WO2015199489A2 - 헤테로고리 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

헤테로고리 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2015199489A2
WO2015199489A2 PCT/KR2015/006560 KR2015006560W WO2015199489A2 WO 2015199489 A2 WO2015199489 A2 WO 2015199489A2 KR 2015006560 W KR2015006560 W KR 2015006560W WO 2015199489 A2 WO2015199489 A2 WO 2015199489A2
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
monocyclic
polycyclic
Prior art date
Application number
PCT/KR2015/006560
Other languages
English (en)
French (fr)
Other versions
WO2015199489A3 (ko
Inventor
이정현
노영석
박건유
김동준
김기용
최진석
최대혁
음성진
이주동
Original Assignee
희성소재(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성소재(주) filed Critical 희성소재(주)
Priority to EP15810940.5A priority Critical patent/EP3162806B1/en
Priority to US15/318,794 priority patent/US10644244B2/en
Priority to JP2016575528A priority patent/JP6370934B2/ja
Priority to CN201580035097.2A priority patent/CN106661055B/zh
Publication of WO2015199489A2 publication Critical patent/WO2015199489A2/ko
Publication of WO2015199489A3 publication Critical patent/WO2015199489A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers

Definitions

  • the present invention relates to a novel heterocyclic compound and an organic light emitting device using the same.
  • An electroluminescent device is one type of self-luminous display device, and has advantages of wide viewing angle, excellent contrast, and high response speed.
  • the organic light emitting device has a structure in which an organic thin film is disposed between two electrodes. When a voltage is applied to the organic light emitting device having such a structure, electrons and holes injected from the two electrodes couple to each other in the organic thin film and form a pair, which then extinguishes and emits light.
  • the organic thin film may be composed of a single layer or a multilayer, if necessary.
  • the material of the organic thin film may have a light emitting function as needed.
  • a compound capable of forming a light emitting layer by itself may be used, or a compound capable of serving as a host or a dopant of a host-dopant light emitting layer may be used.
  • a compound capable of performing a role such as hole injection, hole transport, electron blocking, hole blocking, electron transport or electron injection may be used.
  • the present invention provides a novel heterocyclic compound and an organic light emitting device using the same.
  • the present application provides compounds of formula (1).
  • Y is S or O
  • X 1 and X 2 are the same or different and are each independently N or CR 10 ,
  • R 1 , R 2 , and R 4 to R 10 are the same or different from each other, and each independently hydrogen; heavy hydrogen; halogen; C 1 to C 60 linear or branched, substituted or unsubstituted alkyl; C 2 to C 60 linear or branched, substituted or unsubstituted alkenyl; C 2 to C 60 linear or branched, substituted or unsubstituted alkynyl; C 1 to C 60 linear or branched, substituted or unsubstituted alkoxy; C 3 to C 60 monocyclic or polycyclic substituted or unsubstituted cycloalkyl; A C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted heterocycloalkyl; C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl; C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted heteroaryl; And substituted or unsubstituted C 1 to
  • an organic light emitting device including a cathode, a cathode, and at least one organic layer provided between the anode and the cathode, wherein at least one of the organic layers includes the compound of Formula 1 .
  • the compound described in this specification can be used as an organic layer material of an organic light emitting device.
  • the compound can act as a hole injecting material, a hole transporting material, a light emitting material, an electron transporting material, an electron injecting material, and the like in an organic light emitting device.
  • the compound of Formula 1 may be used as a material for a light emitting layer of an organic light emitting device, specifically, a phosphorescent host.
  • FIGS. 1 to 3 illustrate the stacking order of electrodes and organic layers of the organic light emitting diode according to the embodiments of the present application.
  • Figure 4 shows the UV and PL measurement graphs of compound 29.
  • Figures 5 and 6 show the E ox values derived from CV measurements of compound 29.
  • Figure 7 shows the UV and PL measurement graphs of compound 42.
  • Figures 8 and 9 show the E ox values derived from the CV measurement of compound 42.
  • Figure 10 shows the UV and PL measurement graphs of compound 87.
  • Figures 11 and 12 show the E ox values derived from the CV measurements of compound 87.
  • Figure 13 shows the UV and PL measurement graphs of compound 88.
  • Figures 14 and 15 show the E ox values derived from CV measurements of compound 88.
  • FIG. 16 shows the UV and PL measurement graphs of Compound 90.
  • Figures 17 and 18 show the E ox values derived from CV measurements of compound 90.
  • FIG. 19 shows the UV and PL measurement graphs of Compound 91.
  • FIG. 20 and 21 show the E ox values derived from the CV measurement of the compound 91.
  • FIG. 20 and 21 show the E ox values derived from the CV measurement of the compound 91.
  • Figures 23 and 24 show the E ox values derived from the CV measurement of compound 92.
  • Figures 26 and 27 show the E ox values derived from the CV measurement of compound 93.
  • FIG. 30 shows a graph of LTPL measurement of Compound 85.
  • FIG. 31 shows a UVPL measurement graph of Compound 85.
  • Fig. 34 shows a graph of LTPL measurement of Compound 87.
  • FIG. 40 is a graph showing the LTPL measurement of Compound 91. Fig.
  • Fig. 42 shows a graph of LTPL measurement of Compound 92.
  • Figure 50 shows a graph of LTPL measurement of compound 250.
  • FIG. 56 shows a graph of LTPL measurement of Compound 260.
  • FIG. 57 shows a UVPL measurement graph of Compound 260. Fig.
  • 58 shows a graph of LTPL measurement of compound 409. Fig.
  • FIG. 59 shows a UVPL measurement graph of Compound 409. Fig.
  • Figure 60 shows a graph of LTPL measurement of compound 420.
  • 61 shows a UVPL measurement graph of Compound 420. Fig.
  • FIG. 62 shows a graph of LTPL measurement of Compound 425. Fig.
  • FIG. 63 shows a UVPL measurement graph of Compound 425. Fig.
  • Fig. 64 shows a graph of LTPL measurement of compound 427.
  • 66 is a graph showing the LTPL measurement of the compound 434. Fig.
  • the compounds described in this specification can be represented by the above formula (1).
  • the compound of Formula 1 may be used as an organic material layer material of an organic light emitting diode according to the structural features of the core structure and the substituent.
  • the "substituent group to which two or more substituents are connected" may be a biphenyl group, that
  • R &quot are the same or different and are each independently selected from the group consisting of C 1 to C 60 linear or branched alkyl; C 6 to C 60 monocyclic or polycyclic aryl; Or a C 2 to C 60 monocyclic or polycyclic heteroaryl.
  • alkyl includes straight or branched chain having 1 to 60 carbon atoms, and may be further substituted by other substituents.
  • the carbon number of the alkyl may be 1 to 60, specifically 1 to 40, more specifically 1 to 20.
  • alkenyl includes straight or branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the carbon number of the alkenyl may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • alkynyl includes a straight chain or a branched chain having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • the carbon number of the alkynyl may be 2 to 60, specifically 2 to 40, more specifically, 2 to 20.
  • the cycloalkyl includes monocyclic or polycyclic rings having 3 to 60 carbon atoms, and may be further substituted by other substituents.
  • the polycyclic ring means a group in which cycloalkyl is directly connected to another ring group or condensed.
  • the other ring group may be a cycloalkyl group, but may be other ring groups such as heterocycloalkyl, aryl, heteroaryl, and the like.
  • the carbon number of the cycloalkyl may be 3 to 60, specifically 3 to 40, more particularly 5 to 20.
  • heterocycloalkyl includes at least one of O, S, Se, N and Si as a heteroatom and includes monocyclic or polycyclic rings having 2 to 60 carbon atoms and may be further substituted by other substituents .
  • the polycyclic ring means a group in which heterocycloalkyl is directly connected to another ring group or condensed.
  • the other ring group may be heterocycloalkyl, but may be other ring groups such as cycloalkyl, aryl, heteroaryl, and the like.
  • the heterocycloalkyl may have from 2 to 60 carbon atoms, specifically from 2 to 40, more specifically from 3 to 20 carbon atoms.
  • aryl includes monocyclic or polycyclic rings having 6 to 60 carbon atoms and may be further substituted by other substituents.
  • the polycyclic ring means a group in which aryl is directly connected to another ring group or condensed.
  • the other ring group may be aryl, but may be other ring groups such as cycloalkyl, heterocycloalkyl, heteroaryl and the like.
  • Aryl includes a spiro group.
  • the carbon number of the aryl may be 6 to 60, specifically 6 to 40, more specifically 6 to 25.
  • aryl examples include phenyl, biphenyl, triphenyl, naphthyl, anthryl, klycenyl, phenanthrenyl, perylenyl, fluoranthenyl, triphenylenyl, phenalenyl, pyrenyl, tetracenyl, pentacenyl, But are not limited to, fluorenyl, indenyl, acenaphthylenyl, fluorenyl, benzofluorenyl, spirobrifluorenyl, and condensed rings thereof.
  • the spiro group is a group including a spiro structure and may have from 15 to 60 carbon atoms.
  • a spiro group may include a structure in which a 2,3-dihydro-1H-indene group or a cyclohexane group is spiro-bonded to a fluorene group.
  • the spiro group includes groups of the following structural formulas.
  • heteroaryl includes at least one of S, O, Se, N and Si as a heteroatom and includes monocyclic or polycyclic rings having 2 to 60 carbon atoms, and may be further substituted by other substituents.
  • polycyclic means a heteroaryl group directly bonded to another ring group or condensed therewith.
  • the other ring group may be heteroaryl, but may be other ring groups such as cycloalkyl, heterocycloalkyl, aryl, and the like.
  • the heteroaryl may have 2 to 60 carbon atoms, specifically 2 to 40, more specifically 3 to 25 carbon atoms.
  • heteroaryl examples include pyridyl, pyrrolyl, pyrimidyl, pyridazinyl, furanyl, thiophene, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, Thiazolyl, thiazolyl, pyrazinyl, thiopyranyl, diazinyl, oxazinyl, thiazinyl, dioxinyl, triazinyl, tetrazinyl, quinolyl, iso Or a pharmaceutically acceptable salt thereof, wherein the compound is selected from the group consisting of quinolyl, quinazolinyl, quinazolinyl, isoquinazolinyl, naphthyridyl, acridinyl, phenanthridinyl, imidazopyridinyl, diazanaphthaleny
  • Y in the formula (1) is S.
  • Y is O.
  • one of X 1 and X 2 is N and the other is CR 10 .
  • one of X 1 and X 2 is N and the other is CR 10 , and at least one of R 1 , R 2 and R 10 is - (L) m- (Z) n,
  • L is a C 2 to C 60 straight or branched chain substituted or unsubstituted alkylene; C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted arylene; Or a C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted heteroarylene,
  • n is an integer of 0 to 3
  • n is an integer of 1 or 2
  • m may be zero or an integer of 1, 2, or 3.
  • L may be the same or different from each other.
  • n when n is an integer of 2, the n may be the same or different from each other.
  • L is a C 2 to C 60 alkylene; Or C 6 to C 60 arylene.
  • L is selected from the group consisting of phenylene; Naphthylene; Or anthracenylene.
  • Z is substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted triphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted anthracenyl , Substituted or unsubstituted phenanthrenyl, substituted or unsubstituted indenyl, substituted or unsubstituted perylenyl, substituted or unsubstituted pyrenyl, substituted or unsubstituted acenaphthalenyl, substituted or unsubstituted Substituted or unsubstituted thienyl, fluorenyl, substituted or unsubstituted fluoranthenyl, substituted or unsubstituted triphenylenyl, substituted or unsubstituted phenalenyl, substituted or unsubstit
  • Z is substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted triphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted anthracenyl , Substituted or unsubstituted carbazolyl, substituted or unsubstituted benzocarbazolyl, substituted or unsubstituted dibenzocarbazolyl, substituted or unsubstituted indolo [2,3-a] carbazolyl, substituted or unsubstituted Substituted or unsubstituted benzofuranyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted thiophenyl, substituted or unsubstituted thiophenyl, substituted or unsubstituted thiophenyl, substituted or unsubstituted
  • R 11 to R 15 are the same or different and are C 6 to C 60 monocyclic or polycyclic aryl.
  • R 11 to R 15 are the same or different from each other and are phenyl, biphenyl, triphenyl, naphthyl or anthracenyl.
  • R 4 to R 9 are hydrogen or deuterium.
  • the formula (1) is represented by the following formula (2) or (3).
  • the formula (1) is represented by any one of the following formulas (4) to (7).
  • R 1 , R 2 , and R 4 to R 9 are the same as defined in Formula (1), and R 3 is the same as defined for R 10 in Formula (1).
  • At least one of R 1 to R 3 is - (L) m- (Z) n and the others are the same as defined in formula (1)
  • R 1 is - (L) m- (Z) n
  • R 2 and R 3 are hydrogen, deuterium or phenyl
  • L, m, Z is the same as described above.
  • R 1 and R 3 is hydrogen, deuterium, or phenyl, wherein L, m, n, and Z is the same as described above.
  • R 3 is - (L) m- (Z) n
  • R 1 and R 2 is hydrogen, heavy hydrogen or phenyl, wherein L, m, n, and Z is the same as described above.
  • m in the general formulas (4) to (7) is 0 or 1.
  • the formula (1) is represented by any one of the following formulas (8) to (11).
  • A is a direct bond; C 2 to C 60 linear or branched, substituted or unsubstituted alkylene; C 2 to C 60 linear or branched, substituted or unsubstituted alkenylene; C 2 to C 60 linear or branched, substituted or unsubstituted alkynylene; C 3 to C 60 monocyclic or polycyclic substituted or unsubstituted cycloalkylene; C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted heterocycloalkylene; C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted arylene; C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted heteroarylene; And substituted or unsubstituted C 1 to C 20 alkyl, C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl, or C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted
  • R 16 to R 19 are the same or different from each other, and each independently hydrogen; heavy hydrogen; halogen; C 1 to C 60 linear or branched, substituted or unsubstituted alkyl; C 2 to C 60 linear or branched, substituted or unsubstituted alkenyl; C 2 to C 60 linear or branched, substituted or unsubstituted alkynyl; C 1 to C 60 linear or branched, substituted or unsubstituted alkoxy; C 3 to C 60 monocyclic or polycyclic substituted or unsubstituted cycloalkyl; A C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted heterocycloalkyl; C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted aryl; C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted heteroaryl; And substituted or unsubstituted C 1 to C 20 alkyl, C 6 to
  • p, q, r and s are integers of 0 to 4,
  • Y and R 6 to R 9 are the same as defined in formula (1).
  • the formulas (8) to (11) refer to a dimer structure, and A represents a linker of a dimer.
  • A represents a C 6 to C 60 monocyclic or polycyclic substituted or unsubstituted arylene; And a C 2 to C 60 monocyclic or polycyclic substituted or unsubstituted heteroarylene.
  • A is C 6 to C 60 arylene substituted or unsubstituted with alkyl or aryl; C 2 to C 60 heteroarylene, unsubstituted or substituted with alkyl or aryl.
  • a in the formulas (8) to (11) is a carbazolyl group substituted or unsubstituted with alkyl or aryl; Or a fluorene group substituted or unsubstituted with alkyl or aryl.
  • a in the formulas (8) to (11) is a carbazolyl group substituted or unsubstituted with alkyl or aryl; Or a fluorene group substituted or unsubstituted with alkyl or aryl, said alkyl being C 1 to C 10 straight or branched chain, said aryl being C 6 to C 20 aryl.
  • X3 and X4 are substituted or unsubstituted C 6 to C 60 monocyclic or polycyclic aromatic hydrocarbon rings; Or a substituted or unsubstituted C 2 to C 60 monocyclic or polycyclic aromatic heterocyclic ring.
  • Z 1 to Z 3 are the same or different from each other and are each independently S or O,
  • Z < 4 > to Z < 9 > are the same or different from each other and each independently CR &
  • R 'and R " are the same or different and each independently hydrogen, substituted or unsubstituted C 1 to C 60 linear or branched alkyl, or substituted or unsubstituted C 6 to C 60 monocyclic or polycyclic It is the aryl of the circle.
  • Formula 1 may be selected from the following compounds.
  • the above-mentioned compounds can be produced on the basis of the preparation examples described later. Exemplary examples are described below in the preparation examples, but substituents can be added or removed as needed, and the position of the substituent can be changed. In addition, based on techniques known in the art, starting materials, reactants, reaction conditions, and the like can be changed. The type or position of the substituent at the remaining positions may be changed as required by those skilled in the art using techniques known in the art.
  • the compound of formula (4) can be prepared into a core structure as shown in following general formula (1) and general formula (2).
  • the following general formulas (1) and (2) illustrate the case where Y in formula (4) is S, but Y may be oxygen (O).
  • Substituent groups may be attached by methods known in the art, and the substituent position or number of substituent groups may be varied according to techniques known in the art.
  • the above general formula (1) is an example of a reaction for bonding a substituent to the R 2 position in the core structure of the above formula (4).
  • the final compound of the general formula (1) is a case where R 2 in the general formula (4) is phenyl substituted with Ar.
  • Ar is the same as the definition of Z described above.
  • the above general formula 2 is an example of the reaction of substituting a substituent at the R 3 position in the core structure of the above formula (4).
  • the final compound of the general formula (2) is a case where R 3 in the general formula (4) is phenyl substituted with Ar.
  • Ar is the same as the definition of Z described above.
  • the compound of Formula 5 may be prepared as a core structure as shown in Formula 3 below.
  • Substituent groups may be attached by methods known in the art, and the substituent position or number of substituent groups may be varied according to techniques known in the art.
  • the above-mentioned general formula 3 is an example of a reaction for bonding a substituent to the R 3 position in the core structure of the above formula (5).
  • the final compound of the general formula (3) is a case where R 3 in the general formula (5) is phenyl substituted with Ar.
  • Ar is the same as the definition of Z described above.
  • the compound of Formula 6 may be prepared as a core structure as shown in Formula 4 below.
  • Substituent groups may be attached by methods known in the art, and the substituent position or number of substituent groups may be varied according to techniques known in the art.
  • the above general formula 4 is an example of a reaction for bonding a substituent to the R 3 position in the core structure of the above formula (6).
  • the final compound of Formula 4 is a case where R 3 in Formula 6 is phenyl substituted with Ar.
  • Ar is the same as the definition of Z described above.
  • the compound of Formula 7 may be prepared as a core structure as shown in Formula 5 below.
  • Substituent groups may be attached by methods known in the art, and the substituent position or number of substituent groups may be varied according to techniques known in the art.
  • the above general formula 5 is an example of a reaction for bonding a substituent to the R 3 position in the core structure of the above formula (7).
  • the final compound of Formula 3 is a compound wherein R 3 is phenyl substituted with Ar in Formula 7 above.
  • Ar is the same as the definition of Z described above.
  • the organic light emitting device comprising the compound of formula (1).
  • the organic light emitting device according to the present application includes a cathode, a cathode, and at least one organic layer provided between the anode and the cathode, and at least one of the organic layers includes the compound of Formula 1.
  • FIGS. 1 to 3 illustrate the stacking process of the electrodes and organic layers of the organic light emitting diode according to the embodiments of the present application. However, it is not intended that the scope of the present application be limited by these drawings, and the structure of the organic light emitting device known in the art can be applied to the present application.
  • an organic light emitting device in which an anode 200, an organic layer 300, and a cathode 400 are sequentially stacked on a substrate 100 is shown.
  • the present invention is not limited to such a structure, and an organic light emitting device in which a cathode, an organic material layer, and an anode are sequentially stacked on a substrate may be implemented as shown in FIG.
  • FIG. 3 illustrates the case where the organic material layer is a multilayer. 3 includes a hole injection layer 301, a hole transport layer 302, a light emitting layer 303, a hole blocking layer 304, an electron transport layer 305 and an electron injection layer 306.
  • a hole injection layer 301 a hole transport layer 302
  • a light emitting layer 303 a hole transport layer 302
  • a hole blocking layer 304 a hole blocking layer
  • an electron transport layer 305 an electron injection layer 306.
  • the scope of the present application is not limited by such a laminated structure, and if necessary, the remaining layers except the light emitting layer may be omitted, and other necessary functional layers may be further added.
  • the organic light emitting device according to the present invention can be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer contains the compound of the above formula (1).
  • the compound of formula (I) may constitute one or more layers of the organic material layer of the organic light emitting device. However, if necessary, the organic material layer may be formed by mixing with other materials.
  • the compound of Formula 1 may be used as a hole injecting material, a hole transporting material, a light emitting material, an electron transporting material, and an electron injecting material in an organic light emitting device.
  • the compound according to one embodiment of the present application can be used as an electron injecting layer, an electron transporting layer, or a material of a layer which simultaneously injects electrons and transports the organic light emitting element.
  • the compound according to one embodiment of the present application can be used as a light emitting layer material of an organic light emitting device.
  • the compound can be used singly as a light emitting material, or as a host material or a dopant material in a light emitting layer.
  • the compound according to one embodiment of the present application can be used as a phosphorescent host material of an organic light emitting device.
  • the compound according to one embodiment of the present application is included with the phosphorescent dopant.
  • the compound according to one embodiment of the present application can be used as a material for the hole blocking layer of the organic light emitting device.
  • the cathode material materials having a relatively large work function can be used, and a transparent conductive oxide, a metal, or a conductive polymer can be used.
  • the cathode material materials having relatively low work functions can be used, and metals, metal oxides, conductive polymers, and the like can be used.
  • a known hole injecting material may be used.
  • a phthalocyanine compound such as copper phthalocyanine disclosed in U.S. Patent No. 4,356,429 or a compound described in Advanced Material, 6, p.
  • PANDOT / PSS Polyaniline / Dodecylbenzenesulfonic acid
  • PSS Polyaniline / Dodecylbenzenesulfonic acid
  • TCA soluble conductive polymer
  • m-MTDATA m-MTDATA
  • m-MTDAPB 4-ethylenedioxythiophene / poly (4-styrenesulfonate) / poly (4-styrene sulfonate) / Pani / CSA (polyaniline / camphor sulfonic acid)
  • PANI / PSS polyaniline / poly (4-styrene-sulfonate
  • polyaniline / poly (4-styrenesulfonate) polyaniline / poly (4-styrenesulfonate
  • a pyrazoline derivative an arylamine derivative, a stilbene derivative, a triphenyldiamine derivative, or the like may be used, and a low molecular weight or a high molecular weight material may be used.
  • Examples of the electron transporting material include oxadiazole derivatives, anthraquinodimethane and derivatives thereof, benzoquinone and derivatives thereof, naphthoquinone and derivatives thereof, anthraquinone and derivatives thereof, tetracyanoanthraquinodimethane and derivatives thereof, Derivatives thereof, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, metal complexes of 8-hydroxyquinoline and derivatives thereof, and the like may be used as well as low molecular weight materials and high molecular weight materials.
  • LiF is typically used in the art, but the present application is not limited thereto.
  • red, green or blue light emitting materials may be used, and if necessary, two or more light emitting materials may be mixed and used.
  • a fluorescent material may be used as the light emitting material, but a phosphorescent material may also be used.
  • a material which emits light by coupling holes and electrons respectively injected from the anode and the cathode may be used. However, materials in which both the host material and the dopant material participate in light emission may also be used.
  • phosphorescent dopant materials used together can be those known in the art.
  • phosphorescent dopant materials represented by LL'MX, LL'L “M, LMXX ', L 2 MX and L 3 M can be used, but the scope of the present application is not limited by these examples.
  • L, L ', L ", X and X' are two different left ligands and M is a metal forming an octahedral complex.
  • M may be iridium, platinum, osmium, and the like.
  • L is sp 2 An anionic bidentate ligand that is coordinated to M by carbon and hetero atoms, and X can function to trap electrons or holes.
  • Non-limiting examples of L include 2- (1-naphthyl) benzoxazole, (2-phenylbenzoxazole), (2-phenylbenzothiazole), (7,8-benzoquinoline) Phenyl) pyridine, benzothienylpyridine, 3-methoxy-2-phenylpyridine, thienylpyridine, tolylpyridine and the like.
  • Non-limiting examples of X include acetylacetonate (acac), hexafluoroacetylacetonate, salicylidene, picolinate, 8-hydroxyquinolinate, and the like.
  • the organic layer was dried over anhydrous MgSO 4 , and the solvent was removed using a rotary evaporator. 18.0 g (51%) of the target compound 1-1 was obtained after washing with EA (ethyl acetate) and hexane (Hexane).
  • the organic layer was dried over anhydrous MgSO 4 , and the solvent was removed using a rotary evaporator.
  • the solvent was washed with EA (ethyl acetate) and hexane (Hexane) to obtain 18.0 g (51%) of the target compound 3-1 .
  • the mixture was cooled to room temperature and extracted with distilled water and MC.
  • the organic layer was dried over anhydrous MgSO 4 , and the solvent was removed using a rotary evaporator.
  • the solvent was distilled off under reduced pressure, and the residue was purified by column chromatography using dichloromethane and hexane as eluent to obtain 6.0 g (74%) of the compound 88 .
  • Dibenzo [b, d] thiophen-4-yl) phenyl) boronic acid was prepared by reacting 7 g (23.48 mmol) of Compound 12-3 with (3- (dibenzo [b, ) boronic acid) 7.1g (23.48mmol) , Pd (PPh 3) 4 2.7g (2.35mmol), K 2 CO 3 to 9.73g (70.44mmol) 150mL of toluene, 30mL of ethanol, in a 120 °C with H 2 O 30mL And refluxed for 7 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and extracted with distilled water and ethyl acetate (EA).
  • EA ethyl acetate
  • Triethylamine (15.5ml, 110mmol) was added to a mixture of 6-1 (22.6g, 100mmol) and tetrahydrofuran (400ml) in a one neck round bottom flask under nitrogen, Lt; / RTI > The temperature was lowered to 0 ⁇ , and a mixture of 4-bromobenzoyl chloride (26.4 g, 120 mmol) in tetrahydrofuran (100 ml) was added, followed by stirring for 30 minutes. After extracting with MC, the organic layer was concentrated, then methanol was added thereto, followed by sonication to filter (33 g, 81%).
  • the compound 2-chloro-4,6-di 9.7 g, 78%) was obtained in the same manner as in the preparation of the compound 245 in Production Example 20, except that 2-chloro-4,6-diphenylpyrimidine was used.
  • the target compound 259 was obtained (7.3 g, 62%) in the same manner as in the preparation of the compound 245 in Preparation Example 20 except that 4-bromo-2-phenylquinazoline was used.
  • the compound 2-bromo-1,10-diazepane was used instead of the compound 2-chloro-4,6-diphenyl-1,3,5-triazine.
  • the target compound 260 was obtained (7.7 g, 69%) in the same manner as in the preparation of the compound 245 in Preparation Example 20, except that 2-bromo-1,10-phenanthroline was used.
  • Triethylamine (26 ml, 186 mmol) was added to a mixture of 6-1 (35 g, 155 mmol) and tetrahydrofuran (600 ml) in a one neck round bottom flask under nitrogen and stirred for 10 minutes . The temperature was lowered to 0 ⁇ , and a mixture of 3-bromobenzoyl chloride (40.8 g, 186 mmol) in tetrahydrofuran (150 ml) was added, followed by stirring for 30 minutes. After extracting with MC, the organic layer was concentrated, and methanol was added thereto to sonicate and then filtered (58g, 91.7%).
  • Phosphorus (V) oxychloride (12 ml, 127 mmol) was added to a mixture of nitrobenzene (1,000 ml) in a one neck round bottom flask 7-1 (52 g, 127 mmol) followeded by stirring at 150 ° C for 3 hours. The reaction was quenched with aqueous sodium bicarbonate solution at 0 < 0 > C and extracted with dichloromethane. After concentration, the nitrobenzene was removed, MeOH was added, and the mixture was stirred and filtered (43 g, 86%).
  • Triethylamine (100 ml, 707 mmol) was added to a mixture of 10-1 (145 g, 643 mmol) and tetrahydrofuran (2,000 ml) in a one neck round bottom flask under nitrogen and stirred for 10 minutes. Respectively. The temperature was lowered to 0 ⁇ , and a mixture of 4-bromobenzoyl chloride (155.3 g, 707.9 mmol) in tetrahydrofuran (1,000 ml) was added, followed by stirring for 30 minutes. After extracting with MC, the organic layer was concentrated, methanol was added, and the mixture was filtered after sonication (220 g, 83%).
  • Phosphorus (V) oxychloride 55ml, 592.6mmol was added to a mixture of nitrobenzene (2,000ml) in a one neck round bottom flask (220g, 538.8mmol) ), which was stirred for 3 hours at 150 ° C.
  • the reaction was quenched with aqueous sodium bicarbonate solution at 0 < 0 > C and extracted with dichloromethane. After concentration, nitrobenzene was removed, MeOH was added, and the mixture was stirred and filtered (167 g, 80%).
  • the target compound 278 was obtained (8.6 g, 69%) in the same manner as in the preparation of the compound 248 in Preparation Example 23 except that the compound 10-3 was used instead of the compound 6-3.
  • Triethylamine (26 ml, 186 mmol) was added to a mixture of 10-1 (35 g, 155 mmol) and tetrahydrofuran (600 ml) in a one neck round bottom flask under nitrogen and stirred for 10 minutes .
  • the temperature was lowered to 0 ⁇ ⁇ , and a mixture of 4-bromobenzoyl chloride (40.8 g, 186 mmol) in tetrahydrofuran (100 ml) was added, followed by stirring for 30 minutes.
  • the organic layer was concentrated, then methanol was added thereto, followed by sonication to filter (58 g, 91%).
  • Phosphorus (V) oxychloride (12 ml, 127 mmol) was added to a mixture of nitrobenzene (1000 ml) in a one neck round bottom flask 11-1 (52 g, 127 mmol) followeded by stirring at 150 ° C for 2 hours. The reaction was quenched with aqueous sodium bicarbonate solution at 0 < 0 > C and extracted with dichloromethane. After concentration, the nitrobenzene was removed, MeOH was added, and the mixture was stirred and filtered (43 g, 86%).
  • the objective compound 373-3 was obtained in the same manner as in the production of the compound 370-3 in the Production Example 36 except that the Compound 6-1 was used instead of the Compound 37-1-3.
  • the target compound 370 was obtained in the same manner as in the production of the compound 245 in Production Example 20, except that 2-chloro-4,6-diphenylpyrimidine was used instead of the chloroform-4,6-diphenylpyrimidine (12.4 g, 87%).
  • Triethylamine 34 ml, 244 mmol was added to a mixture of 6-1 (50 g, 221.9 mmol) and tetrahydrofuran (800 ml) in a one neck round bottom flask under nitrogen and stirred for 10 min. Respectively. The temperature was lowered to 0 ⁇ , and a mixture of 3,5-dibromobenzoyl chloride (100 g, 332.8 mmol) in tetrahydrofuran (200 ml) was added, followed by stirring for 30 minutes. After extracting with MC, the organic layer was concentrated, then methanol was added thereto, followed by sonication (107 g, 99%).
  • CV cyclic voltammetry
  • UV measurement was performed using a UV-visible spectrophotometer (manufacturer: perkin elmer, model LS35) and analyzed using tetrahydrofuran (THF) at room temperature.
  • Figure 4 shows the UV and PL measurement graphs of compound 29.
  • Figures 5 and 6 show the E ox values derived from CV measurements of compound 29.
  • Figure 7 shows the UV and PL measurement graphs of compound 42.
  • Figures 8 and 9 show the E ox values derived from the CV measurement of compound 42.
  • Figure 10 shows the UV and PL measurement graphs of compound 87.
  • Figures 11 and 12 show the E ox values derived from the CV measurements of compound 87.
  • Figure 13 shows the UV and PL measurement graphs of compound 88.
  • Figures 14 and 15 show the E ox values derived from CV measurements of compound 88.
  • FIG. 16 shows the UV and PL measurement graphs of Compound 90.
  • Figures 17 and 18 show the E ox values derived from CV measurements of compound 90.
  • FIG. 19 shows the UV and PL measurement graphs of Compound 91.
  • FIG. 20 and 21 show the E ox values derived from the CV measurement of the compound 91.
  • FIG. 20 and 21 show the E ox values derived from the CV measurement of the compound 91.
  • Figures 23 and 24 show the E ox values derived from the CV measurement of compound 92.
  • Figures 26 and 27 show the E ox values derived from the CV measurement of compound 93.
  • FIG. 30 shows a graph of LTPL measurement of Compound 85.
  • FIG. 31 shows a UVPL measurement graph of Compound 85.
  • Fig. 34 shows a graph of LTPL measurement of Compound 87.
  • FIG. 40 is a graph showing the LTPL measurement of Compound 91. Fig.
  • Fig. 42 shows a graph of LTPL measurement of Compound 92.
  • Figure 50 shows a graph of LTPL measurement of compound 250.
  • FIG. 56 shows a graph of LTPL measurement of Compound 260.
  • FIG. 57 shows a UVPL measurement graph of Compound 260. Fig.
  • 58 shows a graph of LTPL measurement of compound 409. Fig.
  • FIG. 59 shows a UVPL measurement graph of Compound 409. Fig.
  • Figure 60 shows a graph of LTPL measurement of compound 420.
  • 61 shows a UVPL measurement graph of Compound 420. Fig.
  • FIG. 62 shows a graph of LTPL measurement of Compound 425. Fig.
  • FIG. 63 shows a UVPL measurement graph of Compound 425. Fig.
  • Fig. 64 shows a graph of LTPL measurement of compound 427.
  • 66 is a graph showing the LTPL measurement of the compound 434. Fig.
  • the graph on the left (blue) shows the UV absorption and the graph on the right (red) shows the PL emission.
  • the y-axis is intensity and the x-axis is wavelength (unit: nm).
  • the HOMO Highest Occupied Molecular Orbital
  • LUMO Large Unoccupied Molecular Orbital
  • band gap of the compound can be confirmed by the following equation.
  • the transparent electrode ITO thin film obtained from the glass for OLED (manufactured by Samsung Corning) was ultrasonically cleaned for 5 minutes each using trichlorethylene, acetone, ethanol and distilled water sequentially, and stored in isopropanol before use.
  • the chamber was evacuated until the degree of vacuum reached 10 -6 torr. Then, a current was applied to the cell to evaporate 2-TNATA, thereby depositing a 600 ⁇ thick hole injection layer on the ITO substrate.
  • NPB N'-bis (? - naphthyl) -N, N'-diphenyl-4,4'-diamine (N, N'-diphenyl-4,4'-diamine: NPB) was added, and a current was applied to the cell to evaporate the hole transport layer to deposit a 300 ⁇ thick hole transport layer.
  • a blue light emitting material having the following structure was vapor-deposited as a light emitting layer thereon. Specifically, H1, a blue light emitting host material, was vacuum deposited on one cell in a vacuum vapor deposition apparatus to a thickness of 200 ⁇ , and D1, a blue light emitting dopant material, was vacuum deposited by 5% on the host material.
  • a compound of the following structural formula E1 was deposited as an electron transporting layer to a thickness of 300 ⁇ .
  • Lithium fluoride (LiF) was deposited as an electron injection layer to a thickness of 10 ⁇ , and an Al cathode was formed to a thickness of 1,000 ⁇ to fabricate an OLED device.
  • the device structure as in Comparative Example 1 was fabricated and E2 material was used instead of E1 material.
  • An organic electroluminescent device was prepared in the following manner.
  • the glass substrate coated with ITO thin film with a thickness of 1,500 ⁇ was washed with distilled water ultrasonic waves. After the distilled water was washed, it was ultrasonically cleaned with a solvent such as acetone, methanol, isopropyl alcohol, dried, and UV-treated for 5 minutes using UV in a UV scrubber. Subsequently, the substrate was transferred to a plasma cleaner (PT), subjected to a plasma treatment for removing ITO work function and residual film in a vacuum state, and transferred to a thermal evaporation apparatus for organic vapor deposition.
  • PT plasma cleaner
  • the light emitting layer was then subjected to thermal vacuum deposition as follows.
  • BCP was deposited to a thickness of 60 ⁇ as a hole blocking layer
  • Alq 3 was deposited to a thickness of 200 ⁇ as an electron transport layer thereon.
  • lithium fluoride (LiF) was deposited on the electron transport layer to a thickness of 10 ⁇ to form an electron injection layer.
  • An aluminum (Al) cathode was deposited on the electron injection layer to a thickness of 1,200 ⁇ to form a cathode Thereby preparing an electroluminescent device.
  • the driving voltage, efficiency, color coordinates, and durability (lifetime) of the organic EL device fabricated in each of Comparative Examples 1 to 2 and Examples 1 to 98 were measured and evaluated at a luminance of 700 cd / m 2 , Are shown in Table 4 below.
  • An organic electroluminescent device was fabricated in the same manner as in Comparative Example 3 except that the compound synthesized in Preparation Examples 1 to 19 was used in place of the host CBP used in forming the light emitting layer in Comparative Example 3.
  • the organic light emitting device having the compound according to the present invention applied to the light emitting layer has a lower driving voltage, improved luminous efficiency, and significantly improved lifetime as compared with Comparative Example 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

본 출원은 유기 발광 소자의 수명, 효율, 전기 화학적 안정성 및 열적 안정성을 크게 향상시킬 수 있는 헤테로고리 화합물, 및 상기 헤테로고리 화합물이 유기 화합물층에 함유되어 있는 유기 발광 소자를 제공한다.

Description

헤테로고리 화합물 및 이를 이용한 유기 발광 소자
본 출원은 2014년 6월 27일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0080226호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 신규한 헤테로고리 화합물 및 이를 이용한 유기 발광 소자에 관한 것이다.
전계 발광 소자는 자체 발광형 표시 소자의 일종으로서, 시야각이 넓고, 콘트라스트가 우수할 뿐만 아니라 응답속도가 빠르다는 장점을 가지고 있다.
유기 발광 소자는 2개의 전극 사이에 유기박막을 배치시킨 구조를 가지고 있다. 이와 같은 구조의 유기 발광 소자에 전압이 인가되면, 2개의 전극으로부터 주입된 전자와 정공이 유기박막에서 결합하여 쌍을 이룬 후 소멸하면서 빛을 발하게 된다. 상기 유기 박막은 필요에 따라 단층 또는 다층으로 구성될 수 있다.
유기 박막의 재료는 필요에 따라 발광 기능을 가질 수 있다. 예컨대, 유기박막 재료로는 그 자체가 단독으로 발광층을 구성할 수 있는 화합물이 사용될 수도 있고, 또는 호스트-도펀트계 발광층의 호스트 또는 도펀트 역할을 할 수 있는 화합물이 사용될 수도 있다. 그 외에도, 유기 박막의 재료로서, 정공 주입, 정공 수송, 전자 블록킹, 정공 블록킹, 전자 수송 또는 전자 주입 등의 역할을 수행할 수 있는 화합물이 사용될 수도 있다.
유기 발광 소자의 성능, 수명 또는 효율을 향상시키기 위하여, 유기 박막의 재료의 개발이 지속적으로 요구되고 있다.
본 출원은 신규한 헤테로고리 화합물 및 이를 이용한 유기 발광 소자를 제공한다.
본 출원은 하기 화학식 1의 화합물을 제공한다.
[화학식 1]
Figure PCTKR2015006560-appb-I000001
상기 화학식 1에 있어서,
Y는 S 또는 O이고,
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 N 또는 CR10이며,
R1, R2, 및 R4 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알케닐; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알키닐; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알콕시; C3 내지 C60의 단환 또는 다환의 치환 또는 비치환된 시클로알킬; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로시클로알킬; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴, 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택된다.
또한, 본 출원은 양극, 음극 및 상기 양극과 음극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상이 상기 화학식 1의 화합물을 포함하는 유기 발광 소자를 제공한다.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층 재료로서 사용할 수 있다. 상기 화합물은 유기 발광 소자에서 정공 주입 재료, 정공 수송 재료, 발광 재료, 전자 수송 재료, 전자 주입 재료 등의 역할을 할 수 있다. 특히, 상기 화학식 1의 화합물을 유기 발광 소자의 발광층, 구체적으로 인광 호스트의 재료로서 사용될 수 있다.
도 1 내지 3은 본 출원의 실시상태들에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시한 것이다.
도 4는 화합물 29의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 5 및 6은 화합물 29의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 7는 화합물 42의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 8 및 9는 화합물 42의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 10는 화합물 87의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 11 및 12는 화합물 87의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 13은 화합물 88의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 14 및 15는 화합물 88의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 16은 화합물 90의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 17 및 18은 화합물 90의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 19는 화합물 91의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 20 및 21은 화합물 91의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 22는 화합물 92의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 23 및 24은 화합물 92의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 25는 화합물 93의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 26 및 27은 화합물 93의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 28은 화합물 73의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 29는 화합물 73의 UVPL 측정 그래프를 나타낸 것이다.
도 30은 화합물 85의 LTPL 측정 그래프를 나타낸 것이다.
도 31은 화합물 85의 UVPL 측정 그래프를 나타낸 것이다.
도 32는 화합물 86의 LTPL 측정 그래프를 나타낸 것이다.
도 33은 화합물 86의 UVPL 측정 그래프를 나타낸 것이다.
도 34는 화합물 87의 LTPL 측정 그래프를 나타낸 것이다.
도 35은 화합물 87의 UVPL 측정 그래프를 나타낸 것이다.
도 36은 화합물 88의 LTPL 측정 그래프를 나타낸 것이다.
도 37은 화합물 88의 UVPL 측정 그래프를 나타낸 것이다.
도 38은 화합물 90의 LTPL 측정 그래프를 나타낸 것이다.
도 39는 화합물 90의 UVPL 측정 그래프를 나타낸 것이다.
도 40은 화합물 91의 LTPL 측정 그래프를 나타낸 것이다.
도 41은 화합물 91의 UVPL 측정 그래프를 나타낸 것이다.
도 42은 화합물 92의 LTPL 측정 그래프를 나타낸 것이다.
도 43은 화합물 92의 UVPL 측정 그래프를 나타낸 것이다.
도 44은 화합물 93의 LTPL 측정 그래프를 나타낸 것이다.
도 45은 화합물 93의 UVPL 측정 그래프를 나타낸 것이다.
도 46은 화합물 245의 LTPL 측정 그래프를 나타낸 것이다.
도 47은 화합물 245의 UVPL 측정 그래프를 나타낸 것이다.
도 48은 화합물 246의 LTPL 측정 그래프를 나타낸 것이다.
도 49는 화합물 246의 UVPL 측정 그래프를 나타낸 것이다.
도 50은 화합물 250의 LTPL 측정 그래프를 나타낸 것이다.
도 51은 화합물 250의 UVPL 측정 그래프를 나타낸 것이다.
도 52는 화합물 253의 LTPL 측정 그래프를 나타낸 것이다.
도 53은 화합물 253의 UVPL 측정 그래프를 나타낸 것이다.
도 54는 화합물 259의 LTPL 측정 그래프를 나타낸 것이다.
도 55는 화합물 259의 UVPL 측정 그래프를 나타낸 것이다.
도 56은 화합물 260의 LTPL 측정 그래프를 나타낸 것이다.
도 57은 화합물 260의 UVPL 측정 그래프를 나타낸 것이다.
도 58은 화합물 409의 LTPL 측정 그래프를 나타낸 것이다.
도 59는 화합물 409의 UVPL 측정 그래프를 나타낸 것이다.
도 60은 화합물 420의 LTPL 측정 그래프를 나타낸 것이다.
도 61은 화합물 420의 UVPL 측정 그래프를 나타낸 것이다.
도 62는 화합물 425의 LTPL 측정 그래프를 나타낸 것이다.
도 63은 화합물 425의 UVPL 측정 그래프를 나타낸 것이다.
도 64는 화합물 427의 LTPL 측정 그래프를 나타낸 것이다.
도 65는 화합물 427의 UVPL 측정 그래프를 나타낸 것이다.
도 66은 화합물 434의 LTPL 측정 그래프를 나타낸 것이다.
도 67은 화합물 434의 UVPL 측정 그래프를 나타낸 것이다.
[부호의 설명]
100 기판
200 양극
300 유기물층
301 정공 주입층
302 정공 수송층
303 발광층
304 정공 저지층
305 전자 수송층
306 전자 주입층
400 음극
이하, 본 출원에 대하여 상세히 설명한다.
본 명세서에 기재된 화합물은 상기 화학식 1로 표시될 수 있다. 구체적으로, 상기 화학식 1의 화합물은 상기와 같은 코어 구조 및 치환기의 구조적 특징에 의하여 유기 발광 소자의 유기물층 재료로 사용될 수 있다.
본 명세서에 있어서, "치환 또는 비치환"이란 중수소; -CN; C1 내지 C60의 직쇄 또는 분지쇄의 알킬; C2 내지 C60의 직쇄 또는 분지쇄의 알케닐; C2 내지 C60의 직쇄 또는 분지쇄의 알키닐; C3 내지 C60의 단환 또는 다환의 시클로알킬; C2 내지 C60의 단환 또는 다환의 헤테로시클로알킬; C6 내지 C60의 단환 또는 다환의 아릴; C2 내지 C60의 단환 또는 다환의 헤테로아릴; -SiRR'R"; -P(=O)RR'; 및 -NRR'로 이루어진 군으로부터 선택된 1 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 상기 R, R' 및 R"은 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C60의 직쇄 또는 분지쇄의 알킬; C6 내지 C60의 단환 또는 다환의 아릴; 또는 C2 내지 C60의 단환 또는 다환의 헤테로아릴이다.
본 명세서에 있어서, 알킬은 탄소수 1 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 알킬의 탄소수는 1 내지 60, 구체적으로 1 내지 40, 더욱 구체적으로, 1 내지 20일 수 있다.
본 명세서에 있어서, 알케닐은 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 알케닐의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 알키닐은 탄소수 2 내지 60의 직쇄 또는 분지쇄를 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 알키닐의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로, 2 내지 20일 수 있다.
본 명세서에 있어서, 시클로알킬은 탄소수 3 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 시클로알킬이 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 시클로알킬일 수도 있으나, 다른 종류의 고리기, 예컨대 헤테로시클로알킬, 아릴, 헤테로아릴 등일 수도 있다. 시클로알킬의 탄소수는 3 내지 60, 구체적으로 3 내지 40, 더욱 구체적으로 5 내지 20일 수 있다.
본 명세서에 있어서, 헤테로시클로알킬은 헤테로원자로서 O, S, Se, N 및 Si 중 하나 이상을 포함하고, 탄소수 2 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로시클로알킬이 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로시클로알킬일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬, 아릴, 헤테로아릴 등일 수도 있다. 헤테로시클로알킬의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 20일 수 있다.
본 명세서에 있어서, 아릴은 탄소수 6 내지 60의 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 아릴이 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 아릴일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬, 헤테로시클로알킬, 헤테로아릴 등일 수도 있다. 아릴은 스피로기를 포함한다. 아릴의 탄소수는 6 내지 60, 구체적으로 6 내지 40, 더욱 구체적으로 6 내지 25일 수 있다. 아릴의 구체적인 예로는 페닐, 바이페닐, 트리페닐, 나프틸, 안트릴, 크라이세닐, 페난트레닐, 페릴레닐, 플루오란테닐, 트리페닐레닐, 페날레닐, 파이레닐, 테트라세닐, 펜타세닐, 플루오레닐, 인데닐, 아세나프틸레닐, 플루오레닐, 벤조플루오레닐, 스피로비플루오레닐 등이나 이들의 축합고리가 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 스피로기는 스피로 구조를 포함하는 기로서, 탄소수 15 내지 60일 수 있다. 예컨대, 스피로기는 플루오렌기에 2,3-디하이드로-1H-인덴기 또는 시클로헥산기가 스피로 결합된 구조를 포함할 수 있다. 구체적으로, 스피로기는 하기 구조식의 기를 포함한다.
Figure PCTKR2015006560-appb-I000002
본 명세서에 있어서, 헤테로아릴은 헤테로원자로서 S, O, Se, N 및 Si 중 하나 이상을 포함하고, 탄소수 2 내지 60인 단환 또는 다환을 포함하며, 다른 치환기에 의하여 추가로 치환될 수 있다. 여기서, 다환이란 헤테로아릴이 다른 고리기와 직접 연결되거나 축합된 기를 의미한다. 여기서, 다른 고리기란 헤테로아릴일 수도 있으나, 다른 종류의 고리기, 예컨대 시클로알킬, 헤테로시클로알킬, 아릴 등일 수도 있다. 헤테로아릴의 탄소수는 2 내지 60, 구체적으로 2 내지 40, 더욱 구체적으로 3 내지 25일 수 있다. 헤테로아릴의 구체적인 예로는 피리딜, 피롤릴, 피리미딜, 피리다지닐, 푸라닐, 티오펜기, 이미다졸릴, 피라졸릴, 옥사졸릴, 이속사졸릴, 티아졸릴, 이소티아졸릴, 트리아졸릴, 푸라자닐, 옥사디아졸릴, 티아디아졸릴, 디티아졸릴, 테트라졸릴, 파이라닐, 티오파이라닐, 디아지닐, 옥사지닐, 티아지닐, 디옥시닐, 트리아지닐, 테트라지닐, 퀴놀릴, 이소퀴놀릴, 퀴나졸리닐, 이소퀴나졸리닐, 나프티리딜, 아크리디닐, 페난트리디닐, 이미다조피리디닐, 디아자나프탈레닐, 트리아자인덴, 인돌릴, 인돌리지닐, 벤조티아졸릴, 벤즈옥사졸릴, 벤조이미다졸릴, 벤조티오펜기, 벤조푸란기, 디벤조티오펜기, 디벤조푸란기, 카바졸릴, 벤조카바졸릴, 디벤조카바졸릴, 페나지닐, 디벤조실롤, 스피로비(디벤조실롤), 디히드로페나지닐, 페녹사지닐, 페난트리딜 등이나 이들의 축합고리가 있으나, 이에만 한정되는 것은 아니다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1에서 상기 Y는 S이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1에서 상기 Y는 O이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1에서 상기 X1 및 X2 중 하나는 N이고 나머지 하나는 CR10이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1에서 상기 X1 및 X2 중 하나는 N이고 나머지 하나는 CR10이며, 상기 R1, R2 및 R10 중 적어도 하나는 -(L)m-(Z)n이고,
L은 C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬렌; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌; 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴렌이며,
m은 0 내지 3의 정수이고,
n은 1 또는 2의 정수이며,
Z는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴; -SiR11R12R13; -P(=O)R14R15; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴, 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택되고, 상기 R11 내지 R15는 서로 동일하거나 상이하며, 각각 독립적으로 C1 내지 C60의 직쇄 또는 분지쇄의 알킬; C6 내지 C60의 단환 또는 다환의 아릴; 또는 C2 내지 C60의 단환 또는 다환의 헤테로아릴이다.
본 출원의 일 실시상태에 따르면, 상기 m은 0이거나, 1, 2 또는 3의 정수일 수 있다. 상기 m이 2 이상의 정수일 때, 상기 L은 서로 동일하거나 상이할 수 있다.
본 출원의 일 실시상태에 따르면, 상기 n은 상기 m이 2의 정수일 때, 상기 Z는 서로 동일하거나 상이할 수 있다.
본 출원의 일 실시상태에 따르면, 상기 L은 C2 내지 C60의 알킬렌; 또는 C6 내지 C60의 아릴렌이다.
본 출원의 일 실시상태에 따르면, 상기 L은 페닐렌; 나프틸렌; 또는 안트라세닐렌이다.
본 출원의 일 실시상태에 따르면, 상기 Z는 치환 또는 비치환된 페닐, 치환 또는 비치환된 바이페닐, 치환 또는 비치환된 트리페닐, 치환 또는 비치환된 나프틸, 치환 또는 비치환된 안트라세닐, 치환 또는 비치환된 페난트레닐, 치환 또는 비치환된 인데닐, 치환 또는 비치환된 페릴레닐, 치환 또는 비치환된 파이레닐, 치환 또는 비치환된 아세나프탈레닐, 치환 또는 비치환된 플루오레닐, 치환 또는 비치환된 플루오란테닐, 치환 또는 비치환된 트리페닐레닐, 치환 또는 비치환된 페날레닐, 치환 또는 비치환된 피롤, 치환 또는 비치환된 피리딜, 치환 또는 비치환된 피리미딜, 치환 또는 비치환된 피리다지닐, 치환 또는 비치환된 트리아지닐, 치환 또는 비치환된 티에닐, 치환 또는 비치환된 푸라닐, 치환 또는 비치환된 벤조푸라닐, 치환 또는 비치환된 디벤조푸라닐, 치환 또는 비치환된 벤조티아졸, 치환 또는 비치환된 벤즈옥사졸, 치환 또는 비치환된 인돌릴, 치환 또는 비치환된 카바졸릴, 치환 또는 비치환된 벤조카바졸릴, 치환 또는 비치환된 디벤조카바졸릴, 치환 또는 비치환된 인돌로[2,3-a]카바졸릴, 치환 또는 비치환된 인돌로[2,3-b]카바졸릴, 치환 또는 비치환된 퀴놀릴, 치환 또는 비치환된 이소퀴놀릴, 치환 또는 비치환된 티오페닐, 치환 또는 비치환된 벤조티오페닐, 치환 또는 비치환된 디벤조티오페닐, 치환 또는 비치환된 플루오레닐, 치환 또는 비치환된 인돌리닐, 치환 또는 비치환된 10,11-디하이드로-디벤조[b,f]아제핀기, 치환 또는 비치환된 9,10-디하이드로아크리딘기, 플루오렌에 2,3-디하이드로-1H-인덴 또는 시클로헥산이 스피로 결합되고 치환 또는 비치환된 스피로기, 치환 또는 비치환된 디알킬아민, 치환 또는 비치환된 디아릴아민, 치환 또는 비치환된 알킬아릴아민, 치환 또는 비치환된 아세토페논기, 치환 또는 비치환된 벤조페논기, -SiR11R12R13 또는 -P(=O)R14R15이고, 상기 R11 내지 R15는 서로 같거나 상이하고, 각각 독립적으로 C1 내지 C60의 직쇄 또는 분지쇄의 알킬; C6 내지 C60의 단환 또는 다환의 아릴; 또는 C2 내지 C60의 단환 또는 다환의 헤테로아릴이다.
본 출원의 일 실시상태에 따르면, 상기 Z는 치환 또는 비치환된 페닐, 치환 또는 비치환된 바이페닐, 치환 또는 비치환된 트리페닐, 치환 또는 비치환된 나프틸, 치환 또는 비치환된 안트라세닐, 치환 또는 비치환된 카바졸릴, 치환 또는 비치환된 벤조카바졸릴, 치환 또는 비치환된 디벤조카바졸릴, 치환 또는 비치환된 인돌로[2,3-a]카바졸릴, 치환 또는 비치환된 인돌로[2,3-b]카바졸릴, 치환 또는 비치환된 플루오레닐, 치환 또는 비치환된 벤조푸라닐, 치환 또는 비치환된 디벤조푸라닐, 치환 또는 비치환된 티오페닐, 치환 또는 비치환된 벤조티오페닐, 치환 또는 비치환된 디벤조티오페닐, 치환 또는 비치환된 트리페닐레닐, 치환 또는 비치환된 트리아지닐, 치환 또는 비치환된 파이레닐, -Si(Ph)3, -P(=O)(Ph)2 및 치환 또는 비치환된 디페닐아민 중에서 선택되고, 상기"치환 또는 비치환"은 메틸, 직쇄 또는 분지쇄의 프로필, 직쇄 또는 분지쇄의 부틸, 직쇄 또는 분지쇄의 펜틸, 페닐, 바이페닐, 트리페닐, 나프틸, 안트라세닐, 카바졸릴, 벤조카바졸릴, 디벤조카바졸릴, 인돌로[2,3-a]카바졸릴, 인돌로[2,3-b]카바졸릴, 플루오레닐, 벤조푸라닐, 디벤조푸라닐, 티오페닐, 벤조티오페닐, 디벤조티오페닐, 트리페닐레닐, 트리아지닐, 파이레닐, -Si(Ph)3, -P(=O)(Ph)2 및 디페닐아민 중에서 선택되는 적어도 어느 하나로 치환 또는 비치환되는 것을 의미하고, 추가로 더 치환될 수 있다.
본 출원의 일 실시상태에 따르면, 상기 R11 내지 R15는 서로 동일하거나 상이하고, C6 내지 C60의 단환 또는 다환의 아릴이다.
본 출원의 일 실시상태에 따르면, 상기 R11 내지 R15는 서로 동일하거나 상이하고, 페닐, 바이페닐, 트리페닐, 나프틸 또는 안트라세닐이다.
본 출원의 일 실시상태에 따르면, 상기 R4 내지 R9는 수소 또는 중수소이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 2 또는 3으로 표시된다.
[화학식 2]
Figure PCTKR2015006560-appb-I000003
[화학식 3]
Figure PCTKR2015006560-appb-I000004
상기 화학식 2 및 3에 있어서, Y, X1, X2, R1, R2, 및 R4 내지 R9의 정의는 화학식 1에서 정의한 바와 동일하다.
본 출원의 일 실시상태에 있어서, 상기 화학식 1은 하기 화학식 4 내지 7 중 어느 하나로 표시된다.
[화학식 4]
Figure PCTKR2015006560-appb-I000005
[화학식 5]
Figure PCTKR2015006560-appb-I000006
[화학식 6]
Figure PCTKR2015006560-appb-I000007
[화학식 7]
Figure PCTKR2015006560-appb-I000008
상기 화학식 4 내지 7에 있어서, Y, R1, R2, 및 R4 내지 R9는 화학식 1에서 정의한 바와 동일하고, R3는 화학식 1의 R10의 정의와 동일하다.
본 출원의 일 실시상태에 따르면, 상기 화학식 4 내지 7에 있어서,
R1 내지 R3 중 적어도 하나는 -(L)m-(Z)n이고, 나머지는 화학식 1에서 정의한 바와 동일하며,
상기 Y, R4 내지 R9, L, m 및 Z의 정의는 화학식 1에서 정의한 바와 동일하다.
본 출원의 일 실시상태에 따르면, 상기 화학식 4 내지 7에서 R1은 -(L)m-(Z)n이고, R2 및 R3는 수소, 중수소 또는 페닐이며, 상기 L, m, n 및 Z는 전술한 바와 동일하다.
본 출원의 일 실시상태에 따르면, 상기 화학식 4 내지 7에서 R2은 -(L)m-(Z)n이고, R1 및 R3는 수소, 중수소 또는 페닐이며, 상기 L, m, n 및 Z는 전술한 바와 동일하다.
본 출원의 일 실시상태에 따르면, 상기 화학식 4 내지 7에서 R3는 -(L)m-(Z)n이고, R1 및 R2는 수소, 중수소 또는 페닐이며, 상기 L, m, n 및 Z는 전술한 바와 동일하다.
본 출원의 일 실시상태에 따르면, 상기 화학식 4 내지 7에서 상기 m은 0 또는 1 이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1은 하기 화학식 8 내지 11 중 어느 하나로 표시된다.
[화학식 8]
Figure PCTKR2015006560-appb-I000009
[화학식 9]
Figure PCTKR2015006560-appb-I000010
[화학식 10]
Figure PCTKR2015006560-appb-I000011
[화학식 11]
Figure PCTKR2015006560-appb-I000012
상기 화학식 8 내지 11에 있어서,
A는 직접결합; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬렌; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알케닐렌; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알키닐렌; C3 내지 C60의 단환 또는 다환의 치환 또는 비치환된 시클로알킬렌; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로시클로알킬렌; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴렌; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴, 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택되고,
R16 내지 R19는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알케닐; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알키닐; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알콕시; C3 내지 C60의 단환 또는 다환의 치환 또는 비치환된 시클로알킬; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로시클로알킬; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴, 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택되며,
p, q, r 및 s는 0 내지 4의 정수이고,
Y 및 R6 내지 R9의 정의는 화학식 1에서 정의한 바와 동일하다.
상기 화학식 8 내지 11은 다이머 구조를 의미하고, 상기 A는 다이머의 연결기를 의미한다.
본 출원의 일 실시상태에 따르면, 상기 화학식 8 내지 11에서 상기 A는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌; 및 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴렌으로 이루어진 군으로부터 선택된다.
본 출원의 일 실시상태에 따르면, 상기 화학식 8 내지 11에서 상기 A는 알킬 또는 아릴로 치환 또는 비치환된 C6 내지 C60의 아릴렌; 알킬 또는 아릴로 치환 또는 비치환된 C2 내지 C60의 헤테로아릴렌이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 8 내지 11에서 상기 A는 알킬 또는 아릴로 치환 또는 비치환된 카바졸기; 또는 알킬 또는 아릴로 치환 또는 비치환된 플루오렌기이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 8 내지 11에서 상기 A는 알킬 또는 아릴로 치환 또는 비치환된 카바졸기; 또는 알킬 또는 아릴로 치환 또는 비치환된 플루오렌기이고, 상기 알킬은 C1 내지 C10의 직쇄 또는 분지쇄이며, 상기 아릴은 C6 내지 C20의 아릴이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1 내지 7의 Y는
Figure PCTKR2015006560-appb-I000013
이고, 상기 X3 및 X4는 치환 또는 비치환된 C6 내지 C60의 단환 또는 다환의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C60의 단환 또는 다환의 방향족 헤테로 고리일 수 있다.
상기
Figure PCTKR2015006560-appb-I000014
는 하기 구조식들 중 어느 하나로 표시될 수 있으나, 이에만 한정되는 것은 아니다.
Figure PCTKR2015006560-appb-I000015
상기 구조식들에 있어서, Z1 내지 Z3은 서로 동일하거나 상이하고, 각각 독립적으로 S 또는 O이고,
Z4 내지 Z9는 서로 동일하거나 상이하고, 각각 독립적으로 CR' R", NR', S 또는 O이며,
R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 C1 내지 C60의 직쇄 또는 분지쇄의 알킬; 또는 치환 또는 비치환된 C6 내지 C60의 단환 또는 다환의 아릴이다.
본 출원의 일 실시상태에 따르면, 상기 화학식 1은 하기 화합물 중에서 선택될 수 있다.
Figure PCTKR2015006560-appb-I000016
Figure PCTKR2015006560-appb-I000017
Figure PCTKR2015006560-appb-I000018
Figure PCTKR2015006560-appb-I000019
Figure PCTKR2015006560-appb-I000020
Figure PCTKR2015006560-appb-I000021
Figure PCTKR2015006560-appb-I000022
Figure PCTKR2015006560-appb-I000023
Figure PCTKR2015006560-appb-I000024
Figure PCTKR2015006560-appb-I000025
Figure PCTKR2015006560-appb-I000026
Figure PCTKR2015006560-appb-I000027
Figure PCTKR2015006560-appb-I000028
Figure PCTKR2015006560-appb-I000029
Figure PCTKR2015006560-appb-I000030
Figure PCTKR2015006560-appb-I000031
Figure PCTKR2015006560-appb-I000032
Figure PCTKR2015006560-appb-I000033
Figure PCTKR2015006560-appb-I000034
Figure PCTKR2015006560-appb-I000035
Figure PCTKR2015006560-appb-I000036
Figure PCTKR2015006560-appb-I000037
전술한 화합물들은 후술하는 제조예를 기초로 제조될 수 있다. 후술하는 제조예들에서는 대표적인 예시들을 기재하지만, 필요에 따라, 치환기를 추가하거나 제외할 수 있으며, 치환기의 위치를 변경할 수 있다. 또한, 당 기술분야에 알려져 있는 기술을 기초로, 출발물질, 반응물질, 반응 조건 등을 변경할 수 있다. 필요에 따라 나머지 위치의 치환기의 종류 또는 위치를 변경하는 것은 당업자가 당 기술분야에 알려져 있는 기술을 이용하여 수행할 수 있다.
예컨대, 상기 화학식 4의 화합물은 하기 일반식 1 및 일반식 2와 같이 코어구조가 제조될 수 있다. 하기 일반식 1 및 2는 상기 화학식 4의 Y가 S인 경우를 예시하고 있으나, Y가 산소(O)인 경우도 가능하다.
치환기는 당 기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기 위치나 치환기의 개수는 당 기술분야에 알려져 있는 기술에 따라 변경될 수 있다.
[일반식 1]
Figure PCTKR2015006560-appb-I000038
[일반식 2]
Figure PCTKR2015006560-appb-I000039
상기 일반식 1은 상기 화학식 4의 코어 구조에서 R2위치에 치환기를 결합시키는 반응의 예시이다. 구체적으로, 일반식 1의 마지막 화합물은 상기 화학식 4에서 R2가 Ar로 치환된 페닐인 경우이다. 상기 Ar은 전술한 Z의 정의와 동일하다.
상기 일반식 2는 상기 화학식 4의 코어 구조에서 R3 위치에 치환기를 결합시키는 반응의 예시이다. 구체적으로, 일반식 2의 마지막 화합물은 상기 화학식 4에서 R3가 Ar로 치환된 페닐인 경우이다. 상기 Ar은 전술한 Z의 정의와 동일하다.
예컨대, 상기 화학식 5의 화합물은 하기 일반식 3과 같이 코어 구조가 제조될 수 있다. 치환기는 당 기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기 위치나 치환기의 개수는 당 기술분야에 알려져 있는 기술에 따라 변경될 수 있다.
[일반식 3]
Figure PCTKR2015006560-appb-I000040
상기 일반식 3은 상기 화학식 5의 코어 구조에서 R3 위치에 치환기를 결합시키는 반응의 예시이다. 구체적으로, 일반식 3의 마지막 화합물은 상기 화학식 5에서 R3 가 Ar로 치환된 페닐인 경우이다. 상기 Ar은 전술한 Z의 정의와 동일하다.
예컨대, 상기 화학식 6의 화합물은 하기 일반식 4과 같이 코어 구조가 제조될 수 있다. 치환기는 당 기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기 위치나 치환기의 개수는 당 기술분야에 알려져 있는 기술에 따라 변경될 수 있다.
[일반식 4]
Figure PCTKR2015006560-appb-I000041
상기 일반식 4는 상기 화학식 6의 코어 구조에서 R3 위치에 치환기를 결합시키는 반응의 예시이다. 구체적으로, 일반식 4의 마지막 화합물은 상기 화학식 6에서 R3가 Ar로 치환된 페닐인 경우이다. 상기 Ar은 전술한 Z의 정의와 동일하다.
예컨대, 상기 화학식 7의 화합물은 하기 일반식 5와 같이 코어 구조가 제조될 수 있다. 치환기는 당 기술분야에 알려져 있는 방법에 의하여 결합될 수 있으며, 치환기 위치나 치환기의 개수는 당 기술분야에 알려져 있는 기술에 따라 변경될 수 있다.
[일반식 5]
Figure PCTKR2015006560-appb-I000042
상기 일반식 5는 상기 화학식 7의 코어 구조에서 R3 위치에 치환기를 결합시키는 반응의 예시이다. 구체적으로, 일반식 3의 마지막 화합물은 상기 화학식 7에서 R3가 Ar로 치환된 페닐인 경우이다. 상기 Ar은 전술한 Z의 정의와 동일하다.
본 출원의 또 하나의 실시상태는 전술한 화학식 1의 화합물을 포함하는 유기 발광 소자를 제공한다. 구체적으로, 본 출원에 따른 유기 발광 소자는 양극, 음극 및 양극과 음극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 화학식 1의 화합물을 포함한다.
도 1 내지 3에 본 출원의 실시상태들에 따른 유기 발광 소자의 전극과 유기물층의 적층 순서를 예시하였다. 그러나, 이들 도면에 의하여 본 출원의 범위가 한정될 것을 의도한 것은 아니며, 당 기술분야에 알려져 있는 유기 발광 소자의 구조가 본 출원에도 적용될 수 있다.
도 1에 따르면, 기판(100) 상에 양극(200), 유기물층(300) 및 음극(400)이 순차적으로 적층된 유기 발광 소자가 도시된다. 그러나, 이와 같은 구조에만 한정되는 것은 아니고, 도 2와 같이, 기판 상에 음극, 유기물층 및 양극이 순차적으로 적층된 유기 발광 소자가 구현될 수도 있다.
도 3은 유기물층이 다층인 경우를 예시한 것이다. 도 3에 따른 유기 발광 소자는 정공 주입층(301), 정공 수송층(302), 발광층(303), 정공 저지층(304), 전자 수송층(305) 및 전자 주입층(306)를 포함한다. 그러나, 이와 같은 적층 구조에 의하여 본 출원의 범위가 한정되는 것은 아니며, 필요에 따라 발광층을 제외한 나머지 층은 생략될 수도 있고, 필요한 다른 기능층이 더 추가될 수 있다.
본 출원에 따른 유기 발광 소자는 유기물층 중 1층 이상에 상기 화학식 1의 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
상기 화학식 1의 화합물은 단독으로 유기 발광 소자의 유기물층 중 1층 이상을 구성할 수 있다. 그러나, 필요에 따라 다른 물질과 혼합하여 유기물층을 구성할 수도 있다.
상기 화학식 1의 화합물은 유기 발광 소자에서 정공 주입 재료, 정공 수송 재료, 발광 재료, 전자 수송 재료, 전자 주입 재료 등으로 사용될 수 있다.
예컨대, 본 출원의 일 실시상태에 따른 화합물은 유기 발광 소자의 전자 주입층, 전자 수송층 또는 전자 주입과 수송을 동시에 하는 층의 재료로서 사용될 수 있다.
또한, 본 출원의 일 실시상태에 따른 화합물은 유기 발광 소자의 발광층 재료로서 사용될 수 있다. 구체적으로, 상기 화합물은 단독으로 발광 재료로 사용될 수도 있고, 발광층의 호스트 재료 또는 도펀트 재료로서 사용될 수 있다.
또한, 본 출원의 일 실시상태에 따른 화합물은 유기 발광 소자의 인광 호스트 재료로서 사용될 수 있다. 이 경우, 본 출원의 일 실시상태에 따른 화합물은 인광 도펀트와 함께 포함된다.
또한, 본 출원의 일 실시상태에 따른 화합물은 유기 발광 소자의 정공 저지층의 재료로서 사용될 수 있다.
본 출원에 따른 유기 발광 소자에 있어서, 상기 화학식 1의 화합물 이외의 재료를 하기에 예시하지만, 이들은 예시를 위한 것일 뿐 본 출원의 범위를 한정하기 위한 것은 아니며, 당 기술분야에 공지된 재료들로 대체될 수 있다.
양극 재료로는 비교적 일함수가 큰 재료들을 이용할 수 있으며, 투명 전도성 산화물, 금속 또는 전도성 고분자 등을 사용할 수 있다.
음극 재료로는 비교적 일함수가 낮은 재료들을 이용할 수 있으며, 금속, 금속 산화물 또는 전도성 고분자 등을 사용할 수 있다.
정공 주입 재료로는 공지된 정공 주입 재료를 이용할 수도 있는데, 예를 들면, 미국특허 제4,356,429호에 개시된 구리프탈로시아닌 등의 프탈로시아닌 화합물 또는 문헌 [Advanced Material, 6, p.677 (1994)]에 기재되어 있는 스타버스트형 아민 유도체류, 예컨대 TCTA, m-MTDATA, m-MTDAPB, 용해성이 있는 전도성 고분자인 Pani/DBSA(Polyaniline/Dodecylbenzenesulfonic acid: 폴리아닐린/도데실벤젠술폰산) 또는 PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate):폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌술포네이트)), Pani/CSA(Polyaniline/Camphor sulfonic acid:폴리아닐린/캠퍼술폰산) 또는 PANI/PSS(Polyaniline/Poly(4-styrene-sulfonate):폴리아닐린/폴리(4-스티렌술포네이트)) 등을 사용할 수 있다.
정공 수송 재료로는 피라졸린 유도체, 아릴아민계 유도체, 스틸벤 유도체, 트리페닐디아민 유도체 등이 사용될 수 있으며, 저분자 또는 고분자 재료가 사용될 수도 있다.
전자 수송 재료로는 옥사디아졸 유도체, 안트라퀴노디메탄 및 이의 유도체, 벤조퀴논 및 이의 유도체, 나프토퀴논 및 이의 유도체, 안트라퀴논 및 이의 유도체, 테트라시아노안트라퀴노디메탄 및 이의 유도체, 플루오레논 유도체, 디페닐디시아노에틸렌 및 이의 유도체, 디페노퀴논 유도체, 8-히드록시퀴놀린 및 이의 유도체의 금속 착체 등이 사용될 수 있으며, 저분자 물질 뿐만 아니라 고분자 물질이 사용될 수도 있다.
전자 주입 재료로는 예를 들어, LiF가 당업계 대표적으로 사용되나, 본 출원이 이에 한정되는 것은 아니다.
발광 재료로는 적색, 녹색 또는 청색 발광 재료가 사용될 수 있으며, 필요한 경우 2 이상의 발광 재료를 혼합하여 사용할 수 있다. 또한, 발광 재료로서 형광 재료를 사용할 수도 있으나, 인광 재료를 사용할 수도 있다. 발광 재료로는 단독으로서 양극과 음극으로부터 각각 주입된 정공과 전자를 결합하여 발광시키는 재료가 사용될 수도 있으나, 호스트 재료와 도펀트 재료가 함께 발광에 관여하는 재료들이 사용될 수도 있다.
본 출원에 따른 화합물이 인광 호스트 재료로서 사용되는 경우, 함께 사용되는 인광 도펀트 재료로는 당 기술분야에 알려져 있는 것들을 사용할 수 있다.
예컨대, LL'MX, LL'L"M, LMXX', L2MX 및 L3M로 표시되는 인광 도펀트 재료를 사용할 수 있으나, 이들 예에 의하여 본 출원의 범위가 한정되는 것은 아니다.
여기서, L, L', L", X 및 X'는 서로 상이한 2좌 배위자이고, M은 8 면상 착체를 형성하는 금속이다.
M은 이리듐, 백금, 오스뮴 등이 될 수 있다.
L은 sp2 탄소 및 헤테로 원자에 의하여 M에 배위되는 음이온성 2좌 배위자이고, X는 전자 또는 정공을 트랩하는 기능을 할 수 있다. L의 비한정적인 예로는 2-(1-나프틸)벤즈옥사졸, (2-페닐벤즈옥사졸), (2-페닐벤조티아졸), (7,8-벤조퀴놀린), (티에닐피리진), 페닐피리딘, 벤조티에닐피리진, 3-메톡시-2-페닐피리딘, 티에닐피리진, 톨릴피리딘 등이 있다. X의 비한정적인 예로는 아세틸아세토네이트(acac), 헥사플루오로아세틸아세토네이트, 살리실리덴, 피콜리네이트, 8-히드록시퀴놀리네이트 등이 있다.
더욱 구체적인 예를 하기에 표시하나, 이들 예로만 한정되는 것은 아니다.
Figure PCTKR2015006560-appb-I000043
이하에서, 실시예를 통하여 본 출원을 더욱 상세하게 설명하지만, 이들은 본 출원을 예시하기 위한 것일 뿐, 본 출원의 범위를 한정하기 위한 것은 아니다.
<실시예>
<제조예 1> 화합물 1의 제조
Figure PCTKR2015006560-appb-I000044
화합물 1-1의 제조
벤조[b]티오펜-2-일보로닉산(benzo[b]thiophen-2-ylboronic acid) 30g(168.5mmol), 1-브로모-4-메톡시벤젠(1-bromo-4-methoxybenzene) 37.8g(202.26mmol), Pd(PPh3)4 9.7g(8.4mmol), Na2CO3 35.7g(336.9mmol)을 톨루엔 300mL, 에탄올(EtOH) 120mL 및 H2O 120mL와 함께 넣고 120℃에서 1시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 EA(ethyl acetate)와 헥산(Hexane)으로 씻어준 뒤 목적화합물 1-1 18.0g(51%)을 얻었다.
화합물 1-2의 제조
화합물 1-1 8g(38.0mmol)과 아세트산(AcOH) 400mL를 넣고 실온에서 10분간 교반한 뒤 아세트산 400mL와 HNO3 20mL를 혼합하여 천천히 적가하였다. 1시간뒤 반응 완료 후 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 목적화합물 1-2 5.8g(53%)을 얻었다.
화합물 1-3의 제조
화합물 1-2 6g(21.0mmol)과 에탄올 300mL, 철 분말(Fe Powder) 3.6g(65.1mmol)을 넣고 실온에서 10분간 교반하였다. 아세트산 30mL를 천천히 적가한 후 60℃에서 1시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 H2O를 첨가하여 생성된 고체를 여과한 뒤 H2O와 헥산(Hexane)으로 씻어주어 목적화합물 1-3 5.3g(99%)을 얻었다.
화합물 1-4의 제조
HCOH 3.9mL와 아세트산 9.77mL를 넣고 60℃에서 2시간동안 교반한 뒤 실온으로 식혔다. 그 후 에틸에테르 360mL와 화합물 1-3 12g(46.9mmol)을 첨가하여 실온에서 교반하였다. 1시간 뒤 생성된 고체를 여과하여 에틸에테르로 씻어준 뒤 목적화합물 1-4 6.5g(49%)을 얻었다.
화합물 1-5의 제조
화합물 1-4 6.5g(22.94mmol)과 POCl3 0.43mL(4.59mmol), 니트로벤젠(Nitrobenzene) 30mL를 넣고 1시간동안 환류하였고, 실온으로 식힌 뒤 SnCl4 3.76mL(32.12mmol)을 천천히 적가하였다. 2시간동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 메탄올로 씻어준 뒤 정제하여 목적화합물 1-5 2.74g(45%)을 얻었다.
화합물 1-6의 제조
화합물 1-5 4.0g(15.08mmol)과 HBr 3.65g(45.22mmol)을 H2O 50mL와 함께 1시간동안 환류하였고, 실온으로 식힌 뒤 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 메탄올로 씻어준 뒤 정제하여 목적화합물 1-6 3.49g(92%)을 얻었다.
화합물 1-7의 제조
화합물 1-6 5.0g(19.89mmol)과 트리에틸아민(triethylamine) 2.0g(19.89mmol)을 넣고 실온에서 약 1시간동안 교반한 뒤 Tf2O 4.18g(19.89mmol)을 천천히 적가하였다. 2시간 동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 메탄올로 씻어준 뒤 정제하여 목적화합물 1-7 6.71g(88%)을 얻었다.
화합물 1의 제조
화합물 1-7 5.0g(13.04mmol)과 11-페닐-11,12-디하이드로인돌로 [2,3-a]카바졸(11-phenyl-11,12-dihydroindolo[2,3-a]carbazole) 4.77g(14.35mmol), Pd2(dba)3 0.60g(0.65mmol), 잔트포스(XantPhos) 0.75g(1.30mmol), NaOtBu 5.28g(26.08mmol)을 톨루엔 80mL와 함께 130℃에서 3시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 톨루엔으로 전부 녹여 실리카겔에 필터하였다. 그 후 뜨거운 톨루엔으로 필터하여 정제하면 화합물 1 5.9g(80%)을 얻었다.
<제조예 2> 화합물 17의 제조
Figure PCTKR2015006560-appb-I000045
화합물 2-1의 제조
화합물 1-7 10g(26.09mmol)과 (3-브로모페닐)보로닉산((3-bromophenyl)boronic acid) 6.29g(31.31mmol), Pd(PPh3)4 1.5g(1.3mmol), Na2CO3 5.53g(52.18mmol)을 톨루엔 200mL와 에탄올 40mL, H2O 40mL와 함께 120℃에서 6시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 EA(ethyl acetate)와 헥산(Hexane)으로 씻어준 뒤 목적화합물 3-1 6.82g(67%)을 얻었다.
화합물 17의 제조
화합물 2-1 5.0g(12.81mmol)과 트리페닐렌-2-일보로닉산(triphenylen-2-ylboronic acid) 4.18g(15.37mmol), Pd(PPh3)4 0.74g(0.64mmol), Na2CO3 2.71g(25.62mmol)을 톨루엔 100mL와 에탄올 20mL, H2O 20mL와 함께 120℃에서 4시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 EA(ethyl acetate)와 헥산(Hexane)으로 씻어준 뒤 목적화합물 17 6.06g(88%)을 얻었다.
<제조예 3> 화합물 29의 제조
Figure PCTKR2015006560-appb-I000046
화합물 A-1의 제조
질소하에서 원넥 둥근바닥플라스크(one neck round bottom flask)에 1,2-디시클로헥사논(1,2-Dicyclohexanone) 30.0g(0.374mol), 페닐하이드라진 하이드로클로라이드(Phenylhydrazine hydrochloride) (77.37g, 0.749mol)의 에탄올(1000ml) 혼합물에 황산(Sulfuric acid) 1.4mL(0.0374mol)를 서서히 적가한 뒤 60℃에서 4시간동안 교반하였다. 실온으로 식힌 용액을 필터하여 황갈색 고체을 얻었다(69g, 93%). 원넥 둥근바닥플라스크(one neck round bottom flask)에 상기 고체(68.9g, 0.25mol)와 아세트산(AcOH: acetic acid) (700ml) 혼합물에 트리플루오로아세트산(trifluoroacetic acid) 46.5mL(0.6mol)를 넣고 100℃에서 12시간 동안 교반하였다. 실온으로 식힌 용액을 아세트산과 헥산(Hexane)으로 세척하고 필터하여 아이보리색 고체 A-1을 얻었다(27.3g, 42%).
화합물 A-2의 제조
질소하에서 투넥 둥근바닥플라스크(two neck round bottom flask) 에 A-1 (2.1g, 0.0082mol), 아이도벤젠(Iodobenzene) 2.5g(0.013mol), Cu 0.312g(0.0049 mol), 18-크라운-6-에테르(18-Crown-6-ether) 0.433g(0.0016mol), K2CO3 (3.397g, 0.0246mol)의 o-다이클로로벤젠(o-DCB:o-dichlorobenzene) 20ml 혼합물을 16시간동안 환류교반하였다. 실온으로 식힌 용액을 MC(methylene chloride)/H2O로 추출하여 농축하고 컬럼크로마토그래피 (SiO2, 헥산(Hexane) : 에틸아세테이트(Ethyl acetate) = 10 : 1)로 분리하여 흰색 고체화합물 A-2를 얻었다 (1.76g, 64%).
화합물 3-1의 제조
벤조[b]티오펜-2-일보로닉산(benzo[b]thiophen-2-ylboronic acid) 30g(168.5mmol)과 아이오도벤젠(Iodobenzene) 41.2g(202.26mmol), Pd(PPh3)4 19.0g(16.9mmol), Na2CO3 35.7g(336.9mmol)을 톨루엔 300mL와 에탄올 120mL, H2O 120mL와 함께 120℃에서 1시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 EA(ethyl acetate)와 헥산(Hexane)으로 씻어준 뒤 목적화합물 3-1 18.0g(51%)을 얻었다.
화합물 3-2의 제조
화합물 3-1 10g(47.55mmol)과 아세트산 400mL를 넣고 실온에서 10분간 교반한 뒤 아세트산 400mL와 HNO3 20mL를 혼합하여 천천히 적가하였다. 1시간뒤 반응 완료 후 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 목적화합물 3-2 5.9g(50%)을 얻었다.
화합물 3-3의 제조
화합물 3-2 6g(23.5mmol)과 에탄올 300mL, 철 분말(Fe Powder) 4.06g(72.8mmol)을 넣고 실온에서 10분간 교반하였다. 아세트산 30mL를 천천히 적가한 후 60℃에서 1시간동안 환류하였다 반응 완료 후 실온으로 식힌 뒤 H2O를 첨가하여 생성된 고체를 여과한 뒤 H2O와 헥산(Hexane)으로 씻어주어 목적화합물 3-3 5.5g(99%)을 얻었다.
화합물 3-4의 제조
4-브로모 벤조일클로라이드(4-Bromo benzoylchloride) 2.93mL(22.19mmol)을 MC(methylene chloride) 30mL에 전부 녹인 뒤 TEA(triethylamine) 3.12mL (22.19mmol)을 첨가하여 15분동안 실온에서 교반 후 0℃를 유지한 뒤 화합물 3-3 2.93mL (22.19mmol)을 천천히 첨가하였다. 약 1시간 뒤 하얀색 고체가 생성되어 필터 후 헥산(Hexane)으로 씻어준 뒤 건조하여 목적화합물 3-4 8.0g(87%)을 얻었다.
화합물 3-5의 제조
화합물 3-4 6.5g(22.94mmol)과 POCl3 0.43mL(4.59mmol), 니트로벤젠(Nitrobenzene) 30mL를 넣고 1시간동안 환류하였고, 실온으로 식힌 뒤 SnCl4 3.76mL(32.12mmol)을 천천히 적가하였다. 2시간동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 목적화합물 3-5 2.74g(45%)을 얻었다.
화합물 29의 제조
화합물 3-5 8g(20.5mmol)과 A-2 6.1g(18.44mmol), Pd2(dba)3 0.38g (0.41mmol), 잔트포스(XantPhos) 0.47g(0.82mmol), NaOtBu 8.3g(41.0mmol)을 톨루엔 80mL와 함께 130℃에서 3시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 톨루엔으로 전부 녹여 실리카겔에 필터하였다. 그 후 뜨거운 톨루엔으로 필터하여 정제하면 화합물 29 8.8g(67%)을 얻었다.
<제조예 4> 화합물 42의 제조
Figure PCTKR2015006560-appb-I000047
화합물 4-1의 제조
3-브로모 벤조일클로라이드(3-Bromo benzoylchloride) 2.93mL(22.19mmol)을 MC(methylene chloride) 30mL에 전부 녹인 뒤 TEA(triethylamine) 3.12mL(22.19mmol)을 첨가하여 15분 동안 실온에서 교반 후 0℃를 유지한 뒤 화합물 3-3 2.93mL(22.19mmol)을 천천히 첨가하였다. 약 1시간 뒤 하얀색 고체가 생성되어 필터 후 헥산(Hexane)으로 씻어준 뒤 건조하여 목적화합물 4-1 8.0g(87%)을 얻었다.
화합물 4-2의 제조
화합물 4-1 8.0g(19.59mmol)과 POCl3 1.8mL(19.59mmol), 니트로벤젠(Nitrobenzene) 80mL를 넣고 1시간동안 환류하였고, 실온으로 식힌 뒤 SnCl4 4.5mL(54.85mmol)을 천천히 적가하였다. 2시간동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 메탄올로 씻어준 뒤 정제하여 목적화합물 4-2 5.03g(66%)을 얻었다.
화합물 42의 제조
화합물 4-2 5g(12.81mmol)과 디브로모[b,d]티오펜-4-일보로닉산(Dibenzo[b,d]thiophen-4-ylboronic acid) 3.5g(15.37mmol), Pd(PPh3)4 0.74g (0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 50mL, 에탄올 5mL, H2O 5mL와 함께 120℃에서 5시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 42 5.56g(88%)을 얻었다.
<제조예 5> 화합물 48의 제조
Figure PCTKR2015006560-appb-I000048
화합물 5-1의 제조
화합물 4-2 (10g, 25.62mmol)을 THF 100ml에 녹인 뒤, -78℃로 냉각하였다. n-부틸리튬(n-butyllithium) 2.5M (in 헥산) 13.3ml(33.31mmol)을 서서히 적가한 뒤, 1시간동안 교반하였다. 상기 용액에 클로로디페닐포스핀(chlorodiphenylphosphine) 5.65ml(25.62mol)을 적가하고 실온에서 12시간 동안 교반하였다. 반응혼합물을 MC/H2O 추출한 뒤 감압증류 하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 5-1 4.19g(33%)을 얻었다.
화합물 48의 제조
화합물 5-1 5g(10.09mmol)을 MC(methylene chloride) 50mL에 전부 녹인 뒤, H2O2 수용액(30 wt.%) 10ml과 함께 실온에서 1시간동안 교반하였다. 반응혼합물을 MC/H2O 추출한 뒤 감압증류 하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 48 1.14g(22%)을 얻었다.
<제조예 6> 화합물 74의 제조
Figure PCTKR2015006560-appb-I000049
화합물 6-1의 제조
벤조[b]티오펜-2-일보로닉산 20g(112.34mmol)과 2-브로모아닐린(2-Bromoanilline) 20.4g(101.11mmol), Pd(PPh3)4 6.5g(5.12mmol), K2CO3 31.05g(224.68mmol)을 톨루엔 200mL와 에탄올 40mL, H2O 40mL와 함께 120℃에서 16시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 6-1 16.9g(67%)을 얻었다.
화합물 6-2의 제조
화합물 6-1 10g(44.38mmol)을 MC(methylene chloride)에 전부 녹인 뒤 TEA(triethylamine) 6.2mL (44.38mmol)와 함께 실온에서 15분간 교반하였다. 그 후 0℃를 유지한 뒤 4-브로모 벤조일클로라이드(4-Bromo benzoylchloride) 9.7g(44.38mmol)을 서서히 첨가하였다. 약 1시간 뒤 하얀색 고체가 생성되어 필터한 뒤 EA와 헥산(Hexane)으로 씻어주어 목적화합물 6-2 17.2g(95%)을 얻었다.
화합물 6-3의 제조
화합물 6-2 15g(36.74mmol)과 POCl3 3.4mL(36.74mmol), 니트로벤젠(Nitrobenzene) 150mL를 넣고 1시간 동안 환류하였고, 실온으로 식힌 뒤 SnCl4 12.04mL(102.87mmol)을 천천히 적가하였다. 2시간동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 메탄올(MeOH)와 헥산(Hexane)으로 씻어주어 목적화합물 6-3 6.17g(43%)을 얻었다.
화합물 74의 제조
화합물 6-3 5g(12.81mmol)과 디페닐아민(diphenylamine) 2.38g(14.09mmol), Pd(PPh3)4 0.74g(0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 50mL, 에탄올 5mL, H2O 5mL와 함께 120℃에서 6시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 74 4.72g(77%)을 얻었다.
<제조예 7> 화합물 85의 제조
Figure PCTKR2015006560-appb-I000050
화합물 6-3 5g(12.81mmol)과 (3,5-디(9H-카바졸-9-일)페닐)보로닉산((3,5-di(9H-carbazol-9-yl)phenyl)boronic acid) 6.37g(14.09mmol), Pd(PPh3)4 0.74g(0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 50mL, 에탄올 5mL, H2O 5mL와 함께 120℃에서 6시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 85 6.4g(69%)을 얻었다.
<제조예 8> 화합물 86의 제조
Figure PCTKR2015006560-appb-I000051
화합물 7-1의 제조
화합물 6-1 10g(44.38mmol)을 MC(methylene chloride)에 전부 녹인 뒤 TEA(triethylamine) 6.2mL (44.38mmol)와 함께 실온에서 15분간 교반하였다. 그 후 0℃를 유지한 뒤 3-브로모 벤조일클로라이드(3-Bromo benzoylchloride) 9.7g(44.38mmol)을 서서히 첨가하였다. 약 1시간 뒤 하얀색 고체가 생성되어 필터한 뒤 EA(ethyl acetate)와 헥산(Hexane)으로 씻어주어 목적화합물 7-1 17.2g(95%)을 얻었다.
화합물 7-2의 제조
화합물 7-1 15g(36.74mmol)과 POCl3 3.4mL(36.74mmol), 니트로벤젠(Nitrobenzene) 150mL를 넣고 1시간동안 환류하였고, 실온으로 식힌 뒤 SnCl4 12.04mL(102.87mmol)을 천천히 적가하였다. 2시간 동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 메탄올(MeOH)와 헥산(Hexane)으로 씻어주어 목적화합물 7-2 7.89g(55%)을 얻었다.
화합물 86의 제조
화합물 7-2 8g(20.5mmol)과 11-페닐-11,12-디하이드로인돌로[2,3-a]카바졸(11-phenyl-11,12-dihydroindolo[2,3-a]carbazole) 6.1g(18.44mmol), Pd2(dba)3 0.38g (0.41mmol), 잔트포스(XantPhos) 0.47g(0.82mmol), NaOtBu 8.3g(41.0mmol)을 톨루엔 80mL와 함께 130℃에서 3시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 톨루엔으로 전부 녹여 실리카겔에 필터하였다. 그 후 뜨거운 톨루엔으로 필터하여 정제하면 화합물 86 7.3g(56%)을 얻었다.
<제조예 9> 화합물 87의 제조
Figure PCTKR2015006560-appb-I000052
화합물 7-2 5g(12.81mmol)과 디벤조[b,d]티오펜-4-일보로닉산(Dibenzo[b,d]thiophen-4-ylboronic acid) 3.5g(15.37mmol), Pd(PPh3)4 0.74g (0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 50mL, 에탄올 5mL, H2O 5mL와 함께 120℃에서 5시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 87 4.80g(76%)을 얻었다.
<제조예 10> 화합물 88의 제조
Figure PCTKR2015006560-appb-I000053
화합물 7-2 5g (12.81mmol)과 2-(9,9-디페닐-9H-플루오렌-2-yl)-4,4,5,5-테트라메틸-1,3,2-디옥사보로란(2-(9,9-diphenyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane) 5.7g (12.81mmol), Pd(PPh3)4 0.74g (0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 100mL, 에탄올 20mL, H2O 20mL와 함께 120℃에서 24시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 MC로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 88 6.0g(74%)을 얻었다.
<제조예 11> 화합물 90의 제조
Figure PCTKR2015006560-appb-I000054
화합물 7-2 5g (12.81mmol)과 트리페닐(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)실란(triphenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)silane) 5.9g (12.81mmol), Pd(PPh3)4 0.74g (0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 100mL, 에탄올 20mL, H2O 20mL와 함께 120℃에서 24시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 MC로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 90 6.5g(78%)을 얻었다.
<제조예 12> 화합물 91의 제조
Figure PCTKR2015006560-appb-I000055
화합물 7-2 5g(12.81mmol)과 9-(3-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)페닐)-9H-카바졸(9-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-9H-carbazole) 5.6g(12.81mmol), Pd(PPh3)4 0.74g(0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 100mL, 에탄올 20mL, H2O 20mL와 함께 120℃에서 24시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 MC로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 91 5.0g(70%)을 얻었다.
<제조예 13> 화합물 92의 제조
화합물 7-3의 제조
Figure PCTKR2015006560-appb-I000056
화합물 7-2 10g(25.6mmol)과 비스(피나콜라토)디보론(Bis(Pinacolato)diboron) 13.0g(51.2mmol), PdCl2(dppf) 0.93g(1.3mmol), KOAc 7.5g(51.2mmol)을 DMF 200mL와 함께 130℃에서 4시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 MC로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 7-3 7.5g(67%)을 얻었다.
화합물 92의 제조
Figure PCTKR2015006560-appb-I000057
화합물 7-3 7.5g(17.1mmol)과 9,9'-(5-브로모-1,3-페닐렌)비스(9H-카바졸)(9,9'-(5-bromo-1,3-phenylene)bis(9H-carbazole)) 8.35g(17.1mmol), Pd(PPh3)4 1.0g(0.85mmol), K2CO3 4.7g(34.0mmol)을 톨루엔 200mL, 에탄올 40mL, H2O 40mL와 함께 100℃에서 24시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 MC로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 92 9.0g(73%)을 얻었다.
<제조예 14> 화합물 93의 제조
Figure PCTKR2015006560-appb-I000058
화합물 7-3 6.15g(14.1mmol)과 2-브로모-4,6-디페닐피리미딘(2-bromo-4,6-diphenylpyrimidine) 5.3g(16.9mmol), Pd(PPh3)4 0.81g(0.70mmol), K2CO3 3.9g(28.1mmol)을 톨루엔 100mL, 에탄올 20mL, H2O 20mL와 함께 120℃에서 24시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 MC로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 93 7.3g(96%)을 얻었다.
<제조예 15> 화합물 110의 제조
Figure PCTKR2015006560-appb-I000059
화합물 8-1의 제조
화합물 3-브로모벤조[b]티오펜(3-bromobenzo[b]thiophene) 10g(46.93mmol)과 아세트산 400mL를 넣고 실온에서 10분간 교반한 뒤 아세트산 400mL와 HNO3 20mL를 혼합하여 천천히 적가하였다. 1시간 뒤 반응 완료 후 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 목적화합물 8-1 9.34g(77%)을 얻었다.
화합물 8-2의 제조
화합물 8-1 9g(34.87mmol)과 에탄올 300mL, 철 분말(Fe Powder) 6.03g(108.1mmol)을 넣고 실온에서 10분간 교반하였다. 아세트산 30mL를 천천히 적가한 후 60℃에서 1시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 H2O를 첨가하여 생성된 고체를 여과한 뒤 H2O와 헥산(Hexane)으로 씻어주어 목적화합물 8-2 7.9g(99%)을 얻었다.
화합물 8-3의 제조
화합물 8-2 10g(43.84mmol)과 페닐보로닉산(Phenyl boronic acid) 5.87g(48.22mmol), Pd(PPh3)4 4.27g(3.69mmol), Na2CO3 9.29g(87.66mmol)을 톨루엔 100mL와 에탄올 20mL, H2O 20mL와 함께 120℃에서 1시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 EA(ethyl acetate)와 헥산(Hexane)으로 씻어준 뒤 목적화합물 8-3 9.08g(92%)을 얻었다.
화합물 8-4의 제조
화합물 8-3 9g(39.94mmol)을 MC(Methylene chloride)에 전부 녹인 뒤 TEA 5.6mL(39.94mmol)와 함께 실온에서 15분간 교반하였다. 그 후 0℃를 유지한 뒤 4-브로모벤조일클로라이드(4-Bromo benzoylchloride) 8.77g(39.94mmol)을 서서히 첨가하였다. 약 1시간 뒤 하얀색 고체가 생성되어 필터한 뒤 EA(ethyl acetate)와 헥산(Hexane)으로 씻어주어 목적화합물 8-4 15.0g(92%)을 얻었다.
화합물 8-5의 제조
화합물 8-4 15g(36.74mmol)과 POCl3 3.4mL(36.74mmol), 니트로벤젠(Nitrobenzene) 150mL를 넣고 1시간동안 환류하였고, 실온으로 식힌 뒤 SnCl4 12.04mL(102.87mmol)을 천천히 적가하였다. 2시간 동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 메탄올(MeOH)과 헥산(Hexane)으로 씻어주어 목적화합물 8-5 11.1g(77%)을 얻었다.
화합물 110의 제조
화합물 8-5 5g(12.81mmol)과 (3,5-디(9H-카바졸-9-일)페닐)보로닉산((3,5-di(9H-carbazol-9-yl)phenyl)boronic acid) 6.37g(14.09mmol), Pd(PPh3)4 0.74g(0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 50mL, 에탄올 5mL, H2O 5mL와 함께 120℃에서 6시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 110 7.1g(77%)을 얻었다.
<제조예 16> 화합물 119의 제조
Figure PCTKR2015006560-appb-I000060
화합물 9-1의 제조
화합물 8-3 10g(44.38mmol)을 MC(methylene chloride)에 전부 녹인 뒤 TEA 6.2mL(44.38mmol)와 함께 실온에서 15분간 교반하였다. 그 후 0℃를 유지한 뒤 3-브로모 벤조일클로라이드(3-Bromo benzoylchloride) 9.7g(44.38mmol)을 서서히 첨가하였다. 약 1시간 뒤 하얀색 고체가 생성되어 필터한 뒤 EA(ethyl acetate)와 헥산(Hexane)으로 씻어주어 목적화합물 9-1 17.7g(98%)을 얻었다.
화합물 9-2의 제조
화합물 9-1 15g(36.74mmol)과 POCl3 3.4mL(36.74mmol), 니트로벤젠(Nitrobenzene) 150mL를 넣고 1시간동안 환류하였고, 실온으로 식힌 뒤 SnCl4 12.04mL(102.87mmol)을 천천히 적가하였다. 2시간 동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 메탄올(MeOH)와 헥산(Hexane)으로 씻어주어 목적화합물 9-2 9.18g(64%)을 얻었다.
화합물 119의 제조
화합물 9-2 8g(20.5mmol)과 A-2 6.1g(18.44mmol), Pd2(dba)3 0.38g(0.41mmol), 잔트포스(XantPhos) 0.47g(0.82mmol), NaOtBu 8.3g(41.0mmol)을 톨루엔 80mL와 함께 130℃에서 3시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 목적화합물 119 6.8g(52%)을 얻었다.
<제조예 17> 화합물 156의 제조
Figure PCTKR2015006560-appb-I000061
화합물 10-1의 제조
벤조[b]티오펜-3-일보로닉산(benzo[b]thiophen-2-ylboronic acid) 20g(112.34mmol)과 2-브로모아닐린(2-Bromoanilline) 20.4g(101.11mmol), Pd(PPh3)4 6.5g(5.12mmol), K2CO3 31.05g(224.68mmol)을 톨루엔 200mL와 에탄올 40mL, H2O 40mL와 함께 120℃에서 16시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 10-1 15.1g(60%)을 얻었다.
화합물 10-2의 제조
화합물 10-1 10g(44.38mmol)을 MC(methylene chloride)에 전부 녹인 뒤 TEA(triethylamine) 6.2mL(44.38mmol)와 함께 실온에서 15분간 교반하였다. 그 후 0℃를 유지한 뒤 4-브로모벤조일클로라이드(4-Bromo benzoylchloride) 9.7g(44.38mmol)을 서서히 첨가하였다. 약 1시간 뒤 하얀색 고체가 생성되어 필터한 뒤 EA(ethyl acetate)와 헥산(Hexane)으로 씻어주어 목적화합물 10-2 15.9g(88%)을 얻었다.
화합물 10-3의 제조
화합물 10-2 15g(36.74mmol)과 POCl3 3.4mL(36.74mmol), 니트로벤젠(Nitrobenzene) 150mL를 넣고 1시간동안 환류하였고, 실온으로 식힌 뒤 SnCl4 12.04mL(102.87mmol)을 천천히 적가하였다. 2시간동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 메탄올(MeOH)와 헥산(Hexane)으로 씻어주어 목적화합물 10-3 9.47g(66%)을 얻었다.
화합물 156의 제조
화합물 10-3 5g(12.81mmol)과 9H-3,9'-비카바졸(9H-3,9'-bicarbazole) 5.1g(15.37mmol), Pd(PPh3)4 0.74g(0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 50mL, 에탄올 5mL, H2O 5mL와 함께 120℃에서 5시간동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 156 6.3g(77%)을 얻었다.
<제조예 18> 화합물 185의 제조
Figure PCTKR2015006560-appb-I000062
화합물 11-1의 제조
화합물 10-1 10g(44.38mmol)을 MC(methylene chloride)에 전부 녹인 뒤 TEA(triethylamine) 6.2mL(44.38mmol)와 함께 실온에서 15분간 교반하였다. 그 후 0℃를 유지한 뒤 3-브로모벤조일클로라이드(3-Bromo benzoylchloride) 9.7g(44.38mmol)을 서서히 첨가하였다. 약 1시간 뒤 하얀색 고체가 생성되어 필터한 뒤 EA(ethyl acetate)와 헥산(Hexane)으로 씻어주어 목적화합물 11-1 17.3g(96%)을 얻었다.
화합물 11-2의 제조
화합물 11-1 15g(36.74mmol)과 POCl3 3.4mL(36.74mmol), 니트로벤젠(Nitrobenzene) 150mL를 넣고 1시간동안 환류하였고, 실온으로 식힌 뒤 SnCl4 12.04mL(102.87mmol)을 천천히 적가하였다. 2시간동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거 한 후 메탄올(MeOH)와 헥산(Hexane)으로 씻어주어 목적화합물 11-2 7.89g(55%)을 얻었다.
화합물 185의 제조
화합물 11-2 5g(12.81mmol)과 (4,6-디페닐-1,3,5-트리아진-2-일)보로닉산((4,6-diphenyl-1,3,5-triazin-2-yl)boronic acid) 3.5g(15.37mmol), Pd(PPh3)4 0.74g(0.64mmol), K2CO3 3.5g(25.62mmol)을 톨루엔 50mL, 에탄올 5mL, H2O 5mL와 함께 120℃에서 5시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 185 4.80g(69%)을 얻었다.
<제조예 19> 화합물 243의 제조
Figure PCTKR2015006560-appb-I000063
화합물 12-1의 제조
벤조푸란-3-일보로닉산(benzofuran-3-ylboronic acid) 20g(123.49mmol)과 4-브로모-2-아이오도아닐린(4-bromo-2-iodoaniline) 36.4g(123.49mmol), Pd(PPh3)4 14.2g(12.35mmol), K2CO3 51.2g(370.47mmol)을 톨루엔 400mL와 에탄올 80mL, H2O 80mL와 함께 120℃에서 24시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 12-1 28.8g(81%)을 얻었다.
화합물 12-2의 제조
HCOH 3.9mL와 아세트산 9.77mL를 넣고 60℃에서 2시간동안 교반한 뒤 실온으로 식혔다. 그 후 에틸에테르 360mL와 화합물 12-1 13.5g(46.9mmol)을 첨가하여 실온에서 교반하였다. 1시간 뒤 생성된 고체를 여과하여 에틸에테르로 씻어준 뒤 목적화합물 12-2 8.45g(57%)을 얻었다.
화합물 12-3의 제조
화합물 12-2 8.45g(26.7mmol)과 POCl3 3.4mL(36.74mmol), 니트로벤젠(Nitrobenzene) 150mL를 넣고 1시간동안 환류하였고, 실온으로 식힌 뒤 SnCl4 12.04mL(102.87mmol)을 천천히 적가하였다. 2시간동안 환류 교반 후 반응이 완료되어 실온으로 식혀 증류수와 MC(methylene chloride)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 메탄올(MeOH)와 헥산(Hexane)으로 씻어주어 목적화합물 12-3 7.00g(88%)을 얻었다.
화합물 243의 제조
화합물 12-3 7g(23.48mmol)과 (3-(디벤조[b,d]티오펜-4-일)페닐)보로닉산((3-(dibenzo[b,d]thiophen-4-yl)phenyl)boronic acid) 7.1g(23.48mmol), Pd(PPh3)4 2.7g(2.35mmol), K2CO3 9.73g(70.44mmol)을 톨루엔 150mL, 에탄올 30mL, H2O 30mL와 함께 120℃에서 7시간 동안 환류하였다. 반응 완료 후 실온으로 식힌 뒤 증류수와 EA(ethyl acetate)로 추출하였다. 유기층을 무수 MgSO4로 건조시킨 후 회전 증발기로 용매를 제거한 후 디클로로메탄과 헥산을 전개용매로 하여 컬럼크로마토그래피로 정제하여 화합물 243 8.75g(78%)을 얻었다.
<제조예 20> 화합물 245의 제조
Figure PCTKR2015006560-appb-I000064
화합물 6-1의 제조
원넥 둥근바닥플라스크(One neck r.b.f) 에 2-브로모아닐린(2-bromoaniline, 50g, 290mmol), 테트라키스(트리페닐포스핀)팔라듐(0)(Tetrakis(triphenylphosphine)palladium(0), 16.75g, 14.5mmol), 소듐비카보네이트(Sodiumbicarbonate, 58.4g, 696mmol) 톨루엔/에탄올/물(1000ml/200ml/200ml) 혼합물을 100℃에서 1h 환류하였다.
온도를 80℃로 내리고 벤조[b]티오펜-2-일보론산(benzo[b]thiophen-2-ylboronic acid, 62g, 348mmol)를 고체 상태로 넣어준 후 2h 교반하였다. 혼합물을 MC로 추출한 후 유기층을 MgSO4로 건조하였다. 농축 후 컬럼 크로마토그래피(column chromatography, SiO2, Hexane : Dichloromethane = 1 : 1)로 분리하였다(50g, 76%).
화합물 6-2의 제조
질소하에서 원넥 둥근바닥플라스크(One neck r.b.f)에 6-1(22.6g, 100mmol), 테트라하이드로퓨란(Tetrahydrofuran, 400ml)의 혼합물에 트리에틸 아민(Triethyl amine, 15.5ml, 110mmol)을 가한 후 10분 교반하였다. 0℃로 온도를 낮추고 4-브로모벤조일 클로라이드(4-bromobenzoyl chloride, 26.4g, 120mmol)의 테트라하이드로퓨란(Tetrahydrofuran, 100ml) 혼합물을 가한 후 30분 교반하였다. MC로 추출한 후 유기층을 농축 후 메탄올(Methanol)을 넣어 소니케이션(Sonication) 후 필터(filter) 하였다(33g, 81%).
화합물 6-3의 제조
질소 충전하 원넥 둥근바닥플라스크(One neck r.b.f)에 6-2(31.8g, 77.8mmol)의 니트로벤젠(Nitrobenzene, 320ml) 혼합물에 포스포러스(V)옥시클로라이드(Phosphorus(V)oxychloride, 7.2ml, 77.8mmol)을 가한 후 150℃에서 2시간 교반하였다. 반응물을 0℃에서 포화 소듐비카보네이트(Sodiumbicarbonate) 수용액으로 반응을 종결한 후 디클로로메탄(Dichloromethane)으로 추출하였다. 농축 후 니트로벤젠(nitrobenzene)을 제거한 후 MeOH을 넣고 교반후 필터(Filter) 하였다 (26.6g, 87%).
화합물 245-4의 제조
질소하에서 원넥 둥근바닥플라스크(One neck r.b.f)에 6-3(26.6g, 68.15mmol), 피나콜 디보론(Pinacol Diboron, 34.6g, 136.3mmol), PdCl2(dppf) (2.5g, 3.4mmol), KOAc(20g, 204mmol)의 1,4-디옥산(1,4-Dioxane, 70ml) 혼합물을 120℃에서 3h 환류시켰다. 디클로로메탄(Dichloromethane)으로 추출한 후 유기층을 마그네슘 설페이트(Magnesium sulfate)로 건조하였다. 농축 후 컬럼 크로마토그래피(column chromatography, SiO2, Ethyl acetate : Dichloromethane = 1 : 4)로 분리하였다.
화합물 245의 제조
원넥 둥근바닥플라스크(One neck r.b.f)에 245-4(6g, 13.7mmol), 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine, 4g, 15.09mmol), Pd(PPh3)4 (1.58g, 1.37mmol), K2CO3 (3.78g, 27.4mmol)의 1,4-디옥산(1,4-Dioxane) (120ml)/ H2O (30ml) 의 혼합물을 120℃에서 3h 교반하였다. 반응물을 110℃ 상태에서 필터후 110℃ 1,4-디옥산(1,4-Dioxane)으로 씻어주고 H2O, MeOH로 씻어주었다(6.4g, 87%).
<제조예 21> 화합물 246의 제조
화합물 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 2-(4-브로모페닐)-1-페닐-1H-벤조[d]이미다졸(2-(4-bromophenyl)-1-phenyl-1H-benzo[d]imidazole)를 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 246을 얻었다(10.1g, 76%).
<제조예 22> 화합물 250의 제조
화합물 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 2-클로로-4,6-디페닐피리미딘(2-chloro-4,6-diphenylpyrimidine)를 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 250을 얻었다(9.7g, 78%).
<제조예 23> 화합물 248의 제조
Figure PCTKR2015006560-appb-I000065
질소하에서 원넥둥근바닥플라스크에 화합물 6-3(10g, 25.6mmol)을 무수 THF (20ml)에 녹인 뒤, -78℃로 냉각하였다. n-부틸리튬(n-butyllithium) (2.5M in 헥산) (10.2ml, 25.6mmol)을 서서히 적가한 뒤, 1시간 동안 교반하였다. 상기 용액에 클로로디페닐포스핀(chlorodiphenylphosphine, 4.7ml, 25.6mmol)을 적가하고 실온에서 12시간 동안 교반하였다. 반응혼합물을 MC/H2O 추출한 뒤 감압증류 하였다. 반응혼합물을 MC(200ml)에 녹인 뒤, 30% H2O2 수용액 (10ml)과 함께 실온에서 1시간 동안 교반하였다. 반응 혼합물을 MC/H2O 추출한 뒤, 농축한 혼합물을 컬럼크로마토그래피(SiO2, MC : 메탄올 = 25 : 1)로 분리하여 고체화합물 248를 얻었다(7.2g, 54%).
<제조예 24> 화합물 253의 제조
화합물 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 4-([1,1'-비페닐]-4-일)-6-클로로-2-페닐피리미딘(4-([1,1'-biphenyl]-4-yl)-6-chloro-2-phenylpyrimidine)를 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 253을 얻었다(11.5g, 82%).
<제조예 25> 화합물 256의 제조
화합물 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 2-(4-브로모페닐)-4,6-디페닐-1,3,5-트리아진(2-(4-bromophenyl)-4,6-diphenyl-1,3,5-triazine)를 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 256을 얻었다(10.2g, 72%).
<제조예 26> 화합물 259의 제조
화합물 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 4-브로모-2-페닐퀴나졸린(4-bromo-2-phenylquinazoline)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 259를 얻었다(7.3g, 62%).
<제조예 27> 화합물 260의 제조
화합물 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 2-브로모-1,10-페난트롤린(2-bromo-1,10-phenanthroline)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 260를 얻었다(7.7g, 69%).
<제조예 28> 화합물 261의 제조
Figure PCTKR2015006560-appb-I000066
화합물 7-1의 제조
질소하에서 원넥 둥근바닥플라스크(One neck r.b.f)에 6-1(35g, 155mmol), 테트라하이드로퓨란(Tetrahydrofuran, 600ml)의 혼합물에 트리에틸 아민(Triethyl amine, 26ml, 186mmol)을 가한 후 10분 교반하였다. 0℃로 온도를 낮추고 3-브로모벤조일 클로라이드(3-bromobenzoyl chloride, 40.8g, 186mmol)의 테트라하이드로퓨란(Tetrahydrofuran, 150ml) 혼합물을 가한 후 30분 교반하였다. MC로 추출한 후 유기층을 농축 후 메탄올(Methanol)을 넣어 소니케이션(Sonication) 후 필터(filter) 하였다(58g, 91.7%).
화합물 7-2의 제조
질소 충전하 원넥 둥근바닥플라스크(One neck r.b.f) 7-1(52g, 127mmol)의 니트로벤젠(Nitrobenzene, 1,000ml) 혼합물에 포스포러스(V)옥시클로라이드(Phosphorus(V)oxychloride, 12ml, 127mmol)을 가한 후 150℃에서 3시간 교반하였다. 반응물을 0℃에서 포화 소듐비카보네이트(Sodiumbicarbonate) 수용액으로 반응을 종결한 후 디클로로메탄(Dichloromethane)으로 추출하였다. 농축 후 니트로벤젠(nitrobenzene)을 제거한 후 MeOH을 넣고 교반후 필터(Filter) 하였다 (43g, 86%).
화합물 7-3의 제조
질소하에서 원넥 둥근바닥플라스크(One neck r.b.f)에 7-2(43g, 110mmol), 피나콜 디보론(Pinacol Diboron, 56g, 220mmol), PdCl2(dppf) (4g, 5.5mmol), KOAc(32.3g, 330mmol)의 1,4-디옥산(1,4-Dioxane, 400ml) 혼합물을 120℃에서 3h 환류시켰다. 디클로로메탄(Dichloromethane)으로 추출한 후 유기층을 마그네슘 설페이트(Magnesium sulfate)로 건조하였다. 농축 후 실리카겔 필터(Silicagel filter) 하여 MeOH 교반 후 필터(filter) 하여 얻었다(36g, 74%).
화합물 261의 제조
245-4 대신 화합물 7-3을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 261을 얻었다(9.4g, 76%).
<제조예 29> 화합물 274의 제조
2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 4-([1,1'-비페닐]-4-일)-2-클로로-6-페닐피리미딘(4-([1,1'-biphenyl]-4-yl)-2-chloro-6-phenylpyrimidine)을 사용한 것을 제외하고는, 제조예 28에서의 화합물 261의 제조와 동일한 방법으로 제조하여 목적 화합물 274를 얻었다(11.1g, 79%).
<제조예 30> 화합물 278의 제조
Figure PCTKR2015006560-appb-I000067
화합물 10-1의 제조
원넥 둥근바닥플라스크(One neck r.b.f)에 2-브로모아닐린(2-bromoaniline, 100g, 580mmol), 테트라키스(트리페닐포스핀)팔라듐(0)(Tetrakis(triphenylphosphine)palladium(0), 33.5g, 29mmol), 소듐비카보네이트(Sodiumbicarbonate, 116.8g, 1,392mmol) 톨루엔/에탄올/물(2,000ml/400ml/400ml) 혼합물을 100℃에서 1h 환류하였다.
온도를 80℃로 내려 벤조[b]티오펜-3-일보론산(benzo[b]thiophen-3-ylboronic acid, 124g, 696mmol)를 고체 상태로 넣어준 후 3h 교반하였다. 혼합물을 MC로 추출한 후 유기층을 MgSO4로 건조하였다. 농축 후 컬럼 크로마토그래피(column chromatography, SiO2, Hexane : Dichloromethane = 1 : 1)로 분리하였다(100g, 76%).
화합물 10-2의 제조
질소하에서 원넥 둥근바닥플라스크(One neck r.b.f)에 10-1(145g, 643mmol), 테트라하이드로퓨란(Tetrahydrofuran, 2,000ml)의 혼합물에 트리에틸 아민(Triethyl amine, 100ml, 707mmol)을 가한 후 10분 교반하였다. 0℃로 온도를 낮추고 4-브로모벤조일 클로라이드(4-bromobenzoyl chloride, 155.3g, 707.9mmol)의 테트라하이드로퓨란(Tetrahydrofuran, 1,000ml) 혼합물을 가한 후 30분 교반하였다. MC로 추출한 후 유기층을 농축 후 메탄올(Methanol)을 넣어 소니케이션(Sonication) 후 필터(filter) 하였다(220g, 83%).
화합물 10-3의 제조
질소 충전하 원넥 둥근바닥플라스크(One neck r.b.f) 10-2(220g, 538.8mmol)의 니트로벤젠(Nitrobenzene, 2,000ml) 혼합물에 포스포러스(V)옥시클로라이드(Phosphorus(V)oxychloride, 55ml, 592.6mmol)을 가한 후 150℃에서 3시간 교반하였다. 반응물을 0℃에서 포화 소듐비카보네이트(Sodiumbicarbonate) 수용액으로 반응을 종결한 후 디클로로메탄(Dichloromethane)으로 추출하였다. 농축 후 니트로벤젠(nitrobenzene)을 제거한 후 MeOH을 넣고 교반후 필터(Filter) 하였다 (167g, 80%).
화합물 278의 제조
6-3 대신 화합물 10-3을 사용한 것을 제외하고는, 제조예 23에서의 화합물 248의 제조와 동일한 방법으로 제조하여 목적 화합물 278을 얻었다(8.6g, 69%).
<제조예 31> 화합물 294의 제조
Figure PCTKR2015006560-appb-I000068
화합물 11-1의 제조
질소하에서 원넥 둥근바닥플라스크(One neck r.b.f)에 10-1(35g, 155mmol), 테트라하이드로퓨란(Tetrahydrofuran, 600ml)의 혼합물에 트리에틸 아민(Triethyl amine, 26ml, 186mmol)을 가한 후 10분 교반하였다. 0℃로 온도를 낮추고 4-브로모벤조일 클로라이드(4-bromobenzoyl chloride, 40.8g, 186mmol)의 테트라하이드로퓨란(Tetrahydrofuran, 100ml) 혼합물을 가한 후 30분 교반하였다. MC로 추출한 후 유기층을 농축 후 메탄올(Methanol)을 넣어 소니케이션(Sonication) 후 필터(filter) 하였다(58g, 91%).
화합물 11-2의 제조
질소 충전하 원넥 둥근바닥플라스크(One neck r.b.f) 11-1(52g, 127mmol)의 니트로벤젠(Nitrobenzene, 1,000ml) 혼합물에 포스포러스(V)옥시클로라이드(Phosphorus(V)oxychloride, 12ml, 127mmol)을 가한 후 150℃에서 2시간 교반하였다. 반응물을 0℃에서 포화 소듐비카보네이트(Sodiumbicarbonate) 수용액으로 반응을 종결한 후 디클로로메탄(Dichloromethane)으로 추출하였다. 농축 후 니트로벤젠(nitrobenzene)을 제거한 후 MeOH을 넣고 교반 후 필터(Filter) 하였다 (43g, 86%).
화합물 294-3의 제조
질소하에서 원넥 둥근바닥플라스크(One neck r.b.f)에 11-2(43g, 110mmol), 피나콜 디보론(Pinacol Diboron, 56g, 220mmol), PdCl2(dppf) (4g, 5.5mmol), KOAc(32.3g, 330mmol)의 1,4-디옥산(1,4-Dioxane, 400ml) 혼합물을 120℃에서 3h 환류시켰다. 디클로로메탄(Dichloromethane)으로 추출한 후 유기층을 마그네슘 설페이트(Magnesium sulfate)로 건조하였다. 농축 후 실리카겔 필터(Silicagel filter)하여 농축 후 MeOH로 교반 후 필터(filter) 하여 얻었다(36g, 74%).
화합물 294의 제조
245-4, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 294-3, 4-브로모-2,6-디페닐피리미딘(4-bromo-2,6-diphenylpyrimidine)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 294를 얻었다(9.8g, 79%).
<제조예 32> 화합물 309의 제조
Figure PCTKR2015006560-appb-I000069
화합물 309-4의 제조
벤조[b]티오펜-2-일보론산(benzo[b]thiophen-2-ylboronic acid) 대신 화합물 벤조퓨란-2-일보론산(benzofuran-2-ylboronic acid)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245-4의 제조와 동일한 방법으로 제조하여 목적 화합물 309-4를 얻었다.
화합물 309의 제조
245-4, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 309-4, 4-브로모-2,6-디페닐피리미딘(4-bromo-2,6-diphenylpyrimidine)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 309를 얻었다(9.2g, 73%).
<제조예 33> 화합물 321의 제조
Figure PCTKR2015006560-appb-I000070
화합물 321-3의 제조
6-1 대신 화합물 309-1을 사용한 것을 제외하고는, 제조예 28에서의 화합물 270-3의 제조와 동일한 방법으로 제조하여 목적 화합물 321-3을 얻었다.
화합물 321의 제조
245-4, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 321-3, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 321를 얻었다(8.9g, 71%).
<제조예 34> 화합물 343의 제조
Figure PCTKR2015006560-appb-I000071
화합물 343-3의 제조
10-1 대신 화합물 343-1을 사용한 것을 제외하고는, 제조예 30에서의 화합물 10-3의 제조와 동일한 방법으로 제조하여 목적 화합물 343-3을 얻었다.
화합물 343-4의 제조
질소하에서 원넥둥근바닥플라스크(One neck r.b.f)에 343-3(21.5g, 55mmol), 피나콜 디보론(Pinacol Diboron, 28g, 110mmol), PdCl2(dppf) (2g, 2.7mmol), KOAc (14g, 165mmol)의 1,4-디옥산(1,4-Dioxane, 200ml) 혼합물을 120℃에서 4h 환류 시켰다. 디클로로메탄(Dichloromethane)으로 추출한 후 유기층을 마그네슘 설페이트(Magnesium sulfate)로 건조하였다. 농축후 실리카겔 필터(Silicagel filter) 하여 농축후 MeOH로 교반후 필터하여 얻었다(18g, 73%).
화합물 343의 제조
245-4, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 343-4, 4-([1,1'-비페닐]4-일)-2-클로로퀴나졸린(4-([1,1'-biphenyl]-4-yl)-2-chloroquinazoline)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 343을 얻었다(9.3g, 68%).
<제조예 35> 화합물 354의 제조
Figure PCTKR2015006560-appb-I000072
화합물 354-3의 제조
10-1 대신 화합물 343-1을 사용한 것을 제외하고는, 제조예 31에서의 화합물 294-3의 제조와 동일한 방법으로 제조하여 목적 화합물 354-3을 얻었다.
화합물 354의 제조
245-4, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 354-3, 2-(4-브로모페닐)-1-페닐-1H-벤조[d]이미다졸(2-(4-bromophenyl)-1-phenyl-1H-benzo[d]imidazole)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 354를 얻었다(10.2g, 76%).
<제조예 36> 화합물 370의 제조
Figure PCTKR2015006560-appb-I000073
화합물 370-3의 제조
4-브로모벤조일 클로라이드(4-bromobenzoyl chloride) 대신 화합물 5-브로모피콜리노일 클로라이드(5-bromopicolinoyl chloride)를 사용한 것을 제외하고는, 제조예 32에서의 화합물 309-4의 제조와 동일한 방법으로 제조하여 목적 화합물 370-3을 얻었다.
화합물 370의 제조
245-4, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 370-3, 2-클로로-4,6-디페닐피리미딘(2-chloro-4,6-diphenylpyrimidine)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 370을 얻었다(9.6g, 77%).
<제조예 37> 화합물 373의 제조
Figure PCTKR2015006560-appb-I000074
화합물 373-3의 제조
309-1 대신 화합물 6-1을 사용한 것을 제외하고는, 제조예 36에서의 화합물 370-3의 제조와 동일한 방법으로 제조하여 목적 화합물 373-3을 얻었다.
화합물 373의 제조
245-4, 2-클로로-4,6-디페닐-1,3,5-트리아진(2-chloro-4,6-diphenyl-1,3,5-triazine) 대신 화합물 373-3, 2-클로로-4,6-디페닐피리미딘(2-chloro-4,6-diphenylpyrimidine)을 사용한 것을 제외하고는, 제조예 20에서의 화합물 245의 제조와 동일한 방법으로 제조하여 목적 화합물 370을 얻었다(12.4g, 87%).
<제조예 38> 화합물 419의 제조
Figure PCTKR2015006560-appb-I000075
화합물 419-1의 제조
질소하에서 원넥둥근바닥플라스크(One neck r.b.f)에 6-1(50g, 221.9 mmol), 테트라히드로퓨란(Tetrahydrofuran, 800ml)의 혼합물에 트리에틸 아민(Triethyl amine, 34ml, 244mmol)을 가한 후 10분 교반하였다. 0℃로 온도를 낮추고 3,5-디브로모벤조일 클로라이드(3,5-dibromobenzoyl chloride, 100g, 332.8mmol)의 테트라히드로퓨란(Tetrahydrofuran, 200ml) 혼합물을 가한 후 30분 교반하였다. MC로 추출한 후 유기층을 농축 후 메탄올(Methanol)을 넣어 소니케이션(Sonication) 후 필터하였다(107g, 99%).
화합물 419-2의 제조
질소 충전하 원넥둥근바닥플라스크(One neck r.b.f)에 419-1(96g, 197mmol)의 니트로벤젠(Nitrobenzene, 2,000ml) 혼합물에 포스포러스(V)옥시클로라이드(Phosphorus(V)oxychloride, 20ml, 216mmol)을 가한 후 150℃에서 3시간 교반하였다. 반응물을 0℃에서 포화 소듐비카보네이트(Sodiumbicarbonate) 수용액으로 반응을 종결한 후 디클로로메탄(Dichloromethane) 조금 넣은후 메탄올(Methanol) 과량을 넣어 고체화한후 필터하였다(60g, 65%).
화합물 419의 제조
원넥둥근바닥플라스크(One neck r.b.f)에 419-2(7g, 14.91mmol), 디벤조[b,d]티오펜-4-일보론산(dibenzo[b,d]thiophen-4-ylboronic acid, 12.12g, 37.29mmol), Pd(PPh3)4 (1.72g, 1.49mmol), K2CO3 (8.2g, 59.64mmol)의 1,4-디옥산(1,4-Dioxane) (100ml)/ H2O (20ml)의 혼합물을 120℃에서 30h 교반하였다. 반응물을 110℃ 상태에서 필터(filter) 후 110℃ 1,4-디옥산(1,4-Dioxane)으로 씻어주었다(7.5g, 74%).
<제조예 39> 화합물 426의 제조
Figure PCTKR2015006560-appb-I000076
화합물 426-1의 제조
원넥둥근바닥플라스크(One neck r.b.f)에 419-2(60g, 127.8mmol), 2-페닐-1-(4-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)페닐)-1H-벤조[d]이미다졸(2-phenyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-benzo[d]imidazole, 55.7g, 140.6mmol), Pd(PPh3)4 (14.6g, 12.7mmol), NaHCO3 (21.4g, 255.6mmol)의 톨루엔(Toluene) (1,000ml)/ EtOH (200ml) / H2O (200ml) 의 혼합물을 110℃에서 3h 교반하였다. 반응물을 MC로 추출후 농축하여 컬럼 크로마토그래피(column chromatography, SiO2, Ethylacetate : Dichloromethane = 1 : 20)로 분리하였다(47g, 55%).
화합물 426의 제조
원넥둥근바닥플라스크(One neck r.b.f)에 426-1(10.7g, 15.16mmol), 디벤조[b,d]퓨란-일보론산(dibenzo[b,d]furan-2-ylboronic acid, 3.5g, 16.67mmol), Pd(PPh3)4 (1.7g, 1.5mmol), K2CO3 (4.19g, 30.32mmol)의 1,4-디옥산(1,4-Dioxane) (100ml)/ H2O (20ml)의 혼합물을 110℃에서 6h 교반하였다. 반응물을 MC로 추출후 농축하여 컬럼 크로마토그래피(column chromatography, SiO2, Ethylacetate : Dichloromethane = 1 : 20)로 분리하였다(8.3g, 73%).
<제조예 40> 화합물 437의 제조
Figure PCTKR2015006560-appb-I000077
화합물 437-2의 제조
6-1 대신 화합물 10-1을 사용한 것을 제외하고는, 제조예 38에서의 화합물 419-2의 제조와 동일한 방법으로 제조하여 목적 화합물 437-2을 얻었다.
화합물 437의 제조
419-2, 디벤조[b,d]퓨란-2-일보론산(dibenzo[b,d]furan-2-ylboronic acid) 대신 화합물 437-2, 디벤조[b,d]퓨란-4-일보론산(dibenzo[b,d]furan-4-ylboronic acid) 을 사용한 것을 제외하고는, 제조예 38에서의 화합물 419의 제조와 동일한 방법으로 제조하여 목적 화합물 437을 얻었다(10.5g, 76%).
<제조예 41> 화합물 454의 제조
Figure PCTKR2015006560-appb-I000078
화합물 454-1의 제조
419-2, 2-페닐-1-(4-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)페닐)-1H-벤조[d]이미다졸(2-phenyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-benzo[d]imidazole) 대신 화합물 437-2, 1-페닐-2-(4-(4,4,5,5-테트라메틸-1,3,2-디옥사보로란-2-일)페닐)-1H-벤조[d]이미다졸(1-phenyl-2-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-benzo[d]imidazole) 을 사용한 것을 제외하고는, 제조예 39에서의 화합물 426-1의 제조와 동일한 방법으로 제조하여 목적 화합물 454-1을 얻었다.
화합물 454의 제조
원넥둥근바닥플라스크(One neck r.b.f)에 454-1(11.9g, 18mmol), 9H-카바졸(9H-carbazole, 3.62g, 21.6mmol), Pd2(dba)3 (1.6g, 1.8mmol), P(t-Bu)3 (6ml, 5.4mmol), NaOt-Bu (3.45g, 36mmol)의 톨루엔(Toluene, 100ml)의 혼합물을 110℃에서 8h 교반하였다. 반응물을 MC로 추출후 농축하여 컬럼 크로마토그래피(column chromatography, SiO2, Ethylacetate : Dichloromethane = 1 : 20)로 분리하였다(11.5g, 85%).
<제조예 42> 화합물 379의 제조
Figure PCTKR2015006560-appb-I000079
6-1 대신 화합물 309-1을 사용한 것을 제외하고는, 제조예 38에서의 화합물 419의 제조와 동일한 방법으로 제조하여 목적 화합물 379을 얻었다.
<제조예 43> 화합물 386의 제조
Figure PCTKR2015006560-appb-I000080
419-2 대신 화합물 379-2을 사용한 것을 제외하고는, 제조예 39에서의 화합물 426의 제조와 동일한 방법으로 제조하여 목적 화합물 386을 얻었다.
<제조예 44> 화합물 397의 제조
Figure PCTKR2015006560-appb-I000081
10-1 대신 화합물 343-1을 사용한 것을 제외하고는, 제조예 40에서의 화합물 437의 제조와 동일한 방법으로 제조하여 목적 화합물 397을 얻었다.
<제조예 45> 화합물 414의 제조
Figure PCTKR2015006560-appb-I000082
437-2 대신 화합물 397-2을 사용한 것을 제외하고는, 제조예 41에서의 화합물 454의 제조와 동일한 방법으로 제조하여 목적 화합물 414을 얻었다.
상기 제조예들과 같은 방법으로 화합물을 제조하고, 그 합성확인결과를 표 1 내지 3에 나타내었다.
[표 1]
Figure PCTKR2015006560-appb-I000083
Figure PCTKR2015006560-appb-I000084
Figure PCTKR2015006560-appb-I000085
Figure PCTKR2015006560-appb-I000086
Figure PCTKR2015006560-appb-I000087
[표 2]
Figure PCTKR2015006560-appb-I000088
Figure PCTKR2015006560-appb-I000089
[표 3]
Figure PCTKR2015006560-appb-I000090
Figure PCTKR2015006560-appb-I000091
Figure PCTKR2015006560-appb-I000092
<실험예 1> 화합물의 CV, UV 및 PL 측정
CV는 NPB(HOMO = -5.5eV)를 기준 물질로 하여 CV(Cyclic Voltammetry) 측정기기(제조사: princeton applied research, 모델명: Parstat2273)를 사용해 측정하였다.
UV 측정은 UV-가시광 분광기(제조사: perkin elmer, 모델명: LS35)를 사용하였고, 상온에서 테트라히드로퓨란(THF)을 사용하여 분석하였다.
PL 측정은 (장비: perkin elmer, 모델명: LS55)을 사용하였고, 상온에서 테트라히드로퓨란(THF)을 사용하여 분석하였다.
도 4는 화합물 29의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 5 및 6은 화합물 29의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 7는 화합물 42의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 8 및 9는 화합물 42의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 10는 화합물 87의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 11 및 12는 화합물 87의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 13은 화합물 88의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 14 및 15는 화합물 88의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 16은 화합물 90의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 17 및 18은 화합물 90의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 19는 화합물 91의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 20 및 21은 화합물 91의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 22는 화합물 92의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 23 및 24은 화합물 92의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 25는 화합물 93의 UV 및 PL 측정 그래프를 나타낸 것이다.
도 26 및 27은 화합물 93의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 28은 화합물 73의 CV 측정 결과 도출된 Eox값을 나타낸 것이다.
도 29는 화합물 73의 UVPL 측정 그래프를 나타낸 것이다.
도 30은 화합물 85의 LTPL 측정 그래프를 나타낸 것이다.
도 31은 화합물 85의 UVPL 측정 그래프를 나타낸 것이다.
도 32는 화합물 86의 LTPL 측정 그래프를 나타낸 것이다.
도 33은 화합물 86의 UVPL 측정 그래프를 나타낸 것이다.
도 34는 화합물 87의 LTPL 측정 그래프를 나타낸 것이다.
도 35은 화합물 87의 UVPL 측정 그래프를 나타낸 것이다.
도 36은 화합물 88의 LTPL 측정 그래프를 나타낸 것이다.
도 37은 화합물 88의 UVPL 측정 그래프를 나타낸 것이다.
도 38은 화합물 90의 LTPL 측정 그래프를 나타낸 것이다.
도 39는 화합물 90의 UVPL 측정 그래프를 나타낸 것이다.
도 40은 화합물 91의 LTPL 측정 그래프를 나타낸 것이다.
도 41은 화합물 91의 UVPL 측정 그래프를 나타낸 것이다.
도 42은 화합물 92의 LTPL 측정 그래프를 나타낸 것이다.
도 43은 화합물 92의 UVPL 측정 그래프를 나타낸 것이다.
도 44은 화합물 93의 LTPL 측정 그래프를 나타낸 것이다.
도 45은 화합물 93의 UVPL 측정 그래프를 나타낸 것이다.
도 46은 화합물 245의 LTPL 측정 그래프를 나타낸 것이다.
도 47은 화합물 245의 UVPL 측정 그래프를 나타낸 것이다.
도 48은 화합물 246의 LTPL 측정 그래프를 나타낸 것이다.
도 49는 화합물 246의 UVPL 측정 그래프를 나타낸 것이다.
도 50은 화합물 250의 LTPL 측정 그래프를 나타낸 것이다.
도 51은 화합물 250의 UVPL 측정 그래프를 나타낸 것이다.
도 52는 화합물 253의 LTPL 측정 그래프를 나타낸 것이다.
도 53은 화합물 253의 UVPL 측정 그래프를 나타낸 것이다.
도 54는 화합물 259의 LTPL 측정 그래프를 나타낸 것이다.
도 55는 화합물 259의 UVPL 측정 그래프를 나타낸 것이다.
도 56은 화합물 260의 LTPL 측정 그래프를 나타낸 것이다.
도 57은 화합물 260의 UVPL 측정 그래프를 나타낸 것이다.
도 58은 화합물 409의 LTPL 측정 그래프를 나타낸 것이다.
도 59는 화합물 409의 UVPL 측정 그래프를 나타낸 것이다.
도 60은 화합물 420의 LTPL 측정 그래프를 나타낸 것이다.
도 61은 화합물 420의 UVPL 측정 그래프를 나타낸 것이다.
도 62는 화합물 425의 LTPL 측정 그래프를 나타낸 것이다.
도 63은 화합물 425의 UVPL 측정 그래프를 나타낸 것이다.
도 64는 화합물 427의 LTPL 측정 그래프를 나타낸 것이다.
도 65는 화합물 427의 UVPL 측정 그래프를 나타낸 것이다.
도 66은 화합물 434의 LTPL 측정 그래프를 나타낸 것이다.
도 67은 화합물 434의 UVPL 측정 그래프를 나타낸 것이다.
도 5, 6, 8, 9, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 및 26 내지 28의 그래프에서, y축은 전류(current, 단위: A), x축은 전위(Potential, 단위: V)를 나타낸다.
도 4, 7, 10, 13, 16, 19, 22 및 25의 그래프에서 좌측의 그래프(푸른색)는 UV 흡광을 나타낸 것이며, 우측의 그래프(붉은색)는 PL 발광값을 나타낸 것이다. 도 4, 7, 10, 13, 16, 19, 22, 25, 및 29 내지 67의 그래프에서 각각 y축은 강도(intensity)이고, x축은 파장(단위: ㎚)이다.
또한, 화합물의 호모(HOMO: Highest Occupied Molecular Orbital), 루모(LUMO: Lowest Unoccupied Molecular Orbital) 및 밴드갭(band gap)은 하기 계산식으로 확인할 수 있다.
<계산식>
호모 = -5.5-(Eox(측정 대상 화합물) - Eox (NPB))eV
밴드갭 (호모-루모)= 1240/UV 흡수한계(UV absorption edge)
<실험예 2> OLED 소자의 제작
<비교예 1>
OLED용 글래스(삼성-코닝사 제조)로부터 얻어진 투명전극 ITO 박막을 트리클로로에틸렌, 아세톤, 에탄올, 증류수를 순차적으로 사용하여 각 5분간 초음파 세척을 실시한 후, 이소프로판올에 넣어 보관한 후 사용하였다.
다음으로 진공 증착 장비의 기판 폴더에 ITO 기판을 설치하고, 진공 증착 장비 내의 셀에 하기 4,4',4"-트리스(N,N-(2-나프틸)-페닐아미노)트리페닐 아민(4,4',4"-tris(N,N-(2-naphthyl)-phenylamino)triphenyl amine: 2-TNATA)을 넣었다.
Figure PCTKR2015006560-appb-I000093
이어서 챔버 내의 진공도가 10-6 torr에 도달할 때까지 배기시킨 후, 셀에 전류를 인가하여 2-TNATA를 증발시켜 ITO 기판 상에 600Å 두께의 정공 주입층을 증착하였다.
진공 증착 장비 내의 다른 셀에 하기 N,N'-비스(α-나프틸)-N,N'-디페닐-4,4'-디아민(N,N'-bis(α-naphthyl)-N,N'-diphenyl-4,4'-diamine: NPB)을 넣고, 셀에 전류를 인가하여 증발시켜 정공 주입층 위에 300Å 두께의 정공 수송층을 증착하였다.
Figure PCTKR2015006560-appb-I000094
이와 같이 정공 주입층 및 정공 수송층을 형성시킨 후, 그 위에 발광층으로서 다음과 같은 구조의 청색 발광 재료를 증착시켰다. 구체적으로, 진공 증착 장비 내의 한쪽 셀에 청색 발광 호스트 재료인 H1을 200Å 두께로 진공 증착시키고 그 위에 청색 발광 도판트 재료인 D1을 호스트 재료 대비 5% 진공 증착시켰다.
Figure PCTKR2015006560-appb-I000095
이어서 전자 수송층으로서 하기 구조식 E1의 화합물을 300Å 두께로 증착하였다.
Figure PCTKR2015006560-appb-I000096
전자 주입층으로 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하였고 Al 음극을 1,000Å의 두께로 하여 OLED 소자를 제작하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6~10-8 torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
<비교예 2>
상기 비교예 1에서와 같은 소자 구조를 제작하였으며 E1 재료 대신 E2 재료를 사용하였다.
Figure PCTKR2015006560-appb-I000097
<비교예 3>
하기의 같은 방법으로 유기 전계 발광 소자를 제조하였다.
1,500Å의 두께로 ITO가 박막 코팅된 유리 기판을 증류수 초음파로 세척하였다. 증류수 세척이 끝나면 아세톤, 메탄올, 이소프로필 알코올 등의 용제로 초음파 세척을 하고 건조시킨 후 UV 세정기에서 UV를 이용하여 5분간 UVO 처리하였다. 이후 기판을 플라즈마 세정기(PT)로 이송시킨후, 진공 상태에서 ITO 일함수 및 잔막제거를 위해 플라즈마 처리를 하여, 유기 증착용 열증착 장비로 이송하였다.
상기와 같이 준비된 ITO 투명 전극(양극) 위에 공통층인 정공 주입층 2-TNATA(4,4',4"-Tris[2-naphthyl(phenyl)amino]triphenylamine) 및 정공 수송층 NPB(N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine)을 형성하였다.
그 위에 발광층을 다음과 같이 열 진공 증착시켰다. 발광층은 호스트로 CBP(4,4'-N,N'-dicarbazole-biphenyl), 녹색 인광 도펀트로 Ir(ppy)3(tris(2-phenylpyridine)iridium)을 사용하여 CBP에 Ir(ppy)3를 7% 도핑하여 400Å 증착하였다. 이후 정공 저지층으로 BCP를 60Å 증착하였으며, 그 위에 전자 수송층으로 Alq3를 200Å 증착하였다. 마지막으로 전자 수송층 위에 리튬 플루오라이드(lithium fluoride: LiF)를 10Å 두께로 증착하여 전자 주입층을 형성한 후, 전자 주입층 위에 알루미늄(Al) 음극을 1,200Å의 두께로 증착하여 음극을 형성함으로써 유기 전계 발광 소자를 제조하였다.
한편, OLED 소자 제작에 필요한 모든 유기 화합물은 재료 별로 각각 10-6 ~ 10-8 torr 하에서 진공 승화 정제하여 OLED 제작에 사용하였다.
Figure PCTKR2015006560-appb-I000098
<실시예 1 ~ 98>
상기 비교예 1 및 2에서의 전자 수송층 형성시 사용된 E1 및 E2 대신 제조예 20 ~ 45에서 합성된 화합물을 사용하는 것을 제외하고는, 비교예 1 및 2와 동일하게 수행하여 유기 전계 발광 소자를 제작하였다.
비교예 1 ~ 2 및 실시예 1 ~ 98에서 각각 제작된 유기 전계 발광 소자에 대해 발광휘도가 700 cd/m2 에서의 구동전압, 효율, 색좌표, 내구성(수명)을 측정하여 평가하였으며, 그 결과는 하기 표 4와 같다.
[표 4]
Figure PCTKR2015006560-appb-I000099
Figure PCTKR2015006560-appb-I000100
Figure PCTKR2015006560-appb-I000101
Figure PCTKR2015006560-appb-I000102
상기 표 4에서와 같이 비교예 1 및 비교예 2에서 사용된 전자 수송층 물질인 E1 및 E2에 대비하여 본 발명에서의 실시예1에서 사용된 전자 수송층 물질로 소자를 제작시 수명이 상승하며 구동 전압 및 효율이 개선됨을 알 수 있다.
<실시예 99 ~ 118>
상기 비교예 3에서 발광층 형성시 사용된 호스트 CBP 대신 제조예 1 ~ 19에서 합성된 화합물을 사용하는 것을 제외하고는, 비교예 3과 동일하게 수행하여 유기 전계 발광 소자를 제작하였다.
비교예 3 및 실시예 99 ~ 118에서 각각 제작된 유기 전계 발광 소자에 대하여, 맥사이어스사의 M7000으로 전계 발광(EL) 특성을 측정하였으며, 그 측정 결과를 가지고 맥사이언스사에서 제조된 수명장비측정장비(M6000)를 통해 기준 휘도가 6,000 cd/m2 일 때, T90을 측정하였다. 그 결과는 하기 표 5와 같다.
[표 5]
Figure PCTKR2015006560-appb-I000103
상기 표 5의 결과로부터 알 수 있듯이, 본 발명에 따른 화합물을 발광층에 적용한 유기 발광 소자는 비교예 3에 비해 구동 전압이 낮고, 발광 효율이 향상되었을 뿐만 아니라 수명도 현저히 개선되었음을 알 수 있다.

Claims (18)

  1. 하기 화학식 1로 표시되는 헤테로고리 화합물:
    [화학식 1]
    Figure PCTKR2015006560-appb-I000104
    상기 화학식 1에 있어서,
    Y는 S 또는 O이고,
    X1 및 X2 는 서로 동일하거나 상이하고, 각각 독립적으로 N 또는 CR10이며,
    R1, R2, R4 내지 R10은 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알케닐; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알키닐; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알콕시; C3 내지 C60의 단환 또는 다환의 치환 또는 비치환된 시클로알킬; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로시클로알킬; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴, 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택된다.
  2. 청구항 1에 있어서, 상기 X1 및 X2 중 하나는 N이고, 나머지 하나는 CR10이며,
    상기 R1, R2 및 R10 중 적어도 하나는 -(L)m-(Z)n이고,
    L은 C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬렌; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌; 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴렌이며,
    m은 0 내지 3의 정수이고,
    n은 1 또는 2의 정수이며,
    Z는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴; -SiR11R12R13; -P(=O)R14R15; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴, 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택되고,
    R11 내지 R15는 서로 동일하거나 상이하며, 각각 독립적으로 C1 내지 C60의 직쇄 또는 분지쇄의 알킬; C6 내지 C60의 단환 또는 다환의 아릴; 및 C2 내지 C60의 단환 또는 다환의 헤테로아릴로 이루어진 군으로부터 선택되는 것인 헤테로고리 화합물.
  3. 청구항 2에 있어서, Z는 치환 또는 비치환된 페닐, 치환 또는 비치환된 바이페닐, 치환 또는 비치환된 트리페닐, 치환 또는 비치환된 나프틸, 치환 또는 비치환된 안트라세닐, 치환 또는 비치환된 페난트레닐, 치환 또는 비치환된 인데닐, 치환 또는 비치환된 페릴레닐, 치환 또는 비치환된 파이레닐, 치환 또는 비치환된 아세나프탈레닐, 치환 또는 비치환된 플루오레닐, 치환 또는 비치환된 플루오란테닐, 치환 또는 비치환된 트리페닐레닐, 치환 또는 비치환된 페날레닐, 치환 또는 비치환된 피롤, 치환 또는 비치환된 피리딜, 치환 또는 비치환된 피리미딜, 치환 또는 비치환된 피리다지닐, 치환 또는 비치환된 트리아지닐, 치환 또는 비치환된 티에닐, 치환 또는 비치환된 푸라닐, 치환 또는 비치환된 벤조푸라닐, 치환 또는 비치환된 디벤조푸라닐, 치환 또는 비치환된 벤조티아졸, 치환 또는 비치환된 벤즈옥사졸, 치환 또는 비치환된 인돌릴, 치환 또는 비치환된 카바졸릴, 치환 또는 비치환된 벤조카바졸릴, 치환 또는 비치환된 디벤조카바졸릴, 치환 또는 비치환된 인돌로카바졸릴, 치환 또는 비치환된 퀴놀릴, 치환 또는 비치환된 이소퀴놀릴, 치환 또는 비치환된 티오페닐, 치환 또는 비치환된 벤조티오페닐, 치환 또는 비치환된 디벤조티오페닐, 치환 또는 비치환된 플루오레닐, 치환 또는 비치환된 인돌리닐, 치환 또는 비치환된 10,11-디하이드로-디벤조[b,f]아제핀기, 치환 또는 비치환된 9,10-디하이드로아크리딘기, 플루오렌에 2,3-디하이드로-1H-인덴 또는 시클로헥산이 스피로 결합되고 치환 또는 비치환된 스피로기, 치환 또는 비치환된 디알킬아민, 치환 또는 비치환된 디아릴아민, 치환 또는 비치환된 알킬아릴아민, 치환 또는 비치환된 아세토페논기, 치환 또는 비치환된 벤조페논기, -SiR11R12R13 및 -P(=O)R14R15 중에서 선택되고,
    R11 내지 R15는 청구항 2에서 정의한 바와 동일한 것인 헤테로고리 화합물.
  4. 청구항 1에 있어서, 상기 R4 내지 R9는 수소 또는 중수소인 것인 헤테로고리 화합물.
  5. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 2 또는 3으로 표시되는 것인 헤테로고리 화합물:
    [화학식 2]
    Figure PCTKR2015006560-appb-I000105
    [화학식 3]
    Figure PCTKR2015006560-appb-I000106
    상기 화학식 2 및 3에 있어서, Y, X1, X2, R1, R2 및 R4 내지 R9의 정의는 화학식 1에서 정의한 바와 동일하다.
  6. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 4 내지 7 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    [화학식 4]
    Figure PCTKR2015006560-appb-I000107
    [화학식 5]
    Figure PCTKR2015006560-appb-I000108
    [화학식 6]
    Figure PCTKR2015006560-appb-I000109
    [화학식 7]
    Figure PCTKR2015006560-appb-I000110
    상기 화학식 4 내지 7에 있어서,
    Y, R1, R2 및 R4 내지 R9는 화학식 1에서 정의한 바와 동일하고,
    R3는 화학식 1의 R10의 정의와 동일하다.
  7. 청구항 6에 있어서, R1 내지 R3 중 적어도 하나는 -(L)m-(Z)n이고, 나머지는 화학식 1에서 정의한 바와 동일하며,
    L은 C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬렌; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌; 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴렌이고,
    m은 0 내지 3의 정수이며,
    n은 1 또는 2의 정수이고,
    Z는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴; -SiR11R12R13; -P(=O)R14R15; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴, 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택되며,
    R11 내지 R15는 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C60의 직쇄 또는 분지쇄의 알킬; C6 내지 C60의 단환 또는 다환의 아릴; 또는 C2 내지 C60의 단환 또는 다환의 헤테로아릴로 이루어진 군으로부터 선택되며,
    Y 및 R4 내지 R9의 정의는 화학식 1에서 정의한 바와 동일한 것인 헤테로고리 화합물.
  8. 청구항 7에 있어서, 상기 Z는 치환 또는 비치환된 페닐, 치환 또는 비치환된 바이페닐, 치환 또는 비치환된 트리페닐, 치환 또는 비치환된 나프틸, 치환 또는 비치환된 안트라세닐, 치환 또는 비치환된 페난트레닐, 치환 또는 비치환된 인데닐, 치환 또는 비치환된 페릴레닐, 치환 또는 비치환된 파이레닐, 치환 또는 비치환된 아세나프탈레닐, 치환 또는 비치환된 플루오레닐, 치환 또는 비치환된 플루오란테닐, 치환 또는 비치환된 트리페닐레닐, 치환 또는 비치환된 페날레닐, 치환 또는 비치환된 피롤, 치환 또는 비치환된 피리딜, 치환 또는 비치환된 피리미딜, 치환 또는 비치환된 피리다지닐, 치환 또는 비치환된 트리아지닐, 치환 또는 비치환된 티에닐, 치환 또는 비치환된 푸라닐, 치환 또는 비치환된 벤조푸라닐, 치환 또는 비치환된 디벤조푸라닐, 치환 또는 비치환된 벤조티아졸, 치환 또는 비치환된 벤즈옥사졸, 치환 또는 비치환된 인돌릴, 치환 또는 비치환된 카바졸릴, 치환 또는 비치환된 벤조카바졸릴, 치환 또는 비치환된 디벤조카바졸릴, 치환 또는 비치환된 인돌로카바졸릴, 치환 또는 비치환된 퀴놀릴, 치환 또는 비치환된 이소퀴놀릴, 치환 또는 비치환된 티오페닐, 치환 또는 비치환된 벤조티오페닐, 치환 또는 비치환된 디벤조티오페닐, 치환 또는 비치환된 플루오레닐, 치환 또는 비치환된 인돌리닐, 치환 또는 비치환된 10,11-디하이드로-디벤조[b,f]아제핀기, 치환 또는 비치환된 9,10-디하이드로아크리딘기, 플루오렌에 2,3-디하이드로-1H-인덴 또는 시클로헥산이 스피로 결합되고 치환 또는 비치환된 스피로기, 치환 또는 비치환된 디알킬아민, 치환 또는 비치환된 디아릴아민, 치환 또는 비치환된 알킬아릴아민, 치환 또는 비치환된 아세토페논기, 치환 또는 비치환된 벤조페논기, -SiR11R12R13 및 -P(=O)R14R15 중에서 선택되고,
    L, m, n, 및 R11 내지 R15는 청구항 7에서 정의한 바와 동일한 것인 헤테로고리 화합물.
  9. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 8 내지 11 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    [화학식 8]
    Figure PCTKR2015006560-appb-I000111
    [화학식 9]
    Figure PCTKR2015006560-appb-I000112
    [화학식 10]
    Figure PCTKR2015006560-appb-I000113
    [화학식 11]
    Figure PCTKR2015006560-appb-I000114
    상기 화학식 8 내지 11에 있어서,
    A는 직접결합; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬렌; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알케닐렌; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알키닐렌; C3 내지 C60의 단환 또는 다환의 치환 또는 비치환된 시클로알킬렌; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로시클로알킬렌; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴렌; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴, 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택되고,
    R16 내지 R19는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알킬; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알케닐; C2 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알키닐; C1 내지 C60의 직쇄 또는 분지쇄의 치환 또는 비치환된 알콕시; C3 내지 C60의 단환 또는 다환의 치환 또는 비치환된 시클로알킬; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로시클로알킬; C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴; C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴; 및 C1 내지 C20의 알킬, C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴, 또는 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴로 치환 또는 비치환된 아민으로 이루어진 군으로부터 선택되며,
    p, q, r 및 s는 0 내지 4의 정수이고,
    Y 및 R6 내지 R9의 정의는 화학식 1에서 정의한 바와 동일하다.
  10. 청구항 9에 있어서, 상기 A는 C6 내지 C60의 단환 또는 다환의 치환 또는 비치환된 아릴렌; 및 C2 내지 C60의 단환 또는 다환의 치환 또는 비치환된 헤테로아릴렌으로 이루어진 군으로부터 선택되는 것인 헤테로고리 화합물.
  11. 청구항 2에 있어서, 상기 Y는
    Figure PCTKR2015006560-appb-I000115
    이고, 상기 X3 및 X4는 치환 또는 비치환된 C6 내지 C60의 단환 또는 다환의 방향족 탄화수소 고리; 또는 치환 또는 비치환된 C2 내지 C60의 단환 또는 다환의 방향족 헤테로 고리인 것인 헤테로고리 화합물.
  12. 청구항 11에 있어서, 상기
    Figure PCTKR2015006560-appb-I000116
    는 하기 구조식들 중 어느 하나로 표시되는 것인 헤테로고리 화합물:
    Figure PCTKR2015006560-appb-I000117
    상기 구조식들에 있어서, Z1 내지 Z3은 서로 동일하거나 상이하고, 각각 독립적으로 S 또는 O이고,
    Z4 내지 Z9는 서로 동일하거나 상이하고, 각각 독립적으로 CR' R", NR', S 또는 O이며,
    R' 및 R"는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 치환 또는 비치환된 C1 내지 C60의 직쇄 또는 분지쇄의 알킬; 또는 치환 또는 비치환된 C6 내지 C60의 단환 또는 다환의 아릴이다.
  13. 청구항 1에 있어서, 상기 화학식 1은 하기 화합물들 중에서 선택되는 것인 헤테로고리 화합물:
    Figure PCTKR2015006560-appb-I000118
    Figure PCTKR2015006560-appb-I000119
    Figure PCTKR2015006560-appb-I000120
    Figure PCTKR2015006560-appb-I000121
    Figure PCTKR2015006560-appb-I000122
    Figure PCTKR2015006560-appb-I000123
    Figure PCTKR2015006560-appb-I000124
    Figure PCTKR2015006560-appb-I000125
    Figure PCTKR2015006560-appb-I000126
    Figure PCTKR2015006560-appb-I000127
    Figure PCTKR2015006560-appb-I000128
    Figure PCTKR2015006560-appb-I000129
    Figure PCTKR2015006560-appb-I000130
    Figure PCTKR2015006560-appb-I000131
    Figure PCTKR2015006560-appb-I000132
    Figure PCTKR2015006560-appb-I000133
    Figure PCTKR2015006560-appb-I000134
    Figure PCTKR2015006560-appb-I000135
    Figure PCTKR2015006560-appb-I000136
    Figure PCTKR2015006560-appb-I000137
    Figure PCTKR2015006560-appb-I000138
    Figure PCTKR2015006560-appb-I000139
  14. 양극, 음극 및 상기 양극과 음극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상이 청구항 1 내지 13 중 어느 하나의 항에 따른 헤테로고리 화합물을 포함하는 유기 발광 소자.
  15. 청구항 14에 있어서, 상기 유기물층은 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층으로 이루어진 군에서 선택되는 1층 이상을 포함하는 것인 유기 발광 소자.
  16. 청구항 15에 있어서, 상기 헤테로고리 화합물을 포함하는 유기물층은 전자 수송층인 것인 유기 발광 소자.
  17. 청구항 15에 있어서, 상기 헤테로고리 화합물을 포함하는 유기물층은 발광층인 것인 유기 발광 소자.
  18. 청구항 15에 있어서, 상기 헤테로고리 화합물을 포함하는 유기물층은 정공 저지층인 것인 유기 발광 소자.
PCT/KR2015/006560 2014-06-27 2015-06-26 헤테로고리 화합물 및 이를 이용한 유기 발광 소자 WO2015199489A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15810940.5A EP3162806B1 (en) 2014-06-27 2015-06-26 Heterocyclic compound and organic light emitting device using same
US15/318,794 US10644244B2 (en) 2014-06-27 2015-06-26 Heterocyclic compound and organic light emitting device using same
JP2016575528A JP6370934B2 (ja) 2014-06-27 2015-06-26 複素環化合物及びそれを用いた有機発光素子
CN201580035097.2A CN106661055B (zh) 2014-06-27 2015-06-26 杂环化合物以及使用该杂环化合物的有机发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0080226 2014-06-27
KR20140080226 2014-06-27

Publications (2)

Publication Number Publication Date
WO2015199489A2 true WO2015199489A2 (ko) 2015-12-30
WO2015199489A3 WO2015199489A3 (ko) 2016-09-15

Family

ID=54938902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006560 WO2015199489A2 (ko) 2014-06-27 2015-06-26 헤테로고리 화합물 및 이를 이용한 유기 발광 소자

Country Status (7)

Country Link
US (1) US10644244B2 (ko)
EP (1) EP3162806B1 (ko)
JP (1) JP6370934B2 (ko)
KR (1) KR101763222B1 (ko)
CN (1) CN106661055B (ko)
TW (1) TWI555752B (ko)
WO (1) WO2015199489A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124488A1 (en) * 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
WO2017092495A1 (zh) * 2015-12-04 2017-06-08 广州华睿光电材料有限公司 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
WO2017221999A1 (en) 2016-06-22 2017-12-28 Idemitsu Kosan Co., Ltd. Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes
WO2018043761A1 (en) * 2016-09-05 2018-03-08 Idemitsu Kosan Co.,Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
KR20200092633A (ko) * 2019-01-25 2020-08-04 엘티소재주식회사 화합물, 유기 광전자 소자 및 표시 장치
US20220024948A1 (en) * 2018-11-26 2022-01-27 Lt Materials Co., Ltd. Heterocyclic compound and organic light emitting device comprising same
WO2023085835A1 (ko) * 2021-11-12 2023-05-19 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847498B2 (en) 2014-04-14 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US10008679B2 (en) 2014-04-14 2018-06-26 Universal Display Corporation Organic electroluminescent materials and devices
KR102616577B1 (ko) 2016-09-30 2023-12-22 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함하는 유기 발광 소자
KR102443233B1 (ko) * 2017-09-22 2022-09-15 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102443232B1 (ko) * 2017-09-22 2022-09-15 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20190049958A (ko) 2017-10-30 2019-05-10 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
CN112262144A (zh) * 2018-06-28 2021-01-22 Sk材料有限公司 化合物、有机电致发光器件及显示装置
CN111247649B (zh) * 2018-09-28 2023-10-13 Lt素材株式会社 杂环化合物与包含其的有机发光装置
CN111247648B (zh) * 2018-09-28 2023-09-15 Lt素材株式会社 杂环化合物以及包含此化合物的有机发光装置
TWI795444B (zh) * 2018-10-01 2023-03-11 南韓商Lt素材股份有限公司 雜環化合物以及包含此化合物的有機發光裝置
TWI797168B (zh) * 2018-10-01 2023-04-01 南韓商Lt素材股份有限公司 雜環化合物與包含其的有機發光裝置
CN109593097B (zh) * 2018-11-26 2021-11-02 浙江华显光电科技有限公司 一种磷光主体化合物及其使用该化合物的有机电致发光器件
CN110256412B (zh) * 2019-06-27 2022-04-05 武汉天马微电子有限公司 一种化合物、有机电致发光器件及显示装置
CN110606855B (zh) * 2019-07-11 2022-03-18 湘潭大学 一种多取代苯并噻吩并异喹啉及衍生物及其合成方法
KR102437747B1 (ko) * 2019-08-22 2022-08-29 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102486109B1 (ko) 2020-12-28 2023-01-09 대우조선해양 주식회사 극지 선박의 손상방지용 앵커포켓 구조
WO2023287252A1 (ko) * 2021-07-15 2023-01-19 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2023085789A1 (ko) * 2021-11-10 2023-05-19 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2023085834A1 (ko) * 2021-11-12 2023-05-19 주식회사 엘지화학 신규한 화합물 및 이를 포함한 유기 발광 소자
WO2023096459A1 (ko) * 2021-11-29 2023-06-01 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
WO2007117289A2 (en) * 2005-12-14 2007-10-18 Inotek Pharmaceuticals Corporation Methods for treating or preventing erectile dysfunction or urinary incontinence
CN102224148B (zh) * 2008-09-23 2015-07-15 株式会社Lg化学 化合物、及其制备方法和使用该化合物的有机电子元件
JP5398397B2 (ja) 2009-07-21 2014-01-29 出光興産株式会社 有機薄膜太陽電池用材料及びそれを用いた有機薄膜太陽電池
US8968887B2 (en) 2010-04-28 2015-03-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
KR101477614B1 (ko) 2010-09-17 2014-12-31 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
US20120126205A1 (en) 2010-11-22 2012-05-24 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
TW201301598A (zh) * 2010-11-22 2013-01-01 Idemitsu Kosan Co 有機電激發光元件
US9484540B2 (en) 2010-11-22 2016-11-01 Idemitsu Kosan Co., Ltd. Oxygen-containing fused ring derivative and organic electroluminescence device comprising the same
TWI518078B (zh) 2010-12-28 2016-01-21 半導體能源研究所股份有限公司 充當發光元件材料之苯並[b]萘並[1,2-d]呋喃化合物
WO2013002217A1 (ja) * 2011-06-28 2013-01-03 シャープ株式会社 化合物、電界効果トランジスタ及びその製造方法、太陽電池、有機発光素子、組成物、表示装置用アレイ並びに表示装置
KR102076481B1 (ko) * 2012-07-13 2020-02-12 메르크 파텐트 게엠베하 금속 착물
WO2014038417A1 (ja) * 2012-09-07 2014-03-13 保土谷化学工業株式会社 新規なベンゾチエノインドール誘導体および該誘導体が使用されている有機エレクトロルミネッセンス素子
WO2014088047A1 (ja) 2012-12-05 2014-06-12 三星ディスプレイ株式▲会▼社 アミン誘導体、有機発光材料及びそれを用いた有機エレクトロルミネッセンス素子
JP6373573B2 (ja) 2012-12-05 2018-08-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. アミン誘導体、有機発光材料及びそれを用いた有機エレクトロルミネッセンス素子
CN104640848B (zh) * 2013-03-15 2018-01-26 出光兴产株式会社 蒽衍生物及使用其的有机电致发光元件
CN105283977B (zh) * 2013-06-11 2017-05-17 出光兴产株式会社 有机电致发光元件用材料、使用了该材料的有机电致发光元件和电子设备

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106397460B (zh) * 2015-07-29 2020-12-22 环球展览公司 有机电致发光材料和装置
JP2017031138A (ja) * 2015-07-29 2017-02-09 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
CN106397460A (zh) * 2015-07-29 2017-02-15 环球展览公司 有机电致发光材料和装置
EP3124488A1 (en) * 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
WO2017092495A1 (zh) * 2015-12-04 2017-06-08 广州华睿光电材料有限公司 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
WO2017221999A1 (en) 2016-06-22 2017-12-28 Idemitsu Kosan Co., Ltd. Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes
US11691983B2 (en) 2016-06-22 2023-07-04 Idemitsu Kosan Co., Ltd. Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes
WO2018043761A1 (en) * 2016-09-05 2018-03-08 Idemitsu Kosan Co.,Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
US11279709B2 (en) 2016-09-05 2022-03-22 Idemitsu Kosan Co., Ltd. Specifically substituted aza-dibenzofurans and aza-dibenzothiophenes for organic electronic devices
US20220024948A1 (en) * 2018-11-26 2022-01-27 Lt Materials Co., Ltd. Heterocyclic compound and organic light emitting device comprising same
KR20200092633A (ko) * 2019-01-25 2020-08-04 엘티소재주식회사 화합물, 유기 광전자 소자 및 표시 장치
KR102211131B1 (ko) 2019-01-25 2021-02-03 엘티소재주식회사 화합물, 유기 광전자 소자 및 표시 장치
WO2023085835A1 (ko) * 2021-11-12 2023-05-19 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자

Also Published As

Publication number Publication date
CN106661055A (zh) 2017-05-10
TWI555752B (zh) 2016-11-01
TW201609748A (zh) 2016-03-16
EP3162806B1 (en) 2023-08-23
KR101763222B1 (ko) 2017-07-31
EP3162806A2 (en) 2017-05-03
JP2017523153A (ja) 2017-08-17
CN106661055B (zh) 2019-09-13
JP6370934B2 (ja) 2018-08-08
KR20160001702A (ko) 2016-01-06
US20170141325A1 (en) 2017-05-18
WO2015199489A3 (ko) 2016-09-15
EP3162806A4 (en) 2018-06-20
US10644244B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2015199489A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2017099490A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2017078494A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2015199512A1 (ko) 다환 화합물 및 이를 이용한 유기발광소자
WO2016068633A2 (ko) 함질소 다환 화합물 및 이를 이용한 유기발광소자
WO2019225938A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2016089080A1 (ko) 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2022092625A1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 유기 발광 소자의 유기물층용 조성물 및 유기 발광 소자의 제조방법
WO2020153758A1 (ko) 화합물, 유기 광전자 소자 및 표시 장치
WO2015190718A1 (ko) 유기 전계 발광 소자
WO2017018795A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
WO2014112728A1 (ko) 피라졸계 화합물 및 이를 이용한 유기발광소자
WO2015034140A1 (ko) 피라졸 함유 다환고리 화합물 및 이를 이용한 유기발광소자
WO2020050619A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2021215669A1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2016068640A2 (ko) 헤테로고리 화합물 및 이를 이용한 유기발광소자
WO2020067657A1 (ko) 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2021071247A1 (ko) 유기 발광 소자, 이의 제조 방법 및 유기 발광 소자의 유기물층용 조성물
WO2018038464A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016003171A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기발광소자
WO2020067593A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020027463A1 (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2015099508A1 (ko) 헤테로고리 화합물 및 이를 이용한 유기발광소자
WO2015008908A1 (ko) 질소함유 다환고리 화합물 및 이를 이용한 유기발광소자
WO2019209037A1 (ko) 화합물 및 이를 포함한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810940

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2015810940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810940

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15318794

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016575528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE