WO2015190374A1 - Optical functional layer formation composition, solid-state imaging element and camera module using same, pattern formation method for optical functional layer, and method for manufacturing solid-state imaging element and camera module - Google Patents

Optical functional layer formation composition, solid-state imaging element and camera module using same, pattern formation method for optical functional layer, and method for manufacturing solid-state imaging element and camera module Download PDF

Info

Publication number
WO2015190374A1
WO2015190374A1 PCT/JP2015/066119 JP2015066119W WO2015190374A1 WO 2015190374 A1 WO2015190374 A1 WO 2015190374A1 JP 2015066119 W JP2015066119 W JP 2015066119W WO 2015190374 A1 WO2015190374 A1 WO 2015190374A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
optical functional
group
composition
forming
Prior art date
Application number
PCT/JP2015/066119
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 山本
嶋田 和人
山崎 和彦
弘太郎 増山
怜子 日向野
Original Assignee
富士フイルム株式会社
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 三菱マテリアル株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020177000123A priority Critical patent/KR20170015459A/en
Priority to JP2016527768A priority patent/JPWO2015190374A1/en
Publication of WO2015190374A1 publication Critical patent/WO2015190374A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation

Definitions

  • the present invention relates to a composition for forming an optical functional layer, a solid-state imaging device and a camera module using the composition, a pattern forming method for the optical functional layer, a solid-state imaging device and a method for manufacturing the camera module.
  • An optical functional layer such as a low refractive index film is applied to the surface of a transparent substrate in order to prevent reflection of incident light, for example.
  • Its application fields are wide, and it is applied to products in various fields such as optical instruments, building materials, observation instruments and window glass.
  • Various materials, whether organic or inorganic, are used as the material, and are subject to development.
  • the development of materials that are applied to optical instruments has been actively promoted.
  • display panels such as liquid crystal and organic EL, optical lenses, and image sensors
  • search for materials having physical properties and processability suitable for the products is being advanced.
  • An optical functional layer applied to precision optical equipment such as an image sensor is required to have fine and accurate processability.
  • a vapor phase method such as a vacuum deposition method or a sputtering method suitable for fine processing has been adopted.
  • the material for example, a single layer film made of MgF 2 , cryolite or the like has been put into practical use.
  • metal oxides such as SiO 2 , TiO 2 , and ZrO 2 has been attempted.
  • Patent Document 2 it is proposed to use beaded colloidal silica for the coating solution.
  • the antireflective effect is high at a low refractive index
  • the wettability of the film surface can be improved, and it can be suitably applied to the overcoating of a high refractive index film.
  • the present invention provides an optical functional layer that can realize good transparency and a low refractive index, can be suitably applied to coating processing, and is excellent in homogeneity, hardness, and moisture resistance of the formed film.
  • An object of the present invention is to provide a forming composition, a solid-state imaging device and a camera module using the composition, and a method for forming a pattern of an optical functional layer.
  • a composition for forming an optical functional layer of a solid-state imaging device containing colloidal silica particles and a surfactant [1] A composition for forming an optical functional layer of a solid-state imaging device containing colloidal silica particles and a surfactant. [2] The composition for forming an optical functional layer according to [1], wherein the surfactant is a fluorine-based surfactant, an anionic surfactant, or a cationic polymer surfactant. [3] The composition for forming an optical functional layer according to [1] or [2], wherein the surfactant comprises a compound represented by the following formula (F).
  • R F1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R F2 is an alkyl group, an alkenyl group, or an aryl group.
  • R F3 is an alkyleneoxy group-containing group or a polyalkyleneoxy group-containing group.
  • the R F2 is substituted with at least one fluorine atom.
  • a composition for forming an optical functional layer [6] The composition for forming an optical functional layer according to any one of [1] to [5], wherein the colloidal silica particles have the following specifications (a) and (b): (A) The average particle diameter D1 measured by the dynamic light scattering method is 30 nm to 300 nm. (B) The ratio of the average particle diameter D2 determined from the specific surface area to the above D1, D1 / D2 is 3 or more. [7] The composition for forming an optical functional layer according to any one of [1] to [6], further containing an organic solvent. [8] The composition for forming an optical functional layer according to [7], wherein the organic solvent contains an aprotic polar solvent.
  • a solid-state imaging device including an optical functional layer containing colloidal silica particles and having a refractive index of 1.24 or less.
  • the optical functional layer is obtained by curing a composition for forming an optical functional layer containing colloidal silica particles and a surfactant.
  • the description that does not indicate substitution and non-substitution includes those that do not have a substituent and those that have a substituent as long as the effects of the present invention are not impaired.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). This is synonymous also about each compound.
  • “radiation” in the present specification means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like.
  • light means actinic rays or radiation.
  • exposure in this specification is not only exposure with far-ultraviolet rays such as mercury lamps and excimer lasers, X-rays, EUV light, but also drawing with particle beams such as electron beams and ion beams. Are also included in the exposure.
  • monomer and “monomer” are synonymous.
  • the monomer in the present specification is distinguished from an oligomer and a polymer, and means a compound having a weight average molecular weight of 2,000 or less unless otherwise specified.
  • the polymerizable compound means a compound having a polymerizable functional group, and may be a monomer or a polymer.
  • the polymerizable functional group refers to a group that participates in a polymerization reaction.
  • Me in the chemical formula represents a methyl group
  • Et represents an ethyl group
  • Pr represents a propyl group
  • Bu represents a butyl group
  • Ph represents a phenyl group.
  • the composition for forming an optical functional layer of the present invention can realize good transparency and a low refractive index when formed as a cured film, can be suitably applied to coating processing, and has been formed. Excellent in film uniformity, hardness, and moisture resistance.
  • An optical functional layer molded using the above optical functional layer forming composition exhibits good optical characteristics, and a solid-state imaging device and a camera module including the optical functional layer exhibit excellent performance. According to the pattern forming method of the present invention, the optical functional layer formed using the optical functional layer forming composition can be satisfactorily patterned.
  • the composition for forming an optical functional layer of the present invention can be suitably used for forming an optical functional layer having a low refractive index.
  • it contains colloidal silica particles and a surfactant.
  • optional components include a dispersant and a solvent.
  • colloidal silica particles are preferably beaded, and those in which silica nanoparticles are bonded via metal oxide-containing silica or the like, sols in which fumed silica is dispersed, and mixtures thereof are preferable.
  • the ratio D1 / D2 of the average particle diameter (D1) measured by the dynamic light scattering method and the average particle diameter (D2) obtained from the specific surface area is 3 or more.
  • D1 / D2 which is preferably 20 or less, and more preferably 10 or less.
  • the colloidal silica particles contained in the composition for forming an optical functional layer of the present invention are preferably beaded as described above.
  • the bead-like colloidal silica particles are preferably obtained by joining a plurality of spherical silica particles through a joint such as a metal oxide-containing silica (see FIG. 1). It is preferable to use such beaded colloidal silica particles because the refractive index of the formed film is sufficiently lowered and the haze of the film is not increased by the unevenness of the film surface.
  • the colloidal silica particles preferably have spherical silica particles connected in one plane.
  • the average particle diameter (D2) obtained from the specific surface area Sm 2 / g of the colloidal silica particles can be evaluated as an average particle diameter approximate to the primary particles of spherical silica.
  • the average particle diameter (D2) is preferably 2 nm or more, and more preferably 5 nm or more.
  • the upper limit is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less.
  • the average particle diameter (D2) obtained from the specific surface area can be substituted with the equivalent circle diameter (D0) in the projected image of the spherical portion measured by a transmission electron microscope (TEM).
  • the average particle diameter based on the equivalent circle diameter is evaluated by the number average of 50 or more particles unless otherwise specified.
  • the average particle diameter (D1) of the colloidal silica particles measured by the dynamic light scattering method can be evaluated as the number average particle diameter of secondary particles in which a plurality of spherical silica particles are gathered into a bead shape. Therefore, the relationship of D1> D2 usually holds.
  • the average particle diameter (D1) is preferably 25 nm or more, more preferably 30 nm or more, and particularly preferably 35 nm or more.
  • the upper limit is preferably 1000 nm or less, more preferably 700 nm or less, still more preferably 500 nm or less, and particularly preferably 300 nm or less.
  • the average particle size (D1) measured by the dynamic light scattering method is measured using a dynamic light scattering type particle size distribution measuring device (Nanotrack Nanotrac Wave-EX150 [manufactured by Nikkiso Co., Ltd.]. Product name]).
  • the procedure is as follows. The particle dispersion sample is taken into a 20 ml sample bottle, and diluted with toluene so that the solid component concentration becomes 0.2% by mass. The diluted dispersion sample is irradiated with 40 kHz ultrasonic waves for 1 minute and used for the test immediately after that.
  • the term “spherical” may be substantially spherical and may be deformed within a range where the effects of the present invention are exhibited.
  • it is meant to include a shape having irregularities on the surface and a flat shape having a length in a predetermined direction.
  • “Beaded” can be paraphrased as “necklace”, and typically means a structure in which a plurality of spherical particles are connected by a joint having a smaller outer diameter.
  • the outer diameter of the joint can be defined by the diameter of a cross section perpendicular to the connecting direction.
  • the metal oxide-containing silica forming the joint include amorphous silica, amorphous alumina, and the like.
  • the beaded colloidal silica particles As a medium for dispersing the beaded colloidal silica particles, alcohol (for example, methanol, ethanol, isopropanol (IPA)), ethylene glycol, glycol ether (for example, propylene glycol monomethyl ether), glycol ether acetate (for example, propylene glycol monomethyl ether). Acetate) and the like.
  • the SiO 2 concentration is preferably 5% by mass to 40% by mass.
  • a silica particle liquid (sol) in which such beaded colloidal silica particles are dispersed for example, a silica sol described in Japanese Patent No. 4328935 can be used.
  • a commercially available liquid sol can be used as the particle liquid of beaded colloidal silica.
  • a commercially available liquid sol can be used.
  • These beaded fine particles preferably have a structure in which a large number of primary particles made of silicon oxide are bonded and curved two-dimensionally or three-dimensionally.
  • the content of SiO 2 containing colloidal silica particles in the composition for forming an optical functional layer of the present invention is 0.1% by mass with respect to the solid content in the composition.
  • the above is preferable, 1% by mass or more is more preferable, and 2% by mass or more is particularly preferable.
  • As an upper limit 95 mass% or less is preferable, 87.5 mass% or less is more preferable, and 80 mass% or less is especially preferable.
  • At least one component selected from the group consisting of alkoxysilane and an alkoxysilane hydrolyzate to the silica particle liquid (sol).
  • an alkoxysilane hydrolyzate selected from the group consisting of alkoxysilane and an alkoxysilane hydrolyzate
  • the silica particle liquid (sol) is preferable to add at least one component selected from the group consisting of alkoxysilane and an alkoxysilane hydrolyzate to the silica particle liquid (sol).
  • an alkoxysilane hydrolyzate selected from the group consisting of alkoxysilane and an alkoxysilane hydrolyzate
  • the alkoxysilane hydrolyzate is produced by condensation by hydrolysis of the alkoxysilane compound (A). Furthermore, it is more preferable to produce
  • the alkoxysilane hydrolyzate is cured by dehydration condensation and linking of silanol (—Si—OH) produced by hydrolyzing an alkoxysilane compound with a catalyst. The reaction will be briefly described below. Hydrolysis of the alkoxysilane compound (Si— (OR) 4 , R: alkoxyl group) proceeds as follows.
  • a silanol (—Si—OH) group obtained by hydrolysis is subjected to a dehydration condensation reaction, whereby two molecules are connected to form a siloxane bond (Si—O—Si).
  • the alkoxysilane hydrolyzate (A) is formed by connecting the silanol group of the molecule
  • R S1 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an aryl group having 6 to 10 carbon atoms. Of these, an alkyl group having 1 to 5 carbon atoms is preferable.
  • R S2 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an aryl group having 6 to 10 carbon atoms.
  • p is an integer of 1 to 4.
  • q is an integer of 0 to 3.
  • alkoxysilane compound (A) examples include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, and vinyltriethoxy.
  • examples thereof include silane, phenyltrimethoxysilane, and phenyltriethoxysilane. Among these, tetramethoxysilane is preferable because a film having high hardness can be obtained.
  • fluorosilane-containing alkoxysilane compound (B) include trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, hepta Examples include decafluorodecyltrimethoxysilane and heptadecafluorodecyltriethoxysilane.
  • the fluoroalkyl group-containing alkoxysilane compound (B) is preferably a compound represented by the following formula (S2-1) or (S2-2).
  • R F is a hydrogen atom, a halogen atom (such as a fluorine atom) or a substituent represented by R S3 , and preferably a hydrogen atom or a halogen atom (such as a fluorine atom).
  • k is an integer of 0 to 10.
  • R S3 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an aryl group having 6 to 10 carbon atoms. Of these, an alkyl group having 1 to 5 carbon atoms is preferable.
  • n represents an integer of 0 to 8.
  • R S1 to R S3 may be accompanied by any substituent, and may have, for example, a halogen atom (fluorine atom or the like).
  • the hydrolyzate of the alkoxysilane compound (A) and the fluoroalkyl group-containing alkoxysilane compound (B) can be produced by hydrolyzing (condensing) them in an organic solvent. Specifically, the alkoxysilane compound (A) and, if necessary, the fluoroalkyl group-containing alkoxysilane compound (B) are mixed at a mass ratio of 1: 0.3 to 1.6 (A: B). To do.
  • the ratio of the alkoxysilane compound (A) to the fluoroalkyl group-containing alkoxysilane compound (B) is preferably 1: 0.5 to 1.3 (A: B) by mass ratio.
  • water (C) 0.5 to 5 parts by mass of water (C), 0.005 to 0.5 parts by mass of organic acid (for example, formic acid) (D), alcohol, glycol ether with respect to 1 part by mass of the mixture.
  • organic acid for example, formic acid
  • an organic solvent (E) of glycol ether acetate is mixed at a ratio of 0.5 to 5 parts by mass to hydrolyze the alkoxysilane compound (A) and the fluoroalkyl group-containing alkoxysilane compound (B). It is preferable to proceed.
  • the proportion of water (C) is preferably 0.8 to 3 parts by mass.
  • the proportion of the organic acid (formic acid) (D) is preferably 0.008 to 0.2 parts by mass.
  • Examples of the alcohol used for the organic solvent (E) include methanol, ethanol, propanol, isopropyl alcohol (IPA) and the like.
  • glycol ethers ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monoethyl ether, dipropylene glycol monoethyl ether Etc.
  • glycol ether acetate ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether Examples include acetate and dipropylene glycol monoethyl ether acetate.
  • the reason why the organic solvent (E) is limited to these alcohols, glycol ethers or glycol ether acetates is that mixing with the silicon alkoxide (A) and the fluoroalkoxy group-containing silicon alkoxide (B) is easy.
  • the proportion of the organic solvent (E) is preferably 0.5 to 3.5 parts by mass.
  • the alkoxysilane hydrolyzate and colloidal silica particles, the SiO 2 minutes of alkoxysilane hydrolyzate when 10 parts by weight, SiO 2 minutes of the colloidal silica particles It is preferably prepared by mixing so as to be 5 parts by mass to 500 parts by mass. Further, it is more preferable that the colloidal silica particles have a SiO 2 content of 100 to 300 parts by mass.
  • the refractive index of the film after formation may not be able to be lowered sufficiently. On the other hand, if the amount is too large, the colloidal silica particles cannot be bonded to each other, and the film hardness is remarkably lowered.
  • a surfactant is applied to the composition for forming an optical functional layer of the present invention.
  • the surfactant any of a nonionic surfactant, a cationic surfactant, and an anionic surfactant may be used.
  • a fluorosurfactant is preferable.
  • a fluorosurfactant, an anionic surfactant, or a cationic polymer surfactant is preferred.
  • a surfactant having a polyoxyalkylene structure refers to a structure in which an alkylene group and a divalent oxygen atom are present adjacent to each other, and specific examples include an ethylene oxide (EO) structure and a propylene oxide (PO) structure. .
  • the polyoxyalkylene structure may constitute a graft chain of an acrylic polymer.
  • the molecular weight is preferably 1500 or more, more preferably 2500 or more, still more preferably 5000 or more, and particularly preferably 10,000 or more.
  • the molecular weight is preferably 1500 or more, more preferably 2500 or more, still more preferably 5000 or more, and particularly preferably 10,000 or more.
  • the molecular weight of the polymer compound means a weight average molecular weight unless otherwise specified, and employs a value measured in terms of standard polystyrene by gel permeation chromatography (GPC).
  • the measuring device and measurement conditions are basically based on the following condition 1 and are allowed to be set to condition 2 depending on the solubility of the sample.
  • an appropriate carrier (eluent) and a column suitable for it may be selected and used. For other matters, refer to JISK7252-1 to 4: 2008.
  • the fluorine-based surfactant is preferably a polymer (polymer) surfactant having a polyethylene main chain.
  • a polymer (polymer) surfactant having a poly (meth) acrylate structure is preferable.
  • Poly (meth) acrylate is a general term for polyacrylate and polymethacrylate.
  • the copolymer of the (meth) acrylate structural unit which has the said polyoxyalkylene structure, and a fluoroalkyl acrylate structural unit is preferable.
  • a compound having a fluoroalkyl or fluoroalkylene group (preferably having 1 to 24 carbon atoms, more preferably 2 to 12 carbon atoms) at any position can be suitably used as the fluorosurfactant.
  • a polymer compound having the above fluoroalkyl or fluoroalkylene group in the side chain can be used.
  • the fluorine-based surfactant preferably further has the polyoxyalkylene structure, and more preferably has a polyoxyalkylene structure in the side chain.
  • the fluorosurfactant is preferably a copolymer represented by the following formula (F).
  • R F1 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a cyano group, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R F2 is an alkyl group (preferably having a carbon number of 1 to 36, more preferably 2 to 24, particularly preferably 4 to 12) or a halogen atom (such as a fluorine atom) that may be substituted by a halogen atom (such as a fluorine atom).
  • alkenyl group that may be substituted (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an aryl group that may be substituted by a halogen atom (such as a fluorine atom) (preferably 6 to 22 carbon atoms, preferably 6 to 6 carbon atoms) 14 is more preferable, and 6 to 10 is particularly preferable.
  • R F2 is preferably a fluorine-containing alkyl group.
  • R F2 is preferably substituted with at least one halogen atom (particularly a fluorine atom).
  • R F3 is an alkyleneoxy group-containing group or a polyalkyleneoxy group-containing group, and preferably has a structure represented by the following formula (f).
  • L F is an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6, 1-3 particularly preferred) is.
  • nF is a positive integer, preferably 1 to 20, and more preferably 1 to 10.
  • the alkylene group may be composed of a plurality of types of alkylene groups. Specific examples include an ethyleneoxy group and a propyleneoxy group. When nF is 2 or more, L F may be different from each other.
  • a copolymer represented by the following formula (F1) is also preferable.
  • X 1 to X 4 each independently represents a hydrogen atom, an alkyl group, or a fluoroalkyl group.
  • A represents an oxygen atom, a sulfur atom or —NR—.
  • R represents a hydrogen atom or an alkyl group.
  • the alkyl group of X 1 , X 2 , X 3 , X 4 and R preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms. Examples thereof include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, and a t-butyl group.
  • n1 represents an integer of 1 to 20. If n1 is 2 or more, X 3 may be the same or different, it is preferred that the ethyleneoxy group and a propyleneoxy group is configured exist.
  • the branching position may be either an embodiment branched by carbon linked to oxygen represented by the above formula or an embodiment branched by carbon away from oxygen. In practice, this is a mixture of alkyleneoxy groups with different branch positions.
  • Rf 1 represents a fluoroalkyl group.
  • the fluoroalkyl group of X 1 to X 4 and Rf 1 preferably has 1 to 30 carbon atoms, more preferably 1 to 24, and particularly preferably 2 to 12. At this time, 1 to 6 oxygen atoms (oxy groups) may be interposed in the alkyl chain.
  • fluorosurfactant examples include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F479, F482, F554, F780, F781F (from DIC Corporation), Florard FC430, FC431, FC171 (from Sumitomo 3M Corporation), Surflon S-382, S-141, S-145, SC-101, SC-103, SC-104, SC-105, SC1068, SC-381, SC-383, S393, KH-40 (above, manufactured by Asahi Glass Co., Ltd.), F Top EF301, EF303, EF351, EF352 (above, manufactured by Gemco Co., Ltd.), PF636 PF656, PF6320, PF6520, PF7002 (OMNOVA Inc.) and the like.
  • nonionic surfactant examples include glycerol, trimethylolpropane, trimethylolethane ethoxylate and propoxylate (for example, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether (Emulgen 404 manufactured by Kao Corporation), polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, ELEBASE BUB- manufactured by Aoki Oil & Fat Co., Ltd. 3 etc. are mentioned.
  • anionic surfactants include W004, W005, W017 (manufactured by Yusho Co., Ltd.), EMULSOGEN COL-020, EMULSOGEN COA-070, EMULSOGEN COL-080, Daiichi Kogyo Seiyaku Co., Ltd., manufactured by Clariant Japan.
  • Examples include Plysurf A208B.
  • the anionic group include a carboxyl group, a sulfonic acid group, a phosphonic acid group, and a phosphoric acid group, and among them, a carboxyl group is preferable. These acid groups may form a salt.
  • Cationic surfactant generally having a plurality of cationic parts and hydrophobic parts which are hydrophilic parts in the same molecule.
  • the cationic group of the hydrophilic part an amino group or a salt thereof, a quaternary ammonium group or salt, a hydroxyammonium group or salt, an ether ammonium group or salt, a pyridinium group or salt, an imidazolium group or salt, an imidazoline group or salt , A phosphonium group or a salt.
  • the cationic surfactant include quaternary ammonium salt surfactants, alkyl pyridium surfactants, polyallylamine surfactants, and the like.
  • silicone surfactants examples include “Toray Silicone DC3PA”, “Toray Silicone SH7PA”, “Tore Silicone DC11PA”, “Tore Silicone SH21PA”, “Tore Silicone SH28PA”, and “Toray Silicone” manufactured by Toray Dow Corning Co., Ltd.
  • the addition amount of the surfactant is, as its lower limit, preferably added in a range of 0.1 parts by mass or more with respect to 100 parts by mass of SiO 2 containing the above-mentioned colloidal silica particles, and 1 part by mass or more. More preferably, it is more preferably 2 parts by mass or more.
  • the upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and particularly preferably 10 parts by mass or less.
  • the content of the surfactant in the composition for forming an optical functional layer of the present invention is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on the solid content in the composition. 1 mass% or more is particularly preferable.
  • an upper limit 1 mass% or less is preferable, 0.75 mass% or less is more preferable, and 0.5 mass% or less is especially preferable.
  • the content of the surfactant By setting the content of the surfactant to the above lower limit value or more, it is possible to improve streaky coating defects. By making it into the said upper limit or less, compatibility can be improved and it is preferable. Only one type of surfactant may be used, or two or more types may be combined.
  • the surfactant is present as a residue in the form in which the composition of the surfactant is maintained as it is when the composition is formed on the optical functional layer, or is slightly decomposed. Detection of surfactant or its residue in the optical functional layer is performed using TOF-SIMS (time-of-flight secondary ion mass spectrometry), oblique cutting XPS (X-ray photoelectron spectroscopy), Raman spectroscopy, FT-IR (Fourier transform). Type infrared spectroscopy).
  • a dispersant in the composition for forming an optical functional layer.
  • a polymer dispersant for example, polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly (meth) acrylate, (meth) acrylic type) Copolymer, naphthalenesulfonic acid formalin condensate), polyoxyethylene alkyl phosphate ester, polyoxyethylene alkyl amine, alkanol amine, pigment derivative and the like.
  • the polymer dispersant can be further classified into a linear polymer, a terminal-modified polymer, a graft polymer, and a block polymer from the structure thereof.
  • the polymer dispersant is adsorbed on the particle surface and acts to prevent reaggregation. Therefore, a terminal-modified polymer, a graft polymer, and a block polymer having an anchor site to the particle surface can be cited as preferred structures.
  • the pigment derivative has an effect of promoting the adsorption of the polymer dispersant by modifying the particle surface.
  • the concentration of the dispersing agent is preferably 1 part by mass to 100 parts by mass, more preferably 3 parts by mass to 100 parts by mass with respect to 100 parts by mass of SiO 2 containing colloidal silica particles, and 5 parts by mass to 80 parts by mass. Part by mass is more preferable. Further, it is preferably 1% by mass to 30% by mass with respect to the total solid content of the composition.
  • These dispersants may be used alone or in combination of two or more.
  • the composition for forming an optical functional layer of the present invention may further contain a solvent in addition to or in addition to the preparation solvent for the colloidal silica particle liquid (sol). Or it is good also as what changes the preparation solvent and contains the following solvent.
  • the solvent contained in the composition include organic solvents (aliphatic compounds, halogenated hydrocarbon compounds, alcohol compounds, ether compounds, ester compounds, ketone compounds, nitrile compounds, amide compounds, sulfoxide compounds, aromatic compounds) or Water is mentioned. Examples of each are listed below.
  • Aliphatic compounds Hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, cyclopentane, etc.Halogenated hydrocarbon compounds Methylene chloride, chloroform, dichloromethane, ethane dichloride, carbon tetrachloride, trichloroethylene, tetrachloroethylene, epichlorohydrin, Monochlorobenzene, orthodichlorobenzene, allyl chloride, hydrochlorofluorocarbon (HCFC), methyl monochloroacetate, ethyl monochloroacetate, monochloroacetic acid trichloroacetic acid, methyl bromide, methyl iodide, tri (tetra) chloroethylene, etc., alcohol compounds methyl alcohol, Ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol
  • Ketone compounds Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, etc. Nitriles Compounds Acetonitrile, etc./Amide compounds N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N-methyl Formamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, etc. ⁇ Sulphoxide compounds Aromatic compounds such as sulfoxide, etc.
  • Preferred solvents such as benzene and toluene are methyl alcohol, ethyl alcohol, 2-propyl alcohol, propylene glycol monomethyl ether, ethyl acetate, propylene glycol-1-monomethyl ether-2-acetate, Examples include ethyl lactate, ethyl 3-ethoxypropionate, and cyclohexanone.
  • the amount of the solvent used is not particularly limited, and is preferably 0.1 times (v / w) or more, 0.5 times the total amount of SiO 2 containing colloidal silica particles. It is preferably (v / w) or more, preferably 1 time amount (v / w) or more, and more preferably 2 times amount (v / w) or more. As an upper limit, it is preferable that it is 30 times amount (v / w) or less, and it is more preferable that it is 10 times amount (v / w) or less.
  • an aprotic polar solvent such as an ether solvent or an ester solvent
  • an aprotic polar solvent such as an ether solvent or an ester solvent
  • a protic polar solvent such as an alcohol solvent or water
  • the number of protic polar solvents is as small as possible.
  • each solvent is contained in the following ratio with the total amount of the solvent being 100% (mass basis).
  • Preferred more preferred particularly preferred aprotic polar solvent 10% to 100% 30% to 100% 50% to 100%
  • a high boiling point solvent In the present invention, it is also preferable to use a high boiling point solvent.
  • the boiling point of the high boiling point solvent is preferably 240 ° C. to 310 ° C. (1 atm).
  • Specific high boiling point solvents include triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, tetraethylene glycol dimethyl ether, ethylene glycol monophenyl ether, diethylene glycol monohexyl ether, diethylene glycol monobenzyl ether, tripropylene glycol monomethyl ether, polyethylene glycol. Monomethyl ether and polyethylene glycol dimethyl ether are preferred.
  • a high boiling point solvent drying can be suppressed, and workability and quality during production can be improved.
  • the high boiling point solvent it is preferable to use triethylene glycol monobutyl ether.
  • the composition for forming an optical functional layer of the present invention may contain a polymerizable compound.
  • the polymerizable compound preferably has a ClogP value of 2 or more, more preferably 2 to 10. If the ClogP value is too small, sufficient resolution cannot be obtained, and when a fine pixel is formed, the end portion or the like may be chipped or cracked. On the other hand, if the ClogP value is too large, it becomes viscous and may be inferior in workability. Or, the surface of the cured film may become rough.
  • ClogP value of a compound is based on the following definition.
  • the measurement of the octanol-water partition coefficient (log P value) can be generally carried out by a flask soaking method described in JIS Japanese Industrial Standard Z7260-107 (2000). Further, the octanol-water partition coefficient (log P value) can be estimated by a computational chemical method or an empirical method instead of the actual measurement. As a calculation method, Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)), Viswanadhan's fragmentation method (J. Chem. Inf. Comput. Sci., 29, 163). (1989)), Broto's fragmentation method (Eur.
  • the ClogP value is a value obtained by calculating the common logarithm logP of the distribution coefficient P between 1-octanol and water. A well-known thing can be used about the method and software used for calculation of ClogP value. Unless otherwise specified, the present invention uses the ClogP program incorporated in the system: PCModels of Daylight Chemical Information Systems.
  • the polymerizable compound is preferably selected from compounds having at least one terminal ethylenically unsaturated bond, preferably two or more.
  • the polymerizable compound may be in a chemical form such as a monomer, a prepolymer, that is, a dimer, a trimer and an oligomer, or a mixture thereof and a multimer thereof.
  • a polymeric compound may be used individually by 1 type, and may use 2 or more types together.
  • the polymerizable compound examples include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, amides, and multimers thereof.
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.
  • esters thereof for example, acrylic acid, methacrylic
  • a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine or thiol, and further a halogen group A substitution reaction product of an unsaturated carboxylic acid ester or amide having a detachable substituent such as a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable.
  • a compound having at least one addition-polymerizable ethylene group and having an ethylenically unsaturated group having a boiling point of 100 ° C. or higher under normal pressure is preferable.
  • examples include monofunctional acrylates and methacrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and phenoxyethyl (meth) acrylate; polyethylene glycol di (meth) acrylate, trimethylolethanetri (Meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, hexanediol (Meth
  • a polyfunctional (meth) acrylate obtained by reacting a polyfunctional carboxylic acid with a compound having a cyclic ether group such as glycidyl (meth) acrylate and an ethylenically unsaturated group can also be used.
  • a compound having a cyclic ether group such as glycidyl (meth) acrylate and an ethylenically unsaturated group
  • the above-mentioned compounds and cardo resins can also be used.
  • the monomer having an ethylenically unsaturated double bond is preferably one having the following reactive group RA in the molecule.
  • Reactive group RA vinyl group, (meth) acryloyl group, or (meth) acryloyloxy group
  • a radical polymerizable monomer represented by any of the following formulas (MO-1) to (MO-7) can be preferably used.
  • T is an oxyalkylene group, it is preferable that the terminal on the carbon atom side is bonded to R.
  • R is a hydroxyl group, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms) or a vinyl group at the terminal. However, at least one has a vinyl group in the molecule, preferably two or more vinyl groups, more preferably three or more. R is preferably a substituent of any of R1 to R6 below.
  • T is a linking group, preferably a linking group according to any one of the following T1 to T9, or a combination thereof.
  • Z is a linking group and is preferably the following Z1.
  • Z 2 is a linking group, and is preferably the following formula Z2. The directions of T1 to T9 may be reversed according to the formula.
  • n is an integer, each preferably 0 to 14, more preferably 0 to 5, and particularly preferably 0 to 3.
  • Each m is 1 to 12, preferably 1 to 8, more preferably 1 to 5, and particularly preferably 1 to 3.
  • a plurality of R, T and Z present in one molecule may be the same or different.
  • T is an oxyalkylene group
  • At least two of R are preferably polymerizable groups, and more preferably three are polymerizable groups.
  • Z 3 is a linking group, preferably an alkylene group having 1 to 12 carbon atoms, and more preferably an alkylene group having 1 to 6 carbon atoms.
  • dipentaerythritol triacrylate (KAYARAD D-330 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercial product, KAYARAD D-320; Nippon Kayaku) Dipentaerythritol penta (meth) acrylate (commercially available) KAYARAD D-310 (commercially available from Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available KAYARAD DPHA; Nippon Kayaku Co., Ltd.) Company), and the structure in which these (meth) acryloyl groups are mediated by ethylene glycol and propylene glycol residues, diglycerin EO (ethylene oxide) modified (meth) acrylate (commercially available product is M-460 Toa Gosei Co., Ltd.) is prefer
  • the polyfunctional monomer is particularly preferably at least one selected from a compound represented by the following formula (i) and a compound represented by the formula (ii).
  • E represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —, and — ((CH 2 ) y CH 2 O)-is preferred.
  • Each y represents an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably 1 to 3.
  • X represents a hydrogen atom, an acryloyl group, a methacryloyl group, or a carboxyl group, respectively.
  • the total number of acryloyl groups and methacryloyl groups is preferably 3 or 4, more preferably 4.
  • Each m represents an integer of 0 to 10, and preferably 1 to 5.
  • the total of each m is an integer of 1 to 40, preferably 4 to 20.
  • the total number of acryloyl groups and methacryloyl groups is preferably 5 or 6, and more preferably 6.
  • n represents an integer of 0 to 10, respectively, and preferably 1 to 5.
  • the total of n is an integer of 1 to 60, preferably 4 to 30.
  • the polyfunctional monomer having a caprolactone-modified structure is not particularly limited as long as it has a caprolactone-modified structure in the molecule.
  • the polyfunctional monomer having a caprolactone-modified structure includes trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, diglycerol, trimethylol
  • ⁇ -caprolactone-modified polyfunctional (meth) acrylates obtained by esterifying polyhydric alcohols such as melamine with (meth) acrylic acid and ⁇ -caprolactone.
  • a polyfunctional monomer having a caprolactone-modified structure represented by the following formula (1) is preferable.
  • R y and R z each independently represent a hydrogen atom or a methyl group, m represents a number of 1 or 2, and “*” represents a bond.
  • a polymerizable compound represented by the following formula (Y1) is also preferably used.
  • Y 1 and Y 2 represent a hydrogen atom or a substituent.
  • the substituent an alkyl group having 1 to 3 carbon atoms is preferable.
  • p and q each represents an integer, preferably 0-20.
  • Examples of the polymerizable compound include urethane acrylates as described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, and JP-B-2-16765. Also suitable are urethane compounds having an ethylene oxide skeleton as described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418. Furthermore, addition polymerizable compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238 as polymerizable compounds. Compounds can also be used.
  • polymerizable compounds include urethane oligomers UAS-10, UAB-140 (manufactured by Nippon Paper Industries Co., Ltd. (formerly Sanyo Kokusaku Pulp Co., Ltd.)), UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (Manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
  • ethylenically unsaturated compounds having an acid group are also suitable.
  • Ethylenically unsaturated compounds having an acid group can be obtained by, for example, converting a part of hydroxy groups of the polyfunctional alcohol into (meth) acrylate and adding an acid anhydride to the remaining hydroxy group to form a carboxy group. can get.
  • Examples of commercially available products include M-510 and M-520 manufactured by Toagosei Co., Ltd. as polybasic acid-modified acrylic oligomers.
  • the content of the polymerizable compound in the composition for forming an optical functional layer of the present invention is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, based on the solid content in the composition. 02% by mass or more is particularly preferable. As an upper limit, 10 mass% or less is preferable, 5 mass% or less is more preferable, and 1 mass% or less is especially preferable.
  • a polymerizable compound 0.1 containing a mass ratio of SiO 2 minutes and a polymerizable compound containing colloidal silica particles, relative to the SiO 2 minutes 100 parts by containing colloidal silica particles, a polymerizable compound 0.1
  • the amount is preferably at least part by mass, more preferably at least 0.5 part by mass, and particularly preferably at least 1 part by mass.
  • the upper limit is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, further preferably 20 parts by mass or less, further preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less. .
  • the polymerizable compound is preferably a compound that causes polymerization by an active species.
  • the active species include radicals, acids, and bases.
  • the radical is an active species, the above compound having an ethylenically unsaturated bond group is used.
  • acids such as sulfonic acid, phosphoric acid, sulfinic acid, carboxylic acid, sulfuric acid, and sulfuric monoester as active species
  • cyclic ether groups such as epoxy groups, oxetanyl groups, tetrahydrofuranyl groups, vinylbenzene groups, etc. Can be used.
  • cyclic ether groups such as an epoxy group, oxetanyl group, and tetrahydrofuranyl group, a vinylbenzene group, etc.
  • the polymerizable compound can be used in combination as necessary.
  • the polymerizable compound preferably has a molecular weight of 10,000 or less, more preferably 5,000 or less, more preferably 2,000 or less, and particularly preferably 1,000 or less. The lower limit is practically 200 or more.
  • “acryl” refers to a structure group having an acryloyl group, and includes, for example, a structure having a substituent at the ⁇ -position. However, those having a methyl group at the ⁇ -position are referred to as methacryl and may be referred to as (meth) acryl or the like in a sense including this.
  • composition for optical function layer formation of this invention may further contain the adhesion improving agent.
  • adhesion improver include adhesion improvers described in JP-A Nos. 5-11439, 5-341532, and 6-43638.
  • the adhesion improving agent a silane coupling agent is preferable.
  • the silane coupling agent preferably has an alkoxysilyl group as a hydrolyzable group that can be chemically bonded to an inorganic material.
  • it preferably has a group that interacts or forms a bond with an organic resin and exhibits an affinity, and such a group has a (meth) acryloyl group, a phenyl group, a mercapto group, a glycidyl group, and an oxetanyl group.
  • those having a (meth) acryloyl group or a glycidyl group are preferable.
  • the silane coupling agent is also preferably a silane compound having at least two types of functional groups having different reactivity in one molecule, and particularly preferably one having an amino group and an alkoxy group as functional groups.
  • silane coupling agents include N- ⁇ -aminoethyl- ⁇ -aminopropyl-methyldimethoxysilane (trade name: KBM-602, manufactured by Shin-Etsu Chemical Co., Ltd.), N- ⁇ -aminoethyl- ⁇ - Aminopropyl-trimethoxysilane (trade name “KBM-603” manufactured by Shin-Etsu Chemical Co., Ltd.), N- ⁇ -aminoethyl- ⁇ -aminopropyl-triethoxysilane (trade name “KBE-602” manufactured by Shin-Etsu Chemical Co., Ltd.), ⁇ -aminopropyl-trimethoxysilane (trade name KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane coupling agent examples include the following compounds, but are not limited thereto.
  • Et ethyl group
  • the content of the adhesion improving agent is preferably 0.001% to 20% by mass, more preferably 0.01% to 10% by mass, and more preferably 0.1% to 10% by mass with respect to the solid content of the composition of the present invention. 5% by mass is particularly preferred.
  • a compound for example, when referring to a compound with a suffix
  • a compound with a suffix is used in the meaning of including a salt and an ion in addition to the compound itself.
  • it is meant to include derivatives in which a part thereof is changed, such as introduction of a substituent, within a range where a desired effect is exhibited.
  • a substituent that does not specify substitution / non-substitution means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution.
  • Preferred substituents include the following substituent T. Examples of the substituent T include the following.
  • alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.
  • each of the groups listed as the substituent T may be further substituted with the substituent T described above.
  • the alkyl group, alkenyl group, and alkynyl group may be branched or linear. Further, it may be annular or non-annular. Note that adjacent substituents and linking groups may be bonded to each other to form a ring as long as the effects of the present invention are not impaired.
  • the technical matters such as temperature and thickness, as well as the choices of substituents and linking groups of the compounds, can be combined with each other even if the list is described independently.
  • the composition for forming an optical functional layer of the present invention is preferably filtered with a filter for the purpose of removing foreign substances or reducing defects. If it is conventionally used for the filtration use etc., it can use without being specifically limited.
  • a filter made of fluorine resin such as PTFE (polytetrafluoroethylene), polyamide resin such as nylon, polyolefin resin (including high density and ultra high molecular weight) such as polyethylene and polypropylene (PP), and the like can be given.
  • PTFE polytetrafluoroethylene
  • polyamide resin such as nylon
  • polyolefin resin including high density and ultra high molecular weight
  • polyethylene and polypropylene (PP) polypropylene
  • nylon are preferable.
  • the pore size of the filter is suitably about 0.1 ⁇ m to 7 ⁇ m, preferably about 0.2 ⁇ m to 2.5 ⁇ m, more preferably about 0.2 ⁇ m to 1.5 ⁇ m, and further preferably 0.3 ⁇ m to 0.7 ⁇ m. is there. By setting it as this range, it becomes possible to more reliably remove fine foreign matters such as impurities and aggregates while suppressing clogging of filtration.
  • different filters may be combined. At that time, the filtering by the first filter may be performed only once or may be performed twice or more. When filtering two or more times by combining different filters, it is preferable that the second and subsequent pore diameters are the same or larger than the pore diameter of the first filtering.
  • the pore diameter here can refer to the nominal value of the filter manufacturer.
  • a commercially available filter for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
  • As the second filter a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is suitably about 0.2 ⁇ m to 10.0 ⁇ m, preferably about 0.2 ⁇ m to 7.0 ⁇ m, more preferably about 0.3 ⁇ m to 6.0 ⁇ m.
  • the filtering by the first filter may be performed only with the dispersion, and the second filtering may be performed after mixing other components.
  • the optical functional layer of the present invention comprises a step of forming an optical functional layer (application step, pre-baking step, step of curing the film (post-baking step)), a step of applying a resist to the optical functional layer, and the resist.
  • an optical functional layer application step, pre-baking step, step of curing the film (post-baking step)
  • a step of applying a resist to the optical functional layer and the resist.
  • it is preferably formed through a step of pattern exposure and development, a step of etching the optical functional layer using the resist as a mask, and a step of removing the remaining resist by dry processing (FIG. 2). Details of each process will be described below, including other processes.
  • the application method of the composition for forming an optical functional layer on a support is preferably a coating method.
  • various coating methods such as slit coating, inkjet method, spin coating, cast coating, roll coating, and screen printing can be applied.
  • the optical functional layer is preferably formed by curing an optical functional layer forming composition containing colloidal silica particles and a surfactant.
  • a substrate for a solid-state imaging device in which an imaging device (light receiving device) such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) is provided on a substrate (for example, a silicon substrate) is used.
  • an imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) is provided on a substrate (for example, a silicon substrate) is used.
  • a light-shielding film may be provided between the image sensors on the solid-state image sensor substrate or on the back surface of the solid-state image sensor substrate.
  • an undercoat layer may be provided on the support for improving adhesion with the upper layer, preventing diffusion of substances, or flattening the substrate surface.
  • the optical functional layer-forming composition layer coated on the support can be dried (prebaked) at a temperature of 50 ° C to 140 ° C for 10 seconds to 300 seconds using a hot plate, oven, or the like.
  • Post-baking is a heat treatment after development for complete curing.
  • the heating temperature is preferably 250 ° C. or less, more preferably 240 ° C. or less, and further preferably 230 ° C. or less from the viewpoint of suppressing damage to the organic photoelectric conversion portion.
  • thermosetting treatment 50 ° C. or higher, and more preferably 100 ° C. or higher.
  • This post-bake treatment is performed continuously or batchwise using a heating means such as a hot plate, a convection oven (hot air circulation dryer), a high-frequency heater, or the like so that the coating film after development is in the above-described condition. be able to.
  • a heating means such as a hot plate, a convection oven (hot air circulation dryer), a high-frequency heater, or the like
  • the optical functional layer may be cured by UV (ultraviolet) irradiation instead of post-baking by heating.
  • the UV curing agent is preferably one that can be cured at a wavelength of a single wave from 365 nm which is an exposure wavelength of an initiator added for a lithography process by normal I-line exposure.
  • Examples of the UV curing agent include BASF (former Ciba) IRGACURE 2959 (trade name).
  • the specific wavelength of the UV irradiation light is preferably a material that cures at 340 nm or less. Although there is no lower limit of wavelength, it is generally 220 nm or more.
  • the exposure amount of UV irradiation is preferably 100 mJ to 5000 mJ, more preferably 300 mJ to 4000 mJ, and further preferably 800 mJ to 3500 mJ.
  • This UV curing step is preferably performed after the lithography step in order to perform low-temperature curing more effectively.
  • the exposure light source is preferably an ozoneless mercury lamp.
  • Exposure process resist application process
  • a resist is provided to the coating film of said composition for optical function layer formation, exposure energy is irradiated there, The exposed part is developed, and a pattern is formed.
  • an exposure apparatus such as a stepper can be used to perform pattern exposure through a mask having a predetermined mask pattern.
  • the exposure energy is preferably irradiated by active energy rays selected from g-line, h-line, i-line, KrF line (excimer laser line), and ArF line (excimer laser line).
  • illuminance of the exposure energy is 5000 W / m 2 or more, more preferably 7000 W / m 2 or more, and particularly preferably 8000W / m 2 or more.
  • the provisions of the upper limit is preferably 18000W / m 2 or less, more preferably 15000W / m 2 or less, particularly preferably 10000 W / m 2 or less.
  • a normal apparatus may be used as appropriate, and for example, a reduced projection exposure apparatus can be used.
  • the projection exposure apparatus for example, active energy rays emitted from a specific light source are incident on a projection lens (projection lens) via a condenser lens.
  • a mask with a predetermined pattern is installed before or after the condenser lens so that the active energy rays having the predetermined pattern reach the projection lens.
  • it is preferable to appropriately set the conditions such as the numerical aperture (NA 1 ) on the condenser lens side and the numerical aperture (NA 2 ) on the projection lens side within a desired range.
  • the active energy ray that has passed through the reduction projection optical system is emitted from the opposite side and irradiated onto the exposure substrate (work).
  • the resist on the substrate is exposed by the irradiation of the active energy rays.
  • the numerical aperture (NA 3 ) on the exit side of the projection lens is also preferably set in a desired range.
  • the resist is not particularly limited.
  • the resist containing an alkali-soluble phenol resin and naphthoquinone diazide described on pages 16 to 22 of ") can be used.
  • Japanese Patent No. 2568883 Japanese Patent No. 2671786, Japanese Patent No. 2711590, Japanese Patent No. 2987526, Japanese Patent No. 3133811, Japanese Patent No. 3501427, Japanese Patent No. 333772,
  • the resists described in Examples of JP-A-3361636 and JP-A-6-54383 can be used. These documents are incorporated herein.
  • Chemical amplification resists are described, for example, on page 129 and subsequent pages of "New Development of Photofunctional Polymer Materials, May 31, 1996, Issue 1 Supervision: Kunihiro Ichimura, Publisher: CMC Corporation". (Especially, the resist containing a resin in which the hydroxyl group of a polyhydroxystyrene resin is protected with an acid-decomposable group, described in the vicinity of page 131, and the ESCAP described in the vicinity of page 131) Type resist is preferred).
  • the resists described in Examples of JP-A-003070, JP-A-2012-003071, JP-A-3638068, JP-A-4006492, JP-A-4000407, and JP-A-4194249 can be used. These documents are incorporated herein.
  • development such as alkali development processing
  • the developer is preferably an organic alkali developer that does not cause damage to the underlying image sensor or circuit.
  • the development temperature is usually 20 ° C. to 30 ° C.
  • the development time is, for example, 20 seconds to 90 seconds. In order to remove the residue more, in recent years, it may be carried out for 120 seconds to 180 seconds. Furthermore, in order to further improve residue removability, the process of shaking off the developer every 60 seconds and further supplying a new developer may be repeated several times.
  • an alkaline aqueous solution prepared by dissolving an alkaline compound so as to have a concentration of 0.001% by mass to 10% by mass, preferably 0.01% by mass to 5% by mass is suitable.
  • Alkaline compounds include, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium oxalate, sodium metasuccinate, aqueous ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropyl Ammonium hydroxide, tetrabutylammonium hydroxy, benzyltrimethylammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene, and the like (among these, organic alkali is preferable). ).
  • the optical functional layer may be etched by either dry etching or wet etching.
  • the dry etching may be performed by a dry etching method using a mixed gas in which a mixing ratio of fluorine-based gas and O 2 (fluorine-based gas / O 2 ) is 4/1 to 1/5 in flow rate. Yes (the ratio of fluorine-based gas to oxygen depends on the C content of the fluorine-based gas).
  • Representative examples of the dry etching method include JP-A-59-126506, JP-A-59-46628, JP-A-58-9108, JP-A-58-2809, JP-A-57-148706. A method as described in JP-A-61-41102 and the like is known.
  • the optical functional layer is dry-etched using an etching gas as a mixed gas in which the mixing ratio of fluorine-based gas and O 2 (fluorine-based gas / O 2 ) is 1/2 to 1/4 in flow rate ratio.
  • Anisotropic etching can be performed by processing (for example, plasma etching).
  • the mixed gas used in the etching step in this embodiment includes a fluorine compound gas and O 2 from the viewpoint that the film to be etched is an organic material.
  • a known gas can be used as the fluorine compound gas, and is preferably a gas represented by the following formula (I).
  • C n H m F l Formula (I) [Wherein, n represents 1 to 6, m represents 0 to 13, and l represents 1 to 14. ]
  • fluorine-based gas represented by the above formula (I) CF 4 , C 2 F 6 , C 3 F 8 , C 2 F 4 , C 4 F 8 , C 4 F 6 , C 5 F 8 , and CHF 3 are used. It is preferable to arbitrarily select from the group and mix. Among these, it is more preferable to arbitrarily select from the group of C 4 F 6 , C 5 F 8 , C 4 F 8 , and CHF 3 , and to arbitrarily select from the group of C 4 F 6 and C 5 F 8. More preferred is C 4 F 6 .
  • the fluorine-based gas one kind of gas can be selected from the above group, and two or more kinds may be included in the mixed gas. By using a fluorine-based gas having a high C ratio, it is possible to improve the selection ratio (here, Si) with respect to SiO 2 / underlying material.
  • the mixed gas is further mixed with helium (He), neon (Ne), argon (in addition to the fluorine-based gas and O 2 ).
  • Ar helium
  • Ne neon
  • argon in addition to the fluorine-based gas and O 2
  • Ar krypton
  • rare gases such as xenon (Xe) are preferably selected and mixed.
  • gases that may be mixed one kind of gas may be selected from the above group, and two or more kinds may be included in the mixed gas.
  • the mixing ratio of other gases that may be mixed is preferably larger than 0 and not larger than 25, preferably not smaller than 10 and not larger than 20, particularly 16 when O 2 is 1 as a flow ratio. preferable.
  • the internal pressure of the chamber in which dry etching is performed is preferably 0.5 Pa to 6.0 Pa, and more preferably 1 Pa to 5 Pa.
  • the rectangularity of the etching pattern can be improved under conditions that satisfy the mixing ratio of the mixed gas and the internal pressure of the chamber.
  • the gas flow rate of the mixed gas is preferably 1500 sccm or less, and more preferably 1200 sccm or less.
  • the high frequency can be selected from 400 kHz, 60 MHz, 13.56 MHz, 2.45 GHz, etc., and can be processed with an RF power of 50 W to 2000 W, preferably 100 W to 1000 W.
  • the treatment time is preferably one color etching within 5 minutes, more preferably within 4 minutes.
  • the refractive index of the optical functional layer formed with the composition for forming an optical functional layer of the present invention is preferably 1.5 or less, more preferably 1.4 or less, and 1.3 or less. Is more preferable, and particularly preferably 1.24 or less. The lower limit is practically 1.1 or more.
  • the refractive index of the film is a value measured at 25 ° C. using light having a wavelength of 633 nm unless otherwise specified.
  • the optical functional layer of the present invention preferably has sufficient hardness. Ensuring hardness with this type of membrane leads to realization of strength and durability of the membrane.
  • the Young's modulus of the film can be evaluated. From the above viewpoint, the Young's modulus of the optical function layer is preferably 2 or more, more preferably 3 or more, and particularly preferably 4 or more. The upper limit is practically 10 or less. The Young's modulus of the film depends on the conditions measured in the examples described below unless otherwise specified.
  • the thickness of the optical functional layer is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and particularly preferably 1.5 ⁇ m or less. Although there is no lower limit in particular, it is practical that it is 50 nm or more.
  • a surface adhesion treatment it is preferable to subject the optical functional layer to a surface adhesion treatment.
  • a surface adhesion treatment For example, after forming a post-baked film of the optical functional layer, it is preferable to perform adhesion treatment on the surface to obtain a hydrophobic surface.
  • the contact processing include HMDS processing.
  • HMDS hexamethylene disilazane
  • HMDS hexamethylene disilazane
  • the membrane surface can be hydrophobized.
  • a microlens unit which is a preferred embodiment of the present invention has a laminated structure including the optical functional layer and a microlens coated thereon. This lens unit is incorporated in a solid-state image sensor (optical device).
  • the optical functional layer formed of the optical functional layer forming composition is an antireflection film on the microlens, an intermediate film, or a color filter partition wall, a color filter layer
  • the present invention can be applied to a frame structure and a grid structure arranged in the color filter layer.
  • the structure of the solid-state imaging device includes, for example, a light receiving element (photodiode) provided on a silicon substrate, a lower planarizing film, a color filter, an upper planarizing film, a microlens, and the like.
  • the color filter includes red (R), green (G), and blue (B) color filter pixel portions.
  • the color filter is composed of a plurality of green pixel portions arranged two-dimensionally. Each colored pixel portion is formed above the light receiving element.
  • the green pixel portion is formed in a Bayer pattern (checkered pattern), and the blue pixel portion and the red pixel portion are formed between the green pixel portions.
  • the planarization film is formed so as to cover the upper surface of the color filter, and planarizes the color filter surface.
  • the microlens is a condensing lens arranged with the convex surface facing upward, and is provided above the planarizing film and above the light receiving element. That is, the microlens, the color filter pixel unit, and the light receiving element are arranged in series along the light incident direction, and the light from the outside is efficiently guided to each light receiving element.
  • the light receiving element and the microlens those normally applied to this type of solid-state imaging element can be appropriately used. Therefore, detailed description is omitted.
  • the optical functional layer formed from the composition of the present invention can be suitably applied to
  • composition for forming an optical functional layer of the present invention is suitably used for display panels, solar cells, optical lenses, camera modules, sensor modules and the like. More specifically, in the solar cell or the like, an optical functional layer for preventing reflection of incident light, or an optical functional layer for forming an intermediate film or the like using a difference in refractive index used for a sensor, a camera module, or the like. Useful as a forming composition.
  • Grid structure Examples of grid structures (partition walls) arranged in the color filter layer include the exemplified structures of JP 2012-227478 A, JP 2010-0232537 A, and JP 2009-111225 A.
  • the semiconductor substrate on which the photodiode is formed as the light receiving unit, the insulating film formed on the semiconductor substrate, and the adjacent photodiode on the insulating film are provided at corresponding positions.
  • a partition wall is provided.
  • the solid-state imaging device is formed on the insulating film and between the adjacent partition walls, the color filter formed on the insulating film from the upper surface of the partition wall and the side surface of the partition wall, and the color filter.
  • a microlens is provided.
  • Wiring is embedded in the insulating film, and these laminated bodies correspond to the wiring layer.
  • a color filter is formed in a square opening of the partition.
  • red (R), green (G), and blue (B) there are three types of color filters, red (R), green (G), and blue (B).
  • RGB red
  • G green
  • B blue
  • a Bayer array is used.
  • Examples of the frame structure around the color filter of the present embodiment include an exemplary structure described in Japanese Patent Application Laid-Open No. 2014-048596.
  • a transparent substrate made of a glass substrate is used as a base material, and a colored layer for each color filter and a pixel-partitioning light-shielding portion are arranged in the display region on one surface side of the base material.
  • a light-shielding frame portion is provided outside the display region as a non-display region, and a protective layer is provided in a flat shape so as to cover the colored layer and the frame portion of the display region.
  • TEOS tetraethoxysilane
  • TFPTMS trifluoropropyltrimethoxysilane
  • Propylene glycol monomethyl ether (PGME) in an amount of 1.0 part by mass with respect to 1 part by mass of this mixture was added as an organic solvent (E), and the first liquid was prepared by stirring at a temperature of 30 ° C. for 15 minutes. did. Separately from the first liquid, 1.0 part by mass of ion-exchanged water (C) and 0.01 part by mass of formic acid (D) with respect to 1 part by mass of the mixture are placed in a beaker.
  • the second liquid was prepared by charging and mixing and stirring at a temperature of 30 ° C. for 15 minutes. Next, after maintaining the prepared first liquid at a temperature of 55 ° C. in a water bath, the second liquid was added to the first liquid and stirred for 60 minutes while maintaining the temperature.
  • a hydrolyzate (F) of the silicon alkoxide (A) and the fluoroalkyl group-containing silicon alkoxide (B) was obtained.
  • the solid content concentration of this liquid was 10% by mass in terms of SiO 2 .
  • 0.1 part by mass of 30% by mass of an aqueous calcium nitrate solution was added to an aqueous dispersion containing 30% by mass of a commercially available colloidal silica having an average diameter of 15 nm (trade name ST-30, manufactured by Nissan Chemical Industries, Ltd.). The mixture was heated in a stainless steel autoclave at 120 ° C. for 5 hours.
  • colloidal silica particle liquid (G) having a solid concentration of 15% by mass.
  • 30 parts by mass of hydrolyzate of silicon alkoxide (F) and 70 parts by mass of colloidal silica particle liquid (G) are mixed, further heated at 40 ° C. for 10 hours, and centrifuged at 1000 G for 10 minutes to remove sediment.
  • colloidal silica particle liquid P1 was obtained.
  • the colloidal silica particle liquid shown in Table 1 below was prepared by appropriately changing the production conditions and raw materials.
  • D0 number average particle diameter of spherical particles (diameter of particles observed by TEM)
  • D1 Number average particle diameter of colloidal silica particles measured by dynamic light scattering method
  • D2 Average particle diameter of colloidal silica particles determined from specific surface area
  • the composition for forming an optical functional layer obtained above was applied on a blank substrate (silicon wafer) by a spin coating method so that the film thickness after application was 0.6 ⁇ m. Then, it heated for 2 minutes at 100 degreeC on the hotplate, and obtained the cured film of the said composition. The following evaluation was performed about the obtained cured film. The results are shown in Table 2 below. In addition, the transparency (transmittance) of the film was also evaluated, and it was confirmed that the cured film of this example was homogeneous and had good transparency.
  • the refractive index of the obtained film was measured with an ellipsometer (VUV-base [trade name] manufactured by JA Woollam) (wavelength 633 nm, measurement temperature 25 ° C.).
  • ⁇ Moisture resistance evaluation> The obtained film was exposed to an advanced accelerated life test apparatus EHS-221 (M) manufactured by Espec for 20 hours in an environment of a temperature of 85 ° C. and a humidity of 95% RH, and the refractive index was measured. The results were judged as follows. 4: Refractive index difference before and after moisture resistance evaluation is less than 0.003 3: Refractive index difference before and after moisture resistance evaluation is 0.003 or more and less than 0.005 2: Refractive index difference before and after moisture resistance evaluation is 0.005 or more and less than 0.01 1: Refractive index difference before and after moisture resistance evaluation is 0.01 or more
  • the Young's modulus of the obtained film was measured using a nanoindenter SA2 manufactured by MTS Systems. The measurement temperature was room temperature (about 25 ° C.).
  • the amount of the particle liquid is SiO 2
  • the amount is part by mass LC-OH: ethanol, methanol EL: ethyl lactate PG: propylene glycol PGME: propylene glycol monomethyl ether PGMEA: propylene glycol monomethyl ether acetate
  • DPG Dipropylene glycol F781F: Mega-Fac (trade name, manufactured by DIC) ...
  • F554 Mega Fuck (trade name, manufactured by DIC)
  • F559 Mega Fuck (trade name, manufactured by DIC)
  • EC-080 EMULSOGEN COL-080 (Clariant product name)
  • PAA-03 Polyallylamine-03 (Specialty Chemicals Division Nitto Bo Medical Co., Ltd.
  • Cationic polymer surfactant Weight average molecular weight 3000
  • Surfactant F Megafac F-781F, manufactured by DIC, wherein EO represents an ethyleneoxy group and PO represents a propyleneoxy group. p, q, and r represent integers. The molecular weight is 12,500.
  • M305 Toa Gosei Co., Ltd. (trade name)
  • A-TMMT Shin-Nakamura Chemical Co., Ltd. (trade name)
  • composition cP1 for the preparation of colloidal silica particles solution P1 of, were formulated Sururia so that the same amount in SiO 2 2320 (20 wt% of hollow silica JGC Catalysts and Chemicals Ltd. MIBK (methyl isobutyl ketone) dispersion) . Otherwise in the same manner, an optical functional layer forming composition cP1 was prepared.
  • composition cP2 was prepared in the same manner as described above except that the hydrolyzate of silicon alkoxide (F) was not used for the colloidal silica particle liquid P1. However, the amount of SiO 2 in the solid content was adjusted to be the same as in Test 101.
  • the cured film achieves a desired low refractive index, and the molded film has good striation prevention properties.
  • Example 2 The particle liquid P1 in the above test 101 was replaced with P2 to P8, respectively, and each item was measured and evaluated in the same manner. As a result, the surface condition was 3 to 4, the refractive index was 1.24 or less, the moisture resistance evaluation was 4, and the Young's modulus was 5.0 to 6.0.
  • Example 3 15 parts by mass of triethylene glycol monobutyl ether (boiling point 271 ° C.) was added to the optical functional layer forming compositions (each particle liquid) of Tests 101 to 112. As a result, it was confirmed that the drying property of each particle liquid was suppressed, and both the production suitability and the production quality were improved.
  • Example 4 The composition for forming an optical functional layer obtained in the test 101 was applied by spin coating on a silicon wafer with an undercoat layer so that the film thickness after application was 0.6 ⁇ m, and then on a hot plate. It was heated at 100 ° C. for 2 minutes, and further heated at 230 ° C. for 10 minutes on a hot plate to obtain a composition layer for forming an optical functional layer. Next, the obtained optical functional layer forming composition layer was subjected to HMDS treatment (200 ° C. ⁇ 1 min Bake, 110 ° C. ⁇ 1 min HMDS vapor), and then a positive photoresist (manufactured by FUJIFILM Electronics Materials Co., Ltd.).
  • HMDS treatment 200 ° C. ⁇ 1 min Bake, 110 ° C. ⁇ 1 min HMDS vapor
  • a positive photoresist manufactured by FUJIFILM Electronics Materials Co., Ltd.
  • the optical functional layer was dry etched under the following conditions.
  • Source power: 500W Upper bias / electrode bias 500/1000 W Processing time: 200 sec
  • the photoresist was removed under the following dry processing conditions to form an optical functional layer forming composition layer.
  • the obtained pattern had a desired rectangularity and refractive index and functioned as a good low refractive index film suitable for various optical devices.

Abstract

 An optical functional layer formation composition for a solid-state imaging element, the composition containing colloidal silica particles and a surfactant.

Description

光学機能層形成用組成物、これを用いた固体撮像素子およびカメラモジュール、ならびに光学機能層のパターン形成方法、固体撮像素子及びカメラモジュールの製造方法Optical functional layer forming composition, solid-state imaging device and camera module using the same, optical functional layer pattern forming method, solid-state imaging device and camera module manufacturing method
 本発明は、光学機能層形成用組成物、これを用いた固体撮像素子およびカメラモジュール、ならびに光学機能層のパターン形成方法、固体撮像素子及びカメラモジュールの製造方法に関する。 The present invention relates to a composition for forming an optical functional layer, a solid-state imaging device and a camera module using the composition, a pattern forming method for the optical functional layer, a solid-state imaging device and a method for manufacturing the camera module.
 低屈折率膜等の光学機能層は、例えば、入射する光の反射を防止するために透明基材の表面に適用される。その応用分野は広く、光学機器や建築材料、観察器具や窓ガラスなど、さまざまな分野の製品に適用されている。その材料として、有機・無機を問わず様々な素材が利用され、開発の対象とされている。なかでも、とくに近年、光学機器に適用される材料の開発が勢力的に進められている。具体的には、液晶・有機EL等のディスプレイパネルや、光学レンズ、イメージセンサにおいて、その製品に適合した物性や加工性を有する材料の探索が進められている。
 イメージセンサ等の精密光学機器に適用される光学機能層には、微細かつ正確な加工成形性が求められる。そのため、従来、微細加工に適した真空蒸着法やスパッタリング法等の気相法が採用されてきた。その材料としては、例えばMgFや氷晶石等からなる単層膜が実用化されている。また、SiO、TiO、ZrO等の金属酸化物の適用も試みられている。
An optical functional layer such as a low refractive index film is applied to the surface of a transparent substrate in order to prevent reflection of incident light, for example. Its application fields are wide, and it is applied to products in various fields such as optical instruments, building materials, observation instruments and window glass. Various materials, whether organic or inorganic, are used as the material, and are subject to development. In particular, in recent years, the development of materials that are applied to optical instruments has been actively promoted. Specifically, in display panels such as liquid crystal and organic EL, optical lenses, and image sensors, search for materials having physical properties and processability suitable for the products is being advanced.
An optical functional layer applied to precision optical equipment such as an image sensor is required to have fine and accurate processability. Therefore, conventionally, a vapor phase method such as a vacuum deposition method or a sputtering method suitable for fine processing has been adopted. As the material, for example, a single layer film made of MgF 2 , cryolite or the like has been put into practical use. In addition, application of metal oxides such as SiO 2 , TiO 2 , and ZrO 2 has been attempted.
 一方、真空蒸着法やスパッタリング法等の気相法では、装置等が高価であることから製造コストが高くなることがある。これに対応して、最近ではゾルゲル法等の塗布法を提案するものが現われている(特許文献1、2参照)。 On the other hand, in the vapor phase method such as the vacuum deposition method or the sputtering method, the manufacturing cost may be increased due to the expensive equipment. Corresponding to this, what has recently proposed a coating method such as a sol-gel method has appeared (see Patent Documents 1 and 2).
特開平9-208898号公報Japanese Patent Laid-Open No. 9-208898 特開2013-253145号公報JP 2013-253145 A
 上記の特許文献2の技術では、塗布液に数珠状のコロイダルシリカを用いることが提案されている。これにより、光学機能層としたときに低屈折率で反射防止効果が高く、しかも膜表面の濡れ性を改善することができ高屈折率膜の重ね塗りに好適に対応できるとされる。しかしながら、その使いこなしには未だ改善の余地があった。
 本発明は、良好な透明性と低屈折率を実現することができ、塗布加工にも好適に対応することができ、かつ形成された膜の均質性、硬さ、耐湿性に優れる光学機能層形成用組成物、これを用いた固体撮像素子およびカメラモジュール、ならびに光学機能層のパターン形成方法の提供を目的とする。
In the technique of the above-mentioned Patent Document 2, it is proposed to use beaded colloidal silica for the coating solution. Thereby, when it is used as an optical functional layer, the antireflective effect is high at a low refractive index, the wettability of the film surface can be improved, and it can be suitably applied to the overcoating of a high refractive index film. However, there was still room for improvement in its usage.
The present invention provides an optical functional layer that can realize good transparency and a low refractive index, can be suitably applied to coating processing, and is excellent in homogeneity, hardness, and moisture resistance of the formed film. An object of the present invention is to provide a forming composition, a solid-state imaging device and a camera module using the composition, and a method for forming a pattern of an optical functional layer.
 上記の課題は下記の手段により解決された。
〔1〕コロイダルシリカ粒子と界面活性剤とを含有する固体撮像素子の光学機能層形成用組成物。
〔2〕上記界面活性剤がフッ素系界面活性剤、アニオン界面活性剤、またはカチオン高分子界面活性剤である〔1〕に記載の光学機能層形成用組成物。
〔3〕上記界面活性剤が下記の式(F)で表される化合物からなる〔1〕または〔2〕に記載の光学機能層形成用組成物。
Figure JPOXMLDOC01-appb-C000002
 RF1は水素原子または炭素数1~3のアルキル基である。RF2はアルキル基、アルケニル基、またはアリール基である。RF3はアルキレンオキシ基含有基またはポリアルキレンオキシ基含有基である。上記RF2には少なくとも1つのフッ素原子が置換している。
〔4〕上記コロイダルシリカ粒子は、球状シリカ粒子が数珠状に連結された形態を取る〔1〕~〔3〕のいずれか1つに記載の光学機能層形成用組成物。
〔5〕上記コロイダルシリカ粒子が、平均粒子径5nm~50nmの複数の球状シリカ粒子とこの複数の球状シリカ粒子を互いに接合する接合部からなる〔1〕~〔4〕のいずれか1つに記載の光学機能層形成用組成物。
〔6〕上記コロイダルシリカ粒子が下記の諸元(a)および(b)を有する〔1〕~〔5〕のいずれか1つに記載の光学機能層形成用組成物。
 (a)動的光散乱法により測定された平均粒子径D1が30nm~300nmである。
 (b)比表面積より求めた平均粒子径D2と上記D1との比率、D1/D2が3以上である。
〔7〕有機溶媒をさらに含有する〔1〕~〔6〕のいずれか1つに記載の光学機能層形成用組成物。
〔8〕上記有機溶媒が非プロトン性極性溶媒を含有する〔7〕に記載の光学機能層形成用組成物。
〔9〕上記非プロトン性極性溶媒がエステル化合物溶媒またはエーテル化合物溶媒である〔8〕に記載の光学機能層形成用組成物。
〔10〕上記有機溶媒の沸点が1気圧で240~310℃である〔7〕に記載の光学機能層形成用組成物。
〔11〕上記光学機能層形成用組成物で形成される光学機能層の屈折率が1.24以下である〔1〕~〔10〕のいずれか1つに記載の光学機能層形成用組成物。
〔12〕低屈折率膜形成用である〔1〕~〔11〕のいずれか1つに記載の光学機能層形成用組成物。
〔13〕コロイダルシリカ粒子を含有する屈折率1.24以下の光学機能層を備える固体撮像素子。
〔14〕さらに、上記光学機能層が界面活性剤またはその残留分を含有する〔13〕に記載の固体撮像素子。
〔15〕上記光学機能層が、コロイダルシリカ粒子と界面活性剤とを含有する光学機能層形成用組成物を硬化させてなる〔13〕または〔14〕に記載の固体撮像素子。
〔16〕上記光学機能層がマイクロレンズ上の反射防止膜である〔13〕~〔15〕のいずれか1つに記載の固体撮像素子。
〔17〕上記光学機能層がカラーフィルター層の額縁構造である〔13〕~〔15〕のいずれか1つに記載の固体撮像素子。
〔18〕〔13〕~〔17〕のいずれか1つに記載の固体撮像素子を組み込んだカメラモジュール。
〔19〕コロイダルシリカ粒子を含有する屈折率1.24以下の光学機能層にレジストを付与する工程と、
 上記レジストに対してパターン露光して現像する工程と、
 上記レジストをマスクとして上記光学機能層をエッチング加工した後、残存する上記レジストをドライ処理により除去する工程とを有する光学機能層のパターン形成方法。
〔20〕〔19〕に記載のパターン形成方法により光学機能層を形成する工程を有する固体撮像素子及びカメラモジュールの製造方法。
The above problems have been solved by the following means.
[1] A composition for forming an optical functional layer of a solid-state imaging device containing colloidal silica particles and a surfactant.
[2] The composition for forming an optical functional layer according to [1], wherein the surfactant is a fluorine-based surfactant, an anionic surfactant, or a cationic polymer surfactant.
[3] The composition for forming an optical functional layer according to [1] or [2], wherein the surfactant comprises a compound represented by the following formula (F).
Figure JPOXMLDOC01-appb-C000002
R F1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R F2 is an alkyl group, an alkenyl group, or an aryl group. R F3 is an alkyleneoxy group-containing group or a polyalkyleneoxy group-containing group. The R F2 is substituted with at least one fluorine atom.
[4] The composition for forming an optical functional layer according to any one of [1] to [3], wherein the colloidal silica particles take a form in which spherical silica particles are connected in a bead shape.
[5] The colloidal silica particles according to any one of [1] to [4], wherein the colloidal silica particles include a plurality of spherical silica particles having an average particle diameter of 5 nm to 50 nm and joints that join the plurality of spherical silica particles to each other. A composition for forming an optical functional layer.
[6] The composition for forming an optical functional layer according to any one of [1] to [5], wherein the colloidal silica particles have the following specifications (a) and (b):
(A) The average particle diameter D1 measured by the dynamic light scattering method is 30 nm to 300 nm.
(B) The ratio of the average particle diameter D2 determined from the specific surface area to the above D1, D1 / D2 is 3 or more.
[7] The composition for forming an optical functional layer according to any one of [1] to [6], further containing an organic solvent.
[8] The composition for forming an optical functional layer according to [7], wherein the organic solvent contains an aprotic polar solvent.
[9] The composition for forming an optical functional layer according to [8], wherein the aprotic polar solvent is an ester compound solvent or an ether compound solvent.
[10] The composition for forming an optical functional layer as described in [7], wherein the organic solvent has a boiling point of 240 to 310 ° C. at 1 atm.
[11] The composition for forming an optical functional layer according to any one of [1] to [10], wherein the refractive index of the optical functional layer formed from the composition for forming an optical functional layer is 1.24 or less. .
[12] The composition for forming an optical functional layer according to any one of [1] to [11], which is for forming a low refractive index film.
[13] A solid-state imaging device including an optical functional layer containing colloidal silica particles and having a refractive index of 1.24 or less.
[14] The solid-state imaging device according to [13], wherein the optical functional layer further contains a surfactant or a residue thereof.
[15] The solid-state imaging device according to [13] or [14], wherein the optical functional layer is obtained by curing a composition for forming an optical functional layer containing colloidal silica particles and a surfactant.
[16] The solid-state imaging device according to any one of [13] to [15], wherein the optical functional layer is an antireflection film on a microlens.
[17] The solid-state imaging device according to any one of [13] to [15], wherein the optical functional layer has a frame structure of a color filter layer.
[18] A camera module incorporating the solid-state imaging device according to any one of [13] to [17].
[19] A step of applying a resist to the optical functional layer having a refractive index of 1.24 or less containing colloidal silica particles;
A step of pattern exposure to the resist and development;
A method of forming a pattern of the optical functional layer, comprising: etching the optical functional layer using the resist as a mask; and removing the remaining resist by dry treatment.
[20] A method for manufacturing a solid-state imaging device and a camera module, which includes a step of forming an optical functional layer by the pattern forming method according to [19].
 本明細書における基(原子群)の表記において、置換および無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。このことは、各化合物についても同義である。
 また、本明細書中における「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等を意味する。また、本発明において光とは、活性光線または放射線を意味する。本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も露光に含める。
 また、本明細書において、“単量体”と“モノマー”とは同義である。本明細書における単量体は、オリゴマーおよびポリマーと区別され、特に断らない限り、重量平均分子量が2,000以下の化合物をいう。本明細書において、重合性化合物とは、重合性官能基を有する化合物のことをいい、単量体であっても、ポリマーであってもよい。重合性官能基とは、重合反応に関与する基を言う。
 本明細書において、化学式中のMeはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を、Phはフェニル基をそれぞれ示す。
In the description of the group (atom group) in this specification, the description that does not indicate substitution and non-substitution includes those that do not have a substituent and those that have a substituent as long as the effects of the present invention are not impaired. To do. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group). This is synonymous also about each compound.
In addition, “radiation” in the present specification means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like. In the present invention, light means actinic rays or radiation. Unless otherwise specified, “exposure” in this specification is not only exposure with far-ultraviolet rays such as mercury lamps and excimer lasers, X-rays, EUV light, but also drawing with particle beams such as electron beams and ion beams. Are also included in the exposure.
In the present specification, “monomer” and “monomer” are synonymous. The monomer in the present specification is distinguished from an oligomer and a polymer, and means a compound having a weight average molecular weight of 2,000 or less unless otherwise specified. In the present specification, the polymerizable compound means a compound having a polymerizable functional group, and may be a monomer or a polymer. The polymerizable functional group refers to a group that participates in a polymerization reaction.
In the present specification, Me in the chemical formula represents a methyl group, Et represents an ethyl group, Pr represents a propyl group, Bu represents a butyl group, and Ph represents a phenyl group.
 本発明の光学機能層形成用組成物は、硬化膜としたときに、良好な透明性と低屈折率を実現することができ、塗布加工にも好適に対応することができ、かつ形成された膜の均質性、硬さ、耐湿性に優れる。
 上記の光学機能層形成用組成物を用いて成形した光学機能層は良好な光学特性を示し、これを具備する固体撮像素子およびカメラモジュールは優れた性能を発揮する。
 本発明のパターン形成方法によれば、上記光学機能層形成用組成物を用いて形成した光学機能層を良好にパターニングすることができる。
The composition for forming an optical functional layer of the present invention can realize good transparency and a low refractive index when formed as a cured film, can be suitably applied to coating processing, and has been formed. Excellent in film uniformity, hardness, and moisture resistance.
An optical functional layer molded using the above optical functional layer forming composition exhibits good optical characteristics, and a solid-state imaging device and a camera module including the optical functional layer exhibit excellent performance.
According to the pattern forming method of the present invention, the optical functional layer formed using the optical functional layer forming composition can be satisfactorily patterned.
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description and accompanying drawings.
コロイダルシリカ粒子の形状を模式的に示す拡大図である。It is an enlarged view which shows the shape of colloidal silica particle typically. 光学機能層のパターニングの製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the patterning of an optical function layer. 比較例における組成物の塗布膜の顕微鏡写真である。It is a microscope picture of the coating film of the composition in a comparative example.
 本発明の光学機能層形成用組成物は低屈折率の光学機能層の形成に好適に用いることができる。その成分として、コロイダルシリカ粒子と界面活性剤とを含有する。任意の成分としては、分散剤、溶媒等が挙げられる。以下、組成物の各成分の説明を中心に、本発明の好ましい実施形態について説明する。 The composition for forming an optical functional layer of the present invention can be suitably used for forming an optical functional layer having a low refractive index. As its components, it contains colloidal silica particles and a surfactant. Examples of optional components include a dispersant and a solvent. Hereinafter, a preferred embodiment of the present invention will be described focusing on the description of each component of the composition.
[コロイダルシリカ粒子]
 コロイダルシリカ粒子としては、数珠状のものが好ましく、金属酸化物含有シリカ等を介してシリカナノ粒子を接合したもの、ヒュームドシリカを分散させたゾル、及びこれらの混合物が好ましい。本実施形態に係る数珠状コロイダルシリカ粒子において、動的光散乱法により測定された平均粒子径(D1)と、比表面積より得られる平均粒子径(D2)との比D1/D2は3以上であることが好ましい。D1/D2の上限は特になく、20以下であることが好ましく、10以下であることがより好ましい。D1/D2をこのような範囲とすることにより、良好な光学特性を発現し、また、現像などの製造処理において凝集による作用を生じずに製造適性に優れたものとすることができる。
[Colloidal silica particles]
The colloidal silica particles are preferably beaded, and those in which silica nanoparticles are bonded via metal oxide-containing silica or the like, sols in which fumed silica is dispersed, and mixtures thereof are preferable. In the beaded colloidal silica particles according to this embodiment, the ratio D1 / D2 of the average particle diameter (D1) measured by the dynamic light scattering method and the average particle diameter (D2) obtained from the specific surface area is 3 or more. Preferably there is. There is no particular upper limit for D1 / D2, which is preferably 20 or less, and more preferably 10 or less. By setting D1 / D2 within such a range, good optical characteristics can be exhibited, and the production suitability can be improved without causing an action due to aggregation in a production process such as development.
 本発明の光学機能層形成用組成物に含有させるコロイダルシリカ粒子は、上述のとおり、数珠状であることが好ましい。数珠状のコロイダルシリカ粒子は、具体的には、複数の球状シリカ粒子が、金属酸化物含有シリカ等の接合部によって接合されたものであることが好ましい(図1参照)。このような数珠状のコロイダルシリカ粒子を用いることで、形成後の膜の屈折率を十分に低下させ、膜表面の凹凸により膜のヘイズを増大させることがないため好ましい。上記コロイダルシリカ粒子は、球状シリカ粒子が一平面内でつながっていることが好ましい。 The colloidal silica particles contained in the composition for forming an optical functional layer of the present invention are preferably beaded as described above. Specifically, the bead-like colloidal silica particles are preferably obtained by joining a plurality of spherical silica particles through a joint such as a metal oxide-containing silica (see FIG. 1). It is preferable to use such beaded colloidal silica particles because the refractive index of the formed film is sufficiently lowered and the haze of the film is not increased by the unevenness of the film surface. The colloidal silica particles preferably have spherical silica particles connected in one plane.
 上記コロイダルシリカ粒子の比表面積Sm/gから求められる平均粒子径(D2)は、球状シリカの一次粒子に近似する平均粒子径として評価することができる。平均粒子径(D2)は2nm以上であることが好ましく、5nm以上であることがより好ましい。上限としては、100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることが特に好ましい。なお、平均粒子径(D2)とは、BET法により測定した平均粒子径をいう(窒素吸着法により測定された比表面積Sm/gからD2=2720/Sの式により得られる平均粒子径)。 The average particle diameter (D2) obtained from the specific surface area Sm 2 / g of the colloidal silica particles can be evaluated as an average particle diameter approximate to the primary particles of spherical silica. The average particle diameter (D2) is preferably 2 nm or more, and more preferably 5 nm or more. The upper limit is preferably 100 nm or less, more preferably 50 nm or less, and particularly preferably 30 nm or less. The average particle diameter (D2) refers to the average particle diameter measured by the BET method (average particle diameter obtained from the specific surface area Sm 2 / g measured by the nitrogen adsorption method according to the formula D2 = 2720 / S). .
 上記比表面積から求められる平均粒子径(D2)は、透過型電子顕微鏡(TEM)によって測定した球状部分の投影像における円相当直径(D0)で代用することができる。円相当直径による平均粒子径はとくに断らない限り、50個以上の粒子の数平均で評価する。 The average particle diameter (D2) obtained from the specific surface area can be substituted with the equivalent circle diameter (D0) in the projected image of the spherical portion measured by a transmission electron microscope (TEM). The average particle diameter based on the equivalent circle diameter is evaluated by the number average of 50 or more particles unless otherwise specified.
 上記コロイダルシリカ粒子の動的光散乱法により測定された平均粒子径(D1)は、複数の球状シリカ粒子が数珠状になってまとまった二次粒子の数平均粒子径として評価することができる。したがって、通常、D1>D2の関係が成り立つ。平均粒子径(D1)は、25nm以上であることが好ましく、30nm以上であることがより好ましく、35nm以上であることが特に好ましい。上限としては、1000nm以下であることが好ましく、700nm以下であることがより好ましく、500nm以下であることがさらに好ましく、300nm以下であることが特に好ましい。 The average particle diameter (D1) of the colloidal silica particles measured by the dynamic light scattering method can be evaluated as the number average particle diameter of secondary particles in which a plurality of spherical silica particles are gathered into a bead shape. Therefore, the relationship of D1> D2 usually holds. The average particle diameter (D1) is preferably 25 nm or more, more preferably 30 nm or more, and particularly preferably 35 nm or more. The upper limit is preferably 1000 nm or less, more preferably 700 nm or less, still more preferably 500 nm or less, and particularly preferably 300 nm or less.
<数平均粒子径の測定方法>
 本明細書において動的光散乱法により測定される平均粒子径(D1)の測定は、特に断らない限り、動的光散乱式粒子径分布測定装置(日機装株式会社製 ナノトラック Nanotrac Wave-EX150[商品名])を用いて行う。手順は以下のとおりである。粒子分散物試料を20mlサンプル瓶に分取し、トルエンにより固形成分濃度が0.2質量%になるように希釈調整する。希釈後の分散試料は、40kHzの超音波を1分間照射し、その直後に試験に使用する。温度25℃で2mlの測定用石英セルを使用してデータ取り込みを10回行い、得られた「数平均」を平均粒子径とする。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
<Measurement method of number average particle diameter>
In the present specification, unless otherwise specified, the average particle size (D1) measured by the dynamic light scattering method is measured using a dynamic light scattering type particle size distribution measuring device (Nanotrack Nanotrac Wave-EX150 [manufactured by Nikkiso Co., Ltd.]. Product name]). The procedure is as follows. The particle dispersion sample is taken into a 20 ml sample bottle, and diluted with toluene so that the solid component concentration becomes 0.2% by mass. The diluted dispersion sample is irradiated with 40 kHz ultrasonic waves for 1 minute and used for the test immediately after that. Data acquisition is performed 10 times using a 2 ml measuring quartz cell at a temperature of 25 ° C., and the obtained “number average” is defined as the average particle diameter. For other detailed conditions, the description of JISZ8828: 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
 本明細書において「球状」とは、実質的に球形であれば良く、本発明の効果を奏する範囲で、変形していてもよい意味である。例えば、表面に凹凸を有する形状や、所定の方向に長さのある扁平形状も含む意味である。「数珠状」とは、「ネックレス状」と言い換えることができ、典型的には、複数の球状粒子が、これよりも外径の小さい接合部で連結された構造を意味する。接合部の外径は連結方向に見て直交する断面の直径で定義できる。接合部をなす金属酸化物含有シリカとしては、例えば非晶質のシリカ、又は、非晶質のアルミナ等が例示される。 In the present specification, the term “spherical” may be substantially spherical and may be deformed within a range where the effects of the present invention are exhibited. For example, it is meant to include a shape having irregularities on the surface and a flat shape having a length in a predetermined direction. “Beaded” can be paraphrased as “necklace”, and typically means a structure in which a plurality of spherical particles are connected by a joint having a smaller outer diameter. The outer diameter of the joint can be defined by the diameter of a cross section perpendicular to the connecting direction. Examples of the metal oxide-containing silica forming the joint include amorphous silica, amorphous alumina, and the like.
 数珠状コロイダルシリカ粒子を分散させる媒体としては、アルコール(例えば、メタノール、エタノール、イソプロパノール(IPA))、エチレングリコール、グリコールエーテル(例えば、プロピレングリコールモノメチルエーテル)、グリコールエーテルアセテート(例えば、プロピレングリコールモノメチルエーテルアセテート)等が例示される。光学機能層形成用組成物とする前の原料シリカ粒子液(ゾル)において、そのSiO濃度は5質量%~40質量%であるものが好ましい。このような数珠状コロイダルシリカ粒子が分散したシリカ粒子液(ゾル)としては、例えば特許第4328935号公報に記載されているシリカゾル等を使用することができる。 As a medium for dispersing the beaded colloidal silica particles, alcohol (for example, methanol, ethanol, isopropanol (IPA)), ethylene glycol, glycol ether (for example, propylene glycol monomethyl ether), glycol ether acetate (for example, propylene glycol monomethyl ether). Acetate) and the like. In the raw material silica particle liquid (sol) before the composition for forming an optical functional layer, the SiO 2 concentration is preferably 5% by mass to 40% by mass. As a silica particle liquid (sol) in which such beaded colloidal silica particles are dispersed, for example, a silica sol described in Japanese Patent No. 4328935 can be used.
 数珠状のコロイダルシリカの粒子液としては、液状ゾルとして市販されているものを用いることができる。例えば、日産化学工業株式会社製の「スノーテックス OUP」、「スノーテックス UP」「IPA-ST-UP」「スノーテックス PS-M」、「スノーテックス PS-MO」、「スノーテックス PS-S」、「スノーテックス PS-SO」、触媒化成工業株式会社製の「ファインカタロイドF-120」、および扶桑化学工業株式会社製の「クォートロンPL」などが挙げられる。これらの数珠状微粒子は、酸化ケイ素からなる一次粒子が多数結合し、二次元的または三次元的に湾曲した構造を有していることが好ましい。 As the particle liquid of beaded colloidal silica, a commercially available liquid sol can be used. For example, “Snowtex OUP”, “Snowtex UP”, “IPA-ST-UP”, “Snowtex PS-M”, “Snowtex PS-MO”, “Snowtex PS-S” manufactured by Nissan Chemical Industries, Ltd. , “Snowtex PS-SO”, “Fine Cataloid F-120” manufactured by Catalytic Chemical Industry Co., Ltd., and “Quartron PL” manufactured by Fuso Chemical Industry Co., Ltd., and the like. These beaded fine particles preferably have a structure in which a large number of primary particles made of silicon oxide are bonded and curved two-dimensionally or three-dimensionally.
 本発明の光学機能層形成用組成物中におけるコロイダルシリカ粒子を含むSiO分の含有量(後記アルコキシシラン加水分解物を含む総量)は、組成物中の固形分に対して0.1質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上が特に好ましい。上限としては、95質量%以下が好ましく、87.5質量%以下がより好ましく、80質量%以下が特に好ましい。コロイダルシリカ粒子の含有量を上記下限値以上とすることで、低屈折率で反射防止効果が高く、しかも膜表面の濡れ性を改善することができ好ましい。上記上限値以下とすることで、塗布性及び硬化性を良化することができ好ましい。 The content of SiO 2 containing colloidal silica particles in the composition for forming an optical functional layer of the present invention (total amount including an alkoxysilane hydrolyzate described later) is 0.1% by mass with respect to the solid content in the composition. The above is preferable, 1% by mass or more is more preferable, and 2% by mass or more is particularly preferable. As an upper limit, 95 mass% or less is preferable, 87.5 mass% or less is more preferable, and 80 mass% or less is especially preferable. By setting the content of the colloidal silica particles to be equal to or higher than the above lower limit value, it is preferable because the antireflective effect is high with a low refractive index and the wettability of the film surface can be improved. By making it into the said upper limit or less, applicability | paintability and sclerosis | hardenability can be improved and it is preferable.
 シリカの粒子液(ゾル)には、アルコキシシラン及びアルコキシシランの加水分解物からなる群より選ばれた少なくとも1種の成分(アルコキシシラン加水分解物と称する)を加えることが好ましい。これにより、成膜時に数珠状コロイダルシリカ粒子同士を強固に結合させ、成膜時に膜内の気孔率を向上させる効果を発現させることができる。また、このアルコキシシラン加水分解物を用いることにより、膜表面の濡れ性を向上させることができる。 It is preferable to add at least one component (referred to as an alkoxysilane hydrolyzate) selected from the group consisting of alkoxysilane and an alkoxysilane hydrolyzate to the silica particle liquid (sol). Thereby, the bead-like colloidal silica particles are firmly bonded to each other at the time of film formation, and the effect of improving the porosity in the film at the time of film formation can be exhibited. Moreover, the wettability of the film surface can be improved by using this alkoxysilane hydrolyzate.
 アルコキシシラン加水分解物は、アルコキシシラン化合物(A)の加水分解による縮合によって生成したものであることが好ましい。さらに、アルコキシシラン化合物(A)とフルオロアルキル基含有のアルコキシシラン化合物(B)との加水分解による縮合によって生成したものであることがより好ましい。
 アルコキシシラン加水分解物は、アルコキシシラン化合物を触媒で加水分解することで生成したシラノール(-Si-OH)が、脱水縮合し連結することで硬化する。以下にその反応を簡単に説明する。
 アルコキシシラン化合物(Si-(OR)、R:アルコキシル基)の加水分解は以下のように進行する。
 Si-(OR)+HO      → HO-Si-(OR)+R-OH
 HO-Si-(OR)+HO   → (HO)-Si-(OR)+R-OH
 (HO)-Si-(OR)+HO → (HO)-Si-OR+R-OH
 (HO)-Si-OR+HO   → Si-(OH)+R-OH
 すなわち、加水分解により、アルコキシシラン化合物に含まれるアルコキシル基がヒドロキシル基に置換され、アルコール(R-OH)が副生する。上記の反応は使用する水の量により、速度や反応率を制御可能である。
 さらに、加水分解で得られたシラノール(-Si-OH)基を脱水縮合反応することで、2つの分子が連結しシロキサン結合(Si-O-Si)を形成する。そしてシロキサン結合により連結した分子のシラノール基と他の分子のシラノール基が脱水縮合反応により連結することでアルコキシシラン加水分解物(A)が形成される。
It is preferable that the alkoxysilane hydrolyzate is produced by condensation by hydrolysis of the alkoxysilane compound (A). Furthermore, it is more preferable to produce | generate by the condensation by hydrolysis with an alkoxysilane compound (A) and a fluoroalkyl group containing alkoxysilane compound (B).
The alkoxysilane hydrolyzate is cured by dehydration condensation and linking of silanol (—Si—OH) produced by hydrolyzing an alkoxysilane compound with a catalyst. The reaction will be briefly described below.
Hydrolysis of the alkoxysilane compound (Si— (OR) 4 , R: alkoxyl group) proceeds as follows.
Si— (OR) 4 + H 2 O → HO—Si— (OR) 3 + R—OH
HO—Si— (OR) 3 + H 2 O → (HO) 2 —Si— (OR) 2 + R—OH
(HO) 2 —Si— (OR) 2 + H 2 O → (HO) 3 —Si—OR + R—OH
(HO) 3 —Si—OR + H 2 O → Si— (OH) 4 + R—OH
That is, by hydrolysis, the alkoxyl group contained in the alkoxysilane compound is substituted with a hydroxyl group, and alcohol (R—OH) is by-produced. In the above reaction, the rate and reaction rate can be controlled by the amount of water used.
Furthermore, a silanol (—Si—OH) group obtained by hydrolysis is subjected to a dehydration condensation reaction, whereby two molecules are connected to form a siloxane bond (Si—O—Si). And the alkoxysilane hydrolyzate (A) is formed by connecting the silanol group of the molecule | numerator connected by the siloxane bond, and the silanol group of another molecule | numerator by a dehydration condensation reaction.
 アルコキシシラン化合物(A)としては下記式(S1)で表される化合物が好ましい。
 
    Si(ORS1(RS2 (S1)
 
 式中、RS1は炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数6~10のアリール基を表す。なかでも、炭素数1~5のアルキル基が好ましい。RS2は炭素数1~5のアルキル基、炭素数2~5のアルケニル基、炭素数6~10のアリール基を表す。pは1~4の整数である。qは0~3の整数である。p+qは4である。
 アルコキシシラン化合物(A)としては、具体的には、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等が挙げられる。このうち、硬度が高い膜が得られることから、テトラメトキシシランが好ましい。
 フルオロアルキル基含有のアルコキシシラン化合物(B)としては、具体的には、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン等が挙げられる。
As the alkoxysilane compound (A), a compound represented by the following formula (S1) is preferable.

Si (OR S1 ) p (R S2 ) q (S1)

In the formula, R S1 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an aryl group having 6 to 10 carbon atoms. Of these, an alkyl group having 1 to 5 carbon atoms is preferable. R S2 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an aryl group having 6 to 10 carbon atoms. p is an integer of 1 to 4. q is an integer of 0 to 3. p + q is 4.
Specific examples of the alkoxysilane compound (A) include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, and vinyltriethoxy. Examples thereof include silane, phenyltrimethoxysilane, and phenyltriethoxysilane. Among these, tetramethoxysilane is preferable because a film having high hardness can be obtained.
Specific examples of the fluorosilane-containing alkoxysilane compound (B) include trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, hepta Examples include decafluorodecyltrimethoxysilane and heptadecafluorodecyltriethoxysilane.
 フルオロアルキル基含有のアルコキシシラン化合物(B)は下記式(S2-1)または(S2-2)で表される化合物であることが好ましい。
 
   CF(CR Si(ORS3 (S2-1)
 
   CF(CFCHCHSi(ORS3 (S2-2)
 
 式中、Rは水素原子、ハロゲン原子(フッ素原子等)またはRS3で表される置換基であり、水素原子またはハロゲン原子(フッ素原子等)が好ましい。kは0~10の整数である。
 RS3は1個~5個の炭素原子を有するアルキル基、炭素数2~5のアルケニル基、炭素数6~10のアリール基を表す。なかでも、炭素数1~5のアルキル基が好ましい。nは0~8の整数を表す。
 なお、RS1~RS3は任意の置換基を伴ってもよく、例えば、ハロゲン原子(フッ素原子等)を有していてもよい。
The fluoroalkyl group-containing alkoxysilane compound (B) is preferably a compound represented by the following formula (S2-1) or (S2-2).

CF 3 (CR F 2 ) k Si (OR S3 ) 3 (S2-1)

CF 3 (CF 2 ) n CH 2 CH 2 Si (OR S3 ) 3 (S2-2)

In the formula, R F is a hydrogen atom, a halogen atom (such as a fluorine atom) or a substituent represented by R S3 , and preferably a hydrogen atom or a halogen atom (such as a fluorine atom). k is an integer of 0 to 10.
R S3 represents an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an aryl group having 6 to 10 carbon atoms. Of these, an alkyl group having 1 to 5 carbon atoms is preferable. n represents an integer of 0 to 8.
R S1 to R S3 may be accompanied by any substituent, and may have, for example, a halogen atom (fluorine atom or the like).
 アルコキシシラン化合物(A)と、フルオロアルキル基含有のアルコキシシラン化合物(B)との加水分解物は、有機溶媒中において、これらを加水分解(縮合)させることにより生成させることができる。具体的には、上記アルコキシシラン化合物(A)と必要により上記フルオロアルキル基含有のアルコキシシラン化合物(B)を、質量比で1:0.3~1.6(A:B)の割合で混合する。アルコキシシラン化合物(A)とフルオロアルキル基含有のアルコキシシラン化合物(B)の割合は、質量比で1:0.5~1.3(A:B)とするのが好ましい。そして、上記混合物1質量部に対して、水(C)を0.5~5質量部、有機酸(例えばギ酸)(D)を0.005質量部~0.5質量部、アルコール、グリコールエーテル、又はグリコールエーテルアセテートの有機溶媒(E)を0.5質量部~5質量部の割合で混合してアルコキシシラン化合物(A)とフルオロアルキル基含有のアルコキシシラン化合物(B)の加水分解反応を進行させることが好ましい。このうち、水(C)の割合は0.8質量部~3質量部が好ましい。水(C)としては、不純物の混入防止のため、イオン交換水や純水等を使用するのが望ましい。有機酸(ギ酸)(D)の割合は0.008質量部~0.2質量部が好ましい。 The hydrolyzate of the alkoxysilane compound (A) and the fluoroalkyl group-containing alkoxysilane compound (B) can be produced by hydrolyzing (condensing) them in an organic solvent. Specifically, the alkoxysilane compound (A) and, if necessary, the fluoroalkyl group-containing alkoxysilane compound (B) are mixed at a mass ratio of 1: 0.3 to 1.6 (A: B). To do. The ratio of the alkoxysilane compound (A) to the fluoroalkyl group-containing alkoxysilane compound (B) is preferably 1: 0.5 to 1.3 (A: B) by mass ratio. In addition, 0.5 to 5 parts by mass of water (C), 0.005 to 0.5 parts by mass of organic acid (for example, formic acid) (D), alcohol, glycol ether with respect to 1 part by mass of the mixture. Alternatively, an organic solvent (E) of glycol ether acetate is mixed at a ratio of 0.5 to 5 parts by mass to hydrolyze the alkoxysilane compound (A) and the fluoroalkyl group-containing alkoxysilane compound (B). It is preferable to proceed. Of these, the proportion of water (C) is preferably 0.8 to 3 parts by mass. As the water (C), it is desirable to use ion-exchanged water, pure water or the like in order to prevent impurities from being mixed. The proportion of the organic acid (formic acid) (D) is preferably 0.008 to 0.2 parts by mass.
 有機溶媒(E)に用いられるアルコールとしては、メタノール、エタノール、プロパノール、イソプロピルアルコール(IPA)等が挙げられる。また、グリコールエーテルとしては、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル等が挙げられる。また、グリコールエーテルアセテートとしては、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート等が挙げられる。有機溶媒(E)を、これらアルコール、グリコールエーテル又はグリコールエーテルアセテートに限定した理由は、ケイ素アルコキド(A)及びフルオロアルキル基含有のケイ素アルコキシド(B)との混合がしやすいのためである。このうち、加水分解反応の制御がしやすく、また膜形成時に良好な塗布性が得られることから、エタノール、IPA、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテートが好ましい。有機溶媒(E)の割合は0.5質量部~3.5質量部が好ましい。 Examples of the alcohol used for the organic solvent (E) include methanol, ethanol, propanol, isopropyl alcohol (IPA) and the like. As glycol ethers, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monoethyl ether, dipropylene glycol monoethyl ether Etc. As glycol ether acetate, ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monoethyl ether Examples include acetate and dipropylene glycol monoethyl ether acetate. The reason why the organic solvent (E) is limited to these alcohols, glycol ethers or glycol ether acetates is that mixing with the silicon alkoxide (A) and the fluoroalkoxy group-containing silicon alkoxide (B) is easy. Of these, ethanol, IPA, ethylene glycol monomethyl ether, and ethylene glycol monomethyl ether acetate are preferred because the hydrolysis reaction can be easily controlled and good coatability can be obtained during film formation. The proportion of the organic solvent (E) is preferably 0.5 to 3.5 parts by mass.
 本発明の光学機能層形成用組成物において、上記アルコキシシラン加水分解物とコロイダルシリカ粒子は、アルコキシシラン加水分解物のSiO分を10質量部とするときに、コロイダルシリカ粒子のSiO分が5質量部~500質量部となるように混合して調製されることが好ましい。さらに、コロイダルシリカ粒子のSiO分が100質量部~300質量部となる割合とするのがより好ましい。
 アルコキシシラン加水分解物に対してコロイダルシリカ粒子が少なすぎると、形成後の膜の屈折率を十分に低下させることが出来ないことが生じる。一方、これが多すぎると、コロイダルシリカ粒子同士を結合させることが出来ず、膜の硬度が著しく低下することが生じる。
In the optical functional layer forming composition of the present invention, the alkoxysilane hydrolyzate and colloidal silica particles, the SiO 2 minutes of alkoxysilane hydrolyzate when 10 parts by weight, SiO 2 minutes of the colloidal silica particles It is preferably prepared by mixing so as to be 5 parts by mass to 500 parts by mass. Further, it is more preferable that the colloidal silica particles have a SiO 2 content of 100 to 300 parts by mass.
When there are too few colloidal silica particles with respect to an alkoxysilane hydrolyzate, the refractive index of the film after formation may not be able to be lowered sufficiently. On the other hand, if the amount is too large, the colloidal silica particles cannot be bonded to each other, and the film hardness is remarkably lowered.
(界面活性剤)
 本発明の光学機能層形成用組成物には界面活性剤が適用される。界面活性剤としては、ノニオン界面活性剤、カチオン界面活性剤、アニオン界面活性剤のいずれを用いてもよい。これらの中でも、ノニオン界面活性剤においては、フッ素系界面活性剤が好ましい。とくに、フッ素系界面活性剤、アニオン界面活性剤、またはカチオン高分子界面活性剤が好ましい。
(Surfactant)
A surfactant is applied to the composition for forming an optical functional layer of the present invention. As the surfactant, any of a nonionic surfactant, a cationic surfactant, and an anionic surfactant may be used. Among these, in the nonionic surfactant, a fluorosurfactant is preferable. In particular, a fluorosurfactant, an anionic surfactant, or a cationic polymer surfactant is preferred.
 本発明においては、ポリオキシアルキレン構造を有する界面活性剤を含有することが好ましい。ポリオキシアルキレン構造とは、アルキレン基と二価の酸素原子が隣接して存在している構造のことをいい、具体的にはエチレンオキサイド(EO)構造、プロピレンオキサイド(PO)構造などが挙げられる。ポリオキシアルキレン構造は、アクリルポリマーのグラフト鎖を構成していてもよい。 In the present invention, it is preferable to contain a surfactant having a polyoxyalkylene structure. The polyoxyalkylene structure refers to a structure in which an alkylene group and a divalent oxygen atom are present adjacent to each other, and specific examples include an ethylene oxide (EO) structure and a propylene oxide (PO) structure. . The polyoxyalkylene structure may constitute a graft chain of an acrylic polymer.
 界面活性剤が高分子化合物であるとき、分子量は1500以上であることが好ましく、2500以上であることがより好ましく、5000以上であることがさらに好ましく、10000以上であることが特に好ましい。上限としては、50000以下であることが好ましく、25000以下であることがより好ましく、17500以下であることが特に好ましい。 When the surfactant is a polymer compound, the molecular weight is preferably 1500 or more, more preferably 2500 or more, still more preferably 5000 or more, and particularly preferably 10,000 or more. As an upper limit, it is preferable that it is 50000 or less, It is more preferable that it is 25000 or less, It is especially preferable that it is 17500 or less.
<分子量の測定方法>
 本発明において高分子化合物(ポリマーもしくはオリゴマー)の分子量については、特に断らない限り、重量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算で計測した値を採用する。測定装置および測定条件としては、下記条件1によることを基本とし、試料の溶解性等により条件2とすることを許容する。ただし、ポリマー種によっては、さらに適宜適切なキャリア(溶離液)およびそれに適合したカラムを選定して用いてもよい。その他の事項については、JISK7252-1~4:2008を参照することとする。
(条件1)
  カラム:TOSOH TSKgel Super HZM-H、
      TOSOH TSKgel Super HZ4000、
      TOSOH TSKgel Super HZ2000
      をつないだカラムを用いる
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
  注入量:0.1ml
(条件2)
  カラム:TOSOH TSKgel Super AWM-Hを2本つなげる
  キャリア:10mM LiBr/N-メチルピロリドン
  測定温度:40℃
  キャリア流量:1.0ml/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
  注入量:0.1ml
<Measurement method of molecular weight>
In the present invention, the molecular weight of the polymer compound (polymer or oligomer) means a weight average molecular weight unless otherwise specified, and employs a value measured in terms of standard polystyrene by gel permeation chromatography (GPC). The measuring device and measurement conditions are basically based on the following condition 1 and are allowed to be set to condition 2 depending on the solubility of the sample. However, depending on the polymer type, an appropriate carrier (eluent) and a column suitable for it may be selected and used. For other matters, refer to JISK7252-1 to 4: 2008.
(Condition 1)
Column: TOSOH TSKgel Super HZM-H,
TOSOH TSKgel Super HZ4000,
TOSOH TSKgel Super HZ2000
Carrier: tetrahydrofuran Measurement temperature: 40 ° C
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector Injection amount: 0.1 ml
(Condition 2)
Column: Two TOSOH TSKgel Super AWM-Hs are connected Carrier: 10 mM LiBr / N-methylpyrrolidone Measurement temperature: 40 ° C.
Carrier flow rate: 1.0 ml / min
Sample concentration: 0.1% by mass
Detector: RI (refractive index) detector Injection amount: 0.1 ml
 フッ素系界面活性剤としては、ポリエチレン主鎖を有するポリマー(高分子)界面活性剤であることが好ましい。なかでも、ポリ(メタ)クリレート構造を有するポリマー(高分子)界面活性剤が好ましい。なお、ポリ(メタ)クリレートとは、ポリアクリレートと、ポリメタクリレートの総称である。なかでも、本発明においては、上記ポリオキシアルキレン構造を有する(メタ)アクリレート構成単位と、フッ化アルキルアクリレート構成単位との共重合体が好ましい。 The fluorine-based surfactant is preferably a polymer (polymer) surfactant having a polyethylene main chain. Among these, a polymer (polymer) surfactant having a poly (meth) acrylate structure is preferable. Poly (meth) acrylate is a general term for polyacrylate and polymethacrylate. Especially, in this invention, the copolymer of the (meth) acrylate structural unit which has the said polyoxyalkylene structure, and a fluoroalkyl acrylate structural unit is preferable.
 あるいは、フッ素系界面活性剤として、いずれかの部位にフルオロアルキル又はフルオロアルキレン基(炭素数1~24が好ましく、2~12がより好ましい。)を有する化合物を好適に用いることができる。好ましくは、側鎖に上記フルオロアルキル又はフルオロアルキレン基を有する高分子化合物を用いることができる。フッ素系界面活性剤としては、さらに上記ポリオキシアルキレン構造を有することが好ましく、側鎖にポリオキシアルキレン構造を有することがより好ましい。フッ素系界面活性剤は、下記式(F)で表される共重合体であることが好ましい。 Alternatively, a compound having a fluoroalkyl or fluoroalkylene group (preferably having 1 to 24 carbon atoms, more preferably 2 to 12 carbon atoms) at any position can be suitably used as the fluorosurfactant. Preferably, a polymer compound having the above fluoroalkyl or fluoroalkylene group in the side chain can be used. The fluorine-based surfactant preferably further has the polyoxyalkylene structure, and more preferably has a polyoxyalkylene structure in the side chain. The fluorosurfactant is preferably a copolymer represented by the following formula (F).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 RF1は水素原子、炭素数1~3のアルキル基、またはシアノ基であり、水素原子または炭素数1~3のアルキル基が好ましい。
 RF2はハロゲン原子(フッ素原子等)が置換することがあるアルキル基(炭素数1~36が好ましく、2~24がより好ましく、4~12が特に好ましい)、ハロゲン原子(フッ素原子等)が置換することがあるアルケニル基(炭素数2~12が好ましく、2~6がより好ましい)、ハロゲン原子(フッ素原子等)が置換することがあるアリール基(炭素数6~22が好ましく、6~14がより好ましく、6~10が特に好ましい)である。RF2はなかでも含フッ素アルキル基であることが好ましい。RF2には少なくとも1つのハロゲン原子(特にフッ素原子)が置換していることが好ましい。
 RF3はアルキレンオキシ基含有基またはポリアルキレンオキシ基含有基であり、下記式(f)の構造が好ましい。
 
  -(LO)nFH     (f)
 
 Lはアルキレン基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)である。nFは正の整数であり、1~20が好ましく、1~10がより好ましい。アルキレン基は、複数種類のアルキレン基で構成されていてもよい。具体的には、エチレンオキシ基、プロピレンオキシ基が挙げられる。nFが2以上のとき、Lは互いに異なっていてもよい。
R F1 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a cyano group, preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
R F2 is an alkyl group (preferably having a carbon number of 1 to 36, more preferably 2 to 24, particularly preferably 4 to 12) or a halogen atom (such as a fluorine atom) that may be substituted by a halogen atom (such as a fluorine atom). An alkenyl group that may be substituted (preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms), an aryl group that may be substituted by a halogen atom (such as a fluorine atom) (preferably 6 to 22 carbon atoms, preferably 6 to 6 carbon atoms) 14 is more preferable, and 6 to 10 is particularly preferable. R F2 is preferably a fluorine-containing alkyl group. R F2 is preferably substituted with at least one halogen atom (particularly a fluorine atom).
R F3 is an alkyleneoxy group-containing group or a polyalkyleneoxy group-containing group, and preferably has a structure represented by the following formula (f).

-(L F O) nF H (f)

L F is an alkylene group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6, 1-3 particularly preferred) is. nF is a positive integer, preferably 1 to 20, and more preferably 1 to 10. The alkylene group may be composed of a plurality of types of alkylene groups. Specific examples include an ethyleneoxy group and a propyleneoxy group. When nF is 2 or more, L F may be different from each other.
 フッ素系界面活性剤としては、下記式(F1)で表される共重合体も好ましい。 As the fluorosurfactant, a copolymer represented by the following formula (F1) is also preferable.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 X~Xは、各々独立に、水素原子、アルキル基、またはフルオロアルキル基を表す。
 Aは、酸素原子、硫黄原子又は-NR-を表す。式中、Rは、水素原子またはアルキル基を表す。
 X、X、X、X及びRのアルキル基は、炭素原子数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい。例えば、メチル基、エチル基、プロピル基、i-プロピル基、ブチル基、i-ブチル基、t-ブチル基等を挙げることができる。
 m2及びm3は、各々独立に、1~100の整数を表す。
 n1は、1~20の整数を表す。n1が2以上である場合、Xは同一でも異なっていてもよく、エチレンオキシ基とプロピレンオキシ基とが存在して構成されることが好ましい。なお、アルキレンオキシ基が分岐状である場合、分岐位置は上記式で示される酸素と連結する炭素で分岐する態様でも、酸素から離れた炭素で分岐している態様でも、どちらでもよい。実際には、分岐位置が異なるアルキレンオキシ基の混合物となる。
 Rfは、フルオロアルキル基を表す。
X 1 to X 4 each independently represents a hydrogen atom, an alkyl group, or a fluoroalkyl group.
A represents an oxygen atom, a sulfur atom or —NR—. In the formula, R represents a hydrogen atom or an alkyl group.
The alkyl group of X 1 , X 2 , X 3 , X 4 and R preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms. Examples thereof include a methyl group, an ethyl group, a propyl group, an i-propyl group, a butyl group, an i-butyl group, and a t-butyl group.
m2 and m3 each independently represents an integer of 1 to 100.
n1 represents an integer of 1 to 20. If n1 is 2 or more, X 3 may be the same or different, it is preferred that the ethyleneoxy group and a propyleneoxy group is configured exist. In the case where the alkyleneoxy group is branched, the branching position may be either an embodiment branched by carbon linked to oxygen represented by the above formula or an embodiment branched by carbon away from oxygen. In practice, this is a mixture of alkyleneoxy groups with different branch positions.
Rf 1 represents a fluoroalkyl group.
 X~X及びRfのフルオロアルキル基としては、炭素原子数1~30が好ましく、1~24がより好ましく、2~12が特に好ましい。このときアルキル鎖に、1~6個の酸素原子(オキシ基)が介在していてもよい。例えば、-CF、-C、-C、-CHCF、-CH、-CH、-CH、-CH13、-CCF、-C、-C、-C13、-C17、-CHCH(CH)CF、-CHCH(CF、-CHCF(CF、-CHCH(CF、-CFCF(CF)OCF、-CFCF(CF)OC、-COCFCF(CF)OCF、-COCFCF(CF)OC、-C(CF)=C(CF(CF等を挙げることができる。 The fluoroalkyl group of X 1 to X 4 and Rf 1 preferably has 1 to 30 carbon atoms, more preferably 1 to 24, and particularly preferably 2 to 12. At this time, 1 to 6 oxygen atoms (oxy groups) may be interposed in the alkyl chain. For example, —CF 3 , —C 2 F 5 , —C 4 F 9 , —CH 2 CF 3 , —CH 2 C 2 F 5 , —CH 2 C 3 F 7 , —CH 2 C 4 F 9 , —CH 2 C 6 F 13 , —C 2 H 4 CF 3 , —C 2 H 4 C 2 F 5 , —C 2 H 4 C 4 F 9 , —C 2 H 4 C 6 F 13 , —C 2 H 4 C 8 F 17 , —CH 2 CH (CH 3 ) CF 3 , —CH 2 CH (CF 3 ) 2 , —CH 2 CF (CF 3 ) 2 , —CH 2 CH (CF 3 ) 2 , —CF 2 CF ( CF 3 ) OCF 3 , —CF 2 CF (CF 3 ) OC 3 F 7 , —C 2 H 4 OCF 2 CF (CF 3 ) OCF 3 , —C 2 H 4 OCF 2 CF (CF 3 ) OC 3 F 7 , —C (CF 3 ) ═C (CF (CF 3 ) 2 ) 2 and the like.
 フッ素系界面活性剤としては、例えば、メガファックF171、同F172、同F173、同F176、同F177、同F141、同F142、同F143、同F144、同R30、同F437、同F479、同F482、同F554、同F780、同F781F(以上、DIC株式会社製)、フロラードFC430、同FC431、同FC171(以上、住友スリーエム株式会社製)、サーフロンS-382、同S-141、同S-145、同SC-101、同SC-103、同SC-104、同SC-105、同SC1068、同SC-381、同SC-383、同S393、同KH-40(以上、旭硝子株式会社製)、エフトップEF301、同EF303、同EF351、同EF352(以上、株式会社ジェムコ製)、PF636、PF656、PF6320、PF6520、PF7002(OMNOVA社製)等が挙げられる。 Examples of the fluorosurfactant include Megafac F171, F172, F173, F176, F176, F177, F141, F142, F143, F144, R30, F437, F479, F482, F554, F780, F781F (from DIC Corporation), Florard FC430, FC431, FC171 (from Sumitomo 3M Corporation), Surflon S-382, S-141, S-145, SC-101, SC-103, SC-104, SC-105, SC1068, SC-381, SC-383, S393, KH-40 (above, manufactured by Asahi Glass Co., Ltd.), F Top EF301, EF303, EF351, EF352 (above, manufactured by Gemco Co., Ltd.), PF636 PF656, PF6320, PF6520, PF7002 (OMNOVA Inc.) and the like.
 ノニオン界面活性剤として具体的には、グリセロール、トリメチロールプロパン、トリメチロールエタンのエトキシレート及びプロポキシレート(例えば、グリセロールプロポキシレート、グリセリンエトキシレート等)、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル(花王株式会社製のエマルゲン 404等)、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート、青木油脂工業株式会社製のELEBASE BUB-3等が挙げられる。 Specific examples of the nonionic surfactant include glycerol, trimethylolpropane, trimethylolethane ethoxylate and propoxylate (for example, glycerol propoxylate, glycerol ethoxylate, etc.), polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, Polyoxyethylene oleyl ether (Emulgen 404 manufactured by Kao Corporation), polyoxyethylene octylphenyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol dilaurate, polyethylene glycol distearate, ELEBASE BUB- manufactured by Aoki Oil & Fat Co., Ltd. 3 etc. are mentioned.
 アニオン界面活性剤として具体的には、W004、W005、W017(裕商株式会社製)、クラリアントジャパン株式会社製のEMULSOGEN COL-020、EMULSOGEN COA-070、EMULSOGEN COL-080、第一工業製薬株式会社製のプライサーフ A208B等が挙げられる。アニオン性を示す基としては、カルボキシル基、スルホン酸基、ホスホン酸基、リン酸基が挙げられ、なかでも、カルボキシル基が好ましい。これらの酸基は塩を形成していてもよい。 Specific examples of anionic surfactants include W004, W005, W017 (manufactured by Yusho Co., Ltd.), EMULSOGEN COL-020, EMULSOGEN COA-070, EMULSOGEN COL-080, Daiichi Kogyo Seiyaku Co., Ltd., manufactured by Clariant Japan. Examples include Plysurf A208B. Examples of the anionic group include a carboxyl group, a sulfonic acid group, a phosphonic acid group, and a phosphoric acid group, and among them, a carboxyl group is preferable. These acid groups may form a salt.
 カチオン性界面活性剤、一般に、同一分子内に親水性部であるカチオン性部と疎水性部を複数有する。親水性部のカチオン性基としては、アミノ基またはその塩、4級アンモニウム基または塩、ヒドロキシアンモニウム基または塩、エーテルアンモニウム基または塩、ピリジニウム基または塩、イミダゾリウム基または塩、イミダゾリン基または塩、ホスホニウム基または塩などが挙げられる。カチオン性界面活性剤としては、第4級アンモニウム塩系界面活性剤、アルキルピリジウム系界面活性剤、ポリアリルアミン系界面活性剤等が挙げられる。 Cationic surfactant, generally having a plurality of cationic parts and hydrophobic parts which are hydrophilic parts in the same molecule. As the cationic group of the hydrophilic part, an amino group or a salt thereof, a quaternary ammonium group or salt, a hydroxyammonium group or salt, an ether ammonium group or salt, a pyridinium group or salt, an imidazolium group or salt, an imidazoline group or salt , A phosphonium group or a salt. Examples of the cationic surfactant include quaternary ammonium salt surfactants, alkyl pyridium surfactants, polyallylamine surfactants, and the like.
 シリコーン系界面活性剤としては、例えば、東レ・ダウコーニング株式会社製「トーレシリコーンDC3PA」、「トーレシリコーンSH7PA」、「トーレシリコーンDC11PA」、「トーレシリコーンSH21PA」、「トーレシリコーンSH28PA」、「トーレシリコーンSH29PA」、「トーレシリコーンSH30PA」、「トーレシリコーンSH8400」、モメンティブ・パフォーマンス・マテリアルズ社製「TSF-4440」、「TSF-4300」、「TSF-4445」、「TSF-4460」、「TSF-4452」、信越シリコーン株式会社製「KP341」、「KF6001」、「KF6002」、ビックケミー社製「BYK307」、「BYK323」、「BYK330」、GELEST社製「DBE-224」、「DBE-621」等が挙げられる。 Examples of silicone surfactants include “Toray Silicone DC3PA”, “Toray Silicone SH7PA”, “Tore Silicone DC11PA”, “Tore Silicone SH21PA”, “Tore Silicone SH28PA”, and “Toray Silicone” manufactured by Toray Dow Corning Co., Ltd. “SH29PA”, “Tore Silicone SH30PA”, “Tore Silicone SH8400”, “TSF-4440”, “TSF-4300”, “TSF-4445”, “TSF-4460”, “TSF-” manufactured by Momentive Performance Materials 4452 ”,“ KP341 ”,“ KF6001 ”,“ KF6002 ”manufactured by Shin-Etsu Silicone Co., Ltd.,“ BYK307 ”,“ BYK323 ”,“ BYK330 ”manufactured by Big Chemie,“ DBE ”manufactured by GELEST 224 "," DBE-621 ", and the like.
 界面活性剤の添加量は、その下限値としては、前述のコロイダルシリカ粒子を含むSiO分100質量部に対し0.1質量部以上の範囲で添加されるのが好ましく、1質量部以上であることがより好ましく、2質量部以上が特に好ましい。上限値は、50質量部以下が好ましく、40質量部以下がより好ましく、10質量部以下が特に好ましい。
 本発明の光学機能層形成用組成物中における界面活性剤の含有量は、組成物中の固形分に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が特に好ましい。上限としては、1質量%以下が好ましく、0.75質量%以下がより好ましく、0.5質量%以下が特に好ましい。
 界面活性剤の含有量を上記下限値以上とすることで、スジ状の塗布欠陥を改良することができ好ましい。上記上限値以下とすることで、相溶性を良化することができ好ましい。
 界面活性剤は、1種のみを用いてもよいし、2種類以上を組み合わせてもよい。
The addition amount of the surfactant is, as its lower limit, preferably added in a range of 0.1 parts by mass or more with respect to 100 parts by mass of SiO 2 containing the above-mentioned colloidal silica particles, and 1 part by mass or more. More preferably, it is more preferably 2 parts by mass or more. The upper limit is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and particularly preferably 10 parts by mass or less.
The content of the surfactant in the composition for forming an optical functional layer of the present invention is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on the solid content in the composition. 1 mass% or more is particularly preferable. As an upper limit, 1 mass% or less is preferable, 0.75 mass% or less is more preferable, and 0.5 mass% or less is especially preferable.
By setting the content of the surfactant to the above lower limit value or more, it is possible to improve streaky coating defects. By making it into the said upper limit or less, compatibility can be improved and it is preferable.
Only one type of surfactant may be used, or two or more types may be combined.
 界面活性剤は組成物が光学機能層に形成された際にそのまま界面活性剤の構造を維持して、あるいは、多少分解が進んだ形でその残留分として存在していることが好ましい。光学機能層中の界面活性剤もしくはその残留分の検出は、TOF-SIMS(飛行時間型二次イオン質量分析法)、斜め切削XPS(X線光電子分光)、ラマン分光、FT-IR(フーリエ変換型赤外線分光)という方法で行うことができる。 It is preferable that the surfactant is present as a residue in the form in which the composition of the surfactant is maintained as it is when the composition is formed on the optical functional layer, or is slightly decomposed. Detection of surfactant or its residue in the optical functional layer is performed using TOF-SIMS (time-of-flight secondary ion mass spectrometry), oblique cutting XPS (X-ray photoelectron spectroscopy), Raman spectroscopy, FT-IR (Fourier transform). Type infrared spectroscopy).
[分散剤]
 本発明においては、光学機能層形成用組成物に分散剤を用いることも好ましい。
 分散剤としては、高分子分散剤(例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物)、及び、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンアルキルアミン、アルカノールアミン、顔料誘導体等を挙げることができる。
 高分子分散剤は、その構造から更に直鎖状高分子、末端変性型高分子、グラフト型高分子、ブロック型高分子に分類することができる。
[Dispersant]
In the present invention, it is also preferable to use a dispersant in the composition for forming an optical functional layer.
As the dispersant, a polymer dispersant (for example, polyamidoamine and its salt, polycarboxylic acid and its salt, high molecular weight unsaturated acid ester, modified polyurethane, modified polyester, modified poly (meth) acrylate, (meth) acrylic type) Copolymer, naphthalenesulfonic acid formalin condensate), polyoxyethylene alkyl phosphate ester, polyoxyethylene alkyl amine, alkanol amine, pigment derivative and the like.
The polymer dispersant can be further classified into a linear polymer, a terminal-modified polymer, a graft polymer, and a block polymer from the structure thereof.
 高分子分散剤は粒子の表面に吸着し、再凝集を防止するように作用する。そのため、粒子表面へのアンカー部位を有する末端変性型高分子、グラフト型高分子、ブロック型高分子が好ましい構造として挙げることができる。一方で、顔料誘導体は粒子表面を改質することで、高分子分散剤の吸着を促進させる効果を有する。 The polymer dispersant is adsorbed on the particle surface and acts to prevent reaggregation. Therefore, a terminal-modified polymer, a graft polymer, and a block polymer having an anchor site to the particle surface can be cited as preferred structures. On the other hand, the pigment derivative has an effect of promoting the adsorption of the polymer dispersant by modifying the particle surface.
 本実施形態に用いうる分散剤の具体例としては、BYK Chemie社製「Disperbyk-101(ポリアミドアミン燐酸塩)、107(カルボン酸エステル)、110(酸基を含む共重合物)、130(ポリアミド)、161、162、163、164、165、166、170(高分子共重合物)」、「BYK-P104、P105(高分子量不飽和ポリカルボン酸)、BYK2001」、Frankl & Kirchner 社製「EFKA4047、4050、4010、4165(ポリウレタン系)、EFKA4330、4340(ブロック共重合体)、4400、4402(変性ポリアクリレート)、5010(ポリエステルアミド)、5765(高分子量ポリカルボン酸塩)、6220(脂肪酸ポリエステル)、6745(フタロシアニン誘導体)、6750(アゾ顔料誘導体)」、味の素ファインテクノ株式会社製「アジスパーPB821、PB822」、共栄社化学株式会社製「フローレンTG-710(ウレタンオリゴマー)」、「ポリフローNo.50E、No.300(アクリル系共重合体)」、楠本化成株式会社製「ディスパロンKS-860、873SN、874、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル)、DA-703-50、DA-705、DA-725」、花王株式会社製「デモールRN、N(ナフタレンスルホン酸ホルマリン重縮合物)、MS、C、SN-B(芳香族スルホン酸ホルマリン重縮合物)」、「ホモゲノールL-18(高分子ポリカルボン酸)」、「エマルゲン920、930、935、985(ポリオキシエチレンノニルフェニルエーテル)」、「アセタミン86(ステアリルアミンアセテート)」、日本ルーブリゾール株式会社製「ソルスパース5000(フタロシアニン誘導体)、22000(アゾ顔料誘導体)、13240(ポリエステルアミン)、3000、17000、27000(末端部に機能部を有する高分子)、24000、28000、32000、38500(グラフト型高分子)」、日光ケミカル株式会社製「ニッコールT106(ポリオキシエチレンソルビタンモノオレート)、MYS-IEX(ポリオキシエチレンモノステアレート)」等が挙げられる。 Specific examples of the dispersant that can be used in the present embodiment include “Disperbyk-101 (polyamide amine phosphate), 107 (carboxylic acid ester), 110 (copolymer containing an acid group)”, 130 (polyamide) manufactured by BYK Chemie. ), 161, 162, 163, 164, 165, 166, 170 (polymer copolymer) ”,“ BYK-P104, P105 (high molecular weight unsaturated polycarboxylic acid), BYK2001 ”,“ EFKA4047 ”manufactured by Frankl & Kirchner. 4050, 4010, 4165 (polyurethane), EFKA 4330, 4340 (block copolymer), 4400, 4402 (modified polyacrylate), 5010 (polyesteramide), 5765 (high molecular weight polycarboxylate), 6220 (fatty acid polyester) ), 745 (phthalocyanine derivatives), 6750 (azo pigment derivatives) ”,“ Ajisper PB821, PB822 ”manufactured by Ajinomoto Fine Techno Co., Ltd.,“ Floren TG-710 (urethane oligomer) ”manufactured by Kyoeisha Chemical Co., Ltd.,“ Polyflow No. 50E, No. .300 (acrylic copolymer) ”,“ Disparon KS-860, 873SN, 874, # 2150 (aliphatic polycarboxylic acid), # 7004 (polyether ester), DA-703-50, manufactured by Enomoto Kasei Co., Ltd. , DA-705, DA-725 ”,“ Demol RN, N (Naphthalenesulfonic acid formalin polycondensate), MS, C, SN-B (aromatic sulfonic acid formalin polycondensate) ”manufactured by Kao Corporation,“ Homogenol ” L-18 (polymeric polycarboxylic acid) "," Emulgen 920, 930 " 935, 985 (polyoxyethylene nonylphenyl ether) "," acetamine 86 (stearylamine acetate) ", Nippon Lubrizol Corporation" Solsperse 5000 (phthalocyanine derivative), 22000 (azo pigment derivative), 13240 (polyesteramine), 3000, 17000, 27000 (polymer having a functional part at the end), 24000, 28000, 32000, 38500 (graft type polymer) ”,“ Nikkor T106 (polyoxyethylene sorbitan monooleate) ”manufactured by Nikko Chemical Co., Ltd., MYS -IEX (polyoxyethylene monostearate) "and the like.
 分散剤の濃度としては、コロイダルシリカ粒子を含むSiO分100部に対して、1質量部~100質量部であることが好ましく、3質量部~100質量部がより好ましく、5質量部~80質量部がさらに好ましい。また、組成物の全固形分に対し、1質量%~30質量%であることが好ましい。
 これらの分散剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
The concentration of the dispersing agent is preferably 1 part by mass to 100 parts by mass, more preferably 3 parts by mass to 100 parts by mass with respect to 100 parts by mass of SiO 2 containing colloidal silica particles, and 5 parts by mass to 80 parts by mass. Part by mass is more preferable. Further, it is preferably 1% by mass to 30% by mass with respect to the total solid content of the composition.
These dispersants may be used alone or in combination of two or more.
[溶媒]
 本発明の光学機能層形成用組成物には、先にコロイダルシリカの粒子液(ゾル)の調製溶媒として述べたものとともに、またはそのほかに、さらに溶媒を含有させてもよい。あるいは、調製溶媒を切り替えて下記の溶媒を含むものとしてもよい。組成物に含まれる溶媒としては、たとえば、有機溶媒(脂肪族化合物、ハロゲン化炭化水素化合物、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物、ニトリル化合物、アミド化合物、スルホキシド化合物、芳香族化合物)または水が挙げられる。それぞれの例を下記に列挙する。
・脂肪族化合物
 ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ペンタン、シクロペンタンなど
・ハロゲン化炭化水素化合物
 塩化メチレン、クロロホルム、ジクロルメタン、二塩化エタン、四塩化炭素、トリクロロエチレン、テトラクロロエチレン、エピクロロヒドリン、モノクロロベンゼン、オルソジクロロベンゼン、アリルクロライド、ハイドロクロロフルオロカーボン(HCFC)、モノクロロ酢酸メチル、モノクロロ酢酸エチル、モノクロロ酢酸トリクロル酢酸、臭化メチル、ヨウ化メチル、トリ(テトラ)クロロエチレンなど
・アルコール化合物
 メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、シクロヘキサンジオール、ソルビトール、キシリトール、2-メチル-2,4-ペンタンジオール、1,3-ブタンジオール、1,4-ブタンジオールなど
・エーテル化合物(水酸基含有エーテル化合物を含む)
 ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、シクロヘキシルメチルエーテル、アニソール、テトラヒドロフラン、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル等)など
・エステル化合物
 酢酸エチル、乳酸エチル、2-(1-メトキシ)プロピルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-エトキシプロピオン酸エチルなど
・ケトン化合物
 アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノンなど
・ニトリル化合物
 アセトニトリルなど
・アミド化合物
 N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなど
・スルホキシド化合物
 ジメチルスルホキシドなど
・芳香族化合物
 ベンゼン、トルエンなど
 好ましい溶媒としては、なかでも、メチルアルコール、エチルアルコール、2-プロピルアルコール、プロピレングリコールモノメチルエーテル、酢酸エチル、プロピレングリコール-1-モノメチルエーテル-2-アセテート、乳酸エチル、3-エトキシプロピオン酸エチル、シクロヘキサノンが挙げられる。
[solvent]
The composition for forming an optical functional layer of the present invention may further contain a solvent in addition to or in addition to the preparation solvent for the colloidal silica particle liquid (sol). Or it is good also as what changes the preparation solvent and contains the following solvent. Examples of the solvent contained in the composition include organic solvents (aliphatic compounds, halogenated hydrocarbon compounds, alcohol compounds, ether compounds, ester compounds, ketone compounds, nitrile compounds, amide compounds, sulfoxide compounds, aromatic compounds) or Water is mentioned. Examples of each are listed below.
Aliphatic compounds Hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, cyclopentane, etc.Halogenated hydrocarbon compounds Methylene chloride, chloroform, dichloromethane, ethane dichloride, carbon tetrachloride, trichloroethylene, tetrachloroethylene, epichlorohydrin, Monochlorobenzene, orthodichlorobenzene, allyl chloride, hydrochlorofluorocarbon (HCFC), methyl monochloroacetate, ethyl monochloroacetate, monochloroacetic acid trichloroacetic acid, methyl bromide, methyl iodide, tri (tetra) chloroethylene, etc., alcohol compounds methyl alcohol, Ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol Glycerin, 1,6-hexanediol, cyclohexanediol, sorbitol, xylitol, 2-methyl-2,4-pentanediol, 1,3-butanediol, 1,4-butanediol, etc. Including)
Dimethyl ether, diethyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, cyclohexyl methyl ether, anisole, tetrahydrofuran, alkylene glycol alkyl ether (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether , Diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol monobutyl ether, etc.) Ester compounds Ethyl acetate, ethyl lactate, 2- (1-methoxy) propyl acetate, propylene glycol monomethyl ether acetate, ethyl 3-ethoxypropionate, etc. Ketone compounds Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, etc. Nitriles Compounds Acetonitrile, etc./Amide compounds N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ε-caprolactam, formamide, N-methyl Formamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide, hexamethylphosphoric triamide, etc. ・ Sulphoxide compounds Aromatic compounds such as sulfoxide, etc. Preferred solvents such as benzene and toluene are methyl alcohol, ethyl alcohol, 2-propyl alcohol, propylene glycol monomethyl ether, ethyl acetate, propylene glycol-1-monomethyl ether-2-acetate, Examples include ethyl lactate, ethyl 3-ethoxypropionate, and cyclohexanone.
 溶媒の使用量は、特に限定されることはなく、コロイダルシリカ粒子を含むSiO分の総量に対して、0.1倍量(v/w)以上であることが好ましく、0.5倍量(v/w)以上であることが好ましく、1倍量(v/w)以上であることが好ましく、2倍量(v/w)以上であることがより好ましい。上限としては、30倍量(v/w)以下であることが好ましく、10倍量(v/w)以下であることがより好ましい。 The amount of the solvent used is not particularly limited, and is preferably 0.1 times (v / w) or more, 0.5 times the total amount of SiO 2 containing colloidal silica particles. It is preferably (v / w) or more, preferably 1 time amount (v / w) or more, and more preferably 2 times amount (v / w) or more. As an upper limit, it is preferable that it is 30 times amount (v / w) or less, and it is more preferable that it is 10 times amount (v / w) or less.
 本発明の光学機能層形成用組成物においては、その溶媒として、非プロトン性極性溶媒(エーテル溶媒、エステル溶媒等)を含有させることが好ましい。さらに、非プロトン性極性溶媒(エーテル溶媒、エステル溶媒等)とプロトン性極性溶媒(アルコール溶媒、水等)とを含有させることが好ましい。ただし、プロトン性極性溶媒はできるだけ少ないことが好ましい。上記の溶媒の配合とすることにより、コロイダルシリカ粒子と界面活性剤とを用いた相互作用をより効果的に引き出すことができる。このような観点から各溶媒は溶媒全量を100%として下記の比率で含有させることが好ましい(質量基準)。
             好ましい     より好ましい   特に好ましい
 非プロトン性極性溶媒  10%~100% 30%~100% 50%~100%
 プロトン性極性溶媒    0 ~ 50%  0 ~ 30%  0 ~  5%
 水            0 ~ 30%  0 ~ 10%  0 ~  2%
In the composition for forming an optical functional layer of the present invention, an aprotic polar solvent (such as an ether solvent or an ester solvent) is preferably contained as the solvent. Furthermore, it is preferable to contain an aprotic polar solvent (such as an ether solvent or an ester solvent) and a protic polar solvent (such as an alcohol solvent or water). However, it is preferable that the number of protic polar solvents is as small as possible. By using the above solvent, the interaction using the colloidal silica particles and the surfactant can be more effectively extracted. From such a viewpoint, it is preferable that each solvent is contained in the following ratio with the total amount of the solvent being 100% (mass basis).
Preferred more preferred particularly preferred aprotic polar solvent 10% to 100% 30% to 100% 50% to 100%
Protic polar solvent 0-50% 0-30% 0-5%
Water 0-30% 0-10% 0-2%
 本発明においては、高沸点溶媒を用いることも好ましい。高沸点溶媒の沸点は、240℃~310℃(1気圧)であることが好ましい。具体的な高沸点溶媒としては、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールジメチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノベンジルエーテル、トリプロピレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、ポリエチレングリコールジメチルエーテルが好ましい。高沸点溶媒を用いることで、乾燥を抑制することができ、製造時の作業性および品質を高めることができる。高沸点溶媒としては、トリエチレングリコールモノブチルエーテルを用いることが好ましい。 In the present invention, it is also preferable to use a high boiling point solvent. The boiling point of the high boiling point solvent is preferably 240 ° C. to 310 ° C. (1 atm). Specific high boiling point solvents include triethylene glycol monomethyl ether, triethylene glycol monobutyl ether, tetraethylene glycol dimethyl ether, ethylene glycol monophenyl ether, diethylene glycol monohexyl ether, diethylene glycol monobenzyl ether, tripropylene glycol monomethyl ether, polyethylene glycol. Monomethyl ether and polyethylene glycol dimethyl ether are preferred. By using a high boiling point solvent, drying can be suppressed, and workability and quality during production can be improved. As the high boiling point solvent, it is preferable to use triethylene glycol monobutyl ether.
[重合性化合物]
 本発明の光学機能層形成用組成物には重合性化合物を含有させてもよい。重合性化合物は、そのClogP値が2以上であることが好ましく、2~10であることがより好ましい。上記のClogP値が小さすぎると、十分な解像度が得られず、微細な画素を形成する際に、その端部等に欠けや割れが生じたりすることがある。逆にClogP値が大きすぎると粘稠になり、加工性に劣ることがある。あるいは、硬化膜の表面が荒れた状態となることがある。
[Polymerizable compound]
The composition for forming an optical functional layer of the present invention may contain a polymerizable compound. The polymerizable compound preferably has a ClogP value of 2 or more, more preferably 2 to 10. If the ClogP value is too small, sufficient resolution cannot be obtained, and when a fine pixel is formed, the end portion or the like may be chipped or cracked. On the other hand, if the ClogP value is too large, it becomes viscous and may be inferior in workability. Or, the surface of the cured film may become rough.
・ClogP
 本明細書において化合物のClogP値は下記の定義による。
 オクタノール-水分配係数(logP値)の測定は、一般にJIS日本工業規格Z7260-107(2000)に記載のフラスコ浸とう法により実施することができる。また、オクタノール-水分配係数(logP値)は実測に代わって、計算化学的手法あるいは経験的方法により見積もることも可能である。計算方法としては、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))、Viswanadhan’s fragmentation法(J.Chem.Inf.Comput.Sci.,29,163(1989))、Broto’s fragmentation法(Eur.J.Med.Chem.-Chim.Theor.,19,71(1984))などを用いることが知られている。本発明では、Crippen’s fragmentation法(J.Chem.Inf.Comput.Sci.,27,21(1987))を用いる。
 ClogP値とは、1-オクタノールと水への分配係数Pの常用対数logPを計算によって求めた値である。ClogP値の計算に用いる方法やソフトウェアについては公知の物を用いることができる。特に断らない限り、本発明ではDaylight Chemical Information Systems社のシステム:PCModelsに組み込まれたClogPプログラムを用いることとする。
・ ClogP
In this specification, ClogP value of a compound is based on the following definition.
The measurement of the octanol-water partition coefficient (log P value) can be generally carried out by a flask soaking method described in JIS Japanese Industrial Standard Z7260-107 (2000). Further, the octanol-water partition coefficient (log P value) can be estimated by a computational chemical method or an empirical method instead of the actual measurement. As a calculation method, Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)), Viswanadhan's fragmentation method (J. Chem. Inf. Comput. Sci., 29, 163). (1989)), Broto's fragmentation method (Eur. J. Med. Chem.-Chim. Theor., 19, 71 (1984)). In the present invention, the Crippen's fragmentation method (J. Chem. Inf. Comput. Sci., 27, 21 (1987)) is used.
The ClogP value is a value obtained by calculating the common logarithm logP of the distribution coefficient P between 1-octanol and water. A well-known thing can be used about the method and software used for calculation of ClogP value. Unless otherwise specified, the present invention uses the ClogP program incorporated in the system: PCModels of Daylight Chemical Information Systems.
 上記重合性化合物として、具体的には、末端エチレン性不飽和結合を少なくとも1個、好ましくは2個以上有する化合物から選ばれることが好ましい。重合性化合物は、モノマー、プレポリマー、すなわち2量体、3量体及びオリゴマー、又はそれらの混合物並びにそれらの多量体などの化学的形態のいずれであってもよい。重合性化合物は一種単独で用いてもよいし、2種以上を併用してもよい。 Specifically, the polymerizable compound is preferably selected from compounds having at least one terminal ethylenically unsaturated bond, preferably two or more. The polymerizable compound may be in a chemical form such as a monomer, a prepolymer, that is, a dimer, a trimer and an oligomer, or a mixture thereof and a multimer thereof. A polymeric compound may be used individually by 1 type, and may use 2 or more types together.
 重合性化合物の具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸など)やそのエステル類、アミド類、並びにこれらの多量体が挙げられ、好ましくは、不飽和カルボン酸と脂肪族多価アルコール化合物とのエステル、及び不飽和カルボン酸と脂肪族多価アミン化合物とのアミド類、並びにこれらの多量体である。また、ヒドロキシ基やアミノ基、メルカプト基等の求核性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能イソシアネート類或いはエポキシ類との付加反応物や、単官能若しくは多官能のカルボン酸との脱水縮合反応物等も好適に使用される。また、イソシアネート基やエポキシ基等の親電子性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との付加反応物、更に、ハロゲン基やトシルオキシ基等の脱離性置換基を有する不飽和カルボン酸エステル或いはアミド類と、単官能若しくは多官能のアルコール類、アミン類、チオール類との置換反応物も好適である。また、別の例として、上記の不飽和カルボン酸の代わりに、不飽和ホスホン酸、スチレン等のビニルベンゼン誘導体、ビニルエーテル、アリルエーテル等に置き換えた化合物群を使用することも可能である。
 これらの具体的な化合物としては、特開2009-288705号公報の段落番号[0095]~段落番号[0108]に記載されている化合物を本発明においても好適に用いることができる。
Specific examples of the polymerizable compound include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, amides, and multimers thereof. Preferred are esters of unsaturated carboxylic acids and aliphatic polyhydric alcohol compounds, amides of unsaturated carboxylic acids and aliphatic polyvalent amine compounds, and multimers thereof. In addition, addition reaction products of monofunctional or polyfunctional isocyanates or epoxies with unsaturated carboxylic acid esters or amides having a nucleophilic substituent such as hydroxy group, amino group, mercapto group, monofunctional or polyfunctional. A dehydration condensation reaction product with a functional carboxylic acid is also preferably used. Further, an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amine or thiol, and further a halogen group A substitution reaction product of an unsaturated carboxylic acid ester or amide having a detachable substituent such as a tosyloxy group and a monofunctional or polyfunctional alcohol, amine or thiol is also suitable. As another example, it is also possible to use a compound group in which an unsaturated phosphonic acid, a vinylbenzene derivative such as styrene, vinyl ether, allyl ether or the like is used instead of the unsaturated carboxylic acid.
As these specific compounds, the compounds described in paragraph numbers [0095] to [0108] of JP-A-2009-288705 can also be suitably used in the present invention.
 重合性化合物としては、少なくとも1個の付加重合可能なエチレン基を有する、常圧下で100℃以上の沸点を持つエチレン性不飽和基を持つ化合物が好ましい。その例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、等の単官能のアクリレートやメタアクリレート;ポリエチレングリコールジ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイロキシエチル)イソシアヌレート、グリセリンやトリメチロールエタン等の多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後(メタ)アクリレート化したもの、特公昭48-41708号、特公昭50-6034号、特開昭51-37193号の各公報に記載されているようなウレタン(メタ)アクリレート類、特開昭48-64183号、特公昭49-43191号、特公昭52-30490号の各公報に記載されているポリエステルアクリレート類、エポキシ樹脂と(メタ)アクリル酸との反応生成物であるエポキシアクリレート類等の多官能のアクリレートやメタアクリレート及びこれらの混合物を挙げることができる。
 多官能カルボン酸にグリシジル(メタ)アクリレート等の環状エーテル基とエチレン性不飽和基を有する化合物を反応させて得られる多官能(メタ)アクリレートなども挙げることができる。
 また、その他の好ましい重合性化合物として、特開2010-160418号公報、特開2010-129825号公報、特許4364216号公報等に記載される、フルオレン環を有し、エチレン性重合性基を2官能以上有する化合物、カルド樹脂も使用することが可能である。
As the polymerizable compound, a compound having at least one addition-polymerizable ethylene group and having an ethylenically unsaturated group having a boiling point of 100 ° C. or higher under normal pressure is preferable. Examples include monofunctional acrylates and methacrylates such as polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, and phenoxyethyl (meth) acrylate; polyethylene glycol di (meth) acrylate, trimethylolethanetri (Meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, hexanediol (Meth) acrylate, trimethylolpropane tri (acryloyloxypropyl) ether, tri (acryloyloxyethyl) iso (Meth) acrylate obtained by adding ethylene oxide or propylene oxide to polyfunctional alcohols such as anurate, glycerin and trimethylolethane, JP-B-48-41708, JP-B-50-6034, JP-A-51- Urethane (meth) acrylates as described in JP-B-37193, polyester acrylates described in JP-A-48-64183, JP-B-49-43191 and JP-B-52-30490 And polyfunctional acrylates and methacrylates such as epoxy acrylates which are reaction products of epoxy resins and (meth) acrylic acid, and mixtures thereof.
A polyfunctional (meth) acrylate obtained by reacting a polyfunctional carboxylic acid with a compound having a cyclic ether group such as glycidyl (meth) acrylate and an ethylenically unsaturated group can also be used.
Further, as other preferable polymerizable compounds, there are fluorene rings described in JP 2010-160418 A, JP 2010-129825 A, JP 4364216 A, etc., and an ethylenically polymerizable group is difunctional. The above-mentioned compounds and cardo resins can also be used.
 また、常圧下で100℃以上の沸点を有し、少なくとも一つの付加重合可能なエチレン性不飽和基を持つ化合物としては、特開2008-292970号公報の段落番号[0254]~段落番号[0257]に記載の化合物も好適である。 Further, as a compound having a boiling point of 100 ° C. or higher under normal pressure and having at least one addition-polymerizable ethylenically unsaturated group, paragraph numbers [0254] to [0257] of JP-A-2008-292970 are disclosed. The compounds described in the above are also suitable.
 上記エチレン性不飽和二重結合を有するモノマーは、下記反応性基RAを分子内にもつものであることが好ましい。
(反応性基RA:ビニル基、(メタ)アクリロイル基、または(メタ)アクリロイルオキシ基。)
The monomer having an ethylenically unsaturated double bond is preferably one having the following reactive group RA in the molecule.
(Reactive group RA: vinyl group, (meth) acryloyl group, or (meth) acryloyloxy group)
 上記エチレン性不飽和二重結合を有するモノマーは、さらに、下記式(MO-1)~(MO-7)のいずれかで表される、ラジカル重合性モノマーを好適に用いることができる。なお、式中、Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合することが好ましい。 As the monomer having an ethylenically unsaturated double bond, a radical polymerizable monomer represented by any of the following formulas (MO-1) to (MO-7) can be preferably used. In the formula, when T is an oxyalkylene group, it is preferable that the terminal on the carbon atom side is bonded to R.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、Rは末端にヒドロキシ基、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3が特に好ましい)、またはビニル基を有する基である。ただし、分子内に1つ以上はビニル基を有し、ビニル基が2つ以上であることが好ましく、3つ以上であることがより好ましい。Rは好ましくは、下記R1~R6のいずれかの置換基である。Tは連結基であり、好ましくは下記T1~T9のいずれか、またはそれらの組合せに係る連結基である。Zは連結基であり、下記Z1であることが好ましい。Zは連結基であり、下記式Z2であることが好ましい。なお、T1~T9の向きは式に合わせて逆であってもよい。 In the formula, R is a hydroxyl group, an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, particularly preferably 1 to 3 carbon atoms) or a vinyl group at the terminal. However, at least one has a vinyl group in the molecule, preferably two or more vinyl groups, more preferably three or more. R is preferably a substituent of any of R1 to R6 below. T is a linking group, preferably a linking group according to any one of the following T1 to T9, or a combination thereof. Z is a linking group and is preferably the following Z1. Z 2 is a linking group, and is preferably the following formula Z2. The directions of T1 to T9 may be reversed according to the formula.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、nは整数であり、それぞれ0~14であることが好ましく、0~5がより好ましく、0~3が特に好ましい。mはそれぞれ1~12であり、1~8が好ましく、1~5がより好ましく、1~3が特に好ましい。一分子内に複数存在するR、TおよびZは、それぞれ、同一であっても、異なっていてもよい。Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合することが好ましい。Rのうち少なくとも2つが重合性基であることが好ましく、3つが重合性基であることがより好ましい。Zは連結基であり、炭素数1~12のアルキレン基であることが好ましく、炭素数1~6のアルキレン基であることがより好ましい。なかでも、2,2-プロパンジイル基であることが、特に好ましい。
 上記ラジカル重合性モノマーの具体例としては、特開2007-269779号公報の段落番号[0248]~段落番号[0251]に記載されている化合物を本実施形態においても好適に用いることができる。
In the formula, n is an integer, each preferably 0 to 14, more preferably 0 to 5, and particularly preferably 0 to 3. Each m is 1 to 12, preferably 1 to 8, more preferably 1 to 5, and particularly preferably 1 to 3. A plurality of R, T and Z present in one molecule may be the same or different. When T is an oxyalkylene group, it is preferable that the terminal on the carbon atom side is bonded to R. At least two of R are preferably polymerizable groups, and more preferably three are polymerizable groups. Z 3 is a linking group, preferably an alkylene group having 1 to 12 carbon atoms, and more preferably an alkylene group having 1 to 6 carbon atoms. Of these, a 2,2-propanediyl group is particularly preferable.
As specific examples of the radical polymerizable monomer, the compounds described in paragraph No. [0248] to paragraph No. [0251] of JP-A No. 2007-26979 can be suitably used in this embodiment.
 中でも、重合性モノマー等としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D-330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D-320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D-310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬株式会社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介している構造や、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M-460;東亜合成株式会社製)が好ましい。これらのオリゴマータイプも使用できる。 Among them, as a polymerizable monomer, dipentaerythritol triacrylate (KAYARAD D-330 as a commercial product; manufactured by Nippon Kayaku Co., Ltd.), dipentaerythritol tetraacrylate (as a commercial product, KAYARAD D-320; Nippon Kayaku) Dipentaerythritol penta (meth) acrylate (commercially available) KAYARAD D-310 (commercially available from Nippon Kayaku Co., Ltd.), dipentaerythritol hexa (meth) acrylate (commercially available KAYARAD DPHA; Nippon Kayaku Co., Ltd.) Company), and the structure in which these (meth) acryloyl groups are mediated by ethylene glycol and propylene glycol residues, diglycerin EO (ethylene oxide) modified (meth) acrylate (commercially available product is M-460 Toa Gosei Co., Ltd.) is preferable. These oligomer types can also be used.
 多官能モノマーは、特に好ましくは、下記式(i)で表される化合物および式(ii)で表される化合物から選択される少なくとも1種である。 The polyfunctional monomer is particularly preferably at least one selected from a compound represented by the following formula (i) and a compound represented by the formula (ii).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式中、Eは、それぞれ、-((CHCHO)-、または-((CHCH(CH)O)-を表し、-((CHCHO)-が好ましい。
 yは、それぞれ、1~10の整数を表し、1~5の整数が好ましく、1~3がより好ましい。
 Xは、それぞれ、水素原子、アクリロイル基、メタクリロイル基、または、カルボキシル基を表す。
 式(i)中、アクリロイル基およびメタクリロイル基の合計は3個または4個であることが好ましく、4個がより好ましい。
 mは、それぞれ、0~10の整数を表し、1~5が好ましい。それぞれのmの合計は1~40の整数であり、4個~20個が好ましい。
 式(ii)中、アクリロイル基およびメタクリロイル基の合計は5個または6個であることが好ましく、6個がより好ましい。
 nは、それぞれ、0~10の整数を表し、1~5が好ましい。それぞれnの合計は1~60の整数であり、4個~30個が好ましい。
In the above formulae, E represents — ((CH 2 ) y CH 2 O) — or — ((CH 2 ) y CH (CH 3 ) O) —, and — ((CH 2 ) y CH 2 O)-is preferred.
Each y represents an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably 1 to 3.
X represents a hydrogen atom, an acryloyl group, a methacryloyl group, or a carboxyl group, respectively.
In the formula (i), the total number of acryloyl groups and methacryloyl groups is preferably 3 or 4, more preferably 4.
Each m represents an integer of 0 to 10, and preferably 1 to 5. The total of each m is an integer of 1 to 40, preferably 4 to 20.
In formula (ii), the total number of acryloyl groups and methacryloyl groups is preferably 5 or 6, and more preferably 6.
n represents an integer of 0 to 10, respectively, and preferably 1 to 5. The total of n is an integer of 1 to 60, preferably 4 to 30.
 重合性化合物として、カプロラクトン変性構造を有する多官能性単量体を含有することが好ましい。カプロラクトン変性構造を有する多官能性単量体としては、その分子内にカプロラクトン変性構造を有する限り特に限定されるものではない。例えば、カプロラクトン変性構造を有する多官能性単量体としては、トリメチロールエタン、ジトリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、グリセリン、ジグリセロール、トリメチロールメラミン等の多価アルコールと、(メタ)アクリル酸およびε-カプロラクトンとをエステル化することにより得られる、ε-カプロラクトン変性多官能(メタ)アクリレートを挙げることができる。なかでも下記式(1)で表されるカプロラクトン変性構造を有する多官能性単量体が好ましい。 It is preferable to contain a polyfunctional monomer having a caprolactone-modified structure as the polymerizable compound. The polyfunctional monomer having a caprolactone-modified structure is not particularly limited as long as it has a caprolactone-modified structure in the molecule. For example, the polyfunctional monomer having a caprolactone-modified structure includes trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, glycerin, diglycerol, trimethylol Mention may be made of ε-caprolactone-modified polyfunctional (meth) acrylates obtained by esterifying polyhydric alcohols such as melamine with (meth) acrylic acid and ε-caprolactone. Among these, a polyfunctional monomer having a caprolactone-modified structure represented by the following formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000008
(式中、6個のRは全てが下記式(2)で表される基である、または6個のRのうち1個~5個が下記式(2)で表される基であり、残余が下記式(3)で表される基である。)
Figure JPOXMLDOC01-appb-C000008
(In the formula, all six R x are groups represented by the following formula (2), or one to five of the six R x are groups represented by the following formula (2). And the remainder is a group represented by the following formula (3).)
Figure JPOXMLDOC01-appb-C000009
(式中、R、Rはそれぞれ独立に水素原子またはメチル基を示し、mは1または2の数を示す。「*」は結合手であることを示す。)
Figure JPOXMLDOC01-appb-C000009
(In the formula, R y and R z each independently represent a hydrogen atom or a methyl group, m represents a number of 1 or 2, and “*” represents a bond.)
 このようなカプロラクトン変性構造を有する多官能性単量体は、例えば、日本化薬株式会社からKAYARAD DPCAシリーズとして市販されており、DPCA-20(上記式(1)~(3)においてm=1、式(2)で表される基の数=2、R、R、Rが全て水素原子である化合物)、DPCA-30(同式、m=1、式(2)で表される基の数=3、R、R、Rが全て水素原子である化合物)、DPCA-60(同式、m=1、式(2)で表される基の数=6、R、R、Rが全て水素原子である化合物)、DPCA-120(同式においてm=2、式(2)で表される基の数=6、R、R、Rが全て水素原子である化合物)等を挙げることができる。 Such polyfunctional monomers having a caprolactone-modified structure are commercially available, for example, from Nippon Kayaku Co., Ltd. as the KAYARAD DPCA series, and DPCA-20 (m = 1 in the above formulas (1) to (3)) , The number of groups represented by formula (2) = 2, a compound in which R x , R y and R z are all hydrogen atoms, DPCA-30 (same formula, m = 1, represented by formula (2) Number of groups = 3, a compound in which R x , R y and R z are all hydrogen atoms), DPCA-60 (same formula, m = 1, number of groups represented by formula (2) = 6, R x , R y , R z are all hydrogen atoms), DPCA-120 (where m = 2, number of groups represented by formula (2) = 6, R x , R y , R z are A compound in which all are hydrogen atoms).
 本発明においては、下記式(Y1)で表される重合性化合物も好ましく用いられる。Y,Yは水素原子又は置換基を表す。置換基としては、炭素数1~3のアルキル基が好ましい。p、qは整数を表し、0~20が好ましい。 In the present invention, a polymerizable compound represented by the following formula (Y1) is also preferably used. Y 1 and Y 2 represent a hydrogen atom or a substituent. As the substituent, an alkyl group having 1 to 3 carbon atoms is preferable. p and q each represents an integer, preferably 0-20.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、重合性化合物としては、特公昭48-41708号公報、特開昭51-37193号公報、特公平2-32293号公報、特公平2-16765号公報に記載されているようなウレタンアクリレート類や、特公昭58-49860号公報、特公昭56-17654号公報、特公昭62-39417号公報、特公昭62-39418号公報記載のエチレンオキサイド系骨格を有するウレタン化合物類も好適である。更に、重合性化合物として、特開昭63-277653号公報、特開昭63-260909号公報、特開平1-105238号公報に記載される、分子内にアミノ構造やスルフィド構造を有する付加重合性化合物類を用いることもできる。
 重合性化合物の市販品としては、ウレタンオリゴマーUAS-10、UAB-140(日本製紙株式会社(旧山陽国策パルプ株式会社)製)、UA-7200(新中村化学工業株式会社製)、DPHA-40H(日本化薬株式会社製)、UA-306H、UA-306T、UA-306I、AH-600、T-600、AI-600(共栄社化学株式会社製)などが挙げられる。
Examples of the polymerizable compound include urethane acrylates as described in JP-B-48-41708, JP-A-51-37193, JP-B-2-32293, and JP-B-2-16765. Also suitable are urethane compounds having an ethylene oxide skeleton as described in JP-B-58-49860, JP-B-56-17654, JP-B-62-39417, and JP-B-62-39418. Furthermore, addition polymerizable compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-1-105238 as polymerizable compounds. Compounds can also be used.
Commercially available polymerizable compounds include urethane oligomers UAS-10, UAB-140 (manufactured by Nippon Paper Industries Co., Ltd. (formerly Sanyo Kokusaku Pulp Co., Ltd.)), UA-7200 (manufactured by Shin-Nakamura Chemical Co., Ltd.), DPHA-40H (Manufactured by Nippon Kayaku Co., Ltd.), UA-306H, UA-306T, UA-306I, AH-600, T-600, AI-600 (manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
 また、重合性化合物としては、酸基を有するエチレン性不飽和化合物類も好適である。酸基を有するエチレン性不飽和化合物類は、上記多官能アルコールの一部のヒドロキシ基を(メタ)アクリレート化し、残ったヒドロキシ基に酸無水物を付加反応させてカルボキシ基とするなどの方法で得られる。市販品としては、例えば、多塩基酸変性アクリルオリゴマーとして、東亞合成株式会社製のM-510、M-520などが挙げられる。 Further, as the polymerizable compound, ethylenically unsaturated compounds having an acid group are also suitable. Ethylenically unsaturated compounds having an acid group can be obtained by, for example, converting a part of hydroxy groups of the polyfunctional alcohol into (meth) acrylate and adding an acid anhydride to the remaining hydroxy group to form a carboxy group. can get. Examples of commercially available products include M-510 and M-520 manufactured by Toagosei Co., Ltd. as polybasic acid-modified acrylic oligomers.
 これらの重合性化合物について、その構造、単独使用か併用か、添加量等の使用方法の詳細は、光学機能層形成用組成物の性能設計にあわせて任意に設定できる。 About these polymerizable compounds, the details of usage such as the structure, single use or combination, addition amount and the like can be arbitrarily set in accordance with the performance design of the optical functional layer forming composition.
 本発明の光学機能層形成用組成物中における重合性化合物の含有量は、組成物中の固形分に対して0.005質量%以上が好ましく、0.01質量%以上がより好ましく、0.02質量%以上が特に好ましい。上限としては、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が特に好ましい。 The content of the polymerizable compound in the composition for forming an optical functional layer of the present invention is preferably 0.005% by mass or more, more preferably 0.01% by mass or more, based on the solid content in the composition. 02% by mass or more is particularly preferable. As an upper limit, 10 mass% or less is preferable, 5 mass% or less is more preferable, and 1 mass% or less is especially preferable.
 光学機能層形成用組成物中、コロイダルシリカ粒子を含むSiO分と重合性化合物との含有質量比は、コロイダルシリカ粒子を含むSiO分100質量部に対して、重合性化合物を0.1質量部以上とすることが好ましく、0.5質量部以上とすることがより好ましく、1質量部以上とすることが特に好ましい。上限は、50質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下とすることがさらに好ましく、10質量部以下とすることがさらに好ましく、5質量部以下とすることが特に好ましい。 In the optical function layer forming composition, containing a mass ratio of SiO 2 minutes and a polymerizable compound containing colloidal silica particles, relative to the SiO 2 minutes 100 parts by containing colloidal silica particles, a polymerizable compound 0.1 The amount is preferably at least part by mass, more preferably at least 0.5 part by mass, and particularly preferably at least 1 part by mass. The upper limit is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, further preferably 20 parts by mass or less, further preferably 10 parts by mass or less, and particularly preferably 5 parts by mass or less. .
 重合性化合物は、活性種により重合を引き起こす化合物であることが好ましい。活性種として、ラジカル、酸、塩基などが挙げられる。ラジカルが活性種である場合には上述のエチエン性不飽和結合基を有する化合物が使用される。一方、活性種として、スルホン酸、リン酸、スルフィン酸、カルボン酸、硫酸、硫酸モノエステルなどの酸を発生させる場合、エポキシ基、オキセタニル基、テトラヒドロフラニル基などの環状エーテル基、ビニルベンゼン基などを使用することができる。また、活性種としてアミノ化合物などの塩基を発生させる場合には、エポキシ基、オキセタニル基、テトラヒドロフラニル基などの環状エーテル基、ビニルベンゼン基などを使用することができる。重合性化合物は、必要に応じ併用して使用することができる。
 重合性化合物は分子量が10,000以下であることが好ましく、5,000以下であることがより好ましく、2,000以下であることがより好ましく、1,000以下であることが特に好ましい。下限値は、200以上であることが実際的である。
 なお、本明細書において、「アクリル」というときにはアクリロイル基を有する構造群を広く指し、例えば、α位に置換基を有する構造を含むものとする。ただし、α位にメチル基を有するものをメタクリルと呼び、これを含む意味で(メタ)アクリルなどと称することもある。
The polymerizable compound is preferably a compound that causes polymerization by an active species. Examples of the active species include radicals, acids, and bases. When the radical is an active species, the above compound having an ethylenically unsaturated bond group is used. On the other hand, when generating acids such as sulfonic acid, phosphoric acid, sulfinic acid, carboxylic acid, sulfuric acid, and sulfuric monoester as active species, cyclic ether groups such as epoxy groups, oxetanyl groups, tetrahydrofuranyl groups, vinylbenzene groups, etc. Can be used. Moreover, when generating bases, such as an amino compound, as an active species, cyclic ether groups, such as an epoxy group, oxetanyl group, and tetrahydrofuranyl group, a vinylbenzene group, etc. can be used. The polymerizable compound can be used in combination as necessary.
The polymerizable compound preferably has a molecular weight of 10,000 or less, more preferably 5,000 or less, more preferably 2,000 or less, and particularly preferably 1,000 or less. The lower limit is practically 200 or more.
In this specification, “acryl” refers to a structure group having an acryloyl group, and includes, for example, a structure having a substituent at the α-position. However, those having a methyl group at the α-position are referred to as methacryl and may be referred to as (meth) acryl or the like in a sense including this.
・密着改良剤
 本発明の光学機能層形成用組成物は、密着改良剤をさらに含有していてもよい。密着改良剤としては、例えば、特開平5-11439号公報、特開平5-341532号公報、及び特開平6-43638号公報等に記載の密着改良剤が好適挙げられる。具体的には、ベンズイミダゾール、ベンズオキサゾール、ベンズチアゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンズオキサゾール、2-メルカプトベンズチアゾール、3-モルホリノメチル-1-フェニル-トリアゾール-2-チオン、3-モルホリノメチル-5-フェニル-オキサジアゾール-2-チオン、5-アミノ-3-モルホリノメチル-チアジアゾール-2-チオン、及び2-メルカプト-5-メチルチオ-チアジアゾール、トリアゾール、テトラゾール、ベンゾトリアゾール、カルボキシベンゾトリアゾール、アミノ基含有ベンゾトリアゾール、シランカップリング剤などが挙げられる。密着改良剤としては、シランカップリング剤が好ましい。
-Adhesion improving agent The composition for optical function layer formation of this invention may further contain the adhesion improving agent. Preferable examples of the adhesion improver include adhesion improvers described in JP-A Nos. 5-11439, 5-341532, and 6-43638. Specifically, benzimidazole, benzoxazole, benzthiazole, 2-mercaptobenzimidazole, 2-mercaptobenzoxazole, 2-mercaptobenzthiazole, 3-morpholinomethyl-1-phenyl-triazole-2-thione, 3-morpholino Methyl-5-phenyl-oxadiazole-2-thione, 5-amino-3-morpholinomethyl-thiadiazole-2-thione, and 2-mercapto-5-methylthio-thiadiazole, triazole, tetrazole, benzotriazole, carboxybenzotriazole Amino group-containing benzotriazole, silane coupling agents, and the like. As the adhesion improving agent, a silane coupling agent is preferable.
 シランカップリング剤は、無機材料と化学結合可能な加水分解性基としてアルコキシシリル基を有するものが好ましい。また有機樹脂との間で相互作用もしくは結合形成して親和性を示す基を有することが好ましく、そのような基としては(メタ)アクリロイル基、フェニル基、メルカプト基、グリシジル基、オキセタニル基を有するものが好ましく、その中でも(メタ)アクリロイル基又はグリシジル基を有するものが好ましい。 The silane coupling agent preferably has an alkoxysilyl group as a hydrolyzable group that can be chemically bonded to an inorganic material. In addition, it preferably has a group that interacts or forms a bond with an organic resin and exhibits an affinity, and such a group has a (meth) acryloyl group, a phenyl group, a mercapto group, a glycidyl group, and an oxetanyl group. Among them, those having a (meth) acryloyl group or a glycidyl group are preferable.
 シランカップリング剤は、一分子中に少なくとも2種の反応性の異なる官能基を有するシラン化合物も好ましく、特に、官能基としてアミノ基とアルコキシ基とを有するものが好ましい。このようなシランカップリング剤としては、例えば、N-β-アミノエチル-γ-アミノプロピル-メチルジメトキシシラン(信越化学工業株式会社製商品名 KBM-602)、N-β-アミノエチル-γ-アミノプロピル-トリメトキシシラン(信越化学工業社株式会製 商品名 KBM-603)、N-β-アミノエチル-γ-アミノプロピル-トリエトキシシラン(信越化学工業株式会社製商品名 KBE-602)、γ-アミノプロピル-トリメトキシシラン(信越化学工業株式会社製商品名 KBM-903)、γ-アミノプロピル-トリエトキシシラン(信越化学工業株式会社製商品名 KBE-903)、3-メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製商品名 KBM-503)等がある。 The silane coupling agent is also preferably a silane compound having at least two types of functional groups having different reactivity in one molecule, and particularly preferably one having an amino group and an alkoxy group as functional groups. Examples of such silane coupling agents include N-β-aminoethyl-γ-aminopropyl-methyldimethoxysilane (trade name: KBM-602, manufactured by Shin-Etsu Chemical Co., Ltd.), N-β-aminoethyl-γ- Aminopropyl-trimethoxysilane (trade name “KBM-603” manufactured by Shin-Etsu Chemical Co., Ltd.), N-β-aminoethyl-γ-aminopropyl-triethoxysilane (trade name “KBE-602” manufactured by Shin-Etsu Chemical Co., Ltd.), γ-aminopropyl-trimethoxysilane (trade name KBM-903 manufactured by Shin-Etsu Chemical Co., Ltd.), γ-aminopropyl-triethoxysilane (trade name KBE-903 manufactured by Shin-Etsu Chemical Co., Ltd.), 3-methacryloxypropyltri Methoxysilane (trade name “KBM-503” manufactured by Shin-Etsu Chemical Co., Ltd.)
 シランカップリング剤の具体例としては、以下の化合物が挙げられ、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000011
 Et:エチル基
Specific examples of the silane coupling agent include the following compounds, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000011
Et: ethyl group
 密着改良剤の含有量は、本発明の組成物の固形分に対して0.001質量%~20質量%が好ましく、0.01質量%~10質量%がより好ましく、0.1質量%~5質量%が特に好ましい。 The content of the adhesion improving agent is preferably 0.001% to 20% by mass, more preferably 0.01% to 10% by mass, and more preferably 0.1% to 10% by mass with respect to the solid content of the composition of the present invention. 5% by mass is particularly preferred.
 本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、その化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルファモイル基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシ基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)である。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。上記のアルキル基、アルケニル基、アルキニル基は(これらを含む基を含む)、分岐状であっても、直鎖状であってもよい。また、環状であっても、非環状であってもよい。なお、隣接する置換基や連結基は、本発明の効果を損ねない範囲で、互いに結合して環を形成していてもよい。
 本明細書において、化合物の置換基や連結基の選択肢を始め、温度、厚さといった各技術事項は、そのリストがそれぞれ独立に記載されていても、相互に組み合わせることができる。
In the present specification, the indication of a compound (for example, when referring to a compound with a suffix) is used in the meaning of including a salt and an ion in addition to the compound itself. In addition, it is meant to include derivatives in which a part thereof is changed, such as introduction of a substituent, within a range where a desired effect is exhibited.
In the present specification, a substituent that does not specify substitution / non-substitution (the same applies to a linking group) means that the group may have an arbitrary substituent. This is also synonymous for compounds that do not specify substitution / non-substitution. Preferred substituents include the following substituent T.
Examples of the substituent T include the following.
An alkyl group (preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.), alkenyl A group (preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like), an alkynyl group (preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like), A cycloalkyl group (preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, etc.), an aryl group (preferably an aryl group having 6 to 26 carbon atoms, for example, Phenyl, 1-naphthyl, 4-methoxyphenyl, -Chlorophenyl, 3-methylphenyl, etc.), heterocyclic groups (preferably heterocyclic groups of 2 to 20 carbon atoms, preferably 5- or 6-membered heterocycles having at least one oxygen atom, sulfur atom, nitrogen atom) A cyclic group is preferred, for example, 2-pyridyl, 4-pyridyl, 2-imidazolyl, 2-benzimidazolyl, 2-thiazolyl, 2-oxazolyl, etc.), an alkoxy group (preferably an alkoxy group having 1 to 20 carbon atoms, for example, Methoxy, ethoxy, isopropyloxy, benzyloxy, etc.), aryloxy groups (preferably aryloxy groups having 6 to 26 carbon atoms, such as phenoxy, 1-naphthyloxy, 3-methylphenoxy, 4-methoxyphenoxy, etc.), An alkoxycarbonyl group (preferably an alkoxycarbonyl group having 2 to 20 carbon atoms) Nyl groups such as ethoxycarbonyl, 2-ethylhexyloxycarbonyl and the like, amino groups (preferably containing an amino group having 0 to 20 carbon atoms, alkylamino group, arylamino group, such as amino, N, N-dimethyl) Amino, N, N-diethylamino, N-ethylamino, anilino, etc.), sulfamoyl groups (preferably sulfamoyl groups having 0 to 20 carbon atoms, such as N, N-dimethylsulfamoyl, N-phenylsulfamoyl, etc.) ), An acyl group (preferably an acyl group having 1 to 20 carbon atoms, such as acetyl, propionyl, butyryl, benzoyl, etc.), an acyloxy group (preferably an acyloxy group having 1 to 20 carbon atoms, such as acetyloxy, benzoyl) Oxy, etc.), a carbamoyl group (preferably a C 1-20 carbon Rubamoyl groups such as N, N-dimethylcarbamoyl and N-phenylcarbamoyl), acylamino groups (preferably acylamino groups having 1 to 20 carbon atoms such as acetylamino and benzoylamino), sulfonamide groups (preferably Sulfonamide groups having 0 to 20 carbon atoms, such as methanesulfonamide, benzenesulfonamide, N-methylmethanesulfonamide, N-ethylbenzenesulfonamide, etc., alkylthio groups (preferably alkylthio groups having 1 to 20 carbon atoms) For example, methylthio, ethylthio, isopropylthio, benzylthio, etc.), arylthio groups (preferably arylthio groups having 6 to 26 carbon atoms, such as phenylthio, 1-naphthylthio, 3-methylphenylthio, 4-methoxyphenylthio, etc.) , Alkyl group or arylsulfonyl group (preferably an alkyl or arylsulfonyl group having 1 to 20 carbon atoms, such as methylsulfonyl, ethylsulfonyl, benzenesulfonyl, etc.), hydroxy group, cyano group, halogen atom (for example, fluorine atom, chlorine atom, Bromine atom, iodine atom, etc.).
In addition, each of the groups listed as the substituent T may be further substituted with the substituent T described above. The alkyl group, alkenyl group, and alkynyl group (including groups containing these) may be branched or linear. Further, it may be annular or non-annular. Note that adjacent substituents and linking groups may be bonded to each other to form a ring as long as the effects of the present invention are not impaired.
In the present specification, the technical matters such as temperature and thickness, as well as the choices of substituents and linking groups of the compounds, can be combined with each other even if the list is described independently.
[フィルタろ過]
 本発明の光学機能層形成用組成物は、異物の除去や欠陥の低減などの目的で、フィルタで濾過することが好ましい。従来からろ過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)等によるフィルタが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)及びナイロンが好ましい。
 フィルタの孔径は、0.1μm~7μm程度が適しており、好ましくは0.2μm~2.5μm程度、より好ましくは0.2μm~1.5μm程度、さらに好ましくは0.3μm~0.7μmである。この範囲とすることにより、ろ過詰まりを抑えつつ、不純物や凝集物など、微細な異物をより確実に除去することが可能となる。
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルターを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、もしくは大きい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照することができる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択することができる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたものを使用することができる。第2のフィルタの孔径は、0.2μm~10.0μm程度が適しており、好ましくは0.2μm~7.0μm程度、さらに好ましくは0.3μm~6.0μm程度である。この範囲とすることにより、混合液に含有されている成分粒子を残存させたまま、混合液に混入している異物を除去することができる。
 例えば、第1のフィルタでのフィルタリングは、分散液のみで行い、他の成分を混合した後で、第2のフィルタリングを行ってもよい。
[Filter filtration]
The composition for forming an optical functional layer of the present invention is preferably filtered with a filter for the purpose of removing foreign substances or reducing defects. If it is conventionally used for the filtration use etc., it can use without being specifically limited. For example, a filter made of fluorine resin such as PTFE (polytetrafluoroethylene), polyamide resin such as nylon, polyolefin resin (including high density and ultra high molecular weight) such as polyethylene and polypropylene (PP), and the like can be given. Among these materials, polypropylene (including high density polypropylene) and nylon are preferable.
The pore size of the filter is suitably about 0.1 μm to 7 μm, preferably about 0.2 μm to 2.5 μm, more preferably about 0.2 μm to 1.5 μm, and further preferably 0.3 μm to 0.7 μm. is there. By setting it as this range, it becomes possible to more reliably remove fine foreign matters such as impurities and aggregates while suppressing clogging of filtration.
When using filters, different filters may be combined. At that time, the filtering by the first filter may be performed only once or may be performed twice or more. When filtering two or more times by combining different filters, it is preferable that the second and subsequent pore diameters are the same or larger than the pore diameter of the first filtering. Moreover, you may combine the 1st filter of a different hole diameter within the range mentioned above. The pore diameter here can refer to the nominal value of the filter manufacturer. As a commercially available filter, for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Japan Microlith Co., Ltd.) or KITZ Micro Filter Co., Ltd. .
As the second filter, a filter formed of the same material as the first filter described above can be used. The pore size of the second filter is suitably about 0.2 μm to 10.0 μm, preferably about 0.2 μm to 7.0 μm, more preferably about 0.3 μm to 6.0 μm. By setting it as this range, the foreign material mixed in the liquid mixture can be removed while the component particles contained in the liquid mixture remain.
For example, the filtering by the first filter may be performed only with the dispersion, and the second filtering may be performed after mixing other components.
[光学機能層のパターン形成]
 本発明の光学機能層は、光学機能層を形成する工程(塗布工程、プリベーク工程、膜を硬化させる工程(ポストベーク工程))と、上記光学機能層にレジストを付与する工程と、上記レジストに対してパターン露光して現像する工程と、上記レジストをマスクとして上記光学機能層をエッチング加工する工程と、残存する上記レジストをドライ処理により除去する工程とを介して形成されることが好ましい(図2参照)。以下にその他の工程も併せて、各工程の詳細について説明する。
[Pattern formation of optical functional layer]
The optical functional layer of the present invention comprises a step of forming an optical functional layer (application step, pre-baking step, step of curing the film (post-baking step)), a step of applying a resist to the optical functional layer, and the resist. On the other hand, it is preferably formed through a step of pattern exposure and development, a step of etching the optical functional layer using the resist as a mask, and a step of removing the remaining resist by dry processing (FIG. 2). Details of each process will be described below, including other processes.
・塗布工程
 本発明の光学機能層形成用組成物は、これを用いて光学製品等に適用される光学機能層とすることが好ましい。本発明において、支持体上への光学機能層形成用組成物の適用方法としては、塗布法によることが好ましい。具体的には、スリット塗布、インクジェット法、回転塗布、流延塗布、ロール塗布、スクリーン印刷法等の各種の塗布方法を適用することができる。上記光学機能層は、コロイダルシリカ粒子と界面活性剤とを含有する光学機能層形成用組成物を硬化させてなることが好ましい。支持体としては、例えば、基板(例えば、シリコン基板)上にCCD(Charge Coupled Device)やCMOS(Complementary Metal-Oxide Semiconductor)等の撮像素子(受光素子)が設けられた固体撮像素子用基板を用いることができる。固体撮像素子用基板における各撮像素子間や、固体撮像素子用基板の裏面には、遮光膜が設けられていてもよい。また、支持体上には、必要により、上部の層との密着改良、物質の拡散防止或いは基板表面の平坦化のために下塗り層を設けてもよい。
-Application | coating process It is preferable to make the composition for optical function layer formation of this invention into an optical function layer applied to optical products etc. using this. In the present invention, the application method of the composition for forming an optical functional layer on a support is preferably a coating method. Specifically, various coating methods such as slit coating, inkjet method, spin coating, cast coating, roll coating, and screen printing can be applied. The optical functional layer is preferably formed by curing an optical functional layer forming composition containing colloidal silica particles and a surfactant. As the support, for example, a substrate for a solid-state imaging device in which an imaging device (light receiving device) such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor) is provided on a substrate (for example, a silicon substrate) is used. be able to. A light-shielding film may be provided between the image sensors on the solid-state image sensor substrate or on the back surface of the solid-state image sensor substrate. Further, if necessary, an undercoat layer may be provided on the support for improving adhesion with the upper layer, preventing diffusion of substances, or flattening the substrate surface.
・プリベーク工程
 支持体上に塗布された光学機能層形成用組成物層の乾燥(プリベーク)は、ホットプレート、オーブン等で50℃~140℃の温度で10秒~300秒で行うことができる。
Prebaking step The optical functional layer-forming composition layer coated on the support can be dried (prebaked) at a temperature of 50 ° C to 140 ° C for 10 seconds to 300 seconds using a hot plate, oven, or the like.
・ポストベーク
 本実施形態においては、次いで、加熱処理(ポストベーク)を行うことが好ましい。ポストベークは、硬化を完全なものとするための現像後の加熱処理である。その加熱温度は、有機光電変換部の損傷を抑制する観点から、250℃以下が好ましく、240℃以下がより好ましく、230℃以下がさらに好ましい。下限は特になく、効率的かつ効果的な処理を考慮すると、50℃以上の熱硬化処理を行うことが好ましく、100℃以上がより好ましい。
 このポストベーク処理は、現像後の塗布膜を、上記条件になるようにホットプレートやコンベクションオーブン(熱風循環式乾燥機)、高周波加熱機等の加熱手段を用いて、連続式あるいはバッチ式で行うことができる。
-Post-baking In this embodiment, it is preferable to perform heat processing (post-baking) next. Post-baking is a heat treatment after development for complete curing. The heating temperature is preferably 250 ° C. or less, more preferably 240 ° C. or less, and further preferably 230 ° C. or less from the viewpoint of suppressing damage to the organic photoelectric conversion portion. There is no particular lower limit, and considering an efficient and effective treatment, it is preferable to perform a thermosetting treatment of 50 ° C. or higher, and more preferably 100 ° C. or higher.
This post-bake treatment is performed continuously or batchwise using a heating means such as a hot plate, a convection oven (hot air circulation dryer), a high-frequency heater, or the like so that the coating film after development is in the above-described condition. be able to.
 上記の加熱によるポストベークに変え、UV(紫外線)照射によって光学機能層を硬化させてもよい。このとき、UV硬化剤は、通常のI線露光によるリソグラフィー工程のために添加する開始剤の露光波長である365nmより単波の波長で硬化できるものが好ましい。UV硬化剤としては、例えば、BASF社(旧チバ) IRGACURE 2959(商品名)が挙げられる。UV照射光の具体的波長としては、340nm以下で硬化する材料とすることが好ましい。波長の下限値は特にないが、220nm以上であることが一般的である。またUV照射の露光量は100mJ~5000mJが好ましく、300mJ~4000mJが好ましく、800mJ~3500mJがさらに好ましい。このUV硬化工程は、リソグラフィー工程の後に行うことが、低温硬化をより効果的に行うために、好ましい。露光光源はオゾンレス水銀ランプを使用することが好ましい。 The optical functional layer may be cured by UV (ultraviolet) irradiation instead of post-baking by heating. At this time, the UV curing agent is preferably one that can be cured at a wavelength of a single wave from 365 nm which is an exposure wavelength of an initiator added for a lithography process by normal I-line exposure. Examples of the UV curing agent include BASF (former Ciba) IRGACURE 2959 (trade name). The specific wavelength of the UV irradiation light is preferably a material that cures at 340 nm or less. Although there is no lower limit of wavelength, it is generally 220 nm or more. The exposure amount of UV irradiation is preferably 100 mJ to 5000 mJ, more preferably 300 mJ to 4000 mJ, and further preferably 800 mJ to 3500 mJ. This UV curing step is preferably performed after the lithography step in order to perform low-temperature curing more effectively. The exposure light source is preferably an ozoneless mercury lamp.
・露光工程(レジスト付与工程)
 本発明の好ましい実施形態においては、上記の光学機能層形成用組成物の塗布膜にレジストを付与し、そこに露光エネルギーを照射し、その露光部分を現像してパターンを形成する。
・ Exposure process (resist application process)
In preferable embodiment of this invention, a resist is provided to the coating film of said composition for optical function layer formation, exposure energy is irradiated there, The exposed part is developed, and a pattern is formed.
 露光工程では、例えば、ステッパー等の露光装置を用い、所定のマスクパターンを有するマスクを介してパターン露光することができる。上記露光エネルギーの照射は、g線、h線、i線、KrF線(エキシマレーザー線)、およびArF線(エキシマレーザー線)から選ばれる活性エネルギー線の照射により行われることが好ましい。上記露光エネルギーの照度が5000W/m以上であることが好ましく、7000W/m以上であることがより好ましく、8000W/m以上であることが特に好ましい。上限側の規定としては、18000W/m以下であることが好ましく、15000W/m以下であることがより好ましく、10000W/m以下であることが特に好ましい。この範囲の照射エネルギーとすることで、良好なパターンの解像度を得ることができる。 In the exposure step, for example, an exposure apparatus such as a stepper can be used to perform pattern exposure through a mask having a predetermined mask pattern. The exposure energy is preferably irradiated by active energy rays selected from g-line, h-line, i-line, KrF line (excimer laser line), and ArF line (excimer laser line). Preferably illuminance of the exposure energy is 5000 W / m 2 or more, more preferably 7000 W / m 2 or more, and particularly preferably 8000W / m 2 or more. The provisions of the upper limit, is preferably 18000W / m 2 or less, more preferably 15000W / m 2 or less, particularly preferably 10000 W / m 2 or less. By setting the irradiation energy within this range, a good pattern resolution can be obtained.
 露光装置等は、適宜通常のものを利用すればよく、例えば縮小投影露光装置を用いることができる。投影露光装置においては、例えば、特定の光源から発せられた活性エネルギー線がコンデンサーレンズを介して、プロジェクションレンズ(投影レンズ)に入射する。本投影光学系においては、コンデンサーレンズの前または後には、所定のパターンを付したマスクが設置され、所定のパターンとされた活性エネルギー線がプロジェクションレンズに到達するようにされている。このとき、コンデンサーレンズ側の開口数(NA)、プロジェクションレンズ側の開口数(NA)などの条件を適宜所望の範囲に設定することが好ましい。縮小投影光学系を透過した活性エネルギー線は、その反対側から出射され、露光基板(ワーク)へと照射される。この活性エネルギー線の照射により、その基板上のレジストは露光される。プロジェクションレンズの出射側の開口数(NA)についても適宜所望の範囲に設定することが好ましい。 As the exposure apparatus or the like, a normal apparatus may be used as appropriate, and for example, a reduced projection exposure apparatus can be used. In the projection exposure apparatus, for example, active energy rays emitted from a specific light source are incident on a projection lens (projection lens) via a condenser lens. In this projection optical system, a mask with a predetermined pattern is installed before or after the condenser lens so that the active energy rays having the predetermined pattern reach the projection lens. At this time, it is preferable to appropriately set the conditions such as the numerical aperture (NA 1 ) on the condenser lens side and the numerical aperture (NA 2 ) on the projection lens side within a desired range. The active energy ray that has passed through the reduction projection optical system is emitted from the opposite side and irradiated onto the exposure substrate (work). The resist on the substrate is exposed by the irradiation of the active energy rays. The numerical aperture (NA 3 ) on the exit side of the projection lens is also preferably set in a desired range.
 レジストとしては、特に限定されることはなく、例えば、書籍「高分子新素材One Point 3 微細加工とレジスト 著者:野々垣三郎、発行所:共立出版株式会社(1987年11月15日初版1刷発行)」の16ページから22ページに説明されている、アルカリ可溶性フェノール樹脂とナフトキノンジアジドを含むレジストを用いることができる。より具体的には、特許第2568883号公報、特許第2761786号公報、特許第2711590号公報、特許第2987526号公報、特許第3133881号公報、特許第3501427号公報、特許第3373072号公報、特許第3361636号公報、特開平6-54383号公報の実施例等に記載されたレジストを用いることができる。これら文献は本明細書中に組み込まれる。
 更に、いわゆる化学増幅系レジストを用いることも可能である。化学増幅系レジストについては、例えば、「光機能性高分子材料の新展開 1996年5月31日 第1刷発行 監修:市村國宏、発行所:株式会社シーエムシー」の129ページ以降に説明されているレジストを挙げることができる(特に、131ページ付近に説明されている、ポリヒドロキシスチレン樹脂の水酸基を酸分解性基で保護した樹脂を含むレジストや、同じく131ページ付近に説明されているESCAP型のレジストなどが好ましい)。より具体的には、特開2008-268875号公報、特開2008-249890号公報、特開2009-244829号公報、特開2011-013581号公報、特開2011-232657号公報、特開2012-003070号公報、特開2012-003071号公報、特許第3638068号公報、特許第4006492号公報、特許第4000407号公報、特許第4194249号公報の実施例等に記載されたレジストを用いることができる。これら文献は本明細書中に組み込まれる。
The resist is not particularly limited. For example, the book “High Point Material New Point 3 Fine Processing and Resist Authors: Saburo Nonogaki, Publisher: Kyoritsu Publishing Co., Ltd. The resist containing an alkali-soluble phenol resin and naphthoquinone diazide described on pages 16 to 22 of ")" can be used. More specifically, Japanese Patent No. 2568883, Japanese Patent No. 2671786, Japanese Patent No. 2711590, Japanese Patent No. 2987526, Japanese Patent No. 3133811, Japanese Patent No. 3501427, Japanese Patent No. 333772, The resists described in Examples of JP-A-3361636 and JP-A-6-54383 can be used. These documents are incorporated herein.
Further, a so-called chemical amplification resist can be used. Chemical amplification resists are described, for example, on page 129 and subsequent pages of "New Development of Photofunctional Polymer Materials, May 31, 1996, Issue 1 Supervision: Kunihiro Ichimura, Publisher: CMC Corporation". (Especially, the resist containing a resin in which the hydroxyl group of a polyhydroxystyrene resin is protected with an acid-decomposable group, described in the vicinity of page 131, and the ESCAP described in the vicinity of page 131) Type resist is preferred). More specifically, JP 2008-268875, JP 2008-249890, JP 2009-244829, JP 2011-013581, JP 2011-232657, JP 2012- The resists described in Examples of JP-A-003070, JP-A-2012-003071, JP-A-3638068, JP-A-4006492, JP-A-4000407, and JP-A-4194249 can be used. These documents are incorporated herein.
・現像工程
 本実施形態では、次いでアルカリ現像処理等の現像を行う。これにより、ネガ型であれば、露光工程における光未照射部分のレジストがアルカリ水溶液に溶出し、光硬化した部分だけが残る。現像液としては、下地の撮像素子や回路などにダメージを起さない、有機アルカリ現像液が望ましい。現像温度としては通常20℃~30℃であり、現像時間は、例えば、20秒~90秒である。より残渣を除去するため、近年では120秒~180秒実施する場合もある。さらには、より残渣除去性を向上するため、現像液を60秒ごとに振り切り、さらに新たに現像液を供給する工程を数回繰り返す場合もある。
-Development process In this embodiment, development, such as alkali development processing, is then performed. Thereby, if it is a negative type, the resist of the non-light-irradiated part in an exposure process will elute in alkaline aqueous solution, and only the photocured part will remain. The developer is preferably an organic alkali developer that does not cause damage to the underlying image sensor or circuit. The development temperature is usually 20 ° C. to 30 ° C., and the development time is, for example, 20 seconds to 90 seconds. In order to remove the residue more, in recent years, it may be carried out for 120 seconds to 180 seconds. Furthermore, in order to further improve residue removability, the process of shaking off the developer every 60 seconds and further supplying a new developer may be repeated several times.
 アルカリ性の水溶液としては、アルカリ性化合物を濃度が0.001質量%~10質量%、好ましくは0.01質量%~5質量%となるように溶解して調製されたアルカリ性水溶液が好適である。
 アルカリ性化合物は、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム,硅酸ナトリウム、メタ硅酸ナトリウム、アンモニア水、エチルアミン、ジエチルアミン、ジメチルエタノールアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシ、ベンジルトリメチルアンモニウムヒドロキシド、コリン、ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等が挙げられる(このうち、有機アルカリが好ましい。)。
 なお、アルカリ性水溶液を現像液として用いた場合は、一般に現像後に水で洗浄処理が施される。
As the alkaline aqueous solution, an alkaline aqueous solution prepared by dissolving an alkaline compound so as to have a concentration of 0.001% by mass to 10% by mass, preferably 0.01% by mass to 5% by mass is suitable.
Alkaline compounds include, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium oxalate, sodium metasuccinate, aqueous ammonia, ethylamine, diethylamine, dimethylethanolamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropyl Ammonium hydroxide, tetrabutylammonium hydroxy, benzyltrimethylammonium hydroxide, choline, pyrrole, piperidine, 1,8-diazabicyclo [5.4.0] -7-undecene, and the like (among these, organic alkali is preferable). ).
In the case where an alkaline aqueous solution is used as a developer, a washing treatment with water is generally performed after development.
・エッチング工程
 光学機能層のエッチングは、ドライエッチングであっても、ウエットエッチングであってもよい。ドライエッチングとしては、例えば、フッ素系ガスとOとの混合比率(フッ素系ガス/O)が流量比で4/1~1/5である混合ガスを用いたドライエッチング法により行うことができる(フッ素系ガスと酸素の比率はフッ素系ガスのC含有量による)。ドライエッチング法の代表的な例としては、特開昭59-126506号、特開昭59-46628号、特開昭58-9108号、特開昭58-2809号、特開昭57-148706号、特開昭61-41102号などの公報に記載されているような方法が知られている。
Etching process The optical functional layer may be etched by either dry etching or wet etching. For example, the dry etching may be performed by a dry etching method using a mixed gas in which a mixing ratio of fluorine-based gas and O 2 (fluorine-based gas / O 2 ) is 4/1 to 1/5 in flow rate. Yes (the ratio of fluorine-based gas to oxygen depends on the C content of the fluorine-based gas). Representative examples of the dry etching method include JP-A-59-126506, JP-A-59-46628, JP-A-58-9108, JP-A-58-2809, JP-A-57-148706. A method as described in JP-A-61-41102 and the like is known.
 具体的には、光学機能層をフッ素系ガスとOとの混合比率(フッ素系ガス/O)が流量比で1/2~1/4となる混合ガスをエッチングガスとして用いたドライエッチング処理(例えば、プラズマエッチング)で異方性エッチングを行うことができる。 Specifically, the optical functional layer is dry-etched using an etching gas as a mixed gas in which the mixing ratio of fluorine-based gas and O 2 (fluorine-based gas / O 2 ) is 1/2 to 1/4 in flow rate ratio. Anisotropic etching can be performed by processing (for example, plasma etching).
 本実施形態におけるエッチング工程で用いる混合ガスは、被エッチング膜が有機材料であるの観点からフッ素化合物ガス及びOを含む。フッ素化合物ガスとしては公知のガスを使用でき、下記式(I)で表わされるガスであることが好ましい。
    C         式(I)
〔式中、nは、1~6、mは、0~13、lは、1~14を表わす。〕
The mixed gas used in the etching step in this embodiment includes a fluorine compound gas and O 2 from the viewpoint that the film to be etched is an organic material. A known gas can be used as the fluorine compound gas, and is preferably a gas represented by the following formula (I).
C n H m F l Formula (I)
[Wherein, n represents 1 to 6, m represents 0 to 13, and l represents 1 to 14. ]
 上記式(I)で表されるフッ素系ガスとして、CF、C、C、C、C、C、C、CHFの群から任意に選択して混合することが好ましい。中でも、C、C、C、及びCHFの群から任意に選択することがより好ましく、C、Cの群から任意に選択することが更に好ましく、Cが特に好ましい。フッ素系ガスは、上記群の中から一種のガスを選択することができ、2種以上を混合ガスに含んでもよい。C比率が高いフッ素系ガスを使用することにより、SiO/下地材との選択比(ここではSi)を向上させることができる。 As the fluorine-based gas represented by the above formula (I), CF 4 , C 2 F 6 , C 3 F 8 , C 2 F 4 , C 4 F 8 , C 4 F 6 , C 5 F 8 , and CHF 3 are used. It is preferable to arbitrarily select from the group and mix. Among these, it is more preferable to arbitrarily select from the group of C 4 F 6 , C 5 F 8 , C 4 F 8 , and CHF 3 , and to arbitrarily select from the group of C 4 F 6 and C 5 F 8. More preferred is C 4 F 6 . As the fluorine-based gas, one kind of gas can be selected from the above group, and two or more kinds may be included in the mixed gas. By using a fluorine-based gas having a high C ratio, it is possible to improve the selection ratio (here, Si) with respect to SiO 2 / underlying material.
 混合ガスは、エッチングプラズマの分圧コントロール安定性、及び比エッチング形状の垂直性を維持する観点から、上記フッ素系ガス及びOに加え、さらに、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、及びキセノン(Xe)などの希ガス、から任意に選択して混合されていることが好ましい。その他混合してもよいガスとして、上記群の中から一種のガスを選択することができ、2種以上を混合ガスに含んでもよい。その他混合してもよいガスの混合比率は、流量比でOを1としたとき、0より大きく25以下であることが好ましく、10以上20以下であることが好ましく、16であることが特に好ましい。 From the viewpoint of maintaining the partial pressure control stability of the etching plasma and the verticality of the specific etching shape, the mixed gas is further mixed with helium (He), neon (Ne), argon (in addition to the fluorine-based gas and O 2 ). Ar), krypton (Kr), and rare gases such as xenon (Xe) are preferably selected and mixed. As other gases that may be mixed, one kind of gas may be selected from the above group, and two or more kinds may be included in the mixed gas. The mixing ratio of other gases that may be mixed is preferably larger than 0 and not larger than 25, preferably not smaller than 10 and not larger than 20, particularly 16 when O 2 is 1 as a flow ratio. preferable.
 エッチング工程で、ドライエッチングを行なうチャンバーの内部圧力は、0.5Pa~6.0Paであることが好ましく、1Pa~5Paであることがより好ましい。上記混合ガスの混合比率、及びチャンバーの内部圧力を満たす条件において、エッチングパターンの矩形性を向上させることができる。 In the etching step, the internal pressure of the chamber in which dry etching is performed is preferably 0.5 Pa to 6.0 Pa, and more preferably 1 Pa to 5 Pa. The rectangularity of the etching pattern can be improved under conditions that satisfy the mixing ratio of the mixed gas and the internal pressure of the chamber.
 混合ガスのガス流量としては、1500sccm以下が好ましく、1200sccm以下がより好ましい。高周波としては、400kHz、60MHz、13.56MHz、2.45GHz等から選択可能であり、50W~2000W、好ましくは100W~1000WのRFパワーで処理できる。処理時間としては、5分以内で一色のエッチングを行なう事が好ましく、更に好ましくは4分以内で処理できるのが好ましい。 The gas flow rate of the mixed gas is preferably 1500 sccm or less, and more preferably 1200 sccm or less. The high frequency can be selected from 400 kHz, 60 MHz, 13.56 MHz, 2.45 GHz, etc., and can be processed with an RF power of 50 W to 2000 W, preferably 100 W to 1000 W. The treatment time is preferably one color etching within 5 minutes, more preferably within 4 minutes.
[光学機能層]
 本発明の光学機能層形成用組成物で形成された光学機能層の屈折率は、1.5以下であることが好ましく、1.4以下であることがより好ましく、1.3以下であることがさらに好ましく、1.24以下であることが特に好ましい。下限は、1.1以上であることが実際的である。なお、本明細書において膜の屈折率は、特に断らない限り、波長633nmの光を用いて、25℃で測定した値とする。
[Optical function layer]
The refractive index of the optical functional layer formed with the composition for forming an optical functional layer of the present invention is preferably 1.5 or less, more preferably 1.4 or less, and 1.3 or less. Is more preferable, and particularly preferably 1.24 or less. The lower limit is practically 1.1 or more. In this specification, the refractive index of the film is a value measured at 25 ° C. using light having a wavelength of 633 nm unless otherwise specified.
 本発明の光学機能層は十分な硬さを有することが好ましい。この種の膜で硬さを確保することは、膜の強度や耐久性の実現につながる。その指標として膜のヤング率を評価することができる。上記の観点から、光学機能層のヤング率は、2以上であることが好ましく、3以上であることがより好ましく、4以上であることが特に好ましい。上限値は、10以下であることが実際的である。なお、膜のヤング率は、特に断らない限り、後記実施例で測定した条件によるものとする。 The optical functional layer of the present invention preferably has sufficient hardness. Ensuring hardness with this type of membrane leads to realization of strength and durability of the membrane. As an index, the Young's modulus of the film can be evaluated. From the above viewpoint, the Young's modulus of the optical function layer is preferably 2 or more, more preferably 3 or more, and particularly preferably 4 or more. The upper limit is practically 10 or less. The Young's modulus of the film depends on the conditions measured in the examples described below unless otherwise specified.
 光学機能層の厚さは、5μm以下であることが好ましく、3μm以下であることがより好ましく、1.5μm以下であることが特に好ましい。下限値は特にないが、50nm以上であることが実際的である。 The thickness of the optical functional layer is preferably 5 μm or less, more preferably 3 μm or less, and particularly preferably 1.5 μm or less. Although there is no lower limit in particular, it is practical that it is 50 nm or more.
・密着処理
 本発明においては、上記の光学機能層に表面密着処理を施すことが好ましい。例えば、光学機能層のポストベーク膜を形成した後に、その表面に密着処理を施し、疎水性の表面とすることが好ましい。次いで、レジストを付与するという手順である。
 密着処理としては、例えば、HMDS処理を挙げることができる。この処理には、HMDS(ヘキサメチレンジシラザン、Hexamethyldisilazane)が用いられる。HMDSを例えば上述したSiOを含有する層に適用すると、その表面に存在するSi-OH結合と反応し、Si-O-Si(CHを生成すると考えられる。これにより、膜表面を疎水化することができる。このように光学機能層の表面を疎水化することにより、引き続くレジストのパターニングの工程において、現像液の侵入を防ぎ、損傷を抑制・防止することができる。
-Adhesion treatment In the present invention, it is preferable to subject the optical functional layer to a surface adhesion treatment. For example, after forming a post-baked film of the optical functional layer, it is preferable to perform adhesion treatment on the surface to obtain a hydrophobic surface. Next, it is a procedure of applying a resist.
Examples of the contact processing include HMDS processing. For this treatment, HMDS (hexamethylene disilazane) is used. When HMDS is applied to, for example, the above-described layer containing SiO 2 , it is considered that it reacts with Si—OH bonds existing on the surface to produce Si—O—Si (CH 3 ) 3 . Thereby, the membrane surface can be hydrophobized. By hydrophobizing the surface of the optical functional layer in this way, it is possible to prevent the intrusion of the developer and suppress / prevent damage in the subsequent resist patterning step.
[マイクロレンズユニット]
 本発明の好ましい実施形態であるマイクロレンズユニットは、上記光学機能層とこれに被覆されたマイクロレンズとを具備した積層構造を有する。このレンズユニットは、固体撮像素子(光学デバイス)に組み込まれる。
[Micro lens unit]
A microlens unit which is a preferred embodiment of the present invention has a laminated structure including the optical functional layer and a microlens coated thereon. This lens unit is incorporated in a solid-state image sensor (optical device).
[固体撮像素子]
 本発明の好ましい実施形態に係る固体撮像素子においては、上記光学機能層形成用組成物で形成した光学機能層をマイクロレンズ上の反射防止膜、中間膜、またはカラーフィルタの隔壁、カラーフィルタ層の額縁、カラーフィルター層に配置されるグリッド構造に適用することができる。固体撮像素子の構造は、例えば、シリコン基板の上に設けられた受光素子(フォトダイオード)、下部平坦化膜、カラーフィルター、上部平坦化膜、マイクロレンズ等から構成される。カラーフィルターは赤(R)、緑(G)、青(B)の各カラーフィルター画素部で構成されている。カラーフィルターは、2次元配列された複数の緑色画素部で構成されている。各着色画素部は、それぞれ受光素子の上方位置に形成されている。緑色画素部がBayerパターン(市松模様)に形成されるとともに、青色画素部及び赤色画素部は、緑色画素部の間に形成されている。
 平坦化膜は、カラーフィルターの上面を覆うように形成されており、カラーフィルター表面を平坦化している。マイクロレンズは、凸面を上にして配置された集光レンズであり、平坦化膜の上方でかつ受光素子の上方に設けられている。すなわち、光の入射方向に沿って、マイクロレンズ、カラーフィルター画素部および受光素子が直列に並ぶ配置とされ、外部からの光を効率良く各受光素子へ導く構造とされている。なお、受光素子およびマイクロレンズについて、この種の固体撮像素子に通常適用されるものを適宜利用することができる。よって、詳細な説明を省略する。
 本発明の組成物で形成した光学機能層は、上記の固体撮像素子に好適に適用することができる。
[Solid-state imaging device]
In the solid-state imaging device according to a preferred embodiment of the present invention, the optical functional layer formed of the optical functional layer forming composition is an antireflection film on the microlens, an intermediate film, or a color filter partition wall, a color filter layer The present invention can be applied to a frame structure and a grid structure arranged in the color filter layer. The structure of the solid-state imaging device includes, for example, a light receiving element (photodiode) provided on a silicon substrate, a lower planarizing film, a color filter, an upper planarizing film, a microlens, and the like. The color filter includes red (R), green (G), and blue (B) color filter pixel portions. The color filter is composed of a plurality of green pixel portions arranged two-dimensionally. Each colored pixel portion is formed above the light receiving element. The green pixel portion is formed in a Bayer pattern (checkered pattern), and the blue pixel portion and the red pixel portion are formed between the green pixel portions.
The planarization film is formed so as to cover the upper surface of the color filter, and planarizes the color filter surface. The microlens is a condensing lens arranged with the convex surface facing upward, and is provided above the planarizing film and above the light receiving element. That is, the microlens, the color filter pixel unit, and the light receiving element are arranged in series along the light incident direction, and the light from the outside is efficiently guided to each light receiving element. As the light receiving element and the microlens, those normally applied to this type of solid-state imaging element can be appropriately used. Therefore, detailed description is omitted.
The optical functional layer formed from the composition of the present invention can be suitably applied to the solid-state imaging device.
 本発明の光学機能層形成用組成物は、ディスプレイパネルや太陽電池、光学レンズ、カメラモジュール、センサーモジュール等に好適に用いられる。更に詳しくは、上記太陽電池等において、入射する光の反射を防止するための光学機能層、或いはセンサーやカメラモジュール等に用いられる屈折率差を利用した中間膜等を形成するための光学機能層形成用組成物として有用である。 The composition for forming an optical functional layer of the present invention is suitably used for display panels, solar cells, optical lenses, camera modules, sensor modules and the like. More specifically, in the solar cell or the like, an optical functional layer for preventing reflection of incident light, or an optical functional layer for forming an intermediate film or the like using a difference in refractive index used for a sensor, a camera module, or the like. Useful as a forming composition.
 [グリッド構造]
 上記カラーフィルター層に配置されたグリッド構造(隔壁)の例としては、特開2012-227478号公報、特開2010-0232537号公報、特開2009-111225号公報の例示構造が挙げられる。その一実施形態を下記に示す。本実施形態に係る固体撮像装置においては、受光部としてフォトダイオードが形成された半導体基板、半導体基板上に形成された絶縁膜、及び絶縁膜上の隣接するフォトダイオードの間に相当する箇所に立設された隔壁を備える。さらに、固体撮像装置は、絶縁膜上であって隣接する隔壁の間に形成されたカラーフィルター、隔壁上面上と隔壁側面上とから絶縁膜上に拡がる密着層、及びカラーフィルター上に形成されたマイクロレンズを備える。絶縁膜内には、配線が埋設されており、これらの積層体が、配線層に該当する。なお、隔壁を平面視すると格子状となっており、隔壁の正方形状の開口にカラーフィルターが形成されている。カラーフィルターは、ここでは、赤(R)、緑(G)、青(B)の3種類あり、例えば、ベイヤー配列されている。
[Grid structure]
Examples of grid structures (partition walls) arranged in the color filter layer include the exemplified structures of JP 2012-227478 A, JP 2010-0232537 A, and JP 2009-111225 A. One embodiment is shown below. In the solid-state imaging device according to the present embodiment, the semiconductor substrate on which the photodiode is formed as the light receiving unit, the insulating film formed on the semiconductor substrate, and the adjacent photodiode on the insulating film are provided at corresponding positions. A partition wall is provided. Further, the solid-state imaging device is formed on the insulating film and between the adjacent partition walls, the color filter formed on the insulating film from the upper surface of the partition wall and the side surface of the partition wall, and the color filter. A microlens is provided. Wiring is embedded in the insulating film, and these laminated bodies correspond to the wiring layer. In addition, when the partition is viewed in plan, it is in a lattice shape, and a color filter is formed in a square opening of the partition. Here, there are three types of color filters, red (R), green (G), and blue (B). For example, a Bayer array is used.
[額縁構造]
 本実施形態のカラーフィルター周辺の額縁構造としては、特開2014-048596号公報に記載の例示構造を挙げることができる。本実施形態においては、ガラス基板からなる透明基板を基材として、上記基材の一面側において、表示用領域にカラーフィルター用の各色の着色層と画素区分用遮光部を配している。且つ、上記表示用領域の外側に非表示用領域として遮光性の額縁部を設けており、表示用領域の着色層と、額縁部とを覆うように平坦状に保護層を配している。
[Frame structure]
Examples of the frame structure around the color filter of the present embodiment include an exemplary structure described in Japanese Patent Application Laid-Open No. 2014-048596. In the present embodiment, a transparent substrate made of a glass substrate is used as a base material, and a colored layer for each color filter and a pixel-partitioning light-shielding portion are arranged in the display region on one surface side of the base material. In addition, a light-shielding frame portion is provided outside the display region as a non-display region, and a protective layer is provided in a flat shape so as to cover the colored layer and the frame portion of the display region.
 次に、本発明について実施例を挙げて説明する。本発明は、これらに限定されるものではない。なお、実施例で示した量や比率の規定は特に断らない限り質量基準である。 Next, the present invention will be described with reference to examples. The present invention is not limited to these. The amounts and ratios specified in the examples are based on mass unless otherwise specified.
<実施例1>
(1)コロイダルシリカ粒子液の調製
 先ず、ケイ素アルコキシド(A)としてテトラエトキシシラン(TEOS)を、フルオロアルキル基含有のケイ素アルコキシド(B)としてトリフルオロプロピルトリメトキシシラン(TFPTMS)を用意する。ケイ素アルコキシド(A)の質量を1としたときのフルオロアルキル基含有のケイ素アルコキシド(B)の割合(質量比)が0.6になるように秤量し、これらをセパラブルフラスコ内に投入して混合することにより混合物を得た。この混合物1質量部に対して1.0質量部となる量のプロピレングリコールモノメチルエーテル(PGME)を有機溶媒(E)として添加し、30℃の温度で15分間撹拌することにより第1液を調製した。
 また、この第1液とは別に、混合物1質量部に対して1.0質量部となる量のイオン交換水(C)と0.01質量部となる量のギ酸(D)をビーカー内に投入して混合し、30℃の温度で15分間撹拌することにより第2液を調製した。次に、上記調製した第1液を、ウォーターバスにて55℃の温度に保持してから、この第1液に第2液を添加し、上記温度を保持した状態で60分間撹拌した。これにより、上記ケイ素アルコキシド(A)と上記フルオロアルキル基含有のケイ素アルコキシド(B)との加水分解物(F)を得た。
 この液の固形分濃度は、SiO換算で10質量%であった。
 次に、市販の平均直径15nmのコロイダルシリカ(日産化学工業株式会社製、商品名ST-30)が30質量%含まれる水分散液に、硝酸カルシウム水溶液30質量%を0.1質量部加えた混合液を、ステンレス製オートクレーブ中で120℃5時間加熱した。この分散液に対し、限外濾過法を用い、溶媒をプロピレングリコールモノメチルエーテルに置換し、更にホモミクサー(プライミクス社製)を用いて回転速度14000rpmにて30分間攪拌し、十分に分散させ、更にプロピレングリコールモノメチルエーテルを添加して、固形分濃度15質量%のコロイダルシリカ粒子液(G)を得た。
 ケイ素アルコキシドの加水分解物(F)30質量部と、コロイダルシリカ粒子液(G)70質量部を混合し、更に40℃で10時間加熱し、1000Gで10分間遠心分離を行って沈降物を除去することで、コロイダルシリカ粒子液P1を得た。その他、下記表1のコロイダルシリカ粒子液を適宜製造条件や原料を変えて調製した。
<Example 1>
(1) Preparation of colloidal silica particle liquid First, tetraethoxysilane (TEOS) is prepared as a silicon alkoxide (A), and trifluoropropyltrimethoxysilane (TFPTMS) is prepared as a silicon alkoxide (B) containing a fluoroalkyl group. Weigh so that the ratio (mass ratio) of fluoroalkoxy group-containing silicon alkoxide (B) when the mass of silicon alkoxide (A) is 1, and put them into a separable flask. A mixture was obtained by mixing. Propylene glycol monomethyl ether (PGME) in an amount of 1.0 part by mass with respect to 1 part by mass of this mixture was added as an organic solvent (E), and the first liquid was prepared by stirring at a temperature of 30 ° C. for 15 minutes. did.
Separately from the first liquid, 1.0 part by mass of ion-exchanged water (C) and 0.01 part by mass of formic acid (D) with respect to 1 part by mass of the mixture are placed in a beaker. The second liquid was prepared by charging and mixing and stirring at a temperature of 30 ° C. for 15 minutes. Next, after maintaining the prepared first liquid at a temperature of 55 ° C. in a water bath, the second liquid was added to the first liquid and stirred for 60 minutes while maintaining the temperature. Thereby, a hydrolyzate (F) of the silicon alkoxide (A) and the fluoroalkyl group-containing silicon alkoxide (B) was obtained.
The solid content concentration of this liquid was 10% by mass in terms of SiO 2 .
Next, 0.1 part by mass of 30% by mass of an aqueous calcium nitrate solution was added to an aqueous dispersion containing 30% by mass of a commercially available colloidal silica having an average diameter of 15 nm (trade name ST-30, manufactured by Nissan Chemical Industries, Ltd.). The mixture was heated in a stainless steel autoclave at 120 ° C. for 5 hours. This dispersion was subjected to ultrafiltration, the solvent was replaced with propylene glycol monomethyl ether, and further stirred with a homomixer (Primix) at a rotational speed of 14,000 rpm for 30 minutes, and sufficiently dispersed. Glycol monomethyl ether was added to obtain a colloidal silica particle liquid (G) having a solid concentration of 15% by mass.
30 parts by mass of hydrolyzate of silicon alkoxide (F) and 70 parts by mass of colloidal silica particle liquid (G) are mixed, further heated at 40 ° C. for 10 hours, and centrifuged at 1000 G for 10 minutes to remove sediment. By doing this, colloidal silica particle liquid P1 was obtained. In addition, the colloidal silica particle liquid shown in Table 1 below was prepared by appropriately changing the production conditions and raw materials.
Figure JPOXMLDOC01-appb-T000012
 D0:球状粒子の数平均粒子径(TEMによって観察した粒子の直径)
 D1:動的光散乱法により測定されたコロイダルシリカ粒子の数平均粒子径
 D2:比表面積より求めたコロイダルシリカ粒子の平均粒子径
Figure JPOXMLDOC01-appb-T000012
D0: number average particle diameter of spherical particles (diameter of particles observed by TEM)
D1: Number average particle diameter of colloidal silica particles measured by dynamic light scattering method D2: Average particle diameter of colloidal silica particles determined from specific surface area
(2)光学機能層形成用組成物の調製
 上記で得られたコロイダルシリカ粒子液を用いて、以下の表2の組成となるように各成分を混合して光学機能層形成用組成物を得た。なお、上記のコロイダルシリカの粒子液の調製後、及び光学機能層形成用組成物の調製後それぞれについて、全て日本ポール社製のDFA4201NXEY(0.45μmナイロンフィルター)を用いてろ過を行った。
(2) Preparation of optical functional layer forming composition Using the colloidal silica particle liquid obtained above, each component was mixed so as to obtain the composition shown in Table 2 below to obtain an optical functional layer forming composition. It was. In addition, it filtered all using DFA4201NXEY (0.45 micrometer nylon filter) made from a Japanese pole company about each after preparation of the particle liquid of said colloidal silica, and preparation of the composition for optical function layer formation.
[評価]
 上記で得られた光学機能層形成用組成物を、塗布後の膜厚が0.6μmになるように、ブランク基板(シリコンウェハ)上にスピンコート法で塗布した。その後、ホットプレート上で、100℃で2分間加熱して上記組成物の硬化膜を得た。得られた硬化膜について、下記の評価を行った。結果を下記表2に示す。なお、膜の透明性(透過率)についても評価し、本実施例の硬化膜は均質で良好な透明性を有することを確認した。
[Evaluation]
The composition for forming an optical functional layer obtained above was applied on a blank substrate (silicon wafer) by a spin coating method so that the film thickness after application was 0.6 μm. Then, it heated for 2 minutes at 100 degreeC on the hotplate, and obtained the cured film of the said composition. The following evaluation was performed about the obtained cured film. The results are shown in Table 2 below. In addition, the transparency (transmittance) of the film was also evaluated, and it was confirmed that the cured film of this example was homogeneous and had good transparency.
<面状(均質性)>
 得られた膜の面状(ストリエーションの状態)をオリンパス株式会社製半導体検査顕微鏡MX50光学顕微鏡にて50倍の倍率で観察した。
 結果を下記に区分して判定した。
 4: スジ状のムラが、膜全体で全くない
 3: スジ状のムラが、膜全体で3本未満
 2: スジ状のムラが、膜全体で3本以上10本未満あり、実用不可能
 1: スジ状のムラが、膜全体で10本以上あり、実用不可能
 試験c01(比較例)の顕微鏡像を図3に載せた。
<Surface (homogeneity)>
The planar shape (striated state) of the obtained film was observed at a magnification of 50 times with an Olympus Corporation semiconductor inspection microscope MX50 optical microscope.
The results were judged as follows.
4: No streak-like unevenness in the entire film 3: Less than 3 streak-like unevenness in the entire film 2: No more than 3 streak-like unevenness in the entire film, impractical 1 : There are 10 or more streak-like unevenness in the whole film, and the microscope image of the impractical test c01 (comparative example) is shown in FIG.
<屈折率評価>
 得られた膜の屈折率をエリプソメータ(ジェー・エー・ウーラム社製VUV-vase[商品名])で測定した(波長633nm、測定温度25℃)。
<Refractive index evaluation>
The refractive index of the obtained film was measured with an ellipsometer (VUV-base [trade name] manufactured by JA Woollam) (wavelength 633 nm, measurement temperature 25 ° C.).
<耐湿評価>
 得られた膜をエスペック社製の高度加速寿命試験装置EHS-221(M)にて温度85℃,湿度95%RHの環境下に20時間曝し、屈折率測定を実施した。
 結果を下記に区分して判定した。
 4: 耐湿評価前後の屈折率差が0.003未満
 3: 耐湿評価前後の屈折率差が0.003以上0.005未満
 2: 耐湿評価前後の屈折率差が0.005以上0.01未満
 1: 耐湿評価前後の屈折率差が0.01以上
<Moisture resistance evaluation>
The obtained film was exposed to an advanced accelerated life test apparatus EHS-221 (M) manufactured by Espec for 20 hours in an environment of a temperature of 85 ° C. and a humidity of 95% RH, and the refractive index was measured.
The results were judged as follows.
4: Refractive index difference before and after moisture resistance evaluation is less than 0.003 3: Refractive index difference before and after moisture resistance evaluation is 0.003 or more and less than 0.005 2: Refractive index difference before and after moisture resistance evaluation is 0.005 or more and less than 0.01 1: Refractive index difference before and after moisture resistance evaluation is 0.01 or more
<ヤング率(硬さ)評価>
 得られた膜のヤング率を、MTS Systems社製のナノインデンターSA2を使用して測定した。測定温度は室温(約25℃)とした。
<Young's modulus (hardness) evaluation>
The Young's modulus of the obtained film was measured using a nanoindenter SA2 manufactured by MTS Systems. The measurement temperature was room temperature (about 25 ° C.).
Figure JPOXMLDOC01-appb-T000013
 * 粒子液の配合量はSiO分の量である
 配合は質量部である
 LC-OH:エタノール、メタノール
 EL:乳酸エチル
 PG:プロピレングリコール
 PGME:プロピレングリコールモノメチルエーテル
 PGMEA:プロピレングリコールモノメチルエーテルアセテート
 DPG:ジプロピレングリコール
 F781F:メガファック (DIC社製 商品名)・・・下記化学式参照
 
 F554:メガファック (DIC社製 商品名)
 F559:メガファック (DIC社製 商品名)
 
 EC-080:EMULSOGEN COL-080 
       (クラリアント社製 商品名)
        アニオン界面活性剤:
    (R-O-(EO)-COOH,
     Rは炭素数18のオレイル基、EOはエチレンオキシ基)
 PAA-03:ポリアリルアミン-03 
        (スペシャリティケミカルス事業部
        ニットーボーメディカル株式会社製 商品名)
        カチオン高分子界面活性剤 重量平均分子量 3000
Figure JPOXMLDOC01-appb-C000014
界面活性剤F:メガファックF-781F、DIC社製
上記構造中、EOはエチレンオキシ基、POはプロピレンオキシ基を表す。
p、q、rは整数を表す。分子量は、12500。
M305:東亜合成株式会社製(商品名)
A-TMMT:新中村化学工業株式会社製(商品名)
Figure JPOXMLDOC01-appb-T000013
* The amount of the particle liquid is SiO 2 The amount is part by mass LC-OH: ethanol, methanol EL: ethyl lactate PG: propylene glycol PGME: propylene glycol monomethyl ether PGMEA: propylene glycol monomethyl ether acetate DPG: Dipropylene glycol F781F: Mega-Fac (trade name, manufactured by DIC) ... Refer to the following chemical formula
F554: Mega Fuck (trade name, manufactured by DIC)
F559: Mega Fuck (trade name, manufactured by DIC)

EC-080: EMULSOGEN COL-080
(Clariant product name)
Anionic surfactant:
(R—O— (EO) 8 —COOH,
R is an oleyl group having 18 carbon atoms, EO is an ethyleneoxy group)
PAA-03: Polyallylamine-03
(Specialty Chemicals Division Nitto Bo Medical Co., Ltd. product name)
Cationic polymer surfactant Weight average molecular weight 3000
Figure JPOXMLDOC01-appb-C000014
Surfactant F: Megafac F-781F, manufactured by DIC, wherein EO represents an ethyleneoxy group and PO represents a propyleneoxy group.
p, q, and r represent integers. The molecular weight is 12,500.
M305: Toa Gosei Co., Ltd. (trade name)
A-TMMT: Shin-Nakamura Chemical Co., Ltd. (trade name)
・cP1の調製
 コロイダルシリカ粒子液P1に対して、SiOで同量となるようにスルーリア2320(日揮触媒化成株式会社製の中空シリカの20質量%MIBK(メチルイソブチルケトン)分散液)を配合した。それ以外同様にして、光学機能層形成用組成物cP1を調製した。
· Cp1 for the preparation of colloidal silica particles solution P1 of, were formulated Sururia so that the same amount in SiO 2 2320 (20 wt% of hollow silica JGC Catalysts and Chemicals Ltd. MIBK (methyl isobutyl ketone) dispersion) . Otherwise in the same manner, an optical functional layer forming composition cP1 was prepared.
・cP2の調製
 コロイダルシリカ粒子液P1に対して、ケイ素アルコキシドの加水分解物(F)を用いなかった以外同様にして、光学機能層形成用組成物cP2を調製した。ただし、固形分中のSiO分の量は試験101と同じになるように調整した。
-Preparation of cP2 An optical functional layer forming composition cP2 was prepared in the same manner as described above except that the hydrolyzate of silicon alkoxide (F) was not used for the colloidal silica particle liquid P1. However, the amount of SiO 2 in the solid content was adjusted to be the same as in Test 101.
 上記評価から明らかなように、本発明の光学機能層形成用組成物によると、その硬化膜は所望の低屈折率を実現し、かつ成形膜のストリエーション防止性が良好であることがわかる。 As is clear from the above evaluation, it can be seen that according to the composition for forming an optical functional layer of the present invention, the cured film achieves a desired low refractive index, and the molded film has good striation prevention properties.
<実施例2>
 上記の試験101の粒子液P1をそれぞれP2~P8に代え、同様に、各項目の測定・評価を行った。その結果は、面状が3~4、屈折率が1.24以下、耐湿評価が4、ヤング率が5.0~6.0の良好な結果であった。
<Example 2>
The particle liquid P1 in the above test 101 was replaced with P2 to P8, respectively, and each item was measured and evaluated in the same manner. As a result, the surface condition was 3 to 4, the refractive index was 1.24 or less, the moisture resistance evaluation was 4, and the Young's modulus was 5.0 to 6.0.
<実施例3>
 試験101~112の光学機能層形成用組成物(各粒子液)にトリエチレングリコールモノブチルエーテル(沸点271℃)を15質量部で添加した。その結果、各粒子液の乾燥性が抑えられ、製造適正および製造品質がともに向上することを確認した。
<Example 3>
15 parts by mass of triethylene glycol monobutyl ether (boiling point 271 ° C.) was added to the optical functional layer forming compositions (each particle liquid) of Tests 101 to 112. As a result, it was confirmed that the drying property of each particle liquid was suppressed, and both the production suitability and the production quality were improved.
<実施例4>
 上記試験101で得られた光学機能層形成用組成物を、塗布後の膜厚が0.6μmになるように、下塗り層付きシリコンウェハ上にスピンコート法で塗布し、その後ホットプレート上で、100℃で2分間加熱、さらに、ホットプレート上で、230℃で10分間加熱して光学機能層形成用組成物層を得た。
 次いで、得られた光学機能層形成用組成物層に対し、HMDS処理(200℃×1minのBake、110℃×1minHMDS vapor)を実施した後、ポジ型フォトレジスト(富士フイルムエレクトロニクスマテリアルズ株式会社製、商品名FHi622BC)をスピンコーターにて塗布し、100℃で2分間の加熱処理を行い、膜厚が1.0μmの厚さになるようにフォトレジスト層を形成した。次に、i線ステッパー露光装置FPA-3000i5+(キヤノン株式会社製)を用い、10μm四方のベイヤーパターンを、マスクを介して露光(露光量250mJ/cm)した。
 次いで、露光後のレジストに対し、現像液「FHD-5」(富士フイルムエレクトロニクスマテリアルズ株式会社製)で1分間の現像処理後、100℃で1分間のポストベーク処理を実施して、レジストパターンを得た。
 その後、下記の条件で光学機能層をドライエッチングした。
 ドライエッチング条件
使用装置:株式会社日立ハイテクノロジーズ製 U-621
    (枚葉式ドライエッチング、アッシング装置)
     のドライエッチングチャンバー使用
処理パラメータ
     圧力:2.0Pa
     使用ガス:Ar/C/O=600/20/50mL/min
     処理温度:20℃
     ソースパワー:500W
     上部バイアス/電極バイアス=500/1000W
     処理時間:200sec
 さらに、下記のドライ処理条件でフォトレジストの除去を行い、光学機能層形成用組成物層を形成した。
 ドライ処理条件
使用装置:株式会取日立ハイテクノロジーズ製 U-621
    (枚葉式ドライエッチング、アッシング装置)
     のドライエッチングチャンバー使用
処理パラメータ
     圧力:2.0Pa
     使用ガス:O=300mL/min
     処理温度:20℃
     ソースパワー:1000W
     上部バイアス/電極バイアス=500/1000W
     処理時間:45sec
<Example 4>
The composition for forming an optical functional layer obtained in the test 101 was applied by spin coating on a silicon wafer with an undercoat layer so that the film thickness after application was 0.6 μm, and then on a hot plate. It was heated at 100 ° C. for 2 minutes, and further heated at 230 ° C. for 10 minutes on a hot plate to obtain a composition layer for forming an optical functional layer.
Next, the obtained optical functional layer forming composition layer was subjected to HMDS treatment (200 ° C. × 1 min Bake, 110 ° C. × 1 min HMDS vapor), and then a positive photoresist (manufactured by FUJIFILM Electronics Materials Co., Ltd.). , Trade name FHi622BC) was applied with a spin coater, and heat treatment was performed at 100 ° C. for 2 minutes to form a photoresist layer having a thickness of 1.0 μm. Next, an i-line stepper exposure apparatus FPA-3000i5 + (manufactured by Canon Inc.) was used to expose a 10 μm square Bayer pattern through a mask (exposure amount 250 mJ / cm 2 ).
Next, the exposed resist is developed with a developer “FHD-5” (manufactured by FUJIFILM Electronics Materials Co., Ltd.) for 1 minute, and then post-baked at 100 ° C. for 1 minute to form a resist pattern. Got.
Thereafter, the optical functional layer was dry etched under the following conditions.
Equipment for dry etching conditions: U-621 manufactured by Hitachi High-Technologies Corporation
(Single wafer dry etching, ashing equipment)
Processing parameters for use in dry etching chamber Pressure: 2.0Pa
Gas used: Ar / C 4 F 6 / O 2 = 600/20/50 mL / min
Processing temperature: 20 ° C
Source power: 500W
Upper bias / electrode bias = 500/1000 W
Processing time: 200 sec
Further, the photoresist was removed under the following dry processing conditions to form an optical functional layer forming composition layer.
Equipment for dry processing conditions: U-621 manufactured by Hitachi High-Technologies Corporation
(Single wafer dry etching, ashing equipment)
Processing parameters for use in dry etching chamber Pressure: 2.0Pa
Gas used: O 2 = 300 mL / min
Processing temperature: 20 ° C
Source power: 1000W
Upper bias / electrode bias = 500/1000 W
Processing time: 45 sec
 得られたパターンは所望の矩形性と屈折率を有しており、各種光学デバイスに適合する良好な低屈折率膜として機能することを確認した。 It was confirmed that the obtained pattern had a desired rectangularity and refractive index and functioned as a good low refractive index film suitable for various optical devices.
 本発明をその実施例とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2014年6月10日に日本国で特許出願された特願2014-120019および2015年2月9日に日本国で特許出願された特願2015-022809に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2014-120019 filed in Japan on June 10, 2014 and Japanese Patent Application No. 2015-022809 filed on February 9, 2015 in Japan. Which is hereby incorporated by reference herein as part of its description.

Claims (20)

  1.  コロイダルシリカ粒子と界面活性剤とを含有する固体撮像素子の光学機能層形成用組成物。 A composition for forming an optical functional layer of a solid-state imaging device containing colloidal silica particles and a surfactant.
  2.  上記界面活性剤がフッ素系界面活性剤、アニオン界面活性剤、またはカチオン高分子界面活性剤である請求項1に記載の光学機能層形成用組成物。 The composition for forming an optical functional layer according to claim 1, wherein the surfactant is a fluorine-based surfactant, an anionic surfactant, or a cationic polymer surfactant.
  3.  上記界面活性剤が下記の式(F)で表される化合物からなる請求項1または2に記載の光学機能層形成用組成物。
    Figure JPOXMLDOC01-appb-C000001
     RF1は水素原子または炭素数1~3のアルキル基である。RF2はアルキル基、アルケニル基、またはアリール基である。RF3はアルキレンオキシ基含有基またはポリアルキレンオキシ基含有基である。上記RF2には少なくとも1つのフッ素原子が置換している。
    The composition for forming an optical functional layer according to claim 1, wherein the surfactant comprises a compound represented by the following formula (F).
    Figure JPOXMLDOC01-appb-C000001
    R F1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R F2 is an alkyl group, an alkenyl group, or an aryl group. R F3 is an alkyleneoxy group-containing group or a polyalkyleneoxy group-containing group. The R F2 is substituted with at least one fluorine atom.
  4.  上記コロイダルシリカ粒子は、球状シリカ粒子が数珠状に連結された形態を取る請求項1~3のいずれか1項に記載の光学機能層形成用組成物。 The composition for forming an optical functional layer according to any one of claims 1 to 3, wherein the colloidal silica particles take a form in which spherical silica particles are connected in a bead shape.
  5.  上記コロイダルシリカ粒子が、平均粒子径5nm~50nmの複数の球状シリカ粒子とこの複数の球状シリカ粒子を互いに接合する接合部からなる請求項1~4のいずれか1項に記載の光学機能層形成用組成物。 The optical functional layer formation according to any one of claims 1 to 4, wherein the colloidal silica particles are composed of a plurality of spherical silica particles having an average particle diameter of 5 nm to 50 nm and a bonding portion for bonding the plurality of spherical silica particles to each other. Composition.
  6.  上記コロイダルシリカ粒子が下記の諸元(a)および(b)を有する請求項1~5のいずれか1項に記載の光学機能層形成用組成物。
     (a)動的光散乱法により測定された平均粒子径D1が30nm~300nmである。
     (b)比表面積より求めた平均粒子径D2と上記D1との比率、D1/D2が3以上である。
    The composition for forming an optical functional layer according to any one of claims 1 to 5, wherein the colloidal silica particles have the following specifications (a) and (b).
    (A) The average particle diameter D1 measured by the dynamic light scattering method is 30 nm to 300 nm.
    (B) The ratio of the average particle diameter D2 determined from the specific surface area to the above D1, D1 / D2 is 3 or more.
  7.  有機溶媒をさらに含有する請求項1~6のいずれか1項に記載の光学機能層形成用組成物。 The composition for forming an optical functional layer according to any one of claims 1 to 6, further comprising an organic solvent.
  8.  上記有機溶媒が非プロトン性極性溶媒を含有する請求項7に記載の光学機能層形成用組成物。 The composition for forming an optical functional layer according to claim 7, wherein the organic solvent contains an aprotic polar solvent.
  9.  上記非プロトン性極性溶媒がエステル化合物溶媒またはエーテル化合物溶媒である請求項8に記載の光学機能層形成用組成物。 The composition for forming an optical functional layer according to claim 8, wherein the aprotic polar solvent is an ester compound solvent or an ether compound solvent.
  10.  上記有機溶媒の沸点が1気圧で240℃~310℃である請求項7に記載の光学機能層形成用組成物。 The composition for forming an optical functional layer according to claim 7, wherein the boiling point of the organic solvent is 240 ° C to 310 ° C at 1 atm.
  11.  上記光学機能層形成用組成物で形成される光学機能層の屈折率が1.24以下である請求項1~10のいずれか1項に記載の光学機能層形成用組成物。 The composition for forming an optical functional layer according to any one of claims 1 to 10, wherein the refractive index of the optical functional layer formed from the composition for forming an optical functional layer is 1.24 or less.
  12.  低屈折率膜形成用である請求項1~11のいずれか1項に記載の光学機能層形成用組成物。 The composition for forming an optical functional layer according to any one of claims 1 to 11, which is used for forming a low refractive index film.
  13.  コロイダルシリカ粒子を含有する屈折率1.24以下の光学機能層を備える固体撮像素子。 A solid-state imaging device comprising an optical functional layer containing colloidal silica particles and having a refractive index of 1.24 or less.
  14.  さらに、上記光学機能層が界面活性剤またはその残留分を含有する請求項13に記載の固体撮像素子。 The solid-state imaging device according to claim 13, wherein the optical functional layer further contains a surfactant or a residue thereof.
  15.  上記光学機能層が、コロイダルシリカ粒子と界面活性剤とを含有する光学機能層形成用組成物を硬化させてなる請求項13または14に記載の固体撮像素子。 The solid-state imaging device according to claim 13 or 14, wherein the optical functional layer is obtained by curing a composition for forming an optical functional layer containing colloidal silica particles and a surfactant.
  16.  上記光学機能層がマイクロレンズ上の反射防止膜である請求項13~15のいずれか1項に記載の固体撮像素子。 The solid-state imaging device according to any one of claims 13 to 15, wherein the optical functional layer is an antireflection film on a microlens.
  17.  上記光学機能層がカラーフィルター層の額縁構造である請求項13~15のいずれか1項に記載の固体撮像素子。 The solid-state imaging device according to any one of claims 13 to 15, wherein the optical functional layer has a frame structure of a color filter layer.
  18.  請求項13~17のいずれか1項に記載の固体撮像素子を組み込んだカメラモジュール。 A camera module incorporating the solid-state imaging device according to any one of claims 13 to 17.
  19.  コロイダルシリカ粒子を含有する屈折率1.24以下の光学機能層にレジストを付与する工程と、
     上記レジストに対してパターン露光して現像する工程と、
     上記レジストをマスクとして上記光学機能層をエッチング加工した後、残存する上記レジストをドライ処理により除去する工程とを有する光学機能層のパターン形成方法。
    Applying a resist to an optical functional layer containing colloidal silica particles having a refractive index of 1.24 or less;
    A step of pattern exposure to the resist and development;
    A method of forming a pattern of the optical functional layer, comprising: etching the optical functional layer using the resist as a mask; and removing the remaining resist by dry treatment.
  20.  請求項19に記載のパターン形成方法により光学機能層を形成する工程を有する固体撮像素子及びカメラモジュールの製造方法。 A method for manufacturing a solid-state imaging device and a camera module, comprising a step of forming an optical functional layer by the pattern forming method according to claim 19.
PCT/JP2015/066119 2014-06-10 2015-06-03 Optical functional layer formation composition, solid-state imaging element and camera module using same, pattern formation method for optical functional layer, and method for manufacturing solid-state imaging element and camera module WO2015190374A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177000123A KR20170015459A (en) 2014-06-10 2015-06-03 Optical functional layer formation composition, solid-state imaging element and camera module using same, pattern formation method for optical functional layer, and method for manufacturing solid-state imaging element and camera module
JP2016527768A JPWO2015190374A1 (en) 2014-06-10 2015-06-03 Optical functional layer forming composition, solid-state imaging device and camera module using the same, optical functional layer pattern forming method, solid-state imaging device and camera module manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014120019 2014-06-10
JP2014-120019 2014-06-10
JP2015-022809 2015-02-09
JP2015022809 2015-02-09

Publications (1)

Publication Number Publication Date
WO2015190374A1 true WO2015190374A1 (en) 2015-12-17

Family

ID=54833470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066119 WO2015190374A1 (en) 2014-06-10 2015-06-03 Optical functional layer formation composition, solid-state imaging element and camera module using same, pattern formation method for optical functional layer, and method for manufacturing solid-state imaging element and camera module

Country Status (4)

Country Link
JP (1) JPWO2015190374A1 (en)
KR (1) KR20170015459A (en)
TW (1) TWI691460B (en)
WO (1) WO2015190374A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017280A1 (en) * 2017-07-21 2019-01-24 富士フイルム株式会社 Composition, method for producing film, and method for producing photosensor
WO2020116300A1 (en) * 2018-12-05 2020-06-11 富士フイルム株式会社 Composition and membrane manufacturing method
WO2020203430A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Composition, film, and method for film production
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
US11069729B2 (en) 2018-05-01 2021-07-20 Canon Kabushiki Kaisha Photoelectric conversion device, and equipment
US20220171095A1 (en) * 2019-09-06 2022-06-02 Fujifilm Corporation Composition, film, structural body, color filter, solid-state imaging element, and image display device
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI717117B (en) 2019-11-22 2021-01-21 財團法人工業技術研究院 Residual toxicant detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598214A (en) * 1991-10-09 1993-04-20 Ito Kogaku Kogyo Kk Coating composition for molded plastic
JP2594042B2 (en) * 1986-06-24 1997-03-26 セイコーエプソン株式会社 Anti-reflective coating
WO2004113966A1 (en) * 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha Antireflective film
JP2005321930A (en) * 2004-05-07 2005-11-17 Toppan Forms Co Ltd Noncontact data transmitting and receiving body, and capacitance adjustment method and capacitance adjustment device therefor
JP2006199902A (en) * 2004-12-24 2006-08-03 Jsr Corp Radiation-curable resin composition for flattened layer, planarizing layer, method for producing planarized layer and solid-state image sensing device
JP2007327018A (en) * 2005-06-24 2007-12-20 Jsr Corp Curable resin composition and antireflective film
WO2010044402A1 (en) * 2008-10-17 2010-04-22 日立化成工業株式会社 Film having low refractive index and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for film having low refractive index, substrate having microparticle-laminated thin film, and method for producing the same, and optical member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032185B2 (en) 1995-12-01 2008-01-16 日産化学工業株式会社 Coating with low refractive index and water repellency
JP2005338549A (en) * 2004-05-28 2005-12-08 Konica Minolta Opto Inc Antireflection film, polarizing plate, and image display device
JP4678635B2 (en) * 2005-02-10 2011-04-27 東レフィルム加工株式会社 Optical film
WO2009096124A1 (en) * 2008-01-29 2009-08-06 Toray Industries, Inc. Display-use filter
JP2010231212A (en) * 2010-04-05 2010-10-14 Toray Advanced Film Co Ltd Base film for optical film, and the optical film
JP5340252B2 (en) * 2010-11-17 2013-11-13 キヤノン株式会社 Antireflection film and method for manufacturing the same
JP5927743B2 (en) 2012-06-06 2016-06-01 三菱マテリアル株式会社 Method for producing composition for forming low refractive index film and method for forming low refractive index film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594042B2 (en) * 1986-06-24 1997-03-26 セイコーエプソン株式会社 Anti-reflective coating
JPH0598214A (en) * 1991-10-09 1993-04-20 Ito Kogaku Kogyo Kk Coating composition for molded plastic
WO2004113966A1 (en) * 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha Antireflective film
JP2005321930A (en) * 2004-05-07 2005-11-17 Toppan Forms Co Ltd Noncontact data transmitting and receiving body, and capacitance adjustment method and capacitance adjustment device therefor
JP2006199902A (en) * 2004-12-24 2006-08-03 Jsr Corp Radiation-curable resin composition for flattened layer, planarizing layer, method for producing planarized layer and solid-state image sensing device
JP2007327018A (en) * 2005-06-24 2007-12-20 Jsr Corp Curable resin composition and antireflective film
WO2010044402A1 (en) * 2008-10-17 2010-04-22 日立化成工業株式会社 Film having low refractive index and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for film having low refractive index, substrate having microparticle-laminated thin film, and method for producing the same, and optical member

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200020824A (en) 2017-07-21 2020-02-26 후지필름 가부시키가이샤 Composition, method for producing membrane and method for producing optical sensor
JPWO2019017280A1 (en) * 2017-07-21 2020-07-27 富士フイルム株式会社 Composition, method for producing film, and method for producing optical sensor
WO2019017280A1 (en) * 2017-07-21 2019-01-24 富士フイルム株式会社 Composition, method for producing film, and method for producing photosensor
US10921492B2 (en) 2018-01-09 2021-02-16 Corning Incorporated Coated articles with light-altering features and methods for the production thereof
US11069729B2 (en) 2018-05-01 2021-07-20 Canon Kabushiki Kaisha Photoelectric conversion device, and equipment
JP7153086B2 (en) 2018-12-05 2022-10-13 富士フイルム株式会社 Compositions and methods of making membranes
WO2020116300A1 (en) * 2018-12-05 2020-06-11 富士フイルム株式会社 Composition and membrane manufacturing method
KR102594275B1 (en) * 2018-12-05 2023-10-26 후지필름 가부시키가이샤 Method of making compositions and membranes
KR20210073578A (en) 2018-12-05 2021-06-18 후지필름 가부시키가이샤 Methods for making compositions and membranes
CN113165886A (en) * 2018-12-05 2021-07-23 富士胶片株式会社 Composition and method for producing film
US20210269619A1 (en) * 2018-12-05 2021-09-02 Fujifilm Corporation Composition and film forming method
JPWO2020116300A1 (en) * 2018-12-05 2021-10-21 富士フイルム株式会社 Method for producing composition and membrane
JPWO2020203430A1 (en) * 2019-03-29 2020-10-08
CN113631664A (en) * 2019-03-29 2021-11-09 富士胶片株式会社 Composition, film, and method for producing film
US20220002567A1 (en) * 2019-03-29 2022-01-06 Fujifilm Corporation Composition, film, and film forming method
KR20210130205A (en) 2019-03-29 2021-10-29 후지필름 가부시키가이샤 Compositions, membranes and methods of making membranes
JP7212765B2 (en) 2019-03-29 2023-01-25 富士フイルム株式会社 Compositions, membranes and methods of making membranes
WO2020203430A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Composition, film, and method for film production
US20220171095A1 (en) * 2019-09-06 2022-06-02 Fujifilm Corporation Composition, film, structural body, color filter, solid-state imaging element, and image display device
US11940593B2 (en) 2020-07-09 2024-03-26 Corning Incorporated Display articles with diffractive, antiglare surfaces and methods of making the same
US11971519B2 (en) 2020-07-09 2024-04-30 Corning Incorporated Display articles with antiglare surfaces and thin, durable antireflection coatings
US11977206B2 (en) 2020-07-09 2024-05-07 Corning Incorporated Display articles with diffractive, antiglare surfaces and thin, durable antireflection coatings

Also Published As

Publication number Publication date
TWI691460B (en) 2020-04-21
JPWO2015190374A1 (en) 2017-04-20
TW201609540A (en) 2016-03-16
KR20170015459A (en) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2015190374A1 (en) Optical functional layer formation composition, solid-state imaging element and camera module using same, pattern formation method for optical functional layer, and method for manufacturing solid-state imaging element and camera module
KR101830204B1 (en) Curable resin composition, anti-reflective coating using same, solid-state imaging element, and camera module
KR101827778B1 (en) Coloring composition, cured film, color filter, pattern forming method, method for producing color filter, solid-state imaging element and image display device
JP6476211B2 (en) Light shielding film, infrared light cut filter with light shielding film, and solid-state imaging device
US20220171095A1 (en) Composition, film, structural body, color filter, solid-state imaging element, and image display device
JP6890662B2 (en) Composition, film manufacturing method and optical sensor manufacturing method
US20220002567A1 (en) Composition, film, and film forming method
US20220213328A1 (en) Composition, film, structural body, color filter, solid-state imaging element, and image display device
WO2023162789A1 (en) Composition, film, method for producing film, optical filter, solid-state imaging element, image display device, and structure
WO2023022122A1 (en) Composition, film, optical filter, optical sensor, image display device, and structure
JP7153086B2 (en) Compositions and methods of making membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806241

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020177000123

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 15806241

Country of ref document: EP

Kind code of ref document: A1