WO2015188404A1 - 一种氮化钛-二硼化钛-立方氮化硼复合材料的制备方法 - Google Patents

一种氮化钛-二硼化钛-立方氮化硼复合材料的制备方法 Download PDF

Info

Publication number
WO2015188404A1
WO2015188404A1 PCT/CN2014/080949 CN2014080949W WO2015188404A1 WO 2015188404 A1 WO2015188404 A1 WO 2015188404A1 CN 2014080949 W CN2014080949 W CN 2014080949W WO 2015188404 A1 WO2015188404 A1 WO 2015188404A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
titanium
cubic boron
boron nitride
cbn
Prior art date
Application number
PCT/CN2014/080949
Other languages
English (en)
French (fr)
Inventor
张建峰
吴玉萍
洪晟
郭文敏
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Priority to KR1020167015456A priority Critical patent/KR101821220B1/ko
Priority to AU2014397407A priority patent/AU2014397407B2/en
Priority to GB1609493.0A priority patent/GB2535106B/en
Priority to US15/100,857 priority patent/US9714198B2/en
Priority to JP2016538668A priority patent/JP6250817B2/ja
Publication of WO2015188404A1 publication Critical patent/WO2015188404A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58071Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on titanium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention belongs to the field of reaction sintering forming in material processing engineering, and particularly relates to a preparation method of a titanium nitride-titanium diboride-cubic boron nitride composite material.
  • Titanium nitride (TiN), titanium diboride (TiB 2 ) and titanium carbide (TiC) have high hardness, high wear resistance and good high temperature oxidation resistance, so they are often used as tool materials and wear resistant. Parts, etc.
  • cubic boron nitride and other materials as additive phases to prepare composite materials. Cubic boron nitride is the second hard material that is second only to diamond in hardness and is often used as an abrasive and tool material.
  • cBN tool material is mainly made by sintering cBN powder and binder (such as Co, Al, Ti and TiN) at a pressure of 4 ⁇ 8GPa and a temperature of 1300 ⁇ 1900°C.
  • cBN tools also have some limitations in their use, such as their high brittleness, poor strength and toughness, and are not suitable for intermittent surface machining under impact load.
  • the use of cBN as a hard phase to improve the hardness and toughness of other tool materials has become a hot issue of recent concern.
  • the introduction of the super-hard cBN phase not only significantly improves the hardness and wear resistance of the TiN-TiB 2 composite, but also acts as a super-hard particle in the composite material, causing crack deflection and further improving the toughness of the material.
  • a composite material containing a cBN phase it is mostly mixed by a dry mixing or a ball milling method, followed by pressure sintering.
  • a dry mixing or a ball milling method for example, Rong et al. dry-mixed cBN, TiN, and A1 powders in an agate mortar for 1 to 2 hours, followed by high-pressure sintering (Diamond and Related Materials 11 (2002) 280-286).
  • Zhang Rui et al. in their authorized patent (authorization bulletin number, CN101560624B) the cubic boron nitride and the binder are mixed and ball milled, the ball milling time ratio is 4 ⁇ 20 hours; after ball milling, the sieve is dried, cold pressed and sintered. Get the finished product.
  • a mixing method is difficult to achieve uniform dispersion between the phases, and even if there is a sintering aid, the sintering temperature is generally high, which tends to cause the cBN phase to transition to hexagonal boron nitride (hBN).
  • Hexagonal boron nitride (hBN) is a soft phase, and its crystal structure and hardness are similar to those of graphite. Therefore, the phase transition of cBN to hBN will cause a decrease in hardness of the material and deterioration of cutting performance.
  • TiN-TiB 2 -cBN (titanium nitride-titanium diboride-cubic boron nitride) composite was obtained by sintering under pressure for 30 minutes, but this method has a long processing period, complicated steps, and the salt is more experimental for the experimenter. Great poison.
  • the invention provides a titanium nitride-titanium diboride-cubic boron nitride composite material and a preparation method thereof, so as to solve the problem that the steps existing in the prior preparation method are complicated and the dispersion is uneven.
  • the present invention provides a method for preparing a titanium nitride-titanium diboride-cubic boron nitride composite material, comprising the following steps:
  • titanium nitride-titanium diboride-cubic boron nitride composite material is prepared by in-situ reaction, and the reaction equation is as follows:
  • V TlB2 dV cBN )x(-
  • V TiN and V TiB2 are the volume content of the product cBN, the product TiN and the product TiB 2 , respectively, W Tl and W.
  • BN is the weight of the raw material titanium powder and the raw material cBN, respectively, and M TiN and M TiB2 M Ti are respectively
  • the molar molecular weights of TiN, TiB ⁇ P Ti, Abn , p TiN and 3 ⁇ 4 B2 are the theoretical densities of the product cBN, the product TiN and the product TiB 2 , respectively;
  • the above calculated amount of Ti powder and cBN powder are weighed, mixed by a planetary ball milling method, and then added to a solvent to perform wet mixing to obtain a slurry, and then the obtained wet mixed slurry is dried in a rotary dryer and sieved. After that, a uniformly mixed raw material mixed powder is obtained;
  • the high-temperature vacuum furnace is lowered to a normal temperature and a normal pressure, and the sample is taken out.
  • the particle size of the Ti powder material is 10 ⁇ m, and the purity is 98% ; the particle size of the cB powder material is 1 to 10 ⁇ m, and the purity is 99%.
  • the Ti powder raw material has a particle diameter of 5 ⁇ and a purity of 98 ⁇ 3 ⁇ 4 ; the cB powder raw material has a particle diameter of 6 ⁇ m and a purity of 99%.
  • the Ti powder raw material has a particle diameter of 5 ⁇ m and a purity of 98 ⁇ 3 ⁇ 4 ; the cB powder raw material has a particle diameter of ⁇ and a purity of 99%.
  • the particle size of the Ti powder raw material is ⁇ , and the purity is 98 ⁇ 3 ⁇ 4 ; the particle size of the cB powder raw material is ⁇ , and the purity is 99%.
  • the Ti powder raw material has a particle diameter of 2 ⁇ m and a purity of 98% ; and the cB powder raw material has a particle diameter of 5 ⁇ m and a purity of 99%.
  • the Ti powder raw material has a particle diameter of 2 ⁇ m and a purity of 98% ; and the cB powder raw material has a particle diameter of ⁇ and a purity of 99%.
  • the conditions of the planetary ball milling method are: the rotation speed is 100 ⁇ 300 rpm, the ball material weight ratio is 3:1 ⁇ 5:1, and the ball milling time is 12 ⁇ 24h.
  • the solvent used in the wet mixing is alcohol or acetone.
  • the conditions for drying the wet mixed slurry in the rotary dryer are: drying at 100 ⁇ 150 °C
  • the wet mixed slurry after drying is passed through a 50-200 mesh sieve.
  • the conditions for each calcination are: burning at 700 to 900 ° C for 1.5 to 2 h, and then grinding the powder.
  • the conditions of cold isostatic pressing at room temperature are 0.2 to 0.5 GPa.
  • the high-pressure sintering condition is: raising the temperature to 1200 ⁇ 1500 °C at a rate of 3 ⁇ 10 °C/min, and then maintaining the temperature for l ⁇ 3h under the pressure of 4 ⁇ 8 GPa.
  • the present invention employs titanium metal powder and cBN as starting powders, and provides a preparation method which is simple in operation and easy to control in process conditions.
  • the present invention uses Ti powder and cBN powder as raw materials and rationally adopts raw materials and ratios of different particle diameters, and prepares titanium nitride-titanium diboride-cubic by in-situ reaction.
  • the boron nitride composite material can realize the uniform dispersion between the generated phases by the phase reaction, and solve the problems of poor impact resistance of the material; (2) the in-situ reaction between the titanium powder and the cubic boron nitride, so that the cubic nitride The interface between boron and titanium nitride and titanium diboride is strong, which improves the mechanical properties such as strength of the composite; (3) The direct exothermic reaction of titanium powder and cubic boron nitride powder provides additional heat. Densification of the material can be carried out at lower temperatures, reducing energy consumption and manufacturing costs.
  • FIG. 1 is an XRD embodiment of a titanium nitride-titanium diboride-cubic boron nitride composite material prepared by using the first embodiment.
  • the invention adopts titanium powder (purity greater than 98%, particle diameter less than ⁇ ) and cubic boron nitride (purity of about 99%, average particle diameter of 1 ⁇ 10 ⁇ ) raw materials, using Ti powder and cBN powder as raw materials, using in situ reaction A desired titanium nitride-titanium diboride-cubic boron nitride composite material is prepared.
  • the reaction equation is as follows:
  • V TlB2 (l- V cBN ) x (.
  • W cBN W - W Jt (V) wherein ⁇ ⁇ ⁇ TiN and V TiB2 are the volume contents of the product cBN, the product TiN and the product TiB 2 , respectively, W Tl and W.
  • BN is the weight of the raw material titanium powder and the raw material cBN, respectively, and M TiN and M TiB2 M Ti are respectively
  • the molar molecular weights of TiN, TiB ⁇ P Ti, Abn , p TiN and 3 ⁇ 4 B2 are the theoretical densities of the product cBN, the product TiN and the product TiB 2 , respectively.
  • titanium powder purity greater than 99%, particle size 5 ⁇
  • cubic boron nitride purity 99%, average particle size 10 ⁇
  • the weighing amount is 6.33 g of titanium powder and 3.67 g of cubic boron nitride powder.
  • the ball was mixed by a planetary ball milling method at a speed of lOO rpm, a ball-to-weight ratio of 5:1, and a ball milling time of 12 hours, which was wet mixed in alcohol.
  • the obtained wet mixed slurry is dried in a rotary dryer for 10 hours, and finally passed through a 200 mesh sieve to obtain a uniformly dispersed raw material mixed powder; the raw material mixed powder is pre-fired 3 times in a high vacuum furnace, each The pre-burning was first baked at 700 ° C for 2 h, and then the powder was uniformly ground. Thus, the pre-firing was completed once, and the above steps were repeated twice to complete the three-time calcination.
  • the calcined powder was subjected to 0.5 GPa cold press molding, and then subjected to high pressure sintering, i.e., at a rate of 5 ° C/min to 1200 ° C, and then held at a pressure of 4 GPa for 1 h. After the sintering experiment, the temperature was lowered and the pressure was lowered, and the sample was taken out, whereby the volume of cubic boron nitride in the titanium nitride-titanium diboride-cubic boron nitride composite obtained was 20%.
  • titanium powder purity 98.5%, particle size 2 ⁇
  • cubic boron nitride purity 99%, average particle size 5 ⁇
  • the raw material powder Weighing, the total mass of titanium powder and cubic boron nitride is 10g, of which 5.72g of titanium powder and 4.28g of cubic boron nitride powder are mixed by planetary ball milling method, the rotation speed is 200rpm, and the weight ratio of the ball is 5:1.
  • the ball milling time was 24 h and it was wet mixed in acetone.
  • the obtained wet mixed slurry was dried in a rotary dryer for 10 hours, and finally passed through a 200 mesh sieve.
  • the uniformly mixed raw material mixed powder is pre-fired 3 times in a high-vacuum furnace, and each pre-burning is first baked at 800 ° C for 1.5 h, and then the powder is uniformly ground, thus completing 1 time.
  • Pre-burn repeat the above steps 2 times, complete 3 times of pre-burning.
  • the calcined powder was subjected to 0.5 GPa cold press molding, and then subjected to high pressure sintering, that is, the temperature was raised to 1300 ° C at a rate of 8 ° C / min, and then kept at a pressure of 5 GPa for 2 h. After the sintering experiment, the temperature was lowered and the sample was taken out. The volume of cubic boron nitride in the composite material thus obtained was 30%.
  • titanium powder purity 99%, particle size ⁇
  • cubic boron nitride purity 99%, average particle size 6 ⁇
  • the raw material powder Weighing, the total mass of titanium powder and cubic boron nitride is 10g, of which 4.73g of titanium powder and 5.27g of cubic boron nitride powder.
  • the ball was mixed by a planetary ball milling method at a speed of 200 rpm, a ball-to-weight ratio of 5:1, a ball milling time of 24 hours, and wet mixing in alcohol or acetone.
  • the obtained wet mixed slurry is dried in a rotary dryer for 10 hours, and finally passed through a 200 mesh sieve to obtain a uniformly dispersed raw material mixed powder; the raw mixed powder is pre-fired 3 times in a high vacuum furnace, each time The calcination was first carried out at 900 ° C for 2 h, and then the powder was uniformly ground. Thus, the pre-firing was completed once, and the above steps were repeated twice to complete the pre-burning three times.
  • the calcined powder was subjected to cold pressing at 0.4 GPa, and then subjected to high pressure sintering, i.e., at a rate of 10 ° C/min to 1400 ° C, and then held at a pressure of 6 GPa for 3 hours. After the sintering experiment, the temperature was lowered and the sample was taken out. The theoretical content of cubic boron nitride in the composite thus obtained was 45%.
  • titanium powder purity 99%, particle size 2 ⁇
  • cubic boron nitride purity 99%, average particle size 1 ⁇
  • the raw material powder Weighing, the total mass of titanium powder and cubic boron nitride is 10g, of which 3.63g of titanium powder and 6.37g of cubic boron nitride powder.
  • the ball was mixed by a planetary ball milling method at a speed of 300 rpm. The weight ratio of the ball was 5:1, and the ball milling time was 24 hours. It was wet mixed in alcohol or acetone.
  • the obtained wet mixed slurry is dried in a rotary dryer for 10 hours, and finally passed through a 200 mesh sieve to obtain a uniformly dispersed raw material mixed powder; the raw mixed powder is pre-fired 3 times in a high vacuum furnace, each time
  • the calcination was first performed at 800 ° C for 1.5 h, and then the powder was uniformly ground. Thus, the pre-firing was completed once, and the above steps were repeated twice to complete the pre-burning three times.
  • the calcined powder was subjected to cold press forming at 0.3 GPa, and then subjected to high pressure sintering, that is, at a rate of 5 ° C/min to 1400 ° C, and then held at a pressure of 7 GPa for 2 h. After the sintering experiment, the temperature was lowered and the sample was taken out.
  • the composite material thus obtained is neutral
  • the theoretical content of cubic boron nitride is 60%.
  • titanium powder purity 99%, particle size 2 ⁇
  • cubic boron nitride purity 99%, average particle size 1 ⁇
  • the raw material powder Weighing, the total mass of titanium powder and cubic boron nitride is 10 g, of which 2.83 g of titanium powder and 7.17 g of cubic boron nitride powder.
  • the ball was mixed by a planetary ball milling method at a speed of 200 rpm, a ball-to-weight ratio of 5:1, a ball milling time of 24 hours, and wet mixing in alcohol or acetone.
  • the obtained wet mixed slurry is dried in a rotary dryer for 10 hours, and finally passed through a 200 mesh sieve to obtain a uniformly dispersed raw material mixed powder; the raw mixed powder is pre-fired 3 times in a high vacuum furnace, each time
  • the calcination was first carried out at 800 ° C for 2 h, and then the powder was uniformly ground. Thus, the pre-firing was completed once, and the above steps were repeated twice to complete the pre-burning three times.
  • the calcined powder was subjected to cold pressing at 0.5 GPa, and then subjected to high pressure sintering, i.e., at a rate of 8 ° C/min to 1500 ° C, and then held at a pressure of 8 GPa for 2 hours. After the sintering experiment, the temperature was lowered and the sample was taken out.
  • the composite material boron nitride thus obtained has a volume content of 70%.
  • the present invention uses Ti powder and cBN powder as raw materials and rationally adopts raw materials and ratios of different particle diameters, and prepares titanium nitride-titanium diboride-cubic boron nitride composite material by in-situ reaction, which can pass
  • the phase reaction realizes uniform dispersion between the respective formation phases; the in-situ reaction between the titanium powder and the cubic boron nitride makes the interface bonding force between the cubic boron nitride and the titanium nitride and the titanium diboride is strong, and the adhesion is improved.
  • the mechanical properties of the strength of the composite; the direct exothermic reaction of the titanium powder and the cubic boron nitride powder provides additional heat, allowing the densification of the material to be carried out at lower temperatures, reducing energy consumption and manufacturing costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

一种氮化钛-二硼化钛-立方氮化硼复合材料的制备方法,以钛粉和立方氮化硼原料,采用行星球磨方法混料,然后通过湿混、烘干、过筛、高温真空炉预烧、冷等静压成型、高温烧结等步骤制备出氮化钛-二硼化钛-立方氮化硼复合材料。该方法操作简单,成本低廉,工艺条件容易控制,且通过相反应实现各生成相之间的均匀分散,能够获得具有高致密度和高力学性能的氮化钛-二硼化钛-立方氮化硼陶瓷基复合材料。

Description

一种氮化钛-二硼化钛 -立方氮化硼复合材料的制备方法
技术领域
本发明属于材料加工工程中的反应烧结成型领域, 具体涉及一种氮化钛-二 硼化钛-立方氮化硼复合材料的制备方法。
背景技术
氮化钛(TiN) 、 二硼化钛(TiB2)及碳化钛(TiC)等都具有高硬度、 高抗 磨损性以及良好的高温抗氧化性等, 因此经常被用作刀具材料及耐磨部件等。为 进一步提高其硬度和耐磨损性能,满足高速切削的要求,有研究者采用立方氮化 硼等材料作为添加相制备复合材料。立方氮化硼是硬度仅次于金刚石的第二硬材 料, 常用作磨料和刀具材料。 上世纪 50年代左右, 美国、 南非、 前苏联和日本等 国家利用人造金刚石微粉和人造 cBN (立方氮化硼)微粉烧结成尺寸较大的聚晶 块作为刀具材料。 70年代初又推出了 cBN和硬质合金的复合片, 它们是在硬质合 金基体上烧结或压制一层 0.5mm〜lmm的PCD或PcBN而成, 从而解决了超硬刀 具材料抗弯强度低、 镶焊困难等问题, 使超硬刀具的应用进入实用阶段。 1980 年, GE公司的 Wentorf等人在 Science杂志报道了他们在烧结金刚石与 cBN材料方 面取得的成果 (Science, 208 ( 1980 ) 873-880 ), 即采用超高压条件烧结制备了 致密的金刚石 -cBN材料。 2013年 1月, 燕山大学的田永君教授在 Nature杂志发表 学术论文(Nature, 493 (2013 ) 385-388) , 进一步使用类似洋葱结构的氮化硼微 粒制备出了纳米等级的立方氮化硼,硬度已超越金刚石,成为世界上最硬的物质。 目前, cBN刀具材料的制备主要用 cBN微粉和结合剂 (如 Co、 Al、 Ti和 TiN等), 在 压力为 4〜8GPa、温度为 1300〜1900°C的条件下烧结而成,制备成本高,产量低, 且制品形状大小受到限制。 另外, cBN刀具也有使用上的一些局限, 如其脆性较 大、 强度和韧性较差, 不适用于冲击负荷下的间断表面加工。 使用 cBN作为硬质 相提高其他刀具材料的硬度、韧性等性能, 成为最近人们关心的热点问题。 而超 硬 cBN相的引入不仅会显著提高 TiN-TiB2复合材料的硬度和耐磨损, 其本身在复 合材料中作为超硬粒子, 引发裂纹偏转从而可以进一步提高材料的韧性。
目前, 为制备含 cBN相的复合材料, 大多使用干混或球磨方法混料, 然后 进行加压烧结。 如 Rong等人将 cBN、 TiN、 A1三种粉末在玛瑙研钵中干混 1~2 小时, 然后进行高压烧结 (Diamond and Related Materials 11 (2002) 280 - 286) 。 张锐等人在其授权专利中 (授权公告号, CN101560624B) , 将立方氮化硼及结 合剂混合后球磨, 球磨时间比为 4~20小时; 球磨后干燥过筛, 冷压成型并进行 烧结得到成品。这类混合方法难以达到各相之间的均匀分散,且即使有烧结助剂, 烧结温度也普遍较高, 易引起 cBN相向六方氮化硼 (hBN) 转变。 六方氮化硼 (hBN) 为软相, 晶体结构和硬度类似于石墨, 因此 cBN向 hBN的相变将引起 材料硬度的降低和切削性能的恶化。另外相变所带来的体积变化同时会导致材料 致密度的降低, 也会引发刀具材料耐磨损性能的降低, 从而导致其使用寿命进一 步缩短。 日本的 Yoshida等人 (Journal of Materials Research, 1997, 12 (3), p 585-588) 采用融盐法在 cBN包覆了一层 TiN-TiB2涂层, 然后在 1450°C左右 5.5GPa的压力下烧结 30分钟获得了 TiN-TiB2-cBN (氮化钛-二硼化钛-立方氮化 硼)复合材料, 但这种方法处理周期长, 步骤复杂, 且融盐对实验者有较大的毒 害性。
发明内容
本发明提出一种氮化钛 -二硼化钛-立方氮化硼复合材料及制备方法, 以解决 现有制备方法中存在的步骤复杂且分散不均匀的问题。
为解决上述技术问题, 本发明提出了一种氮化钛-二硼化钛-立方氮化硼复合 材料的制备方法, 包括如下步骤:
(1) 采用 Ti粉 (钛粉) 和 cBN粉 (立方氮化硼粉) 为原料, 利用原位反 应制备氮化钛 -二硼化钛-立方氮化硼复合材料 , 反应方程式如下:
( 1 - χ)Ύί + cBN→ TiN + TiB, + ^cB (I)
3 3 3 2
其中, c为 cBN的摩尔含量, Ti粉和 cBN粉的重量根据下述公式计算得出:
2x TlN ( )
V™ = V=BN ) X ( 2 x M M )'
ΜΎ
(III)
VTlB2=d-VcBN)x(-
2x T PjiN PjiBl
WTl =Wx ^ (IV)
PjiN Ρ PcBN wcW=w-wTi (V) 其中, BN VTiN和 VTiB2分别为产物 cBN、产物 TiN和产物 TiB2的体积含量, WTl 和 W。BN分别为原料钛粉和原料 cBN 的重量, MTiN、 MTiB2 MTi分别为
TiN、 TiB^P Ti的摩尔分子量, Abn、 pTiN和 ¾B2分别为产物 cBN、 产物 TiN 和产物 TiB2的理论密度;
称取上述计算量的 Ti粉和 cBN粉, 采用行星球磨方法混料, 然后加入溶 剂中进行湿混得到浆料,然后将所得到的湿混浆料在旋转烘干仪中烘干,过筛后 得到均匀分散的原料混合粉体;
(2) 将步骤 (1) 得到的混合粉体在高温真空炉中预烧 3次;
(3) 将步骤 (2) 中预烧后的粉体冷等静压成型, 然后进行高压烧结;
(4)待步骤(3) 中的高压烧结结束后, 使高温真空炉降到常温常压, 取出 样品即得。
其中, Ti粉原料的粒径 10μηι,纯度 98%; cB 粉原料的粒径为 1~10μηι, 纯度 99%。
作为优选, Ti粉原料的粒径为 5 μηι, 纯度 98<¾; cB 粉原料的粒径为 6μηι, 纯度 99%。
作为优选, Ti 粉原料的粒径为 5μηι, 纯度 98<¾; cB 粉原料的粒径为 ΙΟμηι, 纯度 99%。
作为优选, Ti粉原料的粒径为 ΙΟμηι, 纯度 98<¾; cB 粉原料的粒径为 Ιμηι, 纯度 99%。
作为优选, Ti粉原料的粒径为 2μηι,纯度 98%; cB 粉原料的粒径为 5μηι, 纯度 99%。
作为优选, Ti粉原料的粒径为 2μηι,纯度 98%; cB 粉原料的粒径为 Ιμηι, 纯度 99%。
具体地, 步骤 (1) 中, 行星球磨方法混料的条件为: 转速为 100~300rpm, 球料重量比为 3:1~5:1, 球磨时间为 12~24h。
步骤 (1) 中, 湿混中使用的溶剂为酒精或丙酮。
步骤 (1) 中, 湿混浆料在旋转烘干仪中烘干的条件为: 100~150°C 下烘干 步骤 (1 ) 中, 烘干后的湿混浆料过 50~200目筛。
步骤 (2) 中, 每次预烧的条件为: 在 700~900°C下烧 1.5~2h, 然后将粉体 研磨。
步骤 ( 3 ) 中, 室温下冷等静压成型的条件为 0.2~0.5GPa。
步骤(3 )中,高压烧结的条件为:以 3~10°C/min的速度升温至 1200~1500°C, 然后在 4~8GPa的压力下, 保温 l~3h。
本发明采用金属钛粉和 cBN作为起始粉料, 提供了一种操作简单、 工艺条 件容易控制的制备方法。
有益效果: 与现有技术相比, (1 ) 本发明采用 Ti粉和 cBN粉为原料并合理 采用不同粒径的原料和配比, 利用原位反应制备氮化钛 -二硼化钛-立方氮化硼复 合材料, 能够通过相反应实现各生成相之间的均匀分散,解决了材料抗冲击性差 等问题; (2)钛粉和立方氮化硼之间的原位反应, 使得立方氮化硼和氮化钛及二 硼化钛之间的界面结合力强, 提高了复合材料的强度等力学性能; (3 )钛粉和立 方氮化硼粉体直接的放热反应提供了额外热量,使得材料的致密化能够在较低温 度下进行, 降低了能耗和制备成本。
附图说明
图 1采用实施例 1制备出的氮化钛-二硼化钛-立方氮化硼复合材料的 XRD 具体实施方式
本发明以钛粉 (纯度大于 98%, 粒径小于 ΙΟμηι)和立方氮化硼 (纯度 99% 左右, 平均粒径为 1~10μηι) 原料, 采用 Ti粉和 cBN粉为原料, 利用原位反应 制备所需氮化钛-二硼化钛-立方氮化硼复合材料。 反应方程如下:
( 1 - χ)Ύί + cBN→ TiN + TiB, + cB ( I )
3 3 3 2
其中, c为 cBN的摩尔含量, Ti粉和 cBN粉的重量根据下述公式计算得出:
2 x TlN ( )
V™ = V=BN ) X ( 2 x M M )' (III)
VTlB2 = (l— VcBN) x (.
2 χ Μ·™ T
Figure imgf000007_0001
WcBN = W -WJt (V) 其中, νεΒΝ TiN和 VTiB2分别为产物 cBN、产物 TiN和产物 TiB2的体积含量, WTl 和 W。BN分别为原料钛粉和原料 cBN 的重量, MTiN、 MTiB2 MTi分别为
TiN、 TiB^P Ti的摩尔分子量, Abn、 pTiN和 ¾B2分别为产物 cBN、 产物 TiN 和产物 TiB2的理论密度。
下述各实施例中的计算方法均采用此法。
实施例 1
将市售钛粉(纯度大于 99%, 粒径为 5μηι)和立方氮化硼 (纯度 99%, 平均 粒径为 10μηι), 按照最终产物中 cBN体积含量为 20%设计配比, 进行原料粉体 称量, 其中钛粉 6.33g, 立方氮化硼粉 3.67g。 采用行星球磨方法混料, 转速为 lOOrpm, 球料重量比为 5: 1, 球磨时间为 12h, 在酒精中湿混。 将所得到的湿 混浆料在旋转烘干仪中烘干 10h,最后过 200目筛获得均匀分散的原料混合粉体; 将所述原料混合粉体在高真空炉中预烧 3次, 每次预烧先在 700°C下烧 2h, 然 后将粉体均匀研磨, 如此完成 1次预烧, 重复上述步骤 2次, 完成 3次预烧。 将 预烧研磨后的粉体进行 0.5GPa冷压成型, 然后进行高压烧结, 即以 5°C/min的 速度升温至 1200°C, 然后在 4GPa的压力下保温 lh。 烧结实验结束后, 降温降 压, 取出样品, 由此所获得的氮化钛-二硼化钛 -立方氮化硼复合材料中立方氮化 硼的体积含量为 20%。
实施例 2
将市售钛粉 (纯度 98.5%, 粒径为 2μηι) 和立方氮化硼 (纯度 99%, 平均粒 径为 5μηι),按照最终产物中 cBN体积含量为 30%设计配比,进行原料粉体称量, 钛粉和立方氮化硼的总质量为 10g, 其中钛粉 5.72g, 立方氮化硼粉 4.28g, 采用 行星球磨方法混料, 转速为 200rpm, 球料重量比为 5: 1, 球磨时间为 24h, 在 丙酮中湿混。 所得到的湿混浆料在旋转烘干仪中烘干 10h, 最后过 200目筛获得 均匀分散的原料混合粉体; 将所述原料混合粉体在高真空炉中预烧 3次,每次预 烧先在 800°C下烧 1.5h, 然后将粉体均匀研磨, 如此完成 1次预烧, 重复上述步 骤 2次, 完成 3次预烧。 将预烧研磨后的粉体进行 0.5GPa冷压成型, 然后进行 高压烧结, 即以 8°C/min的速度升温至 1300°C, 然后在 5GPa的压力下保温 2h。 烧结实验结束后, 降温降压, 取出样品。 由此所获得的复合材料中立方氮化硼的 体积含量为 30%。
实施例 3
将市售钛粉(纯度 99%, 粒径为 Ιμηι)和立方氮化硼 (纯度 99%, 平均粒径 为 6μηι), 按照最终产物中 cBN体积含量为 45%设计配比, 进行原料粉体称量, 钛粉和立方氮化硼的总质量为 10g, 其中钛粉 4.73g, 立方氮化硼粉 5.27g。 采用 行星球磨方法混料, 转速为 200rpm, 球料重量比为 5: 1, 球磨时间为 24h, 在 酒精或者丙酮中湿混。 所得到的湿混浆料在旋转烘干仪中烘干 10h, 最后过 200 目筛获得均匀分散的原料混合粉体; 将所述原料混合粉体在高真空炉中预烧 3 次, 每次预烧先在 900°C下烧 2h, 然后将粉体均匀研磨, 如此完成 1次预烧, 重复上述步骤 2次, 完成 3次预烧。将预烧研磨后的粉体进行 0.4GPa冷压成型, 然后进行高压烧结, 即以 10°C/min的速度升温至 1400°C, 然后在 6GPa的压力 下保温 3h。 烧结实验结束后, 降温降压, 取出样品。 由此所获得的复合材料中 立方氮化硼的理论含量为 45%。
实施例 4
将市售钛粉(纯度 99%, 粒径为 2μηι)和立方氮化硼 (纯度 99%, 平均粒径 为 1μηι), 按照最终产物中 cBN体积含量为 60%设计配比, 进行原料粉体称量, 钛粉和立方氮化硼的总质量为 10g, 其中钛粉 3.63g, 立方氮化硼粉 6.37g。 采用 行星球磨方法混料, 转速为 300rpm, 球料重量比为 5: 1, 球磨时间为 24h, 在 酒精或者丙酮中湿混。 所得到的湿混浆料在旋转烘干仪中烘干 10h, 最后过 200 目筛获得均匀分散的原料混合粉体; 将所述原料混合粉体在高真空炉中预烧 3 次, 每次预烧先在 800°C下烧 1.5 h, 然后将粉体均匀研磨, 如此完成 1次预烧, 重复上述步骤 2次,完成 3次预烧。将预烧研磨后的粉体进行 0.3 GPa冷压成型, 然后进行高压烧结, 即以 5°C/min的速度升温至 1400°C, 然后在 7GPa的压力下 保温 2h。 烧结实验结束后, 降温降压, 取出样品。 由此所获得的复合材料中立 方氮化硼的理论含量为 60%。
实施例 5
将市售钛粉(纯度 99%, 粒径为 2μηι)和立方氮化硼 (纯度 99%, 平均粒径 为 1μηι), 按照最终产物中 cBN体积含量为 70%设计配比, 进行原料粉体称量, 钛粉和立方氮化硼的总质量为 10g, 其中钛粉 2.83g, 立方氮化硼粉 7.17g。 采用 行星球磨方法混料, 转速为 200rpm, 球料重量比为 5: 1, 球磨时间为 24h, 在 酒精或者丙酮中湿混。 所得到的湿混浆料在旋转烘干仪中烘干 10h, 最后过 200 目筛获得均匀分散的原料混合粉体; 将所述原料混合粉体在高真空炉中预烧 3 次, 每次预烧先在 800°C下烧 2h, 然后将粉体均匀研磨, 如此完成 1次预烧, 重复上述步骤 2次, 完成 3次预烧。将预烧研磨后的粉体进行 0.5GPa冷压成型, 然后进行高压烧结, 即以 8°C/min的速度升温至 1500°C, 然后在 8GPa的压力下 保温 2h。 烧结实验结束后, 降温降压, 取出样品。 由此所获得的复合材料中立 方氮化硼的体积含量为 70%。
表 1实施例 1-5的 TiN-TiB2-cBN复合材料的致密度、 硬度、 韧性和强度等。 实施例 cB 体积 致密度 /% 硬度 /GPa 韧性 / MPa 强度 / MPa 含量 m1/2
1 20% 95.2 22 4.2 630
2 30% 96.5 24 5.7 850
3 45% 95.3 35 6.0 890
4 60% 98.8 42 5.2 900
5 70% 97.9 45 4.8 820
综上所述, 本发明采用 Ti粉和 cBN粉为原料并合理采用不同粒径的原料和 配比, 利用原位反应制备氮化钛-二硼化钛-立方氮化硼复合材料, 能够通过相反 应实现各生成相之间的均匀分散; 钛粉和立方氮化硼之间的原位反应,使得立方 氮化硼和氮化钛及二硼化钛之间的界面结合力强,提高了复合材料的强度等力学 性能; 钛粉和立方氮化硼粉体直接的放热反应提供了额外热量,使得材料的致密 化能够在较低温度下进行, 降低了能耗和制备成本。

Claims

权 利 要 求 书
1、一种氮化钛 -二硼化钛-立方氮化硼复合材料的制备方法,其特征在于, 包括如下步骤:
(1) 采用 Ti粉和 cBN粉为原料, 利用原位反应制备氮化钛-二硼化钛- 立方氮化硼复合材料 , 反应方程式如下:
( 1 - χ)Ύί + cBN→ TiN + TiB, + ^cB (I)
3 3 3 2 其中, c为 cBN的摩尔含量, Ti粉和 cBN粉的重量根据下述公式计算得
Figure imgf000010_0001
W^, =W-W^ (V) 其中, BN Vm^P VTiB2分别为产物 cBN、 产物 TiN和产物 TiB2的体积 含量, WTi 和 W。BN分别为原料 Ti粉和原料 cBN的重量, MTiN、MTiB2和 MTi 分别为 TiN、 TiB^PTi的摩尔分子量, PcBN、 pTiN和 ¾B2分别为产物 cBN、 产物 TiN和产物 TiB2的理论密度;
称取上述计算量的 Ti粉和 cBN粉, 采用行星球磨方法混料, 加入溶剂 中进行湿混得到浆料, 然后将所得到的湿混浆料在旋转烘干仪中烘干, 过筛 后得到均匀分散的原料混合粉体;
(2) 将步骤 (1) 得到的混合粉体在高温真空炉中预烧 3次;
(3) 将步骤 (2) 中预烧后的粉体冷等静压成型, 然后进行高压烧结;
(4) 待步骤 (3) 中的高压烧结结束后, 使高温真空炉降到常温常压, 取出样品即得。
2、 根据权利要求 1 所述的氮化钛-二硼化钛-立方氮化硼复合材料的制备方 法, 其特征在于, Ti粉原料的粒径 10μηι, 纯度 ^98%; cBN粉原料的粒径 为 1~10μηι, 纯度 99%。
3、 根据权利要求 1 所述的氮化钛-二硼化钛-立方氮化硼复合材料的制备方 法,其特征在于,步骤(1 )中,行星球磨方法混料的条件为:转速为 100~300rpm, 球料重量比为 3:1~5:1, 球磨时间为 12~24h。
4、 根据权利要求 1 所述的氮化钛-二硼化钛-立方氮化硼复合材料的制备方 法, 其特征在于, 步骤 (1 ) 中, 湿混中使用的溶剂为酒精或丙酮。
5、 根据权利要求 1 所述的氮化钛-二硼化钛-立方氮化硼复合材料的制备方 法,其特征在于,步骤(1 )中,湿混浆料在旋转烘干仪中烘干的条件为: 100~150°C 下烘干 2~5h。
6、 根据权利要求 1 所述的氮化钛-二硼化钛-立方氮化硼复合材料的制备方 法, 其特征在于, 步骤 (1 ) 中, 烘干后的湿混浆料过 50~200目筛。
7、 根据权利要求 1 所述的氮化钛-二硼化钛-立方氮化硼复合材料的制备方 法, 其特征在于, 步骤 (2) 中, 每次预烧的条件为: 在 700~900°C下烧 1.5~2h, 然后将粉体研磨。
8、 根据权利要求 1 所述的氮化钛-二硼化钛-立方氮化硼复合材料的制备方 法, 其特征在于, 步骤 (3) 中, 冷等静压成型的条件为 0.2~0.5GPa。
9、 根据权利要求 1 所述的氮化钛-二硼化钛-立方氮化硼复合材料的制备方 法, 其特征在于, 步骤(3) 中, 高压烧结的条件为: 以 3~10°C/min的速度升温 至 1200~1500°C, 然后在 4~8GPa的压力下, 保温 l~3h。
PCT/CN2014/080949 2014-06-09 2014-06-27 一种氮化钛-二硼化钛-立方氮化硼复合材料的制备方法 WO2015188404A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167015456A KR101821220B1 (ko) 2014-06-09 2014-06-27 질화티탄-티타늄 2붕화물-입방정계 질화붕소 복합재료의 제조방법
AU2014397407A AU2014397407B2 (en) 2014-06-09 2014-06-27 Method for preparing titanium nitride-titanium diboride-cubic boron nitride composite
GB1609493.0A GB2535106B (en) 2014-06-09 2014-06-27 Method for preparing titanium nitride-titanium diboride-cubic boron nitride composite material
US15/100,857 US9714198B2 (en) 2014-06-09 2014-06-27 Method for preparing titanium nitride-titanium diboride-cubic boron nitride composite material
JP2016538668A JP6250817B2 (ja) 2014-06-09 2014-06-27 窒化チタン−二ホウ化チタン−立方晶窒化ホウ素複合材料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410253601.3A CN104030690B (zh) 2014-06-09 2014-06-09 一种氮化钛-二硼化钛-立方氮化硼复合材料的制备方法
CN201410253601.3 2014-06-09

Publications (1)

Publication Number Publication Date
WO2015188404A1 true WO2015188404A1 (zh) 2015-12-17

Family

ID=51461720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080949 WO2015188404A1 (zh) 2014-06-09 2014-06-27 一种氮化钛-二硼化钛-立方氮化硼复合材料的制备方法

Country Status (7)

Country Link
US (1) US9714198B2 (zh)
JP (1) JP6250817B2 (zh)
KR (1) KR101821220B1 (zh)
CN (1) CN104030690B (zh)
AU (1) AU2014397407B2 (zh)
GB (1) GB2535106B (zh)
WO (1) WO2015188404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355563A (zh) * 2021-04-29 2021-09-07 江苏威鹰机械有限公司 铝-氮化硼纳米片层状复合材料及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136606B (zh) * 2017-06-27 2020-10-23 中国科学院上海硅酸盐研究所 一种增强型自润滑铜基复合材料及其制备方法和应用
CN113106314B (zh) * 2020-05-17 2021-12-03 中南大学 一种核壳结构TiB2基金属陶瓷及其制备方法
CN113149658B (zh) * 2021-04-28 2023-02-07 武汉理工大学 一种氮化钛基复合陶瓷材料及其制备方法
JP7336063B2 (ja) * 2021-08-24 2023-08-31 株式会社タンガロイ 立方晶窒化硼素焼結体及び被覆立方晶窒化硼素焼結体
CN113831129B (zh) * 2021-10-13 2023-06-02 富耐克超硬材料股份有限公司 一种超硬刀具的制备方法
CN114774068B (zh) * 2022-04-25 2023-07-18 无锡腾跃特种钢管有限公司 一种耐磨损穿孔辊及其加工方法
CN115180958B (zh) * 2022-06-30 2023-05-26 无锡市弘毅超研制品有限公司 一种陶瓷结合剂立方氮化硼超精油石的制备方法
CN115194159B (zh) * 2022-07-20 2024-02-13 中原内配集团股份有限公司 一种双层立方氮化硼刀具及其制备方法
CN115745620B (zh) * 2022-10-31 2023-12-05 华中科技大学 一种高致密度氮化钛陶瓷材料及其制备方法
CN116730737A (zh) * 2023-06-06 2023-09-12 廊坊西波尔钻石技术有限公司 一种金刚石-立方氮化硼复合片及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046124A1 (en) * 2004-10-29 2006-05-04 Element Six (Production) (Pty) Ltd. Cubic boron nitride compact
CN101560624A (zh) * 2009-05-18 2009-10-21 河南富耐克超硬材料有限公司 一种聚晶立方氮化硼的制备方法
CN102765705A (zh) * 2012-06-02 2012-11-07 山东大学 一种立方氮化硼刀具材料及其快速制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU512633B2 (en) * 1976-12-21 1980-10-23 Sumitomo Electric Industries, Ltd. Sintered tool
JPS61201751A (ja) * 1985-03-04 1986-09-06 Nippon Oil & Fats Co Ltd 高硬度焼結体およびその製造方法
JP2782524B2 (ja) * 1989-02-07 1998-08-06 東芝タンガロイ株式会社 高密度相窒化ホウ素基反応焼結体及びその製造方法
JP2573900B2 (ja) * 1992-06-22 1997-01-22 日東化学工業株式会社 粉体の焼成方法
US5536485A (en) * 1993-08-12 1996-07-16 Agency Of Industrial Science & Technology Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters
JPH0753205A (ja) * 1993-08-12 1995-02-28 Agency Of Ind Science & Technol 被覆ダイヤモンド準微粒子、並びに被覆ダイヤモンド準微粒子焼結体及びその製造法
KR100216821B1 (ko) * 1996-12-30 1999-09-01 김규현 와이어 본딩 장치의 볼 본딩 캐필러리용 알루미나-탄화규소 나노복합체 및 그 제조방법
US6238449B1 (en) * 1998-12-22 2001-05-29 3M Innovative Properties Company Abrasive article having an abrasive coating containing a siloxane polymer
US7592077B2 (en) * 2003-06-17 2009-09-22 Kennametal Inc. Coated cutting tool with brazed-in superhard blank
KR100759178B1 (ko) * 2003-12-11 2007-09-14 덴끼 가가꾸 고교 가부시키가이샤 세라믹스 소결체, 세라믹스 소결체의 제조 방법, 금속 증착용 발열체
MXPA06012366A (es) * 2004-09-23 2007-01-31 Element Six Pty Ltd Materiales abrasivos policristalinos y metodos de fabricacion.
US8034153B2 (en) * 2005-12-22 2011-10-11 Momentive Performances Materials, Inc. Wear resistant low friction coating composition, coated components, and method for coating thereof
JP4985919B2 (ja) * 2005-12-22 2012-07-25 三菱マテリアル株式会社 高硬度鋼の高速切削加工で優れた仕上げ面精度を長期にわたって発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具
JP5005262B2 (ja) * 2006-05-26 2012-08-22 三菱マテリアル株式会社 高硬度鋼の高速切削加工できわめて優れた仕上げ面精度を長期にわたって発揮する表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具
KR20090024788A (ko) * 2006-06-09 2009-03-09 엘리먼트 씩스 (프로덕션) (피티와이) 리미티드 초경질 복합 물질
WO2012053507A1 (ja) * 2010-10-18 2012-04-26 住友電工ハードメタル株式会社 立方晶窒化硼素焼結体、及び立方晶窒化硼素焼結体工具
CA2836778C (en) * 2011-06-21 2020-11-17 Diamond Innovations, Inc. Composite compacts formed of ceramics and low-volume cubic boron nitride and method of manufacture
KR20150048117A (ko) * 2012-08-31 2015-05-06 다이아몬드 이노베이션즈, 인크. Pcbn 의 티타늄 다이보라이드 조성물
US20140077125A1 (en) * 2012-09-19 2014-03-20 Kang Yi Lin Composition comprising exfoliated boron nitride and method for forming such compositions
PT2900404T (pt) * 2012-09-27 2021-11-16 Allomet Corp Métodos de formação de um artigo metálico ou cerâmico tendo uma nova composição de material de graduação funcional
CN103073317B (zh) * 2013-01-24 2014-01-15 中国科学院金属研究所 一种铝氮化钛/二硼化钛复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046124A1 (en) * 2004-10-29 2006-05-04 Element Six (Production) (Pty) Ltd. Cubic boron nitride compact
CN101084169A (zh) * 2004-10-29 2007-12-05 六号元素(产品)(控股)公司 立方氮化硼压块
CN101560624A (zh) * 2009-05-18 2009-10-21 河南富耐克超硬材料有限公司 一种聚晶立方氮化硼的制备方法
CN102765705A (zh) * 2012-06-02 2012-11-07 山东大学 一种立方氮化硼刀具材料及其快速制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113355563A (zh) * 2021-04-29 2021-09-07 江苏威鹰机械有限公司 铝-氮化硼纳米片层状复合材料及其制备方法

Also Published As

Publication number Publication date
JP2017504552A (ja) 2017-02-09
US9714198B2 (en) 2017-07-25
AU2014397407A1 (en) 2016-06-16
KR20160089395A (ko) 2016-07-27
CN104030690A (zh) 2014-09-10
KR101821220B1 (ko) 2018-01-23
AU2014397407B2 (en) 2017-08-10
GB201609493D0 (en) 2016-07-13
JP6250817B2 (ja) 2017-12-20
GB2535106A (en) 2016-08-10
US20160297713A1 (en) 2016-10-13
CN104030690B (zh) 2015-10-07
GB2535106B (en) 2016-12-28

Similar Documents

Publication Publication Date Title
WO2015188404A1 (zh) 一种氮化钛-二硼化钛-立方氮化硼复合材料的制备方法
Heydari et al. Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocomposites
KR101160140B1 (ko) 지르코늄디보라이드-실리콘카바이드 복합소재의 제조방법
CN104630664B (zh) 一种碳纤维增韧的Ti(C,N)基金属陶瓷材料的制备方法
JP2011520031A (ja) 超硬質強化超硬合金
JP6293669B2 (ja) 焼結された立方晶窒化ホウ素切削工具
CN103145422A (zh) 一种碳化硼-硼化钛-碳化硅高硬陶瓷复合材料及其制备方法
US20230135812A1 (en) Superhard constructions and methods of making same
JP2014505162A5 (zh)
CN103739292A (zh) 一种氮化硅-碳化钨钛纳米复合陶瓷刀具材料的制备方法
JP2012513361A (ja) 超硬質/硬質複合材料
WO2014161818A2 (en) Superhard constructions &amp; methods of making same
CN110436928B (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
Zhao et al. Effect of SiC whiskers on mechanical properties of thermally stable polycrystalline diamond prepared by HPHT sintering
CN106478112B (zh) 一种高硬度高韧性b4c-w2b5复合陶瓷及其制备方法
Lv et al. Effect of controllable decomposition of MAX phase (Ti3SiC2) on mechanical properties of rapidly sintered polycrystalline diamond by HPHT
Zhao et al. Effect of holding time and pressure on properties of ZrB2–SiC composite fabricated by the spark plasma sintering reactive synthesis method
Ren et al. Fabrication of diamond enhanced WC-Ni composites by spark plasma sintering
CN102731096A (zh) 一种织构化硼化物基超高温陶瓷材料及其制备方法
WO2020103235A1 (zh) 一种过渡金属硼化物硬质陶瓷材料及其制备方法和应用
KR20170127504A (ko) 다결정성 연마 구조물
Wang et al. Synthesis of B4C–TiB2 composite powders by the carbide boronizing process
CN113582698A (zh) 一种ZrB2-SiC增韧B4C防弹片的制备方法
CN106007728A (zh) 一种抗热震超高温陶瓷及其制备方法
CN113292322A (zh) 采用分步加料球磨与热压烧结制备石墨烯增强非金属基复合材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201609493

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140627

WWE Wipo information: entry into national phase

Ref document number: 1609493

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 15100857

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167015456

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016538668

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014397407

Country of ref document: AU

Date of ref document: 20140627

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894267

Country of ref document: EP

Kind code of ref document: A1