WO2015190361A1 - Supercharger - Google Patents

Supercharger Download PDF

Info

Publication number
WO2015190361A1
WO2015190361A1 PCT/JP2015/066004 JP2015066004W WO2015190361A1 WO 2015190361 A1 WO2015190361 A1 WO 2015190361A1 JP 2015066004 W JP2015066004 W JP 2015066004W WO 2015190361 A1 WO2015190361 A1 WO 2015190361A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
housing
hole
link
main body
Prior art date
Application number
PCT/JP2015/066004
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 磯野
市川 清道
森 淳
小林 祐二
岩田 和明
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2015190361A1 publication Critical patent/WO2015190361A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a supercharger including a valve that opens and closes a flow path that opens in an internal space of a housing.
  • a turbocharger in which a rotating shaft having a turbine impeller provided at one end and a compressor impeller provided at the other end is rotatably held by a bearing housing.
  • a supercharger is connected to the engine, the turbine impeller is rotated by exhaust gas discharged from the engine, and the compressor impeller is rotated via the rotating shaft by the rotation of the turbine impeller.
  • the supercharger compresses air and sends it to the engine as the compressor impeller rotates.
  • the supercharger described in Patent Document 1 includes a bypass flow path.
  • the bypass passage allows a part of the exhaust gas to flow from the turbine housing to the downstream of the turbine impeller without passing through the turbine scroll passage leading to the turbine impeller. That is, a part of the exhaust gas passes through the bypass flow path, thereby bypassing the turbine scroll flow path and the turbine impeller.
  • This bypass channel is opened and closed by a valve.
  • the valve is provided in the turbine housing and is connected to the shaft.
  • the shaft is rotatably supported by a bearing portion installed in the turbine housing.
  • the bearing portion is installed in the turbine housing so as to penetrate inside and outside of the turbine housing.
  • An object of the present invention is to provide a supercharger capable of suppressing vibrations of a shaft for operating a valve and abnormal noise due to vibrations.
  • One aspect of the present invention is a supercharger, a housing having an internal space formed therein, a bearing hole provided in the housing and penetrating between the internal space of the housing and the outside of the housing, and one end of the housing And a shaft that is rotatably supported by the bearing hole with the other end positioned outside the housing, and a shaft that is fixed to the shaft and that opens to the internal space as the shaft rotates.
  • a main body portion of the link member includes at least a thick portion provided between the link hole and the portion to which the shaft is fixed.
  • FIG. 1 is a schematic cross-sectional view of a supercharger according to an embodiment of the present invention.
  • 2A and 2B are external views of a turbine housing according to an embodiment of the present invention.
  • FIG. 2A is a view of a discharge port of the turbine housing as viewed from the front, and
  • FIG. ) Is a side view of the turbine housing.
  • 3 (a) to 3 (c) are views for explaining a mounting plate according to an embodiment of the present invention.
  • FIG. 3 (a) is a perspective view of the mounting plate
  • FIG. FIG. 3C is a side view of the plate
  • FIG. 3C is a top view of the mounting plate.
  • FIG. 4 is a view for explaining the connection structure of the valve to the mounting plate.
  • FIG. 5 (a) and 5 (b) are diagrams for explaining the structure of the link plate according to the embodiment of the present invention.
  • FIG. 5 (a) is a diagram illustrating V (a)-in FIG. Sectional drawing along the V (a) line
  • FIG.5 (b) is a V (b) arrow line view in Fig.5 (a).
  • FIG. 1 is a schematic sectional view of the supercharger C.
  • the arrow L shown in FIG. 1 will be described as a direction indicating the left side of the supercharger C
  • the arrow R will be described as a direction indicating the right side of the supercharger C.
  • the supercharger C includes a supercharger main body 1.
  • the turbocharger body 1 includes a bearing housing 2, a turbine housing 4 connected to the left side of the bearing housing 2 by a fastening mechanism 3, and a compressor housing 6 connected to the right side of the bearing housing 2 by fastening bolts 5. Have. These are integrated.
  • a protrusion 2 a is provided on the outer peripheral surface of the bearing housing 2 in the vicinity of the turbine housing 4.
  • the protrusion 2 a protrudes in the radial direction of the bearing housing 2.
  • a projection 4 a is provided on the outer peripheral surface of the turbine housing 4 in the vicinity of the bearing housing 2.
  • the protrusion 4 a protrudes in the radial direction of the turbine housing 4.
  • the bearing housing 2 and the turbine housing 4 are fixed by fastening the protrusions 2 a and 4 a with the fastening mechanism 3.
  • the fastening mechanism 3 includes a fastening band (for example, G coupling) that holds the protrusions 2a and 4a.
  • the bearing housing 2 is formed with a through hole 2b that penetrates the supercharger C in the left-right direction.
  • a rotary shaft 7 is rotatably supported in the through hole 2b.
  • a turbine impeller 8 is integrally fixed to the left end portion of the rotating shaft 7.
  • the turbine impeller 8 is rotatably accommodated in the turbine housing 4.
  • a compressor impeller 9 is integrally fixed to the right end portion of the rotating shaft 7.
  • the compressor impeller 9 is rotatably accommodated in the compressor housing 6.
  • An air inlet 10 is formed in the compressor housing 6.
  • the intake port 10 opens to the right side of the supercharger C and is connected to an air cleaner (not shown).
  • the bearing housing 2 and the compressor housing 6 are connected by the fastening bolt 5, the opposing surfaces of the two housings 2 and 6 form a diffuser passage 11 that compresses and pressurizes air.
  • the diffuser flow path 11 is formed in an annular shape from the radially inner side to the outer side of the rotating shaft 7 (compressor impeller 9). The diffuser flow path 11 communicates with the intake port 10 via the compressor impeller 9 on the radially inner side.
  • the compressor housing 6 is provided with a compressor scroll passage 12.
  • the compressor scroll passage 12 is formed in an annular shape, and is positioned on the outer side in the radial direction of the rotating shaft 7 (compressor impeller 9) than the diffuser passage 11.
  • the compressor scroll passage 12 communicates with an intake port (not shown) of the engine. Further, the compressor scroll passage 12 communicates with the diffuser passage 11. Therefore, when the compressor impeller 9 rotates, air is sucked into the compressor housing 6 from the intake port 10, and is boosted by the diffuser flow path 11 and the compressor scroll flow path 12 and guided to the intake port of the engine.
  • a discharge port 13 is formed in the turbine housing 4.
  • the discharge port 13 opens to the left side of the supercharger C and is connected to an exhaust gas purification device (not shown).
  • the turbine housing 4 has an internal space S that includes the discharge port 13 as one end. In the internal space S, a later-described valve 16 is arranged.
  • the turbine housing 4 is provided with an internal flow path 14 and a turbine scroll flow path 15.
  • the turbine scroll flow path 15 is formed in an annular shape and is located on the radially outer side of the rotary shaft 7 (turbine impeller 8) than the internal flow path 14.
  • the turbine scroll passage 15 communicates with a gas inlet 17 (see FIG. 2B) through which exhaust gas discharged from an engine exhaust manifold (not shown) is guided.
  • the turbine scroll flow path 15 communicates with the internal flow path 14. Accordingly, the exhaust gas is guided from the gas inlet 17 to the turbine scroll flow path 15 and is guided to the discharge port 13 via the internal flow path 14, the turbine impeller 8, and the internal space S. In this distribution process, the exhaust gas rotates the turbine impeller 8. The rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 via the rotating shaft 7, whereby the compressor impeller 9 rotates. The air is boosted by the rotational force of the compressor impeller 9 and guided to the intake port of the engine.
  • FIGS. 2A and 2B are external views of the turbine housing 4.
  • FIG. 2A is a view of the discharge port 13 of the turbine housing 4 as viewed from the front.
  • FIG. 2B is a side view of the turbine housing 4.
  • the gas inflow port 17 is open to the lower side of the turbine housing 4.
  • a flow path communicating from the gas inlet 17 to the turbine scroll flow path 15 is branched upstream of the turbine scroll flow path 15.
  • an outlet end 18 a of a bypass flow path 18 (flow path) that is a branched flow path is formed on the wall surface (inner wall) of the turbine housing 4 that forms the internal space S including the discharge port 13. Is formed.
  • Exhaust gas flows from the gas inlet 17, and a part of the exhaust gas can flow out to the internal space S downstream of the turbine impeller 8 via the bypass flow path 18. That is, part of the exhaust gas can bypass the turbine impeller 8 and the turbine scroll passage 15.
  • the valve 16 is configured by a valve body having an outer diameter larger than the inner diameter of the outlet end 18a.
  • the valve 16 closes the bypass flow path 18 by contacting a seat surface 18b formed around the outlet end 18a of the bypass flow path 18, and opens the bypass flow path 18 by separating from the seat surface 18b.
  • the actuator rod 19 shown in FIG. 2B is arranged outside the turbine housing 4. One end of the actuator rod 19 is fixed to an actuator (not shown), and the actuator rod 19 is operated in the axial direction by the power of the actuator. The other end of the actuator rod 19 is fixed to a pin rod 21 (rod) protruding in a direction orthogonal to the axial direction of the actuator rod 19.
  • the link plate 20 (link member) is constituted by a plate member and is provided outside the turbine housing 4.
  • a link hole 20 a is formed at one end of the link plate 20.
  • a pin rod 21 is rotatably inserted (supported) into the link hole 20a of the link plate 20. That is, the pin rod 21 is fixed to the actuator rod 19 and is rotatably supported by the link plate 20.
  • the turbine housing 4 has a housing hole 4b.
  • the housing hole 4 b penetrates between the outside of the turbine housing 4 (the actuator rod 19 side of the turbine housing 4) and the internal space S of the turbine housing 4.
  • a bearing portion 22 is press-fitted into the housing hole 4b.
  • the bearing portion 22 is composed of a cylindrical member.
  • the bearing portion 22 has a bearing hole 22a that penetrates from one end to the other end.
  • the shaft 23 is inserted through the bearing hole 22a.
  • One end of the bearing portion 22 is a protruding portion 22 b that protrudes from the inner wall of the turbine housing 4 that forms the inner space S.
  • the other end of the bearing portion 22 protrudes outside the turbine housing 4. That is, one end of the bearing portion 22 is located in the internal space S, and the other end of the bearing portion 22 is located outside the turbine housing 4.
  • one end of the bearing portion 22 protrudes into the internal space S of the turbine housing 4 and the other end of the bearing portion 22 protrudes outside the turbine housing 4. That is, the bearing hole 22 a of the bearing portion 22 penetrates between the inside of the turbine housing 4 (internal space S) and the outside of the turbine housing 4.
  • the shaft 23 is inserted into the bearing hole 22 a of the bearing portion 22 and is rotatably supported by the bearing portion 22.
  • One end of the shaft 23 protrudes from the bearing portion 22 toward the internal space S of the turbine housing 4. That is, the shaft 23 is rotatably supported by the bearing hole 22a with one end thereof positioned in the internal space S. Further, the other end of the shaft 23 protrudes outside the turbine housing 4 from the turbine housing 4 and the bearing portion 22.
  • the other end of the shaft 23 is welded to the link plate 20 while being inserted into the fixing hole 20 b of the link plate 20. If the link hole 20a is provided on one end side of the link plate 20, the fixing hole 20b is provided on the other end side (generally lower side in FIG. 2B) of the link plate 20.
  • the mounting plate 24 is constituted by a plate member, and connects the valve 16 and the shaft 23.
  • a valve 16 is provided on one end side of the mounting plate 24, and a shaft 23 is welded to the other end side of the mounting plate 24.
  • the connection structure between the mounting plate 24 and the valve 16 and the connection structure between the mounting plate 24 and the shaft 23 will be described in detail later.
  • the valve 16 is rotated together with the shaft 23 in the rotation direction of the shaft 23 by the mounting plate 24.
  • the pin rod 21 is moved in the direction orthogonal to the axis of the pin rod 21 by the power of the actuator (the direction indicated by the arrows a and c in FIG. 2B), the operation of the link plate 20 (FIG. 2B).
  • the shaft 23 and the valve 16 rotate together.
  • the valve 16 opens and closes the outlet end 18 a of the bypass flow path 18.
  • FIGS. 3A to 3C are diagrams for explaining the mounting plate 24.
  • FIG. 3A is a perspective view of the mounting plate 24.
  • FIG. 3B is a side view of the mounting plate 24.
  • FIG. 3C is a top view of the mounting plate 24.
  • the mounting plate 24 includes a main body 24a and a cylindrical cylindrical portion 24b formed at one end of the main body 24a.
  • the cylindrical portion 24b is provided with an insertion hole 24c, and the shaft 23 is inserted into the insertion hole 24c.
  • An exposure hole 24d is formed in the cylindrical portion 24b.
  • the exposure hole 24d extends in the radial direction of the insertion hole 24c and penetrates the insertion hole 24c from the outside of the cylindrical portion 24b.
  • the cylindrical portion 24 b of the mounting plate 24 is welded to the shaft 23 through the exposure hole 24 d.
  • a main body hole 24e is provided in the main body 24a of the mounting plate 24.
  • the main body hole 24e passes through the main body portion 24a in a direction orthogonal to the central axis direction of the insertion hole 24c.
  • the mounting plate 24 and the valve 16 are connected through the main body hole 24e.
  • FIG. 4 is a view for explaining the connection structure of the valve 16 to the mounting plate 24, and is a view of the mounting plate 24 as viewed from the side in a state where the mounting plate 24 and the valve 16 are connected.
  • a protrusion 16 b is formed on the main body 16 a of the valve 16.
  • the protrusion 16b protrudes in a direction perpendicular to the surface direction of the contact surface 16c from the opposite side of the contact surface 16c that contacts the sheet surface 18b.
  • the protrusion 16b may be formed integrally with the main body 16a, or the protrusion 16b of another member may be fixed to the main body 16a by welding or the like.
  • the protruding portion 16 b of the valve 16 is inserted into the main body hole 24 e and the washer 25 of the mounting plate 24. Thereafter, the mounting plate 24 and the valve 16 are connected by pressurizing and deforming the tip of the protruding portion 16 b protruding from the washer 25.
  • the link plate 20 of the present embodiment is provided with a structure for suppressing such vibration.
  • FIG. 5A and FIG. 5B are diagrams for explaining the structure of the link plate 20.
  • FIG. 5A shows a cross section taken along line V (a) -V (a) in FIG. FIG.5 (b) is a V (b) arrow line view in Fig.5 (a).
  • FIG. 5A shows the link plate 20, the pin rod 21, the shaft 23, the bearing portion 22, and a part of the turbine housing 4.
  • FIG. 5B shows the link plate 20 and Only the shaft 23 is shown.
  • the main body portion 20c of the link plate 20 is provided with a link hole 20a and a fixing hole 20b.
  • Each of the link hole 20a and the fixing hole 20b passes through the main body 20c in parallel with the axial direction of the shaft 23.
  • the end of the shaft 23 protrudes to the outside of the turbine housing 4 (on the right side in FIG. 5A).
  • a small diameter portion 23a is formed at this end.
  • the outer diameter of the small diameter portion 23 a is smaller than the outer diameter of the portion of the shaft 23 inserted through the bearing portion 22.
  • the small diameter portion 23a is inserted through a fixing hole 20b formed in the main body portion 20c of the link plate 20, and is fixed to the main body portion 20c (link plate 20).
  • the pin rod 21 is rotatably inserted into the link hole 20a. At this time, the pin rod 21 is disposed with its axis parallel to the axis of the shaft 23.
  • the main body portion 20c of the link plate 20 is provided with a thick portion 20d.
  • the thick portion 20d is formed in a portion of the main body portion 20c of the link plate 20 excluding a portion where the link hole 20a is opened.
  • all the parts other than the predetermined range around the link hole 20a in the main body part 20c are formed as the thick part 20d.
  • the thick part 20d is thicker in the axial direction of the shaft 23 or the pin rod 21 (left and right in FIG. 5A) than the part where the link hole 20a is formed (the part where the link hole 20a opens) 20e. .
  • the weight of the link plate 20 increases, and vibrations of the link plate 20 itself, the shaft 23 fixed to the link plate 20, the mounting plate 24, the valve 16, and the like are suppressed. As a result, abnormal noise associated with these vibrations can be suppressed.
  • the link hole 20a becomes longer in the axial direction, and the sliding resistance between the link hole 20a and the pin rod 21 tends to increase.
  • the vibration suppression effect by the increase in a weight can be heightened further by enlarging the link board 20 also in the radial direction of the shaft 23 in the range which does not interfere with another member.
  • the thick portion 20d is formed over all portions outside the predetermined range around the link hole 20a.
  • the thick portion 20d only needs to be formed at least between the fixing hole 20b (the fixing portion of the shaft 23 in the main body portion 20c of the link plate 20) and the link hole 20a.
  • the weight of the link plate 20 can be further increased, and the vibration suppressing effect can be further enhanced.
  • the thick portion 20d may be formed over the entire link plate 20 up to the periphery of the link hole 20a.
  • the link hole 20a is not an essential configuration.
  • the end surface on the other end side in the axial direction of the shaft 23 may be in contact with the link plate 20 and the contact portion may be fixed by welding or the like.
  • the link plate 20 for operating the valve 16 that opens and closes the outlet end 18a of the bypass flow path 18 has been described, but the present invention may be applied to a link plate for operating other valves.
  • a link plate provided in the compressor housing 6 for opening and closing a bypass passage that bypasses the intake passage may be used.
  • a link for adjusting the flow rate of the exhaust gas flowing into one turbine scroll flow path and the exhaust gas flowing into the other turbine scroll flow path It may be a plate.
  • a multi-stage supercharger in which a low-pressure stage and a high-pressure stage supercharger are connected in series to the engine exhaust manifold, or a parallel type in which multiple superchargers are connected in parallel to the engine exhaust manifold.
  • the present invention may be applied to a link plate for adjusting the flow rate of exhaust gas flowing into the turbine housing of the supercharger.
  • the configuration in which the housing hole 4b is provided in the turbine housing 4 and the bearing portion 22 is inserted into the housing hole 4b has been described.
  • the shaft 23 may be directly inserted into the housing hole 4 b without providing the bearing 22, and the housing hole 4 b may function as the bearing 22.
  • the present invention can be used for a supercharger including a valve that opens and closes a flow path that opens in an internal space of a housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

 A supercharger is provided with a shaft (23) rotatably inserted in a bearing hole (22e) of a turbine housing (4), a link plate (20) to which the shaft (23) is secured, and a pin rod (21) rotatably inserted through a link hole (20a) formed in a main body part (20c) of the link plate (20). When the pin rod (21) is moved by an actuator, the shaft (23) and a valve (16) rotate integrally via the link plate (20) to open or close the flow channel. The main body part (20c) includes a thick part (20d) provided at least between the link hole (20a) and a securing part (securing hole (20b)) of the shaft (23). The thick part (20d) is thicker than a portion (20e) where the link hole (20a) opens.

Description

過給機Turbocharger
 本発明は、ハウジングの内部空間に開口する流路を開閉するバルブを備える過給機に関する。 The present invention relates to a supercharger including a valve that opens and closes a flow path that opens in an internal space of a housing.
 従来、一端にタービンインペラが設けられ他端にコンプレッサインペラが設けられた回転軸が、ベアリングハウジングに回転自在に保持された過給機が知られている。こうした過給機をエンジンに接続し、エンジンから排出される排気ガスによってタービンインペラを回転させるとともに、このタービンインペラの回転によって、回転軸を介してコンプレッサインペラを回転させる。こうして、過給機は、コンプレッサインペラの回転に伴い空気を圧縮してエンジンに送出する。 2. Description of the Related Art Conventionally, a turbocharger is known in which a rotating shaft having a turbine impeller provided at one end and a compressor impeller provided at the other end is rotatably held by a bearing housing. Such a supercharger is connected to the engine, the turbine impeller is rotated by exhaust gas discharged from the engine, and the compressor impeller is rotated via the rotating shaft by the rotation of the turbine impeller. Thus, the supercharger compresses air and sends it to the engine as the compressor impeller rotates.
 特許文献1に記載の過給機はバイパス流路を備えている。バイパス流路は、排気ガスの一部を、タービンインペラに通じるタービンスクロール流路を介さずに、タービンハウジングからタービンインペラの下流に流す。すなわち、排気ガスの一部はバイパス流路を経由することで、タービンスクロール流路およびタービンインペラをバイパスする。このバイパス流路は、バルブによって開閉される。バルブはタービンハウジング内に設けられ、シャフトに連結されている。シャフトは、タービンハウジングに設置された軸受部によって回転可能に支持されている。軸受部は、タービンハウジングの内外を貫通するようにタービンハウジングに設置されている。このように、アクチュエータの動力によってシャフトが回転すると、シャフトと一体となってバルブが作動し、このバルブの作動によってバイパス流路が開閉される。 The supercharger described in Patent Document 1 includes a bypass flow path. The bypass passage allows a part of the exhaust gas to flow from the turbine housing to the downstream of the turbine impeller without passing through the turbine scroll passage leading to the turbine impeller. That is, a part of the exhaust gas passes through the bypass flow path, thereby bypassing the turbine scroll flow path and the turbine impeller. This bypass channel is opened and closed by a valve. The valve is provided in the turbine housing and is connected to the shaft. The shaft is rotatably supported by a bearing portion installed in the turbine housing. The bearing portion is installed in the turbine housing so as to penetrate inside and outside of the turbine housing. As described above, when the shaft is rotated by the power of the actuator, the valve is operated integrally with the shaft, and the bypass flow path is opened and closed by the operation of the valve.
特表2013-512373号公報JP 2013-512373 A
 上記のように、過給機のハウジングに軸受部が設けられ、シャフトが軸受部によって回転可能に支持されている場合、排気脈動などの影響により、シャフトがその軸方向に振動し、その結果、騒音が生じる可能性がある。 As described above, when the bearing portion is provided in the housing of the turbocharger and the shaft is rotatably supported by the bearing portion, the shaft vibrates in the axial direction due to the influence of exhaust pulsation, and as a result, Noise may occur.
 本発明の目的は、バルブを作動させるシャフトなどの振動および振動による異音を抑制することが可能な過給機を提供することである。 An object of the present invention is to provide a supercharger capable of suppressing vibrations of a shaft for operating a valve and abnormal noise due to vibrations.
 本発明の一態様は過給機であって、内部空間が内部に形成されたハウジングと、ハウジングに設けられ、ハウジングの内部空間とハウジングの外部との間を貫通する軸受孔と、一端がハウジングの内部に位置し、他端がハウジングの外に位置した状態で軸受孔に回転自在に支持されるシャフトと、シャフトに固定され、シャフトの回転に伴って内部空間に開口する流路を開閉するバルブと、ハウジングの外に設けられ、リンク孔が設けられると共にシャフトに固定された本体部を有するリンク部材と、軸心をシャフトの軸心と平行にして設けられ、リンク孔に回転自在に支持されるロッドと、を備え、リンク部材の本体部は、少なくともリンク孔とシャフトが固定された部分との間に設けられる肉厚部を含み、肉厚部は、シャフト或いはロッドの軸方向における厚みが、本体部においてリンク孔が開口する部分よりも大きく、ロッドがアクチュエータの動力によって移動すると、リンク部材の作動によりシャフトおよびバルブが一体回転して流路が開閉されることを要旨とする。 One aspect of the present invention is a supercharger, a housing having an internal space formed therein, a bearing hole provided in the housing and penetrating between the internal space of the housing and the outside of the housing, and one end of the housing And a shaft that is rotatably supported by the bearing hole with the other end positioned outside the housing, and a shaft that is fixed to the shaft and that opens to the internal space as the shaft rotates. A valve, a link member provided outside the housing, having a link hole and having a main body fixed to the shaft, and having an axis parallel to the shaft axis and rotatably supported by the link hole And a main body portion of the link member includes at least a thick portion provided between the link hole and the portion to which the shaft is fixed. When the rod is thicker than the portion where the link hole is opened in the main body, and the rod is moved by the power of the actuator, the shaft and valve are integrally rotated by the operation of the link member to open and close the flow path. Is the gist.
 本発明によれば、バルブを作動させるシャフトなどの振動および振動による異音を抑制することが可能となる。 According to the present invention, it is possible to suppress the vibration of the shaft for operating the valve and the abnormal noise due to the vibration.
図1は、本発明の一実施形態に係る過給機の概略断面図である。FIG. 1 is a schematic cross-sectional view of a supercharger according to an embodiment of the present invention. 図2(a)及び図2(b)は本発明の一実施形態に係るタービンハウジングの外観図であり、図2(a)はタービンハウジングの吐出口を正面から見た図、図2(b)はタービンハウジングの側面図である。2A and 2B are external views of a turbine housing according to an embodiment of the present invention. FIG. 2A is a view of a discharge port of the turbine housing as viewed from the front, and FIG. ) Is a side view of the turbine housing. 図3(a)~図3(c)は本発明の一実施形態に係る取付板を説明するための図であり、図3(a)は取付板の斜視図、図3(b)は取付板の側面図、図3(c)は取付板の上面図である。3 (a) to 3 (c) are views for explaining a mounting plate according to an embodiment of the present invention. FIG. 3 (a) is a perspective view of the mounting plate, and FIG. FIG. 3C is a side view of the plate, and FIG. 3C is a top view of the mounting plate. 図4は、取付板へのバルブの連結構造を説明するための図である。FIG. 4 is a view for explaining the connection structure of the valve to the mounting plate. 図5(a)及び図5(b)は本発明の一実施形態に係るリンク板の構造を説明するための図であり、図5(a)は図2(b)におけるV(a)-V(a)線に沿った断面図、図5(b)は図5(a)におけるV(b)矢視図である。5 (a) and 5 (b) are diagrams for explaining the structure of the link plate according to the embodiment of the present invention. FIG. 5 (a) is a diagram illustrating V (a)-in FIG. Sectional drawing along the V (a) line, FIG.5 (b) is a V (b) arrow line view in Fig.5 (a).
 以下に添付図面を参照しながら、本発明の一実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.
 図1は、過給機Cの概略断面図である。以下では、図1に示す矢印Lを過給機Cの左側を示す方向とし、矢印Rを過給機Cの右側を示す方向として説明する。図1に示すように、過給機Cは、過給機本体1を備える。この過給機本体1は、ベアリングハウジング2と、ベアリングハウジング2の左側に締結機構3によって連結されるタービンハウジング4と、ベアリングハウジング2の右側に締結ボルト5によって連結されるコンプレッサハウジング6と、を有する。これらは一体化されている。 FIG. 1 is a schematic sectional view of the supercharger C. Hereinafter, the arrow L shown in FIG. 1 will be described as a direction indicating the left side of the supercharger C, and the arrow R will be described as a direction indicating the right side of the supercharger C. As shown in FIG. 1, the supercharger C includes a supercharger main body 1. The turbocharger body 1 includes a bearing housing 2, a turbine housing 4 connected to the left side of the bearing housing 2 by a fastening mechanism 3, and a compressor housing 6 connected to the right side of the bearing housing 2 by fastening bolts 5. Have. These are integrated.
 ベアリングハウジング2のタービンハウジング4近傍の外周面には、突起2aが設けられている。突起2aは、ベアリングハウジング2の径方向に突出している。また、タービンハウジング4のベアリングハウジング2近傍の外周面には、突起4aが設けられている。突起4aは、タービンハウジング4の径方向に突出している。ベアリングハウジング2とタービンハウジング4は、突起2a、4aを締結機構3によってバンド締結して固定される。締結機構3は、突起2a、4aを挟持する締結バンド(例えばGカップリング)で構成される。 A protrusion 2 a is provided on the outer peripheral surface of the bearing housing 2 in the vicinity of the turbine housing 4. The protrusion 2 a protrudes in the radial direction of the bearing housing 2. A projection 4 a is provided on the outer peripheral surface of the turbine housing 4 in the vicinity of the bearing housing 2. The protrusion 4 a protrudes in the radial direction of the turbine housing 4. The bearing housing 2 and the turbine housing 4 are fixed by fastening the protrusions 2 a and 4 a with the fastening mechanism 3. The fastening mechanism 3 includes a fastening band (for example, G coupling) that holds the protrusions 2a and 4a.
 ベアリングハウジング2には、過給機Cの左右方向に貫通する貫通孔2bが形成されている。貫通孔2bには、回転軸7が回転自在に支持されている。回転軸7の左端部にはタービンインペラ8が一体的に固定されている。タービンインペラ8は、タービンハウジング4内に回転自在に収容されている。また、回転軸7の右端部にはコンプレッサインペラ9が一体的に固定されている。コンプレッサインペラ9は、コンプレッサハウジング6内に回転自在に収容されている。 The bearing housing 2 is formed with a through hole 2b that penetrates the supercharger C in the left-right direction. A rotary shaft 7 is rotatably supported in the through hole 2b. A turbine impeller 8 is integrally fixed to the left end portion of the rotating shaft 7. The turbine impeller 8 is rotatably accommodated in the turbine housing 4. A compressor impeller 9 is integrally fixed to the right end portion of the rotating shaft 7. The compressor impeller 9 is rotatably accommodated in the compressor housing 6.
 コンプレッサハウジング6には吸気口10が形成されている。吸気口10は、過給機Cの右側に開口し、エアクリーナ(図示せず)に接続する。また、締結ボルト5によってベアリングハウジング2とコンプレッサハウジング6とが連結された状態では、両ハウジング2、6の、互いに対向する対向面が、空気を圧縮して昇圧するディフューザ流路11を形成する。ディフューザ流路11は、回転軸7(コンプレッサインペラ9)の径方向内側から外側に向けて環状に形成されている。ディフューザ流路11は、径方向内側において、コンプレッサインペラ9を介して吸気口10に連通している。 An air inlet 10 is formed in the compressor housing 6. The intake port 10 opens to the right side of the supercharger C and is connected to an air cleaner (not shown). When the bearing housing 2 and the compressor housing 6 are connected by the fastening bolt 5, the opposing surfaces of the two housings 2 and 6 form a diffuser passage 11 that compresses and pressurizes air. The diffuser flow path 11 is formed in an annular shape from the radially inner side to the outer side of the rotating shaft 7 (compressor impeller 9). The diffuser flow path 11 communicates with the intake port 10 via the compressor impeller 9 on the radially inner side.
 また、コンプレッサハウジング6にはコンプレッサスクロール流路12が設けられている。コンプレッサスクロール流路12は環状に形成され、ディフューザ流路11よりも回転軸7(コンプレッサインペラ9)の径方向外側に位置する。コンプレッサスクロール流路12は、エンジンの吸気口(図示せず)に連通している。また、コンプレッサスクロール流路12は、ディフューザ流路11にも連通している。したがって、コンプレッサインペラ9が回転すると、空気は、吸気口10からコンプレッサハウジング6内に吸引され、ディフューザ流路11およびコンプレッサスクロール流路12で昇圧されてエンジンの吸気口に導かれる。 The compressor housing 6 is provided with a compressor scroll passage 12. The compressor scroll passage 12 is formed in an annular shape, and is positioned on the outer side in the radial direction of the rotating shaft 7 (compressor impeller 9) than the diffuser passage 11. The compressor scroll passage 12 communicates with an intake port (not shown) of the engine. Further, the compressor scroll passage 12 communicates with the diffuser passage 11. Therefore, when the compressor impeller 9 rotates, air is sucked into the compressor housing 6 from the intake port 10, and is boosted by the diffuser flow path 11 and the compressor scroll flow path 12 and guided to the intake port of the engine.
 タービンハウジング4には吐出口13が形成されている。吐出口13は、過給機Cの左側に開口し、排気ガス浄化装置(図示せず)に接続する。タービンハウジング4は、吐出口13を一端として含む内部空間Sを有する。内部空間Sには、後述するバルブ16が配されている。また、タービンハウジング4には、内部流路14と、タービンスクロール流路15とが設けられている。タービンスクロール流路15は環状に形成され、内部流路14よりも回転軸7(タービンインペラ8)の径方向外側に位置する。タービンスクロール流路15は、エンジンの排気マニホールド(図示せず)から排出される排気ガスが導かれるガス流入口17(図2(b)参照)に連通する。また、タービンスクロール流路15は、内部流路14にも連通している。したがって、排気ガスは、ガス流入口17からタービンスクロール流路15に導かれ、内部流路14、タービンインペラ8、および、内部空間Sを介して吐出口13に導かれる。この流通過程において、排気ガスはタービンインペラ8を回転させる。タービンインペラ8の回転力は、回転軸7を介してコンプレッサインペラ9に伝達され、これによりコンプレッサインペラ9は回転する。空気は、このコンプレッサインペラ9の回転力によって昇圧され、エンジンの吸気口に導かれる。 A discharge port 13 is formed in the turbine housing 4. The discharge port 13 opens to the left side of the supercharger C and is connected to an exhaust gas purification device (not shown). The turbine housing 4 has an internal space S that includes the discharge port 13 as one end. In the internal space S, a later-described valve 16 is arranged. The turbine housing 4 is provided with an internal flow path 14 and a turbine scroll flow path 15. The turbine scroll flow path 15 is formed in an annular shape and is located on the radially outer side of the rotary shaft 7 (turbine impeller 8) than the internal flow path 14. The turbine scroll passage 15 communicates with a gas inlet 17 (see FIG. 2B) through which exhaust gas discharged from an engine exhaust manifold (not shown) is guided. Further, the turbine scroll flow path 15 communicates with the internal flow path 14. Accordingly, the exhaust gas is guided from the gas inlet 17 to the turbine scroll flow path 15 and is guided to the discharge port 13 via the internal flow path 14, the turbine impeller 8, and the internal space S. In this distribution process, the exhaust gas rotates the turbine impeller 8. The rotational force of the turbine impeller 8 is transmitted to the compressor impeller 9 via the rotating shaft 7, whereby the compressor impeller 9 rotates. The air is boosted by the rotational force of the compressor impeller 9 and guided to the intake port of the engine.
 図2(a)及び図2(b)は、タービンハウジング4の外観図である。図2(a)は、タービンハウジング4の吐出口13を正面から見た図である。図2(b)は、タービンハウジング4の側面図である。図2(b)において、ガス流入口17は、タービンハウジング4の大凡下側に開口している。ガス流入口17からタービンスクロール流路15に連通する流路は、タービンスクロール流路15より上流側で分岐している。また、図1に示すように、吐出口13を含む内部空間Sを形成するタービンハウジング4の壁面(内壁)には、この分岐した流路であるバイパス流路18(流路)の出口端18aが形成されている。 FIGS. 2A and 2B are external views of the turbine housing 4. FIG. 2A is a view of the discharge port 13 of the turbine housing 4 as viewed from the front. FIG. 2B is a side view of the turbine housing 4. In FIG. 2B, the gas inflow port 17 is open to the lower side of the turbine housing 4. A flow path communicating from the gas inlet 17 to the turbine scroll flow path 15 is branched upstream of the turbine scroll flow path 15. Further, as shown in FIG. 1, an outlet end 18 a of a bypass flow path 18 (flow path) that is a branched flow path is formed on the wall surface (inner wall) of the turbine housing 4 that forms the internal space S including the discharge port 13. Is formed.
 排気ガスはガス流入口17から流入し、その一部は、バイパス流路18を介して、タービンインペラ8の下流にある内部空間Sに流出することができる。即ち、排気ガスの一部は、タービンインペラ8やタービンスクロール流路15をバイパスすることができる。 Exhaust gas flows from the gas inlet 17, and a part of the exhaust gas can flow out to the internal space S downstream of the turbine impeller 8 via the bypass flow path 18. That is, part of the exhaust gas can bypass the turbine impeller 8 and the turbine scroll passage 15.
 バルブ16は、出口端18aの内径よりも外径の大きい弁体によって構成されている。バルブ16は、バイパス流路18の出口端18aの周囲に形成されたシート面18bに当接することでバイパス流路18を閉じ、シート面18bから離隔することでバイパス流路18を開く。 The valve 16 is configured by a valve body having an outer diameter larger than the inner diameter of the outlet end 18a. The valve 16 closes the bypass flow path 18 by contacting a seat surface 18b formed around the outlet end 18a of the bypass flow path 18, and opens the bypass flow path 18 by separating from the seat surface 18b.
 図2(b)に示すアクチュエータロッド19は、タービンハウジング4の外部に配されている。アクチュエータロッド19の一端は、アクチュエータ(図示せず)に固定されており、アクチュエータロッド19はアクチュエータの動力によって軸方向に作動する。アクチュエータロッド19の他端は、アクチュエータロッド19の軸方向に直交する方向に突出するピンロッド21(ロッド)に固定されている。 The actuator rod 19 shown in FIG. 2B is arranged outside the turbine housing 4. One end of the actuator rod 19 is fixed to an actuator (not shown), and the actuator rod 19 is operated in the axial direction by the power of the actuator. The other end of the actuator rod 19 is fixed to a pin rod 21 (rod) protruding in a direction orthogonal to the axial direction of the actuator rod 19.
 リンク板20(リンク部材)は、板部材によって構成され、タービンハウジング4の外部に設けられる。リンク板20の一端には、リンク孔20aが形成されている。リンク板20のリンク孔20aには、ピンロッド21が、回転自在に挿通(支持)されている。即ち、ピンロッド21は、アクチュエータロッド19に固定され、且つ、リンク板20に回転自在に支持されている。 The link plate 20 (link member) is constituted by a plate member and is provided outside the turbine housing 4. A link hole 20 a is formed at one end of the link plate 20. A pin rod 21 is rotatably inserted (supported) into the link hole 20a of the link plate 20. That is, the pin rod 21 is fixed to the actuator rod 19 and is rotatably supported by the link plate 20.
 そのため、図2(b)に示すように、アクチュエータロッド19が、矢印aが示す向きに作動すると、リンク板20は、矢印bが示す向きに揺動する。一方、アクチュエータロッド19が、矢印cが示す向きに作動すると、リンク板20は、矢印dの向きに揺動する。 Therefore, as shown in FIG. 2B, when the actuator rod 19 operates in the direction indicated by the arrow a, the link plate 20 swings in the direction indicated by the arrow b. On the other hand, when the actuator rod 19 operates in the direction indicated by the arrow c, the link plate 20 swings in the direction indicated by the arrow d.
 また、図2(a)に示すように、タービンハウジング4にはハウジング孔4bが形成されている。ハウジング孔4bは、タービンハウジング4の外部(タービンハウジング4のアクチュエータロッド19側)と、タービンハウジング4の内部空間Sとの間を貫通する。ハウジング孔4bには、軸受部22が圧入されている。 Further, as shown in FIG. 2A, the turbine housing 4 has a housing hole 4b. The housing hole 4 b penetrates between the outside of the turbine housing 4 (the actuator rod 19 side of the turbine housing 4) and the internal space S of the turbine housing 4. A bearing portion 22 is press-fitted into the housing hole 4b.
 軸受部22は、円筒状の部材で構成されている。軸受部22は、その一端から他端まで貫通する軸受孔22aを有する。軸受孔22aには、シャフト23が挿通される。また、軸受部22の一端は、内部空間Sを形成するタービンハウジング4の内壁から突出する突出部22bとなっている。軸受部22の他端は、タービンハウジング4の外部に突出している。即ち、軸受部22の一端は内部空間Sに位置し、軸受部22の他端はタービンハウジング4の外部に位置している。 The bearing portion 22 is composed of a cylindrical member. The bearing portion 22 has a bearing hole 22a that penetrates from one end to the other end. The shaft 23 is inserted through the bearing hole 22a. One end of the bearing portion 22 is a protruding portion 22 b that protrudes from the inner wall of the turbine housing 4 that forms the inner space S. The other end of the bearing portion 22 protrudes outside the turbine housing 4. That is, one end of the bearing portion 22 is located in the internal space S, and the other end of the bearing portion 22 is located outside the turbine housing 4.
 このように、軸受部22の一端がタービンハウジング4の内部空間Sに突出し、軸受部22の他端がタービンハウジング4の外部に突出している。即ち、軸受部22の軸受孔22aは、タービンハウジング4の内部(内部空間S)とタービンハウジング4の外部との間を貫通している。 Thus, one end of the bearing portion 22 protrudes into the internal space S of the turbine housing 4 and the other end of the bearing portion 22 protrudes outside the turbine housing 4. That is, the bearing hole 22 a of the bearing portion 22 penetrates between the inside of the turbine housing 4 (internal space S) and the outside of the turbine housing 4.
 上述の通り、シャフト23は軸受部22の軸受孔22aに挿通され、軸受部22によって回転自在に支持されている。シャフト23の一端は、軸受部22よりもタービンハウジング4の内部空間S側に突出している。即ち、シャフト23は、その一端が内部空間Sに位置した状態で、軸受孔22aに回転自在に支持されている。また、シャフト23の他端は、タービンハウジング4および軸受部22よりも、タービンハウジング4の外側に突出している。シャフト23の他端は、リンク板20の固定孔20bに挿通された状態で、リンク板20に溶接されている。なお、リンク孔20aがリンク板20の一端側に設けられているとすると、固定孔20bはリンク板20の他端側(図2(b)中、大凡下側)に設けられている。 As described above, the shaft 23 is inserted into the bearing hole 22 a of the bearing portion 22 and is rotatably supported by the bearing portion 22. One end of the shaft 23 protrudes from the bearing portion 22 toward the internal space S of the turbine housing 4. That is, the shaft 23 is rotatably supported by the bearing hole 22a with one end thereof positioned in the internal space S. Further, the other end of the shaft 23 protrudes outside the turbine housing 4 from the turbine housing 4 and the bearing portion 22. The other end of the shaft 23 is welded to the link plate 20 while being inserted into the fixing hole 20 b of the link plate 20. If the link hole 20a is provided on one end side of the link plate 20, the fixing hole 20b is provided on the other end side (generally lower side in FIG. 2B) of the link plate 20.
 取付板24は板部材によって構成され、バルブ16とシャフト23とを連結する。取付板24の一端側にはバルブ16が設けられ、取付板24の他端側にはシャフト23が溶接されている。取付板24とバルブ16の連結構造、および取付板24とシャフト23の連結構造については後に詳述する。 The mounting plate 24 is constituted by a plate member, and connects the valve 16 and the shaft 23. A valve 16 is provided on one end side of the mounting plate 24, and a shaft 23 is welded to the other end side of the mounting plate 24. The connection structure between the mounting plate 24 and the valve 16 and the connection structure between the mounting plate 24 and the shaft 23 will be described in detail later.
 取付板24によって、バルブ16は、シャフト23と共に、シャフト23の回転方向に一体回転する。その結果、ピンロッド21がアクチュエータの動力によってピンロッド21の軸心に直交する方向(図2(b)中、矢印a、cが示す向き)に移動すると、リンク板20の作動(図2(b)中、矢印b、dが示す向き)に伴って、シャフト23およびバルブ16が一体回転する。こうして、バルブ16がバイパス流路18の出口端18aを開閉する。 The valve 16 is rotated together with the shaft 23 in the rotation direction of the shaft 23 by the mounting plate 24. As a result, when the pin rod 21 is moved in the direction orthogonal to the axis of the pin rod 21 by the power of the actuator (the direction indicated by the arrows a and c in FIG. 2B), the operation of the link plate 20 (FIG. 2B). The direction indicated by the arrows b and d), the shaft 23 and the valve 16 rotate together. Thus, the valve 16 opens and closes the outlet end 18 a of the bypass flow path 18.
 図3(a)~図3(c)は、取付板24を説明するための図である。図3(a)は、取付板24の斜視図である。図3(b)は、取付板24の側面図である。図3(c)は、取付板24の上面図である。 FIGS. 3A to 3C are diagrams for explaining the mounting plate 24. FIG. FIG. 3A is a perspective view of the mounting plate 24. FIG. 3B is a side view of the mounting plate 24. FIG. 3C is a top view of the mounting plate 24.
 図3(a)~図3(c)に示すように、取付板24は、本体部24aと、本体部24aの一端に形成された円筒状の円筒部24bとを有する。円筒部24bには挿通孔24cが設けられ、挿通孔24cにはシャフト23が挿通される。円筒部24bには、露出孔24dが形成されている。露出孔24dは、挿通孔24cの径方向に延伸し、円筒部24bの外部から挿通孔24cに貫通する。挿通孔24cにシャフト23が挿通されると、露出孔24dからシャフト23の一部が露出する。シャフト23が挿通孔24cに挿通された状態で、露出孔24dから、取付板24の円筒部24bがシャフト23に溶接される。 As shown in FIGS. 3A to 3C, the mounting plate 24 includes a main body 24a and a cylindrical cylindrical portion 24b formed at one end of the main body 24a. The cylindrical portion 24b is provided with an insertion hole 24c, and the shaft 23 is inserted into the insertion hole 24c. An exposure hole 24d is formed in the cylindrical portion 24b. The exposure hole 24d extends in the radial direction of the insertion hole 24c and penetrates the insertion hole 24c from the outside of the cylindrical portion 24b. When the shaft 23 is inserted into the insertion hole 24c, a part of the shaft 23 is exposed from the exposure hole 24d. With the shaft 23 inserted through the insertion hole 24 c, the cylindrical portion 24 b of the mounting plate 24 is welded to the shaft 23 through the exposure hole 24 d.
 取付板24の本体部24aには本体孔24eが設けられている。本体孔24eは、挿通孔24cの中心軸方向に直交する方向に本体部24aを貫通している。取付板24とバルブ16は、この本体孔24eを介して連結される。 A main body hole 24e is provided in the main body 24a of the mounting plate 24. The main body hole 24e passes through the main body portion 24a in a direction orthogonal to the central axis direction of the insertion hole 24c. The mounting plate 24 and the valve 16 are connected through the main body hole 24e.
 図4は、取付板24へのバルブ16の連結構造を説明するための図であり、取付板24とバルブ16が連結された状態で、取付板24を側面から見た図である。図4に示すように、バルブ16の本体部16aには、突起部16bが形成されている。突起部16bは、シート面18bと当接する当接面16cの反対側から、当接面16cの面方向と直交する方向に突出する。なお、突起部16bは、本体部16aと一体形成されてもよいし、別部材の突起部16bを本体部16aに溶接などで固定してもよい。 FIG. 4 is a view for explaining the connection structure of the valve 16 to the mounting plate 24, and is a view of the mounting plate 24 as viewed from the side in a state where the mounting plate 24 and the valve 16 are connected. As shown in FIG. 4, a protrusion 16 b is formed on the main body 16 a of the valve 16. The protrusion 16b protrudes in a direction perpendicular to the surface direction of the contact surface 16c from the opposite side of the contact surface 16c that contacts the sheet surface 18b. The protrusion 16b may be formed integrally with the main body 16a, or the protrusion 16b of another member may be fixed to the main body 16a by welding or the like.
 バルブ16の本体部16aおよび座金25が取付板24の本体部24aを挟んだ状態で、バルブ16の突起部16bが、取付板24の本体孔24eおよび座金25に挿通される。その後、座金25から突出した突起部16bの先端を加圧変形させてかしめることで、取付板24とバルブ16が連結される。 In a state where the main body portion 16 a and the washer 25 of the valve 16 sandwich the main body portion 24 a of the mounting plate 24, the protruding portion 16 b of the valve 16 is inserted into the main body hole 24 e and the washer 25 of the mounting plate 24. Thereafter, the mounting plate 24 and the valve 16 are connected by pressurizing and deforming the tip of the protruding portion 16 b protruding from the washer 25.
 ところで、シャフト23の回転移動を阻害しないように、シャフト23の径方向や軸方向には隙間が形成されている。そのため、排気脈動などの影響により、シャフト23が軸方向や径方向に振動して騒音が生じる場合がある。そこで、本実施形態のリンク板20は、このような振動を抑えるための構造が備えられている。 Incidentally, a gap is formed in the radial direction and the axial direction of the shaft 23 so as not to hinder the rotational movement of the shaft 23. Therefore, the shaft 23 may vibrate in the axial direction or the radial direction due to the influence of exhaust pulsation or the like, and noise may be generated. Therefore, the link plate 20 of the present embodiment is provided with a structure for suppressing such vibration.
 図5(a)及び図5(b)は、リンク板20の構造を説明するための図である。図5(a)は、図2(b)におけるV(a)-V(a)線に沿った断面を示す。図5(b)は、図5(a)におけるV(b)矢視図である。理解を容易とするため、図5(a)は、リンク板20、ピンロッド21、シャフト23、軸受部22、および、タービンハウジング4の一部を示し、図5(b)は、リンク板20およびシャフト23のみを示す。 FIG. 5A and FIG. 5B are diagrams for explaining the structure of the link plate 20. FIG. 5A shows a cross section taken along line V (a) -V (a) in FIG. FIG.5 (b) is a V (b) arrow line view in Fig.5 (a). For ease of understanding, FIG. 5A shows the link plate 20, the pin rod 21, the shaft 23, the bearing portion 22, and a part of the turbine housing 4. FIG. 5B shows the link plate 20 and Only the shaft 23 is shown.
 図5(a)及び図5(b)に示すように、リンク板20の本体部20cには、リンク孔20aおよび固定孔20bが設けられている。リンク孔20aと固定孔20bは、それぞれ、シャフト23の軸方向に平行に本体部20cを貫通している。 As shown in FIGS. 5A and 5B, the main body portion 20c of the link plate 20 is provided with a link hole 20a and a fixing hole 20b. Each of the link hole 20a and the fixing hole 20b passes through the main body 20c in parallel with the axial direction of the shaft 23.
 図5(a)に示すように、シャフト23の端部はタービンハウジング4の外部(図5(a)中、右側)に突出している。この端部に小径部23aが形成されている。小径部23aの外径は、軸受部22に挿通されているシャフト23の部位の外径よりも小さい。小径部23aは、リンク板20の本体部20cに形成された固定孔20bに挿通され、本体部20c(リンク板20)に固定されている。 As shown in FIG. 5A, the end of the shaft 23 protrudes to the outside of the turbine housing 4 (on the right side in FIG. 5A). A small diameter portion 23a is formed at this end. The outer diameter of the small diameter portion 23 a is smaller than the outer diameter of the portion of the shaft 23 inserted through the bearing portion 22. The small diameter portion 23a is inserted through a fixing hole 20b formed in the main body portion 20c of the link plate 20, and is fixed to the main body portion 20c (link plate 20).
 上記のように、ピンロッド21は、リンク孔20aに回転自在に挿通されている。このとき、ピンロッド21は、軸心をシャフト23の軸心と平行にして配置されている。 As described above, the pin rod 21 is rotatably inserted into the link hole 20a. At this time, the pin rod 21 is disposed with its axis parallel to the axis of the shaft 23.
 リンク板20の本体部20cには、肉厚部20dが設けられている。肉厚部20dは、リンク板20の本体部20cのうち、リンク孔20aが開口する部分を除く部位に形成されている。ここでは、本体部20cのうち、リンク孔20aの周囲の所定範囲以外のすべての部位が、肉厚部20dとして形成されている。 The main body portion 20c of the link plate 20 is provided with a thick portion 20d. The thick portion 20d is formed in a portion of the main body portion 20c of the link plate 20 excluding a portion where the link hole 20a is opened. Here, all the parts other than the predetermined range around the link hole 20a in the main body part 20c are formed as the thick part 20d.
 肉厚部20dは、シャフト23或いはピンロッド21の軸方向(図5(a)中、左右方向)の厚みが、リンク孔20aが形成された部分(リンク孔20aが開口する部分)20eよりも大きい。 The thick part 20d is thicker in the axial direction of the shaft 23 or the pin rod 21 (left and right in FIG. 5A) than the part where the link hole 20a is formed (the part where the link hole 20a opens) 20e. .
 肉厚部20dを設けることで、リンク板20の重量が増加し、リンク板20自体や、リンク板20に固定されたシャフト23、取付板24、バルブ16などの振動が抑制される。その結果、これらの振動に伴う異音を抑制することができる。 By providing the thick portion 20d, the weight of the link plate 20 increases, and vibrations of the link plate 20 itself, the shaft 23 fixed to the link plate 20, the mounting plate 24, the valve 16, and the like are suppressed. As a result, abnormal noise associated with these vibrations can be suppressed.
 また、リンク孔20aの周囲の肉厚が増加すると、リンク孔20aが軸方向に長くなって、リンク孔20aとピンロッド21の摺動抵抗が増加しやすい。本実施形態では、肉厚部20dを設ける一方でリンク孔20aの周囲の肉厚の増加を抑えることにより、摺動抵抗の増加によるリンク板20の作動性の低下を抑制することが可能となる。なお、他の部材と干渉しない範囲で、リンク板20をシャフト23の径方向にも大型化することで、一層、重量の増加による振動抑制効果を高めることができる。 Also, when the thickness around the link hole 20a increases, the link hole 20a becomes longer in the axial direction, and the sliding resistance between the link hole 20a and the pin rod 21 tends to increase. In the present embodiment, it is possible to suppress a decrease in the operability of the link plate 20 due to an increase in sliding resistance by providing the thick portion 20d and suppressing an increase in the thickness around the link hole 20a. . In addition, the vibration suppression effect by the increase in a weight can be heightened further by enlarging the link board 20 also in the radial direction of the shaft 23 in the range which does not interfere with another member.
 上述した実施形態では、肉厚部20dは、リンク孔20aの周囲の所定範囲外のすべての部位に亘って形成されている場合について説明した。しかし、肉厚部20dは、少なくとも、固定孔20b(リンク板20の本体部20cにおけるシャフト23の固定部)と、リンク孔20aとの間に形成されていればよい。ただし、肉厚部20dを、リンク孔20aの周囲の所定範囲外のすべての部位に亘って形成することで、リンク板20の重量をさらに増すことができ、振動抑制効果を一層高めることができる。 In the above-described embodiment, the case where the thick portion 20d is formed over all portions outside the predetermined range around the link hole 20a has been described. However, the thick portion 20d only needs to be formed at least between the fixing hole 20b (the fixing portion of the shaft 23 in the main body portion 20c of the link plate 20) and the link hole 20a. However, by forming the thick portion 20d over all the portions outside the predetermined range around the link hole 20a, the weight of the link plate 20 can be further increased, and the vibration suppressing effect can be further enhanced. .
 また、肉厚部20dをリンク孔20aの周囲まで、リンク板20の全体に亘って形成してもよい。 Further, the thick portion 20d may be formed over the entire link plate 20 up to the periphery of the link hole 20a.
 また、上述した実施形態では、シャフト23の他端(小径部23a)がリンク板20のリンク孔20aに挿通されて、シャフト23とリンク板20が固定される場合について説明したが、リンク板20のリンク孔20aは必須の構成ではない。例えば、シャフト23の軸方向の他端側の端面がリンク板20に当接して、当接部分が溶接などで固定されていてもよい。 In the above-described embodiment, the case where the other end (small diameter portion 23a) of the shaft 23 is inserted into the link hole 20a of the link plate 20 and the shaft 23 and the link plate 20 are fixed is described. The link hole 20a is not an essential configuration. For example, the end surface on the other end side in the axial direction of the shaft 23 may be in contact with the link plate 20 and the contact portion may be fixed by welding or the like.
 上述した実施形態では、バイパス流路18の出口端18aを開閉するバルブ16を作動させるためのリンク板20について説明したが、他のバルブを作動させるためのリンク板に適用してもよい。 In the above-described embodiment, the link plate 20 for operating the valve 16 that opens and closes the outlet end 18a of the bypass flow path 18 has been described, but the present invention may be applied to a link plate for operating other valves.
 具体的には、例えば、コンプレッサハウジング6に設けられ吸気流路をバイパスさせるバイパス流路を開閉するためのリンク板であってもよい。 Specifically, for example, a link plate provided in the compressor housing 6 for opening and closing a bypass passage that bypasses the intake passage may be used.
 また、過給機が、ツインスクロール型過給機である場合、一方のタービンスクロール流路に流入する排気ガスと、他方のタービンスクロール流路に流入する排気ガスとの流量を調整するためのリンク板であってもよい。 Further, when the supercharger is a twin scroll type supercharger, a link for adjusting the flow rate of the exhaust gas flowing into one turbine scroll flow path and the exhaust gas flowing into the other turbine scroll flow path It may be a plate.
 また、エンジンの排気マニホールドに低圧段と高圧段の過給機が直列に接続される直列型の多段式過給機や、エンジンの排気マニホールドに複数の過給機が並列に接続される並列型の多段式過給機を構成する、1つの過給機の場合、当該過給機のタービンハウジングに流入する排気ガスの流量を調整するためのリンク板に適用してもよい。 In addition, a multi-stage supercharger in which a low-pressure stage and a high-pressure stage supercharger are connected in series to the engine exhaust manifold, or a parallel type in which multiple superchargers are connected in parallel to the engine exhaust manifold. In the case of one supercharger constituting the multistage supercharger, the present invention may be applied to a link plate for adjusting the flow rate of exhaust gas flowing into the turbine housing of the supercharger.
 また、上述した実施形態では、タービンハウジング4にハウジング孔4bが設けられ、ハウジング孔4bに軸受部22が挿通される構成について説明した。しかし、軸受部22を設けずに、ハウジング孔4bに直接、シャフト23を挿通させ、ハウジング孔4bを軸受部22として機能させてもよい。 In the above-described embodiment, the configuration in which the housing hole 4b is provided in the turbine housing 4 and the bearing portion 22 is inserted into the housing hole 4b has been described. However, the shaft 23 may be directly inserted into the housing hole 4 b without providing the bearing 22, and the housing hole 4 b may function as the bearing 22.
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such embodiments. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.
 本発明は、ハウジングの内部空間に開口する流路を開閉するバルブを備える過給機に利用することができる。 The present invention can be used for a supercharger including a valve that opens and closes a flow path that opens in an internal space of a housing.

Claims (1)

  1. 過給機であって、
     内部空間が内部に形成されたハウジングと、
     前記ハウジングに設けられ、前記ハウジングの前記内部空間と前記ハウジングの外部との間を貫通する軸受孔と、
     一端が前記ハウジングの内部に位置し、他端が前記ハウジングの外に位置した状態で前記軸受孔に回転自在に支持されるシャフトと、
     前記シャフトに固定され、前記シャフトの回転に伴って前記内部空間に開口する流路を開閉するバルブと、
     前記ハウジングの外に設けられ、リンク孔が設けられると共に前記シャフトに固定された本体部を有するリンク部材と、
     軸心を前記シャフトの軸心と平行にして設けられ、前記リンク孔に回転自在に支持されるロッドと、
    を備え、
     前記リンク部材の本体部は、少なくとも前記リンク孔と前記シャフトが固定された部分との間に設けられる肉厚部を含み、
     前記肉厚部は、前記シャフト或いは前記ロッドの軸方向における厚みが、前記本体部において前記リンク孔が形成された部分よりも大きく、
     前記ロッドがアクチュエータの動力によって移動すると、前記リンク部材の作動により前記シャフトおよび前記バルブが一体回転して前記流路が開閉されることを特徴とする過給機。
     
    A turbocharger,
    A housing having an internal space formed therein;
    A bearing hole provided in the housing and penetrating between the internal space of the housing and the outside of the housing;
    A shaft that is rotatably supported in the bearing hole in a state where one end is located inside the housing and the other end is located outside the housing;
    A valve that is fixed to the shaft and opens and closes a flow path that opens to the internal space as the shaft rotates;
    A link member provided outside the housing, provided with a link hole and having a main body fixed to the shaft;
    A rod provided with an axis parallel to the axis of the shaft and rotatably supported by the link hole;
    With
    The main body portion of the link member includes at least a thick portion provided between the link hole and the portion to which the shaft is fixed,
    The thickness portion is thicker in the axial direction of the shaft or the rod than the portion where the link hole is formed in the main body portion,
    When the rod is moved by the power of an actuator, the shaft and the valve are integrally rotated by the operation of the link member to open and close the flow path.
PCT/JP2015/066004 2014-06-09 2015-06-03 Supercharger WO2015190361A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014119081A JP2017150306A (en) 2014-06-09 2014-06-09 Supercharger
JP2014-119081 2014-06-09

Publications (1)

Publication Number Publication Date
WO2015190361A1 true WO2015190361A1 (en) 2015-12-17

Family

ID=54833457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066004 WO2015190361A1 (en) 2014-06-09 2015-06-03 Supercharger

Country Status (2)

Country Link
JP (1) JP2017150306A (en)
WO (1) WO2015190361A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041517A (en) * 2018-09-13 2020-03-19 トヨタ自動車株式会社 Turbocharger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200138162A (en) * 2018-04-05 2020-12-09 니탄 밸브 가부시키가이샤 Waste gate valve
WO2021205826A1 (en) * 2020-04-07 2021-10-14 株式会社Ihi Valve device and method for manufacturing valve device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236008A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Cylinder block of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236008A (en) * 2008-03-27 2009-10-15 Toyota Motor Corp Cylinder block of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020041517A (en) * 2018-09-13 2020-03-19 トヨタ自動車株式会社 Turbocharger
US20200088062A1 (en) * 2018-09-13 2020-03-19 Toyota Jidosha Kabushiki Kaisha Turbocharger
US10934882B2 (en) * 2018-09-13 2021-03-02 Toyota Jidosha Kabushiki Kaisha Turbocharger
JP7103098B2 (en) 2018-09-13 2022-07-20 トヨタ自動車株式会社 Turbocharger

Also Published As

Publication number Publication date
JP2017150306A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5987330B2 (en) Turbocharger
JP6354847B2 (en) Variable flow rate valve mechanism and turbocharger
US9593624B2 (en) Variable flow valve mechanism and vehicle turbocharger
JP6610647B2 (en) Variable flow rate valve mechanism and turbocharger
US10215089B2 (en) Variable-flow-rate valve mechanism and turbocharger
JP6237056B2 (en) Centrifugal compressors and turbochargers
WO2014002809A1 (en) Supercharger
JP6206592B2 (en) Bearing structure and turbocharger
WO2015190361A1 (en) Supercharger
JP2014218945A (en) Flow rate variable valve mechanism and supercharger
JP6361735B2 (en) Turbocharger
WO2014109210A1 (en) Supercharger
JP6390703B2 (en) Turbocharger
US10408085B2 (en) Turbocharger
US10465599B2 (en) Turbocharger
JP2011169230A (en) Compressor
JP5799616B2 (en) Wastegate valve and turbocharger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15805942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP