WO2015198626A1 - Aluminum plating solution, aluminum plating film manufacturing method, and porous aluminum material - Google Patents

Aluminum plating solution, aluminum plating film manufacturing method, and porous aluminum material Download PDF

Info

Publication number
WO2015198626A1
WO2015198626A1 PCT/JP2015/054387 JP2015054387W WO2015198626A1 WO 2015198626 A1 WO2015198626 A1 WO 2015198626A1 JP 2015054387 W JP2015054387 W JP 2015054387W WO 2015198626 A1 WO2015198626 A1 WO 2015198626A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
plating solution
component
porous
elongation
Prior art date
Application number
PCT/JP2015/054387
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 後藤
細江 晃久
西村 淳一
奥野 一樹
弘太郎 木村
英彰 境田
隼一 本村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2015198626A1 publication Critical patent/WO2015198626A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts

Definitions

  • the present invention relates to an aluminum plating solution capable of producing an aluminum film having excellent surface smoothness and excellent flexibility. Furthermore, the present invention relates to an aluminum film manufacturing method using the aluminum plating solution and an aluminum porous body.
  • Aluminum has many excellent features such as conductivity, corrosion resistance, light weight, and non-toxicity, and is widely used for plating metal products. However, since aluminum has a high affinity for oxygen and a lower oxidation-reduction potential than hydrogen, it is difficult to perform electroplating in an aqueous plating bath.
  • Patent Document 1 discloses an organic chloride salt such as 1-ethyl-3-methylimidazolium chloride (EMIC) or 1-butylpyridinium chloride (BPC) and a chloride. It is described that aluminum (AlCl 3 ) is mixed to form a liquid aluminum plating bath at room temperature, and aluminum is electroplated on the surface of the resin molded body using this plating bath.
  • EMIC 1-ethyl-3-methylimidazolium chloride
  • BPC 1-butylpyridinium chloride
  • Patent Document 1 describes that a smooth aluminum film is formed by adding 1,10-phenanthroline to an aluminum plating solution so that the concentration is 0.25 g / L to 7.0 g / L. Has been.
  • an aluminum porous body manufactured by the method described in Patent Document 1 is very promising, for example, for improving the capacity of a positive electrode of a lithium ion battery.
  • aluminum has excellent characteristics such as conductivity, corrosion resistance, and light weight
  • an aluminum foil whose surface is coated with an active material such as lithium cobaltate is used as a positive electrode of a lithium ion battery.
  • the positive electrode With a porous body made of aluminum, the surface area can be increased and the active material can be filled inside the aluminum. Thereby, even if the electrode is thickened, the utilization factor of the active material is not reduced, the utilization factor of the active material per unit area is improved, and the capacity of the positive electrode can be improved.
  • Patent Document 2 discloses that the concentration of 1,10-phenanthroline monohydrate in the aluminum plating solution is 0.05 g / L or more and 7.5 g / L. It is described that it is effective to control the following.
  • 1,10-phenanthroline monohydrate is added to the aluminum plating solution while controlling the concentration to be 0.05 g / L or more and 7.5 g / L or less.
  • concentration 0.05 g / L or more and 7.5 g / L or less.
  • the present inventors apply heat to the aluminum porous body to make the aluminum flexible. It was investigated. In general, metals have the property of becoming soft when heat-treated, but in the case of an aluminum porous body obtained by the method described in Patent Document 1, it did not become flexible even when heat-treated.
  • an object is to provide an aluminum plating solution capable of continuously producing an aluminum film having excellent surface smoothness and excellent elongation.
  • An aluminum plating solution is an aluminum plating solution capable of electrodepositing aluminum on a substrate surface, and the aluminum plating solution includes (A) an aluminum halide and (B) an alkyl. One or more compounds selected from the group consisting of imidazolium halides, alkylpyridinium halides and urea compounds, and (C) an organic compound containing a benzene ring, which is a solid at room temperature, and whose constituent element is hydrogen And an organic compound that is at least one selected from the group consisting of carbon, oxygen and halogen atoms, and the mixing ratio of the component (A) and the component (B) is 1: 1 by mole ratio.
  • An aluminum plating solution having a concentration of 0.10 g / L to 20 g / L. That.
  • an aluminum plating solution capable of continuously producing an aluminum film having excellent surface smoothness and excellent elongation can be provided.
  • An aluminum plating solution according to an aspect of the present invention is an aluminum plating solution capable of electrodepositing aluminum on a substrate surface, and the aluminum plating solution includes (A) an aluminum halide and ( B) Any one or more compounds selected from the group consisting of alkyl imidazolium halides, alkyl pyridinium halides and urea compounds, and (C) an organic compound containing a benzene ring, which is solid at room temperature
  • room temperature shall mean the temperature of 0 degreeC or more and 25 degrees C or less.
  • the “organic compound that is solid at room temperature” is “an organic compound that is solid in air of 1 atm at a temperature of 0 ° C. or higher and 25 ° C. or lower”.
  • the component (A) is preferably aluminum chloride, and the component (B) is preferably 1-ethyl-3-methylimidazolium chloride. According to the aspect of the invention described in (2) above, it is possible to provide an aluminum plating solution capable of continuously and stably obtaining an aluminum film excellent in surface smoothness.
  • a method for producing an aluminum film according to an aspect of the present invention is a method for producing an aluminum film in which aluminum is electrodeposited on the surface of a substrate using the aluminum plating solution according to (1) or (2) above. It is. According to the aspect of the invention as described in said (3), the aluminum film which is excellent in surface smoothness and excellent in elongation can be provided.
  • An aluminum porous body according to one aspect of the present invention is an aluminum porous body obtained using the aluminum plating solution according to (1) or (2) above, and has a three-dimensional network structure. , A porous aluminum body having an elongation of 1.5% or more. Since the porous aluminum body described in the above (4) is soft and excellent in elongation, it is an aluminum porous body that can be used for applications where bending and vibration are applied. Note that the elongation of the porous aluminum body according to one embodiment of the present invention is affected by the amount of aluminum.
  • the elongation of the aluminum porous body is the elongation when the weight of aluminum in the aluminum porous body is 100 g / m 2 or more and 180 g / m 2 or less and the thickness is 0.95 mm or more and 1.05 mm or less.
  • the elongation of the aluminum porous body refers to the elongation measured when a tensile test is performed according to JIS Z 2241, and refers to the ratio of the displacement amount to the distance between scores (GL). To do.
  • the porous aluminum body described in (4) above preferably has a crystal grain size in the cross section of the skeleton of 1 ⁇ m or more and 20 ⁇ m or less. Since the aluminum porous body described in the above (5) has a large crystal grain size, it is an aluminum porous body that is soft and excellent in elongation.
  • the aluminum porous body according to (4) or (5) preferably has an aluminum carbide content of 0.8 mass% or less. Since the aluminum porous body described in the above (6) has a small amount of aluminum carbide contained in the aluminum film, recrystallization of aluminum proceeds by heat treatment, and the aluminum porous body is made of a softer aluminum film. Can do.
  • the present inventors heat-treated the aluminum porous body so as to give flexibility to the aluminum porous body obtained by using the conventional aluminum plating solution, but the aluminum porous body maintains the characteristics of high strength and low elongation even after the heat treatment. I found out.
  • the present inventors have studied in detail about this reason, and have found that recrystallization does not proceed because aluminum carbide is formed at the grain boundaries of aluminum crystals by heat treatment. This aluminum carbide was caused by 1,10-phenanthroline incorporated into the aluminum film when it was formed.
  • the present inventors have found that the component (C) is effective as an additive that contributes to the smoothness of the aluminum film but is not taken into the aluminum film. That is, the aluminum plating solution according to the embodiment of the present invention is an aluminum plating obtained by mixing at least the following components (A) to (C) as described above.
  • Component Aluminum halide
  • Component One or more compounds selected from the group consisting of alkylimidazolium halides, alkylpyridinium halides, and urea compounds
  • Component Organic compounds containing a benzene ring An organic compound that is solid at room temperature and whose constituent elements are one or more selected from the group consisting of hydrogen, carbon, oxygen, and halogen atoms
  • the aluminum plating solution according to the embodiment of the present invention may contain other components as inevitable impurities. Moreover, you may contain other components intentionally in the range which does not impair the effect of the aluminum film which concerns on embodiment of this invention that can form the aluminum film excellent in smoothness and elongation.
  • the aluminum halide as component (A) can be used satisfactorily as long as it forms a molten salt at about 110 ° C. or lower when mixed with component (B).
  • component (B) aluminum chloride (AlCl 3 ), aluminum bromide (AlBr 3 ), aluminum iodide (AlI 3 ) and the like can be mentioned.
  • AlCl 3 aluminum chloride
  • AlBr 3 aluminum bromide
  • AlI 3 aluminum iodide
  • aluminum chloride is most preferable.
  • (B) component alkyl imidazolium halide those that form a molten salt at about 110 ° C. or less when mixed with the (A) component can be used favorably.
  • imidazolium chloride having an alkyl group (1 to 5 carbon atoms) at the 1,3 position imidazolium chloride having an alkyl group (1 to 5 carbon atoms) at the 1,2,3 position, 1,3 position
  • imidazolium ioside having an alkyl group (having 1 to 5 carbon atoms).
  • EMIC 1-ethyl-3-methylimidazolium chloride
  • BMIC 1-butyl-3-methylimidazolium chloride
  • MPIC 1-methyl-3-propylimidazolium chloride
  • EMIC 1-ethyl-3-methylimidazolium chloride
  • the (B) component alkylpyridinium halide those that form a molten salt at about 110 ° C. or less when mixed with the (A) component can be used favorably.
  • examples thereof include 1-butylpyridinium chloride (BPC), 1-ethylpyridinium chloride (EPC), 1-butyl-3-methylpyridinium chloride (BMPC), etc.
  • BPC 1-butylpyridinium chloride
  • EPC 1-ethylpyridinium chloride
  • BMPC 1-butyl-3-methylpyridinium chloride
  • 1-butylpyridinium chloride is most preferable.
  • the urea compound as component (B) means urea and its derivatives, and those that form a molten salt at about 110 ° C. or less when mixed with component (A) can be used favorably.
  • a compound represented by the following formula (1) can be preferably used.
  • R represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
  • Each R may be the same as or different from each other.
  • urea and dimethylurea can be particularly preferably used as the urea compound.
  • the aluminum film is electrodeposited on the surface of the substrate by setting the mixing ratio of the component (A) and the component (B) in the molar ratio of 1: 1 to 3: 1.
  • An aluminum plating solution suitable for the above is obtained.
  • the molar ratio of the component (A) when the component (B) is 1 the aluminum electrodeposition reaction does not occur.
  • the molar ratio of the component (A) exceeds 3 when the component (B) is 1, aluminum chloride is precipitated in the aluminum plating solution and taken into the aluminum film, resulting in deterioration of the film quality. .
  • Component (C) is an organic compound containing a benzene ring, and is an organic compound that is solid at room temperature and whose constituent elements are any one or more selected from the group consisting of hydrogen, carbon, oxygen, and halogen atoms. Since the organic compound (C) is a solid at room temperature, it has a high flash point and can enhance safety during handling.
  • the organic compound of (C) component although a halogen atom and oxygen atom (O) may be contained, a nitrogen atom (N), a sulfur atom (S), and a phosphorus atom (P) If it is included, the effect is difficult to be demonstrated. Further, the organic compound of component (C) needs to contain a benzene ring. Specific examples of the component (C) include diphenylmethane, benzophenone, benzoic acid, triphenylmethane, trityl chloride, and quinizarin.
  • the concentration of the component (C) in the aluminum plating solution is 0.10 g / L or more and 20 g / L or less, an aluminum film that is smooth and excellent in elongation can be formed.
  • the concentration of the component (C) is less than 0.10 g / L, the aluminum film cannot be sufficiently smoothed, and when it exceeds 20 g / L, the component (C) is taken into the aluminum film. It becomes an aluminum film that becomes hard but is brittle and has little elongation.
  • the concentration of the component (C) is more preferably 0.5 g / L or more and 15 g / L or less, and further preferably 1.0 g / L or more and 10 g / L or less.
  • the concentration of the component (C) is 0.10 g / at the time of manufacturing the aluminum plating solution, that is, when the components (A) to (C) are mixed. If it is set to the range of 20 g / L or more, it is not necessary to newly add the component (C) during the subsequent plating operation.
  • an aluminum film having a smooth surface and excellent elongation can be formed.
  • the manufacturing method of the aluminum film which concerns on embodiment of this invention is a manufacturing method of the aluminum film which electrodeposits aluminum on the surface of a base material using the aluminum plating liquid which concerns on embodiment of this invention.
  • an aluminum electrode is provided in the electrolyte and the substrate in the electrolyte is a cathode. It may be electrically connected so that At this time, it is preferable that aluminum be electrodeposited on the surface of the substrate so that the current density is 0.5 A / dm 2 or more and 10.0 A / dm 2 or less.
  • the current density is more preferably 1.5 A / dm 2 or more and 6.0 A / dm 2 or less, and further preferably 2.0 A / dm 2 or more and 4.0 A / dm 2 or less.
  • the temperature of the electrolytic solution When electrodepositing aluminum on the substrate surface, it is preferable to adjust the temperature of the electrolytic solution so that it is 15 ° C. or higher and 110 ° C. or lower.
  • the temperature of the electrolytic solution By setting the temperature of the electrolytic solution to 15 ° C. or higher, the viscosity of the electrolytic solution can be sufficiently lowered, and the electrodeposition efficiency of aluminum can be improved. Moreover, volatilization of the aluminum halide can be suppressed by setting the temperature of the electrolytic solution to 110 ° C. or lower.
  • the temperature of the electrolytic solution is more preferably 30 ° C. or more and 80 ° C. or less, and further preferably 40 ° C. or more and 70 ° C. or less.
  • the electrolytic solution when electrodepositing aluminum on the substrate surface, the electrolytic solution may be stirred or may not be stirred.
  • a smooth aluminum film having a surface arithmetic average roughness (Ra) of about 0.25 ⁇ m or less can be produced.
  • the substrate is not particularly limited as long as it has an application for forming an aluminum film on the surface.
  • a copper plate, a steel strip, a copper wire, a steel wire, a resin subjected to a conductive treatment, or the like can be used as the substrate.
  • a resin subjected to the conductive treatment for example, polyurethane, melamine resin, polypropylene, polyethylene or the like subjected to the conductive treatment can be used.
  • the resin as the substrate may have any shape, but it is preferable to use a resin molded body having a three-dimensional network structure.
  • a resin molded body having a three-dimensional network structure By using a resin molded body having a three-dimensional network structure, finally, a porous aluminum body having a three-dimensional network structure that exhibits excellent properties for various filters, catalyst carriers, battery electrodes, etc. is produced. can do.
  • the aluminum porous body which finally has a porous structure is producible also by using resin which has a nonwoven fabric shape.
  • the aluminum porous body having the nonwoven fabric shape thus produced can also be preferably used for various filters, catalyst carriers, battery electrodes and the like.
  • the resin molded body having a three-dimensional network structure for example, a foamed resin molded body produced using polyurethane, melamine resin or the like can be used.
  • a resin molded body having an arbitrary shape can be selected as long as it has continuous pores (continuous vent holes).
  • a porous body having a three-dimensional network structure is also simply referred to as a “porous body”.
  • the porosity of the porous body is preferably 80% or more and 98% or less, and the pore diameter is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • Urethane foam and foamed melamine can be preferably used as a foamed resin molded article because they have high porosity, have pore connectivity and are excellent in thermal decomposability.
  • Urethane foam is preferable in terms of pore uniformity and availability, and urethane foam is preferable in that a material having a small pore diameter can be obtained.
  • foamed resin moldings such as foamed urethane and foamed melamine often have residues such as foaming agents and unreacted monomers in the foaming process. preferable.
  • a resin molded body As the resin molded body having a three-dimensional network structure, a resin molded body is used.
  • the conductive treatment of the resin surface can be selected including known methods.
  • a method of forming a metal layer such as nickel by electroless plating or a vapor phase method, or forming a metal or carbon layer by a conductive paint can be used.
  • the conductivity of the resin surface can be increased.
  • the resin surface can also be made conductive by carbon coating.
  • the resin surface is made conductive by applying carbon, it is possible to manufacture a structure made of substantially only aluminum as a metal without mixing metals other than aluminum into the aluminum structure after the formation of the aluminum film. .
  • Carbon coating also has the advantage that the resin surface can be made conductive at low cost.
  • a carbon paint as a conductive paint is prepared.
  • the suspension as the carbon paint preferably contains a binder, a dispersant and a dispersion medium in addition to the carbon particles.
  • the suspension needs to maintain a uniform suspended state.
  • the suspension is preferably maintained at 20 ° C. to 40 ° C. By maintaining the temperature of the suspension at 20 ° C. or higher, a uniform suspension can be maintained, and only the binder is concentrated on the surface of the skeleton forming the porous network structure to form a layer.
  • the carbon particles can be uniformly applied.
  • the particle size of the carbon particles is 0.01 to 5 ⁇ m, preferably 0.01 to 0.5 ⁇ m. If the particle size is large, the pores of the porous resin molded body may be clogged or smooth plating may be hindered. If it is too small, it is difficult to ensure sufficient conductivity.
  • the aluminum porous body according to the embodiment of the present invention is an aluminum porous body having an elongation of 1.5% or more.
  • the aluminum porous body obtained by the manufacturing method using the conventional aluminum plating solution has high strength and small elongation, whereas the aluminum porous body according to the embodiment of the present invention has a soft aluminum with an elongation of 1.5% or more. It is a porous body.
  • the elongation of the aluminum porous body is preferably 1.5% or more. If the elongation of the aluminum porous body is 1.5% or more, the aluminum porous body becomes strong against bending and vibration, and the range of uses of the aluminum porous body is widened. Accordingly, the larger the elongation of the aluminum porous body is, the more preferable, 1.8% or more is more preferable, and 2.5% or more is more preferable. According to the method for producing an aluminum porous body according to an embodiment of the present invention described later, an aluminum porous body having an aluminum porous body having an elongation of about 1.5% or more and 5.0% or less can be produced.
  • the elongation of the aluminum porous body is the case where the aluminum basis weight is 100 g / m 2 or more and 180 g / m 2 or less and the thickness is 0.95 mm or more and 1.05 mm or less. It is an elongation and is measured by a tensile test according to JIS Z 2241.
  • the crystal grain size in the cross section of the skeleton of the porous aluminum body is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the crystal grain size of 1 ⁇ m or more is preferable because the aluminum film becomes soft and the elongation of the aluminum porous body becomes 1.5% or more.
  • the crystal grain size in the skeleton cross section of the porous aluminum body is more preferably 1.5 ⁇ m or more and 15 ⁇ m or less, and further preferably 2 ⁇ m or more and 10 ⁇ m or less.
  • a porous aluminum body having a relatively large crystal grain size can be obtained by using the above aluminum plating solution.
  • Examples of a method for further increasing the crystal grain size include, for example, heat-treating the aluminum porous body, increasing the temperature of the aluminum plating solution when manufacturing the aluminum porous body, reducing the current density during plating, etc. The method is mentioned.
  • the content of aluminum carbide in the aluminum porous body is preferably 0.8% by mass or less.
  • the content of aluminum carbide in the aluminum porous body is 0.8% by mass or less, the aluminum film becomes soft, and the elongation of the aluminum porous body becomes 1.5% or more.
  • the content of aluminum carbide in the porous aluminum body is more preferably 0.5% by mass or less, and further preferably 0.3% by mass or less.
  • the component (C) is not taken into the aluminum film.
  • the content is 0% by mass.
  • the component (C) may be entrained in the aluminum film, or the component (B) may be entrained in the aluminum film.
  • the component (B) or (C) taken into the aluminum film reacts with aluminum to become aluminum carbide, so that aluminum carbide is formed in the aluminum film. Will be.
  • the porous aluminum body includes a step of forming a resin structure by forming an aluminum film on the surface of a conductive resin molding having a three-dimensional network structure by molten salt electroplating, and a conductive resin molding from the resin structure. It can manufacture by going through the process of removing. Each step will be described in detail below.
  • This step is a step of forming an aluminum film on the surface of the conductive resin molding having a three-dimensional network structure by performing electrolytic plating in a molten salt, that is, an aluminum plating solution. What is necessary is just to use what electrically conductively processed the surface of the resin molding which has the above-mentioned three-dimensional network structure as a conductive resin molding which has a three-dimensional network structure.
  • a uniformly thick aluminum film can be formed on the surface of the skeleton of a molded body having a complicated skeleton structure such as a conductive resin molded body having a three-dimensional network structure. Can be formed.
  • a direct current may be applied in an aluminum plating solution using the conductive resin molded body as a cathode and aluminum as an anode.
  • the plating is preferably performed in an atmosphere of an inert gas such as nitrogen or argon and in a sealed environment.
  • the temperature of the aluminum plating solution can be 15 ° C to 110 ° C, and preferably 25 ° C to 45 ° C. The lower the temperature, the narrower the current density range that can be plated, and the more difficult it is to plate on the entire surface of the skeleton of the conductive resin molding. By plating in the range of 110 ° C. or lower, it is possible to prevent a problem that the shape of the conductive resin molded body serving as the base material is impaired. Through the above steps, a resin structure having a surface made of an aluminum film and having a conductive resin molded body as the core of the skeleton can be obtained.
  • Example 1 (Aluminum plating solution)
  • Aluminum chloride (AlCl 3 ) is used as the component (A)
  • 1-ethyl-3-methylimidazolium chloride (EMIC) is used as the component (B)
  • the mixing ratio of the components (A) and (B) is molar ratio.
  • the molten salt was prepared by mixing at 2: 1. To this molten salt, the reagent diphenylmethane (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a component (C) to a concentration of 1.0 g / L to obtain an aluminum plating solution 1.
  • Formation of aluminum film Using a copper plate of 20 x 40 x 1.0 mm as the base material, in the aluminum plating solution 1 prepared above, connect the copper plate to the cathode side of the rectifier and the counter electrode aluminum plate (purity 99.99%) to the anode side. Then, aluminum was electrodeposited on the surface of the copper plate by applying a voltage. The temperature of the aluminum plating solution 1 was controlled to be 45 ° C., and the current density was controlled to be 3.0 A / dm 2 .
  • Example 2 ⁇ Preparation of porous aluminum> (Formation of aluminum film on substrate surface) Using the aluminum plating solution 1 prepared in Example 1, aluminum was electrodeposited on the surface of the base material to prepare a resin structure. A resin molded body having a three-dimensional network structure subjected to a conductive treatment was used as the base material. As the resin molding, foamed urethane (100 mm ⁇ 30 mm square) having a thickness of 1 mm, a porosity of 95%, and a pore number (number of cells) per inch of about 50 was used. The conductive treatment was performed by immersing urethane foam in a carbon suspension and drying.
  • the components of the carbon suspension include 25% graphite and carbon black, and include a resin binder, a penetrating agent, and an antifoaming agent.
  • the particle size of carbon black was 0.5 ⁇ m.
  • this base material was connected to the cathode side of a rectifier, and the aluminum plate (purity 99.99%) of the counter electrode was connected to the anode side.
  • the temperature of the aluminum plating solution 1 was controlled to 45 ° C., and the current density was controlled to 6.0 A / dm 2 .
  • the aluminum plating solution was stirred to 100 rpm.
  • the elongation of aluminum porous body 1 (ratio of displacement to GL) was 1.8% at the smallest and 3.4% at the largest. And the average value of elongation was 2.4%.
  • the average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body 1 was 3.5 ⁇ m. Furthermore, the amount of aluminum carbide contained in the aluminum porous body 1 was 0.42% by mass.
  • Example 3 The aluminum plating solution 2 was used in the same manner as in Example 1 except that the reagent benzophenone (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the component (C) in the aluminum plating solution, and the concentration was 5.0 g / L. Got.
  • Ten aluminum porous bodies 2 were produced in the same manner as in Example 2 except that the aluminum plating solution 2 was used, and the elongation, crystal grain size, and aluminum carbide content were measured. (Evaluation results) The elongation of aluminum porous body 2 (ratio of displacement to GL) was 1.5% at the smallest and 2.2% at the largest. And the average value of elongation was 1.8%.
  • the average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body 2 was 2.3 ⁇ m. Further, the amount of aluminum carbide contained in the aluminum porous body 2 was 0.40% by mass.
  • Example 4 The aluminum plating solution 3 was used in the same manner as in Example 1 except that the reagent quinizarin (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the component (C) in the aluminum plating solution, and the concentration was 0.50 g / L. Got.
  • Ten aluminum porous bodies 3 were produced in the same manner as in Example 2 except that the aluminum plating solution 3 was used, and the elongation, crystal grain size, and aluminum carbide content were measured. (Evaluation results)
  • the elongation (ratio of displacement with respect to GL) of the aluminum porous body 3 was 1.7% at the smallest and 2.4% at the largest. And the average value of elongation was 1.9%.
  • the average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body 3 was 3.1 ⁇ m. Further, the amount of aluminum carbide contained in the aluminum porous body 3 was 0.45% by mass.
  • Example 5 In Example 1, an aluminum plating solution 4 was obtained in the same manner as in Example 1, except that the concentration of the component (C) was added to be 0.10 g / L. Ten aluminum porous bodies 4 were produced in the same manner as in Example 2 except that the aluminum plating solution 4 was used, and the elongation, crystal grain size, and aluminum carbide content were measured. (Evaluation results) The elongation (ratio of displacement to GL) of the aluminum porous body 4 was 1.5% at the smallest and 2.3% at the largest. And the average value of elongation was 2.0%. The average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body 4 was 4.1 ⁇ m. Furthermore, the amount of aluminum carbide contained in the aluminum porous body 4 was 0.28% by mass.
  • Example 6 In Example 1, an aluminum plating solution 5 was obtained in the same manner as in Example 1, except that the concentration of the component (C) was 20 g / L. Ten aluminum porous bodies 5 were produced in the same manner as in Example 2 except that the aluminum plating solution 5 was used, and the elongation, crystal grain size, and aluminum carbide content were measured. (Evaluation results) The elongation of aluminum porous body 5 (ratio of displacement to GL) was 1.9% at the smallest and 3.4% at the largest. And the average value of elongation was 2.7%. Moreover, the average crystal grain size of aluminum in the skeleton cross section of the aluminum porous body 5 was 3.0 ⁇ m. Further, the amount of aluminum carbide contained in the aluminum porous body 5 was 0.49% by mass.
  • Example 1 An aluminum plating solution A was obtained in the same manner as in Example 1 except that 1,10-phenanthroline monohydrate was used as the component (C) in the aluminum plating solution and the concentration was 0.50 g / L. .
  • Ten aluminum porous bodies A were produced in the same manner as in Example 2 except that the aluminum plating solution A was used, and the elongation, crystal grain size, and aluminum carbide content were measured. (Evaluation results) The elongation (ratio of displacement to GL) of the aluminum porous body A was 0.6% at the smallest and 1.2% even at the largest. And the average value of elongation was 0.8%.
  • the average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body A was 1.0 ⁇ m. Furthermore, the amount of aluminum carbide contained in the aluminum porous body A was 1.2% by mass.
  • Example 2 In Example 1, an aluminum plating solution B was obtained in the same manner as in Example 1, except that the concentration of the component (C) was 0.05 g / L. Ten aluminum porous bodies B were produced in the same manner as in Example 2 except that the aluminum plating solution B was used, and the elongation, crystal grain size, and aluminum carbide content were measured. (Evaluation results) The elongation (ratio of displacement to GL) of the aluminum porous body B was 0.5% at the smallest and 1.1% even at the largest. And the average value of elongation was 0.7%. Moreover, the average crystal grain size of aluminum in the skeleton cross section of the aluminum porous body B was 4.8 ⁇ m. Furthermore, the amount of aluminum carbide contained in the aluminum porous body B was 0.12% by mass.
  • Example 3 In Example 1, an aluminum plating solution C was obtained in the same manner as in Example 1, except that the concentration of the component (C) was 23 g / L. Ten aluminum porous bodies C were produced in the same manner as in Example 2 except that the aluminum plating solution C was used, and the elongation, crystal grain size, and aluminum carbide content were measured. (Evaluation results) The elongation of aluminum porous body C (ratio of displacement to GL) was 0.6% at the smallest and 1.2% at the largest. And the average value of elongation was 0.9%. The average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body C was 1.1 ⁇ m. Furthermore, the amount of aluminum carbide contained in the aluminum porous body C was 1.2% by mass.

Abstract

An aluminum plating solution capable of electrodepositing aluminum on a substrate surface, wherein: as components, the aluminum plating solution comprises (A) an aluminum halide, (B) one or more compounds selected from a group consisting of alkylimidazolium halides, alkylpyridinium halides and urea compounds, and (C) a benzene ring-containing organic compound that is solid at room temperature and the constituent elements of which are one or more species selected from a group consisting of hydrogen, carbon, oxygen and halogen atoms; the mixing ratio of the component (A) to the component (B) is in the range of 1:1 - 3:1 in mole ratio; and the concentration of the component (C) is 0.10 g/L to 20 g/L.

Description

アルミニウムめっき液、アルミニウムめっき膜の製造方法、及びアルミニウム多孔体Aluminum plating solution, method for producing aluminum plating film, and porous aluminum body
 本発明は、表面平滑性に優れ、かつ柔軟性に優れるアルミニウム膜を製造することが可能なアルミニウムめっき液に関する。更には、前記アルミニウムめっき液を用いたアルミニウム膜の製造方法及びアルミニウム多孔体に関する。 The present invention relates to an aluminum plating solution capable of producing an aluminum film having excellent surface smoothness and excellent flexibility. Furthermore, the present invention relates to an aluminum film manufacturing method using the aluminum plating solution and an aluminum porous body.
 アルミニウムは導電性、耐腐食性、軽量、無毒性など多くの優れた特徴を有しており、金属製品等へのめっきに広く利用されている。しかしながらアルミニウムは酸素に対する親和力が大きく、酸化還元電位が水素より低いため、水溶液系のめっき浴では電気めっきを行うことが困難である。 Aluminum has many excellent features such as conductivity, corrosion resistance, light weight, and non-toxicity, and is widely used for plating metal products. However, since aluminum has a high affinity for oxygen and a lower oxidation-reduction potential than hydrogen, it is difficult to perform electroplating in an aqueous plating bath.
 このため、アルミニウムを電気めっきする方法としては溶融塩浴を用いる方法が行われている。しかし、従来の溶融塩によるめっき浴は高温にする必要があるため、樹脂製品に対してアルミニウムを電気めっきしようとすると樹脂が溶けてしまい、電気めっきをすることができないという問題があった。 Therefore, as a method for electroplating aluminum, a method using a molten salt bath is performed. However, since the plating bath with a conventional molten salt needs to be at a high temperature, there is a problem that when the aluminum is electroplated on the resin product, the resin is melted and the electroplating cannot be performed.
 この問題に対して特開2012-144763号公報(特許文献1)では、1-エチル-3-メチルイミダゾリウムクロリド(EMIC)や、1-ブチルピリジニウムクロリド(BPC)などの有機塩化物塩と塩化アルミニウム(AlCl3)とを混合して室温で液体のアルミニウムめっき浴を形成し、このめっき浴を用いて樹脂成形体の表面にアルミニウムを電気めっきすればよいことが記載されている。 In order to solve this problem, Japanese Patent Application Laid-Open No. 2012-144663 (Patent Document 1) discloses an organic chloride salt such as 1-ethyl-3-methylimidazolium chloride (EMIC) or 1-butylpyridinium chloride (BPC) and a chloride. It is described that aluminum (AlCl 3 ) is mixed to form a liquid aluminum plating bath at room temperature, and aluminum is electroplated on the surface of the resin molded body using this plating bath.
 特に、特許文献1に記載のEMIC-AlCl3系のめっき液は液の特性が良好であり、アルミニウムめっき液として非常に有用である。また、特許文献1にはアルミニウムめっき液に1,10-フェナントロリンを濃度が0.25g/L~7.0g/Lとなるように添加することで、平滑なアルミニウム膜が形成されることが記載されている。 In particular, the EMIC-AlCl 3 -based plating solution described in Patent Document 1 has good liquid properties and is very useful as an aluminum plating solution. Patent Document 1 describes that a smooth aluminum film is formed by adding 1,10-phenanthroline to an aluminum plating solution so that the concentration is 0.25 g / L to 7.0 g / L. Has been.
 三次元網目構造を有する金属多孔体として、特許文献1に記載の方法により製造したアルミニウム多孔体は、例えば、リチウムイオン電池の正極の容量を向上させるものとして非常に有望である。アルミニウムは導電性、耐腐食性、軽量などの優れた特徴があるため、現在では、アルミニウム箔の表面にコバルト酸リチウム等の活物質を塗布したものがリチウムイオン電池の正極として使用されている。この正極をアルミニウムからなる多孔体により形成することで、表面積を大きくし、アルミニウムの内部にも活物質を充填することが可能となる。これにより、電極を厚くしても活物質の利用率が減少することがなくなり、単位面積当たりの活物質の利用率が向上し、正極の容量を向上させることが可能となる。 As a porous metal body having a three-dimensional network structure, an aluminum porous body manufactured by the method described in Patent Document 1 is very promising, for example, for improving the capacity of a positive electrode of a lithium ion battery. Since aluminum has excellent characteristics such as conductivity, corrosion resistance, and light weight, currently, an aluminum foil whose surface is coated with an active material such as lithium cobaltate is used as a positive electrode of a lithium ion battery. By forming the positive electrode with a porous body made of aluminum, the surface area can be increased and the active material can be filled inside the aluminum. Thereby, even if the electrode is thickened, the utilization factor of the active material is not reduced, the utilization factor of the active material per unit area is improved, and the capacity of the positive electrode can be improved.
 上記のように三次元網目状構造を有するアルミニウム多孔体は非常に有用なものであるが、特許文献1に記載の方法によって連続的に大量に生産するとアルミニウム膜の平滑性が徐々に低下してしまうため、めっき液を適宜新しいものに交換する必要があった。このような問題に対して特開2014-058715号公報(特許文献2)では、アルミニウムめっき液中の1,10-フェナントロリン一水和物の濃度が0.05g/L以上、7.5g/L以下となるように制御することが有効であることが記載されている。 As described above, an aluminum porous body having a three-dimensional network structure is very useful, but when it is continuously produced in large quantities by the method described in Patent Document 1, the smoothness of the aluminum film gradually decreases. Therefore, it was necessary to replace the plating solution with a new one as appropriate. In order to solve such a problem, Japanese Patent Laid-Open No. 2014-058715 (Patent Document 2) discloses that the concentration of 1,10-phenanthroline monohydrate in the aluminum plating solution is 0.05 g / L or more and 7.5 g / L. It is described that it is effective to control the following.
特開2012-144763号公報JP 2012-144663 A 特開2014-058715号公報JP 2014-058715 A
 特許文献1に記載のように、アルミニウムめっき液中に1,10-フェナントロリン一水和物を添加してその濃度が0.05g/L以上、7.5g/L以下となるように制御しながらアルミニウムめっきを行うことで、平滑なアルミニウム膜の形成を連続的に大量に行うことができる。このようにして得られるアルミニウム膜は表面が鏡面となるほどに平滑性に優れているが、このアルミニウム膜は硬くて高い強度を有しており、伸び難いという性質を有していた。 As described in Patent Document 1, 1,10-phenanthroline monohydrate is added to the aluminum plating solution while controlling the concentration to be 0.05 g / L or more and 7.5 g / L or less. By performing aluminum plating, a smooth aluminum film can be continuously formed in a large amount. The aluminum film thus obtained is excellent in smoothness so that the surface becomes a mirror surface, but this aluminum film is hard and has high strength, and has a property that it is difficult to stretch.
 三次元網目状構造を有するアルミニウム多孔体の用途によってはアルミニウム膜に柔軟性と伸びが求められる場合があるため、本発明者らはアルミニウム多孔体に熱を加えてアルミニウムに柔軟性を持たせることを検討した。一般に金属は熱処理をすると柔らかくなるという性質を有しているが、特許文献1に記載の方法によって得たアルミニウム多孔体の場合には熱処理をしても柔軟性を有するようにはならなかった。 Depending on the application of the porous aluminum body having a three-dimensional network structure, the flexibility and elongation of the aluminum film may be required. Therefore, the present inventors apply heat to the aluminum porous body to make the aluminum flexible. It was investigated. In general, metals have the property of becoming soft when heat-treated, but in the case of an aluminum porous body obtained by the method described in Patent Document 1, it did not become flexible even when heat-treated.
 そこで、表面平滑性に優れ、かつ伸びにも優れるアルミニウム膜を連続的に製造することが可能なアルミニウムめっき液を提供することを目的とする。 Therefore, an object is to provide an aluminum plating solution capable of continuously producing an aluminum film having excellent surface smoothness and excellent elongation.
 本発明の一態様に係るアルミニウムめっき液は、基材表面にアルミニウムを電着させることが可能なアルミニウムめっき液であって、前記アルミニウムめっき液は、(A)アルミニウムハロゲン化物と、(B)アルキルイミダゾリウムハロゲン化物、アルキルピリジニウムハロゲン化物及び尿素化合物からなる群より選択されるいずれか一種以上の化合物と、(C)ベンゼン環を含む有機化合物であって、室温で固体であり、構成元素が水素、炭素、酸素及びハロゲン原子からなる群より選択されるいずれか一種以上である有機化合物と、を成分として含み、前記(A)成分と前記(B)成分の混合比はモル比で1:1~3:1の範囲にあり、前記(C)成分の濃度が0.10g/L以上、20g/L以下であるアルミニウムめっき液、である。 An aluminum plating solution according to an aspect of the present invention is an aluminum plating solution capable of electrodepositing aluminum on a substrate surface, and the aluminum plating solution includes (A) an aluminum halide and (B) an alkyl. One or more compounds selected from the group consisting of imidazolium halides, alkylpyridinium halides and urea compounds, and (C) an organic compound containing a benzene ring, which is a solid at room temperature, and whose constituent element is hydrogen And an organic compound that is at least one selected from the group consisting of carbon, oxygen and halogen atoms, and the mixing ratio of the component (A) and the component (B) is 1: 1 by mole ratio. An aluminum plating solution having a concentration of 0.10 g / L to 20 g / L. That.
 上記構成によれば、表面平滑性に優れ、かつ伸びにも優れるアルミニウム膜を連続的に製造することが可能なアルミニウムめっき液を提供することができる。 According to the above configuration, an aluminum plating solution capable of continuously producing an aluminum film having excellent surface smoothness and excellent elongation can be provided.
[本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 (1)本発明の一態様に係るアルミニウムめっき液は、基材表面にアルミニウムを電着させることが可能なアルミニウムめっき液であって、前記アルミニウムめっき液は、(A)アルミニウムハロゲン化物と、(B)アルキルイミダゾリウムハロゲン化物、アルキルピリジニウムハロゲン化物及び尿素化合物からなる群より選択されるいずれか一種以上の化合物と、(C)ベンゼン環を含む有機化合物であって、室温で固体であり、構成元素が水素、炭素、酸素及びハロゲン原子からなる群より選択されるいずれか一種以上である有機化合物と、を成分として含み、前記(A)成分と前記(B)成分の混合比はモル比で1:1~3:1の範囲にあり、前記(C)成分の濃度が0.10g/L以上、20g/L以下であるアルミニウムめっき液、である。
 上記(1)に記載の発明の態様によれば、表面平滑性に優れ、かつ伸びにも優れるアルミニウム膜を連続的に製造することが可能なアルミニウムめっき液を提供することができる。
 なお、室温とは、0℃以上、25℃以下の温度をいうものとする。「室温で固体である有機化合物」とは、「0℃以上、25℃以下の温度の1気圧の空気中において固体である有機化合物」のことである。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
(1) An aluminum plating solution according to an aspect of the present invention is an aluminum plating solution capable of electrodepositing aluminum on a substrate surface, and the aluminum plating solution includes (A) an aluminum halide and ( B) Any one or more compounds selected from the group consisting of alkyl imidazolium halides, alkyl pyridinium halides and urea compounds, and (C) an organic compound containing a benzene ring, which is solid at room temperature An organic compound that is one or more selected from the group consisting of hydrogen, carbon, oxygen, and halogen atoms as a component, and the mixing ratio of the component (A) and the component (B) is a molar ratio. An aluminum plating solution having a concentration of 0.10 g / L to 20 g / L in the range of 1: 1 to 3: 1. It is.
According to the aspect of the invention described in the above (1), an aluminum plating solution capable of continuously producing an aluminum film having excellent surface smoothness and excellent elongation can be provided.
In addition, room temperature shall mean the temperature of 0 degreeC or more and 25 degrees C or less. The “organic compound that is solid at room temperature” is “an organic compound that is solid in air of 1 atm at a temperature of 0 ° C. or higher and 25 ° C. or lower”.
 (2)上記(1)に記載のアルミニウムめっき液は、前記(A)成分が塩化アルミニウムであり、かつ前記(B)成分が1-エチル-3-メチルイミダゾリウムクロリドであることが好ましい。
 上記(2)に記載の発明の態様によれば、表面平滑性により優れたアルミニウム膜を連続的に安定して得ることが可能なアルミニウムめっき液を提供することができる。
(2) In the aluminum plating solution described in (1) above, the component (A) is preferably aluminum chloride, and the component (B) is preferably 1-ethyl-3-methylimidazolium chloride.
According to the aspect of the invention described in (2) above, it is possible to provide an aluminum plating solution capable of continuously and stably obtaining an aluminum film excellent in surface smoothness.
 (3)本発明の一態様に係るアルミニウム膜の製造方法は、上記(1)又は(2)に記載のアルミニウムめっき液を用いて基材の表面にアルミニウムを電着させるアルミニウム膜の製造方法、である。
 上記(3)に記載の発明の態様によれば、表面平滑性に優れ、かつ伸びにも優れるアルミニウム膜を提供することができる。
(3) A method for producing an aluminum film according to an aspect of the present invention is a method for producing an aluminum film in which aluminum is electrodeposited on the surface of a substrate using the aluminum plating solution according to (1) or (2) above. It is.
According to the aspect of the invention as described in said (3), the aluminum film which is excellent in surface smoothness and excellent in elongation can be provided.
 (4)本発明の一態様に係るアルミニウム多孔体は、上記(1)又は(2)に記載のアルミニウムめっき液を用いて得られたアルミニウム多孔体であって、三次元網目状構造を有し、伸びが1.5%以上であるアルミニウム多孔体、である。
 上記(4)に記載のアルミニウム多孔体は柔らかく伸びに優れているため、曲げや振動が加えられるような用途にも利用可能なアルミニウム多孔体である。
 なお、本発明の一態様に係るアルミニウム多孔体の伸びは、アルミニウムの目付け量による影響を受ける。したがって、アルミニウム多孔体の伸びは、アルミニウム多孔体のアルミニウムの目付け量が100g/m2以上、180g/m2以下で、厚さが0.95mm以上、1.05mm以下の場合における伸びであるものとする。
 また、アルミニウム多孔体の伸びは、JIS Z 2241の規定により引張試験を行った場合に計測される伸びをいうものであり、評点間距離(Gage Length:GL)に対する変位量の割合をいうものとする。
(4) An aluminum porous body according to one aspect of the present invention is an aluminum porous body obtained using the aluminum plating solution according to (1) or (2) above, and has a three-dimensional network structure. , A porous aluminum body having an elongation of 1.5% or more.
Since the porous aluminum body described in the above (4) is soft and excellent in elongation, it is an aluminum porous body that can be used for applications where bending and vibration are applied.
Note that the elongation of the porous aluminum body according to one embodiment of the present invention is affected by the amount of aluminum. Therefore, the elongation of the aluminum porous body is the elongation when the weight of aluminum in the aluminum porous body is 100 g / m 2 or more and 180 g / m 2 or less and the thickness is 0.95 mm or more and 1.05 mm or less. And
The elongation of the aluminum porous body refers to the elongation measured when a tensile test is performed according to JIS Z 2241, and refers to the ratio of the displacement amount to the distance between scores (GL). To do.
 (5)上記(4)に記載のアルミニウム多孔体は、骨格の断面における結晶粒径が1μm以上、20μm以下であることが好ましい。
 上記(5)に記載のアルミニウム多孔体は結晶粒径が大きいため、柔らかく伸びに優れたアルミニウム多孔体である。
(5) The porous aluminum body described in (4) above preferably has a crystal grain size in the cross section of the skeleton of 1 μm or more and 20 μm or less.
Since the aluminum porous body described in the above (5) has a large crystal grain size, it is an aluminum porous body that is soft and excellent in elongation.
 (6)上記(4)又は(5)に記載のアルミニウム多孔体は、炭化アルミニウムの含有量が0.8質量%以下であることが好ましい。
 上記(6)に記載のアルミニウム多孔体は、アルミニウム膜中に含まれる炭化アルミニウムが少ないため、熱処理をすることでアルミニウムの再結晶化が進行し、より柔らかいアルミニウム膜からなるアルミニウム多孔体とすることができる。
(6) The aluminum porous body according to (4) or (5) preferably has an aluminum carbide content of 0.8 mass% or less.
Since the aluminum porous body described in the above (6) has a small amount of aluminum carbide contained in the aluminum film, recrystallization of aluminum proceeds by heat treatment, and the aluminum porous body is made of a softer aluminum film. Can do.
[本発明の実施形態の詳細]
 本発明の実施形態に係るアルミニウムめっき液、アルミニウム膜の製造方法及びアルミニウム多孔体の具体例を、以下に、より詳細に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of the embodiment of the present invention]
Specific examples of the aluminum plating solution, the aluminum film manufacturing method, and the aluminum porous body according to the embodiment of the present invention will be described in more detail below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.
<アルミニウムめっき液>
 本発明者らは従来のアルミニウムめっき液を用いて得たアルミニウム多孔体に柔軟性を持たせるべくアルミニウム多孔体を熱処理したが、熱処理後にもアルミニウム多孔体は高強度で伸びが少ないという特性が維持されていることを見出した。この理由について本発明者らは詳細に検討し、熱処理によってアルミニウムの結晶の粒界に炭化アルミニウムが形成されてしまうため再結晶化が進行しないことを見出した。そして、この炭化アルミニウムは、アルミニウム膜の形成時に膜中に取り込まれた1,10-フェナントロリンが原因であった。
<Aluminum plating solution>
The present inventors heat-treated the aluminum porous body so as to give flexibility to the aluminum porous body obtained by using the conventional aluminum plating solution, but the aluminum porous body maintains the characteristics of high strength and low elongation even after the heat treatment. I found out. The present inventors have studied in detail about this reason, and have found that recrystallization does not proceed because aluminum carbide is formed at the grain boundaries of aluminum crystals by heat treatment. This aluminum carbide was caused by 1,10-phenanthroline incorporated into the aluminum film when it was formed.
 そこで、本発明者らは更なる検討を重ねた結果、アルミニウム膜の平滑性に寄与しつつアルミニウム膜中には取り込まれない添加剤として(C)成分が有効であることを見出した。
 すなわち、本発明の実施形態に係るアルミニウムめっき液は、前記した通り少なくとも以下の(A)~(C)成分を混合して得られるアルミニウムめっきである。
 (A)成分:アルミニウムハロゲン化物
 (B)成分:アルキルイミダゾリウムハロゲン化物、アルキルピリジニウムハロゲン化物及び尿素化合物からなる群より選択されるいずれか一種以上の化合物
 (C)成分:ベンゼン環を含む有機化合物であって、室温で固体であり、構成元素が水素、炭素、酸素及びハロゲン原子からなる群より選択されるいずれか一種以上である有機化合物
As a result of further studies, the present inventors have found that the component (C) is effective as an additive that contributes to the smoothness of the aluminum film but is not taken into the aluminum film.
That is, the aluminum plating solution according to the embodiment of the present invention is an aluminum plating obtained by mixing at least the following components (A) to (C) as described above.
(A) Component: Aluminum halide (B) Component: One or more compounds selected from the group consisting of alkylimidazolium halides, alkylpyridinium halides, and urea compounds (C) Component: Organic compounds containing a benzene ring An organic compound that is solid at room temperature and whose constituent elements are one or more selected from the group consisting of hydrogen, carbon, oxygen, and halogen atoms
 なお、本発明の実施形態に係るアルミニウムめっき液は、不可避的不純物として他の成分を含んでいても構わない。また、平滑性と伸びに優れたアルミニウム膜を形成できるという本発明の実施形態に係るアルミニウム膜の効果を損なわない範囲において意図的に他の成分を含有していても構わない。 Note that the aluminum plating solution according to the embodiment of the present invention may contain other components as inevitable impurities. Moreover, you may contain other components intentionally in the range which does not impair the effect of the aluminum film which concerns on embodiment of this invention that can form the aluminum film excellent in smoothness and elongation.
 (A)成分であるアルミニウムハロゲン化物は、(B)成分と混合した場合に110℃程度以下で溶融塩を形成するものであれば良好に用いることができる。例えば、塩化アルミニウム(AlCl3)、臭化アルミニウム(AlBr3)、ヨウ化アルミニウム(AlI3)等が挙げられるが、これらの中でも塩化アルミニウムが最も好ましい。 The aluminum halide as component (A) can be used satisfactorily as long as it forms a molten salt at about 110 ° C. or lower when mixed with component (B). For example, aluminum chloride (AlCl 3 ), aluminum bromide (AlBr 3 ), aluminum iodide (AlI 3 ) and the like can be mentioned. Among these, aluminum chloride is most preferable.
 (B)成分のアルキルイミダゾリウムハロゲン化物も、(A)成分と混合した場合に110℃程度以下で溶融塩を形成するものを良好に用いることができる。例えば、1,3位にアルキル基(炭素原子数1~5)を持つイミダゾリウムクロリド、1,2,3位にアルキル基(炭素原子数1~5)を持つイミダゾリウムクロリド、1,3位にアルキル基(炭素原子数1~5)を持つイミダゾリウムヨーシド等が挙げられる。より具体的には、1-エチル-3メチルイミダゾリウムクロリド(EMIC)、1-ブチル-3-メチルイミダゾリウムクロリド(BMIC)、1-メチル-3-プロピルイミダゾリウムクロリド(MPIC)等が挙げられるが、これらの中でも1-エチル-3-メチルイミダゾリウムクロリド(EMIC)を最も好ましく用いることができる。 As the (B) component alkyl imidazolium halide, those that form a molten salt at about 110 ° C. or less when mixed with the (A) component can be used favorably. For example, imidazolium chloride having an alkyl group (1 to 5 carbon atoms) at the 1,3 position, imidazolium chloride having an alkyl group (1 to 5 carbon atoms) at the 1,2,3 position, 1,3 position And imidazolium ioside having an alkyl group (having 1 to 5 carbon atoms). More specifically, 1-ethyl-3-methylimidazolium chloride (EMIC), 1-butyl-3-methylimidazolium chloride (BMIC), 1-methyl-3-propylimidazolium chloride (MPIC) and the like can be mentioned. Of these, 1-ethyl-3-methylimidazolium chloride (EMIC) can be most preferably used.
 (B)成分のアルキルピリジニウムハロゲン化物は、(A)成分と混合した場合に110℃程度以下で溶融塩を形成するものを良好に用いることができる。例えば、1-ブチルピリジニウムクロリド(BPC)、1-エチルピリジニウムクロリド(EPC)、1-ブチル-3-メチルピリジニウムクロリド(BMPC)等が挙げられるが、これらの中でも1-ブチルピリジニウムクロリドが最も好ましい。 As the (B) component alkylpyridinium halide, those that form a molten salt at about 110 ° C. or less when mixed with the (A) component can be used favorably. Examples thereof include 1-butylpyridinium chloride (BPC), 1-ethylpyridinium chloride (EPC), 1-butyl-3-methylpyridinium chloride (BMPC), etc. Among them, 1-butylpyridinium chloride is most preferable.
 (B)成分の尿素化合物は、尿素及びその誘導体を意味するものであり、(A)成分と混合した場合に110℃程度以下で溶融塩を形成するものを良好に用いることができる。
 例えば、下記式(1)で表される化合物を好ましく用いることができる。
The urea compound as component (B) means urea and its derivatives, and those that form a molten salt at about 110 ° C. or less when mixed with component (A) can be used favorably.
For example, a compound represented by the following formula (1) can be preferably used.
Figure JPOXMLDOC01-appb-C000001
 但し、式(1)においてRは、水素原子、炭素原子数が1個~6個のアルキル基、又はフェニル基である。それぞれのRは、互いに同一であっても、異なっていてもよい。
 尿素化合物は上記の中でも、尿素、ジメチル尿素を特に好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000001
However, in the formula (1), R represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group. Each R may be the same as or different from each other.
Among the above, urea and dimethylurea can be particularly preferably used as the urea compound.
 アルミニウムめっき液は、(A)成分と(B)成分との混合比が、モル比で1:1~3:1の範囲にあるようにすることで、基材表面にアルミニウム膜を電着させるのに適したアルミニウムめっき液が得られる。
 (B)成分を1とした場合の(A)成分のモル比が1未満の場合にはアルミニウムの電析反応が生じない。また、(B)成分を1とした場合の(A)成分のモル比が3を超える場合には、アルミニウムめっき液中に塩化アルミニウムが析出し、アルミニウム膜に取り込まれ、膜の品質が低下する。
In the aluminum plating solution, the aluminum film is electrodeposited on the surface of the substrate by setting the mixing ratio of the component (A) and the component (B) in the molar ratio of 1: 1 to 3: 1. An aluminum plating solution suitable for the above is obtained.
When the molar ratio of the component (A) when the component (B) is 1, the aluminum electrodeposition reaction does not occur. In addition, when the molar ratio of the component (A) exceeds 3 when the component (B) is 1, aluminum chloride is precipitated in the aluminum plating solution and taken into the aluminum film, resulting in deterioration of the film quality. .
 (C)成分はベンゼン環を含む有機化合物であって、室温で固体であり、構成元素が水素、炭素、酸素及びハロゲン原子からなる群より選択されるいずれか一種以上である有機化合物である。
 (C)成分の有機化合物は室温で固体であることにより、引火点が高く取り扱い時の安全性を高めることができる。
Component (C) is an organic compound containing a benzene ring, and is an organic compound that is solid at room temperature and whose constituent elements are any one or more selected from the group consisting of hydrogen, carbon, oxygen, and halogen atoms.
Since the organic compound (C) is a solid at room temperature, it has a high flash point and can enhance safety during handling.
 また、(C)成分の有機化合物を構成する元素としては、ハロゲン原子や酸素原子(O)は含まれていてもよいが、窒素原子(N)や硫黄原子(S)、リン原子(P)が含まれていると効果が発揮されにくい。また、(C)成分の有機化合物にはベンゼン環が含まれている必要がある。
 (C)成分としては、具体的には、ジフェニルメタン、ベンゾフェノン、安息香酸、トリフェニルメタン、トリチルクロリド、キニザリンなどが挙げられる。
Moreover, as an element which comprises the organic compound of (C) component, although a halogen atom and oxygen atom (O) may be contained, a nitrogen atom (N), a sulfur atom (S), and a phosphorus atom (P) If it is included, the effect is difficult to be demonstrated. Further, the organic compound of component (C) needs to contain a benzene ring.
Specific examples of the component (C) include diphenylmethane, benzophenone, benzoic acid, triphenylmethane, trityl chloride, and quinizarin.
 アルミニウムめっき液における(C)成分の濃度が0.10g/L以上、20g/L以下であることにより、平滑でかつ伸びに優れたアルミニウム膜を形成することができる。(C)成分の濃度が0.10g/L未満であるとアルミニウム膜を十分に平滑にすることができず、また、20g/L超であるとアルミニウム膜中に(C)成分が取り込まれるようになってしまい硬くなるものの脆く、伸びが少ないアルミニウム膜となってしまう。(C)成分の濃度は、0.5g/L以上、15g/L以下であることがより好ましく、1.0g/L以上、10g/L以下であることが更に好ましい。
 なお、(C)成分はアルミニウム膜中に取り込まれることがないため、アルミニウムめっき液の製造時、すなわち(A)~(C)成分を混合する際に(C)成分の濃度が0.10g/L以上、20g/Lの範囲となるようにすれば、その後のめっき操業時に(C)成分を新たに添加する必要はない。
When the concentration of the component (C) in the aluminum plating solution is 0.10 g / L or more and 20 g / L or less, an aluminum film that is smooth and excellent in elongation can be formed. When the concentration of the component (C) is less than 0.10 g / L, the aluminum film cannot be sufficiently smoothed, and when it exceeds 20 g / L, the component (C) is taken into the aluminum film. It becomes an aluminum film that becomes hard but is brittle and has little elongation. The concentration of the component (C) is more preferably 0.5 g / L or more and 15 g / L or less, and further preferably 1.0 g / L or more and 10 g / L or less.
Since the component (C) is not taken into the aluminum film, the concentration of the component (C) is 0.10 g / at the time of manufacturing the aluminum plating solution, that is, when the components (A) to (C) are mixed. If it is set to the range of 20 g / L or more, it is not necessary to newly add the component (C) during the subsequent plating operation.
 以上の本発明の一態様に係るアルミニウムめっき液を用いることで、表面が平滑でかつ伸びに優れるアルミニウム膜を形成することができる。 By using the aluminum plating solution according to one embodiment of the present invention, an aluminum film having a smooth surface and excellent elongation can be formed.
<アルミニウム膜の製造方法>
 本発明の実施形態に係るアルミニウム膜の製造方法は、本発明の実施形態に係るアルミニウムめっき液を用いて基材の表面にアルミニウムを電着させるアルミニウム膜の製造方法、である。
<Method for producing aluminum film>
The manufacturing method of the aluminum film which concerns on embodiment of this invention is a manufacturing method of the aluminum film which electrodeposits aluminum on the surface of a base material using the aluminum plating liquid which concerns on embodiment of this invention.
 本発明の実施形態に係るアルミニウム膜の製造方法において、電解液中の基材表面にアルミニウムを電着させるには、電解液中にアルミニウム電極(陽極)を設けて電解液中の基材が陰極となるように電気的に接続し、通電すればよい。
 このとき、電流密度が0.5A/dm2以上、10.0A/dm2以下となるようにして基材表面にアルミニウムを電着させることが好ましい。電流密度が前記範囲内にあることにより、より平滑性に優れたアルミニウム膜を得ることができる。電流密度は、1.5A/dm2以上、6.0A/dm2以下であることがより好ましく、2.0A/dm2以上、4.0A/dm2以下であることが更に好ましい。
In the method for producing an aluminum film according to an embodiment of the present invention, in order to electrodeposit aluminum on the surface of a substrate in an electrolyte, an aluminum electrode (anode) is provided in the electrolyte and the substrate in the electrolyte is a cathode. It may be electrically connected so that
At this time, it is preferable that aluminum be electrodeposited on the surface of the substrate so that the current density is 0.5 A / dm 2 or more and 10.0 A / dm 2 or less. When the current density is within the above range, an aluminum film having better smoothness can be obtained. The current density is more preferably 1.5 A / dm 2 or more and 6.0 A / dm 2 or less, and further preferably 2.0 A / dm 2 or more and 4.0 A / dm 2 or less.
 基材表面にアルミニウムを電着させる際には、電解液の温度は15℃以上、110℃以下となるように調整しながら行うことが好ましい。電解液の温度を15℃以上にすることにより、電解液の粘度を充分に低くすることができ、アルミニウムの電着効率を向上させることができる。また、電解液の温度を110℃以下にすることで、アルミニウムハロゲン化物の揮発を抑制することができる。電解液の温度は30℃以上、80℃以下であることがより好ましく、40℃以上、70℃以下であることが更に好ましい。
 なお、基材表面にアルミニウムを電着させる際において、電解液は攪拌しても良いし、攪拌しなくても構わない。
 本発明の実施形態に係るアルミニウム膜の製造方法により、表面の算術平均粗さ(Ra)が0.25μm以下程度の平滑なアルミニウム膜を製造することができる。
When electrodepositing aluminum on the substrate surface, it is preferable to adjust the temperature of the electrolytic solution so that it is 15 ° C. or higher and 110 ° C. or lower. By setting the temperature of the electrolytic solution to 15 ° C. or higher, the viscosity of the electrolytic solution can be sufficiently lowered, and the electrodeposition efficiency of aluminum can be improved. Moreover, volatilization of the aluminum halide can be suppressed by setting the temperature of the electrolytic solution to 110 ° C. or lower. The temperature of the electrolytic solution is more preferably 30 ° C. or more and 80 ° C. or less, and further preferably 40 ° C. or more and 70 ° C. or less.
In addition, when electrodepositing aluminum on the substrate surface, the electrolytic solution may be stirred or may not be stirred.
By the method for producing an aluminum film according to the embodiment of the present invention, a smooth aluminum film having a surface arithmetic average roughness (Ra) of about 0.25 μm or less can be produced.
 基材は表面にアルミニウム膜を形成する用途があるものであれば特に限定されるものではない。基材としては、例えば、銅板、鋼帯、銅線、鋼線、導電化処理を施した樹脂等を利用することができる。導電化処理を施した樹脂としては、例えば、ポリウレタン、メラミン樹脂、ポリプロピレン、ポリエチレン等に導電化処理を施したものを利用することができる。 The substrate is not particularly limited as long as it has an application for forming an aluminum film on the surface. As the substrate, for example, a copper plate, a steel strip, a copper wire, a steel wire, a resin subjected to a conductive treatment, or the like can be used. As the resin subjected to the conductive treatment, for example, polyurethane, melamine resin, polypropylene, polyethylene or the like subjected to the conductive treatment can be used.
 また、基材としての樹脂の形状はどのようなものでも構わないが、三次元網目状構造を有する樹脂成形体を用いることが好ましい。三次元網目状構造を有する樹脂成形体を用いることにより、最終的に、各種フィルタ、触媒担体、電池用電極などの用途に優れた特性を発揮する三次元網目状構造を有するアルミニウム多孔体を作製することができる。
 また、不織布形状を有する樹脂を用いることによっても最終的に多孔質構造を有するアルミニウム多孔体を作製することができる。このようにして作製された不織布形状を有するアルミニウム多孔体も、各種フィルタ、触媒担体、電池用電極などの用途に好ましく用いることができる。
The resin as the substrate may have any shape, but it is preferable to use a resin molded body having a three-dimensional network structure. By using a resin molded body having a three-dimensional network structure, finally, a porous aluminum body having a three-dimensional network structure that exhibits excellent properties for various filters, catalyst carriers, battery electrodes, etc. is produced. can do.
Moreover, the aluminum porous body which finally has a porous structure is producible also by using resin which has a nonwoven fabric shape. The aluminum porous body having the nonwoven fabric shape thus produced can also be preferably used for various filters, catalyst carriers, battery electrodes and the like.
 三次元網目状構造を有する樹脂成形体としては、例えば、ポリウレタン、メラミン樹脂等を用いて作製された発泡樹脂成形体を利用することができる。なお、発泡樹脂成形体と表記したが、連続した気孔(連通気孔)を有するものであれば任意の形状の樹脂成形体を選択できる。例えば、ポリプロピレン、ポリエチレン等の繊維状の樹脂を絡めて不織布のような形状を有するものも発泡樹脂成形体に代えて使用可能である。
 なお、以下では三次元網目状構造の多孔体を単に「多孔体」とも記載する。
As the resin molded body having a three-dimensional network structure, for example, a foamed resin molded body produced using polyurethane, melamine resin or the like can be used. In addition, although described as a foamed resin molded body, a resin molded body having an arbitrary shape can be selected as long as it has continuous pores (continuous vent holes). For example, what has a shape like a nonwoven fabric entangled with a fibrous resin such as polypropylene and polyethylene can be used in place of the foamed resin molding.
Hereinafter, a porous body having a three-dimensional network structure is also simply referred to as a “porous body”.
 多孔体の気孔率は80%以上、98%以下、気孔径は50μm以上、500μm以下であることが好ましい。発泡ウレタン及び発泡メラミンは気孔率が高く、また気孔の連通性があるとともに熱分解性にも優れているため、発泡樹脂成形体として好ましく使用できる。発泡ウレタンは気孔の均一性や入手の容易さ等の点で好ましく、発泡ウレタンは気孔径の小さなものが得られる点で好ましい。なお、発泡ウレタンや発泡メラミン等の発泡樹脂成形体には発泡過程での製泡剤や未反応モノマーなどの残留物があることが多いため、発泡樹脂成形体は洗浄処理を行っておくことが好ましい。 The porosity of the porous body is preferably 80% or more and 98% or less, and the pore diameter is preferably 50 μm or more and 500 μm or less. Urethane foam and foamed melamine can be preferably used as a foamed resin molded article because they have high porosity, have pore connectivity and are excellent in thermal decomposability. Urethane foam is preferable in terms of pore uniformity and availability, and urethane foam is preferable in that a material having a small pore diameter can be obtained. In addition, foamed resin moldings such as foamed urethane and foamed melamine often have residues such as foaming agents and unreacted monomers in the foaming process. preferable.
 多孔体の気孔率は、次式で定義される。
 気孔率=(1-(多孔質材の重量[g]/(多孔質材の体積[cm]×素材密度)))×100[%]
 また、気孔径は、樹脂成形体表面を顕微鏡写真等で拡大し、1インチ(25.4mm)あたりの気孔数をセル数として計数して、平均孔径=25.4mm/セル数として平均的な値を求める。
The porosity of the porous body is defined by the following equation.
Porosity = (1− (weight of porous material [g] / (volume of porous material [cm 3 ] × material density))) × 100 [%]
The pore diameter is an average of the average pore diameter = 25.4 mm / cell count by enlarging the surface of the resin molded body with a micrograph and counting the number of pores per inch (25.4 mm) as the number of cells. Find the value.
 三次元網目状構造を有する樹脂成形体としては導電化処理を施したものを用いる。樹脂表面の導電化処理は既知の方法を含めて選択可能である。無電解めっきや気相法によるニッケル等の金属層の形成や、導電性塗料による金属やカーボン層の形成による方法が利用可能である。無電解めっきや気相法により樹脂表面に金属層を形成することにより、樹脂表面の導電率を高くすることができる。
 一方、導電率の観点からは多少劣るが、カーボン塗布によっても樹脂表面を導電化することができる。カーボン塗布により樹脂表面を導電化させる場合、アルミニウム膜形成後のアルミニウム構造体にアルミニウム以外の金属が混入することがなく、金属として実質的にアルミニウムのみからなる構造体を製造することが可能である。また、カーボン塗布には安価に樹脂表面を導電化できる利点もある。
As the resin molded body having a three-dimensional network structure, a resin molded body is used. The conductive treatment of the resin surface can be selected including known methods. A method of forming a metal layer such as nickel by electroless plating or a vapor phase method, or forming a metal or carbon layer by a conductive paint can be used. By forming a metal layer on the resin surface by electroless plating or a vapor phase method, the conductivity of the resin surface can be increased.
On the other hand, although it is somewhat inferior from the viewpoint of conductivity, the resin surface can also be made conductive by carbon coating. When the resin surface is made conductive by applying carbon, it is possible to manufacture a structure made of substantially only aluminum as a metal without mixing metals other than aluminum into the aluminum structure after the formation of the aluminum film. . Carbon coating also has the advantage that the resin surface can be made conductive at low cost.
 導電化処理をカーボン塗布により行う場合には、まず導電性塗料としてのカーボン塗料を準備する。カーボン塗料としての懸濁液は、カーボン粒子の他に、粘結剤、分散剤および分散媒を含むことが好ましい。
 三次元網目状構造を有する樹脂成形体を使用する場合に、多孔体中にカーボン粒子の塗布を均一に行うには、懸濁液が均一な懸濁状態を維持している必要がある。そのためには、懸濁液は20℃~40℃に維持されていることが好ましい。懸濁液の温度を20℃以上に維持することにより、均一な懸濁状態を保つことができ、多孔体の網目構造をなす骨格の表面に粘結剤のみが集中して層をなすということがなくなり、均一にカーボン粒子の塗布を行うことができる。このようにして均一に塗布されたカーボン粒子の層は剥離し難いため、強固に密着した金属めっきの形成が可能となる。一方、懸濁液の温度が40℃以下であることにより、分散剤の蒸発を抑制することができるため、塗布処理時間の経過とともに懸濁液が濃縮され難くなる。
 また、カーボン粒子の粒径は、0.01~5μmで、好ましくは0.01~0.5μmである。粒径が大きいと多孔質樹脂成形体の空孔を詰まらせたり、平滑なめっきを阻害したりする要因となり、小さすぎると十分な導電性を確保することが難しくなる。
When conducting the conductive treatment by applying carbon, first, a carbon paint as a conductive paint is prepared. The suspension as the carbon paint preferably contains a binder, a dispersant and a dispersion medium in addition to the carbon particles.
When a resin molded body having a three-dimensional network structure is used, in order to uniformly apply the carbon particles in the porous body, the suspension needs to maintain a uniform suspended state. For this purpose, the suspension is preferably maintained at 20 ° C. to 40 ° C. By maintaining the temperature of the suspension at 20 ° C. or higher, a uniform suspension can be maintained, and only the binder is concentrated on the surface of the skeleton forming the porous network structure to form a layer. The carbon particles can be uniformly applied. Since the layer of carbon particles uniformly applied in this manner is difficult to peel off, it is possible to form a metal plating that is firmly adhered. On the other hand, when the temperature of the suspension is 40 ° C. or less, evaporation of the dispersant can be suppressed, and therefore, the suspension becomes difficult to concentrate as the coating processing time elapses.
The particle size of the carbon particles is 0.01 to 5 μm, preferably 0.01 to 0.5 μm. If the particle size is large, the pores of the porous resin molded body may be clogged or smooth plating may be hindered. If it is too small, it is difficult to ensure sufficient conductivity.
<アルミニウム多孔体>
 本発明の実施形態に係るアルミニウム多孔体は、伸びが1.5%以上であるアルミニウム多孔体である。従来のアルミニウムめっき液を用いた製造方法によって得られるアルミニウム多孔体は強度が強く、伸びが小さかったのに対し、本発明の実施形態に係るアルミニウム多孔体は伸びが1.5%以上と柔らかいアルミニウム多孔体である。
<Porous aluminum body>
The aluminum porous body according to the embodiment of the present invention is an aluminum porous body having an elongation of 1.5% or more. The aluminum porous body obtained by the manufacturing method using the conventional aluminum plating solution has high strength and small elongation, whereas the aluminum porous body according to the embodiment of the present invention has a soft aluminum with an elongation of 1.5% or more. It is a porous body.
 アルミニウム多孔体の伸びは1.5%以上であることが好ましい。アルミニウム多孔体の伸びが1.5%以上であれば、アルミニウム多孔体が曲げや振動に対して強くなり、アルミニウム多孔体の使用用途の範囲が広くなる。従って、アルミニウム多孔体の伸びは大きければ大きい程好ましく、1.8%以上であることがより好ましく、2.5%以上であることが更に好ましい。後述する本発明の実施形態に係るアルミニウム多孔体の製造方法によれば、アルミニウム多孔体の伸びが1.5%以上、5.0%以下程度のアルミニウム多孔体を製造することができる。
 なお、前述のように、アルミニウム多孔体の伸びはアルミニウム多孔体のアルミニウムの目付け量が100g/m2以上、180g/m2以下で、厚さが0.95mm以上、1.05mm以下の場合における伸びであり、また、JIS Z 2241の規定による引張試験によって測定されるものである。
The elongation of the aluminum porous body is preferably 1.5% or more. If the elongation of the aluminum porous body is 1.5% or more, the aluminum porous body becomes strong against bending and vibration, and the range of uses of the aluminum porous body is widened. Accordingly, the larger the elongation of the aluminum porous body is, the more preferable, 1.8% or more is more preferable, and 2.5% or more is more preferable. According to the method for producing an aluminum porous body according to an embodiment of the present invention described later, an aluminum porous body having an aluminum porous body having an elongation of about 1.5% or more and 5.0% or less can be produced.
As described above, the elongation of the aluminum porous body is the case where the aluminum basis weight is 100 g / m 2 or more and 180 g / m 2 or less and the thickness is 0.95 mm or more and 1.05 mm or less. It is an elongation and is measured by a tensile test according to JIS Z 2241.
 アルミニウム多孔体の骨格の断面における結晶粒径は1μm以上、20μm以下であることが好ましい。結晶粒径が1μm以上であることにより、アルミニウム膜が柔らかくなり、アルミニウム多孔体の伸びが1.5%以上となるため好ましい。一方、結晶粒径が20μm以下であることにより、アルミニウム多孔体が柔らかくなり過ぎて強度が低下することを抑制でき好ましい。これらの観点からアルミニウム多孔体の骨格断面における結晶粒径は、1.5μm以上、15μm以下であることがより好ましく、2μm以上、10μm以下であることが更に好ましい。 The crystal grain size in the cross section of the skeleton of the porous aluminum body is preferably 1 μm or more and 20 μm or less. The crystal grain size of 1 μm or more is preferable because the aluminum film becomes soft and the elongation of the aluminum porous body becomes 1.5% or more. On the other hand, when the crystal grain size is 20 μm or less, it is preferable that the porous aluminum body becomes too soft and the strength is suppressed from being lowered. From these viewpoints, the crystal grain size in the skeleton cross section of the porous aluminum body is more preferably 1.5 μm or more and 15 μm or less, and further preferably 2 μm or more and 10 μm or less.
 上述のアルミニウムめっき液を用いることで比較的結晶粒径が大きいアルミニウム多孔体を得ることができる。また、結晶粒径を更に大きくする方法としては、例えば、アルミニウム多孔体を熱処理する、アルミニウム多孔体を製造する際にアルミニウムめっき液の液温を高くする、めっき時の電流密度を低くする、等の方法が挙げられる。 A porous aluminum body having a relatively large crystal grain size can be obtained by using the above aluminum plating solution. Examples of a method for further increasing the crystal grain size include, for example, heat-treating the aluminum porous body, increasing the temperature of the aluminum plating solution when manufacturing the aluminum porous body, reducing the current density during plating, etc. The method is mentioned.
 アルミニウム多孔体における炭化アルミニウムの含有量は0.8質量%以下であることが好ましい。アルミニウム多孔体における炭化アルミニウムの含有量が0.8質量%以下であることによりアルミニウム膜が柔らかくなり、アルミニウム多孔体の伸びが1.5%以上となる。アルミニウム多孔体における炭化アルミニウムの含有量は、0.5質量%以下であることがより好ましく、0.3質量%以下であることが更に好ましい。 The content of aluminum carbide in the aluminum porous body is preferably 0.8% by mass or less. When the content of aluminum carbide in the aluminum porous body is 0.8% by mass or less, the aluminum film becomes soft, and the elongation of the aluminum porous body becomes 1.5% or more. The content of aluminum carbide in the porous aluminum body is more preferably 0.5% by mass or less, and further preferably 0.3% by mass or less.
 本発明の実施形態に係るアルミニウムめっき液を用いてアルミニウム多孔体を製造した場合には、基本的には(C)成分はアルミニウム膜中に取り込まれることはないため、アルミニウム多孔体における炭化アルミニウムの含有量は0質量%となる。しかしながら、ごくわずかではあるが(C)成分がアルミニウム膜中に巻き込まれたり、あるいは(B)成分がアルミニウム膜中に巻き込まれたりする場合がある。この場合には、基材を燃焼除去する際にアルミニウム膜中に取り込まれた(B)又は(C)成分がアルミニウムと反応して炭化アルミニウムとなってしまうため、アルミニウム膜中に炭化アルミニウムが形成されてしまう。 When the aluminum porous body is manufactured using the aluminum plating solution according to the embodiment of the present invention, basically, the component (C) is not taken into the aluminum film. The content is 0% by mass. However, the component (C) may be entrained in the aluminum film, or the component (B) may be entrained in the aluminum film. In this case, when the base material is burned and removed, the component (B) or (C) taken into the aluminum film reacts with aluminum to become aluminum carbide, so that aluminum carbide is formed in the aluminum film. Will be.
(アルミニウム多孔体の製造方法)
 アルミニウム多孔体は、三次元網目状構造を有する導電化樹脂成形体の表面に溶融塩電解めっきによってアルミニウム膜を形成して樹脂構造体を製造する工程と、樹脂構造体から導電化樹脂成形体を除去する工程と、を経ることにより製造することができる。
 以下に各工程を詳述する。
(Method for producing porous aluminum body)
The porous aluminum body includes a step of forming a resin structure by forming an aluminum film on the surface of a conductive resin molding having a three-dimensional network structure by molten salt electroplating, and a conductive resin molding from the resin structure. It can manufacture by going through the process of removing.
Each step will be described in detail below.
-アルミニウムめっき膜の形成工程-
 この工程は、溶融塩すなわちアルミニウムめっき液中で電解めっきを行うことで、三次元網目状構造を有する導電化樹脂成形体の表面にアルミニウム膜を形成する工程である。三次元網目状構造を有する導電化樹脂成形体としては、前述の三次元網目状構造を有する樹脂成形体の表面を導電化処理したものを用いればよい。
 アルミニウムめっき液中でアルミニウムめっき膜の形成を行うことで、三次元網目状構造を有する導電化樹脂成形体のように複雑な骨格構造を有する成形体の骨格の表面にも均一に厚いアルミニウム膜を形成することができる。溶融塩電解めっきを行うには、導電化樹脂成形体を陰極とし、アルミニウムを陽極としてアルミニウムめっき液中で直流電流を印加すればよい。
-Aluminum plating film formation process-
This step is a step of forming an aluminum film on the surface of the conductive resin molding having a three-dimensional network structure by performing electrolytic plating in a molten salt, that is, an aluminum plating solution. What is necessary is just to use what electrically conductively processed the surface of the resin molding which has the above-mentioned three-dimensional network structure as a conductive resin molding which has a three-dimensional network structure.
By forming an aluminum plating film in an aluminum plating solution, a uniformly thick aluminum film can be formed on the surface of the skeleton of a molded body having a complicated skeleton structure such as a conductive resin molded body having a three-dimensional network structure. Can be formed. In order to perform the molten salt electroplating, a direct current may be applied in an aluminum plating solution using the conductive resin molded body as a cathode and aluminum as an anode.
 アルミニウムめっき液中に水分や酸素が混入するとめっき液が劣化するため、めっきは窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。
 また、アルミニウムめっき液の温度は15℃から110℃とすることができ、25℃から45℃とすることが好ましい。低温になる程めっき可能な電流密度範囲が狭くなり、導電化樹脂成形体の骨格の表面全体へのめっきが難しくなる。110℃以下の範囲でめっきをすることで基材となる導電化樹脂成形体の形状が損なわれる不具合が生じないようにすることができる。
 以上の工程により、表面がアルミニウム膜で、その骨格の芯として導電化樹脂成形体を有する樹脂構造体を得ることができる。
When water or oxygen is mixed in the aluminum plating solution, the plating solution deteriorates. Therefore, the plating is preferably performed in an atmosphere of an inert gas such as nitrogen or argon and in a sealed environment.
The temperature of the aluminum plating solution can be 15 ° C to 110 ° C, and preferably 25 ° C to 45 ° C. The lower the temperature, the narrower the current density range that can be plated, and the more difficult it is to plate on the entire surface of the skeleton of the conductive resin molding. By plating in the range of 110 ° C. or lower, it is possible to prevent a problem that the shape of the conductive resin molded body serving as the base material is impaired.
Through the above steps, a resin structure having a surface made of an aluminum film and having a conductive resin molded body as the core of the skeleton can be obtained.
-導電化樹脂成形体を除去する工程-
 上記のようにして得られた樹脂構造体を、窒素雰囲気下あるいは大気下等で樹脂が分解される370℃以上、好ましくは500℃以上に加熱する熱処理を行うことで樹脂及び導電層を焼失させ、アルミニウム多孔体を得ることができる。
-Process for removing conductive resin molding-
The resin structure obtained as described above is subjected to heat treatment at 370 ° C. or higher, preferably 500 ° C. or higher where the resin is decomposed in a nitrogen atmosphere or in the air, and the resin and the conductive layer are burned out. An aluminum porous body can be obtained.
 以下、実施例に基づいて本発明をより詳細に説明するが、これらの実施例は例示であって、本発明のアルミニウムめっき液等はこれらに限定されるものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 Hereinafter, the present invention will be described in more detail based on examples. However, these examples are merely examples, and the aluminum plating solution of the present invention is not limited thereto. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all modifications within the scope.
[実施例1]
(アルミニウムめっき液)
 (A)成分として塩化アルミニウム(AlCl3)を、(B)成分として1-エチル-3-メチルイミダゾリウムクロリド(EMIC)を用い、(A)成分と(B)成分との混合比がモル比で2:1となるように混合して溶融塩を準備した。この溶融塩に(C)成分として試薬のジフェニルメタン(和光純薬工業株式会社製)を1.0g/Lの濃度となるように添加してアルミニウムめっき液1を得た。
[Example 1]
(Aluminum plating solution)
Aluminum chloride (AlCl 3 ) is used as the component (A), 1-ethyl-3-methylimidazolium chloride (EMIC) is used as the component (B), and the mixing ratio of the components (A) and (B) is molar ratio. The molten salt was prepared by mixing at 2: 1. To this molten salt, the reagent diphenylmethane (manufactured by Wako Pure Chemical Industries, Ltd.) was added as a component (C) to a concentration of 1.0 g / L to obtain an aluminum plating solution 1.
(アルミニウム膜の形成)
 基材として20×40×1.0mmの銅板を用い、上記で用意したアルミニウムめっき液1中で、銅板を整流器の陰極側に、対極のアルミニウム板(純度99.99%)を陽極側に接続して電圧を印加することで銅板の表面にアルミニウムを電着させた。アルミニウムめっき液1の温度は45℃となるようにし、また、電流密度は3.0A/dm2となるように制御した。
(Formation of aluminum film)
Using a copper plate of 20 x 40 x 1.0 mm as the base material, in the aluminum plating solution 1 prepared above, connect the copper plate to the cathode side of the rectifier and the counter electrode aluminum plate (purity 99.99%) to the anode side. Then, aluminum was electrodeposited on the surface of the copper plate by applying a voltage. The temperature of the aluminum plating solution 1 was controlled to be 45 ° C., and the current density was controlled to be 3.0 A / dm 2 .
<アルミニウム膜の評価>
(評価方法)
 上記と同様にして50枚の銅板の表面にアルミニウム膜を形成し、それぞれのアルミニウム膜の表面粗さ(算術平均粗さRa)を測定した。
 平面粗さ(算術平均粗さRa)は株式会社キーエンス社製のレーザー顕微鏡により測定した。
(評価結果)
 アルミニウム膜の表面の算術平均粗さRaの平均は0.14μmであった。
<Evaluation of aluminum film>
(Evaluation methods)
In the same manner as described above, an aluminum film was formed on the surface of 50 copper plates, and the surface roughness (arithmetic average roughness Ra) of each aluminum film was measured.
The planar roughness (arithmetic average roughness Ra) was measured with a laser microscope manufactured by Keyence Corporation.
(Evaluation results)
The average arithmetic average roughness Ra of the surface of the aluminum film was 0.14 μm.
[実施例2]
<アルミニウム多孔体の作製>
(基材表面へのアルミニウム膜の形成)
 上記実施例1で用意したアルミニウムめっき液1を用いて、基材の表面にアルミニウムを電着させて樹脂構造体を作製した。基材には導電化処理をした三次元網目構造を有する樹脂成形体を用いた。樹脂成形体には、厚み1mm、気孔率95%、1インチ当たりの気孔数(セル数)約50個の発泡ウレタン(100mm×30mm角)を用いた。導電化処理は発泡ウレタンをカーボン懸濁液に浸漬して乾燥させることにより行った。カーボン懸濁液の成分は、黒鉛とカーボンブラックを25%含み、樹脂バインダー、浸透剤、消泡剤を含むものとした。カーボンブラックの粒径は0.5μmとした。
 そして、この基材を整流器の陰極側に接続し、対極のアルミニウム板(純度99.99%)を陽極側に接続した。アルミニウムめっき液1の温度が45℃となるようにし、また、電流密度が6.0A/dm2となるように制御した。アルミニウムめっき液は100rpmとなるように攪拌した。
[Example 2]
<Preparation of porous aluminum>
(Formation of aluminum film on substrate surface)
Using the aluminum plating solution 1 prepared in Example 1, aluminum was electrodeposited on the surface of the base material to prepare a resin structure. A resin molded body having a three-dimensional network structure subjected to a conductive treatment was used as the base material. As the resin molding, foamed urethane (100 mm × 30 mm square) having a thickness of 1 mm, a porosity of 95%, and a pore number (number of cells) per inch of about 50 was used. The conductive treatment was performed by immersing urethane foam in a carbon suspension and drying. The components of the carbon suspension include 25% graphite and carbon black, and include a resin binder, a penetrating agent, and an antifoaming agent. The particle size of carbon black was 0.5 μm.
And this base material was connected to the cathode side of a rectifier, and the aluminum plate (purity 99.99%) of the counter electrode was connected to the anode side. The temperature of the aluminum plating solution 1 was controlled to 45 ° C., and the current density was controlled to 6.0 A / dm 2 . The aluminum plating solution was stirred to 100 rpm.
(基材の除去)
 アルミニウムの目付け量が140g/m2となったところで、樹脂構造体をアルミニウムめっき液1から取り出し、水洗処理した後に、大気下にて、610℃で20分の熱処理を行った。これにより基材が焼失してアルミニウム多孔体1が得られた。
(Removal of substrate)
When the basis weight of aluminum reached 140 g / m 2 , the resin structure was taken out from the aluminum plating solution 1 and washed with water, and then heat-treated at 610 ° C. for 20 minutes in the atmosphere. As a result, the base material was burned out, and the aluminum porous body 1 was obtained.
<アルミニウム多孔体の評価>
(評価方法)
 上記と同様の方法によりアルミニウム多孔体1を10個作製し、それぞれのアルミニウム多孔体の、伸び、結晶粒径、炭化アルミニウムの含有量を測定した。
 アルミニウム多孔体の伸びは、JIS Z 2241に基づいて引張試験を行うことにより測定した。装置としては、株式会社島津製作所社製のオートグラフを用いた。
 骨格断面のアルミニウム結晶粒径は、アルミニウム多孔体1を切断後、その断面を株式会社日立ハイテクノロジーズ社製の走査電子顕微鏡を用いて観察することにより測定した。
 アルミニウム多孔体1に含まれる炭化アルミニウムの量は株式会社島津製作所社製のX線回折装置を用いて測定した。
<Evaluation of aluminum porous body>
(Evaluation methods)
Ten aluminum porous bodies 1 were produced by the same method as described above, and the elongation, crystal grain size, and aluminum carbide content of each aluminum porous body were measured.
The elongation of the aluminum porous body was measured by conducting a tensile test based on JIS Z 2241. As an apparatus, an autograph manufactured by Shimadzu Corporation was used.
The aluminum crystal grain size of the skeleton cross section was measured by observing the cross section using a scanning electron microscope manufactured by Hitachi High-Technologies Corporation after cutting the porous aluminum body 1.
The amount of aluminum carbide contained in the porous aluminum body 1 was measured using an X-ray diffractometer manufactured by Shimadzu Corporation.
(評価結果)
 アルミニウム多孔体1の伸び(GLに対する変位量の割合)は、最も小さいもので1.8%であり、最も大きいものは3.4%であった。そして、伸びの平均値は2.4%であった。
 また、アルミニウム多孔体1の骨格断面のアルミニウムの平均結晶粒径は3.5μmであった。更に、アルミニウム多孔体1に含まれる炭化アルミニウムの量は0.42質量%であった。
(Evaluation results)
The elongation of aluminum porous body 1 (ratio of displacement to GL) was 1.8% at the smallest and 3.4% at the largest. And the average value of elongation was 2.4%.
The average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body 1 was 3.5 μm. Furthermore, the amount of aluminum carbide contained in the aluminum porous body 1 was 0.42% by mass.
[実施例3]
 アルミニウムめっき液における(C)成分として試薬のベンゾフェノン(和光純薬工業株式会社製)を用い、その濃度が5.0g/Lとなるようにした以外は実施例1と同様にしてアルミニウムめっき液2を得た。
 上記アルミニウムめっき液2を用いた以外は実施例2と同様にしてアルミニウム多孔体2を10個作製し、それぞれの伸び、結晶粒径、炭化アルミニウムの含有量を測定した。
(評価結果)
 アルミニウム多孔体2の伸び(GLに対する変位量の割合)は、最も小さいもので1.5%であり、最も大きいものは2.2%であった。そして、伸びの平均値は1.8%であった。
 また、アルミニウム多孔体2の骨格断面のアルミニウムの平均結晶粒径は2.3μmであった。更に、アルミニウム多孔体2に含まれる炭化アルミニウムの量は0.40質量%であった。
[Example 3]
The aluminum plating solution 2 was used in the same manner as in Example 1 except that the reagent benzophenone (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the component (C) in the aluminum plating solution, and the concentration was 5.0 g / L. Got.
Ten aluminum porous bodies 2 were produced in the same manner as in Example 2 except that the aluminum plating solution 2 was used, and the elongation, crystal grain size, and aluminum carbide content were measured.
(Evaluation results)
The elongation of aluminum porous body 2 (ratio of displacement to GL) was 1.5% at the smallest and 2.2% at the largest. And the average value of elongation was 1.8%.
The average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body 2 was 2.3 μm. Further, the amount of aluminum carbide contained in the aluminum porous body 2 was 0.40% by mass.
[実施例4]
 アルミニウムめっき液における(C)成分として試薬のキニザリン(和光純薬工業株式会社製)を用い、その濃度が0.50g/Lとなるようにした以外は実施例1と同様にしてアルミニウムめっき液3を得た。
 上記アルミニウムめっき液3を用いた以外は実施例2と同様にしてアルミニウム多孔体3を10個作製し、それぞれの伸び、結晶粒径、炭化アルミニウムの含有量を測定した。
(評価結果)
 アルミニウム多孔体3の伸び(GLに対する変位量の割合)は、最も小さいもので1.7%であり、最も大きいものは2.4%であった。そして、伸びの平均値は1.9%であった。
 また、アルミニウム多孔体3の骨格断面のアルミニウムの平均結晶粒径は3.1μmであった。更に、アルミニウム多孔体3に含まれる炭化アルミニウムの量は0.45質量%であった。
[Example 4]
The aluminum plating solution 3 was used in the same manner as in Example 1 except that the reagent quinizarin (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the component (C) in the aluminum plating solution, and the concentration was 0.50 g / L. Got.
Ten aluminum porous bodies 3 were produced in the same manner as in Example 2 except that the aluminum plating solution 3 was used, and the elongation, crystal grain size, and aluminum carbide content were measured.
(Evaluation results)
The elongation (ratio of displacement with respect to GL) of the aluminum porous body 3 was 1.7% at the smallest and 2.4% at the largest. And the average value of elongation was 1.9%.
The average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body 3 was 3.1 μm. Further, the amount of aluminum carbide contained in the aluminum porous body 3 was 0.45% by mass.
[実施例5]
 実施例1において、(C)成分の濃度が0.10g/Lとなるように添加した以外は実施例1と同様にしてアルミニウムめっき液4を得た。
 上記アルミニウムめっき液4を用いた以外は実施例2と同様にしてアルミニウム多孔体4を10個作製し、それぞれの伸び、結晶粒径、炭化アルミニウムの含有量を測定した。
(評価結果)
 アルミニウム多孔体4の伸び(GLに対する変位量の割合)は、最も小さいもので1.5%であり、最も大きいものでも2.3%であった。そして、伸びの平均値は2.0%であった。
 また、アルミニウム多孔体4の骨格断面のアルミニウムの平均結晶粒径は4.1μmであった。更に、アルミニウム多孔体4に含まれる炭化アルミニウムの量は0.28質量%であった。
[Example 5]
In Example 1, an aluminum plating solution 4 was obtained in the same manner as in Example 1, except that the concentration of the component (C) was added to be 0.10 g / L.
Ten aluminum porous bodies 4 were produced in the same manner as in Example 2 except that the aluminum plating solution 4 was used, and the elongation, crystal grain size, and aluminum carbide content were measured.
(Evaluation results)
The elongation (ratio of displacement to GL) of the aluminum porous body 4 was 1.5% at the smallest and 2.3% at the largest. And the average value of elongation was 2.0%.
The average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body 4 was 4.1 μm. Furthermore, the amount of aluminum carbide contained in the aluminum porous body 4 was 0.28% by mass.
[実施例6]
 実施例1において、(C)成分の濃度が20g/Lとなるように添加した以外は実施例1と同様にしてアルミニウムめっき液5を得た。
 上記アルミニウムめっき液5を用いた以外は実施例2と同様にしてアルミニウム多孔体5を10個作製し、それぞれの伸び、結晶粒径、炭化アルミニウムの含有量を測定した。
(評価結果)
 アルミニウム多孔体5の伸び(GLに対する変位量の割合)は、最も小さいもので1.9%であり、最も大きいものでも3.4%であった。そして、伸びの平均値は2.7%であった。
 また、アルミニウム多孔体5の骨格断面のアルミニウムの平均結晶粒径は3.0μmであった。更に、アルミニウム多孔体5に含まれる炭化アルミニウムの量は0.49質量%であった。
[Example 6]
In Example 1, an aluminum plating solution 5 was obtained in the same manner as in Example 1, except that the concentration of the component (C) was 20 g / L.
Ten aluminum porous bodies 5 were produced in the same manner as in Example 2 except that the aluminum plating solution 5 was used, and the elongation, crystal grain size, and aluminum carbide content were measured.
(Evaluation results)
The elongation of aluminum porous body 5 (ratio of displacement to GL) was 1.9% at the smallest and 3.4% at the largest. And the average value of elongation was 2.7%.
Moreover, the average crystal grain size of aluminum in the skeleton cross section of the aluminum porous body 5 was 3.0 μm. Further, the amount of aluminum carbide contained in the aluminum porous body 5 was 0.49% by mass.
[比較例1]
 アルミニウムめっき液における(C)成分として1,10-フェナントロリン一水和物を用い、その濃度が0.50g/Lとなるようにした以外は実施例1と同様にしてアルミニウムめっき液Aを得た。
 上記アルミニウムめっき液Aを用いた以外は実施例2と同様にしてアルミニウム多孔体Aを10個作製し、それぞれの伸び、結晶粒径、炭化アルミニウムの含有量を測定した。
(評価結果)
 アルミニウム多孔体Aの伸び(GLに対する変位量の割合)は、最も小さいもので0.6%であり、最も大きいものでも1.2%であった。そして、伸びの平均値は0.8%であった。
 また、アルミニウム多孔体Aの骨格断面のアルミニウムの平均結晶粒径は1.0μmであった。更に、アルミニウム多孔体Aに含まれる炭化アルミニウムの量は1.2質量%であった。
[Comparative Example 1]
An aluminum plating solution A was obtained in the same manner as in Example 1 except that 1,10-phenanthroline monohydrate was used as the component (C) in the aluminum plating solution and the concentration was 0.50 g / L. .
Ten aluminum porous bodies A were produced in the same manner as in Example 2 except that the aluminum plating solution A was used, and the elongation, crystal grain size, and aluminum carbide content were measured.
(Evaluation results)
The elongation (ratio of displacement to GL) of the aluminum porous body A was 0.6% at the smallest and 1.2% even at the largest. And the average value of elongation was 0.8%.
The average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body A was 1.0 μm. Furthermore, the amount of aluminum carbide contained in the aluminum porous body A was 1.2% by mass.
[比較例2]
 実施例1において、(C)成分の濃度が0.05g/Lとなるように添加した以外は実施例1と同様にしてアルミニウムめっき液Bを得た。
 上記アルミニウムめっき液Bを用いた以外は実施例2と同様にしてアルミニウム多孔体Bを10個作製し、それぞれの伸び、結晶粒径、炭化アルミニウムの含有量を測定した。
(評価結果)
 アルミニウム多孔体Bの伸び(GLに対する変位量の割合)は、最も小さいもので0.5%であり、最も大きいものでも1.1%であった。そして、伸びの平均値は0.7%であった。
 また、アルミニウム多孔体Bの骨格断面のアルミニウムの平均結晶粒径は4.8μmであった。更に、アルミニウム多孔体Bに含まれる炭化アルミニウムの量は0.12質量%であった。
[Comparative Example 2]
In Example 1, an aluminum plating solution B was obtained in the same manner as in Example 1, except that the concentration of the component (C) was 0.05 g / L.
Ten aluminum porous bodies B were produced in the same manner as in Example 2 except that the aluminum plating solution B was used, and the elongation, crystal grain size, and aluminum carbide content were measured.
(Evaluation results)
The elongation (ratio of displacement to GL) of the aluminum porous body B was 0.5% at the smallest and 1.1% even at the largest. And the average value of elongation was 0.7%.
Moreover, the average crystal grain size of aluminum in the skeleton cross section of the aluminum porous body B was 4.8 μm. Furthermore, the amount of aluminum carbide contained in the aluminum porous body B was 0.12% by mass.
[比較例3]
 実施例1において、(C)成分の濃度が23g/Lとなるように添加した以外は実施例1と同様にしてアルミニウムめっき液Cを得た。
 上記アルミニウムめっき液Cを用いた以外は実施例2と同様にしてアルミニウム多孔体Cを10個作製し、それぞれの伸び、結晶粒径、炭化アルミニウムの含有量を測定した。
(評価結果)
 アルミニウム多孔体Cの伸び(GLに対する変位量の割合)は、最も小さいもので0.6%であり、最も大きいものでも1.2%であった。そして、伸びの平均値は0.9%であった。
 また、アルミニウム多孔体Cの骨格断面のアルミニウムの平均結晶粒径は1.1μmであった。更に、アルミニウム多孔体Cに含まれる炭化アルミニウムの量は1.2質量%であった。
[Comparative Example 3]
In Example 1, an aluminum plating solution C was obtained in the same manner as in Example 1, except that the concentration of the component (C) was 23 g / L.
Ten aluminum porous bodies C were produced in the same manner as in Example 2 except that the aluminum plating solution C was used, and the elongation, crystal grain size, and aluminum carbide content were measured.
(Evaluation results)
The elongation of aluminum porous body C (ratio of displacement to GL) was 0.6% at the smallest and 1.2% at the largest. And the average value of elongation was 0.9%.
The average crystal grain size of aluminum in the skeleton cross section of the porous aluminum body C was 1.1 μm. Furthermore, the amount of aluminum carbide contained in the aluminum porous body C was 1.2% by mass.

Claims (6)

  1.  基材表面にアルミニウムを電着させることが可能なアルミニウムめっき液であって、
     前記アルミニウムめっき液は、
     (A)アルミニウムハロゲン化物と、
     (B)アルキルイミダゾリウムハロゲン化物、アルキルピリジニウムハロゲン化物及び尿素化合物からなる群より選択されるいずれか一種以上の化合物と、
     (C)ベンゼン環を含む有機化合物であって、室温で固体であり、構成元素が水素、炭素、酸素及びハロゲン原子からなる群より選択されるいずれか一種以上である有機化合物と、を成分として含み、
     前記(A)成分と前記(B)成分の混合比はモル比で1:1~3:1の範囲にあり、
     前記(C)成分の濃度が0.10g/L以上、20g/L以下であるアルミニウムめっき液。
    An aluminum plating solution capable of electrodepositing aluminum on the substrate surface,
    The aluminum plating solution is
    (A) an aluminum halide;
    (B) any one or more compounds selected from the group consisting of alkylimidazolium halides, alkylpyridinium halides, and urea compounds;
    (C) An organic compound containing a benzene ring, which is a solid at room temperature, and whose constituent element is one or more selected from the group consisting of hydrogen, carbon, oxygen and halogen atoms, Including
    The mixing ratio of the component (A) and the component (B) is in the range of 1: 1 to 3: 1 by molar ratio,
    An aluminum plating solution in which the concentration of the component (C) is 0.10 g / L or more and 20 g / L or less.
  2.  前記(A)成分が塩化アルミニウムであり、かつ前記(B)成分が1-エチル-3-メチルイミダゾリウムクロリドである請求項1に記載のアルミニウムめっき液。 The aluminum plating solution according to claim 1, wherein the component (A) is aluminum chloride and the component (B) is 1-ethyl-3-methylimidazolium chloride.
  3.  請求項1に記載のアルミニウムめっき液を用いて基材の表面にアルミニウムを電着させるアルミニウム膜の製造方法。 A method for producing an aluminum film in which aluminum is electrodeposited on the surface of a substrate using the aluminum plating solution according to claim 1.
  4.  請求項1に記載のアルミニウムめっき液を用いて得られたアルミニウム多孔体であって、三次元網目状構造を有し、伸びが1.5%以上であるアルミニウム多孔体。 A porous aluminum body obtained by using the aluminum plating solution according to claim 1, which has a three-dimensional network structure and has an elongation of 1.5% or more.
  5.  骨格の断面における結晶粒径が1μm以上、20μm以下である請求項4に記載のアルミニウム多孔体。 The porous aluminum body according to claim 4, wherein the crystal grain size in the cross section of the skeleton is 1 μm or more and 20 μm or less.
  6.  炭化アルミニウムの含有量が0.8質量%以下である請求項4又は請求項5に記載のアルミニウム多孔体。 The aluminum porous body according to claim 4 or 5, wherein the content of aluminum carbide is 0.8 mass% or less.
PCT/JP2015/054387 2014-06-24 2015-02-18 Aluminum plating solution, aluminum plating film manufacturing method, and porous aluminum material WO2015198626A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-128829 2014-06-24
JP2014128829A JP2017137517A (en) 2014-06-24 2014-06-24 Aluminum plating solution, production method of aluminum plating film, and aluminum porous body

Publications (1)

Publication Number Publication Date
WO2015198626A1 true WO2015198626A1 (en) 2015-12-30

Family

ID=54937730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054387 WO2015198626A1 (en) 2014-06-24 2015-02-18 Aluminum plating solution, aluminum plating film manufacturing method, and porous aluminum material

Country Status (2)

Country Link
JP (1) JP2017137517A (en)
WO (1) WO2015198626A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185983A1 (en) * 2017-04-05 2018-10-11 住友電気工業株式会社 Porous aluminum body and method for manufacturing porous aluminum body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038292A1 (en) * 2012-09-05 2014-03-13 住友電気工業株式会社 Method for producing aluminum film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014038292A1 (en) * 2012-09-05 2014-03-13 住友電気工業株式会社 Method for producing aluminum film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018185983A1 (en) * 2017-04-05 2018-10-11 住友電気工業株式会社 Porous aluminum body and method for manufacturing porous aluminum body
JPWO2018185983A1 (en) * 2017-04-05 2020-02-13 住友電気工業株式会社 Aluminum porous body and method for producing aluminum porous body
US11180828B2 (en) 2017-04-05 2021-11-23 Sumitomo Electric Industries, Ltd. Aluminum porous body and method for producing aluminum porous body

Also Published As

Publication number Publication date
JP2017137517A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
JP5950162B2 (en) Method for producing aluminum film
US9812700B2 (en) Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for electrical storage devices, electrode for electrical storage devices, and electrical storage device
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
WO2015198819A1 (en) Alluminum plating solution, aluminum film manufacturing method, and porous aluminum object
WO2017073330A1 (en) Method for producing silicon-plated metal plate
JP7326668B2 (en) Wrinkle-preventing copper foil, electrode containing the same, secondary battery containing the same, and method for manufacturing the same
JP6143005B2 (en) Aluminum plating solution and method for producing aluminum film
WO2017199564A1 (en) Aluminum alloy and aluminum alloy manufacturing method
WO2015198626A1 (en) Aluminum plating solution, aluminum plating film manufacturing method, and porous aluminum material
US20160369418A1 (en) Aluminum plating solution, aluminum film, resin structure, porous aluminum object, and porous aluminum object manufacturing method
WO2018211740A1 (en) Aluminum plating film and production method for aluminum plating film
US11180828B2 (en) Aluminum porous body and method for producing aluminum porous body
JP6809211B2 (en) Silicon plating method and manufacturing method of silicon plated metal plate
JP2016023322A (en) Production method of aluminum porous body
KR20190084867A (en) Electrolytic aluminum foil and its manufacturing method
WO2019207964A1 (en) Aluminum porous body, electrode, electricity storage device, and method for producing aluminum porous body
WO2014038292A1 (en) Method for producing aluminum film
JP2017048444A (en) Aluminum foil and manufacturing method thereof
JP2016113638A (en) Method for producing aluminum membrane
WO2015129108A1 (en) Porous aluminum body, and production method for porous aluminum body
JP2014051692A (en) Method for producing aluminum film
JP2014051690A (en) Method for producing aluminum film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15811902

Country of ref document: EP

Kind code of ref document: A1