L focused by the lens 8 is incident on both the core 11 and the clad 12 of the optical fiber 10.
 筐体2の後側壁2cには、電極5が挿嵌され、電極5には、導線6を介してLD4が接続される。筐体2の外部において電極5を電流源と接続すれば、LD4に対して電流を供給することができる。 The electrode 5 is inserted into the rear side wall 2 c of the housing 2, and the LD 4 is connected to the electrode 5 through the conductive wire 6. If the electrode 5 is connected to a current source outside the housing 2, current can be supplied to the LD 4.
 なお、ここでは、第1の実施形態に係る光デバイス1を備えたLDモジュール100について説明したが、LDモジュール100に搭載可能な光デバイスは、第1の実施形態に係る光デバイス1に限定されない。すなわち、第1の実施形態に係る光デバイス1に代えて、例えば、第2の実施形態に係る光デバイス1又は第3の実施形態に係る光デバイス1をLDモジュールに搭載することができる。 Here, although the LD module 100 including the optical device 1 according to the first embodiment has been described, the optical device that can be mounted on the LD module 100 is not limited to the optical device 1 according to the first embodiment. . That is, instead of the optical device 1 according to the first embodiment, for example, the optical device 1 according to the second embodiment or the optical device 1 according to the third embodiment can be mounted on the LD module.
 〔まとめ〕
 上記各実施形態に係る光デバイスは、入射端面近傍に被覆除去区間が設けられた光ファイバと、上記被覆除去区間において露出した上記光ファイバのクラッドの外側面を覆う樹脂部材であって、上記クラッドよりも屈折率の低い樹脂部材と、上記クラッドの外側面よりも外側の領域において、上記クラッドの外側面からの距離が上記クラッドに入射する光の波長以下となる領域に散在する散乱体と、を備えている、ことを特徴としている。
[Summary]
The optical device according to each of the above embodiments is an optical fiber provided with a coating removal section in the vicinity of an incident end face, and a resin member that covers an outer surface of the cladding of the optical fiber exposed in the coating removal section. A resin member having a lower refractive index, and in a region outside the outer surface of the cladding, a scatterer scattered in a region where the distance from the outer surface of the cladding is equal to or less than the wavelength of light incident on the cladding; It is characterized by having.
 上記の構成においては、上記被覆除去区間において露出した上記クラッドの外側面が上記クラッドよりも屈折率の低い上記樹脂部材で覆われている。このため、上記クラッドに入射した光(上記入射端面において上記クラッドに入射した光、及び、上記入射端面において上記光フィアバのコアに入射した後、上記コアから上記クラッドへと漏出した光)は、上記樹脂部材で覆われた区間の入射側の端部で集中的に上記クラッドから漏出することなく、上記クラッドを伝播する。 In the above configuration, the outer surface of the cladding exposed in the coating removal section is covered with the resin member having a refractive index lower than that of the cladding. For this reason, the light incident on the clad (light incident on the clad at the incident end face and light leaked from the core into the clad after being incident on the core of the optical fiber at the incident end face) The clad propagates without leaking from the clad intensively at the incident side end of the section covered with the resin member.
 上記クラッドを伝播する光は、全反射境界となる上記クラッドの外側面よりも外側にエバネッセント光として浸み出す。上記クラッドからエバネッセント光が浸み出す領域は、上記クラッドの外側面よりも外側の領域において、上記クラッドの外側面からの距離が上記クラッドに入射する光の波長以下となる領域である。 The light propagating through the clad oozes out as evanescent light outside the outer surface of the clad that becomes a total reflection boundary. The region where the evanescent light oozes from the cladding is a region where the distance from the outer surface of the cladding is equal to or less than the wavelength of light incident on the cladding in the region outside the outer surface of the cladding.
 上記の構成においては、上記クラッドからエバネッセント光が浸み出す領域に、散乱体が散在している。したがって、上記クラッドから浸み出したエバネッセント光は、上記散乱体に散乱され、その結果、上記クラッドの外側面を離れてランダムな方向に伝播する伝播光に変換される。このため、上記クラッドに入射した光は、上記クラッドを伝播する過程で上記クラッドから徐々に漏出する。 In the above configuration, scatterers are scattered in a region where evanescent light oozes from the cladding. Therefore, the evanescent light that has oozed out of the cladding is scattered by the scatterer, and as a result, is converted into propagating light that leaves the outer surface of the cladding and propagates in a random direction. For this reason, light incident on the clad gradually leaks from the clad in the process of propagating through the clad.
 以上のように、上記の構成によれば、上記クラッドからの光の漏出を、上記樹脂部材で覆われた区間の入射側の端部で集中的に生じさせるのではなく、上記クラッドの外側面からの距離が上記クラッドに入射する光の波長以下となる領域に上記散乱体が散在する区間の全体で分散的に生じさせることができる。したがって、上記被覆除去区間外において上記被覆の劣化又は焼損が生じる可能性のみならず、上記被覆除去区間内において上記樹脂部材の局所的な劣化又は焼損が生じる可能性をも低下させることができる。 As described above, according to the above-described configuration, light leakage from the cladding is not caused to occur intensively at the end portion on the incident side of the section covered with the resin member, but the outer surface of the cladding. Can be generated in a dispersive manner over the entire section in which the scatterers are scattered in a region where the distance from the light becomes equal to or less than the wavelength of light incident on the clad. Therefore, not only the possibility of deterioration or burning of the coating outside the coating removal section but also the possibility of local deterioration or burning of the resin member within the coating removal section can be reduced.
 なお、上記光デバイスにおいて、上記散乱体は、上記樹脂部材に埋設された粒子であってもよいし(第3の実施形態参照)、上記樹脂部材を取り囲む透明部材に埋設された粒子であってもよい(第1の実施形態及び第2の実施形態参照)。後者の場合には、上記樹脂部材が上記透明部材で取り囲まれた区間の全部又は一部において、上記樹脂部材の厚みを上記クラッドに入射する光の波長よりも薄くすれば、上記クラッドからエバネッセント光が浸み出す領域に上記散乱体(粒子)を散在させることができる。 In the optical device, the scatterer may be a particle embedded in the resin member (see the third embodiment), or may be a particle embedded in a transparent member surrounding the resin member. It is also possible (see the first embodiment and the second embodiment). In the latter case, if the thickness of the resin member is made thinner than the wavelength of light incident on the clad in all or part of the section where the resin member is surrounded by the transparent member, the evanescent light is emitted from the clad. The scatterers (particles) can be scattered in the area where the oozes out.
 また、上記光デバイスにおいて、上記散乱体は、上記樹脂部材を取り囲む多結晶構造体の粒界であってもよい。この場合には、上記樹脂部材が上記多結晶構造体で取り囲まれた区間の全部又は一部において、上記樹脂部材の厚みを上記クラッドに入射する光の波長よりも薄くすれば、上記クラッドからエバネッセント光が浸み出す領域に上記散乱体(粒界)を散在させることができる。 In the optical device, the scatterer may be a grain boundary of a polycrystalline structure surrounding the resin member. In this case, if the thickness of the resin member is made thinner than the wavelength of light incident on the clad in all or part of the section surrounded by the polycrystalline structure, the clad is evanescent from the clad. The scatterers (grain boundaries) can be scattered in the region where light oozes out.
 上記光デバイスは、上記散乱体により散乱された光を熱に変換して放散する放熱部材を更に備えている、ことが好ましい。 It is preferable that the optical device further includes a heat dissipation member that converts the light scattered by the scatterer into heat and dissipates it.
 上記の構成によれば、上記散乱体により散乱された光を、効率的に熱化して放散することができる。 According to the above configuration, the light scattered by the scatterer can be efficiently heated and dissipated.
 なお、上記光デバイスと、上記光ファイバに入射させる光を出力する光源とを備えた光モジュールも本発明の範疇に含まれる。この場合には、上記散乱体を、上記クラッドの外側面よりも外側の領域において、上記クラッドの外側面からの距離が上記光源から出力される光の波長以下となる領域に散在させればよい。 It should be noted that an optical module including the optical device and a light source that outputs light incident on the optical fiber is also included in the scope of the present invention. In this case, the scatterers may be dispersed in a region where the distance from the outer surface of the cladding is equal to or less than the wavelength of the light output from the light source in a region outside the outer surface of the cladding. .
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional Notes]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、レーザ光を伝送する光ファイバを有する光デバイスに広く適用することができる。例えば、通信用又は加工用の光モジュールに用いる光デバイスに好適である。 The present invention can be widely applied to optical devices having optical fibers that transmit laser light. For example, it is suitable for an optical device used in an optical module for communication or processing.
 1          光デバイス
 10         光ファイバ
 11         コア
 10a        入射端面
 12         クラッド
 20、20’、20” 樹脂部材
 21         散乱体
 30         透明部材
 31         散乱体
 40         放熱部材
 50         保護体
 100        LDモジュール(光モジュール)
 2          筐体
 3          LDマウント
 4          LD(光源)
 5          電極
 6          導線
 7          レンズマウント
 8          レンズ
 60         スリーブ
DESCRIPTION OF SYMBOLS 1 Optical device 10 Optical fiber 11 Core 10a Incident end surface 12 Cladding 20, 20 ', 20 "Resin member 21 Scatter 30 Transparent member 31 Scatter 40 Heat dissipation member 50 Protection body 100 LD module (optical module)
2 Housing 3 LD mount 4 LD (light source)
5 Electrode 6 Conductor 7 Lens mount 8 Lens 60 Sleeve

Claims (6)

  1.  入射端面近傍に被覆除去区間が設けられた光ファイバと、
     上記被覆除去区間において露出した上記光ファイバのクラッドの外側面を覆う樹脂部材であって、上記クラッドよりも屈折率の低い樹脂部材と、
     上記クラッドの外側面よりも外側の領域において、上記クラッドの外側面からの距離が上記クラッドに入射する光の波長以下となる領域に散在する散乱体と、を備えている、
    ことを特徴とする光デバイス。
    An optical fiber provided with a coating removal section in the vicinity of the incident end face;
    A resin member covering the outer surface of the cladding of the optical fiber exposed in the coating removal section, a resin member having a lower refractive index than the cladding;
    A scatterer scattered in a region where the distance from the outer surface of the cladding is equal to or less than the wavelength of light incident on the cladding in a region outside the outer surface of the cladding;
    An optical device characterized by that.
  2.  上記散乱体は、上記樹脂部材を取り囲む透明部材に埋設された粒子であり、
     上記樹脂部材の厚みは、上記透明部材により取り囲まれた区間の全部又は一部において、上記クラッドに入射する光の波長よりも薄い、
    ことを特徴とする請求項1に記載の光デバイス。
    The scatterer is a particle embedded in a transparent member surrounding the resin member,
    The thickness of the resin member is thinner than the wavelength of light incident on the clad in all or part of the section surrounded by the transparent member,
    The optical device according to claim 1.
  3.  上記散乱体は、上記樹脂部材を取り囲む多結晶構造体の粒界であり、
     上記樹脂部材の厚みは、上記多結晶構造体により取り囲まれた区間の全部又は一部において、上記クラッドに入射する光の波長よりも薄い、
    ことを特徴とする請求項1に記載の光デバイス。
    The scatterer is a grain boundary of a polycrystalline structure surrounding the resin member,
    The thickness of the resin member is thinner than the wavelength of light incident on the clad in all or part of the section surrounded by the polycrystalline structure,
    The optical device according to claim 1.
  4.  上記散乱体は、上記樹脂部材に埋設された粒子である、
    ことを特徴とする請求項1に記載の光デバイス。
    The scatterer is a particle embedded in the resin member.
    The optical device according to claim 1.
  5.  上記散乱体により散乱された光を熱に変換して放散する放熱部材を更に備えている、
    ことを特徴とする請求項1~4の何れか1項に記載の光デバイス。
    It further comprises a heat dissipation member that converts the light scattered by the scatterer into heat and dissipates it,
    The optical device according to any one of claims 1 to 4, wherein:
  6.  請求項1~5の何れか1項に記載の光デバイスと、上記光ファイバに入射させる光を出力する光源とを備えた光モジュールにおいて、
     上記散乱体は、上記クラッドの外側面よりも外側の領域において、上記クラッドの外側面からの距離が上記光源から出力される光の波長以下となる領域に散在している、
    ことを特徴とする光モジュール。
    An optical module comprising the optical device according to any one of claims 1 to 5 and a light source that outputs light incident on the optical fiber.
    The scatterers are scattered in a region outside the outer surface of the cladding in a region where the distance from the outer surface of the cladding is equal to or less than the wavelength of light output from the light source,
    An optical module characterized by that.
PCT/JP2015/064617 2014-07-01 2015-05-21 Optical device, and optical module WO2016002374A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-136225 2014-07-01
JP2014136225A JP5848803B1 (en) 2014-07-01 2014-07-01 Optical device and optical module

Publications (1)

Publication Number Publication Date
WO2016002374A1 true WO2016002374A1 (en) 2016-01-07

Family

ID=55018928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064617 WO2016002374A1 (en) 2014-07-01 2015-05-21 Optical device, and optical module

Country Status (2)

Country Link
JP (1) JP5848803B1 (en)
WO (1) WO2016002374A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6718283B2 (en) * 2016-04-01 2020-07-08 株式会社フジクラ Optical fiber connection
CN106772787B (en) * 2017-02-08 2019-04-05 中科先为激光科技(北京)有限公司 For filtering out the optical fiber of cladding light and using its cladding light stripper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0162509U (en) * 1987-10-16 1989-04-21
JPH0961669A (en) * 1995-08-23 1997-03-07 Miyachi Technos Corp Optical fiber connector
JP2008310277A (en) * 2007-05-15 2008-12-25 Fujikura Ltd Optical fiber fusion splice structure
WO2013096364A1 (en) * 2011-12-19 2013-06-27 Ipg Photonics Corporation High power fiber laser system with distributive mode absorber
JP2013257362A (en) * 2012-06-11 2013-12-26 Fujikura Ltd Laser module
JP2015132773A (en) * 2014-01-15 2015-07-23 株式会社フジクラ Optical device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0162509U (en) * 1987-10-16 1989-04-21
JPH0961669A (en) * 1995-08-23 1997-03-07 Miyachi Technos Corp Optical fiber connector
JP2008310277A (en) * 2007-05-15 2008-12-25 Fujikura Ltd Optical fiber fusion splice structure
WO2013096364A1 (en) * 2011-12-19 2013-06-27 Ipg Photonics Corporation High power fiber laser system with distributive mode absorber
JP2013257362A (en) * 2012-06-11 2013-12-26 Fujikura Ltd Laser module
JP2015132773A (en) * 2014-01-15 2015-07-23 株式会社フジクラ Optical device and manufacturing method thereof

Also Published As

Publication number Publication date
JP5848803B1 (en) 2016-01-27
JP2016014745A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP5865413B2 (en) Energy dissipation package for high power optical fiber member and packaging method
JP6580995B2 (en) Low mode high power fiber coupler
JP4954737B2 (en) Optical amplification system, optical fiber laser and optical fiber amplifier using the same
JP5648131B2 (en) Packaged optical fiber component and manufacturing method thereof
JP5814315B2 (en) Optical combiner and laser device using the same
JP6387356B2 (en) Ultra high power fiber laser system with multimode-multimode fiber coupler
US7609921B2 (en) Optical fiber part and laser processing machine
JP6356856B1 (en) Clad mode light removal structure and laser device
JP2016533543A (en) Optoelectronic assembly device
WO2013153734A1 (en) Fiber component and laser device
US7400794B1 (en) Transport optical fiber for Q-switched lasers
WO2015107736A1 (en) Optical device and manufacturing method therefor
JP5820034B2 (en) Optical device and fiber laser apparatus
US9257810B2 (en) Optical device and fiber laser device
JP6266390B2 (en) Glass buffer
WO2016002374A1 (en) Optical device, and optical module
JP2014193806A5 (en)
JP6858137B2 (en) Optical module and optical output device
EP3447552A1 (en) Optical component, fiber laser unit, and fiber laser system
KR101853775B1 (en) Pulse fiber laser device
CN115176183A (en) Optical coupler and optical output device
WO2017099056A1 (en) Optical fiber drawer structure and optical module
JP2014029548A (en) Protection structure for coating end part of optical fiber, laser light source device, and protection method for coating end part of optical fiber
WO2020105553A1 (en) Cladding mode light stripping structure and laser device
JP5579207B2 (en) Optical fiber movement regulation structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815048

Country of ref document: EP

Kind code of ref document: A1