WO2016000168A1 - 信道指示方法、装置与*** - Google Patents

信道指示方法、装置与*** Download PDF

Info

Publication number
WO2016000168A1
WO2016000168A1 PCT/CN2014/081264 CN2014081264W WO2016000168A1 WO 2016000168 A1 WO2016000168 A1 WO 2016000168A1 CN 2014081264 W CN2014081264 W CN 2014081264W WO 2016000168 A1 WO2016000168 A1 WO 2016000168A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink channel
network side
side device
indication information
physical layer
Prior art date
Application number
PCT/CN2014/081264
Other languages
English (en)
French (fr)
Inventor
汪凡
马雪利
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/081264 priority Critical patent/WO2016000168A1/zh
Priority to CN201480029872.9A priority patent/CN105393620A/zh
Publication of WO2016000168A1 publication Critical patent/WO2016000168A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a channel indication method, apparatus, and system. Background technique
  • TDM scheduling is the latest standard of the 3rd Generation Partnership Project (3GPP), R12 is researching the uplink enhancement (Enhanced Uplink, referred to as: EUL) A key technology in the FUer EUL Enhancement.
  • EUL Enhanced Uplink
  • a main purpose of the enhanced TDM scheduling technology is to schedule a high-speed user equipment (User Equipment, referred to as UE). Based on the TDM scheduling method, a higher RISE over Thermal noise (RoT) is scheduled for the UE transmitting data. Therefore, the UE can send uplink data with low latency and high rate.
  • RoT RISE over Thermal noise
  • the SP UE detects the absolute authorized channel of the Enhanced Dedicated Channel (E-DCH) delivered by the network-side device base station (NodeB, NB for short) through the grant detection scheme (Absolute) Grant Channel (referred to as: AGCH) (E-DCH AGCH, E-AGCH for short), if the UE detects that the E-AGCH is sent by the network, and the E-AGCH is sent to the UE, even if the RNTI of the user is used. After the descrambling is passed, the UE sends data according to the E-AGCH.
  • E-DCH Enhanced Dedicated Channel
  • AGCH Grant Channel
  • the UE If the UE detects that the E-AGCH is sent by the network and the E-AGCH is not sent to the UE, the UE stops even if the RNTI of the user is descrambled. Send upstream data.
  • the format detection scheme not only activates the target UE through E-AGCH, but also deactivates other UEs, saves uplink code resource signaling, and supports a large number of online UEs.
  • a network-side device such as a radio network controller (RNC) or a base station, configures one downlink physical channel resource for each online UE, such as a dedicated physical control channel (DPCCH).
  • DPCCH dedicated physical control channel
  • F-DPCH The Fractal-Dedicated Physical Channel
  • the enhanced TDM scheduling technology described above requires the network side device to allocate downlink DPCCH or F-DPCH resources for a large number of online UEs, which may easily lead to DPCCH or F-DPCH.
  • the resource occupancy code resource overhead is too high. Summary of the invention
  • the embodiment of the present invention provides a channel indication method, apparatus, and system, to overcome the problem that the network side device allocates downlink DPCCH or F-DPCH resources for a large number of online UEs in the prior art, which may easily lead to DPCCH or F-DPCH resource occupation code resource overhead. Too high a problem.
  • an embodiment of the present invention provides a channel indication method, including:
  • the downlink channel of the N downlink channels is the first downlink channel resource that the UE is listening to, among the N downlink channel resources allocated by the network side device to the user equipment UE, where N is a positive integer greater than or equal to 2;
  • the network side device sends channel indication information to the UE, where the channel indication information is used by the UE to determine the first downlink channel resource, and the frame listens to the first downlink channel;
  • the N downlink channel resources allocated by the network side device to the user equipment UE include a default downlink channel resource, where the default downlink channel resource is used by the network side device when the channel indication information is not sent, The UE directly listens to the default downlink channel resource.
  • the method further includes:
  • the network side device sends first signaling to the UE, and allocates N downlink channel resources to the UE by using the first signaling.
  • the default downlink channel resource is predefined by the network side device for the UE ;
  • the default downlink channel resource is sent by the network side device to the UE by using a second signaling indication.
  • the network side device sends a channel to the UE Instructions, including:
  • the network side device carries the channel indication information by using physical layer signaling
  • the network side device sends physical layer signaling that carries the channel indication information to the UE.
  • the physical layer signaling is specifically one of the following physical layer signaling: E-AGCH, E-RGCH, E-HICH, HS-SCCH.
  • the physical layer signaling is directly mapped by an index, or an index is accumulated, or Time information sent by the physical layer signaling to indicate the first downlink channel resource.
  • an embodiment of the present invention provides a channel indication method, including:
  • the user equipment UE receives the channel indication information sent by the network side device, where the channel indication information is used by the UE to determine the first downlink channel resource, and the frame listens to the first downlink channel;
  • the UE Determining, by the UE, one of the N downlink channel resources allocated to the UE by the network side device, according to the received channel indication information, that one of the downlink channels of the N downlink channels is the first downlink channel, where N is a positive integer greater than or equal to 2, and listens to the determined first downlink channel; or, the N downlink channel resources allocated by the network side device to the UE include a default downlink channel resource, if the UE does not Receiving the channel indication information, the UE listens to the default downlink channel resource.
  • the method further includes:
  • the UE Determining, by the UE, the N downlink channel resources allocated by the network side device to the UE according to the first signaling.
  • the default downlink channel resource is predefined by the network side device for the UE ;
  • the default downlink channel resource is determined by the UE according to the second signaling sent by the network side device.
  • the channel indication information is the network side device Beared by physical layer signaling
  • the physical layer signaling is specifically one of the following physical layer signaling: E-AGCH,
  • E-RGCH E-HICH, HS-SCCH.
  • the physical layer signaling is directly mapped by an index, or an index is accumulated, or Time information sent by the physical layer signaling to indicate the first downlink channel resource.
  • an embodiment of the present invention provides a network side device, including:
  • An allocating module configured to allocate, to the user equipment UE, N downlink channel resources, where N is a positive integer greater than or equal to 2;
  • a determining module configured to determine, from the N downlink channel resources allocated to the UE by the allocation module, that one of the downlink channels of the N downlink channels is a first downlink channel resource that is monitored by the UE;
  • a sending module configured to send channel indication information to the UE, where the channel indication information is used by the UE to determine the first downlink channel resource, and the frame listens to the first downlink channel;
  • the N downlink channel resources allocated by the allocation module to the user equipment UE include a default downlink channel resource, where the default downlink channel resource is used by the sending module, when the channel indication information is not sent, the UE directly Listening to the default downlink channel resource.
  • the sending module is further configured to send the first signaling to the UE, and allocate, by using the first signaling, the N downlink channel resources to the UE.
  • the default downlink channel resource is predefined by the allocation module for the UE;
  • the default downlink channel resource is sent by the sending module to the UE by using a second signaling indication.
  • the sending module is specifically configured to:
  • the physical layer signaling is specifically one of the following physical layer signaling: E-AGCH, E-RGCH, E-HICH, HS-SCCH.
  • the physical layer signaling is directly mapped by an index, or an index is accumulated, or Time information sent by the physical layer signaling to indicate the first downlink channel resource.
  • an embodiment of the present invention provides a user equipment, including:
  • a receiving module configured to receive channel indication information sent by the network side device, where the channel indication information is used by the user equipment UE to determine a first downlink channel resource, and the frame listens to the first downlink channel; Determining, according to the channel indication information received by the receiving module, the N downlink channel resources allocated to the UE by the network side device, determining that one of the downlink channels of the N downlink channels is the first downlink a line channel, where N is a positive integer greater than or equal to 2;
  • a listening module configured to listen to the first downlink channel determined by the determining module
  • the N downlink channel resources allocated by the network side device to the UE include a default downlink channel resource, and if the receiving module does not receive the channel indication information, the listening module is further configured to listen The default downlink channel resource.
  • the receiving module is further configured to receive the first signaling sent by the network side device;
  • the determining module is further configured to determine, according to the first signaling, N downlink channel resources allocated by the network side device to the UE.
  • the default downlink channel resource is predefined by the network side device for the UE ;
  • the default downlink channel resource is determined by the receiving module according to the second signaling sent by the network side device.
  • the channel indication information is the network side device Beared by physical layer signaling
  • the receiving module is specifically configured to:
  • the determining module is further configured to obtain the channel indication information from the physical layer signaling received by the receiving module.
  • the physical layer signaling is specifically one of the following physical layer signaling: E-AGCH, E-RGCH, E-HICH, HS-SCCH.
  • the physical layer signaling is directly mapped by an index, or an index is accumulated, or Time information sent by the physical layer signaling to indicate the first downlink channel resource.
  • a fifth aspect of the present invention provides a network side device, including:
  • a processor a memory, and a communication interface connected by a bus;
  • the communication interface is configured to communicate with a user equipment
  • the memory is configured to store at least two downlink channel resources and program code
  • the processor is configured to invoke the program code stored in the memory to perform the first aspect and the first A channel indication method according to any one of the first to fifth possible implementations of the invention.
  • an embodiment of the present invention provides a user equipment, including:
  • a processor a memory, and a communication interface connected by a bus;
  • the communication interface is configured to communicate with a network side device, the memory is configured to store at least two downlink channel resources allocated by the network side, and program code, where the processor is configured to invoke the program code stored in the memory, to The channel indication method of any of the first to fifth possible implementations of the second aspect and the second aspect is performed.
  • the embodiment of the present invention provides a channel indication system, including: the network side device according to the fifth aspect, and at least one user equipment according to the sixth aspect.
  • the UE allocates multiple downlink channel resources to the UE through the network side device, and sends the channel indication information to the UE or allocates a default downlink channel resource to the UE, so that the UE listens to the downlink channel or directly detects the channel indication information. Listening to the default downlink channel resources, so that the downlink channel resources on the network side can be shared among different UEs, and solving the problem that the downlink channel DPCCH or the F-DPCH resource occupation code resource overhead is too high when a large number of UEs are online, and sharing the downlink channel The resource saves the downlink channel resource overhead and improves the utilization of the downlink channel resource.
  • FIG. 1 is a flowchart of Embodiment 1 of a channel indication method according to an embodiment of the present disclosure
  • Embodiment 2 is a flowchart of Embodiment 2 of a channel indication method according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a network device according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a user equipment according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a network device according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a user equipment according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an embodiment of a channel indication system according to an embodiment of the present invention. detailed description
  • HSPA High Speed Packet Access
  • HSUPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • the two uplink physical channels include an Enhanced Dedicated Physical Data Channel (E-DPDCH) and an Enhanced Dedicated Physical Control Channel (E-DPCCH), and three downlink physical channels.
  • E-DPDCH Enhanced Dedicated Physical Data Channel
  • E-DPCCH Enhanced Dedicated Physical Control Channel
  • E-DCH Enhanced Dedicated Physical Control Channel
  • E-DCH E-DCH Hybrid ARQ Indicator Channel
  • E-AGCH E-DCH Absolute Grant Channel
  • E-DCH relative grant channel are included.
  • E-DCH Relative Grant Channel referred to as E-RGCH.
  • E-RGCH High Speed Physical Downlink Shared Channel
  • HS-PDSCH High Speed Physical Downlink Shared Channel
  • HS-SCCH High Speed Shared Control Channel
  • HS-DPCCH High Speed Dedicated Physical Control Channel
  • F-DPCH dedicated physical control channel
  • HS-PDSCH and HS-SCCH are used to transmit user data of high-speed services and Control information
  • HS-DPCCH is used for the uplink, and is responsible for transmitting the necessary control information.
  • the F-DPCH can be shared by multiple users, and the power control is used to effectively reduce the waste of code resources.
  • FIG. 1 is a flowchart of Embodiment 1 of a channel indication method according to an embodiment of the present invention.
  • the implementation body of the method embodiment is a network side device, and specifically, may be an RNC or an NB, but is not limited thereto, and the present invention does not limited.
  • the method embodiment includes the following steps:
  • Step 101 The network side device determines, according to the N downlink channel resources allocated to the UE by the network side device, that one of the downlink channels of the N downlink channels is the first downlink channel resource that the UE listens, where N is A positive integer greater than or equal to 2.
  • the downlink channel may be a DPCCH or an F-DPCH
  • the N downlink channels include at least one downlink channel shared with other UEs, and the UE and other UEs listen to the shared downlink channel in different time slots.
  • the foregoing UE may support the format detection technology in the enhanced TDM scheduling, and the network side may pre-allocate at least two downlink channels to each UE according to the total number of available downlink channel resources.
  • each UE may be pre-configured with the same number of Ns.
  • the downlink channel resources, N does not exceed the total number of downlink channel resources available to the network side device.
  • the number of downlink channel resources available on the network side device is 2, only two UEs are allowed to perform uplink data transmission in each time slot, and the two downlink channel resources are respectively identified by the dchO and dchl identifiers, if there are 100 downlink network devices.
  • the UE allocates the two downlink channel resources to the 100 UEs, that is, 100 UEs share two downlink channel resources.
  • two target UEs may be activated in the same time slot.
  • the network side device may determine whether other UEs are currently listening to dchO or dchl to determine that the downlink channel chO or chl that is not intercepted by other UEs is the downlink channel resource that the target UE0 can listen to in the current time slot. , that is, the first downlink channel.
  • Step 102 The network side device sends, to the UE, channel indication information, where the channel indication information is used by the UE to determine the first downlink channel resource, and the frame listens to the first downlink channel.
  • the network side device sends the channel indication information to the UE, where the network side device carries the channel indication information through the physical layer signaling;
  • the network side device sends physical layer signaling carrying the channel indication information to the UE.
  • the physical layer signaling may be specifically one of the following physical layer signaling: E-AGCH, E-RGCH, E-HICH, HS-SCCH.
  • the foregoing physical layer signaling may indicate the first downlink channel resource by using an index direct mapping manner, or an index accumulation manner, or time information sent by the physical layer signaling.
  • the method embodiment further includes:
  • the network side device sends the first signaling to the UE, and allocates N downlink channel resources to the UE by using the first signaling.
  • the default downlink channel resource is predefined by the network side device for the UE.
  • the foregoing default downlink channel resource is that the network side device sends the second signaling indication to the UE.
  • the method embodiment in step 102, further includes: determining whether the first downlink channel is a default downlink channel; if yes, performing a step of transmitting channel indication information.
  • the code resource overhead of the channel indication information can be further reduced by the default downlink channel.
  • the network side device allocates at least two downlink channel resources to the UE in advance, including a default downlink channel, where the downlink channel resource may be a DPCCH or an F-DPCH, and is configured in a downlink channel resource configured by the current UE. At least one downlink channel resource may be configured to be allocated to other UEs, and the shared downlink channel resources may be listened to in different time slots for the UE and other UEs.
  • the network side device allocates at least two downlink channel resources to the UE in advance, including a default downlink channel, where the downlink channel resource may be a DPCCH or an F-DPCH, and is configured in a downlink channel resource configured by the current UE.
  • At least one downlink channel resource may be configured to be allocated to other UEs, and the shared downlink channel resources may be listened to in different time slots for the UE and other UEs.
  • the network side device determines a first downlink channel that can be intercepted by the current time slot in the downlink channel resource allocated by the UE, generates a channel indication message according to the first downlink channel, and sends the channel to the UE. And indicating information, so that the UE determines the first downlink channel according to the channel indication message, and listens to the first downlink channel.
  • the channel indication information may not be sent to the UE. At this time, the UE may directly listen to the default downlink channel resource when the channel indication information is not received.
  • the available downlink channel resources are dchO and dchl
  • the network side Transmitting the first signaling to the UE, where the first signaling is carried by a radio resource control (Radio Resource Control, RRC) signaling, which is sent by the network, and indicates that the downlink channel resources allocated to the UE are dchO and dchl, where
  • RRC Radio Resource Control
  • the dchO may be a default downlink channel
  • the second signaling may be sent to the UE, where the second signaling may be carried by RRC signaling or physical layer signaling delivered by the network, indicating that dchO is the default downlink channel.
  • the network side may carry the first one of the E-AGCH, the E-RGCH, the E-HICH, or the HS-SCCH by using physical layer signaling.
  • the downlink channel is channel indication information of dchl, and the channel indication information is sent on the corresponding physical channel.
  • the channel indication information is typically carried by the Absolute Grant Scope bit, and the manner of indicating the resource number may be an index direct mapping manner or an index accumulation manner.
  • the present invention is not limited, so that when the UE receives the E-AGCH, the value of the Absolute Grant Scope bit is obtained to determine that dchl is the first one. Line channel, and listen to dchl.
  • both E-RGCH and E-HICH carry 1 bit information.
  • the value of the 1 bit can be used to carry channel indication information, and the manner of indicating the resource number can be directly mapped by index. The way or the way the index is accumulated.
  • the possible implementation manner is to determine that the physical layer signaling identifier corresponding to the channel indication information of dchl is E-RGCH and the information carried by the E-HICH is 1 or -1;
  • the possible implementation manner is that the information carried by the E-RGCH and the E-HICH is 1 means that the current resource number is +1, and the information carried by the E-RGCH and the E-HICH is -1 means the current resource number.
  • the UE determines that dchl is the first downlink channel and listens to dchl by acquiring the information of the bearer.
  • the HS-SCCH order bearer channel indication information may be used, and the manner of indicating the resource number may be an index direct mapping manner or an index accumulation manner, or may be implicitly using the time information sent by the HS-SCCH order.
  • the direct mapping method is adopted.
  • the possible implementation method is to use HS-SCCH order1 to explicitly indicate the channel resource number is 1; the index accumulation method is adopted, and the possible implementation mode is HS-SCCH order 1 means the current resource.
  • the number above +1 or HS-SCCH order2 means that the current resource number is -1; when the time information transmitted by the HS-SCCH order is implicitly indicated, the possible implementation is corresponding to the transmission frame according to the HS-SCCH order.
  • the UE will terminate the transmission of other UEs when transmitting, which will result in a limited number of simultaneous transmissions of the UE supporting the format detection at the same time.
  • the number of E-AGCHs can be detected in the intra-cell format. This allows different UEs to share downlink channel resources. For example, the number of E-AGCHs in the format detected by the cell is 3, and the number of UEs supporting the format detection is 100.
  • the network side needs to set at least 100 downlink channel resources DPCCH or F-DPCH. However, only three UEs in the same time slot can perform uplink data transmission.
  • the total number of DPCCH/F-DPCH resources to be configured on the actual network side is three, and three downlink channel resources can be configured for 100 UEs, and are sent in the UE.
  • the channel indication information is sent to indicate the downlink channel that the UE can listen to in the current time slot, so that the downlink channel DPCCH or F-DPCH resources can be greatly saved.
  • the downlink channel resource sharing in the channel indication method provided by this embodiment is also applicable to the case where the number of available downlink channel resources on the network side is 1. At this time, only one UE is allowed to perform uplink data transmission in each time slot, and the downlink channel resource is identified by dchO. If there are 100 UEs on the network side, the downlink channel resources, gp, are allocated to the 100 UEs. 100 UEs share this one downlink channel resource. For a UE supporting format detection, only one target UE is activated in the same time slot.
  • the target UE After the target UE is activated, the other 99 UEs are deactivated, that is, the target UE can directly
  • the downlink channel resource is monitored to adjust the transmit power of the E-DCH according to the downlink channel resource to implement high-speed data rate transmission, and the network side does not need to perform the step of determining that the downlink channel resource can be intercepted and the channel indication message is sent.
  • the UE allocates multiple downlink channel resources to the UE by using the network side device, and sends channel indication information to the UE or allocates a default downlink channel resource to the UE, so that the UE according to the channel
  • the indication information intercepts the downlink channel or directly listens to the default downlink channel resource, so that the downlink channel resource of the network side can be shared between different UEs.
  • the downlink channel DPCCH or the F-DPCH resource occupation code resource overhead is over The problem is high, and by sharing the downlink channel resources, the downlink channel resource overhead is saved, and the utilization of the downlink channel resources is improved.
  • FIG. 2 is a flowchart of Embodiment 2 of a channel indication method according to an embodiment of the present invention.
  • the implementation body of the method embodiment is a UE, which corresponds to the method embodiment shown in FIG. 1.
  • the method embodiment includes The following steps:
  • Step 201 The UE receives channel indication information sent by the network side device, where the channel indication information is used by the UE to determine the first downlink channel resource, and the frame listens to the first downlink channel.
  • Step 202 The UE allocates to the UE from the network side device according to the received channel indication information.
  • one of the downlink channels of the N downlink channels is a first downlink channel, where N is a positive integer greater than or equal to 2, and listening to the determined first downlink channel;
  • Step 203 The N downlink channel resources allocated by the network side device to the UE include the default downlink channel resource. If the UE does not receive the channel indication information, the UE listens to the default downlink channel resource.
  • the channel indication information is carried by the network side device by using the physical layer signaling.
  • the UE receives the channel indication information sent by the network side device, where the UE includes: receiving, by the UE, the bearer channel indication sent by the network side device. Physical layer signaling of information;
  • the UE acquires channel indication information from the received physical layer signaling.
  • the physical layer signaling may be specifically one of the following physical layer signaling: E-AGCH,
  • the foregoing physical layer signaling may indicate the first downlink channel resource by using an index direct mapping manner, or an index accumulation manner, or time information sent by the physical layer signaling.
  • the method embodiment further includes:
  • the UE determines, according to the first signaling, N downlink channel resources allocated by the network side device to the UE.
  • the default downlink channel resource is predefined by the network side device for the UE; or, the default downlink channel resource is determined by the UE according to the second signaling sent by the network side device.
  • the UE is pre-allocated with at least two downlink channel resources, and the downlink channel resource may be a DPCCH or an F-DPCH resource, where different UEs under the same network side device may share Line channel resources, and listen to shared downlink channel resources in different time slots.
  • the UE receives the channel indication information sent by the network side device, and determines, according to the channel indication information, the first downlink channel that the current time slot can listen to.
  • the UE is allocated at least two downlink channel resources, including a default downlink channel, and directly listens to the default downlink channel when the UE does not receive the channel indication information.
  • the UE listens to the determined downlink channel, and adjusts the transmit power of the uplink E-DCH according to the uplink transmission.
  • the UE obtains the channel indication information from the received physical layer signaling, where the channel indication information may be a physical layer signaling identifier corresponding to the first downlink channel, and the UE determines the first downlink according to the physical layer signaling identifier.
  • the physical layer signaling includes, but is not limited to, the Absolute Grant Scope described in the embodiment shown in FIG. 1, the bit information included in the E-RGCH, the bit information included in the E-HICH, HS-SCCH order, HS-
  • the time information sent by the SCCH order that is, the subframe number of the HS-SCCH order transmission frame, determines the first downlink channel, and the implementation method thereof corresponds to the method in the embodiment shown in FIG. 1.
  • the implementation method thereof corresponds to the method in the embodiment shown in FIG. 1.
  • the downlink channel resource that can be intercepted by the current time slot is determined by the UE side according to the channel indication information, so that the downlink channel resource allocated to the UE can be shared with other UEs, thereby saving downlink channel code resources on the network side, and improving Utilization of downlink channel resources.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a network side device according to an embodiment of the present invention.
  • the network side device 300 includes: an allocating module 301, a determining module 302, and a sending module 303, where
  • the allocating module 301 is configured to allocate, to the user equipment UE, N downlink channel resources, where N is a positive integer greater than or equal to 2;
  • the determining module 302 is configured to determine, according to the N downlink channel resources allocated to the UE from the allocating module 301, that one of the downlink channels of the N downlink channels is the first downlink signal that the UE listens to. Road resources
  • the sending module 303 is configured to send channel indication information to the UE, where the channel indication information is used by the UE to determine the first downlink channel resource, and the frame listens to the first downlink channel;
  • the N downlink channel resources allocated by the allocating module 301 to the UE include a default downlink channel resource, and the default downlink channel resource is used by the sending module 303 to directly listen to the default downlink channel resource when the channel indication information is not sent.
  • the sending module 303 is further configured to send the first signaling to the UE, and allocate N downlink channel resources to the UE by using the first signaling.
  • the default downlink channel resource is predefined by the allocation module 301 for the UE;
  • the default downlink channel resource is sent by the sending module 303 to the UE by the second signaling.
  • the sending module 303 is specifically configured to:
  • the physical layer signaling carrying the channel indication information is sent to the UE.
  • the physical layer signaling is specifically one of the following physical layer signaling: E-AGCH, E-RGCH, E-HICH, HS-SCCH.
  • the foregoing physical layer signaling may indicate the first downlink channel resource by means of direct index mapping, or an index accumulation manner, or time information sent by physical layer signaling.
  • the network side device provided in this embodiment may be used to implement the technical solution in the method embodiment shown in FIG. 1.
  • the implementation principle and technical effects are similar, and details are not described herein.
  • FIG. 4 is a schematic structural diagram of Embodiment 1 of a user equipment according to an embodiment of the present invention.
  • the user equipment 400 includes: a receiving module 401, a determining module 402, and a listening module 403;
  • the receiving module 401 is configured to receive channel indication information sent by the network side device, where the channel indication information is used by the UE to determine the first downlink channel resource, and the frame listens to the first downlink channel;
  • the determining module 402 is configured to determine, according to the channel indication information received by the receiving module 401, one of the N downlink channel resources allocated to the UE by the network side device, and determine that one of the downlink channels of the N downlink channels is the first downlink channel, where N is a positive integer greater than or equal to 2;
  • the listening module 403 is configured to listen to the first downlink channel determined by the determining module 402.
  • the N downlink channel resources allocated by the network side device to the UE include a default downlink channel resource. If the receiving module 401 does not receive the channel indication information, the listening module 403 is further configured to listen to the default downlink channel resource. Further, the receiving module 401 is further configured to receive the first signaling sent by the network side device, and the determining module 402 is further configured to determine, according to the first signaling, the N downlink channel resources allocated by the network side device to the UE.
  • the default downlink channel resource is predefined by the network side device for the UE; or, the default downlink channel resource is determined by the receiving module 401 according to the second signaling sent by the network side device.
  • the channel indication information is carried by the network side device through the physical layer signaling; the receiving module 401 is specifically configured to:
  • the channel indication information is obtained from the received physical layer signaling.
  • the physical layer signaling is specifically one of the following physical layer signaling: E-AGCH, E-RGCH, E-HICH, HS-SCCH.
  • the foregoing physical layer signaling may indicate the first downlink channel resource by means of direct index mapping, or an index accumulation manner, or time information sent by physical layer signaling.
  • the user equipment provided in this embodiment can be used to implement the technical solution in the method embodiment shown in FIG. 2, and the implementation principle and technical effects are similar, and details are not described herein.
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a network side device according to an embodiment of the present invention.
  • the network side device 500 includes: a processor 501, a memory 502, and a communication interface 503, where the processor 501, The memory 502 and the communication interface 503 are connected by a bus (shown by thick solid lines in the figure); the communication interface 503 is used for communication with user equipment, the memory 502 is used for storing at least two downlink channel resources and program code, and the processor 501 is used by the processor 501.
  • the program code stored in the memory 502 is called to perform the technical solution in the method embodiment shown in FIG. 1.
  • the implementation principle is similar to the technical effect, and details are not described herein.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of a user equipment according to an embodiment of the present disclosure.
  • the user equipment 600 includes: a processor 601, a memory 602, and a communication interface 603, where the processor 601 and the memory 602 are included.
  • the communication interface 603 is connected by a bus (shown by a thick solid line in the figure); the communication interface 603 is configured to communicate with the network side device, and the memory 602 is configured to store at least two downlink channel resources and program codes allocated by the network side, the processor The 601 is used to call the program code stored in the memory 602 to perform the technical solution in the method embodiment shown in FIG. 2, and the implementation principle is similar to the technical effect, and details are not described herein.
  • FIG. 7 is a schematic structural diagram of an embodiment of a channel indication system according to an embodiment of the present invention.
  • the channel indication system 700 includes a network side device 701 and at least one user equipment 702.
  • the network side device 701 may be the network side device shown in FIG. 3 or FIG. 5, and the user equipment 702 may be the user equipment shown in FIG. 4 or FIG. 6, and the network side device 701 and the user equipment 702 may be used to perform respectively.
  • the technical solutions in the method embodiments shown in FIG. 1 and FIG. 2 are similar in principle and details are not described herein.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种信道指示方法、装置与***,该方法包括:网络侧设备,从网络侧设备分配给用户设备UE的N个下行信道资源中,确定N个下行信道的其中一个下行信道为UE侦听的第一下行信道资源,其中N为大于等于 2的正整数;网络侧设备向UE发送信道指示信息,信道指示信息用于UE确定第一下行信道资源,并帧听第一下行信道;或者,网络侧设备预先分配给用户设备UE的N个下行信道资源中包括默认下行信道资源,默认下行信道资源用于网络侧设备在不发送信道指示信息时,UE直接侦听默认下行信道资源。本发明实施例,解决了大量UE在线时,下行信道DPCCH或者F-DPCH资源占用码资源开销过高的问题。

Description

信道指示方法、 装置与*** 技术领域
本发明实施例涉及通信技术, 尤其涉及一种信道指示方法、装置与***。 背景技术
增强的时分复用 (Time Division Multiplexing, 简称: TDM)调度, 是第三 代合作伙伴计划 (The 3rd Generation Partnership Project, 简称: 3GPP)的最新 标准 R12正在研究的上行增强 (Enhanced Uplink, 简称: EUL)进一歩增强特 性 (Further EUL Enhancement)中的一个关键技术。 增强的 TDM调度技术的一 个主要目的是调度高速用户设备 (User Equipment, 简称: UE), 基于 TDM调 度方法, 为发送数据的 UE调度较高的底噪抬升 (Rise over Thermal noise, 简 称: RoT), 从而使得 UE可以低时延、 高速率的发送上行数据。
增强 TDM调度, 通过格式检测 (grant detection)方案, SP UE检测网络侧 设备基站(NodeB , 简称: NB)下发的增强专用信道 (Enhanced Dedicated Channel,简称: E-DCH)的绝对授权信道 (Absolute Grant Channel,简称: AGCH) (E-DCH AGCH, 简称: E-AGCH), 如果 UE检测到网络下发了 E-AGCH, 且 该 E-AGCH是发给该 UE的, 即便用该用户的 RNTI解扰通过, 则 UE根据 该 E-AGCH发送数据, 如果 UE检测到网络下发了 E-AGCH且该 E-AGCH 不是发给该 UE的, 即便用该用户的 RNTI解扰通过, 则 UE停止发送上行数 据。 格式检测方案通过 E-AGCH既起到了激活目标 UE, 同时起到了去激活 其它 UE的目的, 节省了上行码资源信令, 可支持大量的在线 UE。
通常地, 网络侧设备, 如无线网络控制器 (Radio Network Controller, 简 称: RNC)或基站, 为每个在线 UE配置一个下行物理信道资源, 如专用物理 控制信道 (Dedicated Physical Control Channel, 简称: DPCCH)或者部分专用物 理信道 (Fractional-Dedicated Physical Channel, 简称: F-DPCH), 使得 UE在 收到上行授权后, 根据监听到的下行 DPCCH或者 F-DPCH来调整上行信道 的发送功率。 然而上述增强 TDM 调度技术, 使得网络侧设备需要为大量的 在线 UE分配下行 DPCCH或者 F-DPCH资源,容易导致 DPCCH或者 F-DPCH 资源占用码资源开销过高的问题。 发明内容
本发明实施例提供一种信道指示方法、 装置与***, 以克服现有技术中 网络侧设备为大量的在线 UE分配下行 DPCCH或者 F-DPCH资源, 容易导 致 DPCCH或者 F-DPCH资源占用码资源开销过高的问题。
第一方面, 本发明实施例提供一种信道指示方法, 包括:
网络侧设备, 从所述网络侧设备分配给用户设备 UE的 N个下行信道资 源中, 确定所述 N个下行信道的其中一个下行信道为所述 UE侦听的第一下 行信道资源, 其中 N为大于等于 2的正整数;
所述网络侧设备向所述 UE发送信道指示信息, 所述信道指示信息用于 所述 UE确定所述第一下行信道资源, 并帧听所述第一下行信道;
或者, 所述网络侧设备分配给用户设备 UE的 N个下行信道资源中包括 默认下行信道资源, 所述默认下行信道资源用于所述网络侧设备在不发送所 述信道指示信息时, 所述 UE直接侦听所述默认下行信道资源。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述方法还包 括:
所述网络侧设备向所述 UE发送第一信令,通过所述第一信令为所述 UE 分配 N个下行信道资源。
结合第一方面或第一方面的第一种可能的实现方式, 在第一方面的第二 种可能的实现方式中, 所述默认下行信道资源为所述网络侧设备为所述 UE 预定义的;
或者, 所述默认下行信道资源为所述网络侧设备向所述 UE发送第二信 令指示的。
结合第一方面和第一方面的第一到第二种可能的实现方式中的任一项, 在第一方面的第三种可能的实现方式中, 所述网络侧设备向所述 UE发送信 道指示信息, 包括:
所述网络侧设备通过物理层信令承载所述信道指示信息;
所述网络侧设备向所述 UE发送承载所述信道指示信息的物理层信令。 结合第一方面的第三种可能的实现方式, 在第一方面的第四种可能的实 现方式中, 所述物理层信令具体为下述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。
结合第一方面的第三或第四种可能的实现方式, 在第一方面的第五种可 能的实现方式中, 所述物理层信令通过索引直接映射的方式, 或者索引累加 的方式, 或者物理层信令发送的时间信息, 来指示所述第一下行信道资源。
第二方面, 本发明实施例提供一种信道指示方法, 包括:
用户设备 UE接收网络侧设备发送的信道指示信息, 所述信道指示信息 用于所述 UE确定第一下行信道资源, 并帧听所述第一下行信道;
所述 UE根据接收到的信道指示信息,从所述网络侧设备分配给 UE的 N 个下行信道资源中, 确定所述 N个下行信道的其中一个下行信道为所述第一 下行信道,其中 N为大于等于 2的正整数,并侦听确定的所述第一下行信道; 或者, 所述网络侧设备分配给 UE的 N个下行信道资源中包括默认下行 信道资源,若所述 UE未接收到所述信道指示信息,所述 UE侦听所述默认下 行信道资源。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述方法还包 括:
所述 UE接收所述网络侧设备发送的第一信令;
所述 UE根据所述第一信令, 确定所述网络侧设备为所述 UE分配的 N 个下行信道资源。
结合第二方面或第二方面的第一种可能的实现方式, 在第二方面的第二 种可能的实现方式中, 所述默认下行信道资源为所述网络侧设备为所述 UE 预定义的;
或者, 所述默认下行信道资源为所述 UE根据所述网络侧设备发送的第 二信令确定的。
结合第二方面和第二方面的第一到第二种可能的实现方式中的任一项, 在第二方面的第三种可能的实现方式中, 所述信道指示信息是所述网络侧设 备通过物理层信令承载的;
所述 UE接收网络侧设备发送的信道指示信息, 包括:
所述 UE接收所述网络侧设备发送的承载所述信道指示信息的物理层信 所述 UE从接收的所述物理层信令中获取所述信道指示信息。 结合第二方面的第三种可能的实现方式, 在第二方面的第四种可能的实 现方式中, 所述物理层信令具体为下述物理层信令中的一种: E-AGCH、
E-RGCH、 E-HICH、 HS-SCCH。
结合第二方面的第三或第四种可能的实现方式, 在第二方面的第五种可 能的实现方式中, 所述物理层信令通过索引直接映射的方式, 或者索引累加 的方式, 或者物理层信令发送的时间信息, 来指示所述第一下行信道资源。
第三方面, 本发明实施例提供一种网络侧设备, 包括:
分配模块, 用于给用户设备 UE分配 N个下行信道资源, 其中 N为大于 等于 2的正整数;
确定模块,用于从所述分配模块分配给所述 UE的 N个下行信道资源中, 确定所述 N个下行信道的其中一个下行信道为所述 UE侦听的第一下行信道 资源;
发送模块, 用于向所述 UE发送信道指示信息, 所述信道指示信息用于 所述 UE确定所述第一下行信道资源, 并帧听所述第一下行信道;
或者, 所述分配模块分配给用户设备 UE的 N个下行信道资源中包括默 认下行信道资源, 所述默认下行信道资源用于所述发送模块在不发送所述信 道指示信息时, 所述 UE直接侦听所述默认下行信道资源。
结合第三方面, 在第三方面的第一种可能的实现方式中,
所述发送模块, 还用于向所述 UE发送第一信令, 通过所述第一信令为 所述 UE分配 N个下行信道资源。
结合第三方面或第三方面的第一种可能的实现方式, 在第三方面的第二 种可能的实现方式中,
所述默认下行信道资源为所述分配模块为所述 UE预定义的;
或者, 所述默认下行信道资源为所述发送模块向所述 UE发送第二信令 指示的。
结合第三方面和第三方面的第一到第二种可能的实现方式中的任一项, 在第三方面的第三种可能的实现方式中, 所述发送模块, 具体用于:
通过物理层信令承载所述信道指示信息;
向所述 UE发送承载所述信道指示信息的物理层信令。 结合第三方面的第三种可能的实现方式, 在第三方面的第四种可能的实 现方式中, 所述物理层信令具体为下述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。
结合第三方面的第三或第四种可能的实现方式, 在第三方面的第五种可 能的实现方式中, 所述物理层信令通过索引直接映射的方式, 或者索引累加 的方式, 或者物理层信令发送的时间信息, 来指示所述第一下行信道资源。
第四方面, 本发明实施例提供一种用户设备, 包括:
接收模块, 用于接收网络侧设备发送的信道指示信息, 所述信道指示信 息用于所述用户设备 UE确定第一下行信道资源, 并帧听所述第一下行信道; 确定模块, 用于根据所述接收模块接收到的信道指示信息, 从所述网络 侧设备分配给所述 UE的 N个下行信道资源中, 确定所述 N个下行信道的其 中一个下行信道为所述第一下行信道, 其中 N为大于等于 2的正整数;
侦听模块, 用于侦听所述确定模块确定的所述第一下行信道;
或者, 所述网络侧设备分配给所述 UE的 N个下行信道资源中包括默认 下行信道资源, 若所述接收模块未接收到所述信道指示信息, 所述侦听模块, 还用于侦听所述默认下行信道资源。
结合第四方面, 在第四方面的第一种可能的实现方式中,
所述接收模块, 还用于接收所述网络侧设备发送的第一信令;
所述确定模块, 还用于根据所述第一信令, 确定所述网络侧设备为所述 UE分配的 N个下行信道资源。
结合第四方面或第四方面的第一种可能的实现方式, 在第四方面的第二 种可能的实现方式中, 所述默认下行信道资源为所述网络侧设备为所述 UE 预定义的;
或者, 所述默认下行信道资源为所述接收模块根据所述网络侧设备发送 的第二信令确定的。
结合第四方面和第四方面的第一到第二种可能的实现方式中的任一项, 在第四方面的第三种可能的实现方式中, 所述信道指示信息是所述网络侧设 备通过物理层信令承载的;
所述接收模块, 具体用于:
接收所述网络侧设备发送的承载所述信道指示信息的物理层信令; 所述确定模块, 还用于从所述接收模块接收的所述物理层信令中获取所 述信道指示信息。
结合第四方面的第三种可能的实现方式, 在第四方面的第四种可能的实 现方式中, 所述物理层信令具体为下述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。
结合第四方面的第三或第四种可能的实现方式, 在第四方面的第五种可 能的实现方式中, 所述物理层信令通过索引直接映射的方式, 或者索引累加 的方式, 或者物理层信令发送的时间信息, 来指示所述第一下行信道资源。
第五方面, 本发明实施例提供一种网络侧设备, 包括:
通过总线连接的处理器、 存储器以及通信接口;
所述通信接口用于与用户设备进行通信, 所述存储器用于存储至少两个 下行信道资源以及程序代码, 所述处理器用于调用所述存储器存储的程序代 码, 以执行如第一方面和第一方面的第一到第五种可能的实现方式中的任一 项所述的信道指示方法。
第六方面, 本发明实施例提供一种用户设备, 包括:
通过总线连接的处理器、 存储器以及通信接口;
所述通信接口用于与网络侧设备进行通信, 所述存储器用于存储所述网 络侧分配的至少两个下行信道资源以及程序代码, 所述处理器用于调用所述 存储器存储的程序代码, 以执行如第二方面和第二方面的第一到第五种可能 的实现方式中的任一项所述的信道指示方法。
第七方面, 本发明实施例提供一种信道指示***, 包括: 如第五方面所 述的网络侧设备和至少一个如第六方面所述的用户设备。
本发明提供的实施例, 通过网络侧设备给 UE分配多个下行信道资源, 并且向 UE发送信道指示信息或者为 UE分配默认下行信道资源, 以使 UE根 据信道指示信息侦听下行信道或者直接侦听默认下行信道资源, 使得网络侧 的下行信道资源可在不同 UE之间共享, 解决了大量 UE在线时, 下行信道 DPCCH或者 F-DPCH资源占用码资源开销过高的问题,并且通过共享下行信 道资源, 节省了下行信道资源开销, 提高了下行信道资源的利用率。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中 所需要使用的附图作简要介绍, 显而易见地, 下面描述中的附图仅仅是本发 明的一些实施例, 对于本领域的普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的信道指示方法实施例一的流程图;
图 2为本发明实施例提供的信道指示方法实施例二的流程图;
图 3为本发明实施例提供的网络侧设备实施例一的结构示意图; 图 4为本发明实施例提供的用户设备实施例一的结构示意图;
图 5为本发明实施例提供的网络侧设备实施例二的结构示意图; 图 6为本发明实施例提供的用户设备实施例二的结构示意图;
图 7为本发明实施例提供的信道指示***实施例的结构示意图。 具体实施方式
为了使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本 发明作进一歩地详细描述, 显然, 所描述的实施例仅仅是本发明一部份实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的 范围。
为了满足用户日益增长的速率需求,通用移动通信***(Universal Mobile Telecommunications System,简称: UMTS )引入了高速包接入技术( High Speed Packet Access, 简称: HSPA) 以提高频谱效率。 HSPA技术包括高速下行包 接入 (High Speed Downlink Packet Access, 简称: HSDPA) 技术和高速上行 包接入(High Speed Uplink Packet Access,简称: HSUPA)技术,其中, HSUPA 信道包括一条传输信道 E-DCH、 两条上行物理信道包括增强专用物理数据信 道 (Enhanced Dedicated Physical Data Channel, 简称: E-DPDCH) 和增强专 用物理控制信道 ( Enhanced Dedicated Physical Control Channel , 简称: E-DPCCH) , 以及三条下行物理信道包括 E-DCH HARQ指示信道 (E-DCH Hybrid ARQ Indicator Channel, 简称: E-HICH )、 E-DCH绝对授权信道( E-DCH Absolute Grant Channel, 简称: E-AGCH) 和 E-DCH相对授权信道 (E-DCH Relative Grant Channel, 简称: E-RGCH)。 HSDPA中引入了三条物理信道: 高速物理下行共享信道 (High Speed Physical Downlink Shared Channel, 简称: HS-PDSCH)、 高速共享控制信道 (High Speed Shared Control Channel, 简称: HS-SCCH)、 高速专用物理控制信道 (High Speed Dedicated Physical Control Channel , 简称: HS-DPCCH) , 此外, 部分专用物理控制信道 (Fractional Dedicated Physical Control Channel , 简称: F-DPCH ) 也被引入, 其中 HS-PDSCH 和 HS-SCCH 用以传输高速业务的用户数据及其控制信息, HS-DPCCH用于上行链路, 负责传输必要的控制信息, F-DPCH可由多用户 共享, 通过功率控制的方式有效减少码资源的浪费。
图 1为本发明实施例提供的信道指示方法实施例一的流程图, 该方法实 施例的执行主体为网络侧设备, 具体的, 可以为 RNC或者 NB, 但不限于此, 对此本发明不作限定。
如图 1所示, 本方法实施例, 包括如下歩骤:
歩骤 101、 网络侧设备, 从网络侧设备分配给 UE的 N个下行信道资源 中, 确定该 N个下行信道的其中一个下行信道为该 UE侦听的第一下行信道 资源, 其中 N为大于等于 2的正整数。
其中, 上述下行信道可以是 DPCCH或者 F-DPCH, 并且上述 N个下行 信道包括至少一个与其他 UE共享的下行信道,该 UE与其他 UE在不同时隙 侦听共享的下行信道。上述 UE可支持增强 TDM调度中的格式检测技术, 网 络侧可以根据可用下行信道资源总数, 给每个 UE预先分配至少两个下行信 道, 优选地, 可以给每个 UE均预先配置相同数量的 N个下行信道资源, N 不超过网络侧设备可用下行信道资源总数。
若网络侧设备可用下行信道资源的数量为 2,每个时隙仅允许 2个 UE进 行上行数据传输, 以 dchO和 dchl标识分别标识这两个下行信道资源, 若该 网络侧设备下有 100个 UE,给这 100个 UE均分配这 2个下行信道资源,即, 100个 UE共享 2个下行信道资源,对于支持格式检测的 UE来说,同一时隙, 可有 2个目标 UE被激活。 目标 UE0被激活后, 网络侧设备可确定当前是否 存在其他 UE在侦听 dchO或 dchl, 以确定未被其他 UE侦听的下行信道 chO 或 chl为目标 UE0当前时隙可侦听的下行信道资源, 即第一下行信道。
歩骤 102、 网络侧设备向 UE发送信道指示信息, 该信道指示信息用于 UE确定第一下行信道资源, 并帧听第一下行信道; 歩骤 103、 或者, 网络侧设备分配给用户设备 UE的 N个下行信道资源 中包括默认下行信道资源, 默认下行信道资源用于在网络侧设备不发送信道 指示信息时, UE直接侦听默认下行信道资源。
进一歩地, 歩骤 102中, 网络侧设备向 UE发送信道指示信息, 包括: 网络侧设备通过物理层信令承载信道指示信息;
网络侧设备向 UE发送承载信道指示信息的物理层信令。
其中, 上述物理层信令可以具体为下述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。上述物理层信令可通过索引直接映射的方式, 或者索引累加的方式, 或者物理层信令发送的时间信息, 来指示第一下行信 道资源。
进一歩地, 该方法实施例, 还包括:
网络侧设备向 UE发送第一信令, 通过第一信令为 UE分配 N个下行信 道资源。
其中, 上述默认下行信道资源为网络侧设备为 UE预定义的;
或者, 上述默认下行信道资源为网络侧设备向 UE发送第二信令指示的。 优选地, 该方法实施例在歩骤 102, 还包括: 判断第一下行信道是否为 默认下行信道; 若是, 则不执行发送信道指示信息的歩骤。 通过默认下行信 道可以进一歩减少信道指示信息的码资源开销。
具体来说, 对于特定载波, 网络侧设备预先给 UE配置至少两个下行信 道资源, 其中包括默认下行信道, 该下行信道资源可以为 DPCCH 或者 F-DPCH, 并且给当前 UE配置的下行信道资源中可以包括至少一个下行信道 资源被配置给其他 UE, 对于该 UE和其他 UE可在不同时隙侦听共享的下行 信道资源。
在 UE发起上行传输之前,网络侧设备确定 UE所预先分配的下行信道资 源中当前时隙可侦听的第一下行信道,根据第一下行信道生成信道指示消息, 并向 UE发送该信道指示信息,以使 UE根据信道指示消息确定第一下行信道, 并侦听该第一下行信道。 优选地, 若确定的第一下行信道为默认下行信道, 则可以不向 UE发送信道指示信息, 此时, UE在未接收到信道指示信息时, 可以直接侦听默认下行信道资源。
具体实现时, 以 N=2为例, 可用下行信道资源为 dchO和 dchl , 网络侧 向 UE 发送第一信令, 所述第一信令由网络侧下发的无线资源控制 (Radio Resource Control, 简称: RRC)信令承载, 指示分配给 UE的下行信道资源为 dchO和 dchl ,其中可预定义 dchO为默认下行信道,或者向 UE发送第二信令, 所述第二信令可由网络侧下发的 RRC信令或者物理层信令来承载,指示 dchO 为默认下行信道。 若确定第一下行信道为 dchl , 非默认下行信道, 网络侧可 通过物理层信令为 E-AGCH、 E-RGCH、 E-HICH、 或者 HS-SCCH的其中一 个比特或者指令来承载第一下行信道为 dchl的信道指示信息,并在相应的物 理信道发送该信道指示信息。
对于 E-AGCH, 典型地, 通过 Absolute Grant Scope比特来承载信道指示 信息, 指示资源编号的方式可以采用索引直接映射的方式或者索引累加的方 式。 当采用索引直接映射的方式时, 可能的实现方式为确定 dchl的信道指示 信息对应的物理层信令标识为 Absolute Grant Scopes 1 或者 Absolute Grant Scope=0; 当采用索引累加的方式时, 可能的实现方式是 Absolute Grant Scope = 0意味着在当前的资源编号上 +1或 -1, 对此本发明不作限定, 使得 UE接收 E-AGCH时通过获取 Absolute Grant Scope比特的值来确定 dchl为第一下行 信道, 并侦听 dchl。
对于 E-RGCH和 E-HICH, E-RGCH和 E-HICH均承载 1个比特信息, 类似的, 可以采用该 1个比特的值来承载信道指示信息, 指示资源编号的方 式可以采用索引直接映射的方式或者索引累加的方式。 当采用索引直接映射 的方式时,可能的实现方式为确定 dchl的信道指示信息对应的物理层信令标 识为 E-RGCH和 E-HICH承载的信息为 1或者 -1 ; 当采用索引累加的方式时, 可能的实现方式是 E-RGCH和 E-HICH承载的信息为 1意味着在当前的资源 编号上 +1, E-RGCH和 E-HICH承载的信息为 -1意味着在当前的资源编号上 -1, 对此本发明不作限定, 使得 UE接收 E-RGCH或 E-HICH时通过获取承 载的信息来确定 dchl为第一下行信道, 并侦听 dchl。
对于 HS-SCCH, 可采用 HS-SCCH order承载信道指示信息, 指示资源编 号的方式可以采用索引直接映射的方式或者索引累加的方式, 或者, 还可以 采用 HS-SCCH order发送的时间信息来隐式指示。采用索引直接映射的方式, 可能的实现方式为使用 HS-SCCH orderl来显式指示信道资源编号为 1 ; 采用 索引累加的方式, 可能的实现方式为 HS-SCCH order 1意味着在当前的资源 编号上 +1或者 HS-SCCH order2意味着在当前的资源编号上 -1 ;采用 HS-SCCH order发送的时间信息来隐式指示时, 可能的实现方式为根据 HS-SCCH order 的发送帧对应的子帧号包括的***帧号 (System Frame Number, 简称: SFN) 和连接帧号 (Connection Frame Number, 简称: CFN)取模(mod)来标识 dchl, 如 HS-SCCH order在子帧号满足(SFN+5*CFN) mod 2 =0的子帧发送则意味 使用 dchl , 使得 UE接收 HS-SCCH时通过获取 HS-SCCH order或者获取 HS-SCCH order子帧号后进行相应的计算, 来确定第一下行信道。
需说明的是, 对于 N=4, 或者任意其他取值, 其信道指示实现方法是类 似的, 具体不再赘述。
对于支持格式检测的 UE, 该 UE传输时会终止其它 UE的传输, 这将导 致同一个时刻支持格式检测的 UE 同时传输的数量有限, 典型地, 可以等于 小区内格式检测 E-AGCH的数目, 这使得不同 UE可共享下行信道资源。 比 如小区中配置的格式检测的 E-AGCH的数目为 3, 而支持格式检测的 UE数 目为 100, 现有技术中, 通常的网络侧需要相应设置至少 100个下行信道资 源 DPCCH或者 F-DPCH, 然而同一时隙仅有 3个 UE可进行上行数据传输, 因此实际网络侧总共需要配置的 DPCCH/F-DPCH资源为 3个, 可给 100个 UE均配置 3个下行信道资源, 并在 UE发送上行数据之前, 发送信道指示信 息以指示 UE 当前时隙可侦听的下行信道, 从而可以大大节省下行信道 DPCCH或 F-DPCH资源。
值得注意的是, 本实施例提供的信道指示方法中的下行信道资源共享也 适用于网络侧可用下行信道资源的数量为 1 的情况。 此时, 每个时隙仅允许 1个 UE进行上行数据传输, 以 dchO标识该下行信道资源, 若该网络侧下有 100个 UE, 则给这 100个 UE均分配这个下行信道资源, gp, 100个 UE共 享这一个下行信道资源, 对于支持格式检测的 UE来说, 同一时隙, 只有 1 个目标 UE被激活, 目标 UE激活后, 其他 99个 UE被去激活, 也即目标 UE 可直接侦听该下行信道资源, 以根据该下行信道资源调整 E-DCH 的发送功 率, 实现高速数据率传输, 而不需要执行网络侧确定可侦听下行信道资源以 及发送信道指示消息的歩骤。
该方法实施例, 通过网络侧设备给 UE分配多个下行信道资源, 并且向 UE发送信道指示信息或者为 UE分配默认下行信道资源, 以使 UE根据信道 指示信息侦听下行信道或者直接侦听默认下行信道资源, 使得网络侧的下行 信道资源可在不同 UE之间共享, 解决了大量 UE在线时, 下行信道 DPCCH 或者 F-DPCH资源占用码资源开销过高的问题,并且通过共享下行信道资源, 节省了下行信道资源开销, 提高了下行信道资源的利用率。
图 2为本发明实施例提供的信道指示方法实施例二的流程图, 该方法实 施例的执行主体为 UE, 与图 1所示方法实施例对应, 如图 2所示, 该方法实 施例包括如下歩骤:
歩骤 201、 UE接收网络侧设备发送的信道指示信息, 该信道指示信息用 于 UE确定第一下行信道资源, 并帧听第一下行信道;
歩骤 202、 UE根据接收到的信道指示信息, 从网络侧设备分配给 UE的
N个下行信道资源中, 确定上述 N个下行信道的其中一个下行信道为第一下 行信道, 其中 N为大于等于 2的正整数, 并侦听确定的第一下行信道;
歩骤 203、 或者, 网络侧设备分配给 UE的 N个下行信道资源中包括默 认下行信道资源, 若 UE未接收到信道指示信息, UE侦听该默认下行信道资 源。
进一歩地, 上述信道指示信息是网络侧设备通过物理层信令承载的; 相应地, 歩骤 201, UE接收网络侧设备发送的信道指示信息, 包括: UE接收网络侧设备发送的承载信道指示信息的物理层信令;
UE从接收的物理层信令中获取信道指示信息。
其中, 上述物理层信令可以具体为下述物理层信令中的一种: E-AGCH、
E-RGCH、 E-HICH、 HS-SCCH。上述物理层信令可通过索引直接映射的方式, 或者索引累加的方式, 或者物理层信令发送的时间信息, 来指示第一下行信 道资源。
进一歩地, 该方法实施例, 还包括:
UE接收网络侧设备发送的第一信令;
UE根据第一信令, 确定网络侧设备为 UE分配的 N个下行信道资源。 其中, 默认下行信道资源为网络侧设备为 UE预定义的; 或者, 默认下 行信道资源为 UE根据网络侧设备发送的第二信令确定的。
具体来说, UE被预先分配至少两个下行信道资源, 该下行信道资源可以 为 DPCCH或者 F-DPCH资源, 其中同一网络侧设备下的不同 UE可共享下 行信道资源, 并在不同时隙侦听共享的下行信道资源。 UE在上行传输前, 接 收网络侧设备发送的信道指示信息, 根据信道指示信息确定当前时隙可侦听 的第一下行信道。 或者优选地, 该 UE被分配的至少两个下行信道资源, 包 括默认下行信道, 在 UE未接收到信道指示信息时, 直接侦听默认下行信道。 UE在确定当前时隙侦听的下行信道资源后, 侦听该确定的下行信道, 并据此 调整上行 E-DCH的发送功率, 以进行上行传输。
具体实现时, UE从接收的物理层信令中获取信道指示信息, 该信道指示 信息可以为第一下行信道对应的物理层信令标识, UE根据该物理层信令标识 来确定第一下行信道, 其中该物理层信令包括但不限于图 1所示实施例中所 述的 Absolute Grant Scope, E-RGCH包括的比特信息、 E-HICH包括的比特信 息, HS-SCCH order, HS-SCCH order发送的时间信息也即 HS-SCCH order发 送帧的子帧号来确定第一下行信道, 其实现方法与图 1所示实施例中的方法 对应, 详细描述可以参见图 1对应的实施例的相关内容, 此处不再赘述。
该方法实施例, 通过 UE侧根据信道指示信息确定当前时隙可侦听的下 行信道资源,使得分配给 UE的下行信道资源可与其他 UE共享,节省了网络 侧的下行信道码资源, 提高了下行信道资源的利用率。
需要说明的是: 对于前述的各方法实施例, 为了简单描述, 故将其都表 述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受所描 述的动作顺序的限制, 因为依据本发明, 某些歩骤可以采用其他顺序或者同 时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述的实施例均属 于优选实施例, 所涉及的动作和模块并不一定是本发明所必需的。
在上述实施例中, 对各个实施例的描述都各有侧重, 某个实施例中没有 详述的部分, 可以参见其他实施例的相关描述。
图 3为本发明实施例提供的网络侧设备实施例一的结构示意图, 如图 3 所示, 该网络侧设备 300, 包括: 分配模块 301、 确定模块 302和发送模块 303, 其中,
分配模块 301, 用于给用户设备 UE分配 N个下行信道资源, 其中 N为 大于等于 2的正整数;
确定模块 302, 用于用于从分配模块 301分配给 UE的 N个下行信道资 源中, 确定上述 N个下行信道的其中一个下行信道为 UE侦听的第一下行信 道资源;
发送模块 303, 用于向 UE发送信道指示信息, 信道指示信息用于 UE确 定第一下行信道资源, 并帧听第一下行信道;
或者, 分配模块 301分配给 UE的上述 N个下行信道资源中包括默认下 行信道资源,默认下行信道资源用于发送模块 303在不发送信道指示信息时, UE直接侦听默认下行信道资源。
进一歩地, 发送模块 303, 还用于向 UE发送第一信令, 通过第一信令为 UE分配 N个下行信道资源。
其中, 默认下行信道资源为分配模块 301为 UE预定义的;
或者, 默认下行信道资源为发送模块 303向 UE发送第二信令指示的。 进一歩地, 发送模块 303, 具体用于:
通过物理层信令承载信道指示信息;
向 UE发送承载信道指示信息的物理层信令。
其中,物理层信令具体为下述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。 上述物理层信令可通过索引直接映射的方式, 或者索引 累加的方式, 或者物理层信令发送的时间信息, 来指示第一下行信道资源。
该实施例提供的网络侧设备, 可用于执行图 1所示方法实施例中的技术 方案, 其实现原理和技术效果是类似的, 具体不再赘述。
图 4为本发明实施例提供的用户设备实施例一的结构示意图, 如图 4所 示, 该用户设备 400, 包括: 接收模块 401、 确定模块 402、 侦听模块 403; 其中,
接收模块 401, 用于接收网络侧设备发送的信道指示信息, 信道指示信 息用于 UE确定第一下行信道资源, 并帧听第一下行信道;
确定模块 402, 用于根据接收模块 401接收到的信道指示信息, 从网络 侧设备分配给 UE的 N个下行信道资源中, 确定 N个下行信道的其中一个下 行信道为第一下行信道, 其中 N为大于等于 2的正整数;
侦听模块 403, 用于侦听确定模块 402确定的第一下行信道;
或者, 网络侧设备分配给 UE的 N个下行信道资源中包括默认下行信道 资源, 若接收模块 401未接收到信道指示信息, 侦听模块 403, 还用于侦听 默认下行信道资源。 进一歩地, 接收模块 401, 还用于接收网络侧设备发送的第一信令; 确定模块 402, 还用于根据第一信令, 确定网络侧设备为 UE分配的 N 个下行信道资源。
其中, 默认下行信道资源为网络侧设备为 UE预定义的; 或者, 默认下 行信道资源为接收模块 401根据网络侧设备发送的第二信令确定的。
进一歩地, 信道指示信息是网络侧设备通过物理层信令承载的; 接收模块 401, 具体用于:
接收网络侧设备发送的承载信道指示信息的物理层信令;
从接收的物理层信令中获取信道指示信息。
其中,物理层信令具体为下述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。 上述物理层信令可通过索引直接映射的方式, 或者索引 累加的方式, 或者物理层信令发送的时间信息, 来指示第一下行信道资源。
该实施例提供的用户设备, 可用于执行图 2所示方法实施例中的技术方 案, 其实现原理和技术效果是类似的, 具体不再赘述。
图 5为本发明实施例提供的网络侧设备实施例二的结构示意图, 如图 5 所示, 该网络侧设备 500, 包括: 处理器 501、存储器 502以及通信接口 503, 其中, 处理器 501、 存储器 502以及通信接口 503通过总线 (图中粗实线所示) 连接; 通信接口 503用于与用户设备进行通信, 存储器 502用于存储至少两 个下行信道资源以及程序代码, 处理器 501用于调用存储器 502存储的程序 代码, 以执行图 1所示方法实施例中技术方案, 其实现原理与技术效果类似, 具体不再赘述。
图 6为本发明实施例提供的用户设备实施例二的结构示意图, 如图 6所 示, 该用户设备 600, 包括: 处理器 601、 存储器 602以及通信接口 603, 其 中, 处理器 601、 存储器 602 以及通信接口 603通过总线 (图中粗实线所示) 连接; 通信接口 603用于与网络侧设备进行通信, 存储器 602用于存储网络 侧分配的至少两个下行信道资源以及程序代码, 处理器 601用于调用存储器 602存储的程序代码, 以执行图 2所示方法实施例中技术方案, 其实现原理 与技术效果类似, 具体不再赘述。
图 7为本发明实施例提供的信道指示***实施例的结构示意图, 如图 7 所示,该信道指示*** 700,包括网络侧设备 701以及至少一个用户设备 702, 其中该网络侧设备 701可以为图 3或图 5所示的网络侧设备,该用户设备 702 可以为图 4或图 6所示的用户设备, 网络侧设备 701和用户设备 702可分别 用于执行图 1和图 2所示方法实施例中的技术方案, 其实现原理和技术效果 是类似的, 具体不再赘述。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的***, 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件 实现时, 可以将上述功能存储在计算机可读介质中或作为计算机可读介质上 的一个或多个指令或代码进行传输。 计算机可读介质包括计算机存储介质和 通信介质, 其中通信介质包括便于从一个地方向另一个地方传送计算机程序 的任何介质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但 不限于: 计算机可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM或其 他光盘存储、 磁盘存储介质或者其他磁存储设备、 或者能够用于携带或存储 具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他 介质。 此外, 任何连接可以适当的成为计算机可读介质。 例如, 如果软件是 使用同轴电缆、 光纤光缆、 双绞线、 数字用户线 (DSL) 或者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他远程源传输的, 那么 同轴电缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无线和微波之类的无 线技术包括在所属介质的定影中。如本发明所使用的, 盘(Disk)和碟(disc) 包括压缩光碟(CD)、 激光碟、 光碟、 数字通用光碟(DVD)、 软盘和蓝光光 碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数据。 上面的 组合也应当包括在计算机可读介质的保护范围之内。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种信道指示方法, 其特征在于, 包括:
网络侧设备, 从所述网络侧设备分配给用户设备 UE的 N个下行信道资 源中, 确定所述 N个下行信道的其中一个下行信道为所述 UE侦听的第一下 行信道资源, 其中 N为大于等于 2的正整数;
所述网络侧设备向所述 UE发送信道指示信息, 所述信道指示信息用于 所述 UE确定所述第一下行信道资源, 并帧听所述第一下行信道;
或者, 所述网络侧设备分配给用户设备 UE的 N个下行信道资源中包括 默认下行信道资源, 所述默认下行信道资源用于所述网络侧设备在不发送所 述信道指示信息时, 所述 UE直接侦听所述默认下行信道资源。
2、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 所述网络侧设备向所述 UE发送第一信令,通过所述第一信令为所述 UE 分配 N个下行信道资源。
3、 根据权利要求 1或 2所述的方法, 其特征在于,
所述默认下行信道资源为所述网络侧设备为所述 UE预定义的; 或者, 所述默认下行信道资源为所述网络侧设备向所述 UE发送第二信 令指示的。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述网络侧设 备向所述 UE发送信道指示信息, 包括:
所述网络侧设备通过物理层信令承载所述信道指示信息;
所述网络侧设备向所述 UE发送承载所述信道指示信息的物理层信令。
5、 根据权利要求 4所述的方法, 其特征在于, 所述物理层信令具体为下 述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。
6、 根据权利要求 4或 5所述的方法, 其特征在于, 所述物理层信令通过 索引直接映射的方式, 或者索引累加的方式, 或者物理层信令发送的时间信 息, 来指示所述第一下行信道资源。
7、 一种信道指示方法, 其特征在于, 包括:
用户设备 UE接收网络侧设备发送的信道指示信息, 所述信道指示信息 用于所述 UE确定第一下行信道资源, 并帧听所述第一下行信道;
所述 UE根据接收到的信道指示信息,从所述网络侧设备分配给 UE的 N 个下行信道资源中, 确定所述 N个下行信道的其中一个下行信道为所述第一 下行信道,其中 N为大于等于 2的正整数,并侦听确定的所述第一下行信道; 或者, 所述网络侧设备分配给 UE的 N个下行信道资源中包括默认下行 信道资源,若所述 UE未接收到所述信道指示信息,所述 UE侦听所述默认下 行信道资源。
8、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 所述 UE接收所述网络侧设备发送的第一信令;
所述 UE根据所述第一信令, 确定所述网络侧设备为所述 UE分配的 N 个下行信道资源。
9、 根据权利要求 7或 8所述的方法, 其特征在于, 所述默认下行信道资 源为所述网络侧设备为所述 UE预定义的;
或者, 所述默认下行信道资源为所述 UE根据所述网络侧设备发送的第 二信令确定的。
10、 根据权利要求 7至 9任一项所述的方法, 其特征在于, 所述信道指 示信息是所述网络侧设备通过物理层信令承载的;
所述 UE接收网络侧设备发送的信道指示信息, 包括:
所述 UE接收所述网络侧设备发送的承载所述信道指示信息的物理层信 所述 UE从接收的所述物理层信令中获取所述信道指示信息。
11、 根据权利要求 10所述的方法, 其特征在于, 所述物理层信令具体为 下述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述物理层信令 通过索引直接映射的方式, 或者索引累加的方式, 或者物理层信令发送的时 间信息, 来指示所述第一下行信道资源。
13、 一种网络侧设备, 其特征在于, 包括:
分配模块, 用于给用户设备 UE分配 N个下行信道资源, 其中 N为大于 等于 2的正整数;
确定模块,用于从所述分配模块分配给所述 UE的 N个下行信道资源中, 确定所述 N个下行信道的其中一个下行信道为所述 UE侦听的第一下行信道 资源;
发送模块, 用于向所述 UE发送信道指示信息, 所述信道指示信息用于 所述 UE确定所述第一下行信道资源, 并帧听所述第一下行信道; 或者, 所述分配模块分配给用户设备 UE的 N个下行信道资源中包括默 认下行信道资源, 所述默认下行信道资源用于所述发送模块在不发送所述信 道指示信息时, 所述 UE直接侦听所述默认下行信道资源。
14、 根据权利要求 12所述的网络侧设备, 其特征在于,
所述发送模块, 还用于向所述 UE发送第一信令, 通过所述第一信令为 所述 UE分配 N个下行信道资源。
15、 根据权利要求 13或 14所述的网络侧设备, 其特征在于,
所述默认下行信道资源为所述分配模块为所述 UE预定义的;
或者, 所述默认下行信道资源为所述发送模块向所述 UE发送第二信令 指示的。
16、 根据权利要求 13至 15任一项所述的网络侧设备, 其特征在于, 所 述发送模块, 具体用于:
通过物理层信令承载所述信道指示信息;
向所述 UE发送承载所述信道指示信息的物理层信令。
17、 根据权利要求 16所述的网络侧设备, 其特征在于, 所述物理层信令 具体为下述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。
18、 根据权利要求 16或 17所述的网络侧设备, 其特征在于, 所述物理 层信令通过索引直接映射的方式, 或者索引累加的方式, 或者物理层信令发 送的时间信息, 来指示所述第一下行信道资源。
19、 一种用户设备, 其特征在于, 包括:
接收模块, 用于接收网络侧设备发送的信道指示信息, 所述信道指示信 息用于所述用户设备 UE确定第一下行信道资源, 并帧听所述第一下行信道; 确定模块, 用于根据所述接收模块接收到的信道指示信息, 从所述网络 侧设备分配给所述 UE的 N个下行信道资源中, 确定所述 N个下行信道的其 中一个下行信道为所述第一下行信道, 其中 N为大于等于 2的正整数;
侦听模块, 用于侦听所述确定模块确定的所述第一下行信道;
或者, 所述网络侧设备分配给所述 UE的 N个下行信道资源中包括默认 下行信道资源, 若所述接收模块未接收到所述信道指示信息, 所述侦听模块, 还用于侦听所述默认下行信道资源。
20、 根据权利要求 19所述的用户设备, 其特征在于, 所述接收模块, 还用于接收所述网络侧设备发送的第一信令; 所述确定模块, 还用于根据所述第一信令, 确定所述网络侧设备为所述
UE分配的 N个下行信道资源。
21、 根据权利要求 19或 20所述的用户设备, 其特征在于, 所述默认下 行信道资源为所述网络侧设备为所述 UE预定义的;
或者, 所述默认下行信道资源为所述接收模块根据所述网络侧设备发送 的第二信令确定的。
22、 根据权利要求 19至 21任一项所述的用户设备, 其特征在于, 所述 信道指示信息是所述网络侧设备通过物理层信令承载的;
所述接收模块, 具体用于:
接收所述网络侧设备发送的承载所述信道指示信息的物理层信令; 从接收的所述物理层信令中获取所述信道指示信息。
23、 根据权利要求 22所述的用户设备, 其特征在于, 所述物理层信令具 体为下述物理层信令中的一种: E-AGCH、 E-RGCH、 E-HICH、 HS-SCCH。
24、 根据权利要求 22或 23所述的用户设备, 其特征在于, 所述物理层 信令通过索引直接映射的方式, 或者索引累加的方式, 或者物理层信令发送 的时间信息, 来指示所述第一下行信道资源。
25、 一种网络侧设备, 其特征在于, 包括:
通过总线连接的处理器、 存储器以及通信接口;
所述通信接口用于与用户设备进行通信, 所述存储器用于存储至少两个 下行信道资源以及程序代码, 所述处理器用于调用所述存储器存储的程序代 码, 以执行如权利要求 1至 6任一所述的信道指示方法。
26、 一种用户设备, 其特征在于, 包括:
通过总线连接的处理器、 存储器以及通信接口;
所述通信接口用于与网络侧设备进行通信, 所述存储器用于存储所述网 络侧分配的至少两个下行信道资源以及程序代码, 所述处理器用于调用所述 存储器存储的程序代码,以执行如权利要求 7至 12任一所述的信道指示方法。
27、 一种信道指示***, 其特征在于, 包括: 如权利要求 25所述的网络 侧设备和至少一个如权利要求 26所述的用户设备。
PCT/CN2014/081264 2014-06-30 2014-06-30 信道指示方法、装置与*** WO2016000168A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/081264 WO2016000168A1 (zh) 2014-06-30 2014-06-30 信道指示方法、装置与***
CN201480029872.9A CN105393620A (zh) 2014-06-30 2014-06-30 信道指示方法、装置与***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/081264 WO2016000168A1 (zh) 2014-06-30 2014-06-30 信道指示方法、装置与***

Publications (1)

Publication Number Publication Date
WO2016000168A1 true WO2016000168A1 (zh) 2016-01-07

Family

ID=55018254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/081264 WO2016000168A1 (zh) 2014-06-30 2014-06-30 信道指示方法、装置与***

Country Status (2)

Country Link
CN (1) CN105393620A (zh)
WO (1) WO2016000168A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109995443B (zh) * 2017-12-29 2022-03-11 华为技术有限公司 一种通信方法、装置和***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335979A (zh) * 2007-06-25 2008-12-31 中兴通讯股份有限公司 多载波***的高速上行链路分组接入方法
CN101340715A (zh) * 2007-07-05 2009-01-07 中兴通讯股份有限公司 多载波时分同步码分多址***的高速上行分组接入方法
CN101521936A (zh) * 2008-02-26 2009-09-02 华为技术有限公司 一种下行信道资源的利用方法及装置
CN102857325A (zh) * 2011-06-27 2013-01-02 华为技术有限公司 确定控制信道资源的方法和用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101335979A (zh) * 2007-06-25 2008-12-31 中兴通讯股份有限公司 多载波***的高速上行链路分组接入方法
CN101340715A (zh) * 2007-07-05 2009-01-07 中兴通讯股份有限公司 多载波时分同步码分多址***的高速上行分组接入方法
CN101521936A (zh) * 2008-02-26 2009-09-02 华为技术有限公司 一种下行信道资源的利用方法及装置
CN102857325A (zh) * 2011-06-27 2013-01-02 华为技术有限公司 确定控制信道资源的方法和用户设备

Also Published As

Publication number Publication date
CN105393620A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6591654B2 (ja) スケジューリング要求とチャネル状態情報とを用いた低レイテンシ物理アップリンク制御チャネル
JP4965712B2 (ja) 共通のtpcコマンドと別個のtpcコマンドの双方をサポートする通信ネットワークシステムにおけるアップリンク電力制御方法
JP6162244B2 (ja) 端末装置、基地局装置、および通信方法
JP6917403B2 (ja) 基地局装置、端末装置および通信方法
JP2013138468A (ja) 共有制御チャネルを用いた拡張アップリンクのためのリソース割当
JPWO2015020190A1 (ja) 端末装置、基地局装置、および通信方法
CN106416390B (zh) 终端装置、基站装置以及通信方法
JP2020136762A (ja) 基地局装置、端末装置、通信方法、および、集積回路
WO2020218529A1 (ja) 基地局装置、端末装置、および、通信方法
JP6963586B2 (ja) 基地局装置、端末装置、および通信方法
WO2020203427A1 (ja) 基地局装置、端末装置、および、通信方法
WO2015109573A1 (zh) 设备通信方法及装置
WO2014082195A1 (zh) 数据传输方法、装置、网络设备及ue
JP2022528226A (ja) ランダムアクセスプロシージャのための方法、端末デバイスおよび基地局
JPWO2016163464A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
JPWO2017026324A1 (ja) 端末装置、通信方法、および、集積回路
JPWO2016163186A1 (ja) 端末装置、基地局装置、集積回路、および、通信方法
JP2022025801A (ja) 端末装置、基地局装置、および、通信方法
JP2021029009A (ja) 基地局装置、端末装置、および、通信方法
WO2021162053A1 (ja) 端末装置、基地局装置、および、通信方法
WO2016000168A1 (zh) 信道指示方法、装置与***
WO2020195531A1 (ja) 基地局装置、端末装置、および、通信方法
JPWO2017026322A1 (ja) 端末装置、通信方法、および、集積回路
JP2022011324A (ja) 端末装置、基地局装置、および、通信方法
WO2022025038A1 (ja) 端末装置、基地局装置、および、通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029872.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896512

Country of ref document: EP

Kind code of ref document: A1