WO2015199141A1 - Coumalin-based condensed ring compound exhibiting luminescence/semiconductor properties, and method for manufacturing same - Google Patents

Coumalin-based condensed ring compound exhibiting luminescence/semiconductor properties, and method for manufacturing same Download PDF

Info

Publication number
WO2015199141A1
WO2015199141A1 PCT/JP2015/068233 JP2015068233W WO2015199141A1 WO 2015199141 A1 WO2015199141 A1 WO 2015199141A1 JP 2015068233 W JP2015068233 W JP 2015068233W WO 2015199141 A1 WO2015199141 A1 WO 2015199141A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
condensed ring
ring compound
coumarin
formula
Prior art date
Application number
PCT/JP2015/068233
Other languages
French (fr)
Japanese (ja)
Inventor
稔 山路
Original Assignee
国立大学法人 群馬大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 群馬大学 filed Critical 国立大学法人 群馬大学
Priority to JP2016529634A priority Critical patent/JPWO2015199141A1/en
Publication of WO2015199141A1 publication Critical patent/WO2015199141A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/92Naphthopyrans; Hydrogenated naphthopyrans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Definitions

  • the present invention relates to a novel luminescent organic material.
  • An organic compound used as a light emitting layer of an organic electroluminescence (EL) device is required to have fastness against an external environment such as high voltage, oxygen, light, moisture, and a large luminous efficiency at the same time. Therefore, the design and development of molecules having both robustness and high luminescence are desired.
  • coumarin is a molecule that does not emit fluorescence, it is known that fluorescence is observed by introducing substituents.
  • a molecule having a diethylamino group introduced at the 7-position of a coumarin skeleton (coumarin 466) and a coumarin derivative having a gelolidine skeleton (coumarin 102) are known as fluorescent probes and dyes.
  • Patent Document 1 coumarin compounds that emit red light with high brightness and coumarin-containing organic light-emitting materials obtained by chemically modifying known materials for the purpose of having high reliability have been reported (Patent Document 1, Patents). Reference 2).
  • 3-phenylcoumarin, 3-phenylisocoumarin, and the like are also known as fluorescent luminescent compounds, and a fluorescent substance of an isocoumarin-based compound has been reported (Patent Document 3).
  • an object of the present invention is to provide an organic compound that is resistant to an external environment such as high voltage and oxygen, and can be used as an electronic material or a blue light-emitting element, and a method for producing the same.
  • the present inventor has photocondensed a benzene ring at the C 3 -C 4 position and / or C 7 -C 8 position of the fluorescent coumarin skeleton or the isocoumarin skeleton.
  • a novel coumarin derivative or isocoumarin derivative that is expected to be fluorescent and to have high fastness to the external environment by arranging in zigzag.
  • a novel coumarin condensed ring compound and isocoumarin condensed compound are obtained.
  • R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group.
  • Ar represents an aromatic ring or a heteroaromatic ring which may have a substituent. However, when R 1 to R 4 are all hydrogen, Ar is not a benzene ring.
  • m is an integer of 1 to 7
  • n is an integer of 2 to 7.
  • n is an integer of 2 to 7.
  • R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group.
  • Ar represents an aromatic ring or a heteroaromatic ring which may have a substituent. However, when R 1 to R 4 are all hydrogen, Ar is not a benzene ring.
  • R 1 to R 4 are independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group.
  • n is an integer from 2 to 7.
  • R 1 to R 4 are independently hydrogen, hydroxyl group, methoxy group, amino group, dimethylamino group, diethylamino group, trifluoromethyl group, nitro group.
  • R 1 to R 4 are independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group.
  • n is an integer from 2 to 7.
  • R 3 is a hydroxyl group, a methoxy group, an amino group, a dimethylamino group, a diethylamino group, a trifluoromethyl group, a nitro group, or a cyano group.
  • a coumarin condensed ring compound an isocoumarin condensed ring compound exhibiting luminescent property and semiconductor performance, and a production method thereof.
  • FIG. 1 shows absorption / fluorescence spectra in acetonitrile of coumarin condensed ring compounds represented by formulas (7) to (10) and 7-methoxycoumarin.
  • FIG. 2 is an absorption / fluorescence spectrum in acetonitrile of a coumarin condensed ring compound represented by formula (8), formula (11), or formula (12).
  • FIG. 3 is an absorption / fluorescence spectrum in acetonitrile of a coumarin condensed ring compound represented by formula (15) or formula (16).
  • FIG. 4 shows the fluorescence yield ( ⁇ f ) and fluorescence lifetime ( ⁇ f ) of coumarin condensed ring compounds represented by formulas (7) to (12) and (15) to (16) and 7-methoxycoumarin. ) And the fluorescence speed (k f ).
  • FIG. 5 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (7).
  • FIG. 6 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (8).
  • FIG. 7 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (9).
  • FIG. 8 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (10).
  • FIG. 9 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (11).
  • FIG. 10 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (12).
  • FIG. 11 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (15).
  • a coumarin condensed ring compound and an isocoumarin condensed ring compound may be described as a coumarin-type condensed ring compound.
  • the coumarin condensed ring compound according to the present invention is a compound represented by any one of the above general formulas (1) to (3).
  • R 1 to R 4 are independently hydrogen, hydroxyl, A group, an alkoxy group, an amino group, an alkylamino group, a dialkylamino group, a trialkylamino group, a trifluoromethyl group, a nitro group or a cyano group
  • Ar is an aromatic ring or a heterocyclic group which may have a substituent. Represents an aromatic ring. However, when R 1 to R 4 are all hydrogen, Ar is not a benzene ring.
  • n is an integer from 2 to 7.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. It may be branched or cyclic.
  • the coumarin-based condensed ring compound represented by the above general formula (5) in which Ar in the general formula (1) has a phenacene structure is particularly preferable because of its high fastness.
  • n is 2 to 7.
  • R 1 to R 4 are a hydroxyl group, a methoxy group, an amino group, a dimethylamino group, a diethylamino group, a trifluoromethyl group, a nitro group, or It is preferably a cyano group, and in the formula (5), n is preferably 2 to 5.
  • a coumarin condensed ring compound which is a 7-methoxycoumarin derivative in which R 3 is a methoxy group and n is 2 to 5 is particularly preferable because high luminous efficiency can be obtained.
  • an electron-withdrawing substituent such as a halogen, a nitro group, a cyano group, a tosyl group, an acyl group, or a trifluoromethyl group into the condensed ring site represented by Ar in the formula (1)
  • an electron donating group such as a hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group or trialkylamino group into m stretched condensed ring sites may improve the fluorescence.
  • the physical properties of fluorescence are obtained, that is, fluorescence yield ( ⁇ f ), fluorescence lifetime ( ⁇ f ), and fluorescence speed (k f ) Can be changed.
  • fluorescence yield ⁇ f
  • fluorescence lifetime ⁇ f
  • fluorescence speed k f
  • the fluorescence yield is expected to increase due to charge transfer within the molecule, and control of electron mobility when used as an electronic device material can be expected.
  • Specific examples of the compound represented by the general formula (1) include compounds represented by the following structural formulas (7) to (16).
  • An aromatic compound having a phenacene skeleton in which benzene rings are arranged in a zigzag manner is known as a condensed ring compound resistant to high voltage and oxygen.
  • a molecule in which a condensed ring structure such as a phenacene skeleton is introduced into a coumarin compound has not been known so far.
  • the present inventor has found that a coumarin-based condensed ring compound having the above-described light-emitting properties and semiconductor performance can be produced by subjecting an existing fluorescent coumarin-based skeleton to a ring-condensation reaction using light.
  • the coumarin condensed ring compound according to the embodiment of the present invention can be easily obtained by a production method having a photocondensation process in which light is irradiated in the presence of an oxidizing agent.
  • a production method having a photocondensation process in which light is irradiated in the presence of an oxidizing agent With the manufacturing method according to the embodiment of the present invention, it is possible to manufacture an organic compound that can be used as an electronic material or a blue light-emitting element with a smaller number of steps than a general multi-step synthesis method.
  • the reaction since the reaction is completed in a short time in the photocondensation process, it is possible to manufacture the organic EL device in a short time by using this.
  • the coumarin condensed ring compound according to the embodiment of the present invention is produced by the following reaction formula.
  • the 4-position methyl group is brominated with N-bromosuccinimide (NBS).
  • N-bromosuccinimide N-bromosuccinimide
  • a phosphonium salt is formed with triphenylphosphine (PPh 3 ), and a Wittig reaction with 1-naphthaldehyde is performed to synthesize a photoreaction precursor.
  • PPh 3 triphenylphosphine
  • a Wittig reaction with 1-naphthaldehyde is performed to synthesize a photoreaction precursor.
  • O 2 and I 2 By irradiating with light, a coumarin condensed ring compound represented by the formula (8) is obtained.
  • the photoreaction precursor has a coumarin skeleton or an isocoumarin skeleton, and one carbon of a carbon-carbon double bond is bonded to the carbon at the 4-position and / or 8-position of the skeleton, A compound in which a benzene ring is photocondensed at the C 3 -C 4 position and / or the C 7 -C 8 position by irradiation with light in the presence of an oxidizing agent.
  • solvents that can be used in the above reaction include solvents that do not adversely affect the target photocondensation reaction, such as cyclohexene and toluene.
  • the photocondensation conditions are not particularly limited as long as they can be condensed without decomposing the coumarin skeleton.
  • the light to be irradiated preferably includes light having a wavelength of 220 nm or more and 400 nm or less. Long wavelength ultraviolet rays having a wavelength of about 400 to 320 nm and medium wavelength ultraviolet rays having a wavelength of about 320 to 280 nm are efficiently absorbed by the substrate, which is preferable. Irradiation light does not need to be a single light, and mercury lamps, black light lamps, sodium lamps, white lamps and the like including various wavelengths can be used.
  • the light to be irradiated may include both long wavelength ultraviolet rays and medium wavelength ultraviolet rays.
  • the irradiation time is about 10 to 40 hours.
  • oxidizing agent examples include O 2 and I 2 .
  • the oxidizing agent O 2 may be at a concentration (about 10 ⁇ 3 mol ⁇ dm ⁇ 3 ) that dissolves in the solvent at room temperature under atmospheric pressure, and I 2 may be added in a catalytic amount.
  • a sensitizer in the photocondensation process.
  • the sensitizer 9-fluorenone or the like can be used.
  • the sensitizer is preferably used in an equimolar amount or more with respect to the photoreaction precursor.
  • the sensitizer absorbs long-wavelength ultraviolet rays and / or medium-wavelength ultraviolet rays satisfactorily, thereby improving the reaction efficiency. Even if it uses a sensitizer, it can isolate
  • the purification method is not particularly limited, and examples include column chromatography and sublimation. Of these, purification by column chromatography is preferred. By purification, the purity is preferably 99.9% or more, and more preferably 99.99% or more.
  • a coumarin condensed ring compound having high purity can efficiently utilize light emission when it is used as an EL device. Purity can be determined by matching the fluorescence excitation spectrum with the absorption spectrum.
  • the isocoumarin condensed ring compound according to the present invention is a compound represented by the above general formula (4).
  • R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, An alkylamino group, a dialkylamino group, a trialkylamino group, a trifluoromethyl group, a nitro group or a cyano group, and Ar represents an aromatic ring or a heteroaromatic ring which may have a substituent.
  • R 1 to R 4 are all hydrogen, Ar is not a benzene ring.
  • the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, which may be linear, branched or cyclic.
  • at least one of R 1 to R 4 is a hydroxyl group, a methoxy group, an amino group, a dimethylamino group, a diethylamino group, a trifluoromethyl group, a nitro group, or a cyano group.
  • n is 2-7.
  • n is an integer of 2 to 7, preferably 2 to 5.
  • the above-mentioned isocoumarin condensed ring compound having luminescent property and semiconductor performance can be produced by subjecting an existing isocoumarin skeleton to a condensation reaction using light. Specifically, it is produced by the following reaction formula.
  • an isocoumarin condensed ring compound represented by the formula (18) is obtained.
  • the raw material methylisocoumarin is, for example, Org. Lett. 8 (2006), pages 5829 to 5832, and can be synthesized by the following method.
  • Examples of the solvent that can be used in the photocondensation reaction include solvents such as toluene and cyclohexane that do not adversely affect the target photocondensation reaction.
  • the photocondensation conditions are not particularly limited as long as they can be condensed without decomposing the isocoumarin skeleton.
  • the light to be irradiated preferably includes light having a wavelength of 280 nm or more and 400 nm or less.
  • Long wavelength ultraviolet rays having a wavelength of about 400 to 320 nm and medium wavelength ultraviolet rays having a wavelength of about 320 to 280 nm are efficiently absorbed by the substrate, which is preferable.
  • Irradiation light does not need to be a single light, and mercury lamps, black light lamps, sodium lamps, white lamps and the like including various wavelengths can be used.
  • the light to be irradiated may include both long wavelength ultraviolet rays and medium wavelength ultraviolet rays.
  • the irradiation time is about 10 to 40 hours.
  • oxidizing agent examples include O 2 and I 2 .
  • the oxidizing agent O 2 may be at a concentration (about 10 ⁇ 3 mol ⁇ dm ⁇ 3 ) that is dissolved in the solvent at room temperature under atmospheric pressure, and I 2 may be added in a catalytic amount.
  • a sensitizer in the photocondensation process.
  • the sensitizer 9-fluorenone or the like can be used.
  • the sensitizer is preferably used in an equimolar amount or more with respect to the condensed ring reaction substrate.
  • the sensitizer absorbs long-wavelength ultraviolet rays and / or medium-wavelength ultraviolet rays satisfactorily, thereby improving the reaction efficiency. Even if it uses a sensitizer, it can isolate
  • the purification method is not particularly limited, and examples thereof include column chromatography, sublimation method, recrystallization and the like. Of these, purification by column chromatography is preferred.
  • the column chromatography developing solvent hexane and chloroform, a mixed solvent of hexane and ethyl acetate, or the like can be preferably used.
  • the recrystallization solvent chloroform or toluene can be preferably used.
  • a highly purified isocoumarin fused ring compound can efficiently utilize light emission when it is used as an organic EL device.
  • the isocoumarin condensed ring compound is preferably purified to a purity of 99.99% or higher.
  • the coumarin condensed ring compound and the isocoumarin condensed ring compound of the present invention emit light in a wavelength region of 380 to 460 nm and can be expected to have fastness, they can be suitably used as a blue organic EL material. In addition to the fluorescent property, it is expected to exhibit n-type semiconductor operation, and application to an electron transport layer of a field effect transistor can be expected.
  • the configuration of the organic EL device of the present invention is not particularly limited, and can be a normal configuration.
  • a substrate, an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are provided.
  • One layer may have two or more functions.
  • the organic layer containing the coumarin-based condensed ring compound of the present invention can be suitably used for a light emitting layer, an electron transport layer, and a layer having both of them.
  • the method for producing the organic layer of the organic EL device of the present invention is not particularly limited, but it can be produced by dissolving the coumarin-based condensed ring compound according to the present invention in, for example, a solvent and applying it onto a substrate.
  • the coating method include a casting method and a spin coating method.
  • Solvents include pentane, hexane, heptane, benzene, toluene, xylene, cyclohexane, methylcyclohexane, decalin, carbon tetrachloride, chloroform, 1,2-dichloroethane, ethyl ether, isopropyl ether, anisole, dioxane, tetrahydrofuran, acetone, methyl.
  • the solvent may be removed by drying after coating.
  • a material for forming a substrate an anode, a hole transport layer, an electron transport layer, a cathode and the like, a material generally used in an organic EL device can be used.
  • the organic EL device using the coumarin-based condensed ring compound of the present invention can be expected to withstand long-time use, it can be expected to have a flat light emitter such as an electrophotographic photosensitive member and a flat panel display, a copying machine, a printer, and a liquid crystal display. It can be used for backlights, light sources such as instruments, various light emitting elements, various display devices, various signs, various accessories, and the like.
  • the compound is MeOCM [4], the compound represented by Formula (16) is MeOCM [5], the compound represented by Formula (9) is MeOCM @ Phe, the compound represented by Formula (10) is MeOCM @ Py,
  • the compound represented by the formula (11) is also represented by CM [3], and the compound represented by the formula (12) which is a 7,8-benzocoumarin condensed ring is also represented by [1] CM [3].
  • Phe means Phenanthryl and Py means pyrenyl, and is a chromophore of a reaction precursor.
  • Example 1 Coumarin condensed ring compound represented by formula (7) (1) Step1. Synthesis of 4-Bromomethyl-7-methoxycoumarin phosphonium salt 4-Bromomethyl-7-methoxycoumarin (4-Bromomethyl-7-methoxycoumarin) 2.0 g (7.4 mmol), triphenylphosphine (triphenylphosphine) 1.95 g (7.4 mmol), xylene (75 mL) was added, The mixture was refluxed at 140 ° C. overnight under a nitrogen atmosphere.
  • the mixture was refluxed at 70 ° C. for 1 hour under a nitrogen atmosphere to synthesize Compound A.
  • the reaction solution was allowed to cool to room temperature and washed with water and saturated brine.
  • the target product was isolated as a mixture of EZ isomers by silica column chromatography using a mixed solvent of Hexane: ethyl acetate (78:22, v / v) as a developing solvent.
  • the product showed a spot with an Rf value of 0.14 on TLC (thin layer chromatography) using Hexane: ethyl acetate (4: 1, v / v) as the developing solvent.
  • the yield was 0.44 g, and the yield was 56%.
  • FIG. 1 shows the absorption / fluorescence spectrum of the coumarin condensed ring compound obtained at 10 ⁇ 4 mol / L in acetonitrile.
  • FIG. 1 also shows the absorption / fluorescence spectrum of 7-methoxycoumarin.
  • a JASCO V-550 spectrophotometer was used for the measurement of the absorption spectrum.
  • a Hitachi F-7000 fluorescence spectrophotometer was used for measurement of the fluorescence spectrum.
  • the excitation wavelength of the obtained coumarin condensed ring compound was 280 nm.
  • the excitation wavelength of 7-methoxycoumarin was 295 nm.
  • the fluorescence yield ( ⁇ f ), fluorescence lifetime ( ⁇ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
  • the vertical axis in FIG. 4 represents the fluorescence yield ⁇ f in the upper stage, the fluorescence lifetime ⁇ f / ns in the middle stage, the fluorescence speed k f / 10 8 s ⁇ 1 in the lower stage, and the abscissa represents the condensed benzene ring. Represents the number [n].
  • an absolute PL photoquantum yield measuring apparatus (Hamamatsu Photonics C9920-02) was used, and in each Example, the absorbance at a wavelength longer than 300 nm of the obtained compound was maximum. Excitation was performed at the absorption maximum wavelength.
  • a single photon correlation measurement device (Hamamatsu Photonics Quantaurus-TAU System) is used to measure the fluorescence lifetime ⁇ f , and in each example, the wavelength that gives the maximum absorbance of the obtained compound at 310 nm, 340 nm, or 365 nm is selected. The excitation wavelength was used.
  • Example 2 Coumarin condensed ring compound represented by formula (8) 2-1. Synthesis of photoreaction precursor (compound B) by Wittig reaction 4-Bromomethyl-7-methoxycoumarin phosphonium salt 0.95 g (1.79 mmol) and 1-naphthaldehyde 0.26 ml (1.90 mmol) were added to chloroform 20 mL, and 10 mL of 50% KOH aqueous solution was added dropwise with stirring. . The mixture was refluxed at 70 ° C. for 3 hours under a nitrogen atmosphere. After cooling to room temperature, the reaction solution was washed with water and saturated brine. The product was isolated as a mixture of EZ isomers on a silica column chromatograph. The yield was 0.60 g, and the yield was 98%.
  • FIG. 1 and FIG. 2 show absorption and fluorescence spectra of the coumarin condensed ring compound at 10 ⁇ 4 mol / L in acetonitrile.
  • the fluorescence yield ( ⁇ f ), fluorescence lifetime ( ⁇ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
  • Example 3 Coumarin condensed ring compound represented by formula (9) 3-1. Synthesis of photoreaction precursor (compound C) by Wittign reaction Add 4-Bromomethyl-7-methoxycoumarin phosphonium salt (1.6 g, 3.0 mmol), 9-phenanthrenecarbaldehyde (0.62 g, 3.0 mmol) and chloroform (30 mL), and stir with 10 mL of 50% KOH aqueous solution. It was dripped. The mixture was refluxed at 60 ° C. for 1 hour under a nitrogen atmosphere. After cooling to room temperature, the reaction solution was washed with water and saturated brine. Isolation as a mixture of EZ isomers was performed on a silica column chromatograph.
  • the product showed a spot with an Rf value of 0.24 on TLC (Thin Layer Chromatography) using Hexane: ethyl acetate (4: 1, v / v) as the developing solvent.
  • the yield was 0.90 g, and the yield was 80%.
  • FIG. 1 shows the absorption / fluorescence spectrum of the coumarin condensed ring compound obtained at 10 ⁇ 4 mol / L in acetonitrile.
  • the fluorescence yield ( ⁇ f ), fluorescence lifetime ( ⁇ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
  • Example 4 Coumarin condensed ring compound represented by formula (10) 4-1.
  • Synthesis of photoreaction precursor (compound D) by Wittig reaction Add 1.6 g (3.0 mmol) of 4-Bromomethyl-7-methoxycoumarin phosphonium salt, 0.76 g (3.3 mmol) of 1-pyrenecarboxaldehyde, 30 mL of dichloromethane, and add 50% KOH with stirring. 10 mL of aqueous solution was dripped. The mixture was refluxed at 45 ° C. for 1 hour under a nitrogen atmosphere. After allowing to cool to room temperature, the reaction solution was washed with water and saturated brine. Isolated as a mixture of EZ isomers by silica column chromatography. The product showed a spot with an Rf value of 0.24 on TLC using Hexane: ethyl acetate (4: 1, v / v) as the developing solvent. The yield was 0.15 g, and the yield was 12%.
  • FIG. 1 shows the absorption / fluorescence spectrum of the coumarin condensed ring compound obtained at 10 ⁇ 4 mol / L in acetonitrile.
  • the fluorescence yield ( ⁇ f ), fluorescence lifetime ( ⁇ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
  • Example 5 Coumarin condensed ring compound represented by formula (11) (1) Step1. Synthesis of 4-Chloromethylcoumarin Add ethyl 4-chloroacetoacetate (Ethyl-4-chloroacetoacetate) 2.4mL (17.7mmol), phenol (5.0g (53.1mmol)), 6 drops of sulfuric acid (sulfuric acid), 120 ° C under nitrogen atmosphere And heated at reflux for 3 hours. After extraction with Ethyl acetate, the extract was washed twice with an aqueous sodium hydrogen carbonate solution, once with distilled water, and once with saturated saline. Isolation and purification were performed using a silica column chromatograph with a solvent of Hexane: ethyl acetate (4: 1, v / v). The yield was 330 mg, and the yield was 10%.
  • Step 3 Synthesis of photoreaction precursor (compound E) by Wittig reaction 4-Chloromethylcoumarin phosphonium salt 0.25 g (0.54 mmol), 1-naphthaldehyde 0.06 mL (0.59 mmol) 0.06 ml (0.59 mmol) and chloroform 10 mL were added, and 5 mL of 50% KOH aqueous solution was added dropwise with stirring. The mixture was refluxed at 60 ° C. for 1 hour under a nitrogen atmosphere. After allowing to cool to room temperature, the reaction solution was washed with water and saturated brine.
  • Hexane: ethyl acetate (4: 1, v / v) was isolated as a mixture of EZ isomers by silica column chromatography using a developing solvent. The yield was 0.15 g, and the yield was 92%.
  • the product showed a spot with an Rf value of 0.43 on TLC using Hexane: ethyl acetate (1: 5, v / v) as the developing solvent. Formation of the target product was confirmed by NMR measurement.
  • the NMR spectrum of the product is shown in FIG. The peak information of the NMR spectrum was as follows. The yield was 0.05 g, and the yield was 34%.
  • FIG. 2 shows an absorption / fluorescence spectrum of the obtained coumarin condensed ring compound at 10 ⁇ 4 mol / L in acetonitrile.
  • the fluorescence yield ( ⁇ f ), fluorescence lifetime ( ⁇ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
  • Example 6 A coumarin condensed ring compound represented by the formula (12) which is a 7,8-benzocoumarin condensed ring (1) Step1. Synthesis of compound F Ethyl-4-chloroacetoacetate 2.4 mL (17.7 mmol), 1-naphthol 7.6 g (53.1 mmol), and 6 drops of sulfuric acid were added, and the mixture was heated to reflux at 120 ° C. for 3 hours in a nitrogen atmosphere. After extraction with Ethyl acetate, the extract was washed twice with an aqueous sodium hydrogen carbonate solution, once with distilled water, and once with saturated saline. The solvent was distilled off, and the precipitate was filtered with suction and washed with ethyl acetate. The yield was 1.62 g, and the yield was 37%. Compound F was used in the next reaction without purification.
  • the product showed a spot with an Rf value of 0.50 on TLC using Hexane: ethyl acetate (1: 5, v / v) as the developing solvent.
  • the target product was confirmed by NMR measurement.
  • the NMR spectrum of the product is shown in FIG.
  • the peak information of the NMR spectrum was as follows. The yield was 67 mg, and the yield was 42%.
  • FIG. 2 shows an absorption / fluorescence spectrum of the obtained coumarin condensed ring compound at 10 ⁇ 4 mol / L in acetonitrile.
  • the fluorescence yield ( ⁇ f ), fluorescence lifetime ( ⁇ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
  • Example 7 Coumarin condensed ring compound represented by formula (15) 7-1.
  • Synthesis of photoreactive precursor (compound I) by Wittig reaction Add 1.6 g (3.0 mmol) of 4-Bromomethyl-7-methoxycoumarin phosphonium salt and 0.51 g (2.5 mmol) of phenanthrene-1-carbaldehyde to 30 mL of chloroform and stir 50% 10 mL of aqueous KOH solution was added dropwise. Subsequently, the mixture was refluxed at 65 ° C. for 1 hour in a nitrogen atmosphere. After cooling to room temperature, the mixture was washed with water and saturated brine.
  • the condensed ring product was purified by recrystallization using Ethyl acetate.
  • the obtained target product showed a spot having an Rf value of 0.19 on TLC using Hexane: chloroform (1: 5, v / v) as a developing solvent.
  • the yield was 15 mg and the yield was 21%.
  • the formation of the target product was confirmed by NMR.
  • the NMR of the product is shown in FIG.
  • the peak information of the NMR spectrum was as follows.
  • FIG. 3 shows the absorption / fluorescence spectrum of the obtained coumarin condensed ring compound at 10 ⁇ 4 mol / L in acetonitrile.
  • the fluorescence yield ( ⁇ f ), fluorescence lifetime ( ⁇ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
  • Example 8 Coumarin condensed ring compound represented by formula (16) 8-1. Synthesis of photoreaction precursor (compound J) by Wittig reaction 4-Bromomethyl-7-methoxycoumarin phosphonium salt 0.37 g (0.70 mmol) and chrysene-1-carbaldehyde 0.08 g (0.30 mmol) were added to 10 mL of chloroform and stirred with 50% KOH. 5 mL of aqueous solution was dripped. The mixture was refluxed at 65 ° C. for 1 hour under a nitrogen atmosphere. After cooling to room temperature, the mixture was washed with water and saturated brine.
  • the product after washing was isolated by silica column chromatography using a mixed solvent of Hexane: ethyl acetate (3: 1, v / v) as a developing solvent.
  • the product showed a spot with an Rf value of 0.28 on TLC using Hexane: ethyl acetate (3: 1, v / v) as the developing solvent.
  • the yield was 0.050 g, and the yield was 38%.
  • FIG. 3 shows the absorption / fluorescence spectrum of the obtained coumarin condensed ring compound at 10 ⁇ 4 mol / L in acetonitrile.
  • the fluorescence yield ( ⁇ f ), fluorescence lifetime ( ⁇ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
  • the fluorescence yield of the compound represented by the formula (8) of Example 2 increases about 125 times as compared with 7-methoxycoumarin, and the fluorescence rate increases. Has also been shown to increase significantly. Further, the results of Examples 1, 2, 7 and Example 8 indicate that the fluorescence yield is further improved by increasing the number of benzene rings.
  • the compound of the embodiment of the present invention is expected to exhibit not only fluorescence but also an n-type semiconductor operation, and the application to the electron transport layer of the field effect transistor is expected. Application can be expected.
  • the organic EL device using the coumarin-based condensed ring compound of the present invention can be expected to be robust, it can be expected to be used in clothing tags and the like, and can complement the silicon semiconductor market. In addition, it can be produced from an existing coumarin by a photocondensation reaction, and since it has a high yield, it can be produced at low cost and is very useful industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyrane Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The present invention addresses the problem of providing an organic compound resistant to external environments such as high voltage or oxygen and usable as an electronic material or blue light-emitting element. This problem is solved by a coumalin condensed ring compound represented by general formula (1). In formula (1), R1-R4 each independently represent a hydrogen atom, a hydroxyl group, an alkoxy group, an amino group, an alkylamino group, a dialkylamino group, a trialkylamino group, a trifluoromethyl group, a nitro group, or a cyano group, and Ar represents an aromatic ring or heteroaromatic ring which may have a substituent. When R1-R4 are all hydrogen atoms, Ar is not a benzene ring.

Description

発光性・半導体性能を発現するクマリン系縮環化合物およびその製造方法Coumarin-type condensed ring compound exhibiting luminescent property and semiconductor performance and method for producing the same
 本発明は、新規な発光性有機材料に関する。 The present invention relates to a novel luminescent organic material.
 有機電界発光(EL)デバイスの発光層として用いられる有機化合物には、高電圧、酸素、光、水分などの外部環境に対する堅牢性と、大きな発光効率を有する事が同時に要求される。そのため、堅牢性と高発光性の両方を兼ね備えた分子の設計・開発が望まれている。
 クマリンはケイ光を発しない分子であるが、置換基を導入する事により、ケイ光が観測される事が知られている。例えば、クマリン骨格の7位にジエチルアミノ基を導入した分子(クマリン466)やジェロリジン骨格を有するクマリン誘導体(クマリン102)はケイ光プローブや色素として知られている。また、赤色に高輝度で発光するクマリン系化合物や、高信頼性を有することを目的として公知の材料に化学修飾を加えた含クマリン発光性有機材料について報告がされている(特許文献1、特許文献2)。他にも、3-フェニルクマリンや3-フェニルイソクマリンなどもケイ光性発光化合物として知られており、イソクマリン系化合物のケイ光物質も報告されている(特許文献3)。
An organic compound used as a light emitting layer of an organic electroluminescence (EL) device is required to have fastness against an external environment such as high voltage, oxygen, light, moisture, and a large luminous efficiency at the same time. Therefore, the design and development of molecules having both robustness and high luminescence are desired.
Although coumarin is a molecule that does not emit fluorescence, it is known that fluorescence is observed by introducing substituents. For example, a molecule having a diethylamino group introduced at the 7-position of a coumarin skeleton (coumarin 466) and a coumarin derivative having a gelolidine skeleton (coumarin 102) are known as fluorescent probes and dyes. In addition, coumarin compounds that emit red light with high brightness and coumarin-containing organic light-emitting materials obtained by chemically modifying known materials for the purpose of having high reliability have been reported (Patent Document 1, Patents). Reference 2). In addition, 3-phenylcoumarin, 3-phenylisocoumarin, and the like are also known as fluorescent luminescent compounds, and a fluorescent substance of an isocoumarin-based compound has been reported (Patent Document 3).
特開2001-81347号公報JP 2001-81347 A 特開2005-139390号公報JP 2005-139390 A 特開2005-232104号公報Japanese Patent Laid-Open No. 2005-232104
 しかしながら、既存のケイ光性クマリン誘導体では、高電圧や酸素などの外部環境への耐性が低く、電子デバイスとして用いることは困難であることが多い。特に、青色の有機EL素子には、他の色よりさらに高電圧に耐えうる堅牢性が求められる。上述したように、強固な分子骨格を構築するために、公知の材料に化学修飾を加えることが提案されているが、置換基の導入によりケイ光に赤色シフトが生じ、所望の発光が得られなくなる場合がある。
 従って、本発明は、高電圧や酸素等の外部環境に耐性があり、電子材料や青色発光素子として使用できる有機化合物およびその製造方法を提供することを目的とする。
However, existing fluorescent coumarin derivatives have low resistance to external environments such as high voltage and oxygen, and are often difficult to use as electronic devices. In particular, blue organic EL elements are required to have fastness that can withstand higher voltages than other colors. As described above, in order to construct a strong molecular skeleton, it has been proposed to chemically modify a known material. However, the introduction of a substituent causes a red shift in fluorescence, resulting in the desired emission. It may disappear.
Accordingly, an object of the present invention is to provide an organic compound that is resistant to an external environment such as high voltage and oxygen, and can be used as an electronic material or a blue light-emitting element, and a method for producing the same.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、ケイ光性クマリン骨格またはイソクマリン骨格のC3-C4位および/またはC7-8位にベンゼン環を光縮環し、ジグザグに配列することで、ケイ光性を有し外部環境に対する堅牢性が高いことが期待される新規なクマリン誘導体またはイソクマリン誘導体が得られることに想到し、新規なクマリン縮環化合物およびイソクマリン縮環化合物並びにその合成法の開発に成功した。 As a result of intensive studies to solve the above problems, the present inventor has photocondensed a benzene ring at the C 3 -C 4 position and / or C 7 -C 8 position of the fluorescent coumarin skeleton or the isocoumarin skeleton. In order to obtain a novel coumarin derivative or isocoumarin derivative that is expected to be fluorescent and to have high fastness to the external environment by arranging in zigzag, a novel coumarin condensed ring compound and isocoumarin condensed compound are obtained. We succeeded in developing ring compounds and their synthesis.
 すなわち、本発明は以下の通りである。
[1] 下記の一般式(1)乃至(4)のいずれかで表されるクマリン縮環化合物またはイソクマリン縮環化合物。
Figure JPOXMLDOC01-appb-C000007
式(1)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、Arは置換基を有していてもよい芳香族環または複素芳香族環を表している。但し、R1~R4が全て水素の場合、Arはベンゼン環ではない。
Figure JPOXMLDOC01-appb-C000008
式(2)中、mは1~7の整数、nは2~7の整数である。
Figure JPOXMLDOC01-appb-C000009
式(3)中、nは2~7の整数である。
Figure JPOXMLDOC01-appb-C000010
式(4)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、Arは置換基を有していてもよい芳香族環または複素芳香族環を表している。但し、R1~R4が全て水素の場合、Arはベンゼン環ではない。
[2] 前記一般式(1)で表される化合物が式(5)で表される[1]に記載のクマリン縮環化合物。
Figure JPOXMLDOC01-appb-C000011
式(5)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、nは2~7の整数である。
[3] 前記一般式(1)または(5)において、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、メトキシ基、アミノ基、ジメチルアミノ基、ジエチルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基である、[1]または[2]記載のクマリン縮環化合物。
[4] 前記一般式(2)において、nが2~5である、[1]または[3]記載のクマリン縮環化合物。
[5] 前記一般式(3)において、nが2~5である、[1]または[3]記載のクマリン縮環化合物。
[6] 前記一般式(5)において、nが2~5である、[2]または[3]に記載のクマリン縮環化合物。
[7] 前記一般式(4)で表される化合物が、一般式(6)で表される化合物である、[1]記載のイソクマリン縮環化合物。
Figure JPOXMLDOC01-appb-C000012
式(6)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、nは2~7の整数である。
[8] 前記一般式(4)または(6)において、R3がヒドロキシル基、メトキシ基、アミノ基、ジメチルアミノ基、ジエチルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基である、[1]または[7]のイソクマリン縮環化合物。
[9] 前記一般式(6)において、nが2~5である、[7]または[8]記載のイソクマリン縮環化合物。
[10] 酸化剤の存在下、光反応前駆体に光を照射する光縮合工程を有する、[1]~[9]のいずれかに記載のクマリン縮環化合物またはイソクマリン縮環化合物の製造方法。
[11] 前記酸化剤がO2およびI2である、[10]記載のクマリン縮環化合物またはイソクマリン縮環化合物の製造方法。
[12] 前記光縮合工程において長波長紫外線および/または中波長紫外線を含む光を照射する、[10]または[11]記載のクマリン縮環化合物またはイソクマリン縮環化合物の製造方法。
[13] [1]~[9]のいずれかに記載のクマリン縮環化合物またはイソクマリン縮環化合物を含む有機層を具備する有機ELデバイス。
That is, the present invention is as follows.
[1] A coumarin condensed ring compound or an isocoumarin condensed ring compound represented by any one of the following general formulas (1) to (4).
Figure JPOXMLDOC01-appb-C000007
In the formula (1), R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group. And Ar represents an aromatic ring or a heteroaromatic ring which may have a substituent. However, when R 1 to R 4 are all hydrogen, Ar is not a benzene ring.
Figure JPOXMLDOC01-appb-C000008
In the formula (2), m is an integer of 1 to 7, and n is an integer of 2 to 7.
Figure JPOXMLDOC01-appb-C000009
In the formula (3), n is an integer of 2 to 7.
Figure JPOXMLDOC01-appb-C000010
In the formula (4), R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group. And Ar represents an aromatic ring or a heteroaromatic ring which may have a substituent. However, when R 1 to R 4 are all hydrogen, Ar is not a benzene ring.
[2] The coumarin fused ring compound according to [1], wherein the compound represented by the general formula (1) is represented by the formula (5).
Figure JPOXMLDOC01-appb-C000011
In the formula (5), R 1 to R 4 are independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group. And n is an integer from 2 to 7.
[3] In the general formula (1) or (5), R 1 to R 4 are independently hydrogen, hydroxyl group, methoxy group, amino group, dimethylamino group, diethylamino group, trifluoromethyl group, nitro group. Or a coumarin condensed ring compound according to [1] or [2], which is a cyano group.
[4] The coumarin condensed ring compound according to [1] or [3], wherein in the general formula (2), n is 2 to 5.
[5] The coumarin condensed ring compound according to [1] or [3], wherein in the general formula (3), n is 2 to 5.
[6] The coumarin condensed ring compound according to [2] or [3], wherein n is 2 to 5 in the general formula (5).
[7] The isocoumarin fused ring compound according to [1], wherein the compound represented by the general formula (4) is a compound represented by the general formula (6).
Figure JPOXMLDOC01-appb-C000012
In the formula (6), R 1 to R 4 are independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group. And n is an integer from 2 to 7.
[8] In the general formula (4) or (6), R 3 is a hydroxyl group, a methoxy group, an amino group, a dimethylamino group, a diethylamino group, a trifluoromethyl group, a nitro group, or a cyano group. [1] Or the isocoumarin condensed ring compound of [7].
[9] The isocoumarin condensed ring compound according to [7] or [8], wherein n is 2 to 5 in the general formula (6).
[10] The method for producing a coumarin condensed ring compound or an isocoumarin condensed ring compound according to any one of [1] to [9], which has a photocondensation step of irradiating light to the photoreaction precursor in the presence of an oxidizing agent.
[11] The method for producing a coumarin condensed ring compound or an isocoumarin condensed ring compound according to [10], wherein the oxidizing agent is O 2 and I 2 .
[12] The method for producing a coumarin condensed ring compound or an isocoumarin condensed ring compound according to [10] or [11], wherein light containing long wavelength ultraviolet light and / or medium wavelength ultraviolet light is irradiated in the photocondensation step.
[13] An organic EL device comprising an organic layer containing the coumarin condensed ring compound or the isocoumarin condensed ring compound according to any one of [1] to [9].
 本発明により、発光性・半導体性能を発現するクマリン縮環化合物、イソクマリン縮環化合物並びにその製造方法が提供される。 According to the present invention, there are provided a coumarin condensed ring compound, an isocoumarin condensed ring compound exhibiting luminescent property and semiconductor performance, and a production method thereof.
図1は、式(7)乃至(10)で表されるクマリン縮環化合物および7-メトキシクマリンのアセトニトリル中の吸収・ケイ光スペクトルである。FIG. 1 shows absorption / fluorescence spectra in acetonitrile of coumarin condensed ring compounds represented by formulas (7) to (10) and 7-methoxycoumarin. 図2は、式(8)、式(11)、式(12)で表されるクマリン縮環化合物のアセトニトリル中の吸収・ケイ光スペクトルである。FIG. 2 is an absorption / fluorescence spectrum in acetonitrile of a coumarin condensed ring compound represented by formula (8), formula (11), or formula (12). 図3は、式(15)、式(16)で表されるクマリン縮環化合物のアセトニトリル中の吸収・ケイ光スペクトルである。FIG. 3 is an absorption / fluorescence spectrum in acetonitrile of a coumarin condensed ring compound represented by formula (15) or formula (16). 図4は、式(7)乃至(12)、(15)乃至(16)で表されるクマリン縮環化合物、および7-メトキシクマリンのケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を示したグラフである。FIG. 4 shows the fluorescence yield (Φ f ) and fluorescence lifetime (τ f ) of coumarin condensed ring compounds represented by formulas (7) to (12) and (15) to (16) and 7-methoxycoumarin. ) And the fluorescence speed (k f ). 図5は、式(7)で表されるクマリン縮環化合物のCDCl3中の400MHz NMRスペクトルである。FIG. 5 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (7). 図6は、式(8)で表されるクマリン縮環化合物のCDCl3中の400MHz NMRスペクトルである。FIG. 6 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (8). 図7は、式(9)で表されるクマリン縮環化合物のCDCl3中の400MHz NMRスペクトルである。FIG. 7 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (9). 図8は、式(10)で表されるクマリン縮環化合物のCDCl3中の400MHz NMRスペクトルである。FIG. 8 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (10). 図9は、式(11)で表されるクマリン縮環化合物のCDCl3中の400MHz NMRスペクトルである。FIG. 9 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (11). 図10は、式(12)で表されるクマリン縮環化合物のCDCl3中の400MHz NMRスペクトルである。FIG. 10 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (12). 図11は、式(15)で表されるクマリン縮環化合物のCDCl3中の400MHz NMRスペクトルである。FIG. 11 is a 400 MHz NMR spectrum in CDCl 3 of the coumarin condensed ring compound represented by the formula (15).
 以下、本発明を実施形態に即して詳細に説明する。ただし、本発明は本明細書に明示的または黙示的に記載された実施形態に限定されるものではない。
 また、クマリン縮環化合物およびイソクマリン縮環化合物をクマリン系縮環化合物と表記することがある。
Hereinafter, the present invention will be described in detail according to embodiments. However, the present invention is not limited to the embodiments explicitly or implicitly described in this specification.
Moreover, a coumarin condensed ring compound and an isocoumarin condensed ring compound may be described as a coumarin-type condensed ring compound.
<クマリン縮環化合物>
 本発明に係るクマリン縮環化合物は、上記一般式(1)乃至(3)のいずれかで表される化合物であり、式(1)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、Arは置換基を有していてもよい芳香族環または複素芳香族環を表している。但し、R1~R4が全て水素の場合、Arはベンゼン環ではない。また、式(2)中、mは1~7の整数、nは2~7の整数であり、式(3)中、nは2~7の整数である。
 上記一般式(1)のアルコキシ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基における、アルキル基の炭素数は好ましくは1~5であり、より好ましくは1~3であり、直鎖でも分岐鎖でも環状でもよい。
 また、上記一般式(1)中のArがフェナセン構造である、上記一般式(5)で表されるクマリン系縮環化合物は堅牢性が特に高く、好ましい。式(5)中、nは2~7である。
 また、発光効率の観点から、上記一般式(1)において、R1~R4の1つ以上はヒドロキシル基、メトキシ基、アミノ基、ジメチルアミノ基、ジエチルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であることが好ましく、式(5)においてnは2~5であることが好ましい。中でも、R3がメトキシ基、nが2~5である7-メトキシクマリン誘導体であるクマリン縮環化合物は、高い発光効率が得られるため、特に好ましい。
 さらに、式(1)中Arで表される縮環部位への、ハロゲンやニトロ基、シアノ基、トシル基、アシル基、トリフルオロメチル基などの電子吸引性の置換基の導入や、式(2)のm個延伸した縮環部位へのヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基などの電子供与基の導入は、ケイ光性が向上する可能性がある。
 フェナセンのような多環縮環構造をクマリン骨格またはイソクマリン骨格に導入する上記構成とすることで、高電圧や酸素に対して大きな耐性を得ることが期待できる。また、縮環したベンゼン環の数が増加しても長波長側へのシフトが少なく、クマリンまたはイソクマリン由来の青色発光を得ることができ、青色有機EL材料に要求される380~460nmの波長領域での発光が可能となる。これは、フェナセンの特徴であるHOMO-LUMOギャップをクマリン縮環化合物でも引き継いでいるためであると推察される。さらに、縮環したベンゼン環の数を変化させ、構造を変えることにより、ケイ光の物理特性、すなわち、ケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を変化させることができる。ベンゼン環の増加につれて、分子内での電荷移動によるケイ光収率の増加が予想され、電子デバイス材料としたときの電子移動度の制御が期待できる。
<Coumarin fused ring compound>
The coumarin condensed ring compound according to the present invention is a compound represented by any one of the above general formulas (1) to (3). In the formula (1), R 1 to R 4 are independently hydrogen, hydroxyl, A group, an alkoxy group, an amino group, an alkylamino group, a dialkylamino group, a trialkylamino group, a trifluoromethyl group, a nitro group or a cyano group, and Ar is an aromatic ring or a heterocyclic group which may have a substituent. Represents an aromatic ring. However, when R 1 to R 4 are all hydrogen, Ar is not a benzene ring. In the formula (2), m is an integer from 1 to 7, and n is an integer from 2 to 7. In the formula (3), n is an integer from 2 to 7.
In the alkoxy group, the alkylamino group, the dialkylamino group, and the trialkylamino group of the general formula (1), the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms. It may be branched or cyclic.
In addition, the coumarin-based condensed ring compound represented by the above general formula (5) in which Ar in the general formula (1) has a phenacene structure is particularly preferable because of its high fastness. In the formula (5), n is 2 to 7.
From the viewpoint of luminous efficiency, in the general formula (1), one or more of R 1 to R 4 are a hydroxyl group, a methoxy group, an amino group, a dimethylamino group, a diethylamino group, a trifluoromethyl group, a nitro group, or It is preferably a cyano group, and in the formula (5), n is preferably 2 to 5. Among them, a coumarin condensed ring compound which is a 7-methoxycoumarin derivative in which R 3 is a methoxy group and n is 2 to 5 is particularly preferable because high luminous efficiency can be obtained.
Further, introduction of an electron-withdrawing substituent such as a halogen, a nitro group, a cyano group, a tosyl group, an acyl group, or a trifluoromethyl group into the condensed ring site represented by Ar in the formula (1), 2) Introduction of an electron donating group such as a hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group or trialkylamino group into m stretched condensed ring sites may improve the fluorescence. There is.
By adopting the above structure in which a polycyclic condensed ring structure such as phenacene is introduced into a coumarin skeleton or an isocoumarin skeleton, it can be expected that high resistance to high voltage and oxygen is obtained. Further, even if the number of condensed benzene rings is increased, there is little shift to the long wavelength side, blue light emission derived from coumarin or isocoumarin can be obtained, and the wavelength region of 380 to 460 nm required for blue organic EL materials. Light emission at is possible. This is presumably because the HOMO-LUMO gap, which is a characteristic of phenacene, is also inherited by the coumarin condensed ring compound. Furthermore, by changing the number of condensed benzene rings and changing the structure, the physical properties of fluorescence are obtained, that is, fluorescence yield (Φ f ), fluorescence lifetime (τ f ), and fluorescence speed (k f ) Can be changed. As the number of benzene rings increases, the fluorescence yield is expected to increase due to charge transfer within the molecule, and control of electron mobility when used as an electronic device material can be expected.
 上記一般式(1)で表される化合物の具体例としては、下記構造式(7)~(16)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Specific examples of the compound represented by the general formula (1) include compounds represented by the following structural formulas (7) to (16).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 ベンゼン環がジグザグに配列したフェナセン骨格を有する芳香族化合物は、高電圧や酸素に対して耐性のある縮環化合物として知られている。一方、これまで、クマリン系化合物にフェナセン骨格のような縮環構造を導入した分子は知られていない。本発明者は、既存のケイ光性クマリン系骨格に光を用いて縮環反応させることで、上記の発光性・半導体性能を有するクマリン系縮環化合物を製造できることを見出した。
 本発明の実施の態様に係るクマリン縮環化合物は、酸化剤の存在下、光を照射する光縮合プロセスを有する製造方法により容易に得られる。本発明の実施の態様に係る製造方法により、多段階となる一般的な合成方法より少ない工程数で、電子材料や青色発光素子として使用できる有機化合物の製造が可能となる。また、光縮合プロセスは短時間で反応が終了するので、これを用いることにより有機ELデバイスの製造も短時間で製造が可能となる。
 本発明の実施の態様に係るクマリン縮環化合物は、具体的には、次のような反応式により製造される。
An aromatic compound having a phenacene skeleton in which benzene rings are arranged in a zigzag manner is known as a condensed ring compound resistant to high voltage and oxygen. On the other hand, a molecule in which a condensed ring structure such as a phenacene skeleton is introduced into a coumarin compound has not been known so far. The present inventor has found that a coumarin-based condensed ring compound having the above-described light-emitting properties and semiconductor performance can be produced by subjecting an existing fluorescent coumarin-based skeleton to a ring-condensation reaction using light.
The coumarin condensed ring compound according to the embodiment of the present invention can be easily obtained by a production method having a photocondensation process in which light is irradiated in the presence of an oxidizing agent. With the manufacturing method according to the embodiment of the present invention, it is possible to manufacture an organic compound that can be used as an electronic material or a blue light-emitting element with a smaller number of steps than a general multi-step synthesis method. In addition, since the reaction is completed in a short time in the photocondensation process, it is possible to manufacture the organic EL device in a short time by using this.
Specifically, the coumarin condensed ring compound according to the embodiment of the present invention is produced by the following reaction formula.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 クマリン骨格をもつ7-メトキシ-4-メチルクマリンを出発原料として、N-ブロモスクシンイミド(NBS)で4位のメチル基をブロモ化する。次いで、トリフェニルフォスフィン(PPh3)によりフォスフォニウム塩とし、1-ナフトアルデヒドとウィティッヒ反応させ、光反応前駆体を合成し、OとIの存在下、光反応前駆体に308nmの光を照射することで、式(8)で示されるクマリン縮環化合物が得られる。 Using 7-methoxy-4-methylcoumarin having a coumarin skeleton as a starting material, the 4-position methyl group is brominated with N-bromosuccinimide (NBS). Next, a phosphonium salt is formed with triphenylphosphine (PPh 3 ), and a Wittig reaction with 1-naphthaldehyde is performed to synthesize a photoreaction precursor. In the presence of O 2 and I 2 , By irradiating with light, a coumarin condensed ring compound represented by the formula (8) is obtained.
 上記の合成例では、市販されている7-メトキシ-4-メチルクマリンを原料物質とした例で説明したが、原料物質は、市販されている7-メトキシ-4-ブロモメチルクマリンを用いることもできるし、公知の方法で調製してもよい。なお、本発明において、光反応前駆体とはクマリン骨格又はイソクマリン骨格を有し、該骨格の4位および/または8位の炭素に炭素-炭素二重結合の炭素の1つが結合しており、酸化剤の存在下、光を照射することにより、C3-C4位および/またはC7-C8位にベンゼン環を光縮環する化合物をいう。 In the above synthesis example, a commercially available 7-methoxy-4-methylcoumarin is used as an example of the raw material, but a commercially available 7-methoxy-4-bromomethylcoumarin may be used as the raw material. Or may be prepared by known methods. In the present invention, the photoreaction precursor has a coumarin skeleton or an isocoumarin skeleton, and one carbon of a carbon-carbon double bond is bonded to the carbon at the 4-position and / or 8-position of the skeleton, A compound in which a benzene ring is photocondensed at the C 3 -C 4 position and / or the C 7 -C 8 position by irradiation with light in the presence of an oxidizing agent.
 上記反応で使用することのできる溶媒としては、シクロヘキセンやトルエンなどの、目的とする光縮合反応に悪影響を及ぼさない溶媒を挙げることができる。 Examples of the solvent that can be used in the above reaction include solvents that do not adversely affect the target photocondensation reaction, such as cyclohexene and toluene.
 本発明に係る製造方法において光縮合条件は、クマリン骨格を分解することなく縮合できるものであれば、特に限定されない。照射する光は、波長が220nm以上、400nm以下の光を含むものが好適である。波長が400~320nm程度の長波長紫外線および波長が320~280nm程度の中波長紫外線が効率良く基質に吸収されるため、好適である。照射する光は、単一光である必要はなく、様々な波長を含む水銀灯、ブラックライトランプ、ナトリウムランプ、白色灯などを用いることができる。照射する光は、長波長紫外線と中波長紫外線の両方が含まれるものであってもよい。照射時間は10~40時間程度である。 In the production method according to the present invention, the photocondensation conditions are not particularly limited as long as they can be condensed without decomposing the coumarin skeleton. The light to be irradiated preferably includes light having a wavelength of 220 nm or more and 400 nm or less. Long wavelength ultraviolet rays having a wavelength of about 400 to 320 nm and medium wavelength ultraviolet rays having a wavelength of about 320 to 280 nm are efficiently absorbed by the substrate, which is preferable. Irradiation light does not need to be a single light, and mercury lamps, black light lamps, sodium lamps, white lamps and the like including various wavelengths can be used. The light to be irradiated may include both long wavelength ultraviolet rays and medium wavelength ultraviolet rays. The irradiation time is about 10 to 40 hours.
 上記製造方法の光縮合プロセスは、酸化剤の存在下で行うことが好ましい。酸化剤としては、O2とI2が挙げられる。酸化剤のO2は大気圧下室温で溶媒に溶解している程度の濃度(約10-3mol・dm-3)で有ればよく、I2は触媒量加えればよい。 It is preferable to perform the photocondensation process of the said manufacturing method in presence of an oxidizing agent. Examples of the oxidizing agent include O 2 and I 2 . The oxidizing agent O 2 may be at a concentration (about 10 −3 mol · dm −3 ) that dissolves in the solvent at room temperature under atmospheric pressure, and I 2 may be added in a catalytic amount.
 また、光縮合プロセスにおいては増感剤を用いることが好ましい。増感剤としては、9-フルオレノンなどを用いることができる。増感剤は、光反応前駆体に対して、等倍モル以上用いることが好ましい。上記増感剤は、長波長紫外線および/または中波長紫外線を良好に吸収するので、反応効率が向上する。増感剤を用いても、生成する化合物から容易に分離することができるので、比較的多量に用いても、クマリン縮環化合物に混入し難く、純度の高いものが得られる。 In addition, it is preferable to use a sensitizer in the photocondensation process. As the sensitizer, 9-fluorenone or the like can be used. The sensitizer is preferably used in an equimolar amount or more with respect to the photoreaction precursor. The sensitizer absorbs long-wavelength ultraviolet rays and / or medium-wavelength ultraviolet rays satisfactorily, thereby improving the reaction efficiency. Even if it uses a sensitizer, it can isolate | separate easily from the compound to produce | generate, Therefore Even if it uses relatively large quantities, it is hard to mix in a coumarin condensed ring compound, and a high purity thing is obtained.
 本発明の実施の態様においては、光縮合プロセスの後、溶液を濾過により濾別された生成物を精製することが好ましい。精製方法は特に限定されず、カラムクロマトグラフィや昇華などが挙げられる。中でも、カラムクロマトグラフィで精製することが好ましい。精製により、純度は99.9%以上とすることが好ましく、99.99%以上とすることがより好ましい。純度の高いクマリン縮環化合物は、ELデバイスとしたときに発光を効率よく利用できる。純度は、ケイ光励起スペクトルと吸収スペクトルの一致により求めることができる。 In the embodiment of the present invention, it is preferable to purify the product obtained by filtering the solution by filtration after the photocondensation process. The purification method is not particularly limited, and examples include column chromatography and sublimation. Of these, purification by column chromatography is preferred. By purification, the purity is preferably 99.9% or more, and more preferably 99.99% or more. A coumarin condensed ring compound having high purity can efficiently utilize light emission when it is used as an EL device. Purity can be determined by matching the fluorescence excitation spectrum with the absorption spectrum.
<イソクマリン縮環化合物>
 本発明に係るイソクマリン縮環化合物は、上記一般式(4)で示される化合物であり、式(4)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、Arは置換基を有していてもよい芳香族環または複素芳香族環を表している。但し、R1~R4が全て水素の場合、Arはベンゼン環ではない。
 アルコキシ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基における、アルキル基の炭素数は好ましくは1~5であり、より好ましくは1~3であり、直鎖でも分岐鎖でも環状でもよい。
 また、上記一般式(4)において、R1~R4の1つ以上はヒドロキシル基、メトキシ基、アミノ基、ジメチルアミノ基、ジエチルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であることが好ましく、nは2~7であることが好ましい。
 また、Arがフェナセン構造である、上記一般式(6)で表されるイソクマリン縮環化合物は、強いケイ光を発するので、好ましい。式(6)中、nは2~7の整数であり、好ましくは2~5である。
<Isocoumarin fused ring compound>
The isocoumarin condensed ring compound according to the present invention is a compound represented by the above general formula (4). In the formula (4), R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, An alkylamino group, a dialkylamino group, a trialkylamino group, a trifluoromethyl group, a nitro group or a cyano group, and Ar represents an aromatic ring or a heteroaromatic ring which may have a substituent. However, when R 1 to R 4 are all hydrogen, Ar is not a benzene ring.
In the alkoxy group, alkylamino group, dialkylamino group and trialkylamino group, the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms, which may be linear, branched or cyclic.
In the general formula (4), at least one of R 1 to R 4 is a hydroxyl group, a methoxy group, an amino group, a dimethylamino group, a diethylamino group, a trifluoromethyl group, a nitro group, or a cyano group. Preferably, n is 2-7.
In addition, the isocoumarin fused ring compound represented by the general formula (6) in which Ar has a phenacene structure is preferable because it emits strong fluorescence. In the formula (6), n is an integer of 2 to 7, preferably 2 to 5.
 上記一般式(4)の具体例としては、下記構造式(17)~(19)で示される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 上記の発光性・半導体性能を有するイソクマリン縮環化合物は、既存のイソクマリン骨格に、光を用いて縮環反応させることで製造することができる。具体的には、次のような反応式により製造される。
Specific examples of the general formula (4) include compounds represented by the following structural formulas (17) to (19).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
The above-mentioned isocoumarin condensed ring compound having luminescent property and semiconductor performance can be produced by subjecting an existing isocoumarin skeleton to a condensation reaction using light. Specifically, it is produced by the following reaction formula.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 イソクマリン骨格をもつメチルイソクマリンを出発原料として、O2とI2の存在下、光反応前駆体に308nmの光を照射することで、式(18)で示されるイソクマリン縮環化合物が得られる。 By irradiating the photoreaction precursor with light of 308 nm in the presence of O 2 and I 2 using methyl isocoumarin having an isocoumarin skeleton as a starting material, an isocoumarin condensed ring compound represented by the formula (18) is obtained.
 原料物質のメチルイソクマリンは、例えばOrg. Lett. 8(2006)5829頁-5832頁記載の下記の方法で合成することができる。
Figure JPOXMLDOC01-appb-C000028
The raw material methylisocoumarin is, for example, Org. Lett. 8 (2006), pages 5829 to 5832, and can be synthesized by the following method.
Figure JPOXMLDOC01-appb-C000028
 上記光縮環反応で使用することのできる溶媒としては、トルエンやシクロヘキサンなどの、目的とする光縮合反応に悪影響を及ぼさない溶媒を挙げることができる。光縮合条件は、イソクマリン骨格を分解することなく、縮合できるものであれば、特に限定されない。 Examples of the solvent that can be used in the photocondensation reaction include solvents such as toluene and cyclohexane that do not adversely affect the target photocondensation reaction. The photocondensation conditions are not particularly limited as long as they can be condensed without decomposing the isocoumarin skeleton.
 照射する光は、波長が280nm以上、400nm以下の光を含むものが好適である。波長が400~320nm程度の長波長紫外線および波長が320~280nm程度の中波長紫外線が効率良く基質に吸収されるため、好適である。照射する光は、単一光である必要はなく、様々な波長を含む水銀灯、ブラックライトランプ、ナトリウムランプ、白色灯などを用いることができる。照射する光は、長波長紫外線と中波長紫外線の両方が含まれるものであってもよい。照射時間は10~40時間程度である。 The light to be irradiated preferably includes light having a wavelength of 280 nm or more and 400 nm or less. Long wavelength ultraviolet rays having a wavelength of about 400 to 320 nm and medium wavelength ultraviolet rays having a wavelength of about 320 to 280 nm are efficiently absorbed by the substrate, which is preferable. Irradiation light does not need to be a single light, and mercury lamps, black light lamps, sodium lamps, white lamps and the like including various wavelengths can be used. The light to be irradiated may include both long wavelength ultraviolet rays and medium wavelength ultraviolet rays. The irradiation time is about 10 to 40 hours.
 上記製造方法の光縮合プロセスは、酸化剤の存在下で行うことが好ましい。酸化剤としては、O2とI2が挙げられる。酸化剤のO2は大気圧下、室温で溶媒に溶解している程度の濃度(約10-3mol・dm-3)で有ればよく、I2は触媒量加えればよい。 It is preferable to perform the photocondensation process of the said manufacturing method in presence of an oxidizing agent. Examples of the oxidizing agent include O 2 and I 2 . The oxidizing agent O 2 may be at a concentration (about 10 −3 mol · dm −3 ) that is dissolved in the solvent at room temperature under atmospheric pressure, and I 2 may be added in a catalytic amount.
 また、光縮合プロセスにおいては増感剤を用いることが好ましい。増感剤としては、9-フルオレノンなどを用いることができる。増感剤は、縮環反応基質に対して、等倍モル以上用いることが好ましい。上記増感剤は、長波長紫外線および/または中波長紫外線を良好に吸収するので、反応効率が向上する。増感剤を用いても、生成する化合物から容易に分離することができるので、比較的多量に用いても、イソクマリン縮環化合物に混入し難く、純度の高いものが得られる。 In addition, it is preferable to use a sensitizer in the photocondensation process. As the sensitizer, 9-fluorenone or the like can be used. The sensitizer is preferably used in an equimolar amount or more with respect to the condensed ring reaction substrate. The sensitizer absorbs long-wavelength ultraviolet rays and / or medium-wavelength ultraviolet rays satisfactorily, thereby improving the reaction efficiency. Even if it uses a sensitizer, it can isolate | separate easily from the compound to produce | generate, Therefore Even if it uses relatively large quantities, it is hard to mix in an isocoumarin condensed ring compound, and a high purity thing is obtained.
 本発明の実施の態様においては、光照射の後、溶媒を減圧留去した後、生成物を精製することが好ましい。精製方法は特に限定されず、カラムクロマトグラフィや昇華法、再結晶などが挙げられる。中でも、カラムクロマトグラフィで精製することが好ましい。
 カラムクロマトグラフィ展開溶媒としては、ヘキサンとクロロホルムや、ヘキサンと酢酸エチルの混合溶媒などを好適に用いることができる。
 再結晶の溶媒としては、クロロホルムやトルエンを好適に用いることができる。
 純度の高いイソクマリン縮環化合物は、有機ELデバイスとしたときに発光を効率よく利用できる。イソクマリン縮環化合物は精製し、純度99.99%以上とすることが好ましい。
In the embodiment of the present invention, it is preferable to purify the product after light irradiation and then distilling off the solvent under reduced pressure. The purification method is not particularly limited, and examples thereof include column chromatography, sublimation method, recrystallization and the like. Of these, purification by column chromatography is preferred.
As the column chromatography developing solvent, hexane and chloroform, a mixed solvent of hexane and ethyl acetate, or the like can be preferably used.
As the recrystallization solvent, chloroform or toluene can be preferably used.
A highly purified isocoumarin fused ring compound can efficiently utilize light emission when it is used as an organic EL device. The isocoumarin condensed ring compound is preferably purified to a purity of 99.99% or higher.
<有機ELデバイス>
 本発明のクマリン縮環化合物およびイソクマリン縮環化合物は、380~460nmの波長領域で発光し、堅牢性も有していると予想できることから、青色有機EL材料として好適に使用できる。また、ケイ光性のみならず、n型半導体動作を示すことが予想され、電界効果トランジスタの電子輸送層への応用が期待できる。
<Organic EL device>
Since the coumarin condensed ring compound and the isocoumarin condensed ring compound of the present invention emit light in a wavelength region of 380 to 460 nm and can be expected to have fastness, they can be suitably used as a blue organic EL material. In addition to the fluorescent property, it is expected to exhibit n-type semiconductor operation, and application to an electron transport layer of a field effect transistor can be expected.
 本発明の有機ELデバイスの構成は特に限定されず、通常の構成をとることができる。例えば、基板、陽極、正孔輸送層、発光層、電子輸送層、陰極を具備する。また、一つの層が2以上の機能を兼備してもよい。本発明のクマリン系縮環化合物を含む有機層は、発光層、電子輸送層、これらを兼備する層に好適に使用できる。 The configuration of the organic EL device of the present invention is not particularly limited, and can be a normal configuration. For example, a substrate, an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are provided. One layer may have two or more functions. The organic layer containing the coumarin-based condensed ring compound of the present invention can be suitably used for a light emitting layer, an electron transport layer, and a layer having both of them.
 本発明の有機ELデバイスの有機層の作製方法は特に限定されないが、本発明に係るクマリン系縮環化合物を、例えば溶媒に溶解させて基材上に塗布することにより作製することができる。塗布方法は、キャスト法、スピンコート法などが挙げられる。溶媒としては、ペンタン、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン、デカリン、四塩化炭素、クロロホルム、1,2-ジクロロエタン、エチルエーテル、イソプロピルエーテル、アニソール、ジオキサン、テトラヒドロフラン、アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン、イソフォロン、酢酸エチル、酢酸ブチル、ジメチルフォルムアミド、アセトニトリル、ジメチルスルフォキシド、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-2-プロパノールなどが挙げられる。溶媒は、塗布後、乾燥させることにより除去すればよい。 The method for producing the organic layer of the organic EL device of the present invention is not particularly limited, but it can be produced by dissolving the coumarin-based condensed ring compound according to the present invention in, for example, a solvent and applying it onto a substrate. Examples of the coating method include a casting method and a spin coating method. Solvents include pentane, hexane, heptane, benzene, toluene, xylene, cyclohexane, methylcyclohexane, decalin, carbon tetrachloride, chloroform, 1,2-dichloroethane, ethyl ether, isopropyl ether, anisole, dioxane, tetrahydrofuran, acetone, methyl. Isobutyl ketone, methyl ethyl ketone, cyclohexanone, acetophenone, isophorone, ethyl acetate, butyl acetate, dimethylformamide, acetonitrile, dimethyl sulfoxide, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2- And methyl-2-propanol. The solvent may be removed by drying after coating.
 本発明において、基板、陽極、正孔輸送層、電子輸送層、陰極などを形成するための材料としては、一般に有機ELデバイスに用いられているような材料を用いることができる。 In the present invention, as a material for forming a substrate, an anode, a hole transport layer, an electron transport layer, a cathode and the like, a material generally used in an organic EL device can be used.
 本発明のクマリン系縮環化合物を用いた有機ELデバイスは、長時間の点灯使用に耐えることが予想できることから、電子写真感光体、フラットパネルディスプレイなどの平面発光体、複写機、プリンター、液晶ディスプレイのバックライト、計器等の光源、各種発光素子、各種表示装置、各種標識、各種アクセサリーなどに使用することができる。 Since the organic EL device using the coumarin-based condensed ring compound of the present invention can be expected to withstand long-time use, it can be expected to have a flat light emitter such as an electrophotographic photosensitive member and a flat panel display, a copying machine, a printer, and a liquid crystal display. It can be used for backlights, light sources such as instruments, various light emitting elements, various display devices, various signs, various accessories, and the like.
 以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
 以下、7-メトキシクマリンはMeOCM[0]、式(7)で表される化合物はMeOCM[2]、式(8)で表される化合物はMeOCM[3]、式(15)で表される化合物はMeOCM[4]、式(16)で表される化合物はMeOCM[5]、式(9)で表される化合物はMeOCM@Phe、式(10)で表される化合物はMeOCM@Py、式(11)で表される化合物はCM[3]、7,8-ベンゾクマリン縮環体である式(12)で表される化合物は[1]CM[3]とも表記する。ここで、PheはPhenanthryl、Pyはpyrenylをそれぞれ意味し、反応前駆体の発色団である。
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.
Hereinafter, 7-methoxycoumarin is represented by MeOCM [0], the compound represented by Formula (7) is represented by MeOCM [2], the compound represented by Formula (8) is represented by MeOCM [3], and Formula (15). The compound is MeOCM [4], the compound represented by Formula (16) is MeOCM [5], the compound represented by Formula (9) is MeOCM @ Phe, the compound represented by Formula (10) is MeOCM @ Py, The compound represented by the formula (11) is also represented by CM [3], and the compound represented by the formula (12) which is a 7,8-benzocoumarin condensed ring is also represented by [1] CM [3]. Here, Phe means Phenanthryl and Py means pyrenyl, and is a chromophore of a reaction precursor.
実施例1:式(7)で表されるクマリン縮環化合物
(1)Step1. 4-ブロモメチル-7-メトキシクマリン フォスフォニウム塩(4-Bromomethyl-7-methoxycoumarin phosphonium salt)の合成
Figure JPOXMLDOC01-appb-C000029
 4-ブロモメチル-7-メトキシクマリン(4-Bromomethyl-7-methoxycoumarin)2.0g(7.4mmol)、トリフェニルフォスフィン(triphenylphosphine)1.95g(7.4mmol)、キシレン(xylene)75mLを加え、窒素雰囲気下、140℃で一晩還流した。還流後、室温で放冷して、結晶を吸引濾過後、ベンゼン(benzene)で洗浄し、一晩室温で乾燥させ、4-ブロモメチル-7-メトキシクマリン フォスフォニウム塩を得た。収量は3.43g、収率は88%であった。
(2)Step2.MeOCM縮環体の合成
1-1.Wittig反応による光反応前駆体(化合物A)の合成
Figure JPOXMLDOC01-appb-C000030
 4-ブロモメチル-7-メトキシクマリン フォスフォニウム塩(4-Bromomethyl-7-methoxycoumarin phosphonium salt)1.5g(2.8mmol)、ベンズアルデヒド(benzaldehyde)0.30mL(3.0mmol)、クロロホルム(chloroform)30mLを加え、攪拌しながら50%水酸化カリウム(KOH)水溶液を15mL滴下した。窒素雰囲気下、70℃で1時間還流し、化合物Aを合成した。反応溶液を室温まで放冷後、水と飽和食塩水で洗浄した。Hexane : ethyl acetate (78:22,v/v)の混合溶媒を展開溶媒として用いてシリカカラムクロマトグラフにより目的物をEZ異性体の混合物として単離した。生成物は、展開溶媒としてHexane : ethyl acetate (4:1,v/v)を用いたTLC(薄層クロマトグラフィー)上で、0.14のRf値を有するスポットを示した。収量は0.44g、収率は56%であった。
Example 1: Coumarin condensed ring compound represented by formula (7) (1) Step1. Synthesis of 4-Bromomethyl-7-methoxycoumarin phosphonium salt
Figure JPOXMLDOC01-appb-C000029
4-Bromomethyl-7-methoxycoumarin (4-Bromomethyl-7-methoxycoumarin) 2.0 g (7.4 mmol), triphenylphosphine (triphenylphosphine) 1.95 g (7.4 mmol), xylene (75 mL) was added, The mixture was refluxed at 140 ° C. overnight under a nitrogen atmosphere. After refluxing, the mixture was allowed to cool to room temperature, and the crystals were filtered by suction, washed with benzene, and dried overnight at room temperature to obtain 4-bromomethyl-7-methoxycoumarin phosphonium salt. The yield was 3.43 g, and the yield was 88%.
(2) Step2. 1. Synthesis of MeOCM condensed ring 1-1. Synthesis of photoreactive precursor (compound A) by Wittig reaction
Figure JPOXMLDOC01-appb-C000030
4-Bromomethyl-7-methoxycoumarin phosphonium salt (1.5 g (2.8 mmol), benzaldehyde (0.30 mL, 3.0 mmol), chloroform (30 mL) And 15 mL of 50% aqueous potassium hydroxide (KOH) solution was added dropwise with stirring. The mixture was refluxed at 70 ° C. for 1 hour under a nitrogen atmosphere to synthesize Compound A. The reaction solution was allowed to cool to room temperature and washed with water and saturated brine. The target product was isolated as a mixture of EZ isomers by silica column chromatography using a mixed solvent of Hexane: ethyl acetate (78:22, v / v) as a developing solvent. The product showed a spot with an Rf value of 0.14 on TLC (thin layer chromatography) using Hexane: ethyl acetate (4: 1, v / v) as the developing solvent. The yield was 0.44 g, and the yield was 56%.
1-2.光照射によるMeOCM[2]の合成
Figure JPOXMLDOC01-appb-C000031
 化合物A 0.44g(1.5mmol)、ヨウ素100mgをbenzene500mLに加え、撹拌しながら高圧水銀灯で32時間照射した。チオ硫酸ナトリウム水溶液で2回、炭酸水素ナトリウム水溶液で1回、飽和食塩水で2回洗浄後、シリカカラムクロマトグラフにより精製を行った。生成物は、展開溶媒としてChloroformを用いたTLC上で、0.49のRf値を有するスポットを示した。NMR測定により目的物の生成を確認した。生成物のNMRスペクトルを図5に示す。また、NMRスペクトルのピーク情報は以下のとおりであった。収量は0.17g、収率は38%であった。
1H-NMR(400MHz, CDCl3):δ 9.72 (1H, d, J=8.8 Hz), 8.13 (1H, d, J=8.7 Hz), 8.02 (1H, d, J=8.9 Hz), 7.93 (1H, d, J=8.8 Hz), 7.85 (1H, d, J=8.0 Hz), 7.72 (1H, t),7.57 (1H, ddd, J=8.6, 6.9, 1.5 Hz), 7.57 (1H, ddd, J=7.9, 6.9, 1.2 Hz), 6.90 (1H, dd, J=8.9, 2.54 Hz), 6.84 (1H, d), 3.87 (3H, s).
 得られたクマリン縮環化合物のアセトニトリル中10-4 mol/Lの吸収・ケイ光スペクトルを図1に示す。また、図1には7-メトキシクマリンの吸収・ケイ光スペクトルも示す。吸収スペクトルの測定には、日本分光 V-550分光高度計を用いた。ケイ光スペクトルの測定には、Hitachi F-7000ケイ光分光光度計を用いた。得られたクマリン縮環化合物の励起波長は280nmを用いた。7-メトキシクマリンの励起波長は295nmを用いた。また、ケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を表1と図4に示す。図4の縦軸は、上段はケイ光収率Φf、中段はケイ光寿命τf/ns、下段はケイ光速度kf/108-1を表し、横軸はベンゼン環の縮環数[n]を表す。ケイ光速度は式kf=Φfτf -1より求めた。なお、ケイ光収率Φfの測定には、絶対PL光量子収率測定装置(Hamamatsu Photonics C9920-02) を用い、各実施例において、得られた化合物の300nmより長波長にある吸光度が最大の吸収極大波長で励起を行った。ケイ光寿命τfの測定には単一光子相関測定装置(Hamamatsu Photonics Quantaurus - TAU System)を用い、各実施例において、310nm、340nmまたは365nmで、得られた化合物の最大吸光度を与える波長を選択して励起波長とした。
1-2. Synthesis of MeOCM [2] by light irradiation
Figure JPOXMLDOC01-appb-C000031
Compound A (0.44 g, 1.5 mmol) and iodine (100 mg) were added to benzene (500 mL) and irradiated with a high-pressure mercury lamp for 32 hours while stirring. After washing twice with a sodium thiosulfate aqueous solution, once with a sodium hydrogen carbonate aqueous solution, and twice with a saturated saline solution, purification was performed by silica column chromatography. The product showed a spot with an Rf value of 0.49 on TLC using Chloroform as the developing solvent. Formation of the target product was confirmed by NMR measurement. The NMR spectrum of the product is shown in FIG. The peak information of the NMR spectrum was as follows. The yield was 0.17 g, and the yield was 38%.
1 H-NMR (400 MHz, CDCl 3 ): δ 9.72 (1H, d, J = 8.8 Hz), 8.13 (1H, d, J = 8.7 Hz), 8.02 (1H, d, J = 8.9 Hz), 7.93 ( 1H, d, J = 8.8 Hz), 7.85 (1H, d, J = 8.0 Hz), 7.72 (1H, t), 7.57 (1H, ddd, J = 8.6, 6.9, 1.5 Hz), 7.57 (1H, ddd , J = 7.9, 6.9, 1.2 Hz), 6.90 (1H, dd, J = 8.9, 2.54 Hz), 6.84 (1H, d), 3.87 (3H, s).
FIG. 1 shows the absorption / fluorescence spectrum of the coumarin condensed ring compound obtained at 10 −4 mol / L in acetonitrile. FIG. 1 also shows the absorption / fluorescence spectrum of 7-methoxycoumarin. A JASCO V-550 spectrophotometer was used for the measurement of the absorption spectrum. A Hitachi F-7000 fluorescence spectrophotometer was used for measurement of the fluorescence spectrum. The excitation wavelength of the obtained coumarin condensed ring compound was 280 nm. The excitation wavelength of 7-methoxycoumarin was 295 nm. The fluorescence yield (Φ f ), fluorescence lifetime (τ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG. The vertical axis in FIG. 4 represents the fluorescence yield Φ f in the upper stage, the fluorescence lifetime τ f / ns in the middle stage, the fluorescence speed k f / 10 8 s −1 in the lower stage, and the abscissa represents the condensed benzene ring. Represents the number [n]. The fluorescence speed was obtained from the equation k f = Φ f τ f -1 . In addition, for the measurement of the fluorescence yield Φ f , an absolute PL photoquantum yield measuring apparatus (Hamamatsu Photonics C9920-02) was used, and in each Example, the absorbance at a wavelength longer than 300 nm of the obtained compound was maximum. Excitation was performed at the absorption maximum wavelength. A single photon correlation measurement device (Hamamatsu Photonics Quantaurus-TAU System) is used to measure the fluorescence lifetime τ f , and in each example, the wavelength that gives the maximum absorbance of the obtained compound at 310 nm, 340 nm, or 365 nm is selected. The excitation wavelength was used.
実施例2:式(8)で表されるクマリン縮環化合物
2-1. Wittig反応による光反応前駆体(化合物B)の合成
Figure JPOXMLDOC01-appb-C000032
 4-Bromomethyl-7-methoxycoumarin phosphonium salt0.95g(1.79mmol)、1-ナフトアルデヒド(1-naphthaldehyde)0.26ml(1.90mmol)をchloroform20mLに加え、攪拌しながら50%KOH水溶液を10mL滴下した。窒素雰囲気下、70℃で3時間還流した。室温まで放冷後、水と飽和食塩水で反応溶液を洗浄した。シリカカラムクロマトグラフにて生成物をEZ異性体の混合物として単離した。収量は0.60g、収率は98%であった。
Example 2: Coumarin condensed ring compound represented by formula (8) 2-1. Synthesis of photoreaction precursor (compound B) by Wittig reaction
Figure JPOXMLDOC01-appb-C000032
4-Bromomethyl-7-methoxycoumarin phosphonium salt 0.95 g (1.79 mmol) and 1-naphthaldehyde 0.26 ml (1.90 mmol) were added to chloroform 20 mL, and 10 mL of 50% KOH aqueous solution was added dropwise with stirring. . The mixture was refluxed at 70 ° C. for 3 hours under a nitrogen atmosphere. After cooling to room temperature, the reaction solution was washed with water and saturated brine. The product was isolated as a mixture of EZ isomers on a silica column chromatograph. The yield was 0.60 g, and the yield was 98%.
2-2.光照射によるMeOCM[3]の合成
Figure JPOXMLDOC01-appb-C000033
 化合物B 0.68g(2.07mmol)、ヨウ素100mgをbenzene500mLに加え、撹拌しながら高圧水銀灯で40時間照射した。チオ硫酸ナトリウム水溶液で2回、炭酸水素ナトリウム水溶液で1回、飽和食塩水で2回洗浄後、シリカカラムクロマトグラフにより精製を行った。生成物は、展開溶媒としてHexane : ethyl acetate (1:4,v/v)を用いたTLC上で、0.34のRf値を有するスポットを示した。NMR測定により目的物の生成を確認した。生成物のNMRスペクトルを図6に示す。また、NMRスペクトルのピーク情報は以下のとおりであった。収量は0.18g、収率は30%であった。
1H-NMR(400MHz, CDCl3):δ 9.79 (1H, d, J=9.4 Hz), 9.13 (1H, d, J=9.2 Hz), 8.72 (1H, d, J=8.2 Hz), 8.29 (1H, d, J=9.2 Hz), 8.11 (1H, d, J=9.0 Hz), 8.04 (1H, d, J=9.5 Hz), 7.97 (1H, d, J=7.7 Hz), 7.65-7.74 (2H, m), 6.97 (1H, dd, J = 8.8, 2.4Hz), 6.92 (1H, d, J=2.4 Hz), 3.91 (3H, s).
 ケイ光スペクトル測定の励起波長を312nmとした以外は実施例1に記載の方法と同様にして、吸収スペクトル、ケイ光スペクトルを測定した。得られたクマリン縮環化合物のアセトニトリル中10-4mol/Lの吸収・ケイ光スペクトルを図1および図2に示す。また、ケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を表1と図4に示す。
2-2. Synthesis of MeOCM [3] by light irradiation
Figure JPOXMLDOC01-appb-C000033
Compound B (0.68 g, 2.07 mmol) and iodine (100 mg) were added to benzene (500 mL) and irradiated with a high-pressure mercury lamp for 40 hours with stirring. After washing twice with a sodium thiosulfate aqueous solution, once with a sodium hydrogen carbonate aqueous solution, and twice with a saturated saline solution, purification was performed by silica column chromatography. The product showed a spot with an Rf value of 0.34 on TLC using Hexane: ethyl acetate (1: 4, v / v) as the developing solvent. Formation of the target product was confirmed by NMR measurement. The NMR spectrum of the product is shown in FIG. The peak information of the NMR spectrum was as follows. The yield was 0.18 g, and the yield was 30%.
1 H-NMR (400 MHz, CDCl 3 ): δ 9.79 (1H, d, J = 9.4 Hz), 9.13 (1H, d, J = 9.2 Hz), 8.72 (1H, d, J = 8.2 Hz), 8.29 ( 1H, d, J = 9.2 Hz), 8.11 (1H, d, J = 9.0 Hz), 8.04 (1H, d, J = 9.5 Hz), 7.97 (1H, d, J = 7.7 Hz), 7.65-7.74 ( 2H, m), 6.97 (1H, dd, J = 8.8, 2.4Hz), 6.92 (1H, d, J = 2.4 Hz), 3.91 (3H, s).
An absorption spectrum and a fluorescence spectrum were measured in the same manner as in Example 1 except that the excitation wavelength for fluorescence spectrum measurement was 312 nm. FIG. 1 and FIG. 2 show absorption and fluorescence spectra of the coumarin condensed ring compound at 10 −4 mol / L in acetonitrile. The fluorescence yield (Φ f ), fluorescence lifetime (τ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
実施例3:式(9)で表されるクマリン縮環化合物
3-1.Wittign反応による光反応前駆体(化合物C)の合成
Figure JPOXMLDOC01-appb-C000034
 4-Bromomethyl-7-methoxycoumarin phosphonium salt 1.6g(3.0mmol)、9-フェナントレンカルボアルデヒド(9-phenanthrenecarbaldehyde)0.62g(3.0mmol)、chloroform30mLを加え、攪拌しながら50%KOH水溶液を10mL滴下した。窒素雰囲気下、60℃で1時間還流した。室温まで放冷後、反応溶液を水と飽和食塩水で反応溶液を洗浄した。シリカカラムクロマトグラフにてEZ異性体の混合物として単離を行った。生成物は、展開溶媒としてHexane : ethyl acetate (4:1,v/v)を用いたTLC(薄層クロマトグラフィー)上で、0.24のRf値を有するスポットを示した。収量は0.90g、収率は80%であった。
Example 3: Coumarin condensed ring compound represented by formula (9) 3-1. Synthesis of photoreaction precursor (compound C) by Wittign reaction
Figure JPOXMLDOC01-appb-C000034
Add 4-Bromomethyl-7-methoxycoumarin phosphonium salt (1.6 g, 3.0 mmol), 9-phenanthrenecarbaldehyde (0.62 g, 3.0 mmol) and chloroform (30 mL), and stir with 10 mL of 50% KOH aqueous solution. It was dripped. The mixture was refluxed at 60 ° C. for 1 hour under a nitrogen atmosphere. After cooling to room temperature, the reaction solution was washed with water and saturated brine. Isolation as a mixture of EZ isomers was performed on a silica column chromatograph. The product showed a spot with an Rf value of 0.24 on TLC (Thin Layer Chromatography) using Hexane: ethyl acetate (4: 1, v / v) as the developing solvent. The yield was 0.90 g, and the yield was 80%.
3-2. 光照射によるMeOCM@Pheの合成
Figure JPOXMLDOC01-appb-C000035
 化合物C 0.90g(2.37mmol)、ヨウ素100mgをbenzene500mLに加え、撹拌しながら高圧水銀灯で32時間照射した。チオ硫酸ナトリウム水溶液で2回、炭酸水素ナトリウム水溶液で1回、飽和食塩水で2回洗浄後、シリカカラムクロマトグラフにより単離を行い、Chloroformからの再結晶により精製した。生成物は、展開溶媒としてChloroformを用いたTLC(薄層クロマトグラフィー)上で、0.29のRf値を有するスポットを示した。NMRで目的物を確認した。生成物のNMRスペクトルを図7に示す。また、NMRスペクトルのピーク情報は以下のとおりであった。収量は53mg、収率は6%であった。
1H-NMR(400MHz, CDCl3):δ 8.87 (1H, d, J=8.7 Hz), 8.56-8.66 (3H, m), 8.39 (1H, d, J=7.7 Hz), 8.19 (1H, d, J=9.2 Hz), 8.08 (1H, d, J=8.7 Hz), 7.66-7.72 (3H, m),7.52 (1H, m), 6.95-7.00 (2H, m), 3.93 (3H, s).
 ケイ光スペクトル測定の励起波長を310nmとした以外は実施例1に記載の方法と同様にして、吸収スペクトル、ケイ光スペクトルを測定した。得られたクマリン縮環化合物のアセトニトリル中10-4mol/Lの吸収・ケイ光スペクトルを図1に示す。また、ケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を表1と図4に示す。
3-2. Synthesis of MeOCM @ Phe by light irradiation
Figure JPOXMLDOC01-appb-C000035
Compound C (0.90 g, 2.37 mmol) and iodine (100 mg) were added to benzene (500 mL), and the mixture was irradiated with a high pressure mercury lamp for 32 hours with stirring. After washing twice with an aqueous sodium thiosulfate solution, once with an aqueous sodium hydrogen carbonate solution and twice with a saturated saline solution, the product was isolated by silica column chromatography and purified by recrystallization from Chloroform. The product showed a spot with an Rf value of 0.29 on TLC (Thin Layer Chromatography) using Chloroform as the developing solvent. The target product was confirmed by NMR. The NMR spectrum of the product is shown in FIG. The peak information of the NMR spectrum was as follows. The yield was 53 mg, and the yield was 6%.
1 H-NMR (400 MHz, CDCl 3 ): δ 8.87 (1H, d, J = 8.7 Hz), 8.56-8.66 (3H, m), 8.39 (1H, d, J = 7.7 Hz), 8.19 (1H, d , J = 9.2 Hz), 8.08 (1H, d, J = 8.7 Hz), 7.66-7.72 (3H, m), 7.52 (1H, m), 6.95-7.00 (2H, m), 3.93 (3H, s) .
An absorption spectrum and a fluorescence spectrum were measured in the same manner as described in Example 1 except that the excitation wavelength for fluorescence spectrum measurement was 310 nm. FIG. 1 shows the absorption / fluorescence spectrum of the coumarin condensed ring compound obtained at 10 −4 mol / L in acetonitrile. The fluorescence yield (Φ f ), fluorescence lifetime (τ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
実施例4:式(10)で表されるクマリン縮環化合物
4-1.Wittig反応による光反応前駆体(化合物D)の合成
Figure JPOXMLDOC01-appb-C000036
 4-Bromomethyl-7-methoxycoumarin phosphonium salt1.6g(3.0mmol)、1-ピレンカルボアルデヒド(1-pyrenecarboxaldehyde)0.76g(3.3mmol)、ジクロロメタン(dichloromethane)30mLを加え、攪拌しながら50%KOH水溶液を10mL滴下した。窒素雰囲気下、45℃で1時間還流した。室温まで放冷後、反応溶液を水と飽和食塩水で洗浄した。シリカカラムクロマトグラフによりEZ異性体の混合物として単離した。生成物は、展開溶媒としてHexane : ethyl acetate (4:1,v/v)を用いたTLC上で、0.24のRf値を有するスポットを示した。収量は0.15g、収率は12%であった。
Example 4: Coumarin condensed ring compound represented by formula (10) 4-1. Synthesis of photoreaction precursor (compound D) by Wittig reaction
Figure JPOXMLDOC01-appb-C000036
Add 1.6 g (3.0 mmol) of 4-Bromomethyl-7-methoxycoumarin phosphonium salt, 0.76 g (3.3 mmol) of 1-pyrenecarboxaldehyde, 30 mL of dichloromethane, and add 50% KOH with stirring. 10 mL of aqueous solution was dripped. The mixture was refluxed at 45 ° C. for 1 hour under a nitrogen atmosphere. After allowing to cool to room temperature, the reaction solution was washed with water and saturated brine. Isolated as a mixture of EZ isomers by silica column chromatography. The product showed a spot with an Rf value of 0.24 on TLC using Hexane: ethyl acetate (4: 1, v / v) as the developing solvent. The yield was 0.15 g, and the yield was 12%.
4-2.光照射によるMeOCM@Pyの合成
Figure JPOXMLDOC01-appb-C000037
 化合物D 0.15g(0.37mmol)、ヨウ素100mgをbenzene500mLに加え、高圧水銀灯で60時間照射した。チオ硫酸ナトリウム水溶液で2回、炭酸水素ナトリウム水溶液で1回、飽和食塩水で2回洗浄した。シリカカラムクロマトグラフにより単離後、Chloroformからの再結晶により精製した。生成物は、展開溶媒としてChloroformを用いたTLC上で、0.25のRf値を有するスポットを示した。目的物の生成をNMR測定により確認した。生成物のNMRスペクトルを図8に示す。また、NMRスペクトルのピーク情報は以下のとおりであった。収量は18.6mg、収率は13%であった。
1H-NMR(400MHz, CDCl3):δ 10.57 (1H, s), 9.41 (1H, d, J=9.2 Hz), 9.00 (1H, d, J=9.2 Hz), 8.34 (2H, dd, J=9.2, 2.9 Hz), 8.21-8.25 (2H, two doublets overlapped),8.12-8.16 (2H, two doublets overlapped), 8.00-8.05 (2H, t and d signals overlapped), 6.94-6.99 (2H, m), 3.91 (3H, s).
 ケイ光スペクトル測定の励起波長を352nmとした以外は実施例1に記載の方法と同様にして、吸収スペクトル、ケイ光スペクトルを測定した。得られたクマリン縮環化合物のアセトニトリル中10-4mol/Lの吸収・ケイ光スペクトルを図1に示す。また、ケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を表1と図4に示す。
4-2. Synthesis of MeOCM @ Py by light irradiation
Figure JPOXMLDOC01-appb-C000037
Compound D (0.15 g, 0.37 mmol) and iodine (100 mg) were added to benzene (500 mL) and irradiated with a high-pressure mercury lamp for 60 hours. The extract was washed twice with an aqueous sodium thiosulfate solution, once with an aqueous sodium bicarbonate solution, and twice with a saturated saline solution. After isolation by silica column chromatography, purification was performed by recrystallization from Chloroform. The product showed a spot with an Rf value of 0.25 on TLC using Chloroform as the developing solvent. The formation of the target product was confirmed by NMR measurement. The NMR spectrum of the product is shown in FIG. The peak information of the NMR spectrum was as follows. The yield was 18.6 mg, and the yield was 13%.
1 H-NMR (400 MHz, CDCl 3 ): δ 10.57 (1H, s), 9.41 (1H, d, J = 9.2 Hz), 9.00 (1H, d, J = 9.2 Hz), 8.34 (2H, dd, J = 9.2, 2.9 Hz), 8.21-8.25 (2H, two doublets overlapped), 8.12-8.16 (2H, two doublets overlapped), 8.00-8.05 (2H, t and d signals overlapped), 6.94-6.99 (2H, m) , 3.91 (3H, s).
An absorption spectrum and a fluorescence spectrum were measured in the same manner as in Example 1 except that the excitation wavelength for fluorescence spectrum measurement was 352 nm. FIG. 1 shows the absorption / fluorescence spectrum of the coumarin condensed ring compound obtained at 10 −4 mol / L in acetonitrile. The fluorescence yield (Φ f ), fluorescence lifetime (τ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
実施例5:式(11)で表されるクマリン縮環化合物
(1)Step1. 4-クロロメチルクマリン(4-Chloromethylcoumarin)の合成
Figure JPOXMLDOC01-appb-C000038
 4-クロロアセト酢酸エチル(Ethyl-4-chloroacetoacetate)2.4mL(17.7mmol)、フェノール(phenol)5.0g(53.1mmol)、硫酸(sulfuric acid)6滴を加え、窒素雰囲気下、120℃で3時間加熱還流した。Ethyl acetateで抽出後、炭酸水素ナトリウム水溶液で2回、蒸留水で1回、飽和食塩水で1回洗浄した。Hexane :ethyl acetate(4:1, v/v)の溶媒でシリカカラムクロマトグラフを用いて単離・精製を行った。収量は330mg、収率は10%であった。
Example 5: Coumarin condensed ring compound represented by formula (11) (1) Step1. Synthesis of 4-Chloromethylcoumarin
Figure JPOXMLDOC01-appb-C000038
Add ethyl 4-chloroacetoacetate (Ethyl-4-chloroacetoacetate) 2.4mL (17.7mmol), phenol (5.0g (53.1mmol)), 6 drops of sulfuric acid (sulfuric acid), 120 ° C under nitrogen atmosphere And heated at reflux for 3 hours. After extraction with Ethyl acetate, the extract was washed twice with an aqueous sodium hydrogen carbonate solution, once with distilled water, and once with saturated saline. Isolation and purification were performed using a silica column chromatograph with a solvent of Hexane: ethyl acetate (4: 1, v / v). The yield was 330 mg, and the yield was 10%.
(2)Step2. 4-クロロメチルクマリン フォスフォニウム塩(4-Chloromethylcoumarin phosphonium salt)の合成
Figure JPOXMLDOC01-appb-C000039
 4-クロロメチルクマリン(4-Chloromethylcoumarin)330mg(1.7mmol)、triphenylphosphine500mg(1.9mmol)、xylene20mLを加え、窒素雰囲気下、140℃で一晩還流した。還流後、室温で放冷して、結晶を吸引濾過後、benzeneで洗浄し、一晩室温で乾燥させた。収量は250mg、収率は32%であった。
(2) Step2. Synthesis of 4-chloromethylcoumarin phosphonium salt
Figure JPOXMLDOC01-appb-C000039
4-Chloromethylcoumarin (330 mg, 1.7 mmol), triphenylphosphine (500 mg, 1.9 mmol) and xylene (20 mL) were added, and the mixture was refluxed at 140 ° C. overnight under a nitrogen atmosphere. After refluxing, the mixture was allowed to cool at room temperature, and the crystals were filtered by suction, washed with benzene, and dried overnight at room temperature. The yield was 250 mg and the yield was 32%.
(3)Step3. Wittig反応による光反応前駆体(化合物E)の合成
Figure JPOXMLDOC01-appb-C000040
 4-Chloromethylcoumarin phosphonium salt0.25g(0.54mmol)、1-naphthaldehyde0.06mL(0.59mmol) 0.06 ml (0.59 mmol)、chloroform10mLを加え、攪拌しながら50% KOH水溶液を5mL滴下した。窒素雰囲気下、60℃で1時間還流した。室温まで放冷後、反応溶液を水と飽和食塩水で洗浄した。Hexane : ethyl acetate (4:1,v/v)を展開溶媒としてシリカカラムクロマトグラフによりEZ異性体の混合物として単離した。収量は0.15g、収率は92%であった。
(3) Step 3. Synthesis of photoreaction precursor (compound E) by Wittig reaction
Figure JPOXMLDOC01-appb-C000040
4-Chloromethylcoumarin phosphonium salt 0.25 g (0.54 mmol), 1-naphthaldehyde 0.06 mL (0.59 mmol) 0.06 ml (0.59 mmol) and chloroform 10 mL were added, and 5 mL of 50% KOH aqueous solution was added dropwise with stirring. The mixture was refluxed at 60 ° C. for 1 hour under a nitrogen atmosphere. After allowing to cool to room temperature, the reaction solution was washed with water and saturated brine. Hexane: ethyl acetate (4: 1, v / v) was isolated as a mixture of EZ isomers by silica column chromatography using a developing solvent. The yield was 0.15 g, and the yield was 92%.
(4)Step4. 光照射によるCM[3]の合成
Figure JPOXMLDOC01-appb-C000041
 化合物E 0.15g(0.50mmol)、ヨウ素100mgをbenzene500mLに加え、撹拌しながら高圧水銀灯で10時間照射した。反応溶液をチオ硫酸ナトリウム水溶液で2回、炭酸水素ナトリウム水溶液で1回、飽和食塩水で1回洗浄した。Hexane : chloroform(1:1, v/v)を展開溶媒として用いてカラムクロマトグラフにて分離・精製を行った。生成物は、展開溶媒としてHexane : ethyl acetate (1:5,v/v)を用いたTLC上で、0.43のRf値を有するスポットを示した。NMR測定にて目的物の生成を確認した。生成物のNMRスペクトルを図9に示す。また、NMRスペクトルのピーク情報は以下のとおりであった。収量は0.05g、収率は34%であった。
1H-NMR(400MHz, CDCl3):δ 9.80 (1H, d, J=8.9 Hz), 9.14 (1H, d, J=8.3 Hz), 8.71 (1H, d, J=7.3 Hz), 8.37 (1H, d, J=8.5 Hz), 8.20 (1H, d, J=7.3 Hz), 8.03 (1H, d, J=8.8 Hz), 7.96 (1H, d, J=7.2 Hz), 7.67-7.71 (2H, m), 7.52 (1H, m), 7.38-7.42 (2H, m).
 ケイ光スペクトル測定の励起波長を294nmとした以外は実施例1に記載の方法と同様にして、吸収スペクトル、ケイ光スペクトルを測定した。得られたクマリン縮環化合物のアセトニトリル中10-4mol/Lの吸収・ケイ光スペクトルを図2に示す。また、ケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を表1と図4に示す。
(4) Step4. Synthesis of CM [3] by light irradiation
Figure JPOXMLDOC01-appb-C000041
Compound E (0.15 g, 0.50 mmol) and iodine (100 mg) were added to benzene (500 mL) and irradiated with a high-pressure mercury lamp for 10 hours while stirring. The reaction solution was washed twice with an aqueous sodium thiosulfate solution, once with an aqueous sodium bicarbonate solution, and once with a saturated saline solution. Separation and purification were performed by column chromatography using Hexane: chloroform (1: 1, v / v) as a developing solvent. The product showed a spot with an Rf value of 0.43 on TLC using Hexane: ethyl acetate (1: 5, v / v) as the developing solvent. Formation of the target product was confirmed by NMR measurement. The NMR spectrum of the product is shown in FIG. The peak information of the NMR spectrum was as follows. The yield was 0.05 g, and the yield was 34%.
1 H-NMR (400 MHz, CDCl 3 ): δ 9.80 (1H, d, J = 8.9 Hz), 9.14 (1H, d, J = 8.3 Hz), 8.71 (1H, d, J = 7.3 Hz), 8.37 ( 1H, d, J = 8.5 Hz), 8.20 (1H, d, J = 7.3 Hz), 8.03 (1H, d, J = 8.8 Hz), 7.96 (1H, d, J = 7.2 Hz), 7.67-7.71 ( 2H, m), 7.52 (1H, m), 7.38-7.42 (2H, m).
The absorption spectrum and the fluorescence spectrum were measured in the same manner as in Example 1 except that the excitation wavelength for fluorescence spectrum measurement was 294 nm. FIG. 2 shows an absorption / fluorescence spectrum of the obtained coumarin condensed ring compound at 10 −4 mol / L in acetonitrile. The fluorescence yield (Φ f ), fluorescence lifetime (τ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
実施例6:7,8-ベンゾクマリン縮環体である式(12)で表されるクマリン縮環化合物
(1)Step1. 化合物Fの合成
Figure JPOXMLDOC01-appb-C000042
 Ethyl-4-chloroacetoacetate2.4mL(17.7mmol)、1-ナフトール(1-naphthol)7.6g(53.1mmol)、sulfuric acid 6滴を加え、窒素雰囲気下、120℃で3時間加熱還流した。Ethyl acetateで抽出後、炭酸水素ナトリウム水溶液で2回、蒸留水で1回、飽和食塩水で1回洗浄した。溶媒を留去し、沈殿を吸引濾過後、ethyl acetateで洗浄した。収量は1.62g、収率は37%であった。化合物Fは精製しないで、次の反応に用いた。
Example 6: A coumarin condensed ring compound represented by the formula (12) which is a 7,8-benzocoumarin condensed ring (1) Step1. Synthesis of compound F
Figure JPOXMLDOC01-appb-C000042
Ethyl-4-chloroacetoacetate 2.4 mL (17.7 mmol), 1-naphthol 7.6 g (53.1 mmol), and 6 drops of sulfuric acid were added, and the mixture was heated to reflux at 120 ° C. for 3 hours in a nitrogen atmosphere. After extraction with Ethyl acetate, the extract was washed twice with an aqueous sodium hydrogen carbonate solution, once with distilled water, and once with saturated saline. The solvent was distilled off, and the precipitate was filtered with suction and washed with ethyl acetate. The yield was 1.62 g, and the yield was 37%. Compound F was used in the next reaction without purification.
(2)Step2. 化合物Fのフォスフォニウム塩(phosphonium salt)Gの合成
Figure JPOXMLDOC01-appb-C000043
 化合物F 1.62g(6.6mmol)、triphenylphosphine 1.74g(6.6mmol)、xylene70mLを加え、窒素雰囲気下、140℃で一晩還流した。還流後、室温で放冷して、結晶を吸引濾過後、benzeneで洗浄し、一晩室温で乾燥させた。収量は1.76g、収率は52%であった。
(2) Step2. Synthesis of phosphonium salt G of compound F
Figure JPOXMLDOC01-appb-C000043
1.62 g (6.6 mmol) of Compound F, 1.74 g (6.6 mmol) of triphenylphosphine and 70 mL of xylene were added, and the mixture was refluxed at 140 ° C. overnight under a nitrogen atmosphere. After refluxing, the mixture was allowed to cool at room temperature, and the crystals were filtered by suction, washed with benzene, and dried overnight at room temperature. The yield was 1.76 g, and the yield was 52%.
(3)Step3.Wittig反応による光反応前駆体(化合物H)の合成
Figure JPOXMLDOC01-appb-C000044
 化合物G 0.76g(1.5mmol)、1-naphthaldehyde 0.18mL(1.3mmol)、chloroform20mLを加え、攪拌しながら50%KOH水溶液を10mL滴下した。窒素雰囲気下、65℃で1時間還流した。室温まで放冷後、水と飽和食塩水で洗浄した。Hexane : ethyl acetate(5:1, v/v)の溶媒でシリカカラムクロマトグラフを用いて精製し、EZ異性体の混合物として単離した。収量は0.16g、収率は35%であった。
(3) Step 3. Synthesis of photoreaction precursor (compound H) by Wittig reaction
Figure JPOXMLDOC01-appb-C000044
Compound G (0.76 g, 1.5 mmol), 1-naphthaldehyde (0.18 mL, 1.3 mmol) and chloroform (20 mL) were added, and 10 mL of 50% KOH aqueous solution was added dropwise with stirring. The mixture was refluxed at 65 ° C. for 1 hour under a nitrogen atmosphere. After cooling to room temperature, the mixture was washed with water and saturated brine. It was purified using a silica column chromatograph with a solvent of Hexane: ethyl acetate (5: 1, v / v) and isolated as a mixture of EZ isomers. The yield was 0.16 g, and the yield was 35%.
(4)Step 4. 光照射による[1]CM[3]の合成
Figure JPOXMLDOC01-appb-C000045
 化合物H 0.16g(0.46mmol)、ヨウ素100mgをベンゼン(関東化学社製、純度99%)500mLに加え、撹拌しながら高圧水銀灯で11時間照射した。チオ硫酸ナトリウム水溶液で2回、炭酸水素ナトリウム水溶液で1回、飽和食塩水で1回洗浄した。Hexane : chloroform(1:4, v/v)でシリカカラムクロマトグラフにより単離・精製を行った。生成物は、展開溶媒としてHexane : ethyl acetate (1:5,v/v)を用いたTLC上で、0.50のRf値を有するスポットを示した。NMR測定により目的物を確認した。生成物のNMRスペクトルを図10に示す。また、NMRスペクトルのピーク情報は以下のとおりであった。収量は67mg、収率は42%であった。
1H-NMR(400MHz, CDCl3):δ 9.89 (1H, d, J=9.4 Hz), 9.22 (1H, d, J=8.9 Hz), 8.77 (1H, d, J=8.2 Hz), 8.69 (1H, d, J=7.7 Hz), 8.49 (1H, d, J=9.2 Hz), 8.24 (1H, d, J=8.9 Hz), 8.09 (1H, d, J=9.2 Hz), 8.00 (1H, d, J=7.1 Hz), 7.91 (1H, d, J=9.2 Hz), 7.82 (1H, d, J=8.7 Hz), 7.63-7.74 (4H, m).
 ケイ光スペクトル測定の励起波長を310nmとした以外は実施例1に記載の方法と同様にして、吸収スペクトル、ケイ光スペクトルを測定した。得られたクマリン縮環化合物のアセトニトリル中10-4mol/Lの吸収・ケイ光スペクトルを図2に示す。また、ケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を表1と図4に示す。
(4) Step 4. Synthesis of [1] CM [3] by light irradiation
Figure JPOXMLDOC01-appb-C000045
0.16 g (0.46 mmol) of Compound H and 100 mg of iodine were added to 500 mL of benzene (manufactured by Kanto Chemical Co., Inc., purity 99%) and irradiated with a high-pressure mercury lamp for 11 hours while stirring. The extract was washed twice with an aqueous sodium thiosulfate solution, once with an aqueous sodium hydrogen carbonate solution, and once with a saturated saline solution. Isolation and purification were performed by silica column chromatography using Hexane: chloroform (1: 4, v / v). The product showed a spot with an Rf value of 0.50 on TLC using Hexane: ethyl acetate (1: 5, v / v) as the developing solvent. The target product was confirmed by NMR measurement. The NMR spectrum of the product is shown in FIG. The peak information of the NMR spectrum was as follows. The yield was 67 mg, and the yield was 42%.
1 H-NMR (400 MHz, CDCl 3 ): δ 9.89 (1H, d, J = 9.4 Hz), 9.22 (1H, d, J = 8.9 Hz), 8.77 (1H, d, J = 8.2 Hz), 8.69 ( 1H, d, J = 7.7 Hz), 8.49 (1H, d, J = 9.2 Hz), 8.24 (1H, d, J = 8.9 Hz), 8.09 (1H, d, J = 9.2 Hz), 8.00 (1H, d, J = 7.1 Hz), 7.91 (1H, d, J = 9.2 Hz), 7.82 (1H, d, J = 8.7 Hz), 7.63-7.74 (4H, m).
An absorption spectrum and a fluorescence spectrum were measured in the same manner as described in Example 1 except that the excitation wavelength for fluorescence spectrum measurement was 310 nm. FIG. 2 shows an absorption / fluorescence spectrum of the obtained coumarin condensed ring compound at 10 −4 mol / L in acetonitrile. The fluorescence yield (Φ f ), fluorescence lifetime (τ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
実施例7:式(15)で表されるクマリン縮環化合物
7-1. Wittig反応による光反応前駆体(化合物I)の合成
Figure JPOXMLDOC01-appb-C000046
 4-Bromomethyl-7-methoxycoumarin phosphonium salt 1.6g(3.0mmol)、フェナントレン-1-カルボアルデヒド(phenanthrene-1-carbaldehyde)0.51g(2.5mmol)をchloroform 30mLに加え、攪拌しながら50%KOH水溶液を10mL滴下した。続いて、窒素雰囲気下、65℃で1時間還流した。室温まで放冷後、水と飽和食塩水で洗浄した。洗浄後、Hexane : ethyl acetate (5:1,v/v)の混合溶媒を用いて、シリカカラムクロマトグラフで生成物を単離精製した。生成物は、展開溶媒としてHexane : ethyl acetate (4:1,v/v)を用いたTLC(薄層クロマトグラフィー)上で、0.19のRf値を有するスポットを示した。収量は600mg、収率は63%であった。
7-2.光照射によるMeOCM[4]の合成
Figure JPOXMLDOC01-appb-C000047
 化合物I 70mg(0.20mmol)を200mLのbenzeneに溶解させ、ヨウ素を5mg加え、光照射を行った。光照射後、チオ硫酸ナトリウム水溶液で1回、炭酸水素ナトリウム水溶液で1回、飽和食塩水で2回洗浄した。Ethyl acetateを用いた再結晶法により縮環生成物を精製した。得られた目的物は、Hexane : chloroform (1:5,v/v) を展開溶媒として用いたTLC上で、0.19のRf値を有するスポットを示した。収量は15mg、収率は21%であった。NMRで目的物の生成を確認した。生成物のNMRを図11に示す。また、NMRスペクトルのピーク情報は以下のとおりであった。
1H NMR (400 MHz, CDCl3) δH7.41-7.51 (2H, m), 7.56-7.59 (1H, m), 7.69 (1H, t, J = 7.4 Hz), 7.77 (1H, t, J = 7.7 Hz), 8.02 (1H, d, J = 7.6 Hz), 8.07 (1H, d, J = 8.9 Hz), 8.28 (1H, d, J = 7.1 Hz), 8.43 (1H, d, J = 9.2 Hz), 8.75 (1H, d, J = 9.2 Hz), 8.86 (1H, d, J = 8.5 Hz), 9.03 (1H, d, J = 9.9 Hz), 9.29 (1H, d, J = 9.2 Hz), 10.1 (1H, d, J = 9.6 Hz).
 ケイ光スペクトル測定の励起波長を320nmとした以外は実施例1に記載の方法と同様にして、吸収スペクトル、ケイ光スペクトルを測定した。得られたクマリン縮環化合物のアセトニトリル中10-4mol/Lの吸収・ケイ光スペクトルを図3に示す。また、ケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を表1と図4に示す。
Example 7: Coumarin condensed ring compound represented by formula (15) 7-1. Synthesis of photoreactive precursor (compound I) by Wittig reaction
Figure JPOXMLDOC01-appb-C000046
Add 1.6 g (3.0 mmol) of 4-Bromomethyl-7-methoxycoumarin phosphonium salt and 0.51 g (2.5 mmol) of phenanthrene-1-carbaldehyde to 30 mL of chloroform and stir 50% 10 mL of aqueous KOH solution was added dropwise. Subsequently, the mixture was refluxed at 65 ° C. for 1 hour in a nitrogen atmosphere. After cooling to room temperature, the mixture was washed with water and saturated brine. After washing, the product was isolated and purified by silica column chromatography using a mixed solvent of Hexane: ethyl acetate (5: 1, v / v). The product showed a spot having an Rf value of 0.19 on TLC (Thin Layer Chromatography) using Hexane: ethyl acetate (4: 1, v / v) as the developing solvent. The yield was 600 mg, and the yield was 63%.
7-2. Synthesis of MeOCM [4] by light irradiation
Figure JPOXMLDOC01-appb-C000047
70 mg (0.20 mmol) of Compound I was dissolved in 200 mL of benzene, 5 mg of iodine was added, and light irradiation was performed. After irradiation with light, it was washed once with an aqueous sodium thiosulfate solution, once with an aqueous sodium bicarbonate solution, and twice with a saturated saline solution. The condensed ring product was purified by recrystallization using Ethyl acetate. The obtained target product showed a spot having an Rf value of 0.19 on TLC using Hexane: chloroform (1: 5, v / v) as a developing solvent. The yield was 15 mg and the yield was 21%. The formation of the target product was confirmed by NMR. The NMR of the product is shown in FIG. The peak information of the NMR spectrum was as follows.
1 H NMR (400 MHz, CDCl 3 ) δ H 7.41-7.51 (2H, m), 7.56-7.59 (1H, m), 7.69 (1H, t, J = 7.4 Hz), 7.77 (1H, t, J = 7.7 Hz), 8.02 (1H, d, J = 7.6 Hz), 8.07 (1H, d, J = 8.9 Hz), 8.28 (1H, d, J = 7.1 Hz), 8.43 (1H, d, J = 9.2 Hz) ), 8.75 (1H, d, J = 9.2 Hz), 8.86 (1H, d, J = 8.5 Hz), 9.03 (1H, d, J = 9.9 Hz), 9.29 (1H, d, J = 9.2 Hz), 10.1 (1H, d, J = 9.6 Hz).
An absorption spectrum and a fluorescence spectrum were measured in the same manner as in Example 1 except that the excitation wavelength for fluorescence spectrum measurement was set to 320 nm. FIG. 3 shows the absorption / fluorescence spectrum of the obtained coumarin condensed ring compound at 10 −4 mol / L in acetonitrile. The fluorescence yield (Φ f ), fluorescence lifetime (τ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
実施例8:式(16)で表されるクマリン縮環化合物
8-1. Wittig反応による光反応前駆体(化合物J)の合成
Figure JPOXMLDOC01-appb-C000048
 4-Bromomethyl-7-methoxycoumarin phosphonium salt 0.37g(0.70mmol)、クリセン-1-カルボアルデヒド(chrysene-1-carbaldehyde)0.08g (0.30mmol)をchloroform10mLに加え、攪拌しながら50%KOH水溶液を5mL滴下した。窒素雰囲気下、65℃で1時間還流した。室温まで放冷後、水と飽和食塩水で洗浄した。洗浄後の生成物をHexane : ethyl acetate (3:1,v/v)の混合溶媒を展開溶媒として用いて、シリカカラムクロマトグラフで目的物を単離した。生成物は、展開溶媒としてHexane : ethyl acetate (3:1,v/v)を用いたTLC上で、0.28のRf値を有するスポットを示した。収量は0.050g、収率は38%であった。
Example 8: Coumarin condensed ring compound represented by formula (16) 8-1. Synthesis of photoreaction precursor (compound J) by Wittig reaction
Figure JPOXMLDOC01-appb-C000048
4-Bromomethyl-7-methoxycoumarin phosphonium salt 0.37 g (0.70 mmol) and chrysene-1-carbaldehyde 0.08 g (0.30 mmol) were added to 10 mL of chloroform and stirred with 50% KOH. 5 mL of aqueous solution was dripped. The mixture was refluxed at 65 ° C. for 1 hour under a nitrogen atmosphere. After cooling to room temperature, the mixture was washed with water and saturated brine. The product after washing was isolated by silica column chromatography using a mixed solvent of Hexane: ethyl acetate (3: 1, v / v) as a developing solvent. The product showed a spot with an Rf value of 0.28 on TLC using Hexane: ethyl acetate (3: 1, v / v) as the developing solvent. The yield was 0.050 g, and the yield was 38%.
8-2.光照射によるMeOCM[5]の合成
Figure JPOXMLDOC01-appb-C000049
 化合物J 50mg(0.12mmol)、ヨウ素 微量(約500mg)を溶媒のbenzeneに加え、撹拌しながら高圧水銀灯で8時間照射した。生成物は、Chloroformを展開溶媒として用いたTLC上で、0.40のRf値を有するスポットを示した。チオ硫酸ナトリウム水溶液で1回、炭酸水素ナトリウム水溶液で1回、飽和食塩水で2回洗浄した。その後、Ethyl acetateを用いた再結晶法により精製を行い、目的物を得た。収量は10mg、収率は20%であった。NMRで目的物の生成を確認した。
 ケイ光スペクトル測定の励起波長を320nmとした以外は実施例1に記載の方法と同様にして、吸収スペクトル、ケイ光スペクトルを測定した。得られたクマリン縮環化合物のアセトニトリル中10-4mol/Lの吸収・ケイ光スペクトルを図3に示す。また、ケイ光収率(Φf)、ケイ光寿命(τf)およびケイ光速度(kf)を表1と図4に示す。
8-2. Synthesis of MeOCM [5] by light irradiation
Figure JPOXMLDOC01-appb-C000049
Compound J 50 mg (0.12 mmol) and a trace amount of iodine (about 500 mg) were added to the solvent benzene and irradiated with a high pressure mercury lamp for 8 hours while stirring. The product showed a spot with an Rf value of 0.40 on TLC using Chloroform as the developing solvent. The extract was washed once with an aqueous sodium thiosulfate solution, once with an aqueous sodium hydrogen carbonate solution, and twice with a saturated saline solution. Then, it refine | purified by the recrystallization method using Ethyl acetate, and obtained the target object. The yield was 10 mg, and the yield was 20%. The formation of the target product was confirmed by NMR.
An absorption spectrum and a fluorescence spectrum were measured in the same manner as in Example 1 except that the excitation wavelength for fluorescence spectrum measurement was set to 320 nm. FIG. 3 shows the absorption / fluorescence spectrum of the obtained coumarin condensed ring compound at 10 −4 mol / L in acetonitrile. The fluorescence yield (Φ f ), fluorescence lifetime (τ f ), and fluorescence speed (k f ) are shown in Table 1 and FIG.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
 表1および図4より、ベンゼン環の増加につれて、7-メトキシクマリンに比較して実施例2の式(8)で表される化合物のケイ光収率は約125倍に増加し、ケイ光速度も顕著に増加することが示されている。また、実施例1、2、7及び実施例8の結果から、ベンゼン環の数の増加により、ケイ光収率がさらに向上することが示されている。
 また、クマリン骨格自体が電子受容性であることから、本発明の実施態様の化合物は、ケイ光性のみならず、n型半導体動作を示すことが予想され、電界効果トランジスタの電子輸送層への応用が期待できる。
As shown in Table 1 and FIG. 4, as the benzene ring increases, the fluorescence yield of the compound represented by the formula (8) of Example 2 increases about 125 times as compared with 7-methoxycoumarin, and the fluorescence rate increases. Has also been shown to increase significantly. Further, the results of Examples 1, 2, 7 and Example 8 indicate that the fluorescence yield is further improved by increasing the number of benzene rings.
In addition, since the coumarin skeleton itself is electron-accepting, the compound of the embodiment of the present invention is expected to exhibit not only fluorescence but also an n-type semiconductor operation, and the application to the electron transport layer of the field effect transistor is expected. Application can be expected.
 本発明のクマリン系縮環化合物を用いた有機ELデバイスは堅牢であることが予想できることから、衣料タグなどでの利用が期待でき、シリコン半導体市場を補完できる。また、既存のクマリンから光縮環反応により生産でき、収率が高いことから、低コストで生産でき、産業上非常に有用である。 Since the organic EL device using the coumarin-based condensed ring compound of the present invention can be expected to be robust, it can be expected to be used in clothing tags and the like, and can complement the silicon semiconductor market. In addition, it can be produced from an existing coumarin by a photocondensation reaction, and since it has a high yield, it can be produced at low cost and is very useful industrially.

Claims (13)

  1.  下記の一般式(1)乃至(4)のいずれかで表されるクマリン縮環化合物またはイソクマリン縮環化合物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、Arは置換基を有していてもよい芳香族環または複素芳香族環を表している。但し、R1~R4が全て水素の場合、Arはベンゼン環ではない。
    Figure JPOXMLDOC01-appb-C000002
    式(2)中、mは1~7の整数、nは2~7の整数である。
    Figure JPOXMLDOC01-appb-C000003
    式(3)中、nは2~7の整数である。
    Figure JPOXMLDOC01-appb-C000004
    式(4)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、Arは置換基を有していてもよい芳香族環または複素芳香族環を表している。但し、R1~R4が全て水素の場合、Arはベンゼン環ではない。
    A coumarin condensed ring compound or an isocoumarin condensed ring compound represented by any one of the following general formulas (1) to (4).
    Figure JPOXMLDOC01-appb-C000001
    In the formula (1), R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group. And Ar represents an aromatic ring or a heteroaromatic ring which may have a substituent. However, when R 1 to R 4 are all hydrogen, Ar is not a benzene ring.
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), m is an integer of 1 to 7, and n is an integer of 2 to 7.
    Figure JPOXMLDOC01-appb-C000003
    In the formula (3), n is an integer of 2 to 7.
    Figure JPOXMLDOC01-appb-C000004
    In the formula (4), R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group. And Ar represents an aromatic ring or a heteroaromatic ring which may have a substituent. However, when R 1 to R 4 are all hydrogen, Ar is not a benzene ring.
  2.  前記一般式(1)で表される化合物が式(5)で表される請求項1に記載のクマリン縮環化合物。
    Figure JPOXMLDOC01-appb-C000005
    式(1)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、nは2~7の整数である。
    The coumarin condensed ring compound according to claim 1, wherein the compound represented by the general formula (1) is represented by the formula (5).
    Figure JPOXMLDOC01-appb-C000005
    In the formula (1), R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group. And n is an integer from 2 to 7.
  3.  前記一般式(1)または(5)において、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、メトキシ基、アミノ基、ジメチルアミノ基、ジエチルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基である、請求項1または2記載のクマリン縮環化合物。 In the general formula (1) or (5), R 1 to R 4 are independently hydrogen, hydroxyl group, methoxy group, amino group, dimethylamino group, diethylamino group, trifluoromethyl group, nitro group or cyano group. The coumarin fused ring compound of Claim 1 or 2 which is these.
  4.  前記一般式(2)において、nが2~5である、請求項1または3記載のクマリン縮環化合物。 The coumarin fused ring compound according to claim 1 or 3, wherein in the general formula (2), n is 2 to 5.
  5.  前記一般式(3)において、nが2~5である、請求項1または3記載のクマリン縮環化合物。 The coumarin fused ring compound according to claim 1 or 3, wherein n is 2 to 5 in the general formula (3).
  6.  前記一般式(5)において、nが2~5である、請求項2または3に記載のクマリン縮環化合物。 The coumarin fused ring compound according to claim 2 or 3, wherein n is 2 to 5 in the general formula (5).
  7.  前記一般式(4)で表される化合物が、一般式(6)で表される化合物である、請求項1記載のイソクマリン縮環化合物。
    Figure JPOXMLDOC01-appb-C000006
    式(4)中、R1~R4はそれぞれ独立に、水素、ヒドロキシル基、アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基であり、nは2~7の整数である。
    The isocoumarin condensed ring compound according to claim 1, wherein the compound represented by the general formula (4) is a compound represented by the general formula (6).
    Figure JPOXMLDOC01-appb-C000006
    In the formula (4), R 1 to R 4 are each independently hydrogen, hydroxyl group, alkoxy group, amino group, alkylamino group, dialkylamino group, trialkylamino group, trifluoromethyl group, nitro group or cyano group. And n is an integer from 2 to 7.
  8.  前記一般式(4)または(6)において、R3がヒドロキシル基、メトキシ基、アミノ基、ジメチルアミノ基、ジエチルアミノ基、トリフルオロメチル基、ニトロ基またはシアノ基である、請求項1または7記載のイソクマリン縮環化合物。 In said general formula (4) or (6), R < 3 > is a hydroxyl group, a methoxy group, an amino group, a dimethylamino group, a diethylamino group, a trifluoromethyl group, a nitro group, or a cyano group. Isocoumarin condensed ring compound.
  9.  前記一般式(6)において、nが2~5である、請求項7または8記載のイソクマリン縮環化合物。 The isocoumarin condensed ring compound according to claim 7 or 8, wherein n is 2 to 5 in the general formula (6).
  10.  酸化剤の存在下、光反応前駆体に光を照射する光縮合工程を有する、請求項1~9のいずれか1項に記載のクマリン縮環化合物またはイソクマリン縮環化合物の製造方法。 The method for producing a coumarin condensed ring compound or an isocoumarin condensed ring compound according to any one of claims 1 to 9, further comprising a photocondensation step of irradiating the photoreaction precursor with light in the presence of an oxidizing agent.
  11.  前記酸化剤がO2およびI2である、請求項10記載のクマリン縮環化合物またはイソクマリン縮環化合物の製造方法。 The method for producing a coumarin condensed ring compound or an isocoumarin condensed ring compound according to claim 10, wherein the oxidizing agent is O 2 and I 2 .
  12.  前記光縮合工程において長波長紫外線および/または中波長紫外線を含む光を照射する、請求項10または11記載のクマリン縮環化合物またはイソクマリン縮環化合物の製造方法。 The method for producing a coumarin condensed ring compound or an isocoumarin condensed ring compound according to claim 10 or 11, wherein light containing long wavelength ultraviolet light and / or medium wavelength ultraviolet light is irradiated in the photocondensation step.
  13.  請求項1~9のいずれか1項に記載のクマリン縮環化合物またはイソクマリン縮環化合物を含む有機層を具備する有機ELデバイス。 An organic EL device comprising an organic layer containing the coumarin condensed ring compound or the isocoumarin condensed ring compound according to any one of claims 1 to 9.
PCT/JP2015/068233 2014-06-26 2015-06-24 Coumalin-based condensed ring compound exhibiting luminescence/semiconductor properties, and method for manufacturing same WO2015199141A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529634A JPWO2015199141A1 (en) 2014-06-26 2015-06-24 Coumarin-type condensed ring compound exhibiting luminescent property and semiconductor performance and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014130939 2014-06-26
JP2014-130939 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015199141A1 true WO2015199141A1 (en) 2015-12-30

Family

ID=54938219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068233 WO2015199141A1 (en) 2014-06-26 2015-06-24 Coumalin-based condensed ring compound exhibiting luminescence/semiconductor properties, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2015199141A1 (en)
WO (1) WO2015199141A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184393A (en) * 2017-04-24 2018-11-22 東ソー株式会社 Condensed ring compound and method for producing the same
CN111440137A (en) * 2020-04-28 2020-07-24 华东理工大学 3, 4-benzocoumarin derivative and preparation method and application thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126241A (en) * 1988-11-07 1990-05-15 Hitachi Ltd Nonlinear optical element
JPH069952A (en) * 1992-06-22 1994-01-18 Tdk Corp Organic el element
JPH06122874A (en) * 1992-08-25 1994-05-06 Konica Corp Organic electroluminescent element
JP2001026587A (en) * 1999-07-12 2001-01-30 Chisso Corp Dibenzopyran-6-one derivative and liquid crystal composition containing the same
JP2001081347A (en) * 1999-09-09 2001-03-27 Mitsubishi Chemicals Corp Coumarin-based compound and its production
JP2005120073A (en) * 2003-08-01 2005-05-12 Clariant Internatl Ltd Fluorinated benzo[c]chromene in liquid crystal mixture and use of them
JP2005139390A (en) * 2003-11-10 2005-06-02 Sony Corp Light-emitting, coumarin-containing organic material and organic el element
JP2005232104A (en) * 2004-02-20 2005-09-02 Japan Health Science Foundation New isocoumarin-based fluorescent substance
JP2007197583A (en) * 2006-01-27 2007-08-09 Nippon Steel Chem Co Ltd Aromatic polyamic acid and aromatic polyimide
JP2008164775A (en) * 2006-12-27 2008-07-17 Kyocera Mita Corp Electrophotographic photoreceptor
WO2009080949A1 (en) * 2007-12-06 2009-07-02 Universite Du Maine (Le Mans) Gossypol and apogossypol derivatives, preparation thereof and uses thereof
WO2010078933A1 (en) * 2008-12-19 2010-07-15 Eni S.P.A. Imidized polymers containing luminescent groups and method for obtaining them
WO2015106789A1 (en) * 2014-01-17 2015-07-23 Merck Patent Gmbh Materials for organic electroluminescent devices

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126241A (en) * 1988-11-07 1990-05-15 Hitachi Ltd Nonlinear optical element
JPH069952A (en) * 1992-06-22 1994-01-18 Tdk Corp Organic el element
JPH06122874A (en) * 1992-08-25 1994-05-06 Konica Corp Organic electroluminescent element
JP2001026587A (en) * 1999-07-12 2001-01-30 Chisso Corp Dibenzopyran-6-one derivative and liquid crystal composition containing the same
JP2001081347A (en) * 1999-09-09 2001-03-27 Mitsubishi Chemicals Corp Coumarin-based compound and its production
JP2005120073A (en) * 2003-08-01 2005-05-12 Clariant Internatl Ltd Fluorinated benzo[c]chromene in liquid crystal mixture and use of them
JP2005139390A (en) * 2003-11-10 2005-06-02 Sony Corp Light-emitting, coumarin-containing organic material and organic el element
JP2005232104A (en) * 2004-02-20 2005-09-02 Japan Health Science Foundation New isocoumarin-based fluorescent substance
JP2007197583A (en) * 2006-01-27 2007-08-09 Nippon Steel Chem Co Ltd Aromatic polyamic acid and aromatic polyimide
JP2008164775A (en) * 2006-12-27 2008-07-17 Kyocera Mita Corp Electrophotographic photoreceptor
WO2009080949A1 (en) * 2007-12-06 2009-07-02 Universite Du Maine (Le Mans) Gossypol and apogossypol derivatives, preparation thereof and uses thereof
WO2010078933A1 (en) * 2008-12-19 2010-07-15 Eni S.P.A. Imidized polymers containing luminescent groups and method for obtaining them
WO2015106789A1 (en) * 2014-01-17 2015-07-23 Merck Patent Gmbh Materials for organic electroluminescent devices

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GORYAEVA, E. M. ET AL.: "Two-wavelength laser emission of dyes participating in photoprotolytic reactions", PROCEEDINGS OF SPIE- THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 2619, 1995, pages 166 - 174 *
HARAYAMA TAKASHI ET AL.: "A concise synthesis of arnottin I via internal biaryl coupling reaction using palladium reagent", HETEROCYCLES, vol. 46, 1997, pages 61 - 64 *
HARAYAMA TAKASHI ET AL.: "Synthesis of arnottin I through a palladium-mediated aryl-aryl coupling reaction", CHEMICAL & PHARMACEUTICAL BULLETIN, vol. 48, no. 6, 2000, pages 861 - 864, XP055247280 *
KRZESZEWSKI MACIEJ ET AL.: "Color-Tunable Fluorescent Dyes Based on Benzo[c]coumarin", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, vol. 2013, no. 25, 2013, pages 5631 - 5644, XP055174487 *
SINGHA, RAJU; ET AL.: "Palladium-catalyzed one- pot Suzuki-Miyaura cross coupling followed by oxidative lactonization: a novel and efficient route for the one-pot synthesis of benzo[c] chromene-6-ones", TETRAHEDRON LETTERS, vol. 54, no. 7, 2013, pages 657 - 660, XP055247275 *
WANG WEI ET AL.: "Remote directed metalation of biaryl o-carbamates. Ring to ring carbamoyltransfer route to biaryls, dibenzo[b,d] pyranones, and the natural fluorenone dengibsin", JOURNAL OF ORGANIC CHEMISTRY, vol. 57, no. 2, 1992, pages 424 - 426, XP055247282 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018184393A (en) * 2017-04-24 2018-11-22 東ソー株式会社 Condensed ring compound and method for producing the same
CN111440137A (en) * 2020-04-28 2020-07-24 华东理工大学 3, 4-benzocoumarin derivative and preparation method and application thereof
CN111440137B (en) * 2020-04-28 2022-08-16 华东理工大学 3, 4-benzocoumarin derivative and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2015199141A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
Yang et al. Triphenylethylene carbazole derivatives as a new class of AIE materials with strong blue light emission and high glass transition temperature
CN110790782A (en) Dark blue organic luminescent material and preparation method and application thereof
JP5164902B2 (en) Method for synthesizing 9-aryl-10-iodoanthracene derivative and method for synthesizing luminescent material
JP4827775B2 (en) Electroluminescent device
CN109734608B (en) Organic compound and organic electroluminescent device using same
JP2007308476A (en) Dibenzanthracene compound and organic light-emitting device having the same
KR20110033070A (en) Halogenated diarylamine compound and synthesis method thereof
WO2018120970A1 (en) Green light dye with aggregation-induced emission property
CN108948030B (en) Azafluorene spiroanthracene heterocyclic compound and application thereof in organic electroluminescent element
JP6016511B2 (en) Novel condensed polycyclic compound, organic light emitting device having the same, display device, image information processing device, illumination device, and image forming device
WO2015199141A1 (en) Coumalin-based condensed ring compound exhibiting luminescence/semiconductor properties, and method for manufacturing same
TW201524968A (en) Synthesis method of the 2,6-bis [3&#39;-(N-carbazolyl) phenyl]pyridine compounds
JP5803025B2 (en) Photochromic molecule
CN113402561A (en) High-color-purity platinum (II) complex luminescent material based on spirofluorene structure and application thereof
CN108129431B (en) Fluorenonaphthofuran derivative and application thereof
JP5669374B2 (en) Novel condensed polycyclic compounds and organic light emitting devices
CN111995637B (en) Organic compound and organic electroluminescent device thereof
JP5163853B2 (en) Organic compounds and their uses
CN111423450B (en) Compound, display panel and display device
CN108558595B (en) P-phenylene ethylene bridged trimer indene derivative and preparation method thereof
Kothavale et al. Novel triphenylamine based rhodamine derivatives: synthesis, characterization, photophysical properties and viscosity sensitivity
JP2012176928A (en) Pyrene derivative, production method of pyrene derivative, complex, catalyst, electronic material, light-emitting material and pigment
CN109293561A (en) 15- hexyl -15H- tetraphenyl [1,2-e] benzazolyl compounds and its synthetic method
JP5521210B2 (en) Compound having triarylamine moiety and fused ring moiety, and production method thereof
CN102131753B (en) Organic compound and organic light-emitting device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812273

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016529634

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812273

Country of ref document: EP

Kind code of ref document: A1