WO2016000575A1 - Magnesium alloy, prepairing method and use thereof - Google Patents

Magnesium alloy, prepairing method and use thereof Download PDF

Info

Publication number
WO2016000575A1
WO2016000575A1 PCT/CN2015/082552 CN2015082552W WO2016000575A1 WO 2016000575 A1 WO2016000575 A1 WO 2016000575A1 CN 2015082552 W CN2015082552 W CN 2015082552W WO 2016000575 A1 WO2016000575 A1 WO 2016000575A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
present disclosure
content
total weight
alloy
Prior art date
Application number
PCT/CN2015/082552
Other languages
French (fr)
Inventor
Faliang Zhang
Youping REN
Qing Gong
Original Assignee
Byd Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Company Limited filed Critical Byd Company Limited
Publication of WO2016000575A1 publication Critical patent/WO2016000575A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent

Definitions

  • the present disclosure relates to alloys, more particularly relates to a magnesium alloy and a method of preparing the magnesium alloy.
  • Magnesium (hereinafter, magnesium may be referred to as “Mg” ) has significant features such as light weight to be used in all of the engineering metals, and small density of 1.78 g/cm 3 , which is about 2/9 of that of steel and 2/3 of that of aluminum (hereinafter, aluminum may be referred to as “Al” ) , and Mg is the lightest metal material with an engineering application value at present.
  • a magnesium alloy has a relative high specific strength, a relative high specific stiffness, a better shock resistance performance and a higher resistance to radiation. As electronic products become thinner and lighter and functions thereof become more and more diverse, a magnesium alloy with a high strength and high heat conductivity becomes an important candidate among structure materials.
  • a conventional die casting magnesium alloy for electronic products relates to AZ91 series alloy, which has a good casting property and mechanical strength, and the strength thereof may be superior to that of ZL104 aluminum alloy, thus being applied widely.
  • the heat conductivity coefficient of AZ91 series alloy is only about 70 W/ (m ⁇ K) , far less than the heat conductivity of 100 W/ (m ⁇ K) to cast aluminum alloy. Therefore, use of magnesium alloy with a low heat conductivity as a component of the electronic product may greatly influence the heat dissipation requirement on the electronic product.
  • a magnesium alloy may need a relatively good corrosion resistance to meet processing requirements and the usage requirement.
  • Embodiments of the present disclosure seek to solve at least one of the problems existing in the prior art to at least some extent, such as low heat conductivity coefficient. Accordingly, the present disclosure aims to provide a magnesium alloy with not only strong mechanical property but also excellent corrosion resistance and high heat conductivity coefficient.
  • a magnesium alloy based on a total weight of the magnesium alloy, comprising: about 0.2-1.35wt%of Al; about 0.05-3wt%of Mn; about 0.1-2wt%of Si; about 0-0.005wt%of Fe; about 0-0.01wt%of Cu; about 0-0.01wt%of Ni; about 0-0.01wt%of Co; about 0-1wt%of a rare earth element; about 0-1wt%of Zn; about 0-0.1wt%of Be; about 0-1wt%of Zr; about 0-0.005wt%of Ca; 0-0.005wt%of Sn; and about 90.505-99.65wt%of Mg.
  • a magnesium alloy based on a total weight of the magnesium alloy, comprising: about 0.2-1.35wt%of Al; about 0.05-3wt%of Mn; about 0.1-2wt%of Si; about 0-0.005wt%of Fe; about 0-0.01wt%of Cu; about 0-0.01wt%of Ni; about 0-0.01wt%of Co; about 0-1wt%of a rare earth element; about 0-1wt%of Zn; about 0-0.1wt%of Be; about 0-1wt%of Zr; about 0-0.005wt%of Ca; about 0-0.005wt%of Sn; and a balance of Mg.
  • a method of preparing a magnesium alloy comprising: smelting and cooling a raw material of the magnesium alloy, in which, the raw material has a composition of the magnesium alloy capable of forming a magnesium alloy above-mentioned.
  • the magnesium alloy has not only relative high strength and hardness, but also relative high ductility, which may be able to form a structure component with various kinds of shapes and thickness. It’s more important that, according to embodiments of the present disclosure, the magnesium alloy has a good heat conductivity coefficient, which may be above 100 W/ (m ⁇ K) , even achieve about 120 W/ (m ⁇ K) . Meanwhile, the magnesium alloy of embodiments of the present disclosure has a good corrosion resistance, which may meet the requirements of various processing methods and operating environment.
  • the magnesium alloy is suitable to be used as a structure material which may require a high heat-conducting property, especially as a structure component of electronic products.
  • a magnesium alloy based on a total weight of the magnesium alloy, the magnesium alloy comprises:
  • a magnesium alloy comprising: based on the total weight of the magnesium alloy, 0.2-1.35wt%of Al; 0.05-3wt%of Mn; 0.1-2wt%of Si; 0-0.005wt%of Fe; 0-0.01wt%of Cu; 0-0.01wt%of Ni; 0-0.01wt%of Co; 0-1wt%of a rare earth element; 0-1wt%of Zn; 0-0.1wt%of Be; 0-1wt%of Zr; 0-0.005wt%of Ca; 0-0.005wt%of Sn; and a balance of Mg.
  • the magnesium alloy includes Al element.
  • Al element in the magnesium alloy all of the casting property, the corrosion resistance and the mechanical property of the magnesium alloy may be improved.
  • the content of Al element in the magnesium alloy is too large, the heat conductivity coefficient of the magnesium alloy will be reduced significantly. Therefore, in order to make use of Al element of its advantages such as excellent casting property, corrosion resistance and mechanical property without reducing the heat-conducting property of the magnesium alloy, based on the total weight of the magnesium alloy, the content of Al element in the magnesium alloy ranges from 0.2wt%to 1.35wt%.
  • the content of Al element in the magnesium alloy may range from 0.5wt%to 1wt%.
  • the magnesium alloy includes Si element.
  • Si element and the Mg element in the magnesium alloy may form Mg 2 Si, so that the magnesium alloy may have a relative high hardness and a relative low expansion coefficient, thus improving the mechanical property of the magnesium alloy.
  • the casting property of the magnesium alloy may be improved significantly. But if the content of the Si element is too large, it will bring some negative influences on the heat-conducting property and the corrosion resistance of the magnesium alloy.
  • the content of Si element ranges from 0.1wt%to 2wt%, alternatively from 1wt%to 2wt%.
  • the magnesium alloy may have not only an excellent heat-conducting property, a high hardness and a high strength, but also a good corrosion resistance.
  • the magnesium alloy includes Mn element.
  • the corrosion resistance of the magnesium alloy may be improved, and the Mn element in the magnesium alloy may act with the Fe element in the magnesium alloy to form a sediment with a high melting point to precipitate out, therefore the melt of the magnesium alloy may be cleaner.
  • the Mn element with an appropriate content may improve the casting property of the magnesium alloy. But if the content of the Mn element is too large, the heat-conducting property of the magnesium alloy will reduce significantly.
  • the content of the Mn element ranges from 0.05wt%to 3wt%, alternatively from 0.4wt%to 2.6wt%.
  • the rare earth element in the magnesium alloy may expand the crystallization temperature interval of the alloy, therefore the casting property of the magnesium alloy may be improved significantly. Meanwhile, the rare earth element in the magnesium alloy has a relative high solid solubility, and may precipitate out a strengthen phase along with a decrease of temperature after smelting. Therefore, with the addition of the rare earth element, the yield strength and the casting property of the magnesium alloy may be improved. While, with the addition of a superfluous rare earth element, the heat conductivity coefficient of the magnesium alloy may be decreased, and the corrosion resistance of the magnesium alloy may get worse.
  • the magnesium alloy may include rare earth element, based on the total weight of the magnesium alloy, the content of the rare earth element may below 1wt%.
  • the content of the rare earth element ranges from 0.2wt%to 0.5wt%, thus further improving the corrosion resistance of the magnesium alloy, meanwhile, the magnesium alloy may have a relative high heat conductivity coefficient.
  • the rare earth element may be at least one selected from a group consisted of Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • the inventors of the present disclosure have found, after long-time experimentation, that, when the rare earth element is selected from at least one selected from a group consisted of Ce, Y and Nd, the exist of an appropriate amount of the rare earth element may obtain a magnesium alloy with a better casting property and solution strengthening property and a higher strength, without an obvious negative influence on the heat conductivity coefficient of the magnesium alloy.
  • Zn element in the magnesium alloy may improve solid solubility of Al element in the magnesium alloy.
  • Zn is a metal with a low melting point that may significantly decrease the melting point of the alloy and then improve the casting property of the magnesium alloy. But, a superfluous Zn may significantly make influence on the heat conducting property and corrosion resistance, thus decreasing the ductility of the magnesium alloy. Therefore, in some embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of Zn element is below 1wt%. In some embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of Zn element ranges from 0.1wt%to 0.5wt%, alternatively, from 0.3wt%to 0.5wt%.
  • Be element in the magnesium alloy may form a compact BeO on the surface of the magnesium alloy melt, fill into the loose MgO layer, and decrease the surface contact between the magnesium alloy and the outside world.
  • Be element is an important flame retardant for pressure casting the magnesium alloy, and a small quantity of Be element may improve the metallurgical property of the magnesium alloy substantially. Due to that Be element is expensive and the steam and oxide thereof is harmful to people’s health, the content of Be should be controlled appropriately. Meanwhile, a superfluous may decrease the ductility of the magnesium alloy.
  • the content of Be element is below 0.1wt%.
  • the content of Be ranges from 0.01wt%to 0.05wt%. In some embodiments of the present disclosure, based on the total weight of the present disclosure, the content of Be element in the magnesium alloy ranges from 0.03wt%to 0.05wt%.
  • Zr is an important alloying element, which may act with iron compound to form Zr 2 Fe 2 and Zr 2 Fe 3 alloy, so as to precipitate out iron from the alloy before casting, thus improving the purity and the corrosion resistance of the magnesium alloy. Meanwhile, Zr may refine the magnesium alloy grain significantly and improve the mechanical property of the magnesium alloy, but when Zr element is added excessively, the cost of the magnesium alloy may be increased and the overall performance of the magnesium alloy may be influenced.
  • the content of Zr is below 1wt%, alternatively from 0.1wt%to 0.5wt%.
  • Zr ranges from 0.3wt%to 0.5wt%.
  • the magnesium alloy based on the total weight of the magnesium alloy, includes at least one of: 0.1-0.5wt%of Zn, 0.01wt%-0.05wt%of Be and 0.1wt%-0.5wt%of Zr.
  • Fe, Cu, Ni, Co, Sn and Ca may have negative influence on the corrosion resistance of the magnesium alloy, if the contents of the above elements are too large, the heat-conducting property may be influenced negatively.
  • the content of Fe is below 0.005wt%; the content of Cu is below 0.01wt%, alternatively below 0.005wt%; the content of Ni is below 0.01wt%, alternatively below 0.005wt%; the content of Co is below 0.01wt%, alternatively below 0.005wt%; the content of Sn is below 0.005wt%; and the content of Ca is below 0.005wt%.
  • the magnesium alloy includes a small quantity of other metal elements, which may be at least one selected from a group consisted of Li, Na, K, Sr, Ba, Ga, In, Ge, Sb, Bi, V, Nb, Cr, Mo, W, Tc, Ru, Pd, Pt, Ag and Au. Based on the total weight of the present disclosure, the content of the above mentioned other metal elements may be below 1wt%, preferably below 0.5wt%, further preferably 0.2wt%.
  • Fe, Cu, Ni, Co, Sn, Ca and other metal elements may come from the impurity in the raw material of the magnesium alloy, or one raw material for preparing one consisting element of the magnesium alloy.
  • a magnesium alloy comprising: based on the total weight of the magnesium alloy, 0.2-1.35wt%of Al; 0.05-3wt%of Mn;0.1-2wt%of Si; 0-0.005wt%of Fe; 0-0.01wt%of Cu; 0-0.01wt%of Ni; 0-0.01wt%of Co; 0-1wt%of a rare earth element; 0-1wt%of Zn; 0-0.1wt%of Be; 0-1wt%of Zr; 0-0.005wt%of Ca; 0-0.005wt%of Sn; and a balance of Mg.
  • the magnesium alloy may include at least one of the above other metal elements, or none.
  • the magnesium alloy may be prepared by a conventional method.
  • a method of preparing a magnesium alloy includes: smelting and cooling a raw material of the magnesium alloy, in which, the composition of the raw material is capable of forming a magnesium alloy according to embodiments of the present disclosure.
  • compositions of the raw material and the method of preparing the magnesium alloy of the present disclosure may be known to the skilled in the art.
  • the smelting is performed at a temperature of 700°C to750°C, for about 20-60 minutes.
  • a covering agent is used to protect the melting when smelting.
  • the covering agent may be any conventional covering agent in the field of smelting of the magnesium alloy, such as at least one of MgCl 2 , KCl, NaCl and CaF 2 .
  • a process of argon stirring is added, in which, argon is argon with a purity above 99.999%.
  • the magnesium alloy has not only a good general mechanical performance, but also a yield strength larger than 75 MPa, generally between 100-145 MPa, and a ductility above 7%, generally between 7-10%.
  • the magnesium alloy has a good heat-conducting property which may achieve 100W/ (m ⁇ K) . Meanwhile, the magnesium alloy has a relative good corrosion resistance.
  • the magnesium alloy is suitable for using as a heat conducting structure material, such as parts of various kinds of electronic products.
  • magnesium alloys are prepared according to the following methods respectively, and the hardness, heat conductivity coefficient, tensile strength and corrosion resistance of each magnesium alloy is tested according to the following methods.
  • each magnesium alloy is tested according to ISO 6892-1.
  • a magnesium alloy melt is injected into a mold cavity to obtain a tensile casting with a thickness of 3 mm, and the tensile strength of the tensile casting is tested with a universal testing machine, in which, the tensile strength is a limit of yielding resulting 0.2%residual deformation, and the ductility is breakage ductility.
  • each magnesium alloy is tested by the following method.
  • the magnesium alloy is cast into a slice with a size of 100mm ⁇ 100mm ⁇ 1.5mm and immerged into 5wt%NaCl aqueous solution for 48 hours (i.e., 2 days) .
  • Examples 1-25 are provided for illustrate the present disclosure.
  • Raw materials of the magnesium alloy were provided according to formula Mg 97.3 Al 1.3 Si 1 Mn 0.4 , in which those numbers indicated weight percentages of corresponding elements based on the total weight of the aluminum alloy.
  • the raw materials were melted in a smelting furnace at a temperature of 720°C for 30 minutes and argon with a purity of 99.999%was added into the smelting furnace in the process of smelting to obtain a magnesium melt.
  • the obtained magnesium melt was injected into a metal mold and dried to obtain a magnesium casting. Then hardness, heat conductivity coefficient, tensile strength, ductility and corrosion speed of the magnesium casting was tested and the results were recorded in the Table 1.
  • magnesium alloys E2-E25 were prepared by a method which is substantially the same as the method in Example 1, with the following exceptions.
  • magnesium alloys CE1-CE11 were prepared by a method which is substantially the same as the method in Example 1, with the following exceptions.
  • the magnesium alloy of the present disclosure has a good comprehensive mechanical property, not only a relatively high strength and hardness, but also a relatively high ductility. It’s more important that, the magnesium alloy of the present disclosure has a good heat conductivity coefficient, such as 100W/ (m ⁇ K) , even 120 W/ (m ⁇ K) or more. Meanwhile, the magnesium alloy of the present disclosure has a good corrosion property.
  • Example 4 It can be seen from comparing Example 4 with Comparative Examples 1-2 that if the content of Al in the magnesium alloy was too high, the heat conductivity property will get worse that the heat conductivity coefficient may be less than 100 W/ (m ⁇ K) , which may fail to meet the requirement as a structure part of an electric product.
  • an appropriate content of rare earth elements may further improve the strength of the magnesium alloy.
  • the rare earth elements include Ce, Y and Nd
  • an appropriate content of rare earth elements may have no obvious influence on the heat conducting property of the magnesium alloy.
  • the corrosion resistance of the magnesium alloy may be improved.
  • Example 7 It can be seen from comparing Example 7 with Examples 11-12 that an appropriate content of Be and Zr may further improve the corrosion resistance of the magnesium alloy. While, it can be seen from comparing Example 12 with Comparative Example 6 that if the content of Zr of the magnesium alloy was too high, the ductility of the magnesium alloy may be decreased, thus the magnesium alloy may be hard to produce thin-type products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A magnesium alloy is provided, based on a total weight of the magnesium alloy, comprising: about 0.2-1.35wt%of Al; about 0.05-3wt%of Mn; about 0.1-2wt%of Si; about 0-0.005wt%of Fe; about 0-0.01wt%of Cu; about 0-0.01wt%of Ni; about 0-0.01wt%of Co; about 0-1wt%of a rare earth element; about 0-1wt%of Zn; about 0-0.1wt%of Be; about 0-1wt%of Zr; about 0-0.005wt%of Ca; 0-0.005wt%of Sn: and about 90.505-99.65wt%of Mg.

Description

MAGNESIUM ALLOY, PREPAIRING METHOD AND USE THEREOF
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority to and benefits of Chinese Patent Application No. 201410305840.9, filed with the State Intellectual Property Office of P.R. China on June 30, 2014, the entire content of which is incorporated herein by reference.
FIELD
The present disclosure relates to alloys, more particularly relates to a magnesium alloy and a method of preparing the magnesium alloy.
BACKGROUND
Magnesium (hereinafter, magnesium may be referred to as “Mg” ) has significant features such as light weight to be used in all of the engineering metals, and small density of 1.78 g/cm3, which is about 2/9 of that of steel and 2/3 of that of aluminum (hereinafter, aluminum may be referred to as “Al” ) , and Mg is the lightest metal material with an engineering application value at present. In addition, a magnesium alloy has a relative high specific strength, a relative high specific stiffness, a better shock resistance performance and a higher resistance to radiation. As electronic products become thinner and lighter and functions thereof become more and more diverse, a magnesium alloy with a high strength and high heat conductivity becomes an important candidate among structure materials.
At present, a conventional die casting magnesium alloy for electronic products relates to AZ91 series alloy, which has a good casting property and mechanical strength, and the strength thereof may be superior to that of ZL104 aluminum alloy, thus being applied widely. However, the heat conductivity coefficient of AZ91 series alloy is only about 70 W/ (m·K) , far less than the heat conductivity of 100 W/ (m·K) to cast aluminum alloy. Therefore, use of magnesium alloy with a low heat conductivity as a component of the electronic product may greatly influence the heat dissipation requirement on the electronic product.
In addition, as a structure component of the electronic product, a magnesium alloy may need a relatively good corrosion resistance to meet processing requirements and the usage requirement.
SUMMARY
Embodiments of the present disclosure seek to solve at least one of the problems existing in the prior art to at least some extent, such as low heat conductivity coefficient. Accordingly, the present disclosure aims to provide a magnesium alloy with not only strong mechanical property but also excellent corrosion resistance and high heat conductivity coefficient.
According to a first aspect of the present disclosure, there is provided a magnesium alloy, based on a total weight of the magnesium alloy, comprising: about 0.2-1.35wt%of Al; about 0.05-3wt%of Mn; about 0.1-2wt%of Si; about 0-0.005wt%of Fe; about 0-0.01wt%of Cu; about 0-0.01wt%of Ni; about 0-0.01wt%of Co; about 0-1wt%of a rare earth element; about 0-1wt%of Zn; about 0-0.1wt%of Be; about 0-1wt%of Zr; about 0-0.005wt%of Ca; 0-0.005wt%of Sn; and about 90.505-99.65wt%of Mg.
According to a second aspect of the present disclosure, there is provided a magnesium alloy, based on a total weight of the magnesium alloy, comprising: about 0.2-1.35wt%of Al; about 0.05-3wt%of Mn; about 0.1-2wt%of Si; about 0-0.005wt%of Fe; about 0-0.01wt%of Cu; about 0-0.01wt%of Ni; about 0-0.01wt%of Co; about 0-1wt%of a rare earth element; about 0-1wt%of Zn; about 0-0.1wt%of Be; about 0-1wt%of Zr; about 0-0.005wt%of Ca; about 0-0.005wt%of Sn; and a balance of Mg.
According to a third aspect of the present disclosure, there is provided a method of preparing a magnesium alloy, comprising: smelting and cooling a raw material of the magnesium alloy, in which, the raw material has a composition of the magnesium alloy capable of forming a magnesium alloy above-mentioned.
According to a fourth aspect of the present disclosure, there is provided use of the above-mentioned magnesium alloy according to embodiments of the present disclosure as a heat conducting material.
According to embodiments of the present disclosure, the magnesium alloy has not only relative high strength and hardness, but also relative high ductility, which may be able to form a structure component with various kinds of shapes and thickness. It’s more important that, according to  embodiments of the present disclosure, the magnesium alloy has a good heat conductivity coefficient, which may be above 100 W/ (m·K) , even achieve about 120 W/ (m·K) . Meanwhile, the magnesium alloy of embodiments of the present disclosure has a good corrosion resistance, which may meet the requirements of various processing methods and operating environment.
According to embodiments of the present disclosure, the magnesium alloy is suitable to be used as a structure material which may require a high heat-conducting property, especially as a structure component of electronic products.
Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present disclosure.
DETAILED DESCRIPTION
Reference will be made in detail to embodiments of the present disclosure. The embodiments described herein are explanatory, illustrative, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure.
According to a first aspect of the present disclosure, there is provided a magnesium alloy, and based on a total weight of the magnesium alloy, the magnesium alloy comprises:
about 0.2-1.35wt%of Al;
about 0.05-3wt%of Mn;
about 0.1-2wt%of Si;
about 0-0.005wt%of Fe;
about 0-0.01wt%of Cu;
about 0-0.01wt%of Ni;
about 0-0.01wt%of Co;
about 0-1wt%of a rare earth element;
about 0-1wt%of Zn;
about 0-0.1wt%of Be;
about 0-1wt%of Zr;
about 0-0.005wt%of Ca;
about 0-0.005wt%of Sn; and
about 90.505-99.65wt%of Mg.
According to some embodiments of the present disclosure, there is provided a magnesium alloy, comprising: based on the total weight of the magnesium alloy, 0.2-1.35wt%of Al; 0.05-3wt%of Mn; 0.1-2wt%of Si; 0-0.005wt%of Fe; 0-0.01wt%of Cu; 0-0.01wt%of Ni; 0-0.01wt%of Co; 0-1wt%of a rare earth element; 0-1wt%of Zn; 0-0.1wt%of Be; 0-1wt%of Zr; 0-0.005wt%of Ca; 0-0.005wt%of Sn; and a balance of Mg.
According to embodiments of the present disclosure, the magnesium alloy includes Al element. With the Al element in the magnesium alloy, all of the casting property, the corrosion resistance and the mechanical property of the magnesium alloy may be improved. However, if the content of Al element in the magnesium alloy is too large, the heat conductivity coefficient of the magnesium alloy will be reduced significantly. Therefore, in order to make use of Al element of its advantages such as excellent casting property, corrosion resistance and mechanical property without reducing the heat-conducting property of the magnesium alloy, based on the total weight of the magnesium alloy, the content of Al element in the magnesium alloy ranges from 0.2wt%to 1.35wt%. In order to further improve the heat-conducting property of the magnesium alloy under this premise of ensuring an excellent mechanical property and corrosion resistance of the magnesium alloy, based on the total weight of the magnesium alloy, the content of Al element in the magnesium alloy may range from 0.5wt%to 1wt%.
According to embodiments of the present disclosure, the magnesium alloy includes Si element. Si element and the Mg element in the magnesium alloy may form Mg2Si, so that the magnesium alloy may have a relative high hardness and a relative low expansion coefficient, thus improving the mechanical property of the magnesium alloy. In addition, with the addition of Si element, the casting property of the magnesium alloy may be improved significantly. But if the content of the Si element is too large, it will bring some negative influences on the heat-conducting property and the corrosion resistance of the magnesium alloy. According to embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of Si element ranges from 0.1wt%to 2wt%, alternatively from 1wt%to 2wt%. Thus the magnesium alloy may have not only an excellent  heat-conducting property, a high hardness and a high strength, but also a good corrosion resistance.
According to embodiments of the present disclosure, the magnesium alloy includes Mn element. With the addition of the Mn element in the magnesium alloy, the corrosion resistance of the magnesium alloy may be improved, and the Mn element in the magnesium alloy may act with the Fe element in the magnesium alloy to form a sediment with a high melting point to precipitate out, therefore the melt of the magnesium alloy may be cleaner. Meanwhile, the Mn element with an appropriate content may improve the casting property of the magnesium alloy. But if the content of the Mn element is too large, the heat-conducting property of the magnesium alloy will reduce significantly. In some embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of the Mn element ranges from 0.05wt%to 3wt%, alternatively from 0.4wt%to 2.6wt%.
The rare earth element in the magnesium alloy may expand the crystallization temperature interval of the alloy, therefore the casting property of the magnesium alloy may be improved significantly. Meanwhile, the rare earth element in the magnesium alloy has a relative high solid solubility, and may precipitate out a strengthen phase along with a decrease of temperature after smelting. Therefore, with the addition of the rare earth element, the yield strength and the casting property of the magnesium alloy may be improved. While, with the addition of a superfluous rare earth element, the heat conductivity coefficient of the magnesium alloy may be decreased, and the corrosion resistance of the magnesium alloy may get worse. In some embodiments of the present disclosure, the magnesium alloy may include rare earth element, based on the total weight of the magnesium alloy, the content of the rare earth element may below 1wt%. In some embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of the rare earth element ranges from 0.2wt%to 0.5wt%, thus further improving the corrosion resistance of the magnesium alloy, meanwhile, the magnesium alloy may have a relative high heat conductivity coefficient. In some embodiments of the present disclosure, the rare earth element may be at least one selected from a group consisted of Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. The inventors of the present disclosure have found, after long-time experimentation, that, when the rare earth element is selected from at least one selected from a group consisted of Ce, Y and Nd, the exist of an appropriate amount of the rare earth element may obtain a magnesium  alloy with a better casting property and solution strengthening property and a higher strength, without an obvious negative influence on the heat conductivity coefficient of the magnesium alloy.
Zn element in the magnesium alloy may improve solid solubility of Al element in the magnesium alloy. In addition, Zn is a metal with a low melting point that may significantly decrease the melting point of the alloy and then improve the casting property of the magnesium alloy. But, a superfluous Zn may significantly make influence on the heat conducting property and corrosion resistance, thus decreasing the ductility of the magnesium alloy. Therefore, in some embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of Zn element is below 1wt%. In some embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of Zn element ranges from 0.1wt%to 0.5wt%, alternatively, from 0.3wt%to 0.5wt%.
Be element in the magnesium alloy may form a compact BeO on the surface of the magnesium alloy melt, fill into the loose MgO layer, and decrease the surface contact between the magnesium alloy and the outside world. Be element is an important flame retardant for pressure casting the magnesium alloy, and a small quantity of Be element may improve the metallurgical property of the magnesium alloy substantially. Due to that Be element is expensive and the steam and oxide thereof is harmful to people’s health, the content of Be should be controlled appropriately. Meanwhile, a superfluous may decrease the ductility of the magnesium alloy. In some embodiments of the present disclosure, based on the total weight of the magnesium alloy, the content of Be element is below 0.1wt%. In some embodiments of the present disclosure, based on the total weight of the present disclosure, the content of Be ranges from 0.01wt%to 0.05wt%. In some embodiments of the present disclosure, based on the total weight of the present disclosure, the content of Be element in the magnesium alloy ranges from 0.03wt%to 0.05wt%.
Zr is an important alloying element, which may act with iron compound to form Zr2Fe2 and Zr2Fe3 alloy, so as to precipitate out iron from the alloy before casting, thus improving the purity and the corrosion resistance of the magnesium alloy. Meanwhile, Zr may refine the magnesium alloy grain significantly and improve the mechanical property of the magnesium alloy, but when Zr element is added excessively, the cost of the magnesium alloy may be increased and the overall performance of the magnesium alloy may be influenced. In some embodiments of the present  disclosure, based on the total weight of the present disclosure, the content of Zr is below 1wt%, alternatively from 0.1wt%to 0.5wt%. In some embodiments of the present disclosure, based on the total weight of Zr element, Zr ranges from 0.3wt%to 0.5wt%.
In one embodiment of the present disclosure, based on the total weight of the magnesium alloy, the magnesium alloy includes at least one of: 0.1-0.5wt%of Zn, 0.01wt%-0.05wt%of Be and 0.1wt%-0.5wt%of Zr.
Fe, Cu, Ni, Co, Sn and Ca may have negative influence on the corrosion resistance of the magnesium alloy, if the contents of the above elements are too large, the heat-conducting property may be influenced negatively. In some embodiments of the present disclosure, based on the total weight of the present disclosure, the content of Fe is below 0.005wt%; the content of Cu is below 0.01wt%, alternatively below 0.005wt%; the content of Ni is below 0.01wt%, alternatively below 0.005wt%; the content of Co is below 0.01wt%, alternatively below 0.005wt%; the content of Sn is below 0.005wt%; and the content of Ca is below 0.005wt%.
In some embodiments of the present disclosure, the magnesium alloy includes a small quantity of other metal elements, which may be at least one selected from a group consisted of Li, Na, K, Sr, Ba, Ga, In, Ge, Sb, Bi, V, Nb, Cr, Mo, W, Tc, Ru, Pd, Pt, Ag and Au. Based on the total weight of the present disclosure, the content of the above mentioned other metal elements may be below 1wt%, preferably below 0.5wt%, further preferably 0.2wt%.
Fe, Cu, Ni, Co, Sn, Ca and other metal elements may come from the impurity in the raw material of the magnesium alloy, or one raw material for preparing one consisting element of the magnesium alloy.
According to a second aspect of the present disclosure, there is provided a magnesium alloy, comprising: based on the total weight of the magnesium alloy, 0.2-1.35wt%of Al; 0.05-3wt%of Mn;0.1-2wt%of Si; 0-0.005wt%of Fe; 0-0.01wt%of Cu; 0-0.01wt%of Ni; 0-0.01wt%of Co; 0-1wt%of a rare earth element; 0-1wt%of Zn; 0-0.1wt%of Be; 0-1wt%of Zr; 0-0.005wt%of Ca; 0-0.005wt%of Sn; and a balance of Mg.
In some embodiments of the present disclosure, the magnesium alloy may include at least one of the above other metal elements, or none.
The magnesium alloy may be prepared by a conventional method. In some embodiments of the  present disclosure, a method of preparing a magnesium alloy includes: smelting and cooling a raw material of the magnesium alloy, in which, the composition of the raw material is capable of forming a magnesium alloy according to embodiments of the present disclosure.
The compositions of the raw material and the method of preparing the magnesium alloy of the present disclosure may be known to the skilled in the art.
In some embodiments of the present disclosure, the smelting is performed at a temperature of 700℃ to750℃, for about 20-60 minutes. In order to avoid the oxidation caused by a contact between the magnesium alloy melting and air, a covering agent is used to protect the melting when smelting. The covering agent may be any conventional covering agent in the field of smelting of the magnesium alloy, such as at least one of MgCl2, KCl, NaCl and CaF2. In order to further improve the uniform of the compositions of the magnesium alloy, a process of argon stirring is added, in which, argon is argon with a purity above 99.999%.
According to some embodiments of the present disclosure, the magnesium alloy has not only a good general mechanical performance, but also a yield strength larger than 75 MPa, generally between 100-145 MPa, and a ductility above 7%, generally between 7-10%. In addition, according to some embodiments of the present disclosure, the magnesium alloy has a good heat-conducting property which may achieve 100W/ (m·K) . Meanwhile, the magnesium alloy has a relative good corrosion resistance.
According to embodiments of the present disclosure, the magnesium alloy is suitable for using as a heat conducting structure material, such as parts of various kinds of electronic products.
The present disclosure will be described below in detail with reference to some non-limiting examples. The examples are provided for illustration only, which may not be construed as a limit to the present disclosure.
In the following Examples and Comparative Examples, magnesium alloys are prepared according to the following methods respectively, and the hardness, heat conductivity coefficient, tensile strength and corrosion resistance of each magnesium alloy is tested according to the following methods.
(1) The hardness of a magnesium alloy wafer with a diameter of 12.7 mm and a thickness of 3 mm is tested with a Vickers, with a pressure of 3kg for less than 15 seconds, for at least 3 times to  obtain an average value, that is the harness of the magnesium alloy with a unit of HV.
(2) The heat conductivity coefficient of each magnesium alloy wafer with a diameter of 12.7 mm and a thickness of 3mm is tested according to ASTME 1461-07, such as laser indeed method.
(3) The tensile strength of each magnesium alloy is tested according to ISO 6892-1. A magnesium alloy melt is injected into a mold cavity to obtain a tensile casting with a thickness of 3 mm, and the tensile strength of the tensile casting is tested with a universal testing machine, in which, the tensile strength is a limit of yielding resulting 0.2%residual deformation, and the ductility is breakage ductility.
(4) The corrosion resistance of each magnesium alloy is tested by the following method. The magnesium alloy is cast into a slice with a size of 100mm×100mm×1.5mm and immerged into 5wt%NaCl aqueous solution for 48 hours (i.e., 2 days) . The corrosion speed is tested by a weight loss method and calculated according to the following formula: V= (m1-m2) / (t×s) , in which, m1 relates to the weight of the magnesium alloy sample before immerging, with a unit of mg; m2 relates to the weight of the magnesium ally that has been washed and dried at a temperature of 120℃ to a constant weight after immerging, with a unit of mg; t relates to immerging time, with a unit of day; s relates to surface area of the magnesium alloy, with a unit of cm2; V relates to a corrosion speed, with a unit of mg/ (cm2d) .
Examples 1-25 are provided for illustrate the present disclosure.
Example 1
In this example, a magnesium alloy E1 was prepared.
Raw materials of the magnesium alloy were provided according to formula Mg97.3Al1.3Si1Mn0.4, in which those numbers indicated weight percentages of corresponding elements based on the total weight of the aluminum alloy. The raw materials were melted in a smelting furnace at a temperature of 720℃ for 30 minutes and argon with a purity of 99.999%was added into the smelting furnace in the process of smelting to obtain a magnesium melt. The obtained magnesium melt was injected into a metal mold and dried to obtain a magnesium casting. Then hardness, heat conductivity coefficient, tensile strength, ductility and corrosion speed of the magnesium casting was tested and the results were recorded in the Table 1.
Examples 2-25
In this example, magnesium alloys E2-E25 were prepared by a method which is substantially the same as the method in Example 1, with the following exceptions.
Raw materials of the magnesium alloy were provided according to formulas listed in Table 1. The results of hardness, heat conductivity coefficient, tensile strength, ductility and corrosion speed of the magnesium alloys E2-25 were recorded in Table 1.
Comparative examples 1-11
In this example, magnesium alloys CE1-CE11 were prepared by a method which is substantially the same as the method in Example 1, with the following exceptions.
Raw materials of the magnesium alloy were provided according to formulas listed in Table 1. The results of hardness, heat conductivity coefficient, tensile strength, ductility and corrosion speed of the magnesium alloys CE1-CE11 were recorded in Table 1.
Table 1
Figure PCTCN2015082552-appb-000001
Figure PCTCN2015082552-appb-000002
Figure PCTCN2015082552-appb-000003
It can be seen from Table 1 that, the magnesium alloy of the present disclosure has a good comprehensive mechanical property, not only a relatively high strength and hardness, but also a relatively high ductility. It’s more important that, the magnesium alloy of the present disclosure has a good heat conductivity coefficient, such as 100W/ (m·K) , even 120 W/ (m·K) or more. Meanwhile, the magnesium alloy of the present disclosure has a good corrosion property.
It can be seen from comparing Example 4 with Comparative Examples 1-2 that if the content of Al in the magnesium alloy was too high, the heat conductivity property will get worse that the heat conductivity coefficient may be less than 100 W/ (m·K) , which may fail to meet the requirement as a structure part of an electric product.
It can be seen from comparing Example 6 with Comparative Example 11 that if the content of Mn in the magnesium alloy was too high, the heat conducting property of the magnesium alloy will decrease obviously.
It can be seen from comparing Example 5 with Comparative Example 3 that if the content of Si in the magnesium alloy was too high, the heat conducting property of the magnesium alloy will decrease and the ductility will obviously decreased that would be hard to produce thin-type products,  and the corrosion resistance of the magnesium alloy will obviously decreased thus limiting the application of the magnesium alloy.
It can be seen from comparing Examples 2, 10 and 17 with Comparative Example 4 that an appropriate content of Zn in the magnesium alloy may improve the strength of the magnesium alloy and have no obvious influence on the heat conducting property. But if the content of Zn in the magnesium alloy was too high, the conducting property of the magnesium alloy may be negatively affected and the ductility of the magnesium alloy may be decreased, thus that the magnesium alloy may be hard to produce thin-type products, meanwhile, the corrosion resistance of the magnesium alloy may get worse, thus limiting the application of the magnesium alloy.
It can be seen from comparing Examples 2, 7-9 and 16 with Comparative Example 4 that an appropriate content of rare earth elements may further improve the strength of the magnesium alloy. And, when the rare earth elements include Ce, Y and Nd, an appropriate content of rare earth elements may have no obvious influence on the heat conducting property of the magnesium alloy. In addition, when the rare earth elements include Ce and Nd, the corrosion resistance of the magnesium alloy may be improved. But it can be seen from comparing Examples 7 and 19 with Comparative Example 5 that if the content of the rare earth elements of the magnesium alloy was too high, the corrosion resistance of the magnesium alloy will get worse, the ductility of the magnesium alloy may be decreased, meanwhile, the heat conducting property of the magnesium alloy may be decreased, that the heat conducting coefficient may be less than 100 W/ (m·K) , which may fail to meet the requirement as a structure part of an electric product.
It can be seen from comparing Example 7 with Examples 11-12 that an appropriate content of Be and Zr may further improve the corrosion resistance of the magnesium alloy. While, it can be seen from comparing Example 12 with Comparative Example 6 that if the content of Zr of the magnesium alloy was too high, the ductility of the magnesium alloy may be decreased, thus the magnesium alloy may be hard to produce thin-type products.
It can be seen from comparing Examples 2, 14 and 15 with Comparative Examples 9-10 that Ca and Sn may have negative influence on the heat conducting property and the corrosion resistance of the magnesium alloy, especially if the content of Ca and Sn was too large, the heat conducting property and the corrosion resistance of the magnesium alloy may be obviously poor,  thus limiting the use of the magnesium alloy.
It can be seen from comparing Example 2 with Examples 22-25 that, Fe, Ni, Co and Cu may have negative influence on the corrosion resistance and heat conducting property of the magnesium alloy, thus the content of the above elements in the magnesium alloy should not be too large.
Reference throughout this specification to “an embodiment, ” “some embodiments, ” “one embodiment” , “another example, ” “an example, ” “aspecific example, ” or “some examples, ” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as “in some embodiments, ” “in one embodiment” , “in an embodiment” , “in another example, ” “in an example, ” “in a specific example, ” or “in some examples, ” in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although explanatory embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles and scope of the present disclosure.

Claims (10)

  1. A magnesium alloy, based on a total weight of the magnesium alloy, comprising: 
    about 0.2-1.35wt% of Al;
    about 0.05-3wt% of Mn;
    about 0.1-2wt% of Si;
    about 0-0.005wt% of Fe;
    about 0-0.01wt% of Cu;
    about 0-0.01wt% of Ni;
    about 0-0.01wt% of Co;
    about 0-1wt% of a rare earth element;
    about 0-1wt% of Zn;
    about 0-0.1wt% of Be;
    about 0-1wt% of Zr;
    about 0-0.005wt% of Ca;
    about 0-0.005wt% of Sn; and
    about 90.505-99.65wt% of Mg.
  2. A magnesium alloy, based on a total weight of the magnesium alloy, comprising:
    about 0.2-1.35wt% of Al;
    about 0.05-3wt% of Mn;
    about 0.1-2wt% of Si;
    about 0-0.005wt% of Fe;
    about 0-0.01wt% of Cu;
    about 0-0.01wt% of Ni;
    about 0-0.01wt% of Co;
    about 0-1wt% of a rare earth element;
    about 0-1wt% of Zn;
    about 0-0.1wt% of Be;
    about 0-1wt% of Zr;
    about 0-0.005wt% of Ca;
    about 0-0.005wt% of Sn; and
    a balance of Mg.
  3. The magnesium alloy of claim 1 or 2, wherein based on the total weight of the magnesium alloy, the content of Al in the aluminum alloy ranges from about 0.5wt% to about 1wt%.
  4. The magnesium alloy of any of claims 1-3, wherein based on the total weight of the magnesium alloy, the content of Si in the aluminum alloy ranges from about 1wt% to about 2wt%.
  5. The magnesium alloy of any of claims 1-4, wherein based on the total weight of the magnesium alloy, the content of Mn in the aluminum alloy ranges from about 0.4wt% to about 2.6wt%.
  6. The magnesium alloy of any of claims 1-5, wherein based on the total weight of the magnesium alloy, the content of the rare earth element in the aluminum alloy ranges from about 0.2wt% to about 0.5wt%.
  7. The magnesium alloy of any of claims 1-6, wherein the rare earth element comprises at least one selected from a group consisted of Ce, Y and Nd.
  8. The magnesium alloy of any of claims 1-7, wherein based on the total weight of the magnesium alloy, the magnesium alloy comprises at least one of:
    about 0.1-0.5wt% of Zn;
    about 0.01-0.05wt% of Be; and
    about 0.1-0.5wt% of Zr.
  9. A method of preparing a magnesium alloy, comprising:
    smelting and cooling a raw material of the magnesium alloy, wherein
    the raw material has a composition of the magnesium alloy capable of forming a magnesium alloy according to any one of claims 1-8.
  10. Use of the magnesium alloy according to any one of claims 1-8 as a heat conducting material.
PCT/CN2015/082552 2014-06-30 2015-06-26 Magnesium alloy, prepairing method and use thereof WO2016000575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410305840.9 2014-06-30
CN201410305840.9A CN105220042A (en) 2014-06-30 2014-06-30 A kind of magnesium alloy and its preparation method and application

Publications (1)

Publication Number Publication Date
WO2016000575A1 true WO2016000575A1 (en) 2016-01-07

Family

ID=54989306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082552 WO2016000575A1 (en) 2014-06-30 2015-06-26 Magnesium alloy, prepairing method and use thereof

Country Status (2)

Country Link
CN (1) CN105220042A (en)
WO (1) WO2016000575A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136704A (en) * 2018-09-26 2019-01-04 浙江海洋大学 A kind of single-phase (α phase) magnesium lithium alloy material of high intensity and preparation method thereof
JP2019151925A (en) * 2018-02-28 2019-09-12 国立大学法人 熊本大学 Flame retardant magnesium alloy and manufacturing method therefor
CN113862535A (en) * 2021-10-08 2021-12-31 青岛海骊准晶新材料科技有限公司 Magnesium alloy for low temperature, preparation method and application thereof, and cold chain tray
CN114672711A (en) * 2022-04-15 2022-06-28 重庆大学 Novel low-expansion binary magnesium alloy and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756353A (en) * 2016-12-05 2017-05-31 郑州丽福爱生物技术有限公司 A kind of impact resistance composite alloy material and preparation method thereof
CN109136700A (en) * 2017-06-16 2019-01-04 比亚迪股份有限公司 High thermal conductivity magnesium alloy, inverter case, inverter and automobile
CN107541754A (en) * 2017-09-08 2018-01-05 董晓 A kind of preparation method of thermal crack resistant magnesium alloy
KR102622846B1 (en) * 2018-12-07 2024-01-10 현대자동차주식회사 Magnesium die casting alloy
CN111455246A (en) * 2020-03-02 2020-07-28 华南理工大学 High-thermal-conductivity magnesium alloy and preparation method thereof
CN111850367A (en) * 2020-07-30 2020-10-30 中国石油化工股份有限公司 High-plasticity soluble magnesium alloy and preparation method and application thereof
CN114540686B (en) * 2022-04-28 2023-01-17 北京理工大学 Multi-element microalloyed high-strength high-modulus two-phase magnesium-lithium alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879038B2 (en) * 2001-12-25 2007-02-07 財団法人新産業創造研究機構 Surface treatment method of Mg alloy product and Mg alloy product formed with high corrosion resistance coating
CN101130841A (en) * 2007-10-11 2008-02-27 孙德春 Titanium rare-earth magnesium alloy
CN101269386A (en) * 2007-03-19 2008-09-24 三井金属矿业株式会社 Magnesium alloy plastic process product and manufacture method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627959A (en) * 1985-06-18 1986-12-09 Inco Alloys International, Inc. Production of mechanically alloyed powder
CN103361527B (en) * 2013-07-18 2016-01-27 天津东义镁制品股份有限公司 Magnesium alloy radiator and manufacture method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879038B2 (en) * 2001-12-25 2007-02-07 財団法人新産業創造研究機構 Surface treatment method of Mg alloy product and Mg alloy product formed with high corrosion resistance coating
CN101269386A (en) * 2007-03-19 2008-09-24 三井金属矿业株式会社 Magnesium alloy plastic process product and manufacture method thereof
CN101130841A (en) * 2007-10-11 2008-02-27 孙德春 Titanium rare-earth magnesium alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151925A (en) * 2018-02-28 2019-09-12 国立大学法人 熊本大学 Flame retardant magnesium alloy and manufacturing method therefor
JP7362052B2 (en) 2018-02-28 2023-10-17 国立大学法人 熊本大学 Flame retardant magnesium alloy and its manufacturing method
CN109136704A (en) * 2018-09-26 2019-01-04 浙江海洋大学 A kind of single-phase (α phase) magnesium lithium alloy material of high intensity and preparation method thereof
CN113862535A (en) * 2021-10-08 2021-12-31 青岛海骊准晶新材料科技有限公司 Magnesium alloy for low temperature, preparation method and application thereof, and cold chain tray
CN114672711A (en) * 2022-04-15 2022-06-28 重庆大学 Novel low-expansion binary magnesium alloy and preparation method thereof
CN114672711B (en) * 2022-04-15 2023-07-25 重庆大学 Low-expansion binary magnesium alloy and preparation method thereof

Also Published As

Publication number Publication date
CN105220042A (en) 2016-01-06

Similar Documents

Publication Publication Date Title
WO2016000575A1 (en) Magnesium alloy, prepairing method and use thereof
US10519530B2 (en) Magnesium alloy and method of preparing the same
CN102618758B (en) Cast magnesium alloy of low linear shrinkage
KR101367892B1 (en) Magnesium alloy for high temperature and manufacturing method thereof
CN102732763B (en) High-strength Mg-Gd-Y-Zn-Mn alloy
CN102618760B (en) MgAlZn series heat resistant magnesium alloy containing niobium
CN102618757B (en) Heat-resistant magnesium alloy
CN102618762B (en) Heat-resisting magnesium alloy
CN102154580B (en) High-intensity heat-resistant magnesium alloy material and preparation process thereof
JP2009203545A (en) Zn ALLOY FOR DIE CASTING, AND METHOD FOR PRODUCING DIE-CAST MEMBER USING THE Zn ALLOY FOR DIE CASTING
CN102994835A (en) Heatproof magnesium alloy
US10358703B2 (en) Magnesium alloy and method of preparing the same
EP2692883B1 (en) Mg-al-ca-based master alloy for mg alloys, and a production method therefor
CN105369077A (en) Aluminum alloy conductor material and preparation method thereof
CN102994847A (en) Heatproof magnesium alloy
EP2865772B1 (en) Aluminium casting alloy
CN104561709B (en) High-creep-performance casting magnesium alloy and preparation method thereof
US10619231B2 (en) Radiating fin formed of aluminum alloy and method for producing the same
CN104593653B (en) High-strength thin-walled part magnesium alloy and preparation method thereof
CN115491558A (en) Die-casting magnesium alloy and preparation method and application thereof
CN104152771A (en) Silver and rare earth-containing high-strength heat-resistant magnesium alloy and preparation method thereof
CN104630584A (en) Magnesium alloy for high-fluidity high-strength ultrathin-wall component and preparation method of magnesium alloy
CN104561692A (en) High-friction-resistance aluminum alloy material and heat treatment technique thereof
CN104561711A (en) High-hardness heat-resistant cast magnesium alloy and preparation method thereof
CN103952590A (en) Rare-earth aluminum-zinc alloy containing silicon and manganese and modification process of alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815922

Country of ref document: EP

Kind code of ref document: A1