WO2015199493A1 - Novel organic electroluminescent compounds and organic electroluminescent device comprising the same - Google Patents

Novel organic electroluminescent compounds and organic electroluminescent device comprising the same Download PDF

Info

Publication number
WO2015199493A1
WO2015199493A1 PCT/KR2015/006574 KR2015006574W WO2015199493A1 WO 2015199493 A1 WO2015199493 A1 WO 2015199493A1 KR 2015006574 W KR2015006574 W KR 2015006574W WO 2015199493 A1 WO2015199493 A1 WO 2015199493A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
organic electroluminescent
alkyl
Prior art date
Application number
PCT/KR2015/006574
Other languages
French (fr)
Inventor
Hee-Ryong Kang
Hyun-Ju Kang
Doo-Hyeon Moon
Young-Mook Lim
Bitnari Kim
Nam-Kyun Kim
Original Assignee
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150081430A external-priority patent/KR102420202B1/en
Application filed by Rohm And Haas Electronic Materials Korea Ltd. filed Critical Rohm And Haas Electronic Materials Korea Ltd.
Priority to CN201580032976.XA priority Critical patent/CN106459082A/en
Priority to US15/318,099 priority patent/US9698355B2/en
Publication of WO2015199493A1 publication Critical patent/WO2015199493A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/22Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/22Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/1062Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to novel organic electroluminescent compounds and an organic electroluminescent device comprising the same.
  • An electroluminescent (EL) device is a self-light-emitting device with the advantages of providing a wider viewing angle, a greater contrast ratio, and a faster response time.
  • the first organic EL device was developed by Eastman Kodak, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer (see Appl. Phys. Lett. 51, 913, 1987).
  • An organic EL device changes electric energy into light by the application of electric current to an organic light-emitting material, and commonly comprises an anode, a cathode, and an organic layer formed between the two electrodes.
  • the organic layer of the organic EL device may be composed of a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), a light-emitting layer (EML) (containing host and dopant materials), an electron buffer layer, a hole blocking layer (HBL), an electron transport layer (ETL), an electron injection layer (EIL), etc.; the materials used in the organic layer can be classified into a hole injection material, a hole transport material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc., depending on functions.
  • the organic EL device In the organic EL device, holes from an anode and electrons from a cathode are injected into a light-emitting layer by the application of electric voltage, and an exciton having high energy is produced by the recombination of holes and electrons.
  • the organic light-emitting compound moves into an excited state by the energy and emits light from energy when the organic light-emitting compound returns to the ground state from the excited state.
  • the most important factor determining luminous efficiency in an organic EL device is light-emitting materials.
  • the light-emitting materials are required to have the following features: high quantum efficiency, high movement degree of an electron and a hole, and formability of a uniform and stable layer.
  • the light-emitting materials are classified into blue light-emitting materials, green light-emitting materials, and red light-emitting materials according to the light-emitting color, and further include yellow light-emitting materials or orange light-emitting materials.
  • the light-emitting material is classified into a host material and a dopant material in a functional aspect. Recently, an urgent task is the development of an organic EL device having high efficiency and long lifespan.
  • a host material should have high purity and a suitable molecular weight in order to be deposited under vacuum. Furthermore, a host material is required to have high glass transition temperature and pyrolysis temperature for guaranteeing thermal stability, high electrochemical stability for long lifespan, easy formability of an amorphous thin film, good adhesion with adjacent layers, and no movement between layers.
  • Iridium(III) complexes have been widely known as phosphorescent materials, including bis(2-(2’-benzothienyl)-pyridinato-N,C3’)iridium(acetylacetonate) ((acac)Ir(btp) 2 ), tris(2-phenylpyridine)iridium (Ir(ppy) 3 ), and bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (Firpic) as red, green, and blue light-emitting materials, respectively.
  • a mixed system of dopant/host materials can be used as light-emitting materials to improve color purity, luminous efficiency, and stability. If the dopant/host material system is used, the selection of the host materials is important since the host materials greatly influence the efficiency and performance of a light-emitting device.
  • 4,4’-N,N’-dicarbazol-biphenyl (CBP) is the most widely known phosphorescent host material.
  • Pioneer (Japan) et al. currently developed a high performance organic EL device by employing bathocuproine (BCP), aluminum(III) bis(2-methyl-8-quinolinato)(4-phenylphenolate) (BAlq), etc., which were used in a hole blocking layer, as host materials.
  • Korean Patent Application Laying-open Nos. 10-2012-0087935 and 10-2012-0095997 disclose fused heterocyclic compounds used as a matrix material, a hole transport or an electron blocking material, an exiton blocking material, or an electron transport or a hole blocking material of a phosphorescent OLED.
  • 2011-0303901 discloses indole-quinoline derivatives used as a host or dopant material, a hole transport material, an electron transport material, a hole blocking material, an electron blocking material, a hole injection material, or an electron injection material.
  • the organic EL devices comprising the compounds recited in the above publications still do not satisfy power efficiency, luminous efficiency, lifespan, etc.
  • the present inventors have tried to find organic electroluminescent compounds that can provide an organic EL device with properties superior to the compounds recited in the above publications and have found compounds providing a device with high luminous efficiency and excellent device properties.
  • the object of the present invention is to provide organic electroluminescent compounds which can provide an organic EL device with long lifespan and improved luminous efficiency.
  • X and Y each independently represent -CR 13 - or -N-, with the proviso that X and Y do not simultaneously represent -CR 13 -;
  • W and V each independently represent a single bond, O or S;
  • R 1 to R 13 each independently represent hydrogen, deuterium, a halogen, a cyano group, a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, a substituted or unsubstituted 3- to 30-membered heteroaryl group, a substituted or unsubstituted (C3-C30)cycloalkyl group, a substituted or unsubstituted (C1-C30)alkoxy group, a substituted or unsubstituted tri(C1-C30)alkylsilyl group, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl group, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl group, a substituted or unsubstituted tri
  • the organic electroluminescent compounds according to the present invention have better luminous efficiency than that of conventional compounds.
  • an organic EL device comprising the organic electroluminescent compounds of the present invention as a host material for light-emitting has long operating lifespan, provides improved current efficiency and power efficiency, reduces electric power consumption, and gives colors having high purity.
  • the present invention relates to an organic electroluminescent compound represented by formula 1 or 2 above, an organic electroluminescent material comprising the organic electroluminescent compound, and an organic EL device comprising the material.
  • each of R 1 to R 13 may preferably represent hydrogen, a substituted or unsubstituted (C6-C20)aryl group, or a substituted or unsubstituted 5- to 20-membered heteroaryl group; and more preferably, hydrogen, or a substituted or unsubstituted (C6-C12)aryl group.
  • (C1-C30)alkyl(ene) is meant to be a linear or branched alkyl(ene) having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.
  • (C3-C30)cycloalkyl is a mono- or polycyclic hydrocarbon having 3 to 30 carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
  • (C6-C30)aryl(ene) is a monocyclic or fused ring derived from an aromatic hydrocarbon having 6 to 30 carbon atoms, in which the number of carbon atoms is preferably 6 to 20, more preferably 6 to 15, and includes phenyl, biphenyl, terphenyl, naphthyl, fluorenyl, phenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e., a substituent.
  • Substituents of the substituted alkyl group, the substituted cycloalkyl group, the substituted aryl group, the substituted heteroaryl group, the substituted alkoxy group, the substituted alkylsilyl group, the substituted arylsilyl group, the substituted alkylamino group, the substituted arylamino group, or the substituted mono- or polycyclic (C3-C30) alicyclic or aromatic ring in formulae 1 and 2 above are each independently at least one selected from the group consisting of deuterium; a halogen; a cyano group; a carboxyl group; a nitro group; a hydroxyl group; a (C1-C30)alkyl group; a halo(C
  • the compound of formula 1 or 2 above may be selected from the group consisting of the following compounds, but is not limited thereto:
  • organic electroluminescent compounds according to the present invention can be prepared by known methods to one skilled in the art, and can be prepared, for example, according to the following reaction scheme 1:
  • R 1 to R 9 , X, Y, V, and W are as defined in formula 1.
  • the present invention further provides an organic electroluminescent material comprising the organic electroluminescent compound of formula 1 or 2, and an organic EL device comprising the material.
  • the material can be comprised of the organic electroluminescent compound of formula 1 or 2 of the present invention alone, or can further include conventional materials generally used in organic electroluminescent materials.
  • the organic EL device of the present invention may comprise an anode, a cathode, and at least one organic layer disposed between the two electrodes, wherein the organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from the group consisting of a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron buffer layer, a hole blocking layer (HBL), an electron transport layer (ETL), an electron injection layer (EIL), etc.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • HBL hole buffer layer
  • HBL hole blocking layer
  • ETL electron transport layer
  • EIL electron injection layer
  • the organic electroluminescent compound of formula 1 or 2 according to the present invention may be included in a light-emitting layer. If used in a light-emitting layer, the organic electroluminescent compound of formula 1 or 2 of the present invention may be included as a host material.
  • the light-emitting layer may preferably comprise at least one dopant and further comprise other compounds as the second host material, in addition to the organic electroluminescent compound of formula 1 or 2 of the present invention.
  • the second host material can be any of the known phosphorescent hosts and preferably, is selected from the group consisting of the compounds of the following formulae 3 to 7 in view of luminous efficiency:
  • A represents O or S
  • R 21 to R 24 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, a substituted or unsubstituted 5- or 30-membered heteroaryl group, or R 25 R 26 R 27 Si-; or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C5-C30) alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur;
  • R 25 to R 27 each independently represent a substituted or unsubstituted (C1-C30)alkyl group, or a substituted or unsubstituted (C6-C30)aryl group;
  • L 4 represents a single bond, a substituted or unsubstituted (C6-C30)arylene group, or a substituted or unsubstituted 5- or 30-membered heteroarylene group;
  • M represents a substituted or unsubstituted (C6-C30)aryl group, or a substituted or unsubstituted 5- or 30-membered heteroaryl group;
  • Y 1 and Y 2 each independently represent -O-, -S-, -N(R 31 )-, or -C(R 32 )(R 33 )-; and Y 1 and Y 2 are not simultaneously present;
  • R 31 to R 33 each independently represent a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, or a substituted or unsubstituted 5- or 30-membered heteroaryl group; or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C5-C30) alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur; and R 32 and R 33 may be the same or different;
  • h and i each independently represent an integer of 1 to 3;
  • j, k, l, and m each independently represent an integer of 0 to 4.
  • each (Cz-L 4 ), each (Cz), each R 21 , each R 22 , each R 23 , or each R 24 may be the same or different.
  • the second host material preferably includes the following:
  • TPS represents a triphenylsilyl group.
  • the dopants included in the organic EL device of the present invention may be selected from the group consisting of the compounds represented by the following formulae 8 to 10:
  • L is selected from the following structures:
  • R 100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl group, or a substituted or unsubstituted (C3-C30)cycloalkyl group;
  • R 101 to R 109 and R 111 to R 123 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl group which is unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl group, a cyano group, a substituted or unsubstituted (C1-C30)alkoxy group, or a substituted or unsubstituted (C6-C30)aryl group;
  • R 120 to R 123 may be linked to an adjacent substituent(s) to form a substituted or unsubstituted fused ring, for example, quinoline;
  • R 124 to R 127 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl group, or a substituted or unsubstituted (C6-C30)aryl group; when R 124 to R 127 are aryl groups, they may be linked to an adjacent substituent(s) to form a substituted or unsubstituted fused ring, for example, fluorene, benzofuran, or benzothiophene;
  • R 201 to R 211 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl group which is unsubstituted or substituted with a halogen(s), or a substituted or unsubstituted (C6-C30)aryl group;
  • R 208 to R 211 may be linked to an adjacent substituent(s) to form a substituted or unsubstituted mono- or polycyclic (C3-C30) alicyclic, aromatic, or heteroaromatic ring, for example, fluorene, dibenzothiophene, or dibenzofuran;
  • f and g each independently represent an integer of 1 to 3; where f or g is an integer of 2 or more, each of R 100 may be the same or different; and
  • n an integer of 1 to 3.
  • the dopant material includes the following:
  • the organic EL device of the present invention may comprise the organic electroluminescent compound of formula 1 or 2 in an organic layer and further include at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds in the organic layer.
  • the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides, and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising the metal, in addition to the organic electroluminescent compound of formula 1 or 2.
  • the organic EL device of the present invention may emit white light by further comprising at least one light-emitting layer which comprises a blue electroluminescent compound, a red electroluminescent compound, or a green electroluminescent compound, besides the organic electroluminescent compound of the present invention; and may further include a yellow or orange light-emitting layer, if necessary.
  • a surface layer selected from a chalcogenide layer, a metal halide layer, and a metal oxide layer may be placed on an inner surface(s) of one or both electrode(s).
  • a chalcogenide (including oxides) layer of silicon or aluminum is placed on an anode surface of a light-emitting medium layer, and a metal halide layer or metal oxide layer is placed on a cathode surface of a light-emitting medium layer.
  • the surface layer provides operating stability for the organic EL device.
  • the chalcogenide includes SiO X (1 ⁇ X ⁇ 2), AlO X (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.;
  • the metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and the metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a hole injection layer, a hole transport layer, an electron blocking layer, or their combinations can be used between an anode and a light-emitting layer.
  • the hole injection layer may be multi-layers in order to lower a hole injection barrier (or hole injection voltage) from an anode to a hole transport layer or electron blocking layer, wherein each of the multi-layers simultaneously may use two compounds.
  • the hole transport layer or the electron blocking layer may also be multi-layers.
  • An electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, or their combinations can be used between a light-emitting layer and a cathode.
  • the electron buffer layer may be multi-layers in order to control the injection of an electron and improve interface properties between the light-emitting layer and the electron injection layer, wherein each of the multi-layers simultaneously may use two compounds.
  • the hole blocking layer or the electron transport layer may also be multi-layers, wherein each of the multi-layers may use a multi-component of compounds.
  • a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant may be placed on at least one surface of a pair of electrodes.
  • the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to a light-emitting medium.
  • the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to a light-emitting medium.
  • the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • a reductive dopant layer may be employed as a charge-generating layer to prepare an organic EL device having two or more light-emitting layers and emitting white light.
  • dry film-forming methods such as vacuum deposition, sputtering, plasma, ion plating methods, etc.
  • wet film-forming methods such as spin coating, dip coating, flow coating methods, etc.
  • a thin film is formed by dissolving or dispersing the material constituting each layer in suitable solvents, such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • suitable solvents such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvents are not specifically limited as long as the material constituting each layer is soluble or dispersible in the solvents and the solvents do not cause any problems in forming a layer.
  • An OLED device comprising the organic electroluminescent compound of the present invention was produced as follows: A transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an OLED device (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol. Next, the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus.
  • ITO indium tin oxide
  • N 4 ,N 4' -Diphenyl-N 4 ,N 4' -bis(9-phenyl-9H-carbazole-3-yl)-[1,1'-biphenyl]-4,4'-diamine was introduced into a cell of the vacuum vapor depositing apparatus, and the pressure in the chamber of the apparatus was then controlled to 10 -6 torr. Thereafter, an electric current was applied to the cell to evaporate the introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate.
  • Dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile was then introduced into another cell of the vacuum vapor depositing apparatus, and an electric current was applied to the cell to evaporate the introduced material, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer.
  • N-([1,1'-Biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazole-3-yl)phenyl)-9H-fluorene-2-amine was introduced into a cell of the vacuum vapor depositing apparatus.
  • Compound A-333 as a host was introduced into a cell of the vacuum vapor depositing apparatus and compound D-96 was introduced into another cell.
  • the two materials were evaporated at a different rate, and the dopant was deposited in a doping amount of 3 wt%, based on the total weight of the host and dopant, to form a light-emitting layer having a thickness of 40 nm on the hole transport layer.
  • the produced OLED device showed red emission having an efficiency of 27.3 cd/A at 3.7 V, CIE color coordinate (X,Y) at 1000 cd/m 2 of (0.670, 0.330), and the time taken for the light-emission to be reduced from 100% to 90% at a luminance of 5,000 nit of 17 hrs or more.
  • Comparative Example 1 Production of an OLED device by using conventional organic electroluminescent compound
  • An OLED device was produced in the same manner as in Device Example 1, except that compound B-1 below was used as a host in a light-emitting material.
  • the produced OLED device showed red emission having an efficiency of 7.7 cd/A at 9.6 V, CIE color coordinate (X,Y) at 1000 cd/m 2 of (0.657, 0.336), and the time taken for the light-emission to be reduced from 100% to 90% at a luminance of 5,000 nit of 1 hr or more.
  • the organic electroluminescent compounds according to the present invention have high luminous efficiency, in particular current efficiency and power efficiency compared with conventional compounds, and give colors having high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to a novel organic electroluminescent compound and an organic electroluminescent device comprising the same. The organic electroluminescent compound of the present invention has high luminous efficiency, and thus can be used as a host in a light-emitting layer; and an organic electroluminescent device comprising the organic electroluminescent compounds of the present invention has long operating lifespan, provides improved current efficiency and power efficiency, and gives colors having high purity.

Description

NOVEL ORGANIC ELECTROLUMINESCENT COMPOUNDS AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING THE SAME
The present invention relates to novel organic electroluminescent compounds and an organic electroluminescent device comprising the same.
An electroluminescent (EL) device is a self-light-emitting device with the advantages of providing a wider viewing angle, a greater contrast ratio, and a faster response time. The first organic EL device was developed by Eastman Kodak, by using small aromatic diamine molecules and aluminum complexes as materials for forming a light-emitting layer (see Appl. Phys. Lett. 51, 913, 1987).
An organic EL device changes electric energy into light by the application of electric current to an organic light-emitting material, and commonly comprises an anode, a cathode, and an organic layer formed between the two electrodes. The organic layer of the organic EL device may be composed of a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), a light-emitting layer (EML) (containing host and dopant materials), an electron buffer layer, a hole blocking layer (HBL), an electron transport layer (ETL), an electron injection layer (EIL), etc.; the materials used in the organic layer can be classified into a hole injection material, a hole transport material, an electron blocking material, a light-emitting material, an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc., depending on functions. In the organic EL device, holes from an anode and electrons from a cathode are injected into a light-emitting layer by the application of electric voltage, and an exciton having high energy is produced by the recombination of holes and electrons. The organic light-emitting compound moves into an excited state by the energy and emits light from energy when the organic light-emitting compound returns to the ground state from the excited state.
The most important factor determining luminous efficiency in an organic EL device is light-emitting materials. The light-emitting materials are required to have the following features: high quantum efficiency, high movement degree of an electron and a hole, and formability of a uniform and stable layer. The light-emitting materials are classified into blue light-emitting materials, green light-emitting materials, and red light-emitting materials according to the light-emitting color, and further include yellow light-emitting materials or orange light-emitting materials. Furthermore, the light-emitting material is classified into a host material and a dopant material in a functional aspect. Recently, an urgent task is the development of an organic EL device having high efficiency and long lifespan. In particular, the development of highly excellent light-emitting material compared to conventional light-emitting materials is urgently required considering the EL properties necessary for medium- and large-sized OLED panels. For this, preferably, as a solvent in a solid state and an energy transmitter, a host material should have high purity and a suitable molecular weight in order to be deposited under vacuum. Furthermore, a host material is required to have high glass transition temperature and pyrolysis temperature for guaranteeing thermal stability, high electrochemical stability for long lifespan, easy formability of an amorphous thin film, good adhesion with adjacent layers, and no movement between layers.
Until now, Iridium(III) complexes have been widely known as phosphorescent materials, including bis(2-(2’-benzothienyl)-pyridinato-N,C3’)iridium(acetylacetonate) ((acac)Ir(btp)2), tris(2-phenylpyridine)iridium (Ir(ppy)3), and bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (Firpic) as red, green, and blue light-emitting materials, respectively.
A mixed system of dopant/host materials can be used as light-emitting materials to improve color purity, luminous efficiency, and stability. If the dopant/host material system is used, the selection of the host materials is important since the host materials greatly influence the efficiency and performance of a light-emitting device. In conventional technique, 4,4’-N,N’-dicarbazol-biphenyl (CBP) is the most widely known phosphorescent host material. Pioneer (Japan) et al., currently developed a high performance organic EL device by employing bathocuproine (BCP), aluminum(III) bis(2-methyl-8-quinolinato)(4-phenylphenolate) (BAlq), etc., which were used in a hole blocking layer, as host materials.
Although these phosphorescent host materials provide good light-emitting characteristics, they have the following disadvantages: (1) Due to their low glass transition temperatures and poor thermal stability, their degradation may occur during a high-temperature deposition process in a vacuum. (2) The power efficiency of an organic EL device is given by [(π/voltage) × current efficiency], and the power efficiency is inversely proportional to voltage. An organic EL device comprising phosphorescent host materials provides higher current efficiency (cd/A) and has a higher driving voltage than one comprising fluorescent host materials. Thus, the organic EL device using conventional phosphorescent host materials has no advantage in terms of power efficiency (lm/W). (3) Furthermore, the operating lifespan and luminous efficiency of the organic EL device are not satisfactory.
Thus, in order to embody excellent properties of the organic EL device, materials constituting the organic layers in the device, in particular host or dopant materials constituting a light-emitting material, should be suitably selected. In this regard, Korean Patent Application Laying-open Nos. 10-2012-0087935 and 10-2012-0095997 disclose fused heterocyclic compounds used as a matrix material, a hole transport or an electron blocking material, an exiton blocking material, or an electron transport or a hole blocking material of a phosphorescent OLED. In addition, U.S. Patent Application Laying-open No. 2011-0303901 discloses indole-quinoline derivatives used as a host or dopant material, a hole transport material, an electron transport material, a hole blocking material, an electron blocking material, a hole injection material, or an electron injection material. However, the organic EL devices comprising the compounds recited in the above publications still do not satisfy power efficiency, luminous efficiency, lifespan, etc. Thus, the present inventors have tried to find organic electroluminescent compounds that can provide an organic EL device with properties superior to the compounds recited in the above publications and have found compounds providing a device with high luminous efficiency and excellent device properties.
The object of the present invention is to provide organic electroluminescent compounds which can provide an organic EL device with long lifespan and improved luminous efficiency.
The present inventors found that the above objective can be achieved by a compound represented by the following formula 1 or 2:
Figure PCTKR2015006574-appb-I000001
Figure PCTKR2015006574-appb-I000002
wherein
X and Y each independently represent -CR13- or -N-, with the proviso that X and Y do not simultaneously represent -CR13-;
W and V each independently represent a single bond, O or S; and
R1 to R13 each independently represent hydrogen, deuterium, a halogen, a cyano group, a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, a substituted or unsubstituted 3- to 30-membered heteroaryl group, a substituted or unsubstituted (C3-C30)cycloalkyl group, a substituted or unsubstituted (C1-C30)alkoxy group, a substituted or unsubstituted tri(C1-C30)alkylsilyl group, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl group, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl group, a substituted or unsubstituted tri(C6-C30)arylsilyl group, a substituted or unsubstituted mono- or di(C1-C30)alkylamino group, a substituted or unsubstituted mono- or di(C6-C30)arylamino group, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino group; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted mono- or polycyclic (C3-C30) alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur.
The organic electroluminescent compounds according to the present invention have better luminous efficiency than that of conventional compounds. Thus, an organic EL device comprising the organic electroluminescent compounds of the present invention as a host material for light-emitting has long operating lifespan, provides improved current efficiency and power efficiency, reduces electric power consumption, and gives colors having high purity.
Hereinafter, the present invention will be described in detail. However, the following description is intended to explain the invention, and is not meant in any way to restrict the scope of the invention.
The present invention relates to an organic electroluminescent compound represented by formula 1 or 2 above, an organic electroluminescent material comprising the organic electroluminescent compound, and an organic EL device comprising the material.
In formulae 1 and 2 above, each of R1 to R13 may preferably represent hydrogen, a substituted or unsubstituted (C6-C20)aryl group, or a substituted or unsubstituted 5- to 20-membered heteroaryl group; and more preferably, hydrogen, or a substituted or unsubstituted (C6-C12)aryl group.
Herein, “(C1-C30)alkyl(ene)” is meant to be a linear or branched alkyl(ene) having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc. “(C2-C30)alkenyl” is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc. “(C2-C30)alkynyl” is a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc. “(C3-C30)cycloalkyl” is a mono- or polycyclic hydrocarbon having 3 to 30 carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. “3- to 7-membered heterocycloalkyl” is a cycloalkyl having at least one heteroatom selected from the group consisting of B, N, O, S, P(=O), Si, and P, preferably O, S, and N, and 3 to 7, preferably 5 to 7 ring backbone atoms, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc. “(C6-C30)aryl(ene)” is a monocyclic or fused ring derived from an aromatic hydrocarbon having 6 to 30 carbon atoms, in which the number of carbon atoms is preferably 6 to 20, more preferably 6 to 15, and includes phenyl, biphenyl, terphenyl, naphthyl, fluorenyl, phenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc. “3- to 30-membered heteroaryl(ene)” is an aryl group having at least one, preferably 1 to 4 heteroatom selected from the group consisting of B, N, O, S, P(=O), Si, and P, and 3 to 30 ring backbone atoms; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; has preferably 3 to 20, more preferably 3 to 15 ring backbone atoms; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl, such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl, such as benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzoimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenoxazinyl, phenanthridinyl, benzodioxolyl, etc. “Halogen” includes F, Cl, Br, and I.
Herein, “substituted” in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e., a substituent. Substituents of the substituted alkyl group, the substituted cycloalkyl group, the substituted aryl group, the substituted heteroaryl group, the substituted alkoxy group, the substituted alkylsilyl group, the substituted arylsilyl group, the substituted alkylamino group, the substituted arylamino group, or the substituted mono- or polycyclic (C3-C30) alicyclic or aromatic ring in formulae 1 and 2 above are each independently at least one selected from the group consisting of deuterium; a halogen; a cyano group; a carboxyl group; a nitro group; a hydroxyl group; a (C1-C30)alkyl group; a halo(C1-C30)alkyl group; a (C2-C30)alkenyl group; a (C2-C30)alkynyl group; a (C1-C30)alkoxy group; a (C1-C30)alkylthio group; a (C3-C30)cycloalkyl group; a (C3-C30)cycloalkenyl group; a 3- to 7-membered heterocycloalkyl group; a (C6-C30)aryloxy group; a (C6-C30)arylthio group; a 3- to 30-membered heteroaryl group which is unsubstituted or substituted with a (C6-C30)aryl group; a (C6-C30)aryl group which is unsubstituted or substituted with a 3- to 30-membered heteroaryl group; a tri(C1-C30)alkylsilyl group; a tri(C6-C30)arylsilyl group; a di(C1-C30)alkyl(C6-C30)arylsilyl group; a (C1-C30)alkyldi(C6-C30)arylsilyl group; an amino group; a mono- or di(C1-C30)alkylamino group; a mono- or di(C6-C30)arylamino group; a (C1-C30)alkyl(C6-C30)arylamino group; a (C1-C30)alkylcarbonyl group; a (C1-C30)alkoxycarbonyl group; a (C6-C30)arylcarbonyl group; a di(C6-C30)arylboronyl group; a di(C1-C30)alkylboronyl group; a (C1-C30)alkyl(C6-C30)arylboronyl group; a (C6-C30)aryl(C1-C30)alkyl group; and a (C1-C30)alkyl(C6-C30)aryl group.
The compound of formula 1 or 2 above may be selected from the group consisting of the following compounds, but is not limited thereto:
Figure PCTKR2015006574-appb-I000003
Figure PCTKR2015006574-appb-I000004
Figure PCTKR2015006574-appb-I000005
Figure PCTKR2015006574-appb-I000006
Figure PCTKR2015006574-appb-I000007
Figure PCTKR2015006574-appb-I000008
Figure PCTKR2015006574-appb-I000009
Figure PCTKR2015006574-appb-I000010
Figure PCTKR2015006574-appb-I000011
Figure PCTKR2015006574-appb-I000012
Figure PCTKR2015006574-appb-I000013
Figure PCTKR2015006574-appb-I000014
Figure PCTKR2015006574-appb-I000015
Figure PCTKR2015006574-appb-I000016
Figure PCTKR2015006574-appb-I000017
Figure PCTKR2015006574-appb-I000018
Figure PCTKR2015006574-appb-I000019
Figure PCTKR2015006574-appb-I000020
Figure PCTKR2015006574-appb-I000021
Figure PCTKR2015006574-appb-I000022
Figure PCTKR2015006574-appb-I000023
Figure PCTKR2015006574-appb-I000024
Figure PCTKR2015006574-appb-I000025
Figure PCTKR2015006574-appb-I000026
Figure PCTKR2015006574-appb-I000027
Figure PCTKR2015006574-appb-I000028
Figure PCTKR2015006574-appb-I000029
Figure PCTKR2015006574-appb-I000030
Figure PCTKR2015006574-appb-I000031
Figure PCTKR2015006574-appb-I000032
Figure PCTKR2015006574-appb-I000033
Figure PCTKR2015006574-appb-I000034
Figure PCTKR2015006574-appb-I000035
Figure PCTKR2015006574-appb-I000036
Figure PCTKR2015006574-appb-I000037
Figure PCTKR2015006574-appb-I000038
Figure PCTKR2015006574-appb-I000039
Figure PCTKR2015006574-appb-I000040
Figure PCTKR2015006574-appb-I000041
Figure PCTKR2015006574-appb-I000042
Figure PCTKR2015006574-appb-I000043
Figure PCTKR2015006574-appb-I000044
Figure PCTKR2015006574-appb-I000045
Figure PCTKR2015006574-appb-I000047
Figure PCTKR2015006574-appb-I000048
Figure PCTKR2015006574-appb-I000049
Figure PCTKR2015006574-appb-I000050
Figure PCTKR2015006574-appb-I000051
Figure PCTKR2015006574-appb-I000052
Figure PCTKR2015006574-appb-I000053
Figure PCTKR2015006574-appb-I000054
Figure PCTKR2015006574-appb-I000055
Figure PCTKR2015006574-appb-I000056
Figure PCTKR2015006574-appb-I000057
Figure PCTKR2015006574-appb-I000058
Figure PCTKR2015006574-appb-I000059
Figure PCTKR2015006574-appb-I000060
Figure PCTKR2015006574-appb-I000061
Figure PCTKR2015006574-appb-I000062
Figure PCTKR2015006574-appb-I000063
Figure PCTKR2015006574-appb-I000064
Figure PCTKR2015006574-appb-I000065
Figure PCTKR2015006574-appb-I000066
The organic electroluminescent compounds according to the present invention can be prepared by known methods to one skilled in the art, and can be prepared, for example, according to the following reaction scheme 1:
Reaction scheme 1
Figure PCTKR2015006574-appb-I000067
wherein,
R1 to R9, X, Y, V, and W are as defined in formula 1.
The present invention further provides an organic electroluminescent material comprising the organic electroluminescent compound of formula 1 or 2, and an organic EL device comprising the material. The material can be comprised of the organic electroluminescent compound of formula 1 or 2 of the present invention alone, or can further include conventional materials generally used in organic electroluminescent materials.
The organic EL device of the present invention may comprise an anode, a cathode, and at least one organic layer disposed between the two electrodes, wherein the organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from the group consisting of a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron buffer layer, a hole blocking layer (HBL), an electron transport layer (ETL), an electron injection layer (EIL), etc.
The organic electroluminescent compound of formula 1 or 2 according to the present invention may be included in a light-emitting layer. If used in a light-emitting layer, the organic electroluminescent compound of formula 1 or 2 of the present invention may be included as a host material. The light-emitting layer may preferably comprise at least one dopant and further comprise other compounds as the second host material, in addition to the organic electroluminescent compound of formula 1 or 2 of the present invention.
The second host material can be any of the known phosphorescent hosts and preferably, is selected from the group consisting of the compounds of the following formulae 3 to 7 in view of luminous efficiency:
Figure PCTKR2015006574-appb-I000068
Figure PCTKR2015006574-appb-I000069
Figure PCTKR2015006574-appb-I000070
Figure PCTKR2015006574-appb-I000071
Figure PCTKR2015006574-appb-I000072
wherein
Cz represents the following structure:
Figure PCTKR2015006574-appb-I000073
A represents O or S;
R21 to R24 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, a substituted or unsubstituted 5- or 30-membered heteroaryl group, or R25R26R27Si-; or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C5-C30) alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur;
R25 to R27 each independently represent a substituted or unsubstituted (C1-C30)alkyl group, or a substituted or unsubstituted (C6-C30)aryl group;
L4 represents a single bond, a substituted or unsubstituted (C6-C30)arylene group, or a substituted or unsubstituted 5- or 30-membered heteroarylene group;
M represents a substituted or unsubstituted (C6-C30)aryl group, or a substituted or unsubstituted 5- or 30-membered heteroaryl group;
Y1 and Y2 each independently represent -O-, -S-, -N(R31)-, or -C(R32)(R33)-; and Y1 and Y2 are not simultaneously present;
R31 to R33 each independently represent a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, or a substituted or unsubstituted 5- or 30-membered heteroaryl group; or are linked to an adjacent substituent(s) to form a mono- or polycyclic (C5-C30) alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur; and R32 and R33 may be the same or different;
h and i each independently represent an integer of 1 to 3;
j, k, l, and m each independently represent an integer of 0 to 4;
where h, i, j, k, l, or m is an integer of 2 or more, each (Cz-L4), each (Cz), each R21, each R22, each R23, or each R24 may be the same or different.
Specifically, the second host material preferably includes the following:
Figure PCTKR2015006574-appb-I000074
Figure PCTKR2015006574-appb-I000075
Figure PCTKR2015006574-appb-I000076
Figure PCTKR2015006574-appb-I000077
Figure PCTKR2015006574-appb-I000078
Figure PCTKR2015006574-appb-I000079
Figure PCTKR2015006574-appb-I000080
Figure PCTKR2015006574-appb-I000081
Figure PCTKR2015006574-appb-I000082
Figure PCTKR2015006574-appb-I000083
Figure PCTKR2015006574-appb-I000084
Figure PCTKR2015006574-appb-I000085
Figure PCTKR2015006574-appb-I000086
wherein TPS represents a triphenylsilyl group.
The dopants included in the organic EL device of the present invention may be selected from the group consisting of the compounds represented by the following formulae 8 to 10:
Figure PCTKR2015006574-appb-I000087
Figure PCTKR2015006574-appb-I000088
Figure PCTKR2015006574-appb-I000089
wherein
L is selected from the following structures:
Figure PCTKR2015006574-appb-I000090
R100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl group, or a substituted or unsubstituted (C3-C30)cycloalkyl group;
R101 to R109 and R111 to R123 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl group which is unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl group, a cyano group, a substituted or unsubstituted (C1-C30)alkoxy group, or a substituted or unsubstituted (C6-C30)aryl group; R120 to R123 may be linked to an adjacent substituent(s) to form a substituted or unsubstituted fused ring, for example, quinoline;
R124 to R127 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl group, or a substituted or unsubstituted (C6-C30)aryl group; when R124 to R127 are aryl groups, they may be linked to an adjacent substituent(s) to form a substituted or unsubstituted fused ring, for example, fluorene, benzofuran, or benzothiophene;
R201 to R211 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl group which is unsubstituted or substituted with a halogen(s), or a substituted or unsubstituted (C6-C30)aryl group; R208 to R211 may be linked to an adjacent substituent(s) to form a substituted or unsubstituted mono- or polycyclic (C3-C30) alicyclic, aromatic, or heteroaromatic ring, for example, fluorene, dibenzothiophene, or dibenzofuran;
f and g each independently represent an integer of 1 to 3; where f or g is an integer of 2 or more, each of R100 may be the same or different; and
n represents an integer of 1 to 3.
The dopant material includes the following:
Figure PCTKR2015006574-appb-I000091
Figure PCTKR2015006574-appb-I000092
Figure PCTKR2015006574-appb-I000093
Figure PCTKR2015006574-appb-I000094
Figure PCTKR2015006574-appb-I000095
Figure PCTKR2015006574-appb-I000096
Figure PCTKR2015006574-appb-I000097
Figure PCTKR2015006574-appb-I000098
Figure PCTKR2015006574-appb-I000099
Figure PCTKR2015006574-appb-I000100
Figure PCTKR2015006574-appb-I000101
Figure PCTKR2015006574-appb-I000102
Figure PCTKR2015006574-appb-I000103
Figure PCTKR2015006574-appb-I000104
Figure PCTKR2015006574-appb-I000105
Figure PCTKR2015006574-appb-I000106
Figure PCTKR2015006574-appb-I000107
Figure PCTKR2015006574-appb-I000108
Figure PCTKR2015006574-appb-I000109
Figure PCTKR2015006574-appb-I000110
Figure PCTKR2015006574-appb-I000111
Figure PCTKR2015006574-appb-I000112
Figure PCTKR2015006574-appb-I000113
Figure PCTKR2015006574-appb-I000114
Figure PCTKR2015006574-appb-I000115
Figure PCTKR2015006574-appb-I000116
The organic EL device of the present invention may comprise the organic electroluminescent compound of formula 1 or 2 in an organic layer and further include at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds in the organic layer.
In the organic EL device of the present invention, the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4th period, transition metals of the 5th period, lanthanides, and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising the metal, in addition to the organic electroluminescent compound of formula 1 or 2.
In addition, the organic EL device of the present invention may emit white light by further comprising at least one light-emitting layer which comprises a blue electroluminescent compound, a red electroluminescent compound, or a green electroluminescent compound, besides the organic electroluminescent compound of the present invention; and may further include a yellow or orange light-emitting layer, if necessary.
Preferably, in the organic EL device of the present invention, at least one layer (hereinafter, "a surface layer”) selected from a chalcogenide layer, a metal halide layer, and a metal oxide layer may be placed on an inner surface(s) of one or both electrode(s). Specifically, it is preferred that a chalcogenide (including oxides) layer of silicon or aluminum is placed on an anode surface of a light-emitting medium layer, and a metal halide layer or metal oxide layer is placed on a cathode surface of a light-emitting medium layer. The surface layer provides operating stability for the organic EL device. Preferably, the chalcogenide includes SiOX(1≤X≤2), AlOX(1≤X≤1.5), SiON, SiAlON, etc.; the metal halide includes LiF, MgF2, CaF2, a rare earth metal fluoride, etc.; and the metal oxide includes Cs2O, Li2O, MgO, SrO, BaO, CaO, etc.
A hole injection layer, a hole transport layer, an electron blocking layer, or their combinations can be used between an anode and a light-emitting layer. The hole injection layer may be multi-layers in order to lower a hole injection barrier (or hole injection voltage) from an anode to a hole transport layer or electron blocking layer, wherein each of the multi-layers simultaneously may use two compounds. The hole transport layer or the electron blocking layer may also be multi-layers.
An electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, or their combinations can be used between a light-emitting layer and a cathode. The electron buffer layer may be multi-layers in order to control the injection of an electron and improve interface properties between the light-emitting layer and the electron injection layer, wherein each of the multi-layers simultaneously may use two compounds. The hole blocking layer or the electron transport layer may also be multi-layers, wherein each of the multi-layers may use a multi-component of compounds.
Preferably, in the organic EL device of the present invention, a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant may be placed on at least one surface of a pair of electrodes. In this case, the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to a light-emitting medium. Further, the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to a light-emitting medium. Preferably, the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof. A reductive dopant layer may be employed as a charge-generating layer to prepare an organic EL device having two or more light-emitting layers and emitting white light.
In order to form each layer constituting the organic EL device of the present invention, dry film-forming methods, such as vacuum deposition, sputtering, plasma, ion plating methods, etc., or wet film-forming methods, such as spin coating, dip coating, flow coating methods, etc., can be used.
When using a wet film-forming method, a thin film is formed by dissolving or dispersing the material constituting each layer in suitable solvents, such as ethanol, chloroform, tetrahydrofuran, dioxane, etc. The solvents are not specifically limited as long as the material constituting each layer is soluble or dispersible in the solvents and the solvents do not cause any problems in forming a layer.
Hereinafter, the organic electroluminescent compound of the present invention, the preparation method of the compound, and the luminous properties of the device comprising the compound will be explained in detail with reference to the following examples:
Example 1: Preparation of compound A-333
Figure PCTKR2015006574-appb-I000117
1) Preparation of compound 1-1
5H-Benzofuro[3,2-c]carbazole (20.0 g, 77.52 mmol) was dissolved in N,N-dimethylformamide (DMF) (390.0 mL) in a flask, and NaH (60% in a mineral oil) (4.7 g, 116.28 mmol) was then slowly added dropwise to the mixture at 0°C. After stirring the mixture for 30 min, 2,3-dichloroquinoxaline (18.5 g, 93.03 mmol) was slowly added dropwise to the mixture. The mixture was stirred at room temperature for 3 hrs, and methanol and distilled water were added thereto. The obtained solid was filtered under reduced pressure and separated through column chromatography to produce compound 1-1 (20.0 g, Yield: 62 %).
2) Preparation of compound A-333
O-xylene (180.0 mL) was added to compound 1-1 (15.0 g, 35.73 mmol), palladium(II) acetate (Pd(OAc)2) (1.2 g, 5.36 mmol), tricyclohexylphosphine tetrafluoroborate (PCy3HBF4) (2.0 g, 5.36 mmol), and Cs2CO3 (35.0 g, 107.19 mmol), and the mixture was stirred under reflux at 180°C for 5 hrs. After completing the reaction, an organic layer was extracted with ethyl acetate and dried by removing the remaining moisture with MgSO4. The product was separated through column chromatography to obtain compound A-333 (4.4 g, Yield: 32 %).
Figure PCTKR2015006574-appb-I000118
Device Example 1: Production of an OLED device by using
the organic electroluminescent compound according to the present invention
An OLED device comprising the organic electroluminescent compound of the present invention was produced as follows: A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an OLED device (GEOMATEC CO., LTD., Japan) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol. Next, the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus. N4,N4'-Diphenyl-N4,N4'-bis(9-phenyl-9H-carbazole-3-yl)-[1,1'-biphenyl]-4,4'-diamine was introduced into a cell of the vacuum vapor depositing apparatus, and the pressure in the chamber of the apparatus was then controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate. Dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile was then introduced into another cell of the vacuum vapor depositing apparatus, and an electric current was applied to the cell to evaporate the introduced material, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. N-([1,1'-Biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazole-3-yl)phenyl)-9H-fluorene-2-amine was introduced into a cell of the vacuum vapor depositing apparatus. Afterward, an electric current was applied to the cell to evaporate the introduced material, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer. N,N-di([1,1’-biphenyl]-4-yl)-4’-(9H-carbazole-9-yl)-[1,1’-biphenyl]-4-amine was introduced into another cell of the vacuum vapor depositing apparatus. Afterward, an electric current was applied to the cell to evaporate the introduced material, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. After forming the hole injection layer and the hole transport layer, a light-emitting layer was then deposited as follows. Compound A-333 as a host was introduced into a cell of the vacuum vapor depositing apparatus and compound D-96 was introduced into another cell. The two materials were evaporated at a different rate, and the dopant was deposited in a doping amount of 3 wt%, based on the total weight of the host and dopant, to form a light-emitting layer having a thickness of 40 nm on the hole transport layer. Next, 2,4-bis(9,9-dimethyl-9H-fluorene-2-yl)-6-(naphthalene-2-yl)-1,3,5-triazine and lithium quinolate were evaporated at the rate of 1:1 on another two cells to form an electron transport layer having a thickness of 30 nm on the light-emitting layer. After depositing lithium quinolate having a thickness of 2 nm as an electron injection layer on the electron transport layer, an Al cathode having a thickness of 80 nm was then deposited by another vacuum vapor deposition apparatus on the electron injection layer. Thus, an OLED device was produced.
The produced OLED device showed red emission having an efficiency of 27.3 cd/A at 3.7 V, CIE color coordinate (X,Y) at 1000 cd/m2 of (0.670, 0.330), and the time taken for the light-emission to be reduced from 100% to 90% at a luminance of 5,000 nit of 17 hrs or more.
Comparative Example 1: Production of an OLED device by using conventional organic electroluminescent compound
An OLED device was produced in the same manner as in Device Example 1, except that compound B-1 below was used as a host in a light-emitting material.
Figure PCTKR2015006574-appb-I000119
The produced OLED device showed red emission having an efficiency of 7.7 cd/A at 9.6 V, CIE color coordinate (X,Y) at 1000 cd/m2 of (0.657, 0.336), and the time taken for the light-emission to be reduced from 100% to 90% at a luminance of 5,000 nit of 1 hr or more.
The organic electroluminescent compounds according to the present invention have high luminous efficiency, in particular current efficiency and power efficiency compared with conventional compounds, and give colors having high purity.

Claims (6)

  1. An organic electroluminescent compound represented by the following formula 1 or formula 2:
    Figure PCTKR2015006574-appb-I000120
    Figure PCTKR2015006574-appb-I000121
    wherein
    X and Y each independently represent -CR13- or -N-, with the proviso that X and Y do not simultaneously represent -CR13-;
    W and V each independently represent a single bond, O or S; and
    R1 to R13 each independently represent hydrogen, deuterium, a halogen, a cyano group, a substituted or unsubstituted (C1-C30)alkyl group, a substituted or unsubstituted (C6-C30)aryl group, a substituted or unsubstituted 3- to 30-membered heteroaryl group, a substituted or unsubstituted (C3-C30)cycloalkyl group, a substituted or unsubstituted (C1-C30)alkoxy group, a substituted or unsubstituted tri(C1-C30)alkylsilyl group, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl group, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl group, a substituted or unsubstituted tri(C6-C30)arylsilyl group, a substituted or unsubstituted mono- or di(C1-C30)alkylamino group, a substituted or unsubstituted mono- or di(C6-C30)arylamino group, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino group; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted mono- or polycyclic (C3-C30) alicyclic or aromatic ring whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur.
  2. The organic electroluminescent compound according to claim 1, wherein R1 to R13 in formulae 1 and 2 each independently represent hydrogen, a substituted or unsubstituted (C6-C20)aryl group, or a substituted or unsubstituted 5- to 20-membered heteroaryl group.
  3. The organic electroluminescent compound according to claim 1, wherein R1 to R13 in formulae 1 and 2 each independently represent hydrogen, or a substituted or unsubstituted (C6-C12)aryl group.
  4. The organic electroluminescent compound according to claim 1, wherein the substituents of the substituted alkyl group, the substituted cycloalkyl group, the substituted aryl group, the substituted heteroaryl group, the substituted alkoxy group, the substituted alkylsilyl group, the substituted arylsilyl group, the substituted alkylamino group, the substituted arylamino group, or the substituted mono- or polycyclic (C3-C30) alicyclic or aromatic ring in formulae 1 and 2 are each independently at least one selected from the group consisting of deuterium; a halogen; a cyano group; a carboxyl group; a nitro group; a hydroxyl group; a (C1-C30)alkyl group; a halo(C1-C30)alkyl group; a (C2-C30)alkenyl group; a (C2-C30)alkynyl group; a (C1-C30)alkoxy group; a (C1-C30)alkylthio group; a (C3-C30)cycloalkyl group; a (C3-C30)cycloalkenyl group; a 3- to 7-membered heterocycloalkyl group; a (C6-C30)aryloxy group; a (C6-C30)arylthio group; a 3- to 30-membered heteroaryl group which is unsubstituted or substituted with a (C6-C30)aryl group; a (C6-C30)aryl group which is unsubstituted or substituted with a 3- to 30-membered heteroaryl group; a tri(C1-C30)alkylsilyl group; a tri(C6-C30)arylsilyl group; a di(C1-C30)alkyl(C6-C30)arylsilyl group; a (C1-C30)alkyldi(C6-C30)arylsilyl group; an amino group; a mono- or di(C1-C30)alkylamino group; a mono- or di(C6-C30)arylamino group; a (C1-C30)alkyl(C6-C30)arylamino group; a (C1-C30)alkylcarbonyl group; a (C1-C30)alkoxycarbonyl group; a (C6-C30)arylcarbonyl group; a di(C6-C30)arylboronyl group; a di(C1-C30)alkylboronyl group; a (C1-C30)alkyl(C6-C30)arylboronyl group; a (C6-C30)aryl(C1-C30)alkyl group; and a (C1-C30)alkyl(C6-C30)aryl group.
  5. The organic electroluminescent compound according to claim 1, wherein the compound represented by formula 1 or 2 is selected from the group consisting of the following compounds:
    Figure PCTKR2015006574-appb-I000122
    Figure PCTKR2015006574-appb-I000123
    Figure PCTKR2015006574-appb-I000124
    Figure PCTKR2015006574-appb-I000125
    Figure PCTKR2015006574-appb-I000126
    Figure PCTKR2015006574-appb-I000127
    Figure PCTKR2015006574-appb-I000128
    Figure PCTKR2015006574-appb-I000129
    Figure PCTKR2015006574-appb-I000130
    Figure PCTKR2015006574-appb-I000131
    Figure PCTKR2015006574-appb-I000132
    Figure PCTKR2015006574-appb-I000133
    Figure PCTKR2015006574-appb-I000134
    Figure PCTKR2015006574-appb-I000135
    Figure PCTKR2015006574-appb-I000136
    Figure PCTKR2015006574-appb-I000137
    Figure PCTKR2015006574-appb-I000138
    Figure PCTKR2015006574-appb-I000139
    Figure PCTKR2015006574-appb-I000140
    Figure PCTKR2015006574-appb-I000141
    Figure PCTKR2015006574-appb-I000142
    Figure PCTKR2015006574-appb-I000143
    Figure PCTKR2015006574-appb-I000144
    Figure PCTKR2015006574-appb-I000145
    Figure PCTKR2015006574-appb-I000146
    Figure PCTKR2015006574-appb-I000147
    Figure PCTKR2015006574-appb-I000148
    Figure PCTKR2015006574-appb-I000149
    Figure PCTKR2015006574-appb-I000150
    Figure PCTKR2015006574-appb-I000151
    Figure PCTKR2015006574-appb-I000152
    Figure PCTKR2015006574-appb-I000153
    Figure PCTKR2015006574-appb-I000154
    Figure PCTKR2015006574-appb-I000155
    Figure PCTKR2015006574-appb-I000156
    Figure PCTKR2015006574-appb-I000157
    Figure PCTKR2015006574-appb-I000158
    Figure PCTKR2015006574-appb-I000159
    Figure PCTKR2015006574-appb-I000160
    Figure PCTKR2015006574-appb-I000161
    Figure PCTKR2015006574-appb-I000162
    Figure PCTKR2015006574-appb-I000163
    Figure PCTKR2015006574-appb-I000164
    Figure PCTKR2015006574-appb-I000165
    Figure PCTKR2015006574-appb-I000166
    Figure PCTKR2015006574-appb-I000167
    Figure PCTKR2015006574-appb-I000168
    Figure PCTKR2015006574-appb-I000169
    Figure PCTKR2015006574-appb-I000170
    Figure PCTKR2015006574-appb-I000171
    Figure PCTKR2015006574-appb-I000172
    Figure PCTKR2015006574-appb-I000173
    Figure PCTKR2015006574-appb-I000174
    Figure PCTKR2015006574-appb-I000175
    Figure PCTKR2015006574-appb-I000176
    Figure PCTKR2015006574-appb-I000177
    Figure PCTKR2015006574-appb-I000178
    Figure PCTKR2015006574-appb-I000179
    Figure PCTKR2015006574-appb-I000180
    Figure PCTKR2015006574-appb-I000181
    Figure PCTKR2015006574-appb-I000182
    Figure PCTKR2015006574-appb-I000183
    Figure PCTKR2015006574-appb-I000184
    Figure PCTKR2015006574-appb-I000185
  6. An organic electroluminescent device comprising the organic electroluminescent compound according to claim 1.
PCT/KR2015/006574 2014-06-27 2015-06-26 Novel organic electroluminescent compounds and organic electroluminescent device comprising the same WO2015199493A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580032976.XA CN106459082A (en) 2014-06-27 2015-06-26 Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
US15/318,099 US9698355B2 (en) 2014-06-27 2015-06-26 Organic electroluminescent compounds and organic electroluminescent device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0079487 2014-06-27
KR20140079487 2014-06-27
KR1020150081430A KR102420202B1 (en) 2014-06-27 2015-06-09 Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
KR10-2015-0081430 2015-06-09

Publications (1)

Publication Number Publication Date
WO2015199493A1 true WO2015199493A1 (en) 2015-12-30

Family

ID=54938482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006574 WO2015199493A1 (en) 2014-06-27 2015-06-26 Novel organic electroluminescent compounds and organic electroluminescent device comprising the same

Country Status (1)

Country Link
WO (1) WO2015199493A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017191896A1 (en) * 2016-05-03 2017-11-09 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3166947A4 (en) * 2014-07-09 2017-12-20 Rohm And Haas Electronic Materials Korea Ltd. An organic electroluminescent compound and an organic electroluminescent device comprising the same
CN109071413A (en) * 2016-05-03 2018-12-21 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and Organnic electroluminescent device comprising it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073965A (en) * 2012-10-02 2014-04-24 Canon Inc Novel benzoindolocarbazole compound, organic light-emitting element containing the same, display device, image information processor, lighting device, image forming device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073965A (en) * 2012-10-02 2014-04-24 Canon Inc Novel benzoindolocarbazole compound, organic light-emitting element containing the same, display device, image information processor, lighting device, image forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3166947A4 (en) * 2014-07-09 2017-12-20 Rohm And Haas Electronic Materials Korea Ltd. An organic electroluminescent compound and an organic electroluminescent device comprising the same
WO2017191896A1 (en) * 2016-05-03 2017-11-09 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
CN109071413A (en) * 2016-05-03 2018-12-21 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and Organnic electroluminescent device comprising it
CN109071413B (en) * 2016-05-03 2023-04-04 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and organic electroluminescent device comprising the same

Similar Documents

Publication Publication Date Title
EP3551623A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2015046916A1 (en) A combination of a host compound and a dopant compound
EP3446345A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
EP3268449A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2016148390A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2014185751A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2016036171A1 (en) A plurality of host materials and organic electroluminescent devices comprising the same
WO2015084021A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2015099486A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2015056993A1 (en) Combination of a host compound and a dopant compound and organic electroluminescent device comprising the same
WO2015099485A1 (en) An organic electroluminescent compound and an organic electroluminescent device comprising the same
WO2015037965A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
EP3170206A1 (en) Organic electroluminescent device
WO2015167259A1 (en) Multi-component host material and organic electroluminescent device comprising the same
WO2014038867A1 (en) A novel combination of a host compound and a dopant compound and an organic electroluminescence device comprising the same
EP2683712A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
EP2831197A1 (en) Novel organic electroluminescence compounds and organic electroluminescence device containing the same
EP3183234A1 (en) A plurality of host materials and an organic electroluminescence device comprising the same
WO2016060516A1 (en) A plurality of host materials and an organic electroluminescence device comprising the same
EP3313958A1 (en) Multi-component host material and organic electroluminescent device comprising the same
WO2013073859A1 (en) Novel organic electroluminescence compounds and organic electroluminescence device comprising the same
WO2014200244A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2017183859A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2014042405A1 (en) A novel combination of a host compound and a dopant compound and an organic electroluminescence device comprising the same
WO2017095156A1 (en) Organic electroluminescent compounds and organic electroluminescent device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811130

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318099

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811130

Country of ref document: EP

Kind code of ref document: A1