WO2015196523A1 - 资源指示的处理方法、处理装置、接入点和站点 - Google Patents

资源指示的处理方法、处理装置、接入点和站点 Download PDF

Info

Publication number
WO2015196523A1
WO2015196523A1 PCT/CN2014/082437 CN2014082437W WO2015196523A1 WO 2015196523 A1 WO2015196523 A1 WO 2015196523A1 CN 2014082437 W CN2014082437 W CN 2014082437W WO 2015196523 A1 WO2015196523 A1 WO 2015196523A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sta
resource indication
uplink
control information
Prior art date
Application number
PCT/CN2014/082437
Other languages
English (en)
French (fr)
Inventor
罗俊
林英沛
张佳胤
杨讯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14895506.5A priority Critical patent/EP3151459B1/en
Priority to KR1020177001718A priority patent/KR101863713B1/ko
Priority to CN201480080152.5A priority patent/CN106464442A/zh
Priority to JP2016575547A priority patent/JP6498707B2/ja
Publication of WO2015196523A1 publication Critical patent/WO2015196523A1/zh
Priority to US15/387,265 priority patent/US10548156B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/121Wireless traffic scheduling for groups of terminals or users
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • Resource indication processing method processing device, access point and site
  • the present invention relates to the field of wireless communication technologies and, more particularly, to a method, an access point, and a station for transmitting information. Background technique
  • WLAN Wireless Local Area Network
  • OFDM Orthogonal Frequency Division Multiplexing
  • 0FDMA technology supports multiple nodes to simultaneously send and receive data.
  • the resource allocation is performed based on the RB or the RB group; different channel resources are allocated to different STAs at the same time, so that multiple STAs access the channel efficiently, thereby improving channel utilization.
  • Embodiments of the present invention provide a method, an access point, and a station for transmitting information, which can efficiently indicate time-frequency resources to a station.
  • a method for processing a resource indication is provided, which is applied to a WLAN that uses the OFDM technology to send or receive a frame that includes a resource indication field, where the resource indication field includes an identifier of the user, and an identifier corresponding to the user.
  • Resource block information and modulation and coding mode MCS provides a resource indication processing device, which is applied to a wireless local area network (OFDM) using OFDM technology, and includes a processing unit for transmitting or receiving a frame including a resource indication field.
  • the resource indication field includes an identifier of the user, and resource block information and modulation and coding mode MCS information corresponding to the identifier of the user.
  • an access point is further provided, where the access point includes the processing device of the resource indication as described above, and the processor in the processing device of the resource indication is specifically configured to send the included resource Indicates the frame of the field.
  • the site includes a processing device of the resource indication as described above, and the processor in the processing device of the resource indication is specifically configured to receive the frame including the resource indication field.
  • time-frequency resources are efficiently indicated to the station, and the station can communicate with the indicated resources.
  • FIG. 1A is a schematic diagram of a system architecture applicable to an embodiment of the present invention.
  • FIG. 1B is a schematic flowchart of an applicable embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a frame for resource indication in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a frame for resource indication in accordance with an embodiment of the present invention.
  • 4 is a schematic diagram of a frame for resource indication in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a frame for resource indication according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a frame for resource indication in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a manner of resource indication according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a partition of resource indication according to another embodiment of the present invention.
  • FIGS 9A-9C are schematic diagrams of resource indication types, respectively, in accordance with one embodiment of the present invention.
  • FIG. 10 is a block diagram of an access point in accordance with an embodiment of the present invention.
  • FIG 11 is a block diagram of a station in accordance with an embodiment of the present invention.
  • 12a-12b are respectively schematic diagrams of the frame structure of an embodiment.
  • Figure 13 is a schematic diagram of the operation of a system.
  • Figures 14a-14i are schematic illustrations of several frame structures, respectively.
  • An access point can also be called a wireless access point or bridge or hotspot, which can access a server or a communication network.
  • a station also referred to as a user, can be a wireless sensor, a wireless communication terminal, or a mobile terminal, such as a mobile phone (or "cellular" telephone) that supports WiFi communication and a computer with wireless communication capabilities.
  • a mobile terminal such as a mobile phone (or "cellular" telephone) that supports WiFi communication and a computer with wireless communication capabilities.
  • it may be a portable, pocket, handheld, computer built-in, wearable, or in-vehicle wireless communication device that supports WiFi communication, and exchanges communication data such as voice and data with the wireless access network.
  • FIG. 1a is a simplified schematic diagram of a WLAN system to which an embodiment of the present invention is applied.
  • the system of Figure 1 includes one or more access points AP 101 and one or more stations STA 102.
  • Wireless communication is performed between the access point 101 and the station 102 using the 0FDMA technology, where the access point 101 sends
  • the data frame contains indication information for the time-frequency resources of the station 102.
  • an embodiment of the present invention provides a method for resource indication, which is applied to a wireless local area network (OFDM) using an OFDM technology.
  • the access point sends a frame including a resource indication field to the station, where the resource indication field is included.
  • the station receives the frame including the resource indication field, parsing the resource indication field to obtain resource block information allocated by the station, and modulating coding mode information and spatial stream number information, using the resource block information and modulation coding
  • the mode information and the spatial stream number information are communicated.
  • the resource indication is based on the user.
  • the resource is a time-frequency resource in the WLAN, and in particular, an unauthorized time-frequency resource.
  • the STA obtains the resource block information, and then uses the corresponding resource block to communicate; the STA obtains the MCS information, that is, obtains the adjustment coding mode corresponding to the sending and receiving data, and then uses the MCS to transmit and receive;
  • the spatial stream number information may be transmitted by using the corresponding spatial stream number when transmitting; after the STA acquires the TPC information, the adjusted transmission power may be used for transmission.
  • the following describes in detail several frames for resource indication in the above communication system, and based on these frames, the foregoing method for indicating resource information to the site is further implemented. Specifically, the method is performed by the access point to send a frame that uses the following frame to the station, and the station receives the frames and parses the resources that can be used by the station, and subsequently uses the resources to communicate.
  • an embodiment of the present invention proposes a frame applied to a wireless local area network for resource indication.
  • the data frame includes a control field (for example, called Frame Control, or SIG-A), where the control field contains configuration information of "resource indication” (for example, called MAP Config); the data frame also includes A "Resource Indication” field (eg, DL MAP, UL MAP, UL ⁇ DL MAP, or SIG-B field in FIG. 2) that contains resource indications for time-frequency resources of one or more stations 102.
  • the control field is optionally The BSSID information of the access point 101 can be included.
  • the configuration information of the "resource indication” may include “resource indication” configuration information in a plurality of uplink and downlink subframes (DL/UL subframe).
  • the configuration information of the "resource indication” may include the time-frequency resource location of the "resource indication", the length of the "resource indication”, or the Modulation and Coding Scheme (MCS) information of the "resource indication”.
  • MCS Modulation and Coding Scheme
  • the time-frequency resource location of the "resource indication” may include: a resource indication field
  • the configuration information of the “resource indication” may further include information such as an uplink “UL MAP indicator” or a bandwidth, where the UL MAP indicator is used to indicate that the resource indication field is a user indicating an uplink; Informing the STA of the bandwidth information of the AP.
  • information such as an uplink “UL MAP indicator” or a bandwidth, where the UL MAP indicator is used to indicate that the resource indication field is a user indicating an uplink; Informing the STA of the bandwidth information of the AP.
  • control field + "resource indication” field given in the foregoing FIG. 2 - FIG. 3 can also be replaced with other possible frames, for example, does not contain a control field, and only contains a "resource indication” field.
  • FIG. 2 - 8 a simplified schematic of a plurality of "Resource Indication” fields is also shown.
  • the resource indication fields in the foregoing various frames may be indicated based on time-frequency resources, that is, indicating that the time-frequency resources can be used by the STA or the STAs (not shown in the figure), specifically, available in the system.
  • the time-frequency resource used by the user is divided into a number of time-frequency resource blocks, each of which is assigned or matched with a user ID (including the group ID of the MU-MIM0 user), and a corresponding modulation and coding mode MCS. It may also be based on the user's indication, that is, which time-frequency resources can be used by one or more users (ie, STAs) (for example, as shown in FIGS. 5-8).
  • an uplink resource indication (UL MAP) may be placed in a downlink subframe close to the uplink subframe.
  • the MAP information (indicating the time-frequency resources used by the user) obtained by the AP according to the scheduling of the STA channel is more timely and suitable for the subsequent uplink subframe of the STA.
  • the uplink resource information is more reliable, and the decoding complexity can also be reduced.
  • a resource indication field of all STAs of the current subframe is included or carried, for example, a downlink resource indication.
  • the DL MAP or, the uplink and downlink resources indicate the UL/DL MAP.
  • the UL MAP information may be mixed with the DL MAP information into DL/UL MAP information, and the indication is performed in the downlink subframe.
  • the resource indication field includes resource block information (resource block location) in which the scheduled STA within the subframe transmits data (DL or UL) within the subframe.
  • the “resource indication” information may further include MCS information that the STA sends data on the allocated one or more resource blocks.
  • 5-8 are simple schematic diagrams of some frames based on resource indication by the user. Referring to FIG.
  • the "Resource Indication" field performs a resource indication field for each STA, and N is a natural number.
  • the resource indication field of each STA includes an identifier of the STA, resource block information, a modulation and coding mode MCS, and the like.
  • the ID of the STA is, for example, Associated Identification (AID/Partial AID).
  • spatial stream number information may also be included, where the spatial stream refers to multiple antennas independently transmitting different streams composed of separately encoded signals in parallel; the number of spatial streams refers to the number of different streams.
  • power control, retransmission indication, or new packet indication may also be included.
  • the resource indication field may indicate a resource indication of a user group using Multi-User Multiple-Input Multiple-Output (MU-MIMO), in addition to the resource indication field of a single STA. For the resource indication of the MU-MIM0 user group, there are two cases.
  • MU-MIMO Multi-User Multiple-Input Multiple-Output
  • the resource indication field does not include the MU-MIM0 user group identifier (Group ID), that is, only the user in a single user unit. Identification ID and resource block information corresponding to the user identification ID, modulation and coding mode MCS, etc. A plurality of users in a group of users employing multi-user MIMO and MIMO-MIMO technologies are respectively indicated to have the same resource block. As shown in FIG. 5, each user parses out its own resource block information. For the users in the MU-MIM0 user group, the parsed resource blocks have the same part.
  • the resource indication field includes the MU-MIM0 user group identifier (Group ID), resource block information, modulation and coding mode MCS, and the like. As shown in FIG.
  • the resource indication fields of different users are sequentially carried in the "resource indication" field, and the order may be random, and the system efficiency may be increased according to a certain order.
  • the resource indication of the MU user can be placed in the position in the front resource indication field, so that more STAs can decode their own time-frequency resources earlier, which can improve the efficiency of the overall system resources.
  • the MU user's resource indication is placed in the front position of the resource indication field as a whole, for example, the time slot is forward. It does not mean that all MU users' resource indications must be completed before indicating the SU user's resources.
  • the resource block information mentioned in the foregoing various frames may be indicated in various manners, such as a Bitmap indication manner, or an indication manner of an offset.
  • the Bitmap indication mode is to indicate the time-frequency resources to be used by using the bit position. For example, (T31 RB resources, a downlink STA1 is allocated (T15 RBs, then the Bitmap indication mode is 11111111111111110000000000000000. Where, the offset is adopted)
  • the indication of the quantity is to indicate the time-frequency resource to be used by indicating the starting point and the offset. Referring to FIG. 7, for example, 0 to 31 RB resources, and a downlink STA2 allocates 16 to 23 RBs, then the offset
  • the indication mode indicates the starting point and the offset: 10000 00111.
  • the indication manner of the resource block information may be an indication manner based on the variable length resource block.
  • the indication manner based on the variable length resource block is to set a plurality of indication manners.
  • a resource block (RB) unit of different subcarrier numbers allocates variable length RB units for different users, which is different from the number of fixed subcarriers in the resource block (RB) unit in the Bitmap and offset indication methods.
  • RB1 includes 14 sub- Wave
  • RB2 comprising 26 subcarriers
  • RB3 comprise 56 subcarriers
  • 114 comprising for An OFDMA system with available subcarriers, four variable length RB units RBI, RB2, RB3 and RB4 are set, RBI includes 14 subcarriers, RB2 includes 26 subcarriers, RB3 includes 56 subcarriers, RB4 includes 114 subcarriers, and contains 242 0 DMA system with available subcarriers, 5 RB variable length units RB1, RB2, RB3, RB4 and RB5 are set, RBI includes 14 subcarriers, RB2 includes 26 subcarriers, RB3 includes 56 subcarriers, RB4 includes 114 subcarriers, RB5 Includes 242 subcarriers.
  • the starting point location and the RB unit identity or other methods may be used to indicate that the resource is allocated.
  • the identifier of RB1 ⁇ 5 is 000/001/010/011/100; the starting position can be defined according to the identifier of the subcarrier, or the RB unit according to the minimum number of subcarriers. To define (such as 14 RBs). It is assumed that RB3 (56 subcarriers) is allocated to STA3, and the starting point is the 43rd subcarrier. Then, the starting point is defined according to the subcarrier identifier.
  • the resource indication mode of the STA is: 00101010 010; the starting point is defined according to the unit of the minimum RB number, and the indication manner of the STA is: 0100 010.
  • the OFDM system can be used for the single-user SU and the multi-user MU MIM0 scenario.
  • the WLAN system can efficiently perform the STA resource allocation indication.
  • the resource indication field may also be divided into two or more regions or portions, as shown in FIG. 8.
  • Each STA divides the STA's MAP information into a certain area for a certain criterion.
  • the criterion of the sub-area may include, but is not limited to, one of the following: based on the STA ID sub-area: For example, the STA ID and the number of the area partition are used to perform a remainder operation, and the remainder is determined according to the remainder. Area block number.
  • Sub-area based on QoS requirements For example, an STA with a high-priority service has its resource indication field placed in the top area block.
  • the uplink and downlink service type sub-area For example, the resource indication field of the STA of the downlink service is placed in the first area, and the resource indication field of the STA of the uplink service is placed in the second area or the like.
  • the foregoing criteria for each sub-area can be performed without any combination of logic, and details are not described herein again.
  • the resource indication field of the site is read directly from the corresponding region of the site according to one of the aforementioned criteria for various partitions.
  • the STAs placed behind the resource indications can find their own resource indication fields without reading all the resource indication contents (the STA indicates the resource indication fields in the downlink subframe and the uplink subframe). ). In this way, the speed at which the STA reads the resource indication field can be accelerated.
  • the resource indication field may further include: type information of the resource indication.
  • the resource indication field may also display or implicitly include length information of the resource indication (refer to FIG. 9A-C). Different types of resource indication fields are defined in Table 1.
  • Table 1 provides several different types of resource indication fields.
  • the type indicated by "000” is DL scheduling with single stream, and the type indicated by "001” is DL scheduling in spatial scheduling. Multiplexing
  • the type indicated by "010” is downlink MU-MIMO scheduling (DLMU-MIM0 scheduling)
  • the type indicated by "011” is uplink scheduling (UL scheduling)
  • the type indicated by "100” is uplink MU-MIM0 scheduling (UL) Scheduling).
  • Different types of resource indication fields can have different lengths, resource allocations, and configurations (see Figures 9A-9C).
  • the STA can learn the format of the resource indication field by decoding the resource ID (type ID) information; optionally, the length can also be known. In this way, the STA reads the MAP type, knows the length to read the MAP information, and avoids searching with various lengths of MAP, which can speed up the reading of the MAP.
  • the resource indication field may include: resource block (RB) information, MCS information, SID/GID information; optionally, may further include a resource indication type (type), and a spatial flow number information (number of spatial Streams, Jane NSS, New Data indication, HARQ process number, redundancy version information, or one or any combination of power control information TPC.
  • the foregoing optional information may not be included in the resource indication field, or may be multiplexed with the information in the resource indication field in some manner, for example,
  • the SID/GID information can be scrambled with the check digit.
  • the resource indication type (type) may be formatted to specify one or a combination of the foregoing information, such that the resource indication field occupies less communication resources.
  • FIG. 9A is a simple schematic diagram of a resource indication field of a type of single-stream downlink scheduling
  • FIG. 9B is a simple schematic diagram of a resource indication field of a type of space division multiplexing downlink scheduling
  • FIG. 9C is a resource of the uplink scheduling type.
  • a simple diagram of the indication field is a simple schematic diagram of a resource indication field of a type of single-stream downlink scheduling
  • FIG. 9B is a simple schematic diagram of a resource indication field of a type of space division multiplexing downlink scheduling
  • FIG. 9C is a resource of the uplink scheduling type.
  • the access point sends a downlink subframe that uses the foregoing frame; the STA scheduled by the downlink subframe receives the frames, and decodes and finds its own resources included in the subframe or subsequent subframes. Indicates a field and communicates on the resource block indicated by the resource indication field.
  • the STA scheduled by the downlink subframe can decode the resource block information used for transmitting the downlink data, and the MCS information for transmitting the downlink data, etc.; in the subsequent downlink subframe (DL subframe) In the corresponding resource block (ie the location of the indicated resource), utilized
  • the MCS information is used for downlink data transmission.
  • the STA scheduled by the downlink subframe can decode the resource block information used when transmitting the uplink data, and the MCS information for transmitting the uplink data, etc.; in the subsequent uplink subframe (UL subframe) On the corresponding resource block (ie, the location of the indicated resource), the MCS information is used for uplink data transmission.
  • another embodiment provides a resource indication processing device (not shown), which is applied to a wireless local area network (OFDM) using OFDM technology, and includes a processing unit, configured to send or receive a frame including a resource indication field, the resource The indication field includes an identifier of the user, and resource block information and modulation and coding mode MCS information corresponding to the identifier of the user.
  • a resource indication processing device (not shown), which is applied to a wireless local area network (OFDM) using OFDM technology, and includes a processing unit, configured to send or receive a frame including a resource indication field, the resource The indication field includes an identifier of the user, and resource block information and modulation and coding mode MCS information corresponding to the identifier of the user.
  • the processing unit may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or perform the embodiments of the present invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor. It is easy to understand that the processing device of the foregoing resource indication may be located at an access point when specifically transmitting the frame including the resource indication field, and may be located at the site when specifically receiving the frame including the resource indication field.
  • FIG. 10 is a block diagram of an access point in accordance with another embodiment of the present invention.
  • the access point of Figure 10 includes an interface 101, a processing unit 102, and a memory 103.
  • Processing unit 102 controls the operation of access point 100.
  • Memory 103 can include read only memory and random access memory and provides instructions and data to processing unit 102.
  • a portion of the memory 103 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of access point 100 are coupled together by a bus system 109, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 109 in the figure.
  • the method for transmitting the foregoing various frames disclosed in the foregoing embodiments of the present invention may be applied to the processing unit 102 or implemented by the processing unit 102.
  • the steps of the above method can be This is done by an integrated logic circuit of hardware in the processing unit 102 or an instruction in the form of software.
  • the processing unit 102 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, which can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • FIG. 11 is a block diagram of a station in accordance with another embodiment of the present invention.
  • the access point of FIG. 11 includes an interface 111, a processing unit 112, and a memory 113.
  • Processing unit 112 controls the operation of site 110.
  • Memory 113 can include read only memory and random access memory and provides instructions and data to processing unit 112. A portion of the memory 113 may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the various components of the site 110 are coupled together by a bus system 119, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 119 in the figure.
  • the method for receiving the foregoing various frames disclosed in the foregoing embodiments of the present invention may be applied to the processing unit 112 or implemented by the processing unit 112.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processing unit 112 or an instruction in the form of software.
  • the processing unit 112 can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can be implemented or executed in an embodiment of the invention.
  • a general purpose processor can be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as hardware processor execution, or in a processor.
  • the hardware and software module combination is completed.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 113, and the processing unit 112 reads the information in the memory 113 and combines the hardware to complete the steps of the above method.
  • the memory 113 stores instructions that cause the processing unit 112 to perform the following operations: The method on the site side in each embodiment.
  • FIG. 12a is a schematic diagram showing a frame structure of a PLCP Protocol Data Unit (PPDU) transmitted by an AP according to an embodiment of the present invention
  • FIG. 12b shows another embodiment of the present invention.
  • a frame format scheme for efficiently indicating multi-user control signaling and combining contention and scheduling access is proposed.
  • a radio frame comprising a Legacy Preamble portion, a 802.
  • l lax frame control field Control Field
  • DL subframes downlink transmission subframes
  • UL subframes uplink transmission subframes
  • the minimum processing time (SIFS) in the WiFi system is required between the downlink transmission subframe (DL subframe) and the uplink transmission subframe (UL subframe).
  • the Legacy Preamble portion can also be added before the uplink subframe (UL subframe), as shown in Fig. 12b.
  • l lax includes HE-SIG1 (High Efficiency - Signal Field) indicating the uplink and downlink subframes, and the high-efficiency WLAN signaling field common control information field (HE-SIG1) and the indication uplink/downlink Broadcast/Multicast control subframe of the multi-user scheduling information (UL/DL Scheduling Information) in the frame.
  • HE_SIG1 indicates the public information of STA-common (such as system bandwidth, subsequent DL/UL subframe) Number, start and length information, etc., and HE-SIG2 transmission control information if necessary), and STA-spec ific control information is included in HE-SIG2.
  • the HE-LTF can support high-order modulation HE-SIG2 to improve the transmission efficiency of multi-user scheduling signaling.
  • the downlink transmission subframe (DL subframe) and the uplink transmission subframe (UL subframe) include STA-specif ic HE-preamble and STA-specific data portions. This will be specifically described in the examples.
  • the public control signaling field includes at least an STA-common HE-preamble (a high-efficiency wireless LAN preamble shared by multiple users), and may further include a HE-SIG2 field.
  • the STA-common HE-preamble field includes scheduling information of at least two STAs, and the scheduling information includes at least uplink control information for indicating that the AP allows at least two STAs to send uplink data.
  • the L-preamble shown in Figures 12a, 12b is a conventional WLAN physical layer header, including a legacy short training legacy short training field L-STF, a legacy long training field L-LTF, and a legacy signaling field L-SIG.
  • the HE-SIG1 field is used to store related information of the DL subframe and/or the UL subframe and related information of the STA-common HE-preamble, where the related information of the DL subframe includes a transmission bandwidth for indicating the DL subframe, and the DL.
  • the information about the UL subframe includes a transmission bandwidth for indicating the UL subframe, the number of UL subframes, the start time and length information, and the like.
  • the information related to the STA-common HE-preamble refers to a parameter of the first detection reference information used to detect the scheduling information, for example, a specified channel, a sequence length, and the like.
  • the STA-common HE-preamble includes: STA-common HE-STF/LTF field and HE-SIG2 field; the content of the STA-common HE-STF/LTF field is used to detect the content of the HE-SIG2 field.
  • the STA-common HE-STF field is used to store the AGC receiving HE-SIG2 on the designated channel; the STA-common HE-LTF field is used to store the channel estimate indicating HE-SIG2.
  • the HE-SIG2 field is used to store scheduling control information of the STA (scheduling information.
  • the uplink control information in the scheduling information may include: an allocated channel resource, a precoding vector, a data length, and a spatial stream.
  • the HE-SIG2 field may include both the uplink control information and downlink control information, where the downlink control information is used to indicate that the AP allows at least two STAs to receive downlink data.
  • the downlink control information includes at least resource information allocated by the AP, such as the allocated channel resource and the spatial stream, to the STA.
  • the downlink control information may be stored in two parts in the HE-SIG2 field and the HE-SIG3 field, respectively.
  • the first downlink control information is stored in the HE-SIG2 field, where the first downlink control information includes channel resource information allocated by the AP for the STA, for example, sub-channel information and spatial stream; and the second downlink control is stored in the HE-SIG3 field.
  • Information, the second downlink control information includes a transmission parameter such as an encoding format and a data length.
  • the HE-SIG3 field is sent in the DL subframe.
  • the DL subframe field in each embodiment may include a STA-specific HE-preamble (STA's proprietary high-efficiency wireless LAN preamble), and DL SU-MIMO data (single-user downlink data) or DL MU-MIMO data (multiple User downlink data), where DL MU-MIM0 data is downlink data that the AP sends to multiple STAs located in different directions by using the same time-frequency resource.
  • the DL subframe field of an embodiment may include a STA-specific HE-STF field, a STA-specific HE-LTF field, and an HE-SIG3 field.
  • the content of the STA-specific HE-STF field is used to indicate the AGC that sends the downlink data
  • the content of the STA-specific HE-LTF field is used to indicate the channel estimation of the STA
  • the content of the HE-SIG3 field is used to indicate the sending of the data.
  • the UL subframe field in each embodiment may include UL SU-MIMO data (single-user uplink data) or DL MU-MIMO data (multi-user uplink data), where the UL MU-MIM0 data is that the AP uses the same time-frequency resource.
  • the HE-SIG3 field may be included, and the contents of the HE-SIG3 field are used to indicate transmission parameters of the data, for example, MCS and data length, and the like.
  • the transmitting end includes a processing unit and an interface, wherein the interface specifically includes a receiver Rx l and a transmitter Tx l; the processing unit includes a controller 1, a demodulator 1 and a modulator 1, the working principle of which is described below.
  • the L-preamble, the HE-SIG1, and the STA-common HE-preambleo are transmitted on the entire channel designated by the AP, and the content of the DL subframe of each STA is correspondingly transmitted on the sub-channel corresponding to each STA, thereby realizing multi-user identity.
  • Time-sharing spectrum resources or space resources do not interfere with each other, thereby improving the utilization of spectrum resources and space resources.
  • the processing procedure or principle of the receiving end (STA) receiving the above PPDU frame format is shown.
  • the receiving end (STA) includes a processing unit and an interface, wherein the interface specifically includes a receiver Rx2 and a transmitter Tx2; the processing unit includes a controller 2, a demodulator 2 and a modulator 2, the operation of which is described below. Specifically, after receiving the PPDU frame format, the receiving end (STA) first performs initial time synchronization, CF0 (frequency offset) estimation, and sending on the channel designated by the AP according to the content of the L-STF field in the L-preamble.
  • CF0 frequency offset
  • AGC Automatic Gain Control estimation of the signal; according to the content of the L-LTF field, the time-peer and CF0 estimation are performed on the designated channel, and the channel estimation of the specified channel is obtained at the same time; L- can be detected according to the obtained channel estimation
  • the content of the SIG field is detected according to the channel estimation obtained by the L-LTF field, and the parameters of the UL frame and the DL subf into the e and the parameters of the STA-common HE_preamble, for example, the transmission bandwidth and the sequence length, are obtained.
  • the STA further determines which fields in the WLAN physical layer frame are DL subframe according to the parameters of the DL subframe.
  • the HE-SIG1 field may also include the transmission of HE-SIG2.
  • the parameter for example, the MCS (Modulation and Coding Scheme) used by the HE-SIG2, and the ID of the STA indicated by the HE-SIG2, where the ID may be an AID (Association Identifier).
  • the ID may be a PAID (Partial AID), and the PAID is an association identifier that combines the AID and the BSSID of the serving AP, and/or the ID of the user group.
  • the receiving end detects the content of the HE-SIG 2 based on the transmission parameter of the HE-SIG 2 included in the HE-SIG 1.
  • the AP can send the content of the HE-SIG1 field in a multicast manner.
  • the STA detects that the HE-SIG1 field does not contain its own identification information, the STA does not continue to detect the subsequent frame structure, which saves the detection time of the STA.
  • the STA-common HE-STF/LTF field Detecting the content of the STA-common HE-STF/LTF field according to the parameter obtained from the content of the HE-SIG1 field; then, obtaining the AGC of the HE-SIG2 field on the specified channel according to the content of the STA-common HE-STF field, The channel estimation of the HE-SIG2 field on the designated channel is obtained according to the content of the STA-common HE-LTF field, and then the content of the HE-SIG2 field is detected according to the channel estimation. If the STA detects that the HE-SIG2 field contains its own DL SI (downlink Scheduling Information), that is, the downlink control information of the STA.
  • DL SI downlink Scheduling Information
  • the STA obtains the content of the STA-specific HE-STF/LTF field according to the content of the detected HE-SIG2 field. Then, according to the content of the STA-specific HE-STF field, the AGC that the STA receives the downlink data is obtained.
  • the channel estimation of the specified channel is obtained according to the content of the STA-specific HE-LTF field, and the content of the HE-SIG3 field is detected by using the channel estimation, and the transmission parameters of the downlink data, for example, the MCS and the data length, and the like are obtained.
  • the STA finds the start time and length of the DL subframe in which the downlink data of its own is located based on the information about the DL subframe detected from the HE-SIG1 field and the above parameters (AGC, channel estimation, transmission parameters).
  • the STA detects that the HE-SIG2 field contains its own UL SI (downlink Scheduling Information), that is, the uplink control information of the STA.
  • the STA finds the start time of the UL subframe where the uplink data is transmitted according to the uplink control information in the detected HE-SIG2 field and the related information of the UL subframe in the HE-SIG1 field. Between and length.
  • the STA-specific HE-pre amble in this embodiment may include a STA-specific HE-STF field, an HE-LTF field, and a STA-specific HE-SIG3 field.
  • the STA detects that the HE-SIG2 includes its own UL SI
  • the STA sets the STA-specific HE-preamble parameter according to the UL SI, and generates the STA-specif ic HE-STF field and the STA- according to the parameters of the STA-specific HE-preamble.
  • the content of the specific HE-LTF field is not limited to the STA-specific HE-STF field.
  • the STA itself has the capability of adjusting the transmission parameters when transmitting the uplink data, for example, adjusting the MCS and the data length based on the downlink received scheduling information and the channel estimation to obtain an uplink transmission parameter, and storing the uplink transmission parameter in the STA-specific HE In the HE-SIG3 field after the -STF and STA-specif ic HE-LTF, the content of the HE-SIG3 is transmitted to the AP on the transport channel corresponding to the STA.
  • the UL data may include UL SU Data (single-user uplink data) or UL MU data (multi-user uplink data), where UL MU data is uplink data that multiple STAs transmit to the AP in different directions by using the same time-frequency resource.
  • UL SU Data single-user uplink data
  • UL MU data multi-user uplink data
  • each STA After each STA transmits the content of its corresponding HE-SIG3 field, it transmits its own uplink data on its respective subchannel.
  • the AP detects the content of the STA-specific HE-STF field and the STA-specific HE-LTF field in the uplink subframe sent by the STA, and obtains the AGC of the uplink data of the STA by using the content of the STA-specific HE-STF field;
  • the content of the STA-specific HE-LTF field is obtained by the channel estimation of the STA;
  • the content of the HE-SIG3 field is detected according to the channel estimation, and uplink transmission parameters, such as MCS and data length, etc., are obtained.
  • uplink transmission parameters such as MCS and data length, etc.
  • the scheduling information SI of the STA in the DL subframe is included in the HE-SIG2 and Scheduling information SI of the STA in the UL subframe. All stations (users) or a group of users indicated in HE-SIG1 need to detect HE-SIG2 information. If the station detects its own control information in the DL-SI, it needs to receive data according to the scheduling information indicated by the AP in the subsequent DL subframe.
  • the control information is detected in the UL-SI, it needs to be in the subsequent UL subframe.
  • the data is received according to the scheduling information indicated by the AP.
  • the AP does not need to additionally transmit the SIG field of the DL SI, and the UL subframe sent by the STA does not need to include the SIG field for notifying the UL SI, that is, the frame structure is used for unified control of the uplink by the AP.
  • the scene transmitted by the user Specifically, for the working principle shown in FIG. 13, when the frame structure of FIG.
  • the scheduling information SI of the STA in the DL subframe and the scheduling information SI of the STA in the UL subframe are included in the HE-SIG2. All users or a group of users indicated in HE-SIG1 need to detect the information of HE-SIG2. If the control information is detected in the DL-SI, the data needs to be received in the subsequent DL subframe according to the scheduling information indicated by the AP. If the control information is detected in the UL-SI, it needs to be followed in the subsequent UL subframe. The scheduling information indicated by the AP receives data.
  • the UL subframe includes a SIG field (HE-SIG3) for the STA to inform or inform the AP of the UL SI.
  • the STA can also adjust the scheduling parameters according to the actual channel conditions when transmitting the data. For example, if there is sudden interference, the MCS can be appropriately reduced to meet the PER requirement when the test data is guaranteed. More specifically, for the working principle shown in FIG. 13, when the frame shown in FIG. 14b is used, there is no HE-SIG3 part transmission in the STA-specific HE-preamble of the downlink AP transmitting end, and the downlink STA receiving end does not.
  • the STA control unit has a scheduling parameter adjustment function, and the HE-SIG3 needs to be sent in the STA-specific HE-preamble, and the uplink AP receiving end corresponds to the HE-SIG3 part in the STA-specif ic HE-preamble. receive.
  • the scheduling information SI of the STA in the UL subframe and the scheduling information SI of the STA in the partial DL subframe are included in the HE-SIG2. All users or a group of users indicated in HE-SIG1 need to detect the information of HE-SIG2.
  • the data needs to be received in the subsequent DL subframe according to the scheduling information indicated by the AP; if the control information is detected in the UL-SI, it needs to be followed in the subsequent UL subframe.
  • the scheduling information indicated by the AP receives data.
  • the difference from FIG. 14a is that the DL STA specified in HE-SIG2 continues to detect the remaining DL SI in the SIG field (HE-SIG3) in the DL subframe, which can reduce the overhead of the common control information field (HE-SIG2). .
  • the AP indicates the ID of the DL STA and the location information of the allocated resource in the HE-SIG2, and specifically transmits the STA-specific control information such as the MCS, the data length, the spatial stream, and the like in the HE-SIG3.
  • HE-SIG3 can use the LTF of frequency taking and spatial multiplexing to obtain control information of different users/flows, and improve the efficiency of signaling transmission. More specifically, for the working principle described in FIG. 13, the frame of FIG. 14c is used, and the STA-specific HE-preamble of the downlink AP transmitting end has the HE-SIG3 part transmission, and the downlink STA receiving end is the STA-specific HE.
  • the uplink STA sender, the STA Control Unit module has no scheduling parameter adjustment function, and there is no HE-SIG3 part of the STA-specif ic HE-preamble, and the uplink AP receiver does not.
  • the AP transmits the partial SI of the STA in the DL subframe and the SI of the STA in the UL subframe in the HE-SIG2 (FIG. 4), and the HE-SIG3 in the DL subframe additionally transmits the remaining DL SI.
  • FIG. 14d the AP transmits the partial SI of the STA in the DL subframe and the SI of the STA in the UL subframe in the HE-SIG2 (FIG. 4), and the HE-SIG3 in the DL subframe additionally transmits the remaining DL SI.
  • FIG. 4 the HE-SIG3 in the DL subframe
  • the STA can adjust the scheduling parameters according to actual channel conditions when transmitting data. For example, if there is sudden interference, the MCS can be appropriately reduced to meet the PER requirement when the test data is guaranteed. More specifically, for the working principle described in FIG. 13, the frame of FIG.
  • the HE-SIG3 part is transmitted in the STA-specific HE-preamble of the downlink AP transmitting end, and the downlink STA receiving end is in the STA-specific HE-
  • the preamble has the HE-SIG3 part of the reception; the uplink STA sender, the STA Control Unit module has the scheduling parameter adjustment function, the HE-SIG3 needs to be sent in the STA-specific HE-preamble, and the uplink AP receiver corresponds to the STA-specific HE-
  • Fig. 14e it is a special case of the frame of Fig.
  • the AP transmits the SI of the STA in the UL subframe in the HE-SIG2. If the STA detects its own control information in the UL-SI, it needs to receive data in the subsequent UL subframe according to the scheduling information indicated by the AP.
  • the SIG field for informing the UL SI is not included in the UL subframe transmitted by the STA.
  • the application scenario of such a frame is that the AP uniformly controls uplink multi-user transmission. More specifically, for the working principle described in FIG. 13, the frame of FIG.
  • the STA Control Unit module has no scheduling parameter adjustment function, and there is no transmission of the HE-SIG3 part in the STA-specific HE-preamble, and the uplink AP receiving end does not have the STA-specific HE- Reception of the HE-S IG3 part in preamb 1 e.
  • the AP transmits the SI of the STA in the UL subframe in the HE-SIG2. If there is its own control information in the UL-SI, it is necessary to receive data in the subsequent UL subframe according to the scheduling information indicated by the AP.
  • the difference from the frame shown in FIG. 14e is that the SIG field (HE-SIG3) in which the STA informs the UL SI is included in the UL subframe.
  • the STA can adjust the scheduling parameters according to the actual channel conditions when transmitting the data. More specifically, for the working principle described in FIG. 13, the frame of FIG.
  • the AP transmits the SI of the STA in the DL subframe in the HE-SIG2. If the STA detects its own control information in the DL-SI in the HE-SIG2, it needs to receive data in the subsequent DL subframe according to the scheduling information indicated by the AP.
  • the SIG field of the DL SI is not included in the DL subframe transmitted by the AP. More specifically, for the working principle described in FIG. 13, the frame of FIG.
  • the HE-SIG2 transmitted by the AP includes the partial SI of the STA in the DL subframe, and the remaining DL SI of the HE-SIG3 in the DL subframe. The difference from FIG.
  • the DL STA specified in HE-SIG2 continues to detect the remaining DL SI in the SIG field (HE-SIG3) in the DL subframe, which can reduce the overhead of the common control information field (HE-SIG2).
  • the AP indicates the ID of the DL STA and the location information of the allocated resource in the HE-SIG2, and specifically transmits the STA-specific control information, such as the MCS, the data length, the spatial stream, and the like in the HE-SIG3.
  • the HE-SIG3 can use the LTF of frequency taking and spatial multiplexing to obtain control information of different users/flows, and improve the efficiency of signaling transmission. More specifically, for the working principle described in FIG. 13, the frame of FIG.
  • 14h is used, and the HE-SIG3 part is transmitted in the STA-specific HE-preamble of the downlink AP transmitting end, and the downlink STA receiving end is used. There is a reception of the HE-SIG3 part in the STA-specif ic HE-preamble. Because there is no uplink data, the transmitting module of the uplink STA end and the receiving module of the uplink AP end are closed.
  • 14a-h show an example of a channel format (for example, a frame format on 2 (Hz); an embodiment of a frame structure in a plurality of Channel cases shown in Fig. 14i. The frames shown in the aforementioned Figs.
  • HE-SIG1 contains common control information. For example, system bandwidth, number of subsequent DL/UL subframes, start and length information, and, if necessary, HE-SIG2 transmission control information.
  • HE-SIG2 can transmit STA-specifc control information on the bandwidth specified by HE-SIG1.
  • the foregoing frame formats can support uplink and downlink frequency division multiplexing and space division multiplexing multi-user transmission, and can be applied to burst data access. The above scheme can be directly applied to a WiFi system with backward compatibility.
  • the embodiments may also support signaling to efficiently indicate uplink and downlink multi-user transmission, save signaling overhead, reduce data detection delay, etc.
  • the embodiment "or” embodiment means that a particular feature, structure, or characteristic relating to an embodiment is included in at least one embodiment of the invention. Thus, “in one embodiment” occurs throughout the specification or The “in an embodiment” does not necessarily refer to the same embodiment.
  • these specific features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present invention.
  • system and “network” are often used interchangeably herein.
  • the term "and/or” in this context is merely an association that describes an associated object, indicating that there may be three relationships, for example, A and/or B, can be expressed as: There are A alone, there are A and B, and there are three cases of B.
  • the character "/" in this article generally means that the context object is an "or”. Relations.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is determined solely from A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used to carry or store an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital STA line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disc (disc) and a disc (disc) include a compact disc (CD), a laser disc, a disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically replicated, and The disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种资源指示的处理方法,应用于采用OFDMA技术的无线局域网,发送或者接收包含资源指示字段的帧,所述资源指示字段中包含用户的标识,以及对应所述用户的标识的资源块信息和调制编码方式MCS信息。

Description

资源指示的处理方法、 处理装置、 接入点和站点 技术领域
本发明涉及无线通信技术领域, 并且更具体地, 涉及传输信息的方法、 接入点和站点。 背景技术
随着移动互联网的发展和智能终端的普及, 数据流量快速增长。 无线局 域网 (WLAN , Wireless Local Area Network ) 凭借高速率禾口低成本方面的 优势, 成为主流的移动宽带接入技术之一。
为了大幅提升 WLAN***的业务传输速率, 下一代电气和电子工程师协 会 ( IEEE, Institute of Electrical and Electronics Engineers ) 802. l lax 标准将会在现有正交频分复用 (OFDM , Orthogonal Frequency Division Multiplexing )技术的基础上,进一歩采用正交频分多址(OFDMA, Orthogonal Frequency Division Multiple Access ) 技术。 OFDMA技术将空口无线信道 时频资源划分成多个正交的时频资源块 (RB, Resource Block) , RB之间在 时间上可以是共享的, 而在频域上是正交的。
0FDMA技术支持多个节点同时发送和接收数据。 当接入点需要与站点传 输数据时, 基于 RB或 RB组进行资源分配; 在同一时刻为不同的 STA分配不 同的信道资源,使多个 STA高效地接入信道,提升信道利用率。对基于 0FDMA 的 WLAN***而言, 需要高效地向 STA指示时频资源。
发明内容
本发明实施例提供了一种传输信息的方法、 接入点和站点, 能够高效地 向站点指示时频资源。 一个方面, 提供了一种资源指示的处理方法, 应用于采用 0FDMA技术的 无线局域网, 发送或者接收包含资源指示字段的帧, 所述资源指示字段中包 含用户的标识, 以及对应所述用户的标识的资源块信息和调制编码方式 MCS 自 另一方面, 提供了一种资源指示的处理装置, 应用于采用 0FDMA技术的 无线局域网, 包含处理单元, 用于发送或者接收包含资源指示字段的帧, 所 述资源指示字段中包含用户的标识, 以及对应所述用户的标识的资源块信息 和调制编码方式 MCS信息。
相应的, 还提供了一种接入点, 所述接入点包括如前述的资源指示的处 理装置, 并且, 所述资源指示的处理装置中的所述处理器具体用于发送所述 包含资源指示字段的帧。
相应的, 还一种站点, 所述站点包括如前述的资源指示的处理装置, 并 且,所述资源指示的处理装置中的所述处理器具体用于接收所述包含资源指 示字段的帧。
通过前述指示方式, 高效地向站点指示时频资源, 站点可以利用被指示 的资源进行通信。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作简单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1A是本发明实施例可应用的***构架的示意图。
图 1B是本发明实施例可应用的流程示意图。
图 2是本发明一个实施例的用于资源指示的帧的示意图。
图 3是本发明一个实施例的用于资源指示的帧的示意图。 图 4是本发明一个实施例的用于资源指示的帧的示意图。
图 5是本发明另一实施例的用于资源指示的帧的示意图。
图 6是本发明一个实施例的用于资源指示的帧的示意图。
图 7是本发明一个实施例的资源指示的方式的示意图。
图 8是本发明另一实施例的资源指示的分区的示意图。
图 9A-9C分别是本发明一个实施例的资源指示类型的示意图。
图 10是本发明一实施例的接入点的框图。
图 11是本发明一实施例的站点的框图。
图 12a-12b分别是一实施例的帧结构示意图。
图 13是一个***的工作原理示意图。
图 14a-14i分别是几个帧结构的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
接入点 (AP , Access Point), 也可称之为无线访问接入点或桥接器或 热点等, 其可以接入服务器或通信网络。
站点 (STA , Station), 还可以称为用户, 可以是无线传感器、 无线通 信终端或移动终端, 如支持 WiFi通讯功能的移动电话 (或称为 "蜂窝" 电 话) 和具有无线通信功能的计算机。 例如, 可以是支持 WiFi通讯功能的便 携式、 袖珍式、 手持式、 计算机内置的, 可穿戴的, 或者车载的无线通信装 置, 它们与无线接入网交换语音、 数据等通信数据。
图 la为一个本发明实施方式应用的 WLAN***的简单示意图。 图 1的 ***包括一个或者多个接入点 AP101和一个或者多个站点 STA102。 接入点 101和站点 102之间采用 0FDMA技术进行无线通信,其中接入点 101发送的 数据帧中包含针对站点 102的时频资源的指示信息。
具体的,参考图 lb,本发明一个实施方式提供了一种资源指示的方法, 应用于采用 0FDMA技术的无线局域网, 接入点向站点发送包含资源指示字 段的帧, 所述资源指示字段中包含用户的标识, 以及对应所述用户的标识 的资源块信息、 调制编码方式信息。 相应的, 站点接收包含资源指示字段 的帧后, 解析该资源指示字段得到所述站点被分配的资源块信息, 以及, 调制编码方式信息和空间流数信息, 利用所述资源块信息、 调制编码方式 信息和空间流数信息进行通信。 上述的方法可以看出, 资源指示中, 是基 于用户进行资源指示, 当然, 这里的资源是无线局域网中的时频资源, 特 别的, 为非授权的时频资源。
具体的, STA获得资源块信息, 后续采用相应的资源块进行通信; STA 获得 MCS信息, 即获取了发送和接收数据所对应的调整编码方式, 则后续 用该 MCS进行发送和接收; STA获取了空间流数信息,在发送时可采用相应 的空间流数进行数据传输; STA获取 TPC信息后,可在发送时采用调整后的 发送功率进行传输。
下面的详细介绍上述通信***中的几种用于资源指示的帧, 基于这些帧, 进一歩实现前述的向站点指示资源信息的方法。 具体的, 方法执行的过程, 是由接入点向站点发送采用下述帧的帧, 站点接收这些帧后解析得到自己可 以使用的资源, 后续利用这些资源进行通信。
参考图 2, 本发明实施方式提出了一种应用于无线局域网用于资源指示 的帧。 如图 2所示, 数据帧中包含一个控制字段 (例如称为 Frame control , 或者 SIG-A) , 其中该控制字段包含 "资源指示" 的配置信息 (例如称为 MAP Config); 数据帧还包含 "资源指示"字段 (例如图 2中的 DL MAP, UL MAP, UL\DL MAP或者 SIG-B字段), 该 "资源指示"字段包含针对一个或者多个站 点 102的时频资源的资源指示。 参考图 3, 在一个具体的例子中, 在上述帧中, 该控制字段可选的还 可以包括接入点 101的 BSSID信息。 "资源指示" 的配置信息可包含多个上 下行子帧 ( DL/UL subframe ) 中的 "资源指示"配置信息。 "资源指示" 的 配置信息可包括 "资源指示"的时频资源位置, "资源指示" 的长度, 或者, "资源指示" 的调制编码方式 (Modulat ion and Coding Scheme , MCS ) 信 息等。 具体的, "资源指示" 的时频资源位置可以包括: 资源指示字段所
(如图 3中的 SFN1)。 可选的, "资源指示"的配置信息还可以包括 上行 "资源指示" (UL MAP indicator ) 或者带宽等信息,. 其中, UL MAP indicator用于说明该资源指示字段是指示上行的用户; 带宽用于通知 STA该 AP的带宽信息。 需要指出的是, 参考图 3, 在上述帧中的 "资源指示" 的配置信息中, 不需要区分上下行子帧的 "资源指示"在控制字段中的相对位置。 换言之, 不需要上行子帧的 "资源指示"某些固定位置, 也不需要下行子帧的 "资源 指示" 在控制字段中的某些固定的位置。 因为无需指示资源指示字段的位 置, 可以节省控制字段的开销。 需要说明的是, 前述图 2-图 3给出的控制字段 + "资源指示"字段的结构 也可以替换为其他可能帧,例如不包含控制字段,只包含 "资源指示"字段。 参考图 2 -图 8, 也示出多个 "资源指示"字段的简单示意图。 需要指出 的是, 上述各种帧中的资源指示字段可以基于时频资源进行指示, 即指示这 些时频资源可以被那个或者哪些 STA使用 (图中未示出), 具体的, ***中可 供用户使用的时频资源被分为若干个时频资源块, 其中的每个时频资源块被 分配或者匹配了用户 ID (包括 MU-MIM0用户的 Group ID ) , 以及, 相应的调制 编码方式 MCS ; 也可以是基于用户进行指示, 即指示一个或者多个用户 (即 STA) 可以使用哪些时频资源 (例如如图 5-图 8所示的方式)。 较优的, 在 "资源指示"字段中, 可以将上行资源指示 (UL MAP) 放在 靠近上行子帧的下行子帧。 如图 2所示, 其中 UL\DL MAP位于 UL SUBFRAME之 前的紧挨的那个 DL SUBFRAME o 这样, AP根据 STA信道的调度得到的 MAP信息 (指示用户所用的时频资源),对 STA后续的上行子帧而言,更加及时和合适。 换言之, 上行资源信息更加可靠, 还可以减小解码复杂度。 如图 4所示, 在每个下行子帧的某些时频资源位置(如每个子帧的前几 个 OFDM符号) 上包含或者承载当前子帧的所有 STA的资源指示字段, 例如下 行资源指示 DL MAP, 或, 上下行资源指示 UL/DL MAP。 其中, UL MAP信息可 以和 DL MAP信息混合为 DL/UL MAP信息, 在下行子帧中进行指示。 资源指示 字段包括该子帧内调度的 STA在该子帧内发送数据 (DL或者 UL) 的资源块信 息 (资源块位置)。 可选的, "资源指示"信息还可以包含该 STA在分配的一 个或者多个资源块上发送数据的 MCS信息。 如图 5-图 8,为一些基于用户进行资源指示的帧的简单示意图。参考图 5, 假设每个子帧中调度了 N个 STA, "资源指示"字段按照每个 STA来进行资源 指示字段, N为自然数。 每个 STA的资源指示字段包含 STA的标识, 资源块 信息, 调制编码方式 MCS等。
STA的标识例如关联站点 ID( Associated Identification, AID/Partial AID)。 可选的, 还可以包括空间流数信息, 其中空间流指多根天线独立地并 行发送由单独编码的信号组成的不同的流; 空间流数指不同流的个数。 还可 以包括功率控制、 重传指示或者新包指示之一或者组合等。 如前文指出的, 资源指示字段除了单 STA的资源指示字段, 还可以指示 采用多用户多入多出技术 (Multi-User Multiple-Input Multiple-Output , 简称 MU-MIMO) 的用户组的资源指示。 针对 MU-MIM0用户组的资源指示, 可以有两种情况, 一种是该资源指示 字段不包含 MU-MIM0用户组的标识 (Group ID), 也就是说仅包含以单个用户 的为单位的用户标识 ID以及该用户标识 ID对应的资源块信息, 调制编码方式 MCS等。采用多用户多入多出 MU-MIMO技术的一个用户组中的多个用户分别被 指示有相同的所述资源块。如图 5所示,每个用户解析出自己的资源块信息, 对于 MU-MIM0用户组中的用户, 解析出的资源块有相同的部分。 另一种是该资源指示字段包含 MU-MIM0用户组的标识 (Group ID) , 资源 块信息, 调制编码方式 MCS等。 如图 6所示, 不同的用户 (单用户 SU或者多用 户 MU-MIM0) 的资源指示字段依次承载在 "资源指示"字段, 其顺序可以随 机, 可以根据一定的顺序以增加***效率。 例如, 可以让 MU用户的资源指示 放在靠前的资源指示字段内的位置上, 这样更多的 STA可以较早的解码出自 己的时频资源, 可以提高整体***资源的效率。 前文所述的靠前, 是指 MU用 户的资源指示在整体上放在资源指示字段内偏前的位置, 例如时隙靠前等等。 不意味着必须所有的 MU用户的资源指示完成后再指示 SU用户的资源。 更为具体的, 前述各种帧提到的资源块信息可以有多种方式进行指示, 例如 Bitmap (位图)指示方式,或者偏移量的指示方式等。其中,采用 Bitmap 指示方式是通过比特位置进行指明需要使用的时频资源, 例如 (T31个 RB个资 源, 某个下行 STA1分配了(T15个 RB, 那么 Bitmap指示方式为 11111111111111110000000000000000。 其中, 采用偏移量的指示方式是通过 指示起点和偏移量的方式指示需要使用的时频资源, 参考图 7, 例如 0〜31个 RB个资源, 某个下行 STA2分配了 16〜23个 RB, 那么偏移量指示方式指示起点 和偏移量: 10000 00111。 另外, 上述资源块信息的指示方式, 也可以采用基于变长资源块的指示 方式。 具体的, 基于变长资源块的指示方式是设置若干个不同子载波个数的 资源块(RB) 单元, 为不同用户分配变长的 RB单元, 这一点不同于 Bitmap和 偏移量指示方法中的资源块(RB) 单元包含固定的子载波个数。 例如, 对于 包含 56个可用子载波的 0FDMA***, 设置 3个变长 RB单元 RB1、 RB2和 RB3, RB1 包括 14个子载波, RB2包含 26个子载波, RB3包含 56个子载波; 对于包含 114 个可用子载波的 OFDMA***, 设置 4个变长 RB单元 RBI、 RB2、 RB3和 RB4, RBI 包括 14个子载波, RB2包括 26个子载波, RB3包括 56个子载波, RB4包括 114个 子载波; 对于包含 242个可用子载波的 0FDMA***, 设置 5个 RB变长单元 RB1、 RB2、 RB3、 RB4和 RB5, RBI包括 14个子载波, RB2包括 26个子载波, RB3包括 56个子载波, RB4包括 114个子载波, RB5包括 242个子载波。 针对某个 STA3可 以采用起点位置和 RB单元标识或其它方法来指示其分配资源。 例如在 242个 可用子载波的 0FDMA***下, RB1〜5的标识为 000/001/010/011/100 ; 起点位 置可以按照子载波的标识来定义, 也可以按照最小子载波个数的 RB单元来定 义 (如 14个 RB)。 假设为 STA3分配了 RB3 ( 56个子载波), 起点是第 43个子载 波。那么按照子载波标识来定义起点,该 STA的资源指示方式是:00101010 010 ; 按照最小 RB个数的单位来定义起点, 该 STA的指示方式是: 0100 010。
应用前述提供的各种帧, 可以在 WLAN中支持 0FDMA多用户调度; 基于用 户的资源指示方式, 适用于单用户 SU和多用户 MU MIM0场景; 这样, WLAN系 统可以高效地进行 STA资源分配指示。 较优的, 前述各种帧中, 还可以将资源指示字段划分为两个以上的区域 或者部分, 如图 8所示。 每个 STA针对一定的准则, 将该 STA的 MAP信息分在某 块区域。具体的实施方式中,分区域的准则可以包括但不限于如下几种之一: 基于 STA ID分区域: 例如, 将 STA ID和区域分块数量进行取余数操作, 根据 余数决定该 STA ID所属的区域分块序号。 基于 QoS要求分区域: 例如, 具有 高优先级业务的 STA , 其资源指示字段放在靠前的区域块。 基于上下行业务 类型分区域: 例如, 下行业务的 STA的资源指示字段放在第一区域, 上行业 务的 STA的资源指示字段放在第二区域等。 当前, 前述各分区域的准则可以 进行不违反逻辑的任意组合, 此处不再赘述。 当通信***中采用采用图 8所示的分区域的这种帧时, 接收该帧的站点 根据前述的各种分区的准则之一直接从该站点相对应的区域读取该站点的 资源指示字段。 在当 STA较多的时候, 放在资源指示靠后的 STA, 可以不需要 读取完所有资源指示内容就能找到自己的资源指示字段 (该 STA在下行子帧 和上行子帧的资源指示字段)。这样,可以加快 STA读取资源指示字段的速度。 较优的, 针对前述各种可能的用于资源指示的帧, 资源指示字段还可以 包含: 资源指示的类型 (type)信息。 可选的, 资源指示字段还可以显示或 者隐式的包含资源指示的长度信息 (参考图 9A-C)。 表一中定义了不同类型的资源指示字段。表一提供了几种不同类型的资 源指示字段, 例如 "000"指示的类型为单流下行调度(DL scheduling with single stream), "001"指示的类型为空间复用下行调度 (DL scheduling in spatial multiplexing), "010"指示的类型为下行 MU-MIMO调度(DLMU-MIM0 scheduling), "011"指示的类型为上行调度 (UL scheduling), "100"指 示的类型为上行 MU-MIM0调度 (UL scheduling) 等。 不同类型的资源指示字 段可以有不同的长度、 资源分配和配置方式 (参考图 9A-9C)。
Figure imgf000010_0001
Figure imgf000010_0002
100 UL MU-MIMO scheduling
101-111 Reserved 应用前述帧, STA通过解码资源指示 (type ID) 信息, 可获知资源指 示字段的格式; 可选的, 还可以获知长度。通过这种方式, STA通过读取 MAP 类型, 知道用什么长度去读取 MAP信息, 避免了用各种长度的 MAP去搜索, 可 以加快读取 MAP速度。 前述各实施方式中, 资源指示字段中可以包括: 资源块(RB)信息, MCS 信息, SID/GID信息; 可选的, 还可以包括资源指示类型 (type), 空间流数 信息 ( number of spatial streams , 简禾尔 NSS ) , 新包指示 ( New Data indication) , 重传次数 HARQ process number, 冗余版本信息, 或者功率 控制信息 TPC之一或者任意组合。 前述可选的信息也可以不包含在资源指示 字段中, 也可以采用某种方式与资源指示字段中的信息进行复用, 例如其中
SID/GID信息可以与校验位进行加扰。 参考图 9 A- 9 C, 为几种具体的资源指 示字段的实例, 可以应用于前述各种实施方式中的帧。 其中资源指示类型 (type)可以格式化的规定前述信息之一或者组合, 使得资源指示字段占用 更少的通信资源。 例如, 图 9 A为类型为单流下行调度的资源指示字段的简 单示意图, 图 9 B为类型为空分复用下行调度的资源指示字段的简单示意图, 图 9 C为类型为上行调度的资源指示字段的简单示意图。 在应用了前述各帧之一的***中, 接入点发送采用前述帧的下行子帧; 下行子帧所调度的 STA接收这些帧, 解码找到该子帧或后续子帧中包含的自 身的资源指示字段, 并在该资源指示字段指示的资源块上进行通信。 以包含 下行资源指示 DL MAP为例, 该下行子帧所调度的 STA可以解码得到发送下行 数据所采用的资源块信息, 以及发送下行数据的 MCS信息等; 在后续的下行 子帧 (DL subframe) 中的相应的资源块上 (即被指示的资源的位置), 利用 所述 MCS信息进行下行数据发送。 以包含上行资源指示 UL MAP为例, 下行子 帧所调度的 STA可以解码得到发送上行数据时使用的资源块信息, 以及发送 上行数据的 MCS信息等; 在后续的上行子帧 (UL subframe ) 中的相应的资源 块上 (即被指示的资源的位置), 利用所述 MCS信息进行上行数据发送。 相应的, 另一实施方式提供了一种资源指示的处理装置 (未示出), 应 用于采用 0FDMA技术的无线局域网, 包含处理单元, 用于发送或者接收包含 资源指示字段的帧, 所述资源指示字段中包含用户的标识, 以及对应所述用 户的标识的资源块信息和调制编码方式 MCS信息。 具体的帧的结构与内容, 可以参考前述各实施方式, 此处不再赘述。 处理单元可以是通用处理器、 数 字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件, 可以实现或者执行本发明实施 例中的公开的各方法、 歩骤及逻辑框图。通用处理器可以是微处理器或者任 何常规的处理器等。结合本发明实施例所公开的方法的歩骤可以直接体现为 硬件处理器执行完成, 或者用处理器中的硬件及软件模块组合执行完成。 容 易理解的, 上述资源指示的处理装置, 当具体为发送该包含资源指示字段的 帧时, 可以位于接入点; 当具体为接收该包含资源指示字段的帧时, 可以位 于站点。
图 10是本发明另一实施例的接入点的框图。图 10的接入点包括接口 101、 处理单元 102和存储器 103。 处理单元 102控制接入点 100的操作。 存储器 103可以包括只读存储器和随机存取存储器, 并向处理单元 102提供指令和 数据。存储器 103的一部分还可以包括非易失行随机存取存储器(NVRAM) 。 接入点 100的各个组件通过总线*** 109耦合在一起, 其中总线*** 109除 包括数据总线之外, 还包括电源总线、 控制总线和状态信号总线。 但是为了 清楚说明起见, 在图中将各种总线都标为总线*** 109。
上述本发明实施例揭示的发送前述各种帧的方法可以应用于处理单元 102中, 或者由处理单元 102实现。 在实现过程中, 上述方法的各歩骤可以 通过处理单元 102中的硬件的集成逻辑电路或者软件形式的指令完成。处理 单元 102可以是通用处理器、 数字信号处理器、 专用集成电路、 现场可编程 门阵列或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组 件, 可以实现或者执行本发明实施例中的公开的各方法、 歩骤及逻辑框图。 通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所 公开的方法的歩骤可以直接体现为硬件处理器执行完成, 或者用处理器中的 硬件及软件模块组合执行完成。 软件模块可以位于随机存储器, 闪存、 只读 存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成 熟的存储介质中。该存储介质位于存储器 103,处理单元 102读取存储器 103 中的信息, 结合其硬件完成上述方法的歩骤。 图 11是本发明另一实施例的站点的框图。图 11的接入点包括接口 111、 处理单元 112和存储器 113。处理单元 112控制站点 110的操作。存储器 113 可以包括只读存储器和随机存取存储器,并向处理单元 112提供指令和数据。 存储器 113的一部分还可以包括非易失行随机存取存储器 (NVRAM)。站点 110 的各个组件通过总线*** 119耦合在一起, 其中总线*** 119除包括数据总 线之外, 还包括电源总线、 控制总线和状态信号总线。 但是为了清楚说明起 见, 在图中将各种总线都标为总线*** 119。
上述本发明实施例揭示的接收前述各种帧的方法可以应用于处理单元 112中, 或者由处理单元 112实现。 在实现过程中, 上述方法的各歩骤可以 通过处理单元 112中的硬件的集成逻辑电路或者软件形式的指令完成。处理 单元 112可以是通用处理器、 数字信号处理器、 专用集成电路、 现场可编程 门阵列或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组 件, 可以实现或者执行本发明实施例中的公开的各方法、 歩骤及逻辑框图。 通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所 公开的方法的歩骤可以直接体现为硬件处理器执行完成, 或者用处理器中的 硬件及软件模块组合执行完成。 软件模块可以位于随机存储器, 闪存、 只读 存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄存器等本领域成 熟的存储介质中。该存储介质位于存储器 113,处理单元 112读取存储器 113 中的信息, 结合其硬件完成上述方法的歩骤。
具体地, 存储器 113存储使得处理单元 112执行如下操作的指令: 各个 实施方式中的站点侧的方法。
在更为具体的例子中, 以 802. l lax 的帧为例, 对本发明的实施方式进 行说明。请参见图 12a和图 12b, 图 12a示出了本发明实施例一种 AP发送的 PLCP协议数据单元 (PPDU, PLCP Protocol Data Unit ) 帧结构的示意图, 图 12b示出了本发明实施例另一种 STA发送的 PPDU帧结构的示意图。 如图 12a和图 12b所示, 提出了如何高效指示多用户控制信令的兼顾竞争和 调度接入的帧格式方案。一个无线帧(Radio frame ),包含传统帧头(Legacy Preamble ) 部分、 802. l lax的帧控制字段 ( Control Field ) , 一个或连续 的几个下行传输子帧 (DL subframe ) , 和后续的一个或连续几个上行传输 子帧 (UL subframe ) 。 下行传输子帧 (DL subframe ) 和上行传输子帧 (UL subframe ) 之间需要相隔 WiFi***中的最小处理时间 (SIFS ) 。 图 12a基础 上,也可以在上行传输子帧(UL subframe )前增加传统帧头(Legacy Preamble ) 部分, 如图 12b所示。 其中 802. l lax的帧控制字段中, 包含指示上行和下行子帧的 HE-SIG1 (High Efficiency - Signal Field, 高效无线局域网信令字段公共控制信 息字段 (HE-SIG1 ) 和指示上行 /下行子帧中的多用户调度信息 (UL/DL Schedul ing Information ) 的公共控制信令字段 ( Broadcast/Multicast control subframe )。HE_SIG1指示 STA-common的公共可信息(比如***带宽, 后续 DL/UL subframe的个数, 起始和长度信息等以及必要的话 HE-SIG2的发 送控制信息),而 STA-spec ific的控制信息包含在 HE-SIG2内。为了在 HE-SIG1 指定的系带宽上接收控制信息, 需要利用用户公用的 HE-LTF ( STA-common HE-LTF),来给 HE的 STA用户提供信道估计检测到 HE-SIG2中的 HEW multi-user scheduling information (SI)。 这里的 HE-LTF可以支持高阶调制 HE-SIG2 , 提高多用户调度信令的传输效率。 其中下行传输子帧 (DL subframe) 和上 行传输子帧 ( UL subframe ) 中包含了 STA-specif ic HE-preamble和 STA-specific的数据部分。 在实施例中再具体说明。 上述公共控制信令字段中至少包括 STA-common HE-preamble (多用户共 有的高效无线局域网序文), 还可以包括 HE-SIG2字段。 其中, STA-common HE-preamble字段中包含至少两个 STA的调度信息,所述调度信息至少包括用 于指示所述 AP允许至少两个 STA发送上行数据的上行控制信息。 图 12a、 12b中所示的 L-preamble是传统的 WLAN物理层帧头, 包括传统短 训练传统短训练字段 L-STF、传统长训练字段 L-LTF,以及传统信令字段 L-SIG。 具体例子中, HE-SIG1字段用于存储 DL subframe和 /或 UL subframe的相 关信息及 STA-common HE-preamble的相关信息, 其中, DL subframe的相关 信息包括用于指示 DL subframe的发送带宽、 DL subframe的个数、 起始时间 和长度信息等。 UL subframe的相关信息包括用于指示 UL subframe的发送带 宽、 UL subframe的个数、 起始时间和长度信息等。 STA-common HE-preamble 的相关信息是指用于检测所述调度信息的第一检测参考信息的参数, 例如, 指定的信道、 序列长度等参数。
STA-common HE- preamble包括: STA- common HE- STF/LTF字段和 HE- SIG2 字段; STA-common HE-STF/LTF字段的内容用来检测 HE-SIG2字段的内容。
STA-common HE-STF字段用于存储指定的信道上接收 HE-SIG2的 AGC ; STA-common HE-LTF字段用于存储指示 HE-SIG2的信道估计。
HE-SIG2字段用于存储 STA的调度控制信息(scheduling information , SI) , 所述调度信息中的上行控制信息可以包括: 分配的信道资源、 编码方 式 (precoding vector), 数据长度和空间流等信息。 在具体实施例中, HE-SIG2字段可以既包括所述上行控制信息还包括下 行控制信息, 所述下行控制信息用于指示所述 AP允许至少两个 STA接收下行 数据。 所述下行控制信息至少包括分配的信道资源和空间流等 AP为 STA分配 的资源信息。 在一些实施例中, 所述下行控制信息可以分成两部分分别存放在 HE-SIG2字段和 HE-SIG3字段中。 HE-SIG2字段中存放第一下行控制信息, 该 第一下行控制信息包括 AP为 STA分配的信道资源信息, 例如, 子信道的信息 和空间流; HE-SIG3字段中存放第二下行控制信息, 该第二下行控制信息包 括编码格式和数据长度等发送参数。 其中, HE-SIG3字段在 DL subframe中发 送。 具体的, 各实施方式中 DL subframe字段可以包含 STA-specific HE-preamble ( STA的专有高效无线局域网序文), 以及, DL SU-MIMO data (单用户下行数据)或 DL MU-MIMO data (多用户下行数据),其中, DL MU-MIM0 data是 AP利用同一时频资源向位于不同方向的多个 STA发送的下行数据。 举例的, 一个实施例的 DL subframe字段可以包括 STA-specific HE-STF 字段、 STA-specific HE-LTF字段、 HE-SIG3字段。 具体的, STA-specific HE-STF字段的内容用于指示发送下行数据的 AGC, STA-specific HE-LTF字段的内容用于指示 STA的信道估计, HE-SIG3字段的 内容用于指示数据的发送参数, 例如, MCS及数据长度等。 具体的, 各实施方式中 UL subframe字段可以包括 UL SU-MIMO data (单 用户上行数据) 或 DL MU-MIMO data (多用户上行数据), 其中, UL MU-MIM0 data是 AP利用同一时频资源向位于不同方向的多个 STA发送的上行数据; 还 可以包括 HE-SIG3字段, HE-SIG3字段的内容用于指示数据的发送参数,例如, MCS及数据长度等。 参考图 13,示出了采用前述桢结构的一个工作***。在图 13的左边部分, 示出了在 AP在向 STA发送上述的 PPDU帧结构的过程或者原理。 发送端 (AP) 包括处理单元和接口, 其中接口具体包括接收机 Rx l和发射机 Tx l; 处理单 元包括控制器 1,解调器 1和调制器 1, 其工作原理在下文进行介绍。 具体的,在 AP指定的整个信道上发送 L-preamble、 HE-SIG1和 STA-common HE-preambleo 而各个 STA的 DL subframe的内容在各个 STA对应的子信道上分 别对应发送, 从而实现多用户同一时刻共用频谱资源或空间资源而互相不干 扰, 从而提高了频谱资源和空间资源的利用率。 在图 13的右边部分, 示出了接收端 (STA) 接收到上述 PPDU帧格式的处 理过程或者原理。 接收端 (STA) 包括处理单元和接口, 其中接口具体包括 接收机 Rx2和发射机 Tx2 ; 处理单元包括控制器 2,解调器 2和调制器 2, 其工作 原理在下文进行介绍。 具体的, 接收端(STA)接收到上述 PPDU帧格式后, 首先根据 L-preamble 中的 L-STF字段的内容在 AP指定的信道上做初歩的时间同歩、 CF0 (频偏)估 计和发送信号的 AGC (自动增益控制)估计; 根据 L-LTF字段的内容进一歩在 指定的信道上做时间同歩和 CF0估计, 同时得到指定的信道的信道估计; 根 据得到的信道估计可以检测 L-SIG字段的内容。 根据 L-LTF字段得到的信道估计检测 HE-S IG1字段的内容, 得到 UL subframe禾口 DL subf進 e的参数及 STA -common HE_preamble的参数, 例如, 发送带宽和序列长度等。 STA进而根据 DL subframe的参数确定 WLAN物理层帧 中哪些字段是 DL subframe 如前文指出的, 在一个实例中, HE-SIG1字段还可以包括 HE-SIG2的发送 参数, 例如, 发送 HE-SIG2所使用的 MCS (Modulation and Coding Scheme, 调制和编码方案)、 HE-SIG2所指示的 STA的 ID , 其中, 所述 ID可以是 AID ( Association Identifier , 关联标识), 或者, 所述 ID还可以是 PAID, (Partial AID) , PAID是结合了 AID和 serving AP的 BSSID的一种关联标识, 和 /或用户组的 ID等内容。这种情况下,接收端根据 HE-SIG1中包含的 HE-SIG2 的发送参数检测 HE-SIG2的内容。 AP可以通过组播的方式发送 HE-SIG1字段的 内容, STA检测到 HE-SIG1字段中不包含自身的标识信息, 则不再继续检测后 续的帧结构, 节省了 STA的检测时间。 根据从 HE-SIG1字段的内容得到的参数, 检测 STA-common HE-STF/LTF字 段的内容; 然后, 根据 STA-common HE-STF字段的内容得到指定的信道上接 收 HE-SIG2字段的 AGC, 根据 STA-common HE-LTF字段的内容得到指定的信道 上的 HE-SIG2字段的信道估计, 进而根据信道估计检测 HE-SIG2字段的内容。 如果 STA 检测到 HE-SIG2 字段中包含自身的 DL SI ( Down Link Scheduling Information, 下行调度信息), 即 STA 的下行控制信息。 STA 根据检测到的 HE-SIG2字段的内容得到 STA-specific HE-STF/LTF字段的内 容。 进而根据 STA-specific HE-STF字段的内容得到该 STA接收下行数据的 AGC。 根据 STA-specific HE-LTF字段的内容得到指定的信道的信道估计, 利用该信道估计检测 HE-SIG3字段的内容,得到下行数据的发送参数,例如, MCS及数据长度等。
STA根据从 HE-SIG1字段中检测到的 DL subframe的相关信息, 以及上 述的参数(AGC、信道估计、发送参数)找到自身的下行数据所在 DL subframe 的起始时间和长度。
如果 STA 检测到 HE-SIG2 字段中包含自身的 UL SI ( Down Link Scheduling Information, 下行调度信息), 即 STA 的上行控制信息。 STA 根据检测到的 HE-SIG2字段中的上行控制信息, 以及 HE-SIG1字段中的 UL subframe的相关信息, 找到自己发送上行数据所在的 UL subframe的起始时 间和长度。
本实施例中 STA-specific HE-pre amble可以包括 STA-specif ic HE-STF 字段、 HE-LTF字段和 STA-specific HE-SIG3字段。 当 STA检测到 HE-SIG2 中包含自身的 UL SI时, STA根据 UL SI设置 STA-specific HE- preamble 的参数, 根据 STA-specific HE-preamble的参数产生 STA-specif ic HE-STF 字段和 STA-specific HE-LTF字段的内容。
如果 STA自身具有调节发送上行数据时的发送参数的能力, 例如, 基于 下行接收到的调度信息和信道估计调节 MCS和数据长度等得到上行发送参数, 并将该上行发送参数存放在 STA-specific HE-STF和 STA-specif ic HE-LTF 之后的 HE-SIG3字段中, 并在 STA对应的传输信道上将所述 HE-SIG3的内容 发送给 AP。
UL Data可以包括 UL SU Data (单用户上行数据) 或 UL MU data (多用 户上行数据), 其中, UL MU data是多个 STA利用同一时频资源在不同的方 向向 AP发送的上行数据。
在各个 STA发送完自身对应的 HE-SIG3字段的内容后, 分别在各自的子 信道上发送自身的上行数据。
AP 检测 STA 发送的上行子帧中的 STA-specific HE-STF 字段和 STA-specific HE-LTF字段的内容, 利用 STA-specific HE-STF字段的内容 得到接收所述 STA的上行数据的 AGC; 利用 STA-specific HE-LTF字段的内 容得到所述 STA的信道估计; 根据信道估计检测 HE-SIG3字段的内容, 得到 上行发送参数, 例如, MCS及数据长度等。 最后, 根据上述的参数(AGC、 信 道估计和上行发送参数等), 编码调制上行接收的数据。 下面针对前文的介绍, 给出几个更为具体的帧结构, 其字段的功能等已 经在前文进行了详细的介绍, 此处仅用来展示各帧结构的变化。 图 14a所示的帧中, 在 HE-SIG2中包括 DL subframe中 STA的调度信息 SI和 UL subframe中 STA的调度信息 SI。 所有的站点 (用户) 或者 HE-SIG1中指示 的一组用户需要检测 HE-SIG2的信息。如果站点在 DL-SI中检测到自己的控制 信息, 需要在后续的 DL subframe中按照 AP指示的调度信息接收数据; 如果 在 UL-SI中检测到自己的控制信息, 需要在后续的 UL subframe中按照 AP指示 的调度信息接收数据。在 DL subframe中 AP不需要另外传递 DL SI的 SIG字段, 而在 STA发送的 UL subframe中不需要包括用于通知 UL SI的 SIG字段, 也就是 说, 这个帧结构用于由 AP统一控制上行多用户传输的场景。 具体而言, 针对图 13所示的工作原理, 采用图 14a的帧结构时, 在下行 AP发送端的 STA-specific HE-preamble中没有 HE-SIG3部分的发送, 下行 STA 接收端也在 STA-specific HE-preamble中没有 HE-SIG3部分的接收; 上行 STA 发送端, STA Control Unit模块没有调度参数调节功能,也没有 STA-specific HE-preamble中没有 HE-SIG3部分的发送, 上行 AP接收端也没有 STA-specific HE-preamb 1 e中 HE-S IG3部分的接收。 图 14 b所示的帧中, 在 HE-SIG2中包括 DL subframe中 STA的调度信息 SI 和 UL subframe中 STA的调度信息 SI。 所有的用户或者 HE-SIG1中指示的一组 用户需要检测 HE-SIG2的信息。 如果在 DL-SI中检测到自己的控制信息, 需要 在后续的 DL subframe中按照 AP指示的调度信息接收数据; 如果在 UL-SI中检 测到自己的控制信息, 需要在后续的 UL subframe中按照 AP指示的调度信息 接收数据。 和图 14a的区别是, 在 UL subframe中包含有用于 STA向 AP告知或 者知会 UL SI的 SIG字段 (HE-SIG3)。 应用这种帧结构, 在 AP统一控制上行多 用户传输的基础上, STA在发送数据时还可以根据实际的信道条件调节调度 参数。比如遇到突发干扰,可以适当降低 MCS保证检测数据时满足 PER的要求。 更具体的, 针对图 13所示的工作原理, 采用图图 14 b所示的帧时, 在下 行 AP发送端的 STA-specific HE-preamble中没有 HE-SIG3部分的发送, 下行 STA接收端也没有 STA-specific HE-preamble中没有 HE-SIG3部分的接收; 上 行 STA发送端, STA Control Unit模块具备调度参数调节功能, 在 STA-specif ic HE-preamble中需要发送 HE-SIG3 , 上行 AP接收端对应在 STA-specif ic HE-preamble中有 HE-SIG3部分的接收。 图 14c所示的帧中, 在 HE-SIG2中包括 UL subframe中 STA的调度信息 SI和 部分 DL subframe中 STA的调度信息 SI。 所有的用户或者 HE-SIG1中指示的一 组用户需要检测 HE-SIG2的信息。如果在 DL-SI中检测到自己的部分控制信息 需要在后续的 DL subframe中按照 AP指示的调度信息接收数据; 如果在 UL-SI 中检测到自己的控制信息, 需要在后续的 UL subframe中按照 AP指示的调度 信息接收数据。 和图 14a的区别是, HE-SIG2中指定的 DL STA会在 DL subframe 中的 SIG字段 (HE-SIG3 ) 里继续检测剩余的 DL SI , 这样可以降低公共控制 信息字段 (HE-SIG2) 的开销。 比如 AP在 HE-SIG2中指示 DL STA的 ID和分配资 源的位置信息,而在 HE-SIG3中具体发送 STA-specific的控制信息,比如 MCS, 数据长度, 空间流等。 HE-SIG3可以利用频率服用和空间复用的 LTF来得到 不同用户 /流的控制信息, 提高信令传输的效率。 更为具体的, 针对图 1 3所述的工作原理, 采用图 14c的帧, 在下行 AP 发送端的 STA-specific HE-preamble中有 HE-SIG3部分的发送, 下行 STA接收 端在 STA-specific HE-preamble中有 HE-SIG3部分的接收; 上行 STA发送端, STA Control Unit模块没有调度参数调节功能, 也没有 STA-specif ic HE-preamble中没有 HE-SIG3部分的发送, 上行 AP接收端也没有 STA-specif ic HE-preamb 1 e中 HE-S IG3部分的接收。 图 14d所示的帧中, AP在 HE-SIG2 (图 4) 中发送 DL subframe中 STA的部 分 SI和 UL subframe中 STA的 SI, 而在 DL subframe中的 HE-SIG3追加发送剩余 的 DL SI。 和图 14c所示的帧的区别是, 在 STA发送的 UL subframe中包含告知 UL SI的 SIG字段 (HE-SIG3)。 采用这种帧结构, 在 AP统一控制上行多用户传 输的基础上, STA在发送数据时可以根据实际的信道条件, 调节调度参数。 比如遇到突发干扰, 可以适当降低 MCS保证检测数据时满足 PER的要求。 更为具体的, 针对图 13所述的工作原理, 采用图 14d的帧, 在下行 AP发 送端的 STA-specific HE-preamble中有 HE-SIG3部分的发送, 下行 STA接收端 在 STA-specific HE-preamble中有 HE-SIG3部分的接收; 上行 STA发送端, STA Control Unit模块具备调度参数调节功能, 在 STA-specific HE-preamble中 需要发送 HE-SIG3 , 上行 AP接收端对应在 STA-specific HE-preamble中有 HE-SIG3部分的接收。 图 14e所示的帧中, 是图 14a的帧的一个特例, 即没有 DL subframe只有 UL subframe的情况。 AP在 HE-SIG2中发送 UL subframe中 STA的 SI。 STA如果 在 UL-SI中检测到自己的控制信息, 需要在后续的 UL subframe中按照 AP指示 的调度信息接收数据。 在由 STA发送的 UL subframe中不包括用于告知 UL SI 的 SIG字段。 这种帧的应用场景是 AP统一控制上行多用户传输。 更为具体的, 针对图 13所述的工作原理, 采用图 14e的帧, 在下行 AP发 送端没有 STA-specific HE-preamble和 DL Data的发送, 下行 STA接收端也没 有 STA-specific HE-preamble和 DL Data部分的接收; 上行 STA发送端, STA Control Unit模块没有调度参数调节功能, 也没有 STA-specific HE-preamble中没有 HE-SIG3部分的发送, 上行 AP接收端也没有 STA-specific HE-preamb 1 e中 HE-S IG3部分的接收。
图 14f所示的帧中, AP在 HE-SIG2中发送 UL subframe中 STA的 SI。 如果在 UL-SI中有自己的控制信息, 需要在后续的 UL subframe中按照 AP指示的调度 信息接收数据。 和图 14e所示的帧的区别是, 在 UL subframe中包含 STA告知 UL SI的 SIG字段(HE-SIG3)。这样,在 AP统一控制上行多用户传输的基础上, STA在发送数据时可以根据实际的信道条件调节调度参数。 更为具体的, 针对图 13所述的工作原理, 采用图 14f的帧, 在下行 AP发 送端没有 STA-specific HE-preamble和 DL Data的发送, 下行 STA接收端也没 有 STA-specific HE-preamble和 DL Data部分的接收; 上行 STA发送端, STA Control Unit模块具备调度参数调节功能, 在 STA-specific HE-preamble中 需要发送 HE-SIG3 , 上行 AP接收端对应在 STA-specific HE-preamble中有 HE-SIG3部分的接收。 图 14g所示的帧中, 是图 14a的帧的一个特例, 即没有 UL subframe只有 DL subframe的情况。 AP在 HE-SIG2中发送 DL subframe中 STA的 SI。 STA如果 在 HE-SIG2中的 DL-SI中检测到自己的控制信息, 需要在后续的 DL subframe 中按照 AP指示的调度信息接收数据。 在 AP发送的 DL subframe中不包含额外 的传递 DL SI的 SIG字段。 更为具体的, 针对图 13所述的工作原理, 采用图 14g的帧, 在下行 AP发 送端的 STA-specific HE-preamble中没有 HE-SIG3部分的发送, 下行 STA接收 端也在 STA-specific HE-preamble中没有 HE-SIG3部分的接收。 因为没有上 行数据, 所以可以关闭上行 STA端的发送模块和上行 AP端的接收模块。 图 14h所示的帧中, 在 AP发送的 HE-SIG2中包含有 DL subframe中 STA的部 分 SI, 在 DL subframe中的 HE-SIG3剩余的 DL SI。 和图 14g的区别是, HE-SIG2 中指定的 DL STA会在 DL subframe中的 SIG字段 (HE-SIG3 ) 里继续检测剩余 的 DL SI , 这样可以降低公共控制信息字段 (HE-SIG2 ) 的开销。 比如 AP在 HE-SIG2中指示 DL STA的 ID和分配资源的位置信息, 而在 HE-SIG3中具体发送 STA-specific的控制信息, 比如 MCS, 数据长度, 空间流等。 HE-SIG3可以 利用频率服用和空间复用的 LTF来得到不同用户 /流的控制信息,提高信令传 输的效率。 更为具体的, 针对图 13所述的工作原理, 采用图 14h的帧, 在下行 AP发 送端的 STA-specific HE-preamble中有 HE-SIG3部分的发送, 下行 STA接收端 在 STA-specif ic HE-preamble中有 HE-SIG3部分的接收。因为没有上行数据, 所以关闭上行 STA端的发送模块和上行 AP端的接收模块。 图 14a-h示出的是一个信道 Channel (比如: 2( Hz )上的帧格式的例子; 图 14i所示的多个 Channel情况下帧结构的实施例。 前述图 14a_h示出的帧都 可以在多信道下发送。 其中, 为了保证和传统 WiFi的 PPDU帧格式兼容, 这里 L-preamble和 HE-SIG1的部分, 较优的在每个 Channel上复制发送。 HE-SIG1 中包含公共控制信息, 比如***带宽, 后续 DL/UL subframe的个数, 起始和 长度信息等以及必要的话 HE-SIG2的发送控制信息。 而 HE-SIG2可以在 HE-SIG1指定的带宽上发送 STA-specifc的控制信息。 采用前述各帧格式可以支持上下行的频分复用和空分复用的多用户传 输, 可以适用于突发数据随即接入。 上述方案可以直接应用于有后向兼容性 的 WiFi***。各实施方式还可以支持实现高效指示上下行多用户传输的信令, 尽量节省信令开销, 降低数据检测时延等。 应理解, 说明书通篇中提到的 "一个实施例"或 "一实施例"意味着 与实施例有关的特定特征、 结构或特性包括在本发明的至少一个实施例中。 因此, 在整个说明书各处出现的 "在一个实施例中"或 "在一实施例中"未 必一定指相同的实施例。 此外, 这些特定的特征、 结构或特性可以任意适合 的方式结合在一个或多个实施例中。 在本发明的各种实施例中, 上述各过程 的序号的大小并不意味着执行顺序的先后, 各过程的执行顺序应以其功能和 内在逻辑确定, 而不应对本发明实施例的实施过程构成任何限定。 另夕卜, 本文中术语 "***"和 "网络"在本文中常被可互换使用。 本文 中术语 "和 /或" , 仅仅是一种描述关联对象的关联关系, 表示可以存在三 种关系, 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独 存在 B这三种情况。 另外, 本文中字符 "/" , 一般表示前后关联对象是一 种 "或" 的关系。 应理解, 在本发明实施例中, "与 A相应的 B "表示 B与 A相关联, 根 据 A可以确定 B。但还应理解,根据 A确定 B并不意味着仅仅根据 A确定 B , 还可以根据 A和 /或其它信息确定 B。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法歩骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及歩骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和简洁, 上述 描述的***、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 ***, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在一个 单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能 单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本 发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件 实现时, 可以将上述功能存储在计算机可读介质中或作为计算机可读介质上 的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和 通信介质, 其中通信介质包括便于从一个地方向另一个地方传送计算机程序 的任何介质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但 不限于: 计算机可读介质可以包括 RAM、 ROM, EEPR0M、 CD-ROM或其他光盘 存储、 磁盘存储介质或者其他磁存储设备、 或者能够用于携带或存储具有指 令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。 此外。 任何连接可以适当的成为计算机可读介质。 例如, 如果软件是使用同 轴电缆、 光纤光缆、 双绞线、 数字 STA线 (DSL) 或者诸如红外线、 无线电 和微波之类的无线技术从网站、 服务器或者其他远程源传输的, 那么同轴电 缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无线和微波之类的无线技术 包括在所属介质的定影中。 如本发明所使用的, 盘 (Di sk) 和碟 (disc ) 包 括压缩光碟(CD)、 激光碟、 光碟、 数字通用光碟(DVD)、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数据。 上面的组合 也应当包括在计算机可读介质的保护范围之内。
总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定 本发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种资源指示的处理方法, 应用于采用 0FDMA技术的无线 局域网,
发送或者接收包含资源指示字段的帧,所述资源指示字段中包含 用户的标识, 以及对应所述用户的标识的资源块信息和调制编码 方式 MCS信息。
2、 根据权利要求 1所述的方法, 所述资源指示字段中, 包含 采用多用户多入多出 MU-MIM0技术的用户组的标识 Group ID, 以 及对应所述 Group ID的资源块信息、 调制编码方式 MCS信息。
3、 根据权利要求 2所述的方法, 所述资源指示字段中, 所述 采用 MU-MIM0技术的用户组的标识 Group ID以及对应所述 Group ID的资源指示信息, 在所述资源指示字段中, 位于靠前的位置。
4、 根据权利要求 1所述的方法, 所述资源指示字段中, 仅包 含以单个用户的为单位的用户标识 ID, 以及对应所述用户 ID的 资源块信息和调制编码方式 MCS信息; 其中, 采用多用户多输入 多输出 MU-MIM0技术的一个用户组的多个用户分别被指示采用相 同的资源快。
5、 根据权利要求 1-4任一所述的方法,所述资源指示字段中, 上行资源指示位于靠近上行子帧的下行子帧。
6、 根据权利要求 1-5任一所述的方法, 所述资源指示字段被 分为两个以上的区域。
7、 根据权利要求 6所述的方法, 所述资源指示字段, 根据下 述信息或者任意组合被分为两个以上的区域:
用户的标识, QoS要求, 或者, 上下行业务的类型。
8、 根据权利要求 1-7任一所述的方法, 所述资源指示字段还 包含: 资源指示的类型 (type) 信息。
9、 根据权利要求 1-8任一所述的方法, 所述方法还包括发送 资源指示字段的配置信息, 所述配置信息用于指示站点读取所述 资源指示字段。
10、 根据权利要求 1-9任一所述的方法, 所述资源块信息通过 位图 Bitmap指示方式, 偏移量的指示方式, 或者, 采用基于变长 资源块的指示方式。
11、 根据权要 10的方法,所述基于变长资源块的指示方式具体 为设置若干个包含不同子载波个数的变长资源块 (RB) 单元, 为 不同用户分配若干变长资源块单元, 并基于分配的单元类型和数 量进行指示。
12、 一种资源指示的处理装置, 应用于采用 0FDMA技术的无线 局域网, 包含处理单元, 用于发送或者接收包含资源指示字段的 帧, 所述资源指示字段中包含用户的标识, 以及对应所述用户的 标识的资源块信息和调制编码方式 MCS信息。
13、 根据权利要求 12所述的装置, 所述资源指示字段中, 包含 采用多用户多入多出 MU-MIM0技术的用户组的标识 Group ID, 以 及对应所述 Group ID的资源块信息和调制编码方式 MCS信息。
14、 根据权利要求 13所述的装置, 所述资源指示字段中, 所述 采用 MU-MIM0技术的用户组的标识 Group ID以及对应所述 Group ID的资源指示信息, 在所述资源指示字段中, 位于靠前的位置。
15、 根据权利要求 12所述的装置, 所述资源指示字段中, 仅包 含以单个用户的为单位的用户标识 ID, 以及对应所述用户 ID的 资源块信息和调制编码方式 MCS信息; 其中, 采用多用户多输入 多输出 MU-MIM0技术的一个用户组的多个用户分别被指示采用相 同的资源快。
16、 根据权利要求 12-15任一所述的装置, 所述资源指示字段 中, 上行资源指示位于靠近上行子帧的下行子帧。
17、 根据权利要求 12-16任一所述的装置, 所述资源指示字段 被分为两个以上的区域。
18、 根据权利要求 17所述的装置, 所述资源指示字段, 根据下 述信息或者任意组合被分为两个以上的区域:
用户的标识, QoS要求, 或者, 上下行业务的类型。
19、 根据权利要求 12-18任一所述的装置, 所述资源指示字段 还包含: 资源指示的类型 (type ) 信息。
20、 根据权利要求 12-19任一所述的装置, 所述方法还包括发 送资源指示字段的配置信息, 所述配置信息用于指示站点读取所 述资源指示字段。
21、 一种接入点, 其特征在于, 所述接入点包括如权利要求 12-19任一所述的资源指示的处理单元, 并且, 所述资源指示的 处理装置中的所述处理器具体用于发送所述包含资源指示字段的 帧。
22、 一种站点, 其特征在于, 所述站点包括如权利要求 12-19 任一所述的资源指示的处理单元, 并且, 所述资源指示的处理装 置中的所述处理器具体用于接收所述包含资源指示字段的帧。
23、 一种无线局域网中的资源指示方法, 其特征在于, 包括: 无线局域网中的接入点 AP生成至少两个 STA的调度信息, 所述 调度信息至少包括用于指示所述至少两个 STA发送上行数据的上 行控制信息;
所述 AP将所述调度信息发送给所述至少两个 STA , 以使所述至 少两个 STA根据所述上行控制信息向所述 AP发送上行数据。
24、 根据权利要求 23所述的方法, 其特征在于, 所述 AP将所 述调度信息发送给所述至少两个 STA包括: 所述 AP在指定的整个信道上发送所述调度信息;
或者,
所述 AP在指定的整个信道上的不同子信道上分别发送不同 STA 对应的调度信息。
25、 根据权利要求 23或 24所述的方法, 其特征在于, 所述调 度信息还包括用于指示至少两个 STA接收所述 AP发送的下行数据 的下行控制信息, 其中, 所述下行控制信息包括所述 AP为允许接 收下行数据的至少两个 STA分配的子信道的信息、 编码格式、 数 据长度和空间流;
所述 AP将所述调度信息发送给所述至少两个 STA包括: 发送包含所述上行控制信息和所述下行控制信息的调度信息,以 使所述下行控制信息所指示的至少两个 STA在各自对应的子信道 上接收所述 AP发送的下行数据,。
26、 根据权利要求 23或 24所述的方法, 其特征在于, 所述调 度信息还包括用于指示至少两个 STA接收所述 AP发送的下行数据 的第一下行控制信息和第二下行控制信息; 所述第一下行控制信 息至少包括所述 AP为允许接收下行数据的至少两个 STA分配的子 信道的信息和空间流;所述第二控制信息包括所述 AP发送下行数 据的编码格式和长度信息。
所述 AP将所述调度信息发送给所述至少两个 STA包括: 所述 AP在指定的信道上发送所述上行控制信息和所述第一下行 控制信息, 以使所述 AP允许接收下行数据的 STA确定自身对应的 子信道,
所述 AP在允许接收下行数据的至少两个 STA对应的子信道上分 别发送所述第二控制信息, 以使所述 STA根据所述第二控制信息 在自身对应的子信道上接收所述下行数据。
27、 根据权利要求 23-26任一项所述的方法, 其特征在于, 所 述 AP将所述调度信息发送给所述至少两个 STA包括:
所述 AP在指定的信道上通过组播方式向所述调度信息所指示的 所述至少两个 STA发送所述调度信息;
或者,
所述 AP在指定的信道上通过广播方式向所述调度信息所指示的 所述至少两个 STA发送所述调度信息。
28、 根据权利要求 23-27任一项所述的方法, 其特征在于, 在 所述 AP将所述调度信息发送给所述至少两个 STA之前,所述方法 还包括:
所述 AP发送第一检测参考信息, 所述第一检测参考信息用来估 计信道信息, 以使所述 STA根据所述信道信息检测接收所述调度 自
29、 根据权利要求 23-28任一项所述的方法, 其特征在于, 所 述方法还包括:
所述 AP根据所述 STA发送的第二检测参考信息, 接收所述 STA 发送的上行数据;
其中, 所述第二检测参考信息由所述 STA根据所述 AP发送的上 行控制信息生成; 所述 STA是所述上行控制信息所指示的至少两 个 STA中的至少一个 STA o
30、 根据权利要求 23-29任一项所述的方法, 其特征在于, 所 述方法还包括:
所述 AP根据所述 STA发送的第二检测参考信息及上行发送控制 参数, 接收所述 STA发送的上行数据;
其中, 所述第二检测参考信息由所述 STA根据所述 AP发送的上 行控制信息生成; 所述上行发送控制参数由所述 STA根据所述上 行控制信息调整上行数据发送的参数得到, 所述上行发送控制参 数包括编码格式和数据长度; 所述 STA是所述上行控制信息所指 示的至少两个 STA中的至少一个 STA。
31、 一种无线局域网中的数据发送方法, 其特征在于, 包括: 站点 STA接收 AP发送的调度信息, 所述调度信息至少包括用于 指示所述 STA和至少一个其它 STA发送上行数据的上行控制信息; 所述 STA根据所述上行控制信息发送上行数据。
32、 根据权利要求 31所述的方法, 其特征在于, 所述 STA接收 AP发送的调度信息包括:
所述 STA接收所述 AP在指定的整个信道上发送的调度信息; 或者,
所述 STA接收所述 AP在子信道上发送的调度信息。
33、 根据权利要求 31或 32所述的方法, 其特征在于, 所述 STA接收 AP发送的调度信息, 还包括:
所述 STA在指定的信道上接收所述上行控制信息和所述 AP发送 的用于指示所述 STA和至少一个其它 STA接收下行数据的下行控 制信息; 所述下行控制信息包括: 所述 AP为所述 STA和至少一个 其它 STA接收下行数据的至少两个 STA分配的子信道的信息、 编 码格式、 数据长度和空间流;
所述方法还包括:
所述 STA根据所述下行控制信息接收所述 AP发送的下行数据。
34、 根据权利要求 31或 33所述的方法, 其特征在于, 所述调 度信息还包括用于指示至少两个 STA接收所述 AP发送的下行数据 的第一下行控制信息和第二下行控制信息; 所述第一下行控制信 息至少包括所述 AP为允许接收下行数据的至少两个 STA分配的子 信道的信息和空间流;所述第二下行控制信息包括所述 AP发送下 行数据的编码格式和长度信息;
所述 STA接收 AP发送的调度信息, 包括:
所述 STA在指定的信道上接收所述上行控制信息和所述第一下 行控制信息, 以使所述 STA确定所述自身对应的子信道;
所述 STA在自身对应的子信道上接收所述 AP发送的第二下行控 制信息, 并根据所述第二下行控制信息在自身对应的子信道上接 收下行数据。
35、 根据权利要求 31所述的方法, 其特征在于, 所述 STA根据 所述上行控制信息发送上行数据, 包括:
所述 STA根据所述 AP发送的上行控制信息生成第二检测参考信 息, 并将所述第二检测参考信息在自身对应的子信道上发送给所 述 AP;
所述 STA 根据所述上行控制信息在自身的子信道上传输所述上 行数据, 以使所述 AP根据所述第二检测参考信息接收所述上行数 据。
36、 根据权利要求 31所述的方法, 其特征在于, 所述 STA根据 所述上行控制信息发送上行数据, 包括:
所述 STA根据所述 AP发送的上行控制信息, 生成第二检测参考 信息, 并在所述上行控制信息所指示的自身对应的子信道上发送 所述第二检测参考信息给所述 AP;
所述 STA根据所述 AP发送的上行控制信息调整自身发送上行数 据的参数, 得到上行发送控制参数, 并在所述自身对应的子信道 上发送所述上行发送控制参数给所述 AP, 所述上行发送控制参数 包括编码格式和数据长度;
所述 STA在所述自身对应的子信道上发送上行数据, 以使所述 AP根据所述第二检测参考信息及上行发送控制参数接收所述上行 数据。
37、 一种资源指示的处理装置, 应用于采用 0FDMA技术的无线 局域网,包含处理单元(102 )和接口(101 ),所述处理单元(102 ) 至少用于执行所述方法 23-30中生成所述调度信息的歩骤, 所述 接口 (101 )至少用于执行所述方法 23-30中发送所述调度信息的 歩骤。
38、 一种无线局域网中的接入点,包括权利要求 37所述的资源 指示处理装置。
39、 一种资源指示的处理装置, 应用于采用 0FDMA技术的无线 局域网,至少包含处理单元(112 )和接口(111 ),所述接口(111 ) 至少用于执行所述方法 31-36中接收所述调度信息的歩骤, 以及, 发送上行数据或者接收下行数据的歩骤。
40、 一种站点, 包括权利要求 39所述的资源指示处理装置。
PCT/CN2014/082437 2014-06-27 2014-07-17 资源指示的处理方法、处理装置、接入点和站点 WO2015196523A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14895506.5A EP3151459B1 (en) 2014-06-27 2014-07-17 Resource indication processing method, processing apparatus, access point and site
KR1020177001718A KR101863713B1 (ko) 2014-06-27 2014-07-17 자원 지시 처리 방법 및 처리 장치, 액세스 포인트, 및 스테이션
CN201480080152.5A CN106464442A (zh) 2014-06-27 2014-07-17 资源指示的处理方法、处理装置、接入点和站点
JP2016575547A JP6498707B2 (ja) 2014-06-27 2014-07-17 リソース標識処理方法及び処理装置、アクセスポイント、並びにステーション
US15/387,265 US10548156B2 (en) 2014-06-27 2016-12-21 Resource indication processing method and processing apparatus, access point, and station

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2014080976 2014-06-27
CNPCT/CN2014/080976 2014-06-27
CNPCT/CN2014/082343 2014-07-16
CN2014082343 2014-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/387,265 Continuation US10548156B2 (en) 2014-06-27 2016-12-21 Resource indication processing method and processing apparatus, access point, and station

Publications (1)

Publication Number Publication Date
WO2015196523A1 true WO2015196523A1 (zh) 2015-12-30

Family

ID=54936541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082437 WO2015196523A1 (zh) 2014-06-27 2014-07-17 资源指示的处理方法、处理装置、接入点和站点

Country Status (6)

Country Link
US (1) US10548156B2 (zh)
EP (1) EP3151459B1 (zh)
JP (1) JP6498707B2 (zh)
KR (1) KR101863713B1 (zh)
CN (1) CN106464442A (zh)
WO (1) WO2015196523A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529004A (ja) * 2014-09-19 2017-09-28 クゥアルコム・インコーポレイテッドQualcomm Incorporated 混合レートワイヤレス通信ネットワークのためのフレーム構造

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007058A1 (en) * 2014-07-11 2016-01-14 Telefonaktiebolaget L M Ericsson (Publ) A communication device and a method therein for transmitting data information at fixed time instants in a radio communications network
US10009922B2 (en) * 2014-07-15 2018-06-26 Marvell World Trade Ltd. Channel frame structures for high efficiency wireless LAN (HEW)
KR102051028B1 (ko) * 2014-08-21 2019-12-02 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
US10506556B2 (en) 2014-09-13 2019-12-10 Lg Electronics Inc. Method and device for allocating resource units in wireless LAN
ES2846787T3 (es) * 2014-10-31 2021-07-29 Sony Group Corp Dispositivo de comunicación inalámbrica y método de comunicación inalámbrica
EP3229395B1 (en) * 2014-12-02 2020-02-19 LG Electronics Inc. Method for resource allocation of wideband frame in wireless lan system and apparatus therefor
US9998197B2 (en) 2015-01-09 2018-06-12 Intel IP Corporation Signaling techniques to support downlink (DL) multi-user multiple-input multiple-output (MU-MIMO) in 60 GHz wireless networks
US9596688B2 (en) * 2015-01-09 2017-03-14 Intel IP Corporation Techniques for group-based spatial stream assignment signaling in 60 GHz wireless networks
KR102061123B1 (ko) * 2015-02-02 2019-12-31 후아웨이 테크놀러지 컴퍼니 리미티드 리소스 지시 방법 및 디바이스
CN106162906B (zh) * 2015-03-31 2019-01-15 中兴通讯股份有限公司 调度信息发送、接收方法及装置
EP3324675B1 (en) * 2015-08-21 2021-03-31 Huawei Technologies Co., Ltd. Uplink data transmission method and apparatus
US9883473B2 (en) * 2015-10-19 2018-01-30 Intel IP Corporation Conveying information to bandwidth limited device
JP6593450B2 (ja) * 2015-11-12 2019-10-23 富士通株式会社 端末装置、基地局装置、無線通信システム及び無線通信方法
US10149337B2 (en) * 2015-12-31 2018-12-04 Facebook, Inc. Packet detection in point-to-point wireless communication networks
US10791016B2 (en) 2015-12-31 2020-09-29 Facebook, Inc. Symbol phase adjustment for wireless communication networks
US10965514B2 (en) * 2017-11-17 2021-03-30 Qualcomm Incorporated Training field assisted medium sensing across multiple radio access technologies
CN117062229A (zh) * 2017-11-24 2023-11-14 华为技术有限公司 一种信息指示方法和装置
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质
JPWO2020179259A1 (zh) * 2019-03-07 2020-09-10
US11683081B2 (en) * 2020-02-20 2023-06-20 Indian Institute Of Technology Hyderabad Method for allocating resources to a plurality of users by a base station

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820669A (zh) * 2010-01-28 2010-09-01 北京邮电大学 一种pdcch资源分配的方法和装置
WO2010110619A2 (en) * 2009-03-26 2010-09-30 Lg Electronics Inc. Method and apparatus for scheduling wireless medium resource
CN102013959A (zh) * 2010-12-01 2011-04-13 北京新岸线无线技术有限公司 一种实现多用户调度的通信方法及无线通信***
CN102447539A (zh) * 2011-01-30 2012-05-09 北京新岸线无线技术有限公司 一种用于实现多输入多输出的方法和设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9473269B2 (en) * 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
KR100594111B1 (ko) * 2004-03-12 2006-06-30 삼성전자주식회사 주파수 밴드별 다중 코딩을 사용하는 광대역 무선 접속시스템에서 데이터 전송 방법 및 시스템
CN1930804B (zh) * 2004-03-12 2012-05-23 三星电子株式会社 宽带无线通信***中通过基站减小突发分配信息的大小的方法
CN1285194C (zh) * 2004-11-01 2006-11-15 华为技术有限公司 一种实现多播业务资源指示的方法
US8675760B2 (en) * 2005-09-21 2014-03-18 Broadcom Corporation Method and system for selecting a user group using hybrid-quantized channel direction information feedbacks from MIMO capable mobile devices
US8000272B2 (en) * 2007-08-14 2011-08-16 Nokia Corporation Uplink scheduling grant for time division duplex with asymmetric uplink and downlink configuration
US8576931B2 (en) * 2008-06-24 2013-11-05 Qualcomm Incorporated Methods and systems for overhead reduction in a wireless communication network
KR101497607B1 (ko) * 2008-07-17 2015-03-03 삼성전자주식회사 광대역 무선통신 시스템에서 멀티캐스트 및 브로드캐스트 서비스 영역을 인지하기 위한 방법 및 장치
US9019903B2 (en) * 2008-12-08 2015-04-28 Qualcomm Incorporated Optimization to support uplink coordinated multi-point
CN101964943B (zh) * 2009-07-21 2014-07-16 中兴通讯股份有限公司 一种获取多播广播业务的方法
US8705392B2 (en) * 2010-04-05 2014-04-22 Nec Laboratories America, Inc. MU-MIMO-OFDMA multi-rank CQI and precoder signaling schemes
CN102958179B (zh) * 2011-08-25 2015-06-17 华为技术有限公司 传输、获取调度信息的方法及装置
WO2013130793A1 (en) * 2012-03-01 2013-09-06 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
KR20140116677A (ko) * 2013-03-25 2014-10-06 인텔렉추얼디스커버리 주식회사 Ofdma 기반 무선 메쉬 네트워크를 위한 제어채널 스케줄링 방법 및 이를 수행하는 장치
EP2992724B1 (en) * 2013-05-03 2020-04-08 Interdigital Patent Holdings, Inc. Systems and methods for fractional carrier sense multiple access with collision avoidance (csma/ca) for wlans
KR101821508B1 (ko) * 2013-10-29 2018-01-23 엘지전자 주식회사 데이터 전송 방법 및 이를 이용한 무선기기
WO2015068968A1 (ko) * 2013-11-07 2015-05-14 엘지전자 주식회사 무선랜에서 멀티 유저 상향링크 수신 방법 및 장치
US20170005709A1 (en) * 2014-02-25 2017-01-05 Intel IP Corporation Uplink or downlink mu-mimo apparatus and method
JP6507232B2 (ja) * 2014-06-08 2019-04-24 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいて上りリンク多重ユーザ送信方法及びそのための装置
US10009922B2 (en) * 2014-07-15 2018-06-26 Marvell World Trade Ltd. Channel frame structures for high efficiency wireless LAN (HEW)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110619A2 (en) * 2009-03-26 2010-09-30 Lg Electronics Inc. Method and apparatus for scheduling wireless medium resource
CN101820669A (zh) * 2010-01-28 2010-09-01 北京邮电大学 一种pdcch资源分配的方法和装置
CN102013959A (zh) * 2010-12-01 2011-04-13 北京新岸线无线技术有限公司 一种实现多用户调度的通信方法及无线通信***
CN102447539A (zh) * 2011-01-30 2012-05-09 北京新岸线无线技术有限公司 一种用于实现多输入多输出的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151459A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529004A (ja) * 2014-09-19 2017-09-28 クゥアルコム・インコーポレイテッドQualcomm Incorporated 混合レートワイヤレス通信ネットワークのためのフレーム構造
US10582026B2 (en) 2014-09-19 2020-03-03 Qualcomm Incorporated Methods and apparatus for packet acquisition in mixed-rate wireless communication networks

Also Published As

Publication number Publication date
KR101863713B1 (ko) 2018-06-01
JP2017529717A (ja) 2017-10-05
CN106464442A (zh) 2017-02-22
EP3151459A1 (en) 2017-04-05
US20170105229A1 (en) 2017-04-13
JP6498707B2 (ja) 2019-04-10
KR20170021309A (ko) 2017-02-27
EP3151459B1 (en) 2021-09-15
EP3151459A4 (en) 2017-06-28
US10548156B2 (en) 2020-01-28

Similar Documents

Publication Publication Date Title
WO2015196523A1 (zh) 资源指示的处理方法、处理装置、接入点和站点
JP7460640B2 (ja) マルチソース送信のための周波数領域リソース割り当て
ES2932466T3 (es) Método de comunicaciones inalámbricas y terminal de comunicaciones inalámbricas, que usan un canal discontinuo
JP6507232B2 (ja) 無線lanシステムにおいて上りリンク多重ユーザ送信方法及びそのための装置
WO2019137245A1 (zh) 上行控制信息传输方法及装置
CN112930658A (zh) 在nr v2x***中执行harq反馈过程的方法及设备
US10819478B2 (en) Extended range mode transmission method and apparatus
WO2020069468A1 (en) Physical uplink control channel resource determination and multiplexing of multiple hybrid automatic repeat request acknowledgment feedbacks and other uplink control information on physical uplink control channel and physical uplink shared channel
CN113785520B (zh) 已配置许可上行链路控制信息(uci)映射规则
WO2020187281A1 (zh) 一种侧链路反馈控制信息传输方法及装置
WO2013107277A1 (zh) 一种无线通信方法和通信装置
CN112970214B (zh) 用于侧链路的反馈信令
WO2018126872A1 (zh) 请求资源的方法和装置
WO2011038685A1 (zh) 控制信息的发送和接收方法、装置和通信***
KR20230144507A (ko) Nr v2x 시스템을 위한 harq 동작을 수행하는 방법 및 장치
WO2013107422A1 (zh) 控制信令的传输方法和设备
CN107872838B (zh) 中继指示方法及接入点ap
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
WO2020029949A1 (zh) 时域资源配置方法
CN106921476A (zh) 一种基于多时间段的资源指示方法和装置
WO2019153853A1 (zh) 资源指示方法、用户设备及网络侧设备
WO2021250637A1 (en) ACTIVATION OF TWO OR MORE TCI STATES FOR ONE OR MORE CORESETs
WO2019080803A1 (zh) 一种数据发送、接收方法及设备
WO2013135184A1 (zh) 控制信令的发送、接收方法、网络侧设备和用户设备
CN107534955B (zh) 资源指示的处理方法、处理装置、接入点和站点

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016575547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014895506

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014895506

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177001718

Country of ref document: KR

Kind code of ref document: A