WO2015186970A1 - Method of preparing polyolefin and polyolefin prepared by said method - Google Patents

Method of preparing polyolefin and polyolefin prepared by said method Download PDF

Info

Publication number
WO2015186970A1
WO2015186970A1 PCT/KR2015/005580 KR2015005580W WO2015186970A1 WO 2015186970 A1 WO2015186970 A1 WO 2015186970A1 KR 2015005580 W KR2015005580 W KR 2015005580W WO 2015186970 A1 WO2015186970 A1 WO 2015186970A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molecular weight
polyolefin
formula
aryl
Prior art date
Application number
PCT/KR2015/005580
Other languages
French (fr)
Korean (ko)
Inventor
송은경
권헌용
권혁주
이용호
최이영
홍대식
이기수
조경진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150078104A external-priority patent/KR101705340B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP15803721.8A priority Critical patent/EP3106474B1/en
Priority to US15/303,437 priority patent/US9988469B2/en
Priority to JP2016559950A priority patent/JP6458050B2/en
Priority to CN201580019993.XA priority patent/CN106232635B/en
Publication of WO2015186970A1 publication Critical patent/WO2015186970A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a high molecular weight and the polyolefin production polrieul from the production method and this the repin which can be easily than polyolefins manufactured effectively with a wide range of molecular weight distribution.
  • Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics.
  • the Ziegler-Natta catalyst has been widely applied to the existing commercial processes since the invention in the 50s, but is characterized by a wide molecular weight distribution of the polymer due to its multi-site catalyst having many active sites. There is a problem that there is a limit in securing the desired physical properties because the composition distribution is not uniform.
  • the wider the molecular weight distribution the lower the viscosity according to the shear rate. As the degree is increased, it shows excellent processability in the processing area. Due to the relatively narrow molecular weight distribution, the polyolefin made of the metallocene catalyst has a high viscosity at high shear rate, so that a lot of load or pressure is extruded at the time of extrusion, thereby reducing the extrusion productivity. , The bubble stability during blow molding process is greatly reduced, there is a disadvantage that the surface of the produced molded article is uneven, leading to a decrease in transparency.
  • the molecular weight of the polyolefin decreases as the amount of the hydrogen gas is increased. Furthermore, even if the polymerization is carried out without hydrogen gas, it is difficult to obtain ultra high molecular weight polyolefin having a weight average molecular weight of 1 million or more due to the excellent beta hydrogen removal reaction due to the nature of the metallocene catalyst.
  • the present invention provides a method for preparing polyolefin and a polyolefin produced from the same, which makes it easier and more efficient to prepare polyolefin having a high molecular weight and various molecular weight distributions, which are difficult to manufacture through a conventional metallocene catalyst. will be.
  • the present invention provides a polyolefin comprising a step of polymerizing at least one first metallocene compound represented by the following Chemical Formula 1 and a supported metallocene catalyst having a promoter supported on a carrier and hydrogen gas in the presence of hydrogen gas; Provide the manufacturing method:
  • A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 A C20 alkoxyalkyl group, C3 to C20 heterocycloalkyl group, or C5 to C20 heteroaryl group;
  • D is -0-, -S-, -N (R)-or -Si (R) (R ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, C1 to An alkyl group of C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20;
  • L is a C1 to C10 straight or branched chain alkylene group
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
  • C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Chemical Formula 2a, Chemical Formula 2b, or Chemical Formula 2c, except that both C 1 and C 2 are Chemical Formula 2c;
  • R1 to R17 and R1 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group , C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, two of R10 to R17 adjacent to each other
  • the foregoing can be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring.
  • the present invention also provides a polyolefin produced according to the polyolefin production method.
  • the conventional metallocene catalyst was difficult to manufacture Polyolefins with high molecular weight and broad molecular weight distribution can be produced very effectively. Since the high molecular weight polyolefin has a small amount of catalyst residue due to the nature of the polyolefin made of the metallocene catalyst, it is possible to suppress decomposition of polyolefin in the high temperature molding process. Therefore, it is possible to express excellent properties according to high molecular weight and wide molecular weight distribution, and to use for large blow molding products, next-generation pipe products requiring excellent pressure resistance and heat resistance properties, or injection products having good stress cracking properties. Very preferably.
  • the combination of the metallocene compound included in the metallocene catalyst of the present invention the interaction with the molecular weight modifier, and the reaction properties against hydrogen, it is possible to prepare a polyolefin having various weight average molecular weight and molecular weight distribution. . Accordingly, the polyolefin having the desired physical properties can be easily prepared according to the specific combination of the metallocene compound and the selective use of hydrogen and the molecular weight modifier.
  • polymerizing an olefinic monomer in the presence of hydrogen gas and a supported metallocene catalyst having at least one first metallocene compound represented by Formula 1 and a promoter supported on a carrier Provided is a method for preparing a polyolefin, including:
  • A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 A C20 alkoxyalkyl group, a C3 to C20 heterocycloalkyl group, or a C5 to C20 heteroaryl group;
  • D is -0-, -S-, -N (R)-or -Si (R) (R ')-, where R and R' are The same or different, each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, or C6 to C20 aryl group;
  • L is a C1 to C10 straight or branched chain alkylene group
  • B is carbon, silicon or germanium
  • Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
  • M is a Group 4 transition metal
  • X 1 and X 2 are the same as or different from each other, and each independently halogen, C 1 to C 20 alkyl group, C 2 to C 20 alkenyl group, C 6 to C 20 aryl group, nitro group, amido group, C 1 to C 20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
  • C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Chemical Formula 2a, Chemical Formula 2b, or Chemical Formula 2c, except that both C 1 and C 2 are Chemical Formula 2c;
  • R1 to R17 and R1 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group , C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, two of R10 to R17 adjacent to each other
  • the foregoing can be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring. .
  • a polyolefin is prepared by polymerizing a supported metallocene catalyst having at least one metallocene compound and a cocatalyst supported on a carrier, and an olefinic monomer in the presence of hydrogen gas.
  • the first metallocene compound of Formula 1 forms a structure in which an indeno indole derivative and / or a fluorene derivative is crosslinked by a bridge, and forms a Lewis base in the ligand structure.
  • a non-covalent electron pair which can act it can be supported on the surface having the Lewis acid characteristics of the carrier to exhibit higher polymerization activity.
  • beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown can be stabilized by hydrogen bonding, beta-hydrogen elimination can be suppressed, thereby enabling the production of a higher molecular weight polyolefin.
  • hydrogen reactivity is low, polyolefins having high weight average molecular weight and wide molecular weight distribution can be prepared.
  • a second to selectively prepare a medium or low molecular weight polyolefin By properly using a metallocene compound and a molecular weight modifier, the present invention was completed by confirming that polyolefins having a high molecular weight and various molecular weight distributions, which were difficult to prepare using a metallocene catalyst, could be prepared.
  • the C1 to C20 alkyl group includes a linear or branched alkyl group, specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nuclear group, heptyl group, Octyl group etc. can be mentioned, It is not limited to this.
  • the alkenyl group of C2 to C20 includes a straight or branched alkenyl group, and specifically, may include an allyl group, ethenyl group, propenyl group, butenyl group, and pentenyl group, but is not limited thereto.
  • the C6 to C20 aryl group includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the C5 to C20 heteroaryl group includes a monocyclic or condensed heteroaryl group, and includes a carbazolyl group, a pyridyl group, a quinoline group, an isoquinoline group, a thiophenyl group, a furanyl group, an imidazole group, an oxazolyl group, a thiazolyl group And triazine group, tetrahydropyranyl group, tetrahydrofuranyl group, and the like, but are not limited thereto.
  • alkoxy group for C1 to C20 examples include a methoxy group, an ethoxy group, a phenyloxy group, a cyclonuxyloxy group, and the like, but are not limited thereto.
  • the Group 4 transition metal may include titanium, zirconium, hafnium, and the like, but is not limited thereto.
  • R1 to R17 and R1 'to R9' are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, and n-butyl.
  • L in Formula 1 is a C4 to C8 linear or branched alkylene group More preferably, but is not limited thereto.
  • the alkylene group may be unsubstituted or substituted with an alkyl group of C1 to C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20.
  • A hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, methoxymethyl, tert-butoxymethyl, 1-ethoxyethyl, 1-methyl It is preferable that it is a 1- methoxyethyl group, a tetrahydropyranyl group, or a tetrahydrofuranyl group, but it is not limited to this.
  • B of Formula 1 is silicon, but is not limited thereto.
  • Chemical Formula 2a may include a structure represented by one of the following structural formulas, but is not limited thereto.
  • a specific example of the structure represented by Chemical Formula 2b may include a structure represented by one of the following structural formulas, but is not limited thereto.
  • first metallocene compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but is not limited thereto.
  • the first metallocene compound of Formula 1 described above has excellent activity and high molecular weight
  • Polyolefin can be produced.
  • it shows a high polymerization activity, thereby enabling the production of high molecular weight or ultra high molecular weight polyolefin.
  • the metallocene compound according to the present invention exhibits low hydrogen reactivity and still has high activity. Polymerization of the olefin based polymer of molecular weight to ultra high molecular weight is possible.
  • the first metallocene compound of Chemical Formula 1 may be prepared by connecting an indenoindole derivative and / or fluorene derivative with a bridge compound to prepare a ligand compound, and then performing metallation by introducing a metal precursor compound. Can be.
  • the manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later.
  • the supported metallocene catalyst may be a single supported metallocene catalyst including at least one first metallocene compound represented by Chemical Formula 1, a cocatalyst compound and a carrier, Or a common supported metallocene catalyst including at least one first metallocene compound represented by Formula 1, at least one second metallocene compound, a cocatalyst compound, and a carrier. That is, in the specification of the present invention, the supported metallocene catalyst or the metallocene supported catalyst is the first metallocene.
  • a single supported metallocene catalyst carrying only one or more compounds alone and a hybrid supported metallocene catalyst carrying at least one first metallocene compound and at least one second metallocene compound shall be included. .
  • the second metallocene compound may be selected from compounds represented by the following Chemical Formulas 3 to 5.
  • M 1 is a Group 4 transition metal
  • Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
  • R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • n 1 or 0;
  • M 2 is a Group 4 transition metal
  • Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals And these have 1 to 20 carbon atoms May be substituted with a hydrocarbon;
  • R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20-aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
  • Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C 40 alkyl aryl, C7 to aryl C40 alkyl, C6 to aryl C20, a substituted or unsubstituted C1 to C20 alkyl for the Lidene, a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 1 is one or more of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 3 R c ring and the Cp 4 R d ring or crosslink one Cp 4 R d ring to M 2 Or a combination thereof;
  • n 1 or 0;
  • M 3 is a Group 4 transition metal
  • Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
  • R e is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl Arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
  • Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , Substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
  • B 2 is R 5 e Cp carbon, germanium, silicon, phosphorus, or of cross-linking the ring and J At least one or a combination of nitrogen atom containing radicals;
  • J is any one selected from the group consisting of NR f , O, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
  • the second metallocene compound represented by Chemical Formula 5 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
  • the common supported metallocene catalyst may include at least one of the first metallocene compound represented by Formula 1 and at least one of the second metallocene compound selected from the compounds represented by Formulas 3 to 5. It is commonly supported on a carrier together with a promoter catalyst.
  • the first metallocene compound represented by Formula 1 of the common supported metallocene catalyst mainly contributes to making a high molecular weight copolymer having a high SCB (short chain branch) content
  • is represented by the second metal represented by Formula 3 Sen compounds may contribute primarily to making low molecular weight copolymers with low SCB content.
  • the second metallocene compound represented by Formula 4 or 5 may contribute to making a low molecular weight copolymer having a moderate SCB content.
  • the first metallocene compound has a ligand structure in which an indeno indole derivative and a fluorene derivative are crosslinked by a bridge compound, and a non-covalent electron pair capable of acting as a Lewis base to the ligand structure.
  • a supported on the surface having the Lewis acid characteristics of the carrier it shows a high polymerization activity even when supported.
  • the activity is high, and due to the proper steric hindrance and the electronic effect of the ligand, the reaction is not only low but also maintains high activity even in the presence of hydrogen. .
  • the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown is stabilized by hydrogen bonding to polymerize an ultrahigh molecular weight olepin-based polymer.
  • the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown is stabilized by hydrogen bonding to polymerize an ultrahigh molecular weight olepin-based polymer.
  • the common supported betalocene catalyst of the present invention includes a first metallocene compound represented by Chemical Formula 1 and a second metallocene compound selected from ' compounds represented by Chemical Formulas 3 to 5,
  • a first metallocene compound represented by Chemical Formula 1 and a second metallocene compound selected from ' compounds represented by Chemical Formulas 3 to 5
  • a high molecular weight olefin-based copolymer having a high SCB content and at the same time a wide molecular weight distribution it is possible to prepare a leupine polymer having excellent physical properties and excellent processability.
  • the cocatalyst supported on the carrier for activating the first and the crab 2 metallocene compounds is an organometallic compound containing a Group 13 metal, and generally a metallocene. It will not be specifically limited if it can be used when polymerizing an olefin under a catalyst.
  • the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 6 and a borate-based second cocatalyst of Formula 7 below.
  • R 18 is each independently a halogen, halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, k is an integer of 2 or more, [Formula 7]
  • T + is a + monovalent polyatomic ion
  • is boron in +3 oxidation state :
  • Each G is independently selected from the group consisting of a hydride group, a dialkylamido group, a halide group, an alkoxide group, an aryloxide group, a hydrocarbyl group, a halocarbyl group and a halo-substituted hydrocarbyl group, wherein G is 20 It has up to 5 carbons, but at less than one position G is a halide group.
  • the molecular weight distribution of the finally produced polyolefin can be more uniform, and the polymerization activity can be improved.
  • the first cocatalyst of Chemical Formula 6 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular or reticulated form, and specific examples of the first cocatalyst include methylaluminoxane ( ⁇ ) and ethylalumina. Noxic acid, isobutyl aluminoxane, or butyl aluminoxane etc. are mentioned.
  • the second cocatalyst of Formula 7 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt.
  • Such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri ( ⁇ -butyl) ammonium tetraphenylborate , Methyltetracyclooctadecylammonium tetraphenylborate, ⁇ , ⁇ -dimethylaniline tetraphenylborate, ⁇ , ⁇ -diethylaninium tetraphenylborate, ⁇ , ⁇ -dimethyl (2,4,6-trimethylaninium Tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (penta
  • Tripropylammonium tetrakis (pentafluorophenyl) borate tri ( ⁇ -butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (secondary-butyl) ammonium tetrakis (pentafluorophenyl) borate, N, ⁇ -dimethylaninium tetrakis (pentafluorophenyl) borate, ⁇ , ⁇ -diethylaninium tetrakis (pentafluorophenyl) borate, ⁇ , ⁇ -dimethyl (2,4,6- Trimethylaninynium) tetrakis (pentafluorophenyl) borate ,
  • the mass ratio of the total transition metal to the carrier included in the first and second metallocene compounds may be 1:10 to 1: 1,000.
  • the carrier and the metallocene compound in the mass ratio it can exhibit an optimal shape.
  • the mass ratio of the promoter compound to the carrier may be from 1: 1 to 1: 100.
  • the mass ratio of the first and second metallocene compounds may be 10: 1 to 1:10, preferably 5: 1 to 1: 5.
  • the carrier may be a carrier containing a hydroxy group on the surface, and preferably, a carrier having a semi-aromatic hydroxyl group and a siloxane group, which is dried to remove moisture from the surface. Can be used.
  • silica dried at high temperature silica-alumina, and silica-magnesia Etc. may be used, and they may typically contain oxides, carbonates, sulfates, and nitrate components, such as Na 2 O, K 2 CO 3 , BaS0 4 , and Mg (N0 3 ) 2 .
  • the drying temperature of the carrier is preferably about 200 to 800 ° C., more preferably about 300 to 600 ° C., and most preferably about 300 to 400 ° C. If the drying temperature of the carrier is less than about 200 ° C, the moisture is too much and the surface of the carrier reacts with the promoter, and if it exceeds about 800 ° C, pores on the surface of the carrier are combined to reduce the surface area, It is not preferable because many hydroxyl groups are lost and only siloxane groups are left, resulting in a decrease in reaction space with the promoter.
  • the amount of hydroxy groups on the surface of the carrier is preferably about 0.1 to 10 mmol / g, more preferably about 5 to 1 mmol / g.
  • the amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying.
  • the amount of the hydroxyl group is less than about 0.1 mmol / g, the reaction site with the cocatalyst is small. If the amount of the hydroxyl group is greater than about 10 mmol / g, it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle. Not desirable
  • the mass ratio of the total transition metal: carrier included in the first and second metallocene compounds may be about 1: 10 to 1: 1,000.
  • the carrier and the metallocene compound are included in the mass ratio, an optimal shape can be exhibited.
  • the molecular weight modifier may include a mixture of a cyclopentadienyl metal compound of Formula 8 and an organoaluminum compound of Formula 9 or a reaction product thereof.
  • Cp 6 and Cp 7 each independently include a substituted or unsubstituted cyclopentadienyl group, a substituted or unsubstituted indenyl group, or a substituted or unsubstituted fluorenyl group
  • a ligand, ⁇ ' is a Group 4 transition metal element, X' is a halogen;
  • R f , R g , and R h are each independently an alkyl group having 4 to 20 carbon atoms or a halogen, and at least one of R f , R g , and R h is an alkyl group having 4 to 20 carbon atoms.
  • the molecular weight modifier itself does not exhibit activity as an olephine polymerization catalyst, and its mechanism of action is not specifically identified, but assists the activity of the metallocene catalyst to support the activity of the polyolefin having a larger molecular weight and a wider molecular weight distribution. It has been confirmed that it allows for manufacture.
  • the polymerization reaction for producing the polyolefin for blow molding and the like may be mainly carried out in a slurry phase polymerization or the like in an aliphatic hydrocarbon-based organic solvent such as nucleic acid.
  • the molecular weight modifier is formed from an organoaluminum compound of formula 9 having an alkyl group having 4 or more carbon atoms, it may exhibit more excellent solubility in aliphatic hydrocarbon-based organic solvents such as the nucleic acid. Therefore, such a molecular weight modifier can be stably dissolved in an organic solvent used as a reaction medium or a diluent and supplied to the reaction system, and its action and effect can be more uniformly and excellently expressed during the polymerization process.
  • polyolefin of excellent physical properties can be produced, so that there is no necessity of using an aromatic hydrocarbon-based organic solvent, and the aromatic hydrocarbon-based organic solvent is polyolefin or There is no problem in smell or taste due to remaining in the product, and as a result, the polyolefin prepared according to one embodiment can be used very suitably for a large product.
  • the ultra-high molecular weight polyolefin can be more effectively produced using such a molecular weight modifier and hydrogen, and the previously supported single supported metallocene catalyst or common supported metallocene catalyst.
  • cyclopentadienyl metal compound of Formula 8 examples include biscyclopentadienyl titanium dichloride, biscyclopentadienyl zirconium dichloride, biscyclopentadienyl hafnium dichloride, and bis indenyl titanium Dichloride or bisflorenyl titanium dichloride and the like.
  • organoaluminum compound of the formula (8) examples include triisobutyl aluminum, trinuclear aluminum, trioctyl aluminum, diisobutyl aluminum chloride, dinuxyl aluminum chloride, isobutyl aluminum dichloride, and the like.
  • the compound of Formula 8 and the compound of Formula 9 are about 1: 0.1 to 1: 100 based on the molar ratio of the metal element (M 4 ) included in Formula 8 and aluminum (A1) included in Formula 9 Black is preferably used in a molar ratio of about 1: 0.5 to 1:10.
  • the molecular weight modifier may be used in an amount of about 10 ⁇ 7 to about 1 parts by weight, or about 10 ⁇ 5 to 10 ⁇ 2 parts by weight based on the total loo parts by weight of the first and second olefinic monomers. As it is used in this content range, the action and effect due to the addition of the molecular weight regulator is optimized, the polymer melt index is low, the molecular weight distribution is wide, the molecular weight is large, and the stress cracking resistance is improved more than the density or polymer melt index. Polyolefins can be obtained.
  • the above-described molecular weight modifier may be used in a state supported on the carrier together with the above-described first and second metallocene compounds, it may be added to and mixed with the semi-ungung system separately from the supported metallocene catalyst.
  • the molecular weight modifier described above is an amount such that the molar ratio of the transition metal contained in the first and second metallocene compounds: the molecular weight modifier is about 1: 0.1 to 1: 2, or about 1: 0.2 to 1: 1.5. Can be used as If the amount of the molecular weight modifier is too small, ultra high molecular weight polyolefin may be difficult to prepare properly. On the contrary, if the amount of the molecular weight modifier is excessively large, it is possible to produce a polyolefin having a higher molecular weight, but the catalyst activity may be lowered.
  • the supported metallocene catalyst as described above may be prepared by supporting a cocatalyst on a carrier, and further supporting the first and second metallocene compounds, and optionally, the molecular weight modifier is added to the first and second It may be prepared by supporting the metallocene compound together or before or after supporting the first and second metallocene compounds. Since the supporting method of each component depends on the manufacturing process and conditions of the conventional metallocene supported catalyst, further description thereof will be omitted.
  • Polymerization may be performed by supplying an olefinic monomer in the above-described single supported metallocene catalyst or common supported metallocene catalyst and optionally, a semi-unggi group containing a molecular weight regulator.
  • the polymerization may proceed by supplying an olefinic monomer in the presence of hydrogen gas.
  • the hydrogen gas serves to suppress the rapid reaction of the metallocene catalyst at the beginning of the polymerization so that a high molecular weight polyolefin can be produced in a larger amount.
  • Polyolefins having a wide molecular weight distribution can be obtained effectively.
  • the hydrogen gas may be introduced such that the molar ratio of such hydrogen gas: olefin monomer is about 1: 100 to 1: 1,000.
  • the amount of hydrogen gas used is too small, the catalyst activity may not be sufficiently realized, making it difficult to prepare a polyolefin having a desired molecular weight and molecular weight distribution, and when the amount of hydrogen gas is added, the activity of the catalyst is not sufficiently realized. You may not.
  • the organoaluminum compound for removing the water in the counterunggi is further added, the polymerization reaction may proceed in the presence thereof.
  • organoaluminum compound include trialkylaluminum, dialkyl aluminum halide, alkyl aluminum dihalide, aluminum dialkyl hydride or alkyl aluminum sesqui halide, and more specific examples thereof include A1 (C 2).
  • Such organoaluminum compounds may be continuously introduced into the reactor and may be introduced at a rate of about 0.1 to 10 moles per kilogram of reaction medium introduced into the reactor for proper water removal.
  • the olefin monomer may be ethylene, alpha-olefin, cyclic olefin, diene olefin or triene olefin having two or more double bonds.
  • olefinic monomers include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene 1-decene, 1-undecene, 1 -Dodecene, 1-tetradecene, 1-nucleodecene, 1-eicosene, norbornene, norbonadiene, ethylidene norbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1,5-pentadiene, 1,6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, etc. are mentioned, These monomers can also be mixed and copolymerized 2 or more types.
  • the polymerization reaction can be carried out by homopolymerization with one olefinic monomer or copolymerization with two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor or a gas phase reaction reactor.
  • the supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane and chloro It may be dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom such as benzene and injected into the reaction system.
  • the solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
  • the polyolefin obtained according to the preparation method of the above-described embodiment may be a high molecular weight or ultra high molecular weight polyolefin having a weight average molecular weight of about 100,000 to about 2,000,000 g / mol, or about 400,000 to about 1,500,000 g / m,
  • the distribution (Mw / Mn) is about 2.0 to about 25, or about 2.2 to about 10, and may have various molecular weight distributions.
  • the weight average molecular weight and molecular weight distribution can be variously changed by adjusting the type and content of the first and second metallocene compounds, the amount of hydrogen gas, the amount of molecular weight control agent, etc. within the above-described range, It is very useful for preparing physical polyolefins. That is, since the reaction properties to the hydrogen and the molecular weight regulator of the first and second metallocene compounds are different, the selective combination of the metallocene compound and the amount of hydrogen gas and the molecular weight regulator are added in one reactor.
  • Polyolefins having relatively small weight average molecular weight and narrow molecular weight distribution, polyolefins having small weight average molecular weight and wide molecular weight distribution, polyolefins having large weight average molecular weight and narrow molecular weight distribution, large weight average within the above-mentioned range Both the molecular weight and the production of polyolefins with a broad molecular weight distribution are possible.
  • the polyolefin produced by the production method of the present invention has a relatively wide molecular weight distribution and a very high molecular weight, and due to the nature of the polyolefin made of a metallocene catalyst, the amount of catalyst residue is small, so that decomposition of the polyolefin can be suppressed during high temperature molding processing. Can be.
  • it can exhibit excellent physical properties according to high molecular weight, and is very preferably used for applications such as large blow molding products, next generation pipe products requiring excellent pressure resistance and heat resistance properties, or injection products having good stress cracking properties. Can be.
  • the solution was changed to violet color at room temperature overnight.
  • the reaction solution was filtered to remove LiCl.
  • the toluene of the filtrate was removed by vacuum drying, and the nucleic acid was added and sonicated for 1 hour.
  • the slurry was filtered to obtain 6 g of a dark violet metallocene compound (Mw 758.02, 7.92 mmol, yield 66 mol%). Two isomers were observed on 1 H-NMR.
  • reaction temperature 50 g was added to a 10 L reactor at room temperature, and then 300 mL of THF was added. 1 2 After adding 0.5 g, the reaction temperature was maintained at 50 ° C. After the reaction temperature was stabilized, 250 g of 6-t-butthoxyhexyl chloride was added to the reaction vessel at a rate of 5 mL / min using a feeding pump. It was observed that the reaction temperature increased by about 4 to 5 ° C. with the addition of 64-subspecialty chloride. The mixture was stirred for 12 hours while adding 6-t-butoxynuxyl chloride. After 12 hours of reaction, a black reaction solution was obtained.
  • 6-t-butoxynucleic acid (6-t-buthoxyhexane) was confirmed by 1 H-NMR. It can be seen that the Gringanrd reaction proceeded well from the 6-t-butoxyhexane. Thus, 6-t-buthoxyhexyl magnesium chloride was synthesized.
  • the reaction temperature was adjusted to -20 ° C.
  • 560 g of the synthesized 6-t-subsilicate magnesium chloride was added to the reactor at a rate of 5 mL / min using a feeding pump. After feeding the Grignard reagent, the reaction mixture was stirred for 12 hours while slowly raising the temperature to room temperature. After 12 hours of reaction, white MgCl 2 salt was produced.
  • 4 L of nucleic acid was added to remove the salt through a labdori to obtain a filter solution. After adding the obtained filter solution to the reactor, the nucleic acid was removed at 70 ° C to obtain a pale yellow liquid. The obtained liquid was confirmed to be the desired methyl (6-t-buthoxy hexyl) dichlorosilane ⁇ compound through 1H-NMRol.
  • reaction temperature was cooled to -20 ° C.
  • the reactor was added at a rate of 5 mL / min using n- BuLi 480 mL feeding pump. After n-BuLi was added, the reaction mixture was stirred for 12 hours while slowly raising the temperature to room temperature. After 12 hours of reaction, an equivalent of methyl (6-t-butthoxy hexyl) dichlorosilane (326 g, 350 mL) was added quickly to the reactor. Slowly return the reaction temperature to room temperature After stirring for 12 hours while raising the reaction temperature, the reaction mixture was again cooled to 0 ° C., and then 2 equivalents of t-BuNH 2 was added thereto.
  • the reaction mixture was stirred for 12 hours while slowly warming to room temperature. After 12 hours of reaction, THF was removed and 4 L of nucleic acid was added to obtain a filter solution from which salts were removed through labdori. After the filter solution was added to the reactor again, the nucleic acid was removed from 7 (C to obtain a yellow solution.
  • the yellow solution obtained was obtained through 1H-NMR in methyl (6-t-butoxynucleus) (tetramethyl c p H). It was confirmed that the compound is t-butylaminosilane (Methyl (6 ⁇ t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane).
  • a supported catalyst was prepared in the same manner as in Preparation Example 2, except that 0.5 mm was added thereto.
  • a supported catalyst was prepared in the same manner as in Preparation Example 2, except that 0.5 mm was added thereto. ⁇ Production Example of Molecular Weight Control Agent>
  • Example 1 ethylene polymerization was carried out in the same manner as in Example 1, except that 0.5 mol% of hydrogen was added together with ethylene to polymerize ethylene.
  • Example 3 ethylene polymerization was carried out in the same manner as in Example 1, except that 0.5 mol% of hydrogen was added together with ethylene to polymerize ethylene.
  • Example 1 ethylene polymerization was carried out in the same manner as in Example 1, except that 30 mg of the supported catalyst of Preparation Example 2 was used instead of the supported catalyst prepared in Preparation Example 1.
  • Example 4
  • Example 1 ethylene polymerization was carried out in the same manner as in Example 1, except that 30 mg of the supported catalyst of Preparation Example 3 was used instead of the supported catalyst prepared in Preparation Example 1.
  • Example 5
  • Example 11 ⁇ 2 ethylene polymerization was carried out in the same manner as in Example 1, except that 30 mg of the supported catalyst of Preparation Example 4 was used instead of the supported catalyst prepared in Preparation Example 1.
  • Example 6 30 mg of the supported catalyst prepared in Preparation Example 2 was quantified in a dry box, placed in a 50 mL glass bottle, sealed with a rubber barrier, and taken out of the dry box to prepare a catalyst for injection. The polymerization was carried out in a 2 L metal alloy reactor, equipped with a mechanical stirrer, temperature controlled and used at high pressure.
  • the molecular weight regulator of Preparation Example 5 was introduced without air contact so as to be 0.5 mole with respect to 1 mole of aluminum.
  • gas ethylene monomer at a pressure of 40 Kgf / cm 2 at 80 ° C. and 0.25 mol% of hydrogen relative to the ethylene content were continuously added together with ethylene for 1 hour.
  • Termination of the polymerization was completed by first stopping the reaction and then evacuating and removing the ethylene. The polymer obtained therefrom was filtered to remove most of the polymerization solvent and then dried for 4 hours in an 80 ° C vacuum Aubon.
  • Example 6 ethylene polymerization was carried out in the same manner as in Example 6, except that 30 mg of the supported catalyst of Preparation Example 3 was used instead of the supported catalyst prepared in Preparation Example 2.
  • Example 8
  • Example 6 ethylene polymerization was carried out in the same manner as in Example 6, except that 30 mg of the supported catalyst of Preparation Example 4 was used instead of the supported catalyst prepared in Preparation Example 2.
  • the polymerization conditions of Examples 1 to 8 are collectively shown in Table 1 below. TABLE 1
  • Example 1 Synthesis Example 1 0.25 mol%-Example 2 Synthesis Example 1 0.5 mol%-Example 3 Synthesis Example 1 + Synthesis Example 2 0. 25 mol%-Example 4 Synthesis Example 1 + Synthesis Example 3 0. 25 mol%- Example 5 Synthesis Example 1 + Synthesis Example 4 0.25 mol%-Example 6 Synthesis Example 1 Synthesis Example 2 0.25 mol% 0.5 mol (relative to 1 mol of Al) Example 7 Synthesis Example 1 + Synthesis Example 3 0 25 mol% 0.5 mol (relative to 1 mol of Al) Example 8 Synthesis Example 1 + Synthesis Example 4 0.25 mol% 0.5 mol (relative to Al lmol) Further, the polymerization activity according to the polymerization of Examples 1 to 8, The weight average molecular weight and molecular weight distribution of the polyolefins are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention relates to a method capable of more easily and effectively preparing polyolefin, and polyolefin prepared by the same, wherein the method is for preparing polyolefin having a high molecular weight and various molecular weight distributions, which is difficult to prepare through a typical metallocene catalyst. The method for preparing polyolefin includes a step of polymerizing olefin-based monomers in the presence of hydrogen gas and a metallocene-containing catalyst in which a carrier contains a metallocene compound having a certain chemical structure.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
폴리올레핀의 제조 방법 및 이로부터 제조된 폴리을레핀  Process for preparing polyolefin and polyolefin produced therefrom
【관련 출원 (들)과의 상호 인용】  [Cross Citation with Related Application (s)]
본 출원은 2014년 6월 3일자 한국 특허 출원 제 10-2014-0067697호 및 This application is the Korean patent application No. 10-2014-0067697 dated June 3, 2014 and
2015년 6월 2자 한국 특허 출원 제 10-2015-0078104호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. Claiming the benefit of priority based on Korean Patent Application No. 10-2015-0078104, issued June 2, 2015, all contents disclosed in the literature of the Korean patent applications are incorporated as part of this specification.
【기술분야】  Technical Field
본 발명은' 고분자량 및 다양한 분자량 분포를 갖는 폴리올레핀을 보다 용이하고 효과적으로 제조할 수 있게 하는 폴리을레핀의 제조 방법 및 이로부터 제조된 폴리올레핀에 관한 것이다. The present invention 'relates to a high molecular weight and the polyolefin production polrieul from the production method and this the repin which can be easily than polyolefins manufactured effectively with a wide range of molecular weight distribution.
【배경기술】  Background Art
올레핀 증합 촉매계는 지글러 나타 및 메탈로센 촉매계로 분류할 수 있으며, 이 두 가지의 고활성 촉매계는 각각의 특징에 맞게 발전되어 왔다. 지글러 나타 촉매는 50년대 발명된 이래 기존의 상업 프로세스에 널리 적용되어 왔으나, 활성점이 여러 개 흔재하는 다활성점 촉매 (multi site catalyst)이기 때문에, 중합체의 분자량 분포가 넓은 것이 특징이며, 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있다는 문제점이 있다.  Olefin polymerization catalyst systems can be classified into Ziegler-Natta and metallocene catalyst systems, and these two highly active catalyst systems have been developed for their respective characteristics. The Ziegler-Natta catalyst has been widely applied to the existing commercial processes since the invention in the 50s, but is characterized by a wide molecular weight distribution of the polymer due to its multi-site catalyst having many active sites. There is a problem that there is a limit in securing the desired physical properties because the composition distribution is not uniform.
특히, 지글러 나타 촉매를 사용하여 중량평균분자량 100만 이상의 초고분자량 폴리을레핀을 제조하는 경우, 촉매 잔사량 (C1 성분 등)이 많아 고온에서 성형 가공시 폴리을레핀의 분해가 발생할 수 있고 이는 폴리올레핀의 분자량 저하를 수반할 수 있다. 이 때문에, 초고분자량 폴리올레핀으로서의 우수한 물성을 제대로 발현할 수 없는 단점이 있다.  In particular, when preparing ultra-high molecular weight polyolefins with a weight average molecular weight of 1 million or more using a Ziegler-Natta catalyst, the catalyst residues (C1 components, etc.) are high, so that polyolefins may be decomposed during molding at a high temperature, which is a molecular weight of the polyolefin. May involve degradation. For this reason, there exists a disadvantage that the outstanding physical property as an ultra high molecular weight polyolefin cannot express correctly.
이에 비해, 메탈로센 촉매를 사용하여 고분자량 폴리을레핀을 얻는 경우, 분자량 분포가 상대적으로 작고, 이로 인해 내층격성이 개선될 수 있다. 또한, 촉매 잔사의 C1 성분이 적어 성형 가공시 폴리을레핀의 분해가 크게 억제될 수 있다. 그러나, 메탈로센 촉매를 사용하여 제조된 폴리을레핀은 좁은 분자량 분포로 인해 가공성이 떨어지는 문제가 있다.  In comparison, when a high molecular weight polyolefin is obtained using a metallocene catalyst, the molecular weight distribution is relatively small, and thus, the layer resistance may be improved. In addition, since the C1 component of the catalyst residue is small, decomposition of polyolefin can be greatly suppressed during molding. However, polyolefin produced using a metallocene catalyst has a problem of poor workability due to a narrow molecular weight distribution.
일반적으로 분자량 분포가 넓을수록 전단속도 (shear rate)에 따른 점도저하 ' 정도가 커져 가공영역에서 우수한 가공성을 나타내는데, 메탈로센 촉매로 제조된 폴리올레핀은 상대적으로 좁은 분자량 분포 등으로 인해, 높은 전단속도에서 점도가 높아 압출시 부하나 압력이 많이 걸리게 되어 압출 생산성이 저하되고, 블로우몰딩 가공시 버블 안정성이 크게 떨어지며, 제조된 성형품 표면이 불균일해져 투명성 저하 등을 초래하는 단점이 있다. In general, the wider the molecular weight distribution, the lower the viscosity according to the shear rate. As the degree is increased, it shows excellent processability in the processing area. Due to the relatively narrow molecular weight distribution, the polyolefin made of the metallocene catalyst has a high viscosity at high shear rate, so that a lot of load or pressure is extruded at the time of extrusion, thereby reducing the extrusion productivity. , The bubble stability during blow molding process is greatly reduced, there is a disadvantage that the surface of the produced molded article is uneven, leading to a decrease in transparency.
또한 메탈로센 촉매를 이용하여 고분자량 폴리을레핀을 얻는 과정에서는, 통상 수소 기체의 투입량을 조절하여 분자량을 조절할 수 있는데, 이러한 수소 기체의 투입량이 증가할수록 폴리올레핀의 분자량이 줄어든다. 더 나아가, 수소 기체를 투입하지 않은 상태에서 중합을 진행하더라도, 메탈로센 촉매의 특성상 베타 수소 제거 반응이 우수하여 100만 이상의 중량평균분자량을 갖는 초고분자량 폴리을레핀을 얻기는 어려운 것이 현실이다.  In addition, in the process of obtaining a high molecular weight polyolefin by using a metallocene catalyst, it is usually possible to control the molecular weight by adjusting the input amount of hydrogen gas, the molecular weight of the polyolefin decreases as the amount of the hydrogen gas is increased. Furthermore, even if the polymerization is carried out without hydrogen gas, it is difficult to obtain ultra high molecular weight polyolefin having a weight average molecular weight of 1 million or more due to the excellent beta hydrogen removal reaction due to the nature of the metallocene catalyst.
이에, 보다 넓은 분자량 분포 및 큰 분자량을 동시에 층족하는 폴리올레핀을 얻고자 시도되어 왔다.  Accordingly, attempts have been made to obtain polyolefins which simultaneously stratify a broader molecular weight distribution and a larger molecular weight.
그러나, 메탈로센 촉매의 큰 반응성 등으로 인해, 충분히 큰 분자량 및 보다 넓은 분자량 분포를 동시에 충족하는 폴리올레핀을 제조하는데 한계가 있었던 것이 사실이다. 이에 큰 분자량 및 보다 넓은 분자량 분포를 가짐에 따라, 기계적 물성 및 가공성 등을 동시에 충족할 수 있고 대형 제품용 등으로 바람직하게 사용 가능한 폴리을레핀을 보다 효과적으로 제조할 수 있는 기술의 개발이 계속적으로 요구되고 있다.  However, due to the large reactivity of the metallocene catalyst and the like, it is true that there was a limit in producing a polyolefin that simultaneously satisfies a sufficiently large molecular weight and a wider molecular weight distribution. As a result of having a large molecular weight and a wider molecular weight distribution, there is a continuous demand for the development of a technology that can more efficiently produce polyolefins that can satisfy mechanical properties and processability and can be preferably used for large products. have.
【발명의 내용]  [Contents of the Invention]
【해결하려는 과제】  [Problem to solve]
이에 본 발명은 기존의 메탈로센 촉매를 통해 제조가 어려웠던 고분자량 및 다양한 분자량 분포를 갖는 폴리을레핀을 보다 용이하고 효과적으로 제조할 수 있게 하는 폴리을레핀의 제조 방법 및 이로부터 제조된 폴리을레핀을 제공하는 것이다.  Accordingly, the present invention provides a method for preparing polyolefin and a polyolefin produced from the same, which makes it easier and more efficient to prepare polyolefin having a high molecular weight and various molecular weight distributions, which are difficult to manufacture through a conventional metallocene catalyst. will be.
【과제의 해결수단】  [Measures of problem]
본 발명은 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상 및 조촉매가 담체에 담지된 담지 메탈로센 촉매와 수소 기체의 존재 하에, 을레핀계 단량체를 중합하는 단계를 포함하는 폴리올레핀의 제조 방법을 제공한다:  The present invention provides a polyolefin comprising a step of polymerizing at least one first metallocene compound represented by the following Chemical Formula 1 and a supported metallocene catalyst having a promoter supported on a carrier and hydrogen gas in the presence of hydrogen gas; Provide the manufacturing method:
[화학식 1]
Figure imgf000004_0001
[Formula 1]
Figure imgf000004_0001
상기 화학식 1에서,  In Chemical Formula 1,
A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;  A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 A C20 alkoxyalkyl group, C3 to C20 heterocycloalkyl group, or C5 to C20 heteroaryl group;
D는 -0-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고;  D is -0-, -S-, -N (R)-or -Si (R) (R ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, C1 to An alkyl group of C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;  L is a C1 to C10 straight or branched chain alkylene group;
B는 탄소, 실리콘 또는 게르마늄이고;  B is carbon, silicon or germanium;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;  Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
M은 4족 전이금속이며;  M is a Group 4 transition metal;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고; X 1 and X 2 are the same as or different from each other, and each independently halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, nitro group, amido group, C1 to C20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1및 C2가 모두 화학식 2c인 경우는 제외하며; C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Chemical Formula 2a, Chemical Formula 2b, or Chemical Formula 2c, except that both C 1 and C 2 are Chemical Formula 2c;
[화학식 2a] [Formula 2a]
Figure imgf000005_0001
Figure imgf000005_0001
Figure imgf000005_0002
Figure imgf000005_0002
Figure imgf000005_0003
Figure imgf000005_0003
상기 화학식 2a, 2b 및 2c에서,  In Chemical Formulas 2a, 2b, and 2c,
R1 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다.  R1 to R17 and R1 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group , C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, two of R10 to R17 adjacent to each other The foregoing can be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring.
본 발명은 또한, 상기 폴리올레핀 제조 방법에 따라 제조된 폴리을레핀을 제공한다.  The present invention also provides a polyolefin produced according to the polyolefin production method.
【발명의 효과】  【Effects of the Invention】
본 발명의 제조방법에 따르면, 기존의 메탈로센 촉매로는 제조가 어려웠던 고분자량 및 넓은 분자량 분포를 갖는 폴리을레핀을 매우 효과적으로 제조할 수 있다. 이러한 고분자량 폴리올레핀은 메탈로센 촉매로 제조된 폴리올레핀의 특성상 촉매 잔사량이 작으므로, 고온 성형 가공시 폴리을레핀의 분해를 억제할 수 있다. 따라서, 높은 분자량 및 넓은 분자량 분포에 따른 우수한 물성을 발현할 수 있고, 대형 블로우 몰딩용 제품, 뛰어난 내압 및 내열 특성이 요구되는 차세대 파이프 제품, 또는 내웅력 균열 특성이 좋은 사출 제품 등의 용도에 대해 매우 바람직하게 사용될 수 있다. According to the production method of the present invention, the conventional metallocene catalyst was difficult to manufacture Polyolefins with high molecular weight and broad molecular weight distribution can be produced very effectively. Since the high molecular weight polyolefin has a small amount of catalyst residue due to the nature of the polyolefin made of the metallocene catalyst, it is possible to suppress decomposition of polyolefin in the high temperature molding process. Therefore, it is possible to express excellent properties according to high molecular weight and wide molecular weight distribution, and to use for large blow molding products, next-generation pipe products requiring excellent pressure resistance and heat resistance properties, or injection products having good stress cracking properties. Very preferably.
또한, 본 발명의 메탈로센 촉매에 포함되는 메탈로센 화합물의 조합, 분자량 조절제와의 상호 작용, 그리고 수소에 대한 반웅성에 따라 다양한 중량 평균 분자량 및 분자량 분포를 갖는 폴리올리핀의 제조가 가능하다. 이에 따라, 메탈로센 화합물의 구체적인 조합과, 수소 및 분자량 조절제의 선택적인 사용에 따라 원하는 물성을 갖는 폴리올레핀을 용이하게 제조할 수 있다.  In addition, according to the combination of the metallocene compound included in the metallocene catalyst of the present invention, the interaction with the molecular weight modifier, and the reaction properties against hydrogen, it is possible to prepare a polyolefin having various weight average molecular weight and molecular weight distribution. . Accordingly, the polyolefin having the desired physical properties can be easily prepared according to the specific combination of the metallocene compound and the selective use of hydrogen and the molecular weight modifier.
【발명의 실시를 위한 구체적인 내용】  [Specific contents for implementation of the invention]
이하, 발명의 구체적인 구현예에 따른 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리을레핀에 대해 설명하기로 한다.  Hereinafter, a method for preparing a polyolefin and a polyolefin produced therefrom according to a specific embodiment of the present invention will be described.
발명의 일 구현예에 따르면, 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상 및 조촉매가 담체에 담지된 담지 메탈로센 촉매와 수소 기체의 존재 하에, 올레핀계 단량체를 중합하는 단계를 포함하는 폴리을레핀의 제조 방법이 제공된다:  According to an embodiment of the present invention, polymerizing an olefinic monomer in the presence of hydrogen gas and a supported metallocene catalyst having at least one first metallocene compound represented by Formula 1 and a promoter supported on a carrier Provided is a method for preparing a polyolefin, including:
[  [
Figure imgf000006_0001
Figure imgf000006_0001
상기 화학식 1에서,  In Chemical Formula 1,
A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;  A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 A C20 alkoxyalkyl group, a C3 to C20 heterocycloalkyl group, or a C5 to C20 heteroaryl group;
D는 -0-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고; D is -0-, -S-, -N (R)-or -Si (R) (R ')-, where R and R' are The same or different, each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, or C6 to C20 aryl group;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;  L is a C1 to C10 straight or branched chain alkylene group;
B는 탄소, 실리콘 또는 게르마늄이고;  B is carbon, silicon or germanium;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;  Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
M은 4족 전이금속이며;  M is a Group 4 transition metal;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고; X 1 and X 2 are the same as or different from each other, and each independently halogen, C 1 to C 20 alkyl group, C 2 to C 20 alkenyl group, C 6 to C 20 aryl group, nitro group, amido group, C 1 to C 20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1및 C2가 모두 화학식 2c인 경우는 제외하며; C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Chemical Formula 2a, Chemical Formula 2b, or Chemical Formula 2c, except that both C 1 and C 2 are Chemical Formula 2c;
Figure imgf000007_0001
Figure imgf000007_0001
[화학식 2c] [Formula 2c]
Figure imgf000008_0001
Figure imgf000008_0001
상기 화학식 2a, 2b 및 2c에서,  In Chemical Formulas 2a, 2b and 2c,
Rl 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다. .  R1 to R17 and R1 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group , C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, two of R10 to R17 adjacent to each other The foregoing can be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring. .
일 구현예의 폴리올레핀의 제조 방법에서는, 상기 화학식 1로 표시되는 제 In the method for preparing a polyolefin according to one embodiment, the agent represented by Chemical Formula 1
1 메탈로센 화합물 1종 이상 및 조촉매가 담체에 담지된 담지 메탈로센 촉매와, 수소 기체의 존재 하에 을레핀계 단량체를 중합하여 폴리올레핀을 제조한다. A polyolefin is prepared by polymerizing a supported metallocene catalyst having at least one metallocene compound and a cocatalyst supported on a carrier, and an olefinic monomer in the presence of hydrogen gas.
이러한 제조 방법에서, 상기 화학식 1의 제 1 메탈로센 화합물은 인데노 인돌 (indeno indole) 유도체 및 /또는 플루오렌 (fluorene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써, 담체의 루이스 산 특성을 지니는 표면에 담지되어 보다 높은 중합 활성을 나타낼 수 있다. 또한, 전자적으로 풍부한 인데노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반웅성이 낮고 높은 활성을 유지할 수 있다. 또, 인데노 인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 beta-hydrogen을 수소결합에 의해 안정화시켜 beta-hydrogen elimination을 억제할 수 있으므로, 보다 높은 분자량의 폴리올레핀의 제조를 가능케 한다. 또한, 수소 반응성이 낮으므로 높은 중량 평균 분자량 및 넓은 분자량 분포를 갖는 폴리을레핀을 제조할 수 있다.  In this manufacturing method, the first metallocene compound of Formula 1 forms a structure in which an indeno indole derivative and / or a fluorene derivative is crosslinked by a bridge, and forms a Lewis base in the ligand structure. By having a non-covalent electron pair which can act, it can be supported on the surface having the Lewis acid characteristics of the carrier to exhibit higher polymerization activity. In addition, it is possible to maintain high activity due to the high activity, including the electronically rich indeno indole group and / or fluorene group, due to the appropriate steric hindrance and the electronic effect of the ligand. In addition, since the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown can be stabilized by hydrogen bonding, beta-hydrogen elimination can be suppressed, thereby enabling the production of a higher molecular weight polyolefin. In addition, since the hydrogen reactivity is low, polyolefins having high weight average molecular weight and wide molecular weight distribution can be prepared.
더 나아가, 이러한 화학식 1의 제 1 메탈로센 화합물 및 수소 기체에 더하여, 선택적으로 중분자량 또는 저분자량 폴리을레핀을 제조할 수 있는 제 2 메탈로센 화합물 및 분자량 조절제를 적절히 사용함에 따라, 기존에 메탈로센 촉매를 사용하여 제조되기 어려웠던 고분자량 및 다양한 분자량 분포를 갖는 폴리을레핀을 제조할 수 있음을 확인하여 발명을 완성하였다. Furthermore, in addition to the first metallocene compound of Formula 1 and hydrogen gas, a second to selectively prepare a medium or low molecular weight polyolefin, By properly using a metallocene compound and a molecular weight modifier, the present invention was completed by confirming that polyolefins having a high molecular weight and various molecular weight distributions, which were difficult to prepare using a metallocene catalyst, could be prepared.
한편, 상기 화학식 1의 제 1 메탈로센 화합물에서, 각 치환기들에 대해 보다 구체적으로 설명하면 하기와 같다.  Meanwhile, in the first metallocene compound of Formula 1, the substituents will be described in more detail as follows.
상기 C1 내지 C20의 알킬기로는 직쇄 또는 분지쇄의 알킬기를 포함하고, 구체적으로 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 핵실기, 헵틸기, 옥틸기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The C1 to C20 alkyl group includes a linear or branched alkyl group, specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, tert-butyl group, pentyl group, nuclear group, heptyl group, Octyl group etc. can be mentioned, It is not limited to this.
상기 C2 내지 C20의 알케닐기로는 직쇄 또는 분지쇄의 알케닐기를 포함하고, 구체적으로 알릴기, 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 둥을 들 수 있으나, 이에만 한정되는 것은 아니다.  The alkenyl group of C2 to C20 includes a straight or branched alkenyl group, and specifically, may include an allyl group, ethenyl group, propenyl group, butenyl group, and pentenyl group, but is not limited thereto.
상기 C6 내지 C20의 아릴기로는 단환 또는 축합환의 아릴기를 포함하고, 구체적으로 페닐기, 비페닐기, 나프틸기, 페난트레닐기, 플루오레닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The C6 to C20 aryl group includes a monocyclic or condensed aryl group, and specifically includes a phenyl group, a biphenyl group, a naphthyl group, a phenanthrenyl group, a fluorenyl group, and the like, but is not limited thereto.
상기 C5 내지 C20의 헤테로아릴기로는 단환 또는 축합환의 헤테로아릴기를 포함하고, 카바졸릴기, 피리딜기, 퀴놀린기, 이소퀴놀린기, 티오페닐기, 퓨라닐기, 이미다졸기, 옥사졸릴기, 티아졸릴기, 트리아진기, 테트라하이드로피라닐기, 테트라하이드로퓨라닐기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  The C5 to C20 heteroaryl group includes a monocyclic or condensed heteroaryl group, and includes a carbazolyl group, a pyridyl group, a quinoline group, an isoquinoline group, a thiophenyl group, a furanyl group, an imidazole group, an oxazolyl group, a thiazolyl group And triazine group, tetrahydropyranyl group, tetrahydrofuranyl group, and the like, but are not limited thereto.
상기 C1 내지 C20의 알콕시기로는 메톡시기, 에톡시기, 페닐옥시기, 시클로핵실옥시기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.  Examples of the alkoxy group for C1 to C20 include a methoxy group, an ethoxy group, a phenyloxy group, a cyclonuxyloxy group, and the like, but are not limited thereto.
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등올 들 수 있으나, 이에만 한정되는 것은 아니다.  The Group 4 transition metal may include titanium, zirconium, hafnium, and the like, but is not limited thereto.
그리고, 상기 화학식 1에 포함되는 리간드 유래 구조인 상기 화학식 2a, 2b 및 2c에서, R1 내지 R17 및 R1' 내지 R9'는 각각 독립적으로 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 페닐기, 할로겐기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 메특시기, 또는 에톡시기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다.  In addition, in Formulas 2a, 2b and 2c, which are ligand-derived structures included in Formula 1, R1 to R17 and R1 'to R9' are each independently hydrogen, methyl group, ethyl group, propyl group, isopropyl group, and n-butyl. Group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, phenyl group, halogen group, trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, triisopropylsilyl group, trimethyl It is more preferable that it is a silyl methyl group, a meso group, or an ethoxy group, but it is not limited to this.
또, 상기 화학식 1의 L은 C4 내지 C8의 직쇄 또는 분지쇄 알킬렌기인 것이 더욱 바람직하나, 이에만 한정되는 것은 아니다. 또한, 상기 알킬렌기는 C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기로 치환 또는 비치환될 수 있다. In addition, L in Formula 1 is a C4 to C8 linear or branched alkylene group More preferably, but is not limited thereto. In addition, the alkylene group may be unsubstituted or substituted with an alkyl group of C1 to C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20.
또한, 상기 화학식 1의 A는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert-부톡시메틸기, 1-에특시에틸기, 1-메틸 -1- 메록시에틸기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 바람직하나, 이에만 한정되는 것은 아니다.  In addition, in Formula 1, A, hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, methoxymethyl, tert-butoxymethyl, 1-ethoxyethyl, 1-methyl It is preferable that it is a 1- methoxyethyl group, a tetrahydropyranyl group, or a tetrahydrofuranyl group, but it is not limited to this.
그리고, 상기 화학식 1의 B는 실리콘인 것이 바람직하나, 이에만 한정되는 것은 아니다.  And, it is preferable that B of Formula 1 is silicon, but is not limited thereto.
발명의 일 실시예에 따르면, 상기 화학식 2a로 표시되는 구조의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 구조를 들 수 있으나, 이에만 한정되는 것은 아  According to an embodiment of the present invention, specific examples of the structure represented by Chemical Formula 2a may include a structure represented by one of the following structural formulas, but is not limited thereto.
Figure imgf000010_0001
Figure imgf000011_0001
Figure imgf000010_0001
Figure imgf000011_0001
그리고, 상기 화학식 2b로 표시되는 구조의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 구조를 들 수 있으나, 이에만 한정되는 것은 아니다.  A specific example of the structure represented by Chemical Formula 2b may include a structure represented by one of the following structural formulas, but is not limited thereto.
Figure imgf000011_0002
Figure imgf000011_0002
Figure imgf000012_0001
Figure imgf000012_0001
또한, 상기 화학식 2c로 표시되는 구조의 구체적인 예로는 하기 구조식 중 하나로 조를 들 수 있으나, 이에만 한정되는 것은 아니다.  In addition, specific examples of the structure represented by Formula 2c may include a group as one of the following structural formulas, but is not limited thereto.
Figure imgf000012_0002
Figure imgf000012_0002
부가하여, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되 것은 아니다.  In addition, specific examples of the first metallocene compound represented by Chemical Formula 1 may include a compound represented by one of the following structural formulas, but is not limited thereto.
Figure imgf000012_0003
Figure imgf000013_0001
//u OSS2M12/.698sszA
Figure imgf000012_0003
Figure imgf000013_0001
// u O S S2M12 / .698sszA
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000015_0001
상술한 화학식 1의 제 1 메탈로센 화합물은 활성이 우수하고 고분자량의 The first metallocene compound of Formula 1 described above has excellent activity and high molecular weight
폴리을레핀을 제조할 수 있다. 특히, 담체에 담지하여 사용할 경우에도 높은 중합 활성을 나타내어, 고분자량 또는 초고분자량의 폴리올레핀의 제조를 가능케 한다. 또한, 고분자량과 동시에 넓은 분자량 분포를 갖는 올레핀계 중합체를 제조하기 위해 수소 기체를 포함하여 중합 반웅을 진행하는 경우에도, 본 발명에 따른 메탈로센 화합물은 낮은 수소 반응성을 나타내어 여전히 높은 활성으로 고분자량 내지 초고분자량의 올레핀계 증합체의 중합이 가능하다. 따라서, 다른 특성을 갖는 촉매와 흔성으로 담체에 담지하여 사용하는 경우에도 활성의 저하 없이 고분자량의 특성을 만족시키는 을레핀계 중합체를 제조할 수 있어, 고분자의 올레핀계 중합체를 포함하면서 넓은 분자량 분포를 갖는 을레핀계 중합체를 용이하게 제조할 수 있다. Polyolefin can be produced. In particular, even when used on a carrier, it shows a high polymerization activity, thereby enabling the production of high molecular weight or ultra high molecular weight polyolefin. In addition, even when the polymerization reaction is performed including hydrogen gas to prepare an olefin polymer having a high molecular weight and a wide molecular weight distribution, the metallocene compound according to the present invention exhibits low hydrogen reactivity and still has high activity. Polymerization of the olefin based polymer of molecular weight to ultra high molecular weight is possible. Therefore, even when used on a carrier in common with a catalyst having different properties, it is possible to produce an eleupine-based polymer that satisfies high molecular weight properties without degrading the activity, thereby providing a wide molecular weight distribution while including an olefinic polymer of the polymer. It is possible to easily produce the olefin polymer having.
상기 화학식 1의 제 1 메탈로센 화합물은 인데노인돌 유도체 및 /또는 플루오렌 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션 (metallation)을 수행함으로써 수득될 수 있다. 상기 제 1 메탈로센 화합물의 제조방법은 후술하는 실시예에 구체화하여 설명한다.  The first metallocene compound of Chemical Formula 1 may be prepared by connecting an indenoindole derivative and / or fluorene derivative with a bridge compound to prepare a ligand compound, and then performing metallation by introducing a metal precursor compound. Can be. The manufacturing method of the said 1st metallocene compound is concretely demonstrated to the Example mentioned later.
한편 본 발명의 일 실시예에 따르면, 상기 담지 메탈로센 촉매는, 상기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상, 조촉매 화합물 및 담체를 포함하는 단독 담지 메탈로센 촉매이거나, 또는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상, 제 2 메탈로센 화합물 1종 이상, 조촉매 화합물 및 담체를 포함하는 흔성 담지 메탈로센 촉매일 수 있다. 즉, 본 발명의 명세서에 있어서 담지 메탈로센 촉매 또는 메탈로센 담지 촉매는, 제 1 메탈로센 화합물만을 1종 이상 담지하는 단독 담지 메탈로센 촉매와, 제 1 메탈로센 화합물 1종 이상, 및 제 2 메탈로센 화합물 1종 이상이 담지된 혼성 담지 메탈로센 촉매를 모두 포괄하는 것으로 한다. Meanwhile, according to one embodiment of the present invention, the supported metallocene catalyst may be a single supported metallocene catalyst including at least one first metallocene compound represented by Chemical Formula 1, a cocatalyst compound and a carrier, Or a common supported metallocene catalyst including at least one first metallocene compound represented by Formula 1, at least one second metallocene compound, a cocatalyst compound, and a carrier. That is, in the specification of the present invention, the supported metallocene catalyst or the metallocene supported catalyst is the first metallocene. A single supported metallocene catalyst carrying only one or more compounds alone and a hybrid supported metallocene catalyst carrying at least one first metallocene compound and at least one second metallocene compound shall be included. .
상기 제 2 메탈로센 화합물은 하기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 것일 수 있다.  The second metallocene compound may be selected from compounds represented by the following Chemical Formulas 3 to 5.
[화학식 3] [Formula 3]
Figure imgf000016_0001
Figure imgf000016_0001
상기 화학식 3에서,  In Chemical Formula 3,
M1은 4족 전이금속이고; M 1 is a Group 4 transition metal;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 1 and Cp 2 are the same as or different from each other, and each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시,또는 C7 내지 C40의 아릴알콕시이고; Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
n은 1 또는 0 이고;  n is 1 or 0;
[화학식 4][Formula 4 ]
Figure imgf000016_0002
Figure imgf000016_0002
상기 화학식 4에서,  In Chemical Formula 4,
M2는 4족 전이 금속이고; M 2 is a Group 4 transition metal;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals And these have 1 to 20 carbon atoms May be substituted with a hydrocarbon;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시 , C2 내지 C20의 알콕시알킬, C6 내지 C20의 - 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20-aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C8 to C40 arylalkenyl, or C2 to C10 alkynyl;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시,또는 C7 내지 C40의 아릴알콕시이고; Z 2 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C 40 alkyl aryl, C7 to aryl C40 alkyl, C6 to aryl C20, a substituted or unsubstituted C1 to C20 alkyl for the Lidene, a substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고; B 1 is one or more of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 3 R c ring and the Cp 4 R d ring or crosslink one Cp 4 R d ring to M 2 Or a combination thereof;
m은 1 또는 0 이고;  m is 1 or 0;
[화학식 5]  [Formula 5]
(Cp5Re)B2(J)M3Z3 2 (Cp 5 R e ) B 2 (J) M 3 Z 3 2
상기 화학식 5에서,  In Chemical Formula 5,
M3은 4족 전이 금속이고; M 3 is a Group 4 transition metal;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R e is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl Arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고; Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , Substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고; B 2 is R 5 e Cp carbon, germanium, silicon, phosphorus, or of cross-linking the ring and J At least one or a combination of nitrogen atom containing radicals;
J는 NRf, O, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 C1 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다. J is any one selected from the group consisting of NR f , O, PR f and S, wherein R f is C1 to C20 alkyl, aryl, substituted alkyl or substituted aryl.
상기 화학식 4에서, m이 1인 경우는 Cp3Rc 고리와 Cp4Rd 고리 또는 Cp4Rd 고리와 M2가 B1에 의해 가교 결합된 브릿지 화합물 구조인 것을 의미하며, in이 0인 경우는 비가교 화합물 구조를 의미한다. In Formula 4, when m is 1, it means that a Cp 3 R c ring and a Cp 4 R d ring or a Cp 4 R d ring and M 2 are bridge compound structures cross-linked by B 1 , and in is 0. In the case of, it means a non-crosslinked compound structure.
상기 화학식 3으로 표시되는 제 2 메탈로센 화합물로는 예를 들어 하기  As the second metallocene compound represented by Formula 3, for example,
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000018_0001
Figure imgf000019_0001
상기 화학식 4로 표시되는 제 2 메탈로센 화합물로는 예를 들어 하기
Figure imgf000019_0002
As the second metallocene compound represented by Formula 4, for example
Figure imgf000019_0002
Figure imgf000019_0003
Figure imgf000019_0003
Figure imgf000019_0004
Figure imgf000020_0001
또한, 화학식 5로 표시되는 제 2 메탈로센 화합물로는 예를 들어 하기 구조식으로 표시되는 화합물일 수 있으나, 이에만 한정되는 것은 아니다.
Figure imgf000019_0004
Figure imgf000020_0001
In addition, the second metallocene compound represented by Chemical Formula 5 may be, for example, a compound represented by the following structural formula, but is not limited thereto.
Figure imgf000020_0002
상기 흔성 담지 메탈로센 촉매는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 1종 이상과, 상기 화학식 3 내지 화학식 5로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 흔성 담지한 것이다.
Figure imgf000020_0002
The common supported metallocene catalyst may include at least one of the first metallocene compound represented by Formula 1 and at least one of the second metallocene compound selected from the compounds represented by Formulas 3 to 5. It is commonly supported on a carrier together with a promoter catalyst.
상기 흔성 담지 메탈로센 촉매의 화학식 1로 표시되는 제 1 메탈로센 화합물은 주로 높은 SCB(short chain branch) 함량을 가지는 고분자량의 공중합체를 만드는데 기여하고, 화학식 3으로 표시되는 제 2 메탈로센 화합물은 주로 낮은 SCB 함량을 가지는 저분자량의 공중합체를 만드는데 기여할 수 있다. 또한, 화학식 4 또는 5로 표시되는 제 2 메탈로센 화합물은 중간 정도의 SCB 함량을 가지는 저분자량의 공중합체를 만드는데 기여할 수 있다. The first metallocene compound represented by Formula 1 of the common supported metallocene catalyst mainly contributes to making a high molecular weight copolymer having a high SCB (short chain branch) content, and is represented by the second metal represented by Formula 3 Sen compounds may contribute primarily to making low molecular weight copolymers with low SCB content. Also, The second metallocene compound represented by Formula 4 or 5 may contribute to making a low molecular weight copolymer having a moderate SCB content.
상기 흔성 담지 메탈로센 촉매에 있어서, 상기 제 1 메탈로센 화합물은 인데노 인돌 유도체와 플루오렌 유도체가 브릿지 화합물에 의해 가교된 리간드 구조를 형상하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 담체의 루이스 산 특성을 지니는 표면에 담지되어 담지 시에도 높은 중합 활성을 나타낸다. 또한 전자적으로 풍부한 인데노 인돌기 및 /또는 플루오렌기를 포함함에 따라 활성이 높고, 적절한 입체 장애와 리간드의 전자적인 효과로 인해 수소 반웅성이 낮을 뿐 아니라 수소가 존재하는 상황에서도 높은 활성이 유지된다. 따라서, 이러한 전이금속 화합물을 이용하여 흔성 담지 메탈로센 촉매를 만드는 경우, 인데노인돌 유도체의 질소 원자가 자라나는 고분자 사슬의 베타-수소를 수소결합에 의해 안정화시켜 초고분자량의 을레핀계 증합체를 중합할 수 있다.  In the common supported metallocene catalyst, the first metallocene compound has a ligand structure in which an indeno indole derivative and a fluorene derivative are crosslinked by a bridge compound, and a non-covalent electron pair capable of acting as a Lewis base to the ligand structure. By having a supported on the surface having the Lewis acid characteristics of the carrier it shows a high polymerization activity even when supported. In addition, due to the electronically rich indeno indole and / or fluorene group, the activity is high, and due to the proper steric hindrance and the electronic effect of the ligand, the reaction is not only low but also maintains high activity even in the presence of hydrogen. . Therefore, in the case of making a common supported metallocene catalyst using such a transition metal compound, the beta-hydrogen of the polymer chain in which the nitrogen atom of the indeno indole derivative is grown is stabilized by hydrogen bonding to polymerize an ultrahigh molecular weight olepin-based polymer. Can be.
또한, 발명의 흔성 담지 베탈로센 촉매에서는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물 및 상기 화학식 3 내지 5로 표시되는 '화합물 중 선택되는 제 2 메탈로센 화합물을 포함하여, 서로 다른 종류의 메탈로센 화합물을 적어도 2종 이상 포함함으로써 높은 SCB 함량을 가지는 고분자량의 올레핀계 공중합체이면서 , 동시에 분자량 분포가 넓어 물성이 우수할 뿐만 아니라 가공성도 우수한 을레핀 중합체를 제조할 수 있다. In addition, the common supported betalocene catalyst of the present invention includes a first metallocene compound represented by Chemical Formula 1 and a second metallocene compound selected from ' compounds represented by Chemical Formulas 3 to 5, By containing at least two or more metallocene compounds, a high molecular weight olefin-based copolymer having a high SCB content and at the same time a wide molecular weight distribution, it is possible to prepare a leupine polymer having excellent physical properties and excellent processability.
본 발명에 따른 폴리을레핀의 제조방법에 있어서, 상기 제 1 및 게 2 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.  In the method for preparing polyolefin according to the present invention, the cocatalyst supported on the carrier for activating the first and the crab 2 metallocene compounds is an organometallic compound containing a Group 13 metal, and generally a metallocene. It will not be specifically limited if it can be used when polymerizing an olefin under a catalyst.
본 발명의 일 실시예에 따르면, 특히 상기 조촉매 화합물은 하기 화학식 6의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 7의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다.  According to an embodiment of the present invention, in particular, the cocatalyst compound may include at least one of an aluminum-containing first cocatalyst of Formula 6 and a borate-based second cocatalyst of Formula 7 below.
[화학식 6]  [Formula 6]
-[Al(R18)-0-]k- 화학식 6에서, R18은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 탄소수 1 내지 20의 하이드로카빌기이고, k는 2 이상의 정수이고, [화학식 7] -[Al (R 18 ) -0-] k -In formula (6), R 18 is each independently a halogen, halogen substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, k is an integer of 2 or more, [Formula 7]
T+[BG4]" T + [BG 4 ] "
화학식 7에서 , T+은 +1가의 다원자 이온이고 , Β는 +3 산화 상태의 붕소이고: In formula 7, T + is a + monovalent polyatomic ion, Β is boron in +3 oxidation state :
G는 각각 독립적으로 하이드라이드기, 디알킬아미도기, 할라이드기, 알콕사이드기, 아릴옥사이드기, 하이드로카빌기, 할로카빌기 및 할로-치환된 하이드로카빌기로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드기이다. Each G is independently selected from the group consisting of a hydride group, a dialkylamido group, a halide group, an alkoxide group, an aryloxide group, a hydrocarbyl group, a halocarbyl group and a halo-substituted hydrocarbyl group, wherein G is 20 It has up to 5 carbons, but at less than one position G is a halide group.
이러한 게 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 폴리을레핀의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다.  By the use of the first and second cocatalysts, the molecular weight distribution of the finally produced polyolefin can be more uniform, and the polymerization activity can be improved.
상기 화학식 6의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산 (ΜΑΟ), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.  The first cocatalyst of Chemical Formula 6 may be an alkylaluminoxane compound having a repeating unit bonded in a linear, circular or reticulated form, and specific examples of the first cocatalyst include methylaluminoxane (ΜΑΟ) and ethylalumina. Noxic acid, isobutyl aluminoxane, or butyl aluminoxane etc. are mentioned.
또한, 상기 화학식 7의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제 2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리 (η-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, Ν,Ν-디메틸아닐늄 테트라페닐보레이트, Ν,Ν-디에틸아닐늄 테트라페닐보레이트, Ν,Ν-디메틸 (2,4,6- 트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스 (펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스 (펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스 (펜타플루오로페닐)보레이트,  In addition, the second cocatalyst of Formula 7 may be a borate-based compound in the form of a trisubstituted ammonium salt, or a dialkyl ammonium salt, a trisubstituted phosphonium salt. Specific examples of such a second cocatalyst include trimetalammonium tetraphenylborate, methyldioctadecylammonium tetraphenylborate, triethylammonium tetraphenylborate, tripropylammonium tetraphenylborate, tri (η-butyl) ammonium tetraphenylborate , Methyltetracyclooctadecylammonium tetraphenylborate, Ν, Ν-dimethylaniline tetraphenylborate, Ν, Ν-diethylaninium tetraphenylborate, Ν, Ν-dimethyl (2,4,6-trimethylaninium Tetraphenylborate, trimethylammonium tetrakis (pentafluorophenyl) borate, methylditetradecylammonium tetrakis (pentaphenyl) borate, methyldioctadecylammonium tetrakis (pentafluorophenyl) borate, triethylammonium, tetra Kiss (pentafluorophenyl) borate,
트리프로필암모늄테트라키스 (펜타프루오로페닐)보레이트 트리 (η-부틸)암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리 (2급- 부틸)암모늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐늄 테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν- 디에틸아닐늄테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸 (2,4,6- 트리메틸아닐늄)테트라키스 (펜타플루오로페닐)보레이트, Tripropylammonium tetrakis (pentafluorophenyl) borate tri (η-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (secondary-butyl) ammonium tetrakis (pentafluorophenyl) borate, N, Ν-dimethylaninium tetrakis (pentafluorophenyl) borate, Ν, Ν-diethylaninium tetrakis (pentafluorophenyl) borate, Ν, Ν-dimethyl (2,4,6- Trimethylaninynium) tetrakis (pentafluorophenyl) borate ,
트리메틸암모늄테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, 트리 (n-부틸)암모늄 테트라키스 (2,3,4,6-,테트라플루오로페닐)보레이트, 디메틸 (t-부틸)암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트, Ν,Ν-디에틸아닐늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 또는 Ν,Ν-디메틸 -(2,4,6- 트리메틸아닐늄)테트라키스 -(2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스 (펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스 (펜타플루오로페닐)보레이트 또는 디사이클로핵실암모늄 테트라키스 (펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스 (펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스 (펜타플루오로페닐)보레이트 또는 트리 (2,6-, 디메틸페닐)포스포늄 테트라키스 (펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다. Trimethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, triethylammonium tetrakis (2,3,4,6-tetrafluorophenyl) borate, tripropylammonium tetrakis (2,3 , 4,6-tetrafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (2,3,4,6-, tetrafluorophenyl) borate, dimethyl (t-butyl) ammonium tetrakis (2, 3,4,6-tetrafluorophenyl) borate, Ν, Ν-dimethylaninynium tetrakis (2,3,4,6-tetrafluorophenyl) borate, Ν, Ν-diethylaninynium tetrakis (2 , 3,4,6-tetrafluorophenyl) borate or Ν, Ν-dimethyl- (2,4,6-trimethylaninynium) tetrakis- (2,3,4,6-tetrafluorophenyl) borate Borate compounds in the form of trisubstituted ammonium salts; Borate type in the form of dialkylammonium salt, such as dioctadecyl ammonium tetrakis (pentafluorophenyl) borate, ditetradecyl ammonium tetrakis (pentafluorophenyl) borate, or dicyclonuclear ammonium tetrakis (pentafluorophenyl) borate compound; Or triphenylphosphonium tetrakis (pentafluorophenyl) borate, methyldioctadecylphosphonium tetrakis (pentafluorophenyl) borate or tri (2,6-, dimethylphenyl) phosphonium tetrakis (pentafluorophenyl And a borate compound in the form of a trisubstituted phosphonium salt such as) borate.
상기 단독 담지 메탈로센 촉매 또는 상기 흔성 담지 메탈로센 촉매에 있어서, 제 1 및 제 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물올 포함할 때, 최적의 형상을 나타낼 수 있다.  In the single supported metallocene catalyst or the common supported metallocene catalyst, the mass ratio of the total transition metal to the carrier included in the first and second metallocene compounds may be 1:10 to 1: 1,000. When including the carrier and the metallocene compound in the mass ratio, it can exhibit an optimal shape.
또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다. 또한, 제 1 및 제 2 메탈로센 화합물의 질량비는 10: 1 내지 1 : 10, 바람직하게는 5 : 1 내지 1 : 5 일 수 있다. 상기 질량비로 조촉매 및 메탈로센 화합물을 포함할 때, 활성 및 고분자 미세구조를 최적화할 수 있다.  In addition, the mass ratio of the promoter compound to the carrier may be from 1: 1 to 1: 100. The mass ratio of the first and second metallocene compounds may be 10: 1 to 1:10, preferably 5: 1 to 1: 5. When the cocatalyst and the metallocene compound are included in the mass ratio, the active and polymer microstructures can be optimized.
그리고, 상기 폴리올레핀의 제조 방법에서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반웅성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.  In the method for producing the polyolefin, the carrier may be a carrier containing a hydroxy group on the surface, and preferably, a carrier having a semi-aromatic hydroxyl group and a siloxane group, which is dried to remove moisture from the surface. Can be used.
예컨대, 고온에서 건조된 실리카, 실리카 -알루미나, 및 실리카 -마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na20, K2CO3, BaS04, 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다. For example, silica dried at high temperature, silica-alumina, and silica-magnesia Etc. may be used, and they may typically contain oxides, carbonates, sulfates, and nitrate components, such as Na 2 O, K 2 CO 3 , BaS0 4 , and Mg (N0 3 ) 2 .
상기 담체의 건조 온도는 약 200 내지 800 °C가 바람직하고, 약 300 내지 600 °C가 더욱 바람직하며, 약 300 내지 400 °C가 가장 바람직하다. 상기 담체의 건조 온도가 약 200 °C 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반웅하게 되고, 약 800°C를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반웅자리가 감소하기 때문에 바람직하지 않다. The drying temperature of the carrier is preferably about 200 to 800 ° C., more preferably about 300 to 600 ° C., and most preferably about 300 to 400 ° C. If the drying temperature of the carrier is less than about 200 ° C, the moisture is too much and the surface of the carrier reacts with the promoter, and if it exceeds about 800 ° C, pores on the surface of the carrier are combined to reduce the surface area, It is not preferable because many hydroxyl groups are lost and only siloxane groups are left, resulting in a decrease in reaction space with the promoter.
상기 담체 표면의 하이드록시기 양은 약 0.1 내지 10 mmol/g이 바람직하며, 약 으 5 내지 1 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.  The amount of hydroxy groups on the surface of the carrier is preferably about 0.1 to 10 mmol / g, more preferably about 5 to 1 mmol / g. The amount of hydroxyl groups on the surface of the carrier can be controlled by the method and conditions for preparing the carrier or by drying conditions such as temperature, time, vacuum or spray drying.
상기 하이드록시기의 양이 약 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 약 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.  If the amount of the hydroxyl group is less than about 0.1 mmol / g, the reaction site with the cocatalyst is small. If the amount of the hydroxyl group is greater than about 10 mmol / g, it may be due to moisture other than the hydroxyl group present on the surface of the carrier particle. Not desirable
상기 단독 담지 메탈로센 촉매 또는 상기 흔성 담지 메탈로센 촉매에 있어서, 제 1 및 제 2 메탈로센 화합물에 포함되는 전체 전이금속 : 담체의 질량비는 약 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다.  In the single supported metallocene catalyst or the common supported metallocene catalyst, the mass ratio of the total transition metal: carrier included in the first and second metallocene compounds may be about 1: 10 to 1: 1,000. When the carrier and the metallocene compound are included in the mass ratio, an optimal shape can be exhibited.
한편, 일 구현예의 폴리올레핀의 제조 방법에서는, 상술한 담지 메탈로센 촉매와 수소 기체에 더하여, 선택적으로 분자량 조절제의 존재 하에 을레핀계 단량체를 중합하여 폴리올레핀을 제조할 수 있다.  On the other hand, in the method for producing a polyolefin of one embodiment, in addition to the supported metallocene catalyst and hydrogen gas described above, it is possible to selectively produce a polyolefin by polymerizing the olefinic monomer in the presence of a molecular weight regulator.
본 발명의 일 실시예에 따르면, 상기 분자량 조절제는 하기 화학식 8의 시클로펜타디에닐 금속 화합물과, 하기 화학식 9의 유기 알루미늄 화합물의 흔합물 또는 이들의 반응 생성물을 포함할 수 있다.  According to an embodiment of the present invention, the molecular weight modifier may include a mixture of a cyclopentadienyl metal compound of Formula 8 and an organoaluminum compound of Formula 9 or a reaction product thereof.
[화학식 8]  [Formula 8]
Cp6Cp7M4X'2 Cp 6 Cp 7 M 4 X ' 2
상기 화학식 8에서,  In Chemical Formula 8,
Cp6 및 Cp7은 각각 독립적으로 치환 또는 비치환된 시클로펜타디에닐기, 치환 또는 비치환된 인데닐기 또는 치환 또는 비치환된 플루오레닐기를 포함하는 리간드이고 , Μ'는 4족 전이금속 원소이며, X'는 할로겐이며; Cp 6 and Cp 7 each independently include a substituted or unsubstituted cyclopentadienyl group, a substituted or unsubstituted indenyl group, or a substituted or unsubstituted fluorenyl group A ligand, Μ 'is a Group 4 transition metal element, X' is a halogen;
[화학식 9]  [Formula 9]
RfRgRhAl R f R g R h Al
상기 화학식 9에서,  In Chemical Formula 9,
Rf, Rg, 및 Rh는 각각 독립적으로 탄소수 4 내지 20의 알킬기 또는 할로겐이며, Rf, Rg, 및 Rh중 적어도 하나는 탄소수 4 내지 20의 알킬기이다. R f , R g , and R h are each independently an alkyl group having 4 to 20 carbon atoms or a halogen, and at least one of R f , R g , and R h is an alkyl group having 4 to 20 carbon atoms.
상기 분자량 조절제는 그 자체로 을레핀 중합 촉매로서의 활성을 나타내지는 못하며, 그 작용 메커니즘은 구체적으로 밝혀지지는 않았지만, 메탈로센 촉매의 활성을 보조하여 보다 큰 분자량 및 보다 넓은 분자량 분포를 갖는 폴리올레핀의 제조를 가능케 함이 확인되었다.  The molecular weight modifier itself does not exhibit activity as an olephine polymerization catalyst, and its mechanism of action is not specifically identified, but assists the activity of the metallocene catalyst to support the activity of the polyolefin having a larger molecular weight and a wider molecular weight distribution. It has been confirmed that it allows for manufacture.
이러한 분자량 조절제, 수소 기체, 상기 제 1 및 제 2 메탈로센 촉매와의 상호 작용으로 인하여, 보다 큰 중량평균 분자량 및 넓은 분자량 분포를 갖는 폴리올레핀이 제조될 수 있음이 확인되었다.  It has been confirmed that due to the interaction with such a molecular weight modifier, hydrogen gas, and the first and second metallocene catalysts, polyolefins having a larger weight average molecular weight and a wider molecular weight distribution can be produced.
또한, 블로우 몰딩용 폴리올레핀 등을 제조하기 위한 중합 반웅은 주로 핵산 등의 지방족 탄화수소계 유기 용매 내에서, 슬러리상 중합 등으로 진행될 수 있다. 그런데, 상기 분자량 조절제가 탄소수 4 이상의 알킬기를 갖는 화학식 9의 유기 알루미늄 화합물로부터 형성됨에 따라, 상기 핵산 등의 지방족 탄화수소계 유기 용매에 대해 보다 우수한 용해도를 나타낼 수 있다. 따라서, 이러한 분자량 조절제는 반웅 매질 또는 희석제로 사용되는 유기 용매에 안정적으로 용해되어 반웅계에 공급될 수 있고, 중합 과정 중에 그 작용, 효과를 더욱 균일하고도 우수하게 발현할 수 있다. 또한, 상기 핵산 등의 지방족 탄화수소계 유기 용매를 반웅 매질 등으로 사용하여도, 우수한 물성의 폴리올레핀이 제조될 수 있으므로, 방향족 탄화수소계 유기 용매의 사용 필요성이 없고, 방향족 탄화수소계 유기 용매가 폴리을레핀 또는 제품에 잔류하여 냄새 또는 맛 등에 문제를 필요가 없으며, 그 결과 일 구현예에 의해 제조된 폴리올레핀을 대형 제품용 등으로도 매우 적합하게 사용할 수 있게 된다.  In addition, the polymerization reaction for producing the polyolefin for blow molding and the like may be mainly carried out in a slurry phase polymerization or the like in an aliphatic hydrocarbon-based organic solvent such as nucleic acid. However, as the molecular weight modifier is formed from an organoaluminum compound of formula 9 having an alkyl group having 4 or more carbon atoms, it may exhibit more excellent solubility in aliphatic hydrocarbon-based organic solvents such as the nucleic acid. Therefore, such a molecular weight modifier can be stably dissolved in an organic solvent used as a reaction medium or a diluent and supplied to the reaction system, and its action and effect can be more uniformly and excellently expressed during the polymerization process. In addition, even when the aliphatic hydrocarbon-based organic solvent such as nucleic acid is used as a reaction medium, polyolefin of excellent physical properties can be produced, so that there is no necessity of using an aromatic hydrocarbon-based organic solvent, and the aromatic hydrocarbon-based organic solvent is polyolefin or There is no problem in smell or taste due to remaining in the product, and as a result, the polyolefin prepared according to one embodiment can be used very suitably for a large product.
결국, 일 구현예에 따르면, 보다 큰 분자량 및 보다 넓은 다봉 분자량 분포를 가짐에 따라, 뛰어난 기계적 물성 및 가공성을 나타낼 수 있고, 대형 제품용 등으로 바람직하게 사용 가능한 폴리을레핀을 보다 효과적으로 제조할 수 있다. 따라서, 일 구현예의 폴리올레핀의 제조 방법에서는, 이러한 분자량 조절제 및 수소와, 이미 상술한 단독 담지 메탈로센 촉매 또는 흔성 담지 메탈로센 촉매를 사용하여 초고분자량의 폴리올레핀을 보다 효과적으로 제조할 수 있다. As a result, according to one embodiment, by having a larger molecular weight and a broader polymodal molecular weight distribution, it is possible to exhibit excellent mechanical properties and processability, and to more effectively prepare polyolefin, which is preferably used for a large product. . Therefore, in the method for producing a polyolefin of one embodiment, the ultra-high molecular weight polyolefin can be more effectively produced using such a molecular weight modifier and hydrogen, and the previously supported single supported metallocene catalyst or common supported metallocene catalyst.
상기 분자량 조절제에서, 화학식 8의 시클로펜타디에닐 금속 화합물의 구체적인 예로는, 비스시클로펜타디에닐티타늄 디클로라이드, 비스시클로펜타디에닐지르코늄 디클로라이드, 비스시클로펜타디에닐하프늄 디클로라이드, 비스인데닐티타늄 디클로라이드 또는 비스플로레닐티타늄 디클로라이드 등을 들 수 있다. 또, 화학식 8의 유기 알루미늄 화합물의 구체적인 예로는, 트리이소부틸 알루미늄, 트리핵실알루미늄, 트리옥틸 알루미늄, 디이소부틸알루미늄 클로라이드, 디핵실알루미늄 클로라이드 또는 이소부틸알루미늄 디클로라이드 등을 들 수 있다.  In the molecular weight modifier, specific examples of the cyclopentadienyl metal compound of Formula 8 include biscyclopentadienyl titanium dichloride, biscyclopentadienyl zirconium dichloride, biscyclopentadienyl hafnium dichloride, and bis indenyl titanium Dichloride or bisflorenyl titanium dichloride and the like. In addition, specific examples of the organoaluminum compound of the formula (8) include triisobutyl aluminum, trinuclear aluminum, trioctyl aluminum, diisobutyl aluminum chloride, dinuxyl aluminum chloride, isobutyl aluminum dichloride, and the like.
또한, 상기 화학식 8의 화합물과, 화학식 9의 화합물은 화학식 8에 포함된 금속 원소 (M4)와, 화학식 9에 포함된 알루미늄 (A1)의 몰비를 기준으로, 약 1 : 0.1 내지 1: 100, 흑은 약 1 : 0.5 내지 1: 10의 몰비로 사용됨이 바람직하다. In addition, the compound of Formula 8 and the compound of Formula 9 are about 1: 0.1 to 1: 100 based on the molar ratio of the metal element (M 4 ) included in Formula 8 and aluminum (A1) included in Formula 9 Black is preferably used in a molar ratio of about 1: 0.5 to 1:10.
그리고, 상기 분자량 조절제는 상기 제 1 및 제 2 을레핀계 단량체의 총 loo 중량부를 기준으로 약 10-7 내지 ισ1 중량부, 혹은 약 10—5 내지 10·2 중량부의 함량으로 사용될 수 있다. 이러한 함량 범위로 사용됨에 따라, 분자량 조절제의 첨가로 인한 작용, 효과가 최적화되어, 고분자 용융지수가 낮고, 분자량 분포가 넓으며, 분자량이 크고, 밀도나 고분자 용융지수 대비 내웅력 균열성이 더욱 향상된 폴리올레핀이 얻어질 수 있다. The molecular weight modifier may be used in an amount of about 10 −7 to about 1 parts by weight, or about 10 −5 to 10 · 2 parts by weight based on the total loo parts by weight of the first and second olefinic monomers. As it is used in this content range, the action and effect due to the addition of the molecular weight regulator is optimized, the polymer melt index is low, the molecular weight distribution is wide, the molecular weight is large, and the stress cracking resistance is improved more than the density or polymer melt index. Polyolefins can be obtained.
한편, 상술한 분자량 조절제는, 상술한 제 1 및 제 2 메탈로센 화합물과 함께 담체에 담지된 상태로 사용될 수도 있지만, 상기 담지 메탈로센 촉매와 별도로 반웅계에 첨가 및 흔합되어 사용될 수도 있다.  On the other hand, the above-described molecular weight modifier may be used in a state supported on the carrier together with the above-described first and second metallocene compounds, it may be added to and mixed with the semi-ungung system separately from the supported metallocene catalyst.
그리고, 상술한 분자량 조절제는 상기 제 1 및 제 2 메탈로센 화합물에 포함된 전이금속 : 상기 분자량 조절제의 몰비가 약 1: 0.1 내지 1: 2, 혹은 약 1: 0.2 내지 1 : 1.5로 되는 양으로 사용될 수 있다. 만일, 분자량 조절제의 사용량이 지나치게 작아지면, 초고분자량의 폴리을레핀이 제대로 제조되기 어려울 수 있다. 반대로, 분자량 조절제의 사용량이 지나치게 커지면, 보다 큰 분자량을 갖는 폴리올레핀을 제조할 수는 있으나, 촉매 활성이 낮아질 수 있다. 상술한 바와 같은 담지 메탈로센 촉매는 담체에 조촉매를 담지시키고, 이에 상기 제 1 및 제 2 메탈로센 화합물을 추가 담지시킴으로서 제조될 수 있고, 선택적으로 상기 분자량 조절제를 상기 제 1 및 제 2 메탈로센 화합물과 함께, 혹은 상기 제 1 및 제 2 메탈로센 화합물 담지 전 또는 후에 담지시킴으로서 제조될 수 있다. 각 성분의 담지 방법은 통상적인 메탈로센 담지 촉매의 제조 공정 및 조건에 따르므로, 이에 관한 추가 설명은 생략하기로 한다. The molecular weight modifier described above is an amount such that the molar ratio of the transition metal contained in the first and second metallocene compounds: the molecular weight modifier is about 1: 0.1 to 1: 2, or about 1: 0.2 to 1: 1.5. Can be used as If the amount of the molecular weight modifier is too small, ultra high molecular weight polyolefin may be difficult to prepare properly. On the contrary, if the amount of the molecular weight modifier is excessively large, it is possible to produce a polyolefin having a higher molecular weight, but the catalyst activity may be lowered. The supported metallocene catalyst as described above may be prepared by supporting a cocatalyst on a carrier, and further supporting the first and second metallocene compounds, and optionally, the molecular weight modifier is added to the first and second It may be prepared by supporting the metallocene compound together or before or after supporting the first and second metallocene compounds. Since the supporting method of each component depends on the manufacturing process and conditions of the conventional metallocene supported catalyst, further description thereof will be omitted.
상술한 단독 담지 메탈로센 촉매 또는 흔성 담지 메탈로센 촉매와, 선택적으로 분자량 조절제를 포함하는 반웅기에서, 올레핀계 단량체를 공급하여 중합이 진행될 수 있다.  Polymerization may be performed by supplying an olefinic monomer in the above-described single supported metallocene catalyst or common supported metallocene catalyst and optionally, a semi-unggi group containing a molecular weight regulator.
이때, 본 발명의 일 구현예에 따르면 수소 기체의 존재 하에 을레핀계 단량체를 공급하여 중합이 진행될 수 있다.  In this case, according to one embodiment of the present invention, the polymerization may proceed by supplying an olefinic monomer in the presence of hydrogen gas.
이때, 상기 수소 기체는 중합 초기의 메탈로센 촉매의 급격한 반웅을 억제하는 역할을 하여 고분자량 폴리올레핀이 보다 많은 양으로 생성될 수 있도록 한다ᅳ 따라서, 이러한 수소 기체의 사용에 의해, 보다 큰 분자량 및 넓은 분자량 분포를 갖는 폴리올레핀이 효과적으로 얻어질 수 있다.  At this time, the hydrogen gas serves to suppress the rapid reaction of the metallocene catalyst at the beginning of the polymerization so that a high molecular weight polyolefin can be produced in a larger amount. Polyolefins having a wide molecular weight distribution can be obtained effectively.
상기 수소 기체는 이러한 수소 기체 : 올레핀계 단량체의 몰비가 약 1 :100 내지 1 :1,000으로 되도록 투입될 수 있다. 수소 기체의 사용량이 지나치게 작아지면, 촉매 활성이 충분히 구현되지 않아 원하는 분자량 및 분자량 분포를 갖는 폴리올레핀의 제조가 어려워질 수 있고, 지나치게 많은 양의 수소 기체를 투입할 경우 촉매의 활성이 층분히 구현되지 않을 수 있다.  The hydrogen gas may be introduced such that the molar ratio of such hydrogen gas: olefin monomer is about 1: 100 to 1: 1,000. When the amount of hydrogen gas used is too small, the catalyst activity may not be sufficiently realized, making it difficult to prepare a polyolefin having a desired molecular weight and molecular weight distribution, and when the amount of hydrogen gas is added, the activity of the catalyst is not sufficiently realized. You may not.
한편, 상기 반웅기에는, 반웅기 내의 수분을 제거하기 위한 유기 알루미늄 화합물이 더욱 투입되어, 이의 존재 하에 중합 반웅이 진행될 수 있다. 이러한 유기 알루미늄 화합물의 구체적인 예로는, 트리알킬알루미늄, 디알킬 알루미늄 할라이드, 알킬 알루미늄 디할라이드, 알루미늄 디알킬 하이드라이드 또는 알킬 알루미늄 세스퀴 할라이드 등을 들 수 있으며, 이의 보다 구체적인 예로는, A1(C2H5)3, A1(C2H5)2H, A1(C3H7)3, A1(C3H7)2H, Al(i-C4H9)2H, A1(C8H17)3, A1(CI2H25)3, Al(C2H5)(Ci2H25)2, Al(i-C4H9)(Ci2H25)2, Al(i-C4H9)2H, Al (i-C4H9)3, (C2H5)2A1C1, (i- C3H9)2A1C1 또는 (C2H5)3A12C13 등올 들 수 있다. 이러한 유기 알루미늄 화합물은 반응기에 연속적으로 투입될 수 있고, 적절한 수분 제거를 위해 반응기에 투입되는 반웅 매질의 1kg 당 약 0.1 내지 10몰의 비율로 투입될 수 있다. 한편, 일 구현예의 폴리올레핀의 제조 방법에서, 상기 올레핀계 단량체는 에틸렌, 알파-올레핀, 사이클릭 올레핀, 이중 결합을 2개 이상 가지고 있는 디엔 올레핀 또는 트리엔 올레핀일 수 있다. On the other hand, in the counterunggi, the organoaluminum compound for removing the water in the counterunggi is further added, the polymerization reaction may proceed in the presence thereof. Specific examples of such an organoaluminum compound include trialkylaluminum, dialkyl aluminum halide, alkyl aluminum dihalide, aluminum dialkyl hydride or alkyl aluminum sesqui halide, and more specific examples thereof include A1 (C 2). H 5 ) 3 , A1 (C 2 H 5 ) 2 H, A1 (C 3 H 7 ) 3 , A1 (C 3 H 7 ) 2 H, Al (iC 4 H 9 ) 2 H, A1 (C 8 H 17 ) 3 , A1 (C I2 H 25 ) 3 , Al (C 2 H 5 ) (Ci 2 H 25 ) 2 , Al (iC 4 H 9 ) (Ci 2 H 25 ) 2 , Al (iC 4 H 9 ) 2 H, Al (iC 4 H 9 ) 3 , (C 2 H 5 ) 2 A1C1, (i-C 3 H 9 ) 2 A1C1 or (C 2 H 5 ) 3 A1 2 C1 3 , and the like. Such organoaluminum compounds may be continuously introduced into the reactor and may be introduced at a rate of about 0.1 to 10 moles per kilogram of reaction medium introduced into the reactor for proper water removal. On the other hand, in the method for producing a polyolefin of one embodiment, the olefin monomer may be ethylene, alpha-olefin, cyclic olefin, diene olefin or triene olefin having two or more double bonds.
상기 을레핀계 단량체의 구체적인 예로서, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-헥센, 1-헵텐, 1 -옥텐 1 -데센, 1 -운데센, 1 -도데센, 1-테트라데센, 1 - 핵사데센, 1-에이코센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등을 들 수 있으며, 이들 단량체를 2종 이상 흔합하여 공중합할 수도 있다.  Specific examples of the olefinic monomers include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene 1-decene, 1-undecene, 1 -Dodecene, 1-tetradecene, 1-nucleodecene, 1-eicosene, norbornene, norbonadiene, ethylidene norbornene, phenylnorbornene, vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1,5-pentadiene, 1,6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethylstyrene, etc. are mentioned, These monomers can also be mixed and copolymerized 2 or more types.
상기 중합 반웅은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응가 기상 반웅기 또는 용액 반웅기를 이용하여 하나의 올레핀계 단량체로 호모중합하거나 또는 2종 이상의 단량체로 공중합하여 진행할 수 있다.  The polymerization reaction can be carried out by homopolymerization with one olefinic monomer or copolymerization with two or more monomers using one continuous slurry polymerization reactor, a loop slurry reactor or a gas phase reaction reactor.
또, 상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 핵산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 를루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 반웅계에 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.  In addition, the supported metallocene catalyst is an aliphatic hydrocarbon solvent having 5 to 12 carbon atoms, for example, pentane, nucleic acid, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene, dichloromethane and chloro It may be dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom such as benzene and injected into the reaction system. The solvent used herein is preferably used by removing a small amount of water, air, or the like acting as a catalyst poison by treating a small amount of alkyl aluminum, and may be carried out by further using a promoter.
상술한 일 구현예의 제조 방법에 따라 수득된 폴리올레핀은 중량 평균 분자량이 약 100,000 내지 약 2,000,000 g/mol, 혹은 약 400,000 내지 약 1,500,000 g/m이으로 되는 고분자량 또는 초고분자량 폴리올레핀으로 될 수 있으며, 분자량 분포 (Mw/Mn)가 약 2.0 내지 약 25, 또는 약 2.2 내지 약 10 인 것으로 다양한 분자량 분포를 가질 수 있다.  The polyolefin obtained according to the preparation method of the above-described embodiment may be a high molecular weight or ultra high molecular weight polyolefin having a weight average molecular weight of about 100,000 to about 2,000,000 g / mol, or about 400,000 to about 1,500,000 g / m, The distribution (Mw / Mn) is about 2.0 to about 25, or about 2.2 to about 10, and may have various molecular weight distributions.
또한 상기 중량 평균 분자량 및 분자량 분포는 상술한 범위 내에서 제 1 및 제 2 메탈로센 화합물의 종류 및 함량, 수소 기체의 투입량, 분자량 조절제의 투입 여부 등을 조절하여 다양하게 변화시킬 수 있으므로, 원하는 물성의 폴리올레핀을 제조하는 데 매우 유용하다. 즉, 제 1 및 제 2 메탈로센 화합물이 갖는 수소 및 분자량 조절제에 대한 반웅성이 다르므로, 한 반응기 내에서 메탈로센 화합물의 선택적인 조합과 수소 기체의 투입량, 분자량 조절제의 투입 여부에 따라 상술한 범위 내에서 상대적으로 작은 중량 평균 분자량 및 좁은 분자량 분포를 갖는 폴리을레핀, 작은 중량 평균 분자량 및 넓은 분자량 분포를 갖는 폴리올레핀, 큰 중량 평균 분자량 및 좁은 분자량 분포를 갖는 폴리올레핀, 큰 중량 평균 분자량 및 넓은 분자량 분포를 갖는 폴리올레핀의 제조가 모두 가능하다. In addition, the weight average molecular weight and molecular weight distribution can be variously changed by adjusting the type and content of the first and second metallocene compounds, the amount of hydrogen gas, the amount of molecular weight control agent, etc. within the above-described range, It is very useful for preparing physical polyolefins. That is, since the reaction properties to the hydrogen and the molecular weight regulator of the first and second metallocene compounds are different, the selective combination of the metallocene compound and the amount of hydrogen gas and the molecular weight regulator are added in one reactor. Polyolefins having relatively small weight average molecular weight and narrow molecular weight distribution, polyolefins having small weight average molecular weight and wide molecular weight distribution, polyolefins having large weight average molecular weight and narrow molecular weight distribution, large weight average within the above-mentioned range Both the molecular weight and the production of polyolefins with a broad molecular weight distribution are possible.
또한 본 발명의 제조방법으로 제조된 폴리을레핀은 비교적 넓은 분자량 분포 및 매우 높은 분자량을 가지면서도, 메탈로센 촉매로 제조된 폴리올레핀의 특성상 촉매 잔사량이 작으므로, 고온 성형 가공시 폴리올레핀의 분해를 억제할 수 있다.  In addition, the polyolefin produced by the production method of the present invention has a relatively wide molecular weight distribution and a very high molecular weight, and due to the nature of the polyolefin made of a metallocene catalyst, the amount of catalyst residue is small, so that decomposition of the polyolefin can be suppressed during high temperature molding processing. Can be.
특히, 높은 분자량에 따른 우수한 물성을 발현할 수 있고, 대형 블로우 몰딩용 제품, 뛰어난 내압 및 내열 특성이 요구되는 차세대 파이프 제품, 또는 내웅력 균열 특성이 좋은 사출 제품 등의 용도에 대해 매우 바람직하게 사용될 수 있다.  In particular, it can exhibit excellent physical properties according to high molecular weight, and is very preferably used for applications such as large blow molding products, next generation pipe products requiring excellent pressure resistance and heat resistance properties, or injection products having good stress cracking properties. Can be.
이하, 발명의 실시예를 통해 본 발명에 대해 상세히 설명한다. 그러나, 이러한 실시예들은 여러 가지 형태로 변형될 수 있으며, 발명의 범위가 아래에서 상술하는 실시예들로 인하여 한정되는 식으로 해석되어서는 안 된다.  Hereinafter, the present invention will be described in detail with reference to Examples. However, these embodiments may be modified in various forms, and the scope of the present invention should not be construed as being limited by the embodiments described below.
<실시예> <Example>
제 1 메탈로센 화합물의 합성 실시예  Synthesis Example of First Metallocene Compound
Figure imgf000029_0001
Figure imgf000029_0001
1-1 리간드 화합물의 제조 Preparation of 1-1 Ligand Compound
fluorene 2 g을 5 mL MTBE, hexane 100 mL에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. (6-(tert- butoxy)hexyl)dic loro(methyl)silane 3.6 g을 핵산 (hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene-Li 슬러리를 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5,8-dimethyl-5,10-dihydroindeno[l,2-b]indoIe (12 mmol, 2.8 g) 또한 THF 60 mL에 녹여 2.5M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. fluorene과 (6-(tert-butoxy)hexyl)dichloro(methyl)silane 과의 반웅 용액을 NMR 샘플링하여 반응 완료를 확인한 후 5,8-dimethyl-5,l으 dihydroindeno[ 1 ,2-b]indole-Li solution을 dry ice/acetone bath하에서 transfer하였다 . 상온에서 밤새 교반하였다. 반웅 후 ether/water로 추출 (extraction)하여 유기층의 잔류수분을 MgS04로 제거 후 리간드 화합물 (Mw 597.90, 12 mmol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 1H-NMR에서 확인할 수 있었다. 2 g of fluorene was dissolved in 5 mL MTBE and 100 mL of hexane, and 5.5 mL of 2.5 M n-BuLi hexane solution was added dropwise in a dry ice / acetone bath, followed by stirring at room temperature overnight. (6- (tert- 3.6 g of butoxy) hexyl) dic loro (methyl) silane was dissolved in 50 mL of nucleic acid (hexane), and the fluorene-Li slurry was transferred for 30 minutes in a dry ice / acetone bath and stirred at room temperature overnight. At the same time, 5, 8-dimethyl-5,10- dihydroindeno [l, 2-b] indoIe (12 mmol, 2.8 g) addition of 2.5M n-BuLi hexane solution 5.5 mL dissolved in 60 mL THF in a dry ice / acetone bath It was added dropwise and stirred overnight at room temperature. NMR sample reaction solution of fluorene with (6- (tert-butoxy) hexyl) dichloro (methyl) silane was confirmed by NMR sampling to confirm the completion of the reaction, followed by dihydroindeno [1, 2-b] indole- as 5,8-dimethyl-5, l. Li solution was transferred under dry ice / acetone bath. Stir overnight at room temperature. After reaction, the organic layer was extracted with ether / water, and the remaining moisture of the organic layer was removed with MgS0 4 to obtain a ligand compound (Mw 597.90, 12 mmol), and two isomers were formed in 1H-NMR.
1H NMR (500 MHz, d6-benzene): -0.30 ~ -0.18 (3H, d), 0.40 (2H, m), 0.65 ~ 1.45 (8H, m), 1.12 (9H, d), 2.36 ~ 2.40 (3H, d), 3.17 (2H, m), 3.41 ~ 3.43 (3H, d), 4.17 ~ 4.21 (1H, d), 4.34〜 4.38 (1H, d), 6.90 ~ 7.80 (15H, m)  1 H NMR (500 MHz, d6-benzene): -0.30 to -0.18 (3H, d), 0.40 (2H, m), 0.65 to 1.45 (8H, m), 1.12 (9H, d), 2.36 to 2.40 (3H , d), 3.17 (2H, m), 3.41-3.43 (3H, d), 4.17-4.21 (1H, d), 4.34-4.38 (1H, d), 6.90-7.80 (15H, m)
1-2 메탈로센 화합물의 제조  Preparation of 1-2 metallocene compound
상기 1-1에서 합성한 리간드 화합물 7.2 g (12 mmol)을 diethylether 50 mL에 녹여 2.5 M n-BuLi hexane solution 11.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 진공 건조하여 갈색 (brown color)의 sticky oil을 얻었다. 를루엔에 녹여 슬러리를 얻었다. ZrCl4(THF)2를 준비하고 를루엔 50 mL를 넣어 슬러리로 준비하였다. ZrCl4(THF)2의 50 mL를루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 상온에서 밤새 교반함에 따라 보라색 (violet color)으로 변화하였다. 반웅 용액을 필터하여 LiCl을 제거하였다. 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonication하였다. 슬러리를 필터하여 여과된 고체 (filtered solid)인 질은 보라색 (dark violet)의 메탈로센 화합물 6 g (Mw 758.02, 7.92 mmol, yield 66mol%)을 얻었다. 1H-NMR상에서 두 개의 isomer가 관찰되었다. 7.2 g (12 mmol) of the ligand compound synthesized in 1-1 was dissolved in 50 mL of diethylether, and 11.5 mL of 2.5 M n-BuLi hexane solution was added dropwise in a dry ice / acetone bath, followed by stirring at room temperature overnight. Drying in vacuo gave a brown colored sticky oil. It was dissolved in toluene to obtain a slurry. ZrCl 4 (THF) 2 was prepared, and 50 mL of toluene was added to prepare a slurry. 50 mL of ZrCl 4 (THF) 2 was transferred to a luene slurry in a dry ice / acetone bath. The solution was changed to violet color at room temperature overnight. The reaction solution was filtered to remove LiCl. The toluene of the filtrate was removed by vacuum drying, and the nucleic acid was added and sonicated for 1 hour. The slurry was filtered to obtain 6 g of a dark violet metallocene compound (Mw 758.02, 7.92 mmol, yield 66 mol%). Two isomers were observed on 1 H-NMR.
1H NMR (500 MHz, CDC13): 1.19 (9H, d), 1.71 (3H, d), 1.50 ~ 1.70(4H, m), 1.79(2H, m), 1.98 ~ 2.19(4H, m), 2.58(3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66 ~ 7.88 (15H, m) 제 2 메탈로센 화합물의 제조실시예 합성예 2 1 H NMR (500 MHz, CDC1 3 ): 1.19 (9H, d), 1.71 (3H, d), 1.50-1.70 (4H, m), 1.79 (2H, m), 1.98-2.19 (4H, m), 2.58 (3H, s), 3.38 (2H, m), 3.91 (3H, d), 6.66-7.88 (15H, m) Preparation Example of Second Metallocene Compound Synthesis Example 2
itBu-O— (CH2½)(CH^>Si(C5(CH3)4¥tBu-N)TiCb 의 제조 itBu-O— (CH 2 ½) (CH ^> Si (C5 (CH3) 4 ¥ tBu-N) TiCb Preparation
상온에서 50 g의 Mg(s)를 10L 반응기에 가한 후, THF 300 mL을 가하였다 · 12 0.5 g 정도를 가한 후, 반웅기 온도를 50 °C로 유지하였다. 반웅기 온도가 안정화된 후 250 g의 6-t-부톡시핵실 클로라이드 (6-t-buthoxyhexyl chloride)를 피딩펌프 (feeding pump)를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. 64- 부특시핵실 클로라이드를 가함에 따라 반웅기 온도가 4 내지 5 °C정도 상승하는 것을 관찰하였다. 계속적으로 6-t-부록시핵실 클로라이드을 가하면서 12 시간 교반하였다. 반웅 12시간 후 검은색의 반웅용액을 얻었다. 생성된 검은색의 용액 2mL 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해 6-t-부록시핵산 (6-t- buthoxyhexane)을 확인하였다. 상기 6-t-부록시헥산으로부터 그리냐드 (Gringanrd) 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부록시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnesium chloride)를 합성하였다. 50 g of Mg (s) was added to a 10 L reactor at room temperature, and then 300 mL of THF was added. 1 2 After adding 0.5 g, the reaction temperature was maintained at 50 ° C. After the reaction temperature was stabilized, 250 g of 6-t-butthoxyhexyl chloride was added to the reaction vessel at a rate of 5 mL / min using a feeding pump. It was observed that the reaction temperature increased by about 4 to 5 ° C. with the addition of 64-subspecialty chloride. The mixture was stirred for 12 hours while adding 6-t-butoxynuxyl chloride. After 12 hours of reaction, a black reaction solution was obtained. 2 mL of the resulting black solution was taken, water was added thereto, an organic layer was obtained, and 6-t-butoxynucleic acid (6-t-buthoxyhexane) was confirmed by 1 H-NMR. It can be seen that the Gringanrd reaction proceeded well from the 6-t-butoxyhexane. Thus, 6-t-buthoxyhexyl magnesium chloride was synthesized.
MeSiCl3 500 g과 1 L의 THF를 반웅기에 가한 후 반웅기 온도를 -20°C까지 넁각하였다. 합성한 6-t-부특시핵실 마그네슘 클로라이드 중 560 g을 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 그리냐드 시약 (Grignard reagent)의 피딩 (feeding)이 끝난 후 반웅기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후 흰색의 MgCl2염이 생성되는 것을 확인하였다. 핵산 4 L을 가하여 랩도리 (labdori)을 통해 염을 제거하여 필터용액을 얻었다. 얻은 필터용액을 반응기에 가한 후 70°C에서 핵산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR올 통해 원하는 메틸 (6-t-부록시 핵실)디클로로실란 {Methyl(6-t-buthoxy hexyl)dichlorosilane} 화합물임을 확인하였다. After adding 500 g of MeSiCl 3 and 1 L of THF to the reaction vessel, the reaction temperature was adjusted to -20 ° C. 560 g of the synthesized 6-t-subsilicate magnesium chloride was added to the reactor at a rate of 5 mL / min using a feeding pump. After feeding the Grignard reagent, the reaction mixture was stirred for 12 hours while slowly raising the temperature to room temperature. After 12 hours of reaction, white MgCl 2 salt was produced. 4 L of nucleic acid was added to remove the salt through a labdori to obtain a filter solution. After adding the obtained filter solution to the reactor, the nucleic acid was removed at 70 ° C to obtain a pale yellow liquid. The obtained liquid was confirmed to be the desired methyl (6-t-buthoxy hexyl) dichlorosilane} compound through 1H-NMRol.
Ή-NMR (CDC13): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7Ή-NMR (CDC1 3 ): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H), 0.7
(s, 3H) (s, 3H)
테트라메틸시클로펜타디엔 (tetramethylcyclopentadiene) 1.2 mol (150 g)와 2.4 1.2 mol (150 g) of tetramethylcyclopentadiene and 2.4
L의 THF를 반웅기에 가한 후 반웅기 온도를 -20°C로 냉각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n-BuLi을 가한 후 반웅기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후, 당량의 메틸 (6-t-부톡시 핵실)디클로로실란 (Methyl(6-t-buthoxy hexyl)dichlorosilane) (326 g, 350 mL)을 빠르게 반웅기에 가하였다. 반웅기 온도를 천천히 상온으로 올리면서 12시간 교반한 후 다시 반웅기 온도를 0°C로 넁각시킨 후 2당량의 t- BuNH2을 가하였다. 반웅기 온도를 천천히 상온으로 을리면서 12시간 교반하였다. 반웅 12시간 후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반웅기에 가한 후, 핵산을 7( C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H-NMR을 통해 메틸 (6- t-부톡시핵실) (테트라메틸 cpH)t-부틸아미노실란 (Methyl(6ᅳ t- buthoxyhexyl)(tetramethylCpH)t-Butylaminosilane) 화합물임을 확인하였다. After adding L of THF to the reactor, the reaction temperature was cooled to -20 ° C. The reactor was added at a rate of 5 mL / min using n- BuLi 480 mL feeding pump. After n-BuLi was added, the reaction mixture was stirred for 12 hours while slowly raising the temperature to room temperature. After 12 hours of reaction, an equivalent of methyl (6-t-butthoxy hexyl) dichlorosilane (326 g, 350 mL) was added quickly to the reactor. Slowly return the reaction temperature to room temperature After stirring for 12 hours while raising the reaction temperature, the reaction mixture was again cooled to 0 ° C., and then 2 equivalents of t-BuNH 2 was added thereto. The reaction mixture was stirred for 12 hours while slowly warming to room temperature. After 12 hours of reaction, THF was removed and 4 L of nucleic acid was added to obtain a filter solution from which salts were removed through labdori. After the filter solution was added to the reactor again, the nucleic acid was removed from 7 (C to obtain a yellow solution. The yellow solution obtained was obtained through 1H-NMR in methyl (6-t-butoxynucleus) (tetramethyl c p H). It was confirmed that the compound is t-butylaminosilane (Methyl (6 ᅳ t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane).
n-BuLi과 리간드 디메틸 (테트라메틸 CpH)t-부틸아민실란n-BuLi and ligand dimethyl (tetramethyl Cp H) t-butylaminesilane
(Dimethyl(tetramethylCpH)t-Butylaminosilane)로부터 THF 용액에서 합성한 -78 °C의 리간드의 디리튬염에 TiCl3(THF)3(10 mmol)을 빠르게 가하였다. 반웅용액을 천천히 -78 °C에서 상온으로 올리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PbCl2(10mmol)를 반웅용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 질은 검은색의 용액을 얻었다. 생성된 반웅용액에서 THF를 제거한 후 핵산을 가하여 생성물을 필터하였다. 얻을 필터용액에서 핵산을 제거한 후, 1H-NMR로부터 원하는 ([methyl(6-t-buthoxyhexyl)silyl( 5-tetramethylCp)(t-TiCl 3 (THF) 3 (10 mmol) was quickly added to the dilithium salt of -78 ° C ligand synthesized in THF solution from (Dimethyl (tetramethylCpH) t-Butylaminosilane). The reaction solution was stirred for 12 hours while slowly raising the temperature to -78 ° C. After stirring for 12 hours, an equivalent amount of PbCl 2 (10 mmol) was added to the semi-aqueous solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, the blue vagina obtained a black solution. After removing THF from the resulting semi-aqueous solution, nucleic acid was added to filter the product. After removing the nucleic acid from the resulting filter solution, the desired ([methyl (6-t-buthoxyhexyl) silyl (5-tetramethylCp) (t-
Butylamido)]TiCl2)인 (tBu-0-(CH2)6)(CH3)Si(C5(CH3)4)(tBu-N)TiCl2 임을 확인하였다. Butylamido)] TiCl 2 ) (tBu-0- (CH 2 ) 6 ) (CH 3 ) Si (C 5 (CH 3 ) 4 ) (tBu-N) TiCl 2 was confirmed.
1H-NMR (CDC13): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 ~ 0.8 (m), 1.4 (s, 9H), 1.2(s, 9H), 0.7 (s, 3H) 합성예 3 1 H-NMR (CDC1 3 ): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 to 0.8 (m), 1.4 (s, 9H), 1.2 (s, 9H), 0.7 (s, 3H) Synthesis Example 3
(ᅳ tert-Bu-O-fCH lMeSi^-CnH'^ZrCb의 제조  Preparation of tert-Bu-O-fCH lMeSi ^ -CnH '^ ZrCb
THF 용매하에서 tert-Bu-0-(CH2)6Cl 화합물과 Mg(0) 간의 반응으로부터 그리냐드 (Grignard) 시약인 tert-Bu-0-(CH2)6MgCl 용액 L0 mole을 얻었다. 상기 제조된 그리냐드 화합물을 -30°C의 상태의 MeSiCl3 화합물 (176.1 mL, 1.5 mol)과 THF (2.0 mL)가 담겨있는 플라스크에 가하고, 상온에서 8시간 이상 교반시킨 후, 걸러낸 용액을 진공건조하여 tert-Bu-0-(CH2)6SiMeCl2의 화합물을 얻었다 (수율 92%). L0 mole of a Grignard reagent tert-Bu-0- (CH 2 ) 6 MgCl solution was obtained from the reaction between the tert-Bu-0- (CH 2 ) 6 Cl compound and Mg (0) in THF solvent. The Grignard compound prepared above was added to a flask containing MeSiCl 3 compound (176.1 mL, 1.5 mol) and THF (2.0 mL) at −30 ° C., and stirred at room temperature for 8 hours or more, and the filtered solution was Vacuum drying afforded a compound of tert-Bu-0- (CH 2 ) 6 SiMeCl 2 (yield 92%).
-20°C에서 반웅기에 플루오렌 (3.33 g, 20 mmol)과 핵산 (100 mL)와 MTBE (methyl tert-butyl ether, 1.2 mL, 10 mmol)를 넣고, 8 mL의 n-BuLi (2.5M in Hexane)을 천천히 가하고, 상온에서 6시간 교반시켰다. 교반이 종결된 후, 반웅기 온도를 - ^욷 t 긍^
Figure imgf000033_0001
Itofe융 οε
Figure imgf000033_0002
[: Yb .SL- Ιγ α 륭 ^융 ΤΓ 4그^^웅{ H^l 8 ': r ί ^긍 * ϋ긍^ l^^t^ 륭 (nng
-Add fluorene (3.33 g, 20 mmol), nucleic acid (100 mL) and MTBE (methyl tert-butyl ether, 1.2 mL, 10 mmol) at 2 0 ° C, and add 8 mL of n-BuLi (2.5). M in Hexane) was added slowly and stirred at room temperature for 6 hours. After stirring is complete, the reaction temperature is- ^ 욷 t yes ^
Figure imgf000033_0001
Itofe jung οε
Figure imgf000033_0002
[: Yb .SL- Ιγ α Loong ^ Yung ΤΓ 4He ^^ Hung {H ^ l 8 ': r ί ^ Yeong ^ l ^^ t ^ Loong (nng
-u) ts^-^ 'ΐΓΐο½ ItoJHI 를¾¾-9(¾ )-0-1 -} t-y[toa8Z,- ¾^ -u ) ts ^-^ 'ΐΓΐο½ ItoJHI with ¾¾- 9 (¾) -0-1-} ty [toa8Z, -¾ ^
(gHui«i 1Ό/ a 08 -d-q '%09룡^)b^¾ 를¾¾-9(¾3)-0- 웅 ϊ 를 t BN ((8861) 1S6∑: V3
Figure imgf000033_0003
(g H ui «i 1Ό / a 08 -dq '% 09 yong ^) b ^ ¾ to ¾¾- 9 (¾3) -0- ϊ t BN ((8861) 1S6∑: V3
Figure imgf000033_0003
(P 'H2 'H-niJ)씨 OZ(P 'H2' H-niJ) Mr OZ
'(p ' 'n- )WL '(pp 09· '(^ 'Ht ¾- ι) ςν '(t Ήζ 'Η-«υ) 06'9 Ό'(p''n-)WL' (pp 09 · '(^' Ht ¾- ι) ςν '(t Ήζ' Η- «υ) 06 ' 9 Ό
'HZ: -niJ) 98"9 '0 'HZ C a-:)J애 '0u ¾17 ¾D)16- 'HP 'ZH ) 99' ΐ 'HZ: 'ZHO-IS) 8S '(s ¾£ '!S^) 9Z \ '(s ¾6 '0«9-^)51 : (9090 'z麵 00S) ¾匪 H, 'HZ: -niJ) 98 "9 ' 0 'HZ C a - :) J Ke' 0u ¾17 ¾D) 16- 'HP ' ZH) 99 'ΐ' HZ: 'ZHO-IS) 8S' (s ¾ £ ' ! S ^) 9Z \ '(s ¾6' 0 «9-^) 51 : (9090'z 麵 00S) ¾ 匪 H,
(% S 6룡^ '§ £ )- ^¾ 륭륜^^ 그^ 웅 t Γο욷 Ϊ Υ8 t 긍^
Figure imgf000033_0004
to(lm OZ) 9 'Έ 9ζτ) z(dRl) D^Z통 ^융
Figure imgf000033_0005
i lv8
(% S 6 Dragons ^ ' § £)-^ ¾ 륜 ^ ^^ He ^ Hung t Γο 욷 Ϊ t8 t Yes ^
Figure imgf000033_0004
to (l m OZ) 9 'Έ 9 ζτ) z (dRl) D ^ Z barrel ^ Yung
Figure imgf000033_0005
i lv8
[Y I ^룽 ^ΰ긍 i°Y ir{s{ [a^t^ 통 (3UBX3H ui ςτ) nne-u g t ^융 [YI Rong ^ ^ ΰ geung i ° Y ir {s {[ a ^ t ^ barrel (3UBX3 H u i ςτ) n n ^ eu gt Melting
C ui oz) 3aLP /(Iouiui 9 '§ gf£) (0IH£I -6)!S3W(9( i )-O-n8-J췌) t-vltoaOZ- OTC ui oz) 3aLP / (Iouiui 9 '§ gf £) ( 0I H £ I -6)! S 3 W ( 9 (i) -O-n8-J pan) t-vltoaOZ- OT
(P 'm 'H-nid)S8 (P 'm' H-nid) S8
'(ui ¾17 'H-nid)0t^ '(^ 'Ht 'H-niJ)S£ '(«1 'Ht^ 'H m)띠 '(s ¾S 'Η6-ηυ)θΙ '(J 'Ηζ '2H3-Ona-m)l3 £ '(ui ¾Z 'ζΗ3)6 ΐ '(s ¾6 '0^-^)/.11 '(^ 'Ht7 'ZUD) 960 'H'(ui ¾17' H-nid) 0t ^ '(^' Ht 'H-niJ) S £' («1 'Ht ^' H m) strip '(s ¾S' Η6- η υ) θΙ '(J' Ηζ '2H3-Ona-m) l3 £' (ui ¾Z 'ζΗ3) 6 ΐ' (s ¾6 '0 ^-^) /. 11' (^ 'Ht 7 ' ZUD) 960 'H
H3) 8Π) '(ui 'HZ 'Z D-}S) 9Z 0 '(s ¾£ ¾3W) S£O_: (HDaD 'ZHWOOS) ¾PMN HI H3) 8Π) '(u i ' HZ 'Z D-} S) 9Z 0' (s ¾ £ ¾ 3 W) S £ O_ : (HDaD 'ZHWOOS) ¾PMN HI
^을 S 룡^ '§ 그^ ¾ 륭륜 z(01H 3-6)!S9 (9(
Figure imgf000033_0006
^ S Dragon ^ '§ That ^ ¾ great ring z ( 01 H 3-6)! S9 ( 9 (
Figure imgf000033_0006
^ HYI 륭 ^융 블^ L^f^릎 ί ^^ U v ro융 (louiui01 ^ HYI LONG ^ Ying BL ^ L ^ f ^ Knee ί ^^ U v ro YONG (louiui 01
Figure imgf000033_0007
Figure imgf000033_0007
08SS00/ST0ZaM/X3d 0.698T/S10Z OAV 더 반응시켰다. 08SS00 / ST0ZaM / X3d 0.698T / S10Z OAV Reacted further.
모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 핵산 (hexane) 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 핵산을 가해 저은 (-20°C)에서 침전물을 유도하였다. 얻어진 침전물을 저온에서 걸러내어 흰색 고체 형태의 [tBu-0-(CH2)6-C5H4]2ZrCl2화합물을 얻었다 (수율 92%). All volatiles were dried in vacuo and the resulting oily liquid material was filtered off by addition of a hexane solvent. After the filtered solution was dried in vacuo, nucleic acid was added to induce precipitate at low temperature (-20 ° C.). The obtained precipitate was filtered at low temperature to give a [tBu-0- (CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 compound as a white solid (yield 92%).
1H NMR (300 MHz, CDC13): 6.28 (t, J = 2.6 Hz, 2 H), 6.19 (t, J = 2.6 Hz, 2 H), 3.31 (t, 6.6 Hz, 2 H), 2.62 (t, J = 8 Hz), 1.7 - 1.3 (m, 8 H), 1.17 (s, 9 H). 1 H NMR (300 MHz, CDC1 3 ): 6.28 (t, J = 2.6 Hz, 2H), 6.19 (t, J = 2.6 Hz, 2H), 3.31 (t, 6.6 Hz, 2H), 2.62 (t , J = 8 Hz), 1.7-1.3 (m, 8 H), 1.17 (s, 9 H).
13C NMR (CDC13): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00. 13 C NMR (CDC1 3 ): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18, 27.58, 26.00.
<담지 촉매의 제조실시예 > <Preparation Example of Supported Catalyst>
제조예 1  Preparation Example 1
실온의 유리 반웅기에 를루엔 lOO mL올 넣고 건조된 실리카 10 g를 투입한 후 반웅기 온도를 40°C로 올리면서 교반하였다. 실리카를 충분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액을 60.6 mL를 투입하고 온도를 80°C로 올린 후 200 rpm으로 16 시간 동안 교반하였다. 이 후 온도를 다시 40°C로 낮춘 후 충분한 양의 를루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하였다. 다시 를루엔 100 mL를 투입한 후, 상기 합성예 1에서 제조된 메탈로센 촉매 0.5 mmol을 투입하여 2 시간 동안 교반하였다. 반웅이 끝난 후 교반을 멈추고 를루엔충을 분리하여 제거한 후, 40°C에서 감압하여 를루엔을 제거하여, 담지 촉매를 제조하였다. 제조예 2 Into a glass reactor at room temperature, toluene 100 mLol was added, 10 g of dried silica was added, and the reaction mixture was stirred while raising the temperature of the reactor to 40 ° C. After sufficiently dispersing the silica, 60.6 mL of 10 wt% methylaluminoxane (MAO) / luene solution was added thereto, the temperature was raised to 80 ° C., and the mixture was stirred at 200 rpm for 16 hours. Thereafter, the temperature was lowered to 40 ° C. and then washed with a sufficient amount of toluene to remove unreacted aluminum compounds. Again 100 mL of toluene was added, and 0.5 mmol of the metallocene catalyst prepared in Synthesis Example 1 was added thereto, followed by stirring for 2 hours. After the reaction was completed, the stirring was stopped, the toluene was separated and removed, and then the reduced pressure was removed at 40 ° C. to remove the toluene, thereby preparing a supported catalyst. Preparation Example 2
실온의 유리 반웅기에 를루엔 100 mL을 넣고 건조된 실리카 10 g를 투입한 후 반웅기 온도를 40°C로 올리면서 교반하였다. 실리카를 충분히 분산시킨 후, 10 wt% 메틸알루미녹산 (MAO)/를루엔 용액을 60.6 mL를 투입하고 온도를 80°C로 을린 후 200 rpm으로 16 시간 동안 교반하였다. 이 후 온도를 다시 40°C로 낮춘 후 층분한 양의 를루엔으로 세척하여 반응하지 않은 알루미늄 화합물을 제거하였다. 다시 를루엔 100 mL를 투입한 후, 상기 합성예 1에서 제조된 메탈로센 촉매 0.5 mm이을 투입하여 1 시간 동안 교반하였다. 다음에, 상기 합성예 2에서 제조된 메탈로센 촉매 으5 mm 을 추가로 투입하여 2 시간 동안 교반하였다. 반웅이 끝난 후 교반을 멈추고 를루엔층을 분리하여 제거한 후, 40°C에서 감압하여 를루엔을 제거하여, 담지 촉매를 제조하였다. 제조예 3 100 mL of toluene was added to a glass reaction vessel at room temperature, 10 g of dried silica was added thereto, and the reaction mixture was stirred while raising the reaction temperature to 40 ° C. After sufficiently dispersing the silica, 60.6 mL of 10 wt% methylaluminoxane (MAO) / luene solution was added thereto, the temperature was lowered to 80 ° C., and the mixture was stirred at 200 rpm for 16 hours. Thereafter, the temperature was lowered to 40 ° C., and then washed with a sufficient amount of toluene to remove unreacted aluminum compounds. Again 100 mL of toluene was added, and 0.5 mm of the metallocene catalyst prepared in Synthesis Example 1 was added thereto, followed by stirring for 1 hour. Next time 5 mm of the metallocene catalyst prepared in Synthesis Example 2 was further added, followed by stirring for 2 hours. After the reaction was completed, the stirring was stopped, the toluene layer was separated and removed, and the reduced pressure was removed at 40 ° C. to remove the toluene to prepare a supported catalyst. Preparation Example 3
제조예 2에서, 합성예 2의 메탈로센 촉매 대신 합성예 3의 메탈로센 촉매 In Preparation Example 2, metallocene catalyst of Synthesis Example 3 instead of the metallocene catalyst of Synthesis Example 2
0.5 mm이을 투입한 것을 제외하고는 상기 제조예 2와 동일한 방법으로 담지 촉매를 제조하였다. 제조예 4 A supported catalyst was prepared in the same manner as in Preparation Example 2, except that 0.5 mm was added thereto. Preparation Example 4
제조예 2에서, 합성예 2의 메탈로센 촉매 대신 합성예 4의 메탈로센 촉매 In Preparation Example 2, the metallocene catalyst of Synthesis Example 4 instead of the metallocene catalyst of Synthesis Example 2
0.5 mm이을 투입한 것을 제외하고는 상기 제조예 2와 동일한 방법으로 담지 촉매를 제조하였다. <분자량조절제의 제조 실시예 > A supported catalyst was prepared in the same manner as in Preparation Example 2, except that 0.5 mm was added thereto. <Production Example of Molecular Weight Control Agent>
제조예 5  Preparation Example 5
250 mL 등근 바닥 플라스크 (round ' bottom flask)에 비스 (사이클로펜타디에닐)티타늄 디클로라이드 (bis(cyclopentadienyl)-titanium dichloride) 0.83 g 및 핵산 50 mL를 순차적으로 투입한 후 교반하였다. 여기에 트리이소부틸알루미늄 (triisobutylalunium, 1M in hexane) 6 mL를 투입하고 상온에서 3일 동안 교반한 다음, 용매를 진공으로 제거하여 녹색 흔합물을 수득하였고 이 흔합물은 티타늄이 환원된 상태로서 산화되거나 색이 변하지 않았다. 이하에서 상기 녹색 흔합물은 정제 과정 없이 그대로 사용되었다. 0.83 g of bis (cyclopentadienyl) -titanium dichloride and 50 mL of nucleic acid were sequentially added to a 250 mL round ' bottom flask, followed by stirring. 6 mL of triisobutylalunium (1M in hexane) was added thereto, stirred at room temperature for 3 days, and then the solvent was removed in vacuo to obtain a green compound, which was oxidized as titanium reduced. Did not change color. In the following the green compound was used as it is without purification.
1H NMR (CDC13, 500 MHz): 6.3-6.6 (br m, 10H), 1.2-1.8 (br m, 4H), 0.8 (br s, 18H)  1 H NMR (CDC13, 500 MHz): 6.3-6.6 (br m, 10H), 1.2-1.8 (br m, 4H), 0.8 (br s, 18H)
<에틸렌 중합실시예 > <Ethylene Polymerization Example>
실시예 1  Example 1
상기 제조예 1에서 제조한 담지 촉매 30 mg을 드라이 박스에서 정량하여 50 mL의 유리병에 담은 후 고무 격박으로 밀봉하여 드라이 박스에서 꺼내어 주입할 촉매를 준비하였다. 중합은 기계식 교반기가 장착되어 있으며 온도 조절이 가능하고 고압에서 이용되는 2 L금속 합금 반응기에서 수행하였다. 이 반응기에 1.0 mm이의 트리에틸알루미늄 (triethylaluminum)이 들어 있는 핵산 1.2 L를 주입하고, 상기 준비한 담지 촉매를 반웅기에 공기 접촉 없이 투입한 후, 80°C에서 40 Kgf/ctn2의 압력의 기체 에틸렌 단량체와, 에틸렌 투입량 대비 0.25 mol%의 수소를 에틸렌과 함께 투입하면서 I 시간 동안 중합하였다. 중합의 종결은 먼저 반웅이 멈춘 후 에틸렌을 배기시켜 제거함으로써 완료시켰다. 이로부터 얻어진 중합체는 중합 용매를 여과시켜 대부분을 제거한 후 80°C 진공 오븐에서 4시간 동안 건조시켰다. 실시예 2 30 mg of the supported catalyst prepared in Preparation Example 1 was quantified in a dry box, placed in a 50 mL glass bottle, sealed with a rubber barrier, and taken out of the dry box to prepare a catalyst for injection. The polymerization is equipped with a mechanical stirrer and temperature controlled It was carried out in a 2 L metal alloy reactor where possible and used at high pressure. 1.2 L of nucleic acid containing 1.0 mm of triethylaluminum was injected into the reactor, and the supported catalyst was introduced into the reactor without air contact, followed by gas at a pressure of 40 Kgf / ctn 2 at 80 ° C. Ethylene monomer and 0.25 mol% of hydrogen relative to ethylene charge were added together with ethylene for polymerization for I hour. Termination of the polymerization was completed by first stopping the reaction and then evacuating and removing the ethylene. The polymer obtained therefrom was filtered to remove most of the polymerization solvent and then dried in an 80 ° C. vacuum oven for 4 hours. Example 2
상기 실시예 1에서, 에틸렌 투입시 에틸렌 투입량 대비 0.5 mol%의 수소를 에틸렌과 함께 투입하여 중합한 것을 제외하고는 실시예 1과 동일한 방법으로 에틸렌 중합을 실시하였다. 실시예 3  In Example 1, ethylene polymerization was carried out in the same manner as in Example 1, except that 0.5 mol% of hydrogen was added together with ethylene to polymerize ethylene. Example 3
상기 실시예 1에서, 상기 제조예 1에서 제조한 담지 촉매 대신, 상기 제조예 2의 담지 촉매 30 mg을 사용한 것올 제외하고는 실시예 1과 동일한 방법으로 에틸렌 중합을 실시하였다. 실시예 4  In Example 1, ethylene polymerization was carried out in the same manner as in Example 1, except that 30 mg of the supported catalyst of Preparation Example 2 was used instead of the supported catalyst prepared in Preparation Example 1. Example 4
상기 실시예 1에서, 상기 제조예 1에서 제조한 담지 촉매 대신, 상기 제조예 3의 담지 촉매 30 mg을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 에틸렌 중합을 실시하였다. 실시예 5  In Example 1, ethylene polymerization was carried out in the same manner as in Example 1, except that 30 mg of the supported catalyst of Preparation Example 3 was used instead of the supported catalyst prepared in Preparation Example 1. Example 5
상기 실시예 1 ½서, 상기 제조예 1에서 제조한 담지 촉매 대신, 상기 제조예 4의 담지 촉매 30 mg올 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 에틸렌 중합을 실시하였다. 실시예 6 상기 제조예 2에서 제조한 담지 촉매 30 mg을 드라이 박스에서 정량하여 50 mL의 유리병에 담은 후 고무 격박으로 밀봉하여 드라이 박스에서 꺼내어 주입할 촉매를 준비하였다. 중합은 기계식 교반기가 장착되어 있으며 온도 조절이 가능하고 고압에서 이용되는 2 L 금속 합금 반웅기에서 수행하였다. In Example 1½, ethylene polymerization was carried out in the same manner as in Example 1, except that 30 mg of the supported catalyst of Preparation Example 4 was used instead of the supported catalyst prepared in Preparation Example 1. Example 6 30 mg of the supported catalyst prepared in Preparation Example 2 was quantified in a dry box, placed in a 50 mL glass bottle, sealed with a rubber barrier, and taken out of the dry box to prepare a catalyst for injection. The polymerization was carried out in a 2 L metal alloy reactor, equipped with a mechanical stirrer, temperature controlled and used at high pressure.
이 반웅기에 1.0 mm이의 트리에틸알루미늄 (triethylaluminum)이 들어 있는 핵산 1.2 L를 주입한 후, 상기 제조예 5의 분자량 조절제를 알루미늄 1몰에 대하여 0.5 몰이 되도록 공기 접촉 없이 투입하였다. 상기 준비한 담지 촉매를 반웅기에 공기 접촉 없이 투입한 후, 80°C에서 40 Kgf/cm2의 압력의 기체 에틸렌 단량체와, 에틸렌 투입량 대비 0.25 mol%의 수소를 에틸렌과 함께 계속적으로 투입하면서 1 시간 동안 중합하였다. 중합의 종결은 먼저 반웅이 멈춘 후 에틸렌을 배기시켜 제거함으로써 완료시켰다. 이로부터 얻어진 중합체는 중합 용매를 여과시켜 대부분을 제거한 후 80°C 진공 오본에서 4시간 동안 건조시켰다. 실시예 1 After injecting 1.2 L of nucleic acid containing triethylaluminum of 1.0 mm or less into the reaction vessel, the molecular weight regulator of Preparation Example 5 was introduced without air contact so as to be 0.5 mole with respect to 1 mole of aluminum. After the prepared supported catalyst was introduced into the reactor without air contacting, gas ethylene monomer at a pressure of 40 Kgf / cm 2 at 80 ° C. and 0.25 mol% of hydrogen relative to the ethylene content were continuously added together with ethylene for 1 hour. During the polymerization. Termination of the polymerization was completed by first stopping the reaction and then evacuating and removing the ethylene. The polymer obtained therefrom was filtered to remove most of the polymerization solvent and then dried for 4 hours in an 80 ° C vacuum Aubon. Example 1
상기 실시예 6에서, 상기 제조예 2에서 제조한 담지 촉매 대신, 상기 제조예 3의 담지 촉매 30 mg을 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 에틸렌 중합을 실시하였다. 실시예 8  In Example 6, ethylene polymerization was carried out in the same manner as in Example 6, except that 30 mg of the supported catalyst of Preparation Example 3 was used instead of the supported catalyst prepared in Preparation Example 2. Example 8
상기 실시예 6에서, 상기 제조예 2에서 제조한 담지 촉매 대신, 상기 제조예 4의 담지 촉매 30 mg을 사용한 것을 제외하고는 실시예 6과 동일한 방법으로 에틸렌 중합을 실시하였다. 상기 실시예 1 내지 8의 중합 조건을 하기 표 1에 정리하여 나타내었다. [표 1]  In Example 6, ethylene polymerization was carried out in the same manner as in Example 6, except that 30 mg of the supported catalyst of Preparation Example 4 was used instead of the supported catalyst prepared in Preparation Example 2. The polymerization conditions of Examples 1 to 8 are collectively shown in Table 1 below. TABLE 1
실시예 No. 촉매 전구체 수소 분자량 조절제  Example No. Catalyst precursor hydrogen molecular weight modifier
실시예 1 합성예 1 0. 25 mol% - 실시예 2 합성예 1 0.5 mol% - 실시예 3 합성예 1+합성예 2 0. 25 mol% - 실시예 4 합성예 1+합성예 3 0. 25 mol% - 실시예 5 합성예 1+합성예 4 0. 25 mol% - 실시예 6 합성예 1+합성예 2 0. 25 mol% 0.5 몰 (Al 1몰 대비) 실시예 7 합성예 1+합성예 3 0. 25 mol% 0.5 몰 (Al 1몰 대비) 실시예 8 합성예 1+합성예 4 0. 25 mol% 0.5 몰 (Al l몰 대비) 또한, 상기 실시예 1 내지 8의 중합에 따른 중합 활성, 폴리올레핀의 중량 평균 분자량 및 분자량 분포를 하기 표 2에 나타내었다. Example 1 Synthesis Example 1 0.25 mol%-Example 2 Synthesis Example 1 0.5 mol%-Example 3 Synthesis Example 1 + Synthesis Example 2 0. 25 mol%-Example 4 Synthesis Example 1 + Synthesis Example 3 0. 25 mol%- Example 5 Synthesis Example 1 + Synthesis Example 4 0.25 mol%-Example 6 Synthesis Example 1 Synthesis Example 2 0.25 mol% 0.5 mol (relative to 1 mol of Al) Example 7 Synthesis Example 1 + Synthesis Example 3 0 25 mol% 0.5 mol (relative to 1 mol of Al) Example 8 Synthesis Example 1 + Synthesis Example 4 0.25 mol% 0.5 mol (relative to Al lmol) Further, the polymerization activity according to the polymerization of Examples 1 to 8, The weight average molecular weight and molecular weight distribution of the polyolefins are shown in Table 2 below.
[표 2] TABLE 2
Figure imgf000038_0001
상기 표 2에서 알 수 있는 바와 같이, 본 발명의 폴리올레핀의 제조방법에 따르면, 메탈로센 화합물의 조합, 이의 수소에 대한 반응성, 및 분자량 조절제와의 상호 작용에 따라 다양한 중량 평균 분자량 및 분자량 분포를 갖는 폴리을리핀의 제조가 가능하였다. 이에 따라, 메탈로센 화합물의 구체적인 조합과, 수소 및 분자량 조절제의 선택적인 사용에 따라 원하는 물성올 갖는 폴리을레핀을 용이하게 제조할 수 있을 것으로 기대된다.
Figure imgf000038_0001
As can be seen in Table 2, according to the production method of the polyolefin of the present invention, various weight average molecular weight and molecular weight distribution depending on the combination of the metallocene compound, its reactivity to hydrogen, and the interaction with the molecular weight modifier It was possible to prepare polylipin having. Accordingly, it is expected that polyolefins having desired physical properties can be easily produced according to specific combinations of metallocene compounds and selective use of hydrogen and molecular weight modifiers.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상 및 조촉매가 담체에 담지된 담지 메탈로센 촉매와 수소 기체의 존재 하에, 올레핀계 단량체를 중합하는 단계를 포함하는 폴리올레핀의 제조 방법:  A method for producing a polyolefin comprising polymerizing an olefinic monomer in the presence of hydrogen gas and a supported metallocene catalyst having at least one first metallocene compound represented by Formula 1 and a promoter supported on a carrier:
[  [
Figure imgf000039_0001
Figure imgf000039_0001
상기 화학식 1에서,  In Chemical Formula 1,
A는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;  A is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, C7 to C20 arylalkyl group, C1 to C20 alkoxy group, C2 to C20 C20 alkoxyalkyl group, C3 to C20 heterocycloalkyl group, or C5 to C20 heteroaryl group;
D는 -0-, -S-, -N(R)- 또는 -Si(R)(R')- 이고, 여기서 R 및 R'은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, 또는 C6 내지 C20의 아릴기이고;  D is -0-, -S-, -N (R)-or -Si (R) (R ')-, wherein R and R' are the same as or different from each other, and are each independently hydrogen, halogen, C1 to An alkyl group of C20, an alkenyl group of C2 to C20, or an aryl group of C6 to C20;
L은 C1 내지 C10의 직쇄 또는 분지쇄 알킬렌기이고;  L is a C1 to C10 straight or branched chain alkylene group;
B는 탄소, 실리콘 또는 게르마늄이고;  B is carbon, silicon or germanium;
Q는 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고;  Q is hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group;
M은 4족 전이금속이며;  M is a Group 4 transition metal;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고; X 1 and X 2 are the same as or different from each other, and each independently halogen, C 1 to C 20 alkyl group, C 2 to C 20 alkenyl group, C 6 to C 20 aryl group, nitro group, amido group, C 1 to C 20 alkylsilyl group , A C1 to C20 alkoxy group, or a C1 to C20 sulfonate group;
C1 및 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b 또는 하기 화학식 2c 중 하나로 표시되고, 단, C1 및 C2가 모두 화학식 2c인 경우는 제외하며; C 1 and C 2 are the same as or different from each other, and are each independently represented by one of the following Chemical Formula 2a, Chemical Formula 2b, or Chemical Formula 2c, provided that both C 1 and C 2 are Except for 2c;
Figure imgf000040_0001
Figure imgf000040_0001
상기 화학식 2a, 2b 및 2c에서,  In Chemical Formulas 2a, 2b, and 2c,
R1 내지 R17 및 R1' 내지 R9'는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이며, 상기 R10 내지 R17 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다.  R1 to R17 and R1 'to R9' are the same as or different from each other, and each independently hydrogen, halogen, C1 to C20 alkyl group, C2 to C20 alkenyl group, C1 to C20 alkylsilyl group, C1 to C20 silylalkyl group , C1 to C20 alkoxysilyl group, C1 to C20 alkoxy group, C6 to C20 aryl group, C7 to C20 alkylaryl group, or C7 to C20 arylalkyl group, two of R10 to R17 adjacent to each other The foregoing can be linked to each other to form a substituted or unsubstituted aliphatic or aromatic ring.
【청구항 2】 제 1항에 있어서, 상기 담지 메탈로센 촉매는 하기 화학식 3 내지 5로 표시되는 화합물 중에서 선택되는 1종 이상의 제 2 메탈로센 화합물을 더 포함하는, 폴리올레핀의 제조 방법: [Claim 2] The method of claim 1, wherein the supported metallocene catalyst further comprises at least one second metallocene compound selected from compounds represented by the following Chemical Formulas 3-5:
[화학식 3][Formula 3 ]
Figure imgf000041_0001
Figure imgf000041_0001
상기 화학식 3에서,  In Chemical Formula 3,
M1은 4족 전이금속이고; M 1 is a Group 4 transition metal;
Cp1 및 Cp2는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디엔닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐, 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 1 and Cp 2 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl, and fluorenyl radicals One, they may be substituted with a hydrocarbon of 1 to 20 carbon atoms;
Ra 및 Rb는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시 , C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R a and R b are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 Alkenyl to C20, alkylaryl of C7 to C40, arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
Z1은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시,또는 C7 내지 C40의 아릴알콕시이고; Z 1 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , A substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
n은 1 또는 0 이고;  n is 1 or 0;
【청구항 3】 [Claim 3]
제 1항에 있어서, 상기 화학식 1≤ 표시되는 메탈로센 화합물은 하기 구조식들로 군에서 선택되는 폴리을레핀의 제조 방법: The method of claim 1, wherein the production method of the polrieul repin selected from the group in the metallocene compound has the following structural formula as a metal represented the formula 1≤:
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000045_0001
Figure imgf000045_0001
[화학식 4] [Formula 4]
Figure imgf000041_0002
Figure imgf000041_0002
상기 화학식 4에서,  In Chemical Formula 4,
M2는 4족 전이 금속이고; M 2 is a Group 4 transition metal;
Cp3 및 Cp4는 서로 동일하거나 상이하고, 각각 독립적으로 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 3 and Cp 4 are the same as or different from each other, and are each independently selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals They may be substituted with a hydrocarbon having 1 to 20 carbon atoms;
Rc 및 Rd는 서로 동일하거나 상이하고, 각각 독립적으로 수소, C1 내지 C20의 알킬, CI 내지 CIO의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내자 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R c and R d are the same as or different from each other, and each independently hydrogen, C1 to C20 alkyl, C1 to CIO alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl Arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
Z2는 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지Z 2 is a halogen atom, C 1 to C 20 alkyl, C 2 to C 10 alkenyl, C 7 to
C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고; C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene, substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 aryl Alkoxy;
B1은 Cp3Rc 고리와 Cp4Rd 고리를 가교 결합시키거나, 하나의 Cp4Rd 고리를 M2에 가교 결합시키는, 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼 중 하나 이상 또는 이들의 조합이고; B 1 is one or more of a carbon, germanium, silicon, phosphorus or nitrogen atom containing radical which crosslinks the Cp 3 R c ring and the Cp 4 R d ring or crosslinks one Cp 4 R d ring with M 2 Or a combination thereof;
m은 1 또는 0 이고;  m is 1 or 0;
[화학식 5] [Formula 5 ]
(Cp5Re)B2(J)M3Z3 2 (Cp 5 R e ) B 2 (J) M 3 Z 3 2
상기 화학식 5에서,  In Chemical Formula 5,
M3은 4족 전이 금속이고; M 3 is a Group 4 transition metal;
Cp5는 시클로펜타디에닐, 인데닐, 4,5,6,7-테트라하이드로 -1-인데닐 및 플루오레닐 라디칼로 이루어진 군으로부터 선택된 어느 하나이고, 이들은 탄소수 1 내지 20의 탄화수소로 치환될 수 있으며; Cp 5 is any one selected from the group consisting of cyclopentadienyl, indenyl, 4,5,6,7-tetrahydro-1-indenyl and fluorenyl radicals, which may be substituted with hydrocarbons having 1 to 20 carbon atoms Can be;
Re는 수소, C1 내지 C20의 알킬, C1 내지 C10의 알콕시, C2 내지 C20의 알콕시알킬, C6 내지 C20의 아릴, C6 내지 C10의 아릴옥시, C2 내지 C20의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C8 내지 C40의 아릴알케닐, 또는 C2 내지 C10의 알키닐이고; R e is hydrogen, C1 to C20 alkyl, C1 to C10 alkoxy, C2 to C20 alkoxyalkyl, C6 to C20 aryl, C6 to C10 aryloxy, C2 to C20 alkenyl, C7 to C40 alkylaryl Arylalkyl of C7 to C40, arylalkenyl of C8 to C40, or alkynyl of C2 to C10;
Z3은 할로겐 원자, C1 내지 C20의 알킬, C2 내지 C10의 알케닐, C7 내지 C40의 알킬아릴, C7 내지 C40의 아릴알킬, C6 내지 C20의 아릴, 치환되거나 치환되지 않은 C1 내지 C20의 알킬리덴, 치환되거나 치환되지 않은 아미노기, C2 내지 C20의 알킬알콕시 , 또는 C7 내지 C40의 아릴알콕시이고; Z 3 is a halogen atom, C1 to C20 alkyl, C2 to C10 alkenyl, C7 to C40 alkylaryl, C7 to C40 arylalkyl, C6 to C20 aryl, substituted or unsubstituted C1 to C20 alkylidene , Substituted or unsubstituted amino group, C2 to C20 alkylalkoxy, or C7 to C40 arylalkoxy;
B2는 Cp5Re 고리와 J를 가교 결합시키는 탄소, 게르마늄, 규소, 인 또는 질소 원자 함유 라디칼중 하나 이상 또는 이들의 조합이고; B 2 is one or more or a combination of carbon, germanium, silicon, phosphorus or nitrogen atom containing radicals which crosslink the Cp 5 R e ring and J;
J는 NRf, 0, PRf 및 S로 이루어진 군에서 선택된 어느 하나이고, 상기 Rf는 CI 내지 C20의 알킬, 아릴, 치환된 알킬 또는 치환된 아릴이다 J is any one selected from the group consisting of NR f , 0, PR f and S, wherein R f is Alkyl, aryl, substituted alkyl or substituted aryl of CI to C 2 0
【청구항 5】 [Claim 5]
거 I2항에 있어서, 상기 화학식 4로 표시되는 제 2 메탈로센 화합물은 하기 구조식들로 이루어진 군에서 선택되는 폴리올레핀의 제조 방법: I according to I 2, wherein the metallocene compound to the second metal represented by the general formula (4) A method of manufacturing a polyolefin selected from the group consisting of the following structural formula:
Figure imgf000046_0003
Figure imgf000046_0003
Figure imgf000047_0001
Figure imgf000047_0001
【청구항 6】 [Claim 6]
제 2항에 있어서, 상기 화학식 5로 표시되는 제 2 메탈로센 화합물은 하기 구조식들로 이루어진 군에서 선택되는 폴리올레핀의 제조 방법:  The method of claim 2, wherein the second metallocene compound represented by Chemical Formula 5 is selected from the group consisting of the following structural formulas:
Figure imgf000047_0002
Figure imgf000047_0003
Figure imgf000047_0002
Figure imgf000047_0003
Figure imgf000048_0001
Figure imgf000048_0001
【청구항 7] [Claim 7]
제 1항에 있어서, 상기 담체는 실리카, 실리카-알루미나 및 실리카- 마그네시아로 이루어진 군으로부터 선택되는 폴리올레핀의 제조 방법.  The method of claim 1, wherein the carrier is selected from the group consisting of silica, silica-alumina, and silica-magnesia.
【청구항 8】 [Claim 8]
제 1항에 있어서, 상기 조촉매는 하기 화학식 6의 알루미늄 함유 제 1 조촉매와, 하기 화학식 6의 보레이트계 제 2 조촉매를 포함하는 폴리올레핀의 제조 방법:  The method of claim 1, wherein the promoter comprises an aluminum-containing first promoter of Formula 6 and a borate-based second promoter of Formula 6
【청구항 9】 [Claim 9]
제 1항에 있어서, 상기 올레핀계 단량체는 에틸렌, 프로필렌, 1-부텐, 1-핵센, 1-옥텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-데센, 1-운데센, 1-도데센, 노보넨, 에틸리덴노보넨, 스티렌, 알파 -메틸스티렌 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택된 1종 이상의 단량체를 포함하는 폴리을레핀의 제조 방법. The method of claim 1, wherein the olefin monomer is ethylene, propylene, 1-butene, 1-nuxene, 1-octene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-decene , 1-undecene, 1-dodecene, norbornene, A method for producing a polyolefin, comprising at least one monomer selected from the group consisting of ethylidene norbornene, styrene, alpha -methyl styrene, and 3-chloromethyl styrene.
【청구항 10] [Claim 10]
제 1항 또는 제 2항에 있어서, 분자량 조절제를 추가로 투입하여 을레핀계 단량체를 중합하는 폴리올레핀의 제조 방법.  The method for producing a polyolefin according to claim 1 or 2, wherein a molecular weight modifier is further added to polymerize the olefinic monomers.
【청구항 1 1】 [Claim 1 11]
제 10항에 있어서, 상기 분자량 조절제는 하기 화학식 8의 시클로펜타디에닐 금속 화합물과, 하기 화학식 9의 유기 알루미늄 화합물의 흔합물 또는 이들의 반웅 생성물을 포함하는 폴리올레핀의 제조 방법:  The method of claim 10, wherein the molecular weight modifier comprises a cyclopentadienyl metal compound represented by the following Chemical Formula 8 and an organoaluminum compound represented by the following Chemical Formula 9 or a reaction product thereof:
【청구항 12】 [Claim 12]
제 10항에 있어서, 상기 분자량 조절제는 상기 제 1 및 제 2 메탈로센 화합물에 포함된 전이금속 : 상기 분자량 조절제의 몰비가 1 : 0.1 내지 1 : 2가 되게 사용하는 폴리올레핀의 제조 방법.  The method for producing a polyolefin according to claim 10, wherein the molecular weight modifier is used so that the molar ratio of transition metal: molecular weight modifier contained in the first and second metallocene compounds is 1: 0.1 to 1: 2.
【청구항 13】 [Claim 13]
제 1항의 폴리올레핀 제조 방법에 따라 제조된 폴리을레핀. Polyolefin produced according to the polyolefin production method of claim 1.
【청구항 14】 [Claim 14]
제 13항에 있어서, 중량 평균 분자량이 100,000 내지 2,000,000 g/m이인 폴리을레핀.  The polyolefin according to claim 13, wherein the weight average molecular weight is 100,000 to 2,000,000 g / m.
【청구항 15] [Claim 15]
제 13항에 있어서, 분자량 분포가 2.0 내지 25인 폴리올레핀.  The polyolefin according to claim 13, wherein the molecular weight distribution is from 2.0 to 25.
【청구항 16】 [Claim 16]
제 13항에 있어서, 대형 제품용으로 사용되는 폴리올레핀.  The polyolefin of claim 13 used for large product.
PCT/KR2015/005580 2014-06-03 2015-06-03 Method of preparing polyolefin and polyolefin prepared by said method WO2015186970A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15803721.8A EP3106474B1 (en) 2014-06-03 2015-06-03 Method of preparing a polyolefin
US15/303,437 US9988469B2 (en) 2014-06-03 2015-06-03 Method for preparing polyolefin and polyolefin prepared thereby
JP2016559950A JP6458050B2 (en) 2014-06-03 2015-06-03 Polyolefin production method and polyolefin produced therefrom
CN201580019993.XA CN106232635B (en) 2014-06-03 2015-06-03 Be used to prepare polyolefin method and thus obtained polyolefin

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140067697 2014-06-03
KR10-2014-0067697 2014-06-03
KR1020150078104A KR101705340B1 (en) 2014-06-03 2015-06-02 Method for preparing polyolefin and polyolefin prepared therefrom
KR10-2015-0078104 2015-06-02

Publications (1)

Publication Number Publication Date
WO2015186970A1 true WO2015186970A1 (en) 2015-12-10

Family

ID=54766989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005580 WO2015186970A1 (en) 2014-06-03 2015-06-03 Method of preparing polyolefin and polyolefin prepared by said method

Country Status (1)

Country Link
WO (1) WO2015186970A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170106192A (en) * 2016-03-11 2017-09-20 주식회사 엘지화학 Supported hybrid catalyst system for ethylene slurry polymerization and method for preparing ethylene polymer with the catalyst system
JP2018529826A (en) * 2016-02-24 2018-10-11 エルジー・ケム・リミテッド Hybrid supported metallocene catalyst and method for producing polyolefin using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010064A1 (en) * 2003-07-07 2005-02-03 Equistar Chemicals, Lp Olefin polymerization process
KR20050024287A (en) * 2002-05-31 2005-03-10 에퀴스타 케미칼즈, 엘피 High-temperature olefin polymerisation process in solution
WO2009032049A1 (en) * 2007-09-04 2009-03-12 Equistar Chemicals, Lp Olefin polymerization process
US20120059135A1 (en) * 2009-03-30 2012-03-08 Mitsui Chemicals, Inc. Copolymer of olefin and conjugated diene, and process for producing the same
KR20120087706A (en) * 2011-01-28 2012-08-07 주식회사 엘지화학 Metallocene compounds and olefin based polymer prepared by using the same
WO2015056975A1 (en) * 2013-10-18 2015-04-23 주식회사 엘지화학 Hybrid-supported metallocene catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024287A (en) * 2002-05-31 2005-03-10 에퀴스타 케미칼즈, 엘피 High-temperature olefin polymerisation process in solution
WO2005010064A1 (en) * 2003-07-07 2005-02-03 Equistar Chemicals, Lp Olefin polymerization process
WO2009032049A1 (en) * 2007-09-04 2009-03-12 Equistar Chemicals, Lp Olefin polymerization process
US20120059135A1 (en) * 2009-03-30 2012-03-08 Mitsui Chemicals, Inc. Copolymer of olefin and conjugated diene, and process for producing the same
KR20120087706A (en) * 2011-01-28 2012-08-07 주식회사 엘지화학 Metallocene compounds and olefin based polymer prepared by using the same
WO2015056975A1 (en) * 2013-10-18 2015-04-23 주식회사 엘지화학 Hybrid-supported metallocene catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018529826A (en) * 2016-02-24 2018-10-11 エルジー・ケム・リミテッド Hybrid supported metallocene catalyst and method for producing polyolefin using the same
US11091568B2 (en) 2016-02-24 2021-08-17 Lg Chem, Ltd. Hybrid supported metallocene catalyst and polyolefin preparation method using same
KR20170106192A (en) * 2016-03-11 2017-09-20 주식회사 엘지화학 Supported hybrid catalyst system for ethylene slurry polymerization and method for preparing ethylene polymer with the catalyst system
KR102064990B1 (en) 2016-03-11 2020-03-02 주식회사 엘지화학 Supported hybrid catalyst system for ethylene slurry polymerization and method for preparing ethylene polymer with the catalyst system

Similar Documents

Publication Publication Date Title
KR101705340B1 (en) Method for preparing polyolefin and polyolefin prepared therefrom
JP6282341B2 (en) Hybrid supported metallocene catalyst
JP6247751B2 (en) Method for producing hybrid supported metallocene catalyst
KR102285480B1 (en) Polyethylene copolymer and method for preparing the same
KR101726820B1 (en) Ethylene/1-hexene or ethylene/1-butene copolymer having excellent processibility and environmental stress crack resistance
JP6488002B2 (en) Olefin polymer excellent in processability
KR101709688B1 (en) Method for preparing polyolfin and polyolefin prepared therefrom
JP2017518423A (en) Polyolefin with excellent environmental stress crack resistance
WO2016036204A1 (en) Olefin-based polymer with excellent processability
JP6450467B2 (en) Method for producing metallocene supported catalyst
JP2018522993A (en) Hybrid supported catalyst system for ethylene slurry polymerization and method for producing ethylene polymer using the same
KR102028736B1 (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
KR20160123172A (en) Ethylene/alpha-olefin copolymer having excellent processibility
KR101606825B1 (en) Method for preparing of supported hybrid metallocene catalyst
WO2015056975A1 (en) Hybrid-supported metallocene catalyst
KR101725351B1 (en) Method for preparing supported hybrid metallocene catalyst, and supported hybrid metallocene catalyst using the same
WO2015186970A1 (en) Method of preparing polyolefin and polyolefin prepared by said method
WO2015194813A1 (en) Polyolefin having excellent environmental stress crack resistance
WO2015056974A1 (en) Method for producing hybrid-supported metallocene catalyst
KR102215024B1 (en) Method for preparing polyolfin
KR20200090041A (en) Method for preparing supported hybrid metallocene catalyst and method for preparing olefin polymer using the same
WO2017155211A1 (en) Supported hybrid catalyst system for slurry polymerization of ethylene, and method for preparing ethylene polymer by using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803721

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015803721

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015803721

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016559950

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15303437

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE