WO2015186740A1 - Mems structure - Google Patents

Mems structure Download PDF

Info

Publication number
WO2015186740A1
WO2015186740A1 PCT/JP2015/066041 JP2015066041W WO2015186740A1 WO 2015186740 A1 WO2015186740 A1 WO 2015186740A1 JP 2015066041 W JP2015066041 W JP 2015066041W WO 2015186740 A1 WO2015186740 A1 WO 2015186740A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
torsion bar
mems structure
weight
weight portion
Prior art date
Application number
PCT/JP2015/066041
Other languages
French (fr)
Japanese (ja)
Inventor
潤弥 松岡
辻 信昭
夕輝 植屋
威 岡見
崇 溝田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015186740A1 publication Critical patent/WO2015186740A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/5755Structural details or topology the devices having a single sensing mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present invention relates to a MEMS structure manufactured using MEMS (Micro Electro Mechanical Systems) technology.
  • MEMS structures manufactured using MEMS technology have been used in various sensors (for example, acceleration sensors and gyro sensors) for detecting physical quantities.
  • a MEMS structure used for such a sensor has a movable part including a weight part that can be displaced by an external cause, and converts the deformation and displacement of the movable part into an electrical signal and outputs the physical quantity, thereby obtaining a physical quantity. Configured to detect.
  • Patent Document 1 As an invention related to such a MEMS structure, for example, an invention described in JP 2011-083844 A (Patent Document 1) is known.
  • the MEMS device described in Patent Document 1 includes a lower electrode fixed on a substrate surface, and a first drive arm and a second drive arm that function as the movable part (weight part).
  • the first drive arm and the second drive arm in Patent Document 1 are cantilever beams extending horizontally from the first anchor base and the second anchor base formed on the substrate surface with a space between the lower electrode and the lower electrode.
  • the tip of each drive arm moves in the direction approaching / separating from the lower electrode (Z direction in Patent Document 1). ing.
  • the first drive arm and the second drive arm that function as weight portions have a degree of freedom only in a predetermined direction (Z direction).
  • Z direction a predetermined direction
  • a MEMS structure having a degree of freedom of the weight portion in two directions any two of the X direction, the Y direction, and the Z direction is desired.
  • a case will be considered in which a sensor is configured using a MEMS structure that supports one end of the weight portion and has the other end as a free end.
  • the free end of the weight portion is located closer to the lower electrode side than the fixed end side (that is, one end portion side).
  • the electrostatic attractive force generated by the lower electrode increases with the square of the distance between the weight portion and the lower electrode, a larger electrostatic attractive force acts on the free end of the weight portion.
  • the portion including the weight portion when the portion including the weight portion is vibrated in a direction parallel to the lower electrode surface, the free end side of the weight portion is located on the lower electrode side.
  • the gap between the part and the lower electrode changes with horizontal vibration. That is, when this configuration is adopted, the capacitance between the weight portion and the lower electrode changes with the change in the gap, and therefore, an interference signal (Quadrature that may be confused with the Coriolis force). (Error) may occur.
  • the present invention has been made in view of the above-described problems, and relates to a MEMS structure manufactured by using MEMS technology.
  • the present invention provides a degree of freedom in one direction with respect to one weight portion, and has high sensitivity and interference signal.
  • a MEMS structure capable of forming a sensor with a small amount of sensor.
  • a MEMS structure includes a support portion, and a movable portion that is supported by the support portion and moves relative to the support portion, and the movable portion has a rectangular plate shape.
  • a weight part formed on the frame part, a frame-like part surrounding an outer edge of the weight part, and one end side of the frame-like part, the frame-like part is supported swingably with respect to the support part and elastically deformable
  • the first torsion bar configured as described above and the other end side of the frame-like part opposite to the first torsion bar are supported so that the end of the weight part can swing relative to the frame-like part.
  • a second torsion bar configured to be elastically deformable.
  • the MEMS structure includes a support part and a movable part supported by the support part and moving relative to the support part.
  • the movable part includes a weight part, It has a frame-shaped portion, a first torsion bar, and a second torsion bar.
  • the weight part is supported by the 2nd torsion bar located in the other end side of a frame-shaped part so that rocking is possible with respect to a frame-shaped part. That is, the inclination of the weight part with respect to the frame-like part (that is, the magnitude of the swing) can be adjusted by the spring constant relating to the twist of the second torsion bar. Therefore, according to the MEMS structure, the weight of the rectangular plate shape can be moved in the vertical direction while maintaining the substantially horizontal state by the restoring force related to the twist of the first torsion bar and the second torsion bar. .
  • both the first torsion bar and the second torsion bar are configured to be elastically deformable
  • the weight portion when the weight portion moves in the horizontal direction, the first torsion bar and the second torsion bar Due to the displacement accompanying the elastic deformation of the bar, the weight portion can be moved while maintaining a substantially horizontal state. That is, according to the MEMS structure, since the weight portion is supported so as to be movable in two directions, the vertical direction and the horizontal direction, a degree of freedom in two directions can be given to one weight portion.
  • the weight part of the MEMS structure when the weight part of the MEMS structure is arranged on the substrate having the fixed electrode on the surface and the sensor is configured, the weight part moves in the vertical direction, and the weight part is also moved toward the fixed electrode. Move while keeping almost horizontal. Therefore, when the MEMS structure is used for a sensor, the average displacement amount of the weight portion can be increased by about 25% as compared with a configuration in which one end side of the weight portion is supported as in Patent Document 1 or the like.
  • the MEMS structure since the sensor detects a change in physical quantity based on a change amount of capacitance, and the change amount of capacitance is proportional to the average displacement amount, the MEMS structure can increase the sensitivity of the sensor.
  • the electrostatic attractive force is proportional to the square of the distance between the electrode plates, it acts strongly on the free end in a configuration that supports one end side of the weight portion as in Patent Document 1 and the like.
  • the weight portion in the MEMS structure moves in the vertical direction while maintaining a substantially horizontal state, the electrostatic attraction acting on the weight portion in the MEMS structure is applied to one end side of the weight portion described above. It is smaller than the electrostatic attractive force acting on the free end in the supporting configuration.
  • the electrostatic attraction acting on the weight portion can be reduced as compared with the configuration in which one end side of the weight portion is supported as in Patent Document 1 and the like, and the pull-in Occurrence of the phenomenon can be suppressed.
  • the weight portion is almost horizontal in any case. While maintaining this, it moves above the fixed electrode with vibration. That is, since the gap between the weight portion and the fixed electrode is less likely to change due to the vibration of the movable portion, generation of an interference signal (Quadrature Error) can be reduced by using the MEMES structure.
  • a MEMS structure according to another aspect of the present invention is the MEMS structure according to claim 1, wherein the frame-like portion connects between the first torsion bar and the second torsion bar. It has a pair of connecting parts configured to be elastically deformable.
  • the frame-shaped portion has a pair of connecting portions, and the pair of connecting portions connects the first torsion bar and the second torsion bar and is elastically deformable. It is configured.
  • the pair of connecting portions are elastically deformed both when the weight portion of the MEMS structure moves in the vertical direction and when it moves in the horizontal direction. Therefore, according to the MEMS structure, by adjusting the spring constants of the pair of connecting portions, it is possible to easily adjust the state of the weight portion during vertical movement and horizontal movement to a desired state.
  • the MEMS structure of the present invention it is possible to give a single weight part a degree of freedom in the biaxial direction, and it is possible to move the rectangular plate-shaped weight part while maintaining a substantially horizontal state.
  • the MEMS structure 1 according to the first embodiment is manufactured using a well-known MEMS (Micro Electro Mechanical Systems) technique, and constitutes a part of a capacitive angular velocity sensor. .
  • MEMS Micro Electro Mechanical Systems
  • the MEMS structure 1 includes a support portion 10 and a movable portion 20 that has a rectangular shape in plan view.
  • the sensor is disposed at a predetermined interval with respect to the substrate surface constituting the base portion of the sensor.
  • the direction along the longitudinal direction of the movable portion 20 is the X direction
  • the direction perpendicular to the X direction is along the short direction of the movable portion 20.
  • the Y direction and the direction perpendicular to both the X direction and the Y direction are defined as the Z direction.
  • the support portion 10 and the movable portion 20 can be vibrated in the X-axis direction.
  • an anchor or the like is formed by etching an electrically conductive low-resistance silicon material or the like.
  • the support portion 10 is arranged in parallel with a predetermined interval with respect to the substrate surface.
  • the support portion 10 has a vibration movable electrode (not shown), and can vibrate in the X direction by cooperating with a vibration fixed electrode (not shown) disposed on the substrate surface. Is formed.
  • the support 10 is electrically connected to an external circuit through a through hole (not shown) and a substrate electrode.
  • the movable portion 20 is a frame-like shape formed in a rectangular plate-like weight portion 21 and a rectangular frame shape surrounding the outer edge of the weight portion 21. It has a section 22, a first torsion bar 23, and a second torsion bar 24, and constitutes a detection part in a capacitive angular velocity sensor.
  • the movable portion 20 is formed to be movable relative to the support portion 10 and is disposed so as to face the fixed electrode disposed on the substrate surface with a predetermined interval. Therefore, the movable part 20 can change the electrostatic capacity between the movable part 20 and the fixed electrode by moving relative to the support part 10, and a change in angular velocity is detected by the change in the electrostatic capacity. can do.
  • the movable portion 20 is usually formed so as to be positioned substantially on the same plane as the support portion 10 (that is, when no external factors are acting)
  • the upper surface of the weight portion 21 and the upper surface of the frame-shaped portion 22 are at the same position in the Z direction as the upper surface of the support portion 10.
  • the weight portion 21 is formed in a substantially rectangular plate shape in plan view, and is disposed at a position facing the fixed electrode on the substrate surface. As will be described later, the weight portion 21 is disposed so as to be relatively displaceable with respect to the support portion 10, and by changing the distance between the fixed electrode and the facing area, The capacitance between the fixed electrodes can also be changed.
  • the frame-like part 22 is formed in a rectangular frame shape in plan view, and the inner wall of the frame-like part 22 is separated from the outer edge of the weight part 21 provided inside.
  • the frame-shaped portion 22 On one end side in the long side direction of the frame-shaped portion 22 (that is, the end portion on the ⁇ X direction side), the frame-shaped portion 22 is connected to the support portion 10 by a pair of first torsion bars. Therefore, the frame-like portion 22 is supported so as to be swingable with respect to the support portion 10 about the first torsion bar 23 as an axis, and the other end side of the frame-like portion 22 can be displaced in the Z direction.
  • a pair of second torsion is formed on the other end side in the long side direction of the frame-shaped portion 22 (that is, the end portion on the + X direction side), and the weights arranged inside the frame-shaped portion 22 The end of the part 21 and the frame-like part 22 are connected.
  • a pair of connecting portions 22A is formed on the long side portion of the frame-shaped portion 22 formed in a rectangular frame shape. 22 A of said connection parts are formed so that the rigidity lower than the short side part of the frame-shaped part 22 may be shown, and it is comprised so that bending deformation is possible to a Y direction and a Z direction.
  • the first torsion bar 23 is formed on one end side of the frame-shaped portion 22 in the long side direction (that is, the end portion on the ⁇ X direction side), and along the short side direction (Y direction) of the frame-shaped portion 22. It has a growing rod shape. One end portion of the first torsion bar 23 is connected to the support portion 10, and the other end portion is connected to one end side of the frame-like portion 22 in the X direction. Therefore, the first torsion bar 23 supports one end side of the frame-shaped portion 22 in the X direction so as to be swingable with respect to the support portion 10, and twists and deforms as the frame-shaped portion 22 swings. .
  • the second torsion bar 24 is formed on the other end side of the frame-shaped portion 22 in the long side direction (that is, the end portion on the + X direction side), and along the short side direction (Y direction) of the frame-shaped portion 22. It has a growing rod shape.
  • One end portion of the second torsion bar 24 is connected to the other end side of the frame-like portion 22 in the X direction, and the other end portion is connected to the other end portion of the weight portion 21 in the X direction. Accordingly, the second torsion bar 24 supports the other end portion side of the weight portion 21 in the X direction so as to be swingable with respect to the frame-shaped portion 22, and torsionally deforms as the weight portion 21 swings. To do.
  • the frame-like portion 22 of the movable portion 20 swings with respect to the support portion 10 with the first torsion bar 23 as an axis, and the frame on the + X direction side.
  • the end of the shape portion 22 is displaced in the ⁇ Z direction.
  • the first torsion bar 23 is twisted and deformed as the frame-shaped portion 22 swings. Therefore, the degree of swing (inclination) of the frame-like portion 22 relative to the support portion 10 is affected by the spring constant of the first torsion bar 23 that is torsionally deformed.
  • the connecting portion 22A in the frame-shaped portion 22 can be bent and deformed as the weight portion 21 is displaced in the ⁇ Z direction.
  • a second torsion bar 24 is disposed at the end of the frame-like portion 22 displaced in the ⁇ Z direction, and supports the end of the weight portion 21 so as to be swingable. ing. Accordingly, in this case, the weight portion 21 swings with respect to the frame-shaped portion 22 around the second torsion bar 24, and the end portion of the weight portion 21 in the ⁇ X direction is displaced in the ⁇ Z direction. At this time, the second torsion bar 24 is twisted and deformed as the weight portion 21 swings. Therefore, the degree of swing (inclination) of the weight portion 21 with respect to the frame-like portion 22 is affected by the spring constant of the second torsion bar 24 that is torsionally deformed.
  • the posture of the weight portion 21 when displaced in the Z direction is affected by the spring constants in the connecting portion 22A, the first torsion bar 23, and the second torsion bar 24.
  • the first torsion bar 23 and the second torsion bar 24 are strongly influenced. Therefore, according to the MEMS structure 1, by adjusting the spring constant of the first torsion bar 23 and the like, the weight portion 21 can be displaced in the Z direction while maintaining a horizontal posture with respect to the fixed electrode. It becomes possible.
  • the end portion of the frame-like portion 22 on the ⁇ X direction side is connected to the support portion 10 by the first torsion bar 23, and the end portion of the frame-like portion 22 on the + X direction side is a free end. It is configured.
  • the weight portion 21 of the movable portion 20 is displaced in the + Y direction
  • the end portion of the frame-like portion 22 on the + X direction side is moved so as to be displaced in the + Y direction.
  • the connecting portion 22A constituting the frame-like portion 22 is formed to be elastically deformable in the Y direction.
  • the weight portion 21 can be moved in the Y direction while maintaining the horizontal state with respect to the fixed electrode by the bending deformation of each connecting portion 22 ⁇ / b> A.
  • the deformation of the first torsion bar 23 and the second torsion bar 24 in the X direction can also be affected.
  • the connecting portion 22A, the first torsion bar 23, the second torsion bar 24, and the like are bent and deformed, so that they are affected by the spring constant of the connecting portion 22A and the like.
  • the weight portion 21 is displaced in the Y direction while maintaining a horizontal posture with respect to the fixed electrode. It becomes possible.
  • the MEMS structure 1 includes the support portion 10 and the movable portion 20, and the movable portion 20 includes the weight portion 21, the frame-like portion 22, and the first torsion.
  • a bar 23 and a second torsion bar 24 are provided.
  • the frame-like portion 22 is supported at the end on the ⁇ X direction side so as to be swingable with respect to the support portion 10 by the first torsion bar 23, and the weight portion 21 is formed on the + X-direction side of the frame-like portion 22.
  • the second torsion bar 24 is supported so as to be swingable. Therefore, as shown in FIGS. 3 and 4, according to the MEMS structure 1, the spring structure of the first torsion bar 23 and the second torsion bar 24 is adjusted to be horizontal with respect to the fixed electrode.
  • the weight portion 21 can be displaced in the Z direction while maintaining the above.
  • the connecting portion 22A of the frame-like portion 22 is configured to be able to bend and deform in the Y direction. Therefore, as shown in FIGS. 5 to 7, according to the MEMS structure 1, the weight portion 21 is maintained while maintaining a horizontal state with respect to the fixed electrode by adjusting the spring constant of the connecting portion 22A. Can be displaced in the Y direction. As described above, according to the MEMS structure 1, the weight portion 21 is supported so as to be movable in the two directions of the Z direction and the Y direction. Therefore, the one weight portion 21 is given a degree of freedom in two directions. be able to.
  • the weight portion 21 when the weight portion 21 is displaced in the Z direction, the weight portion 21 can be displaced while maintaining a horizontal state. Compared to the case where the one end side is swingably supported, the average displacement amount of the weight portion 21 can be increased by about 25%, and the sensitivity of the sensor can be increased.
  • the weight portion 21 moves in the Z direction while maintaining a substantially horizontal state, so that the displacement amount of the weight portion 21 supports one end side of the weight portion. It becomes smaller than the amount of displacement of the free end in the configuration. Therefore, according to the MEMS structure 1, the electrostatic attraction acting on the weight portion 21 can be reduced as compared with the configuration supporting the one end portion side of the weight portion, and the occurrence of the pull-in phenomenon can be suppressed. it can.
  • the support portion 10 and the movable portion 20 are configured to vibrate in the X direction, and the weight portion 21 is displaced in either the Y direction or the Z direction. Is displaced in a horizontal state with respect to the fixed electrode. Therefore, according to the MEMS structure 1, the weight portion 21 can be moved in a horizontal state with respect to the fixed electrode in any process that vibrates in the X direction. Since the gap between the weight portion 21 and the fixed electrode is less likely to change due to vibration in the X direction, the MEMS structure 1 can reduce the generation of interference signals (Quadrature Error).
  • the MEMS structure 1 according to the second embodiment has substantially the same basic configuration as the MEMS structure 1 according to the first embodiment, and the arrangement position of the first torsion bar 23 is different.
  • the description of the same configuration as in the first embodiment will be omitted, and the configuration related to the difference will be described in detail.
  • the MEMS structure 1 includes a support portion 10 and a movable portion 20, and the movable portion 20 includes a weight portion 21, a frame-shaped portion 22, and the like.
  • the first torsion bar 23 and the second torsion bar 24 are provided.
  • the support portion 10 supports the frame-like portion 22 at the end on the ⁇ X direction side, as in the first embodiment.
  • the support portion 10 according to the second embodiment is formed to protrude toward the frame-shaped portion 22 at the short side center portion of the rectangular frame-shaped portion 22.
  • the first torsion bar 23 according to the second embodiment is formed in a bar shape extending along the Y direction from the support portion 10 located in the center portion of the short side of the frame-shaped portion 22.
  • the connection part 22A is connected. That is, the first torsion bar 23 according to the second embodiment supports the frame portion 22 on the ⁇ X direction side so as to be swingable with respect to the support portion 10, and the frame portion 22 on the ⁇ X direction side. Part of it.
  • the weight portion 21 can be displaced in the Z direction while maintaining a horizontal state with respect to the fixed electrode.
  • the connecting portion 22A of the frame-like portion 22 is configured to be able to bend and deform in the Y direction. Therefore, according to the MEMS structure 1, the spring constant of the connecting portion 22A is adjusted.
  • the weight portion 21 can be displaced in the Y direction while maintaining a horizontal state with respect to the fixed electrode.
  • the weight portion 21 is supported so as to be movable in the two directions of the Z direction and the Y direction even in the second embodiment. Two degrees of freedom can be given.
  • the weight portion 21 when the weight portion 21 is displaced in the Z direction, the weight portion 21 can be displaced while maintaining the horizontal state, so one end side of the plate-like weight portion. As compared with the case where the shaft is pivotably supported, the average displacement amount of the weight portion 21 can be increased by about 25%, and the sensitivity of the sensor can be increased.
  • the weight portion 21 moves in the Z direction while maintaining a substantially horizontal state. Therefore, the amount of displacement of the weight portion 21 is the free end in the configuration that supports the one end side of the weight portion. It becomes smaller than the displacement. Therefore, according to the MEMS structure 1, the electrostatic attraction acting on the weight portion 21 can be reduced as compared with the configuration supporting the one end portion side of the weight portion, and the occurrence of the pull-in phenomenon can be suppressed. it can.
  • the support portion 10 and the movable portion 20 are configured to vibrate in the X direction, and the weight portion 21 is displaced in either the Y direction or the Z direction. Is displaced in a horizontal state with respect to the fixed electrode. Therefore, according to the MEMS structure 1, the weight portion 21 can be moved in a horizontal state with respect to the fixed electrode in any process that vibrates in the X direction. Since the gap between the weight portion 21 and the fixed electrode is less likely to change due to vibration in the X direction, the MEMS structure 1 can reduce the generation of interference signals (Quadrature Error).
  • the present invention has been described above based on the embodiments.
  • the present invention is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention.
  • the physical quantity detected by the sensor using the MEMS structure is not limited to the angular velocity described above, and the direction in which the physical quantity can be detected (such as the Z direction) can be changed as appropriate.
  • the shape and configuration of each part constituting the MEMS structure 1 is an example, and may be changed as appropriate.
  • the MEMS structure 1 is an example of the MEMS structure of the present invention.
  • the support part 10 is an example of a support part.
  • the movable part 20 is an example of a movable part.
  • the weight part 21 is an example of a weight part.
  • the frame-shaped part 22 is an example of a frame-shaped part.
  • the connecting portion 22A is an example of a connecting portion.
  • the first torsion bar 23 is an example of a first torsion bar.
  • the second torsion bar 24 is an example of a second torsion bar.
  • the X direction and the Y direction are examples of plane directions parallel to the plane of the substrate.
  • the Z direction is an example of a direction perpendicular to the plane of the substrate.
  • 1 MEMS structure 10 support section, 20 movable section, 21 weight section, 22 frame section, 22A connection section, 23 first torsion bar, 24 second torsion bar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

An MEMS structure (1) has a support part (10) and a movable part (20), and the movable part (20) has a weight part (21), a frame-shaped part (22), a first torsion bar (23), and a second torsion bar (24). The frame-shaped part (22) is supported, on the -X direction end, by the first torsion bar (23) so as to be swingable in relation to the support part (10). The weight part (21) is swingably supported by the second torsion bar (24) on the end part of the frame-shaped part (22) on the + X direction side. A connection part (22A) of the frame part (22) is configured so as to be bendable in the Y direction. The weight part (21) is supported by the MEMS structure (1) so as to be movable in two directions, that is, the Z direction and the Y direction, and a single weight part (21) is provided with freedom in two directions.

Description

MEMS構造体MEMS structure
 本発明は、MEMS(Micro Electro Mechanical Systems)技術を用いて製造されたMEMS構造体に関する。 The present invention relates to a MEMS structure manufactured using MEMS (Micro Electro Mechanical Systems) technology.
 近年、MEMS技術を用いて製造されたMEMS構造体は、物理量を検出する為の種々のセンサ(例えば、加速度センサやジャイロセンサ等)に用いられている。このようなセンサに用いられるMEMS構造体は、外因によって変位可能な錘部を含む可動部を有しており、当該可動部の変形や変位を電気信号に変換して出力することで、物理量を検出するように構成される。 In recent years, MEMS structures manufactured using MEMS technology have been used in various sensors (for example, acceleration sensors and gyro sensors) for detecting physical quantities. A MEMS structure used for such a sensor has a movable part including a weight part that can be displaced by an external cause, and converts the deformation and displacement of the movable part into an electrical signal and outputs the physical quantity, thereby obtaining a physical quantity. Configured to detect.
 このようなMEMS構造体に関する発明として、例えば、特開2011-083844号公報(特許文献1)記載の発明が知られている。特許文献1記載のMEMSデバイスは、基板表面に固設された下部電極と、上記可動部(錘部)として機能する第1駆動腕、第2駆動腕とを有して構成されている。特許文献1における第1駆動腕及び第2駆動腕は、基板表面に形成された第1アンカーベース、第2アンカーベースから、下部電極との間に空間を隔てて、水平に伸びる片持ち梁状に形成されており、下部電極との間に電位差を生じさせると、各駆動腕の先端部が下部電極に対して近接・離間する方向(特許文献1におけるZ方向)へ移動するように構成されている。 As an invention related to such a MEMS structure, for example, an invention described in JP 2011-083844 A (Patent Document 1) is known. The MEMS device described in Patent Document 1 includes a lower electrode fixed on a substrate surface, and a first drive arm and a second drive arm that function as the movable part (weight part). The first drive arm and the second drive arm in Patent Document 1 are cantilever beams extending horizontally from the first anchor base and the second anchor base formed on the substrate surface with a space between the lower electrode and the lower electrode. When the potential difference is generated between the lower electrode and the lower electrode, the tip of each drive arm moves in the direction approaching / separating from the lower electrode (Z direction in Patent Document 1). ing.
特開2011-083844号公報JP 2011-083844 A
 上述したように、特許文献1記載のMEMSデバイスの場合、錘部として機能する第1駆動腕及び第2駆動腕は、所定の一方向(Z方向)に対してのみ自由度を有している。この点、MEMS構造体としては、二方向(X方向、Y方向、Z方向の内、何れか2つ)に錘部の自由度を有するMEMS構造体が望まれている。 As described above, in the case of the MEMS device described in Patent Document 1, the first drive arm and the second drive arm that function as weight portions have a degree of freedom only in a predetermined direction (Z direction). . In this regard, as the MEMS structure, a MEMS structure having a degree of freedom of the weight portion in two directions (any two of the X direction, the Y direction, and the Z direction) is desired.
 又、特許文献1記載のMEMSデバイスの駆動腕のように、錘部の一端部側を支持し、他端側を自由端として構成したMEMS構造体を用いてセンサを構成した場合について考察する。この場合、錘部の自由端は、固定端側(即ち、一端部側)よりも下部電極側に位置する。ここで、下部電極によって生じる静電引力は、錘部と下部電極との間の距離の二乗で増加する為、錘部の自由端には、より大きな静電引力が作用することになる。この結果、このような構成の場合、錘部の自由端が下部電極側に引き込まれた状態で安定し、元の状態(例えば、水平な状態)に復元し得ない現象(即ち、プルイン現象)が生じる虞がある。 Further, as in the case of the drive arm of the MEMS device described in Patent Document 1, a case will be considered in which a sensor is configured using a MEMS structure that supports one end of the weight portion and has the other end as a free end. In this case, the free end of the weight portion is located closer to the lower electrode side than the fixed end side (that is, one end portion side). Here, since the electrostatic attractive force generated by the lower electrode increases with the square of the distance between the weight portion and the lower electrode, a larger electrostatic attractive force acts on the free end of the weight portion. As a result, in such a configuration, a phenomenon in which the free end of the weight portion is stabilized in a state where it is drawn to the lower electrode side and cannot be restored to the original state (for example, a horizontal state) (ie, a pull-in phenomenon). May occur.
 更に、上述したセンサの構成において、下部電極表面に対して平行な方向に、錘部を含む部分を振動させた場合には、錘部の自由端側が下部電極側に位置しているため、錘部と下部電極の間のギャップが水平振動に伴って変化する。即ち、当該構成を採用した場合には、このギャップの変化に伴って、錘部と下部電極の間における静電容量が変化する為、コリオリの力と混同される可能性のある干渉信号(Quadrature Error)が発生してしまう場合がある。 Further, in the sensor configuration described above, when the portion including the weight portion is vibrated in a direction parallel to the lower electrode surface, the free end side of the weight portion is located on the lower electrode side. The gap between the part and the lower electrode changes with horizontal vibration. That is, when this configuration is adopted, the capacitance between the weight portion and the lower electrode changes with the change in the gap, and therefore, an interference signal (Quadrature that may be confused with the Coriolis force). (Error) may occur.
 本発明は、上述した課題に鑑みてなされたものであり、MEMS技術を用いて製造されたMEMS構造体に関し、一の錘部に対して二方向の自由度を与えると共に、高感度且つ干渉信号の少ないセンサを構成可能なMEMS構造体を提供する。 The present invention has been made in view of the above-described problems, and relates to a MEMS structure manufactured by using MEMS technology. The present invention provides a degree of freedom in one direction with respect to one weight portion, and has high sensitivity and interference signal. Provided is a MEMS structure capable of forming a sensor with a small amount of sensor.
 本発明の一側面に係るMEMS構造体は、支持部と、前記支持部に支持され、当該支持部に対して相対的に運動する可動部と、を有し、前記可動部は、矩形板状に形成された錘部と、前記錘部の外縁を囲む枠状部と、前記枠状部の一端側において、前記支持部に対して当該枠状部を揺動可能に支持すると共に弾性変形可能に構成された第1トーションバーと、前記第1トーションバーと逆側である前記枠状部の他端側において、前記錘部の端部を前記枠状部に対して揺動可能に支持すると共に弾性変形可能に構成された第2トーションバーと、を有することを特徴とする。 A MEMS structure according to one aspect of the present invention includes a support portion, and a movable portion that is supported by the support portion and moves relative to the support portion, and the movable portion has a rectangular plate shape. A weight part formed on the frame part, a frame-like part surrounding an outer edge of the weight part, and one end side of the frame-like part, the frame-like part is supported swingably with respect to the support part and elastically deformable The first torsion bar configured as described above and the other end side of the frame-like part opposite to the first torsion bar are supported so that the end of the weight part can swing relative to the frame-like part. And a second torsion bar configured to be elastically deformable.
 当該MEMS構造体は、支持部と、前記支持部に支持され、当該支持部に対して相対的に運動する可動部と、を有して構成されており、前記可動部は、錘部と、枠状部と、第1トーションバーと、第2トーションバーを有している。当該MEMS構造体に係る錘部が垂直方向に移動する場合、枠状部は、第1トーションバーによって支持された一端部側を軸として揺動する。この時、支持部に対する枠状部の傾き(即ち、揺動の大きさ)は、第1トーションバーの捩れに関するバネ定数によって調整可能となる。そして、錘部は、枠状部の他端側に位置する第2トーションバーによって、枠状部に対して揺動可能に支持されている。即ち、枠状部に対する錘部の傾き(即ち、揺動の大きさ)は、第2トーションバーの捩れに関するバネ定数によって調整可能となる。従って、当該MEMS構造体によれば、矩形板状の錘部を、第1トーションバー、第2トーションバーの捩れに係る復元力によって、ほぼ水平状態を保ったまま垂直方向に移動させることができる。又、第1トーションバー、第2トーションバーの何れも弾性変形可能に構成されているので、当該MEMS構造体によれば、錘部が水平方向に移動する場合、第1トーションバー、第2トーションバーの弾性変形に伴う変位によって、当該錘部をほぼ水平状態を保ったまま移動させることができる。即ち、当該MEMS構造体によれば、垂直方向、水平方向の二方向へ錘部を移動可能に支持しているので、一の錘部に対して二方向の自由度を与えることができる。 The MEMS structure includes a support part and a movable part supported by the support part and moving relative to the support part. The movable part includes a weight part, It has a frame-shaped portion, a first torsion bar, and a second torsion bar. When the weight part according to the MEMS structure moves in the vertical direction, the frame-like part swings around the one end part side supported by the first torsion bar. At this time, the inclination of the frame-like portion with respect to the support portion (that is, the magnitude of the swing) can be adjusted by the spring constant relating to the torsion of the first torsion bar. And the weight part is supported by the 2nd torsion bar located in the other end side of a frame-shaped part so that rocking is possible with respect to a frame-shaped part. That is, the inclination of the weight part with respect to the frame-like part (that is, the magnitude of the swing) can be adjusted by the spring constant relating to the twist of the second torsion bar. Therefore, according to the MEMS structure, the weight of the rectangular plate shape can be moved in the vertical direction while maintaining the substantially horizontal state by the restoring force related to the twist of the first torsion bar and the second torsion bar. . In addition, since both the first torsion bar and the second torsion bar are configured to be elastically deformable, according to the MEMS structure, when the weight portion moves in the horizontal direction, the first torsion bar and the second torsion bar Due to the displacement accompanying the elastic deformation of the bar, the weight portion can be moved while maintaining a substantially horizontal state. That is, according to the MEMS structure, since the weight portion is supported so as to be movable in two directions, the vertical direction and the horizontal direction, a degree of freedom in two directions can be given to one weight portion.
 又、当該MEMS構造体の錘部を表面上に固定電極を有する基板上に配置し、センサを構成した場合において、錘部が垂直方向に移動し、固定電極に近づく際にも、錘部は、ほぼ水平状態を保ったまま移動する。従って、当該MEMS構造体をセンサに用いた場合、特許文献1等のように錘部の一端部側を支持する構成に比べて、錘部の平均変位量を25%程高くすることができる。ここで、当該センサは、静電容量の変化量によって物理量の変化を検出し、静電容量の変化量は、平均変位量に比例する為、当該MEMS構造体は、センサの感度を高め得る。又、静電引力は、電極板間距離の二乗に比例する為、特許文献1等のように錘部の一端部側を支持する構成における自由端には強く働く。この点、当該MEMS構造体における錘部は、ほぼ水平状態を維持しつつ垂直方向に移動するので、当該MEMS構造体における錘部に作用する静電引力は、上述した錘部の一端部側を支持する構成における自由端に作用する静電引力よりも小さくなる。従って、当該MEMS構造体をセンサに用いた場合、特許文献1等のように錘部の一端部側を支持する構成に比べて、錘部に作用する静電引力を小さくすることができ、プルイン現象の発生を抑制することができる。 Further, when the weight part of the MEMS structure is arranged on the substrate having the fixed electrode on the surface and the sensor is configured, the weight part moves in the vertical direction, and the weight part is also moved toward the fixed electrode. Move while keeping almost horizontal. Therefore, when the MEMS structure is used for a sensor, the average displacement amount of the weight portion can be increased by about 25% as compared with a configuration in which one end side of the weight portion is supported as in Patent Document 1 or the like. Here, since the sensor detects a change in physical quantity based on a change amount of capacitance, and the change amount of capacitance is proportional to the average displacement amount, the MEMS structure can increase the sensitivity of the sensor. Further, since the electrostatic attractive force is proportional to the square of the distance between the electrode plates, it acts strongly on the free end in a configuration that supports one end side of the weight portion as in Patent Document 1 and the like. In this respect, since the weight portion in the MEMS structure moves in the vertical direction while maintaining a substantially horizontal state, the electrostatic attraction acting on the weight portion in the MEMS structure is applied to one end side of the weight portion described above. It is smaller than the electrostatic attractive force acting on the free end in the supporting configuration. Therefore, when the MEMS structure is used for a sensor, the electrostatic attraction acting on the weight portion can be reduced as compared with the configuration in which one end side of the weight portion is supported as in Patent Document 1 and the like, and the pull-in Occurrence of the phenomenon can be suppressed.
 更に、当該MEMS構造体を用いた上述した構成のセンサにおいて、固定電極表面に対して水平な方向に可動部を振動させる構成を採用した場合、錘部は、何れの場合においてもほぼ水平状態を保ったまま、振動に伴って固定電極の上方を移動する。即ち、錘部と固定電極との間のギャップが可動部の振動によって変化しにくくなるため、当該MEMES構造体を用いることにより、干渉信号(Quadrature Error)の発生を低減することができる。 Further, in the sensor having the above-described configuration using the MEMS structure, when the configuration in which the movable portion is vibrated in the horizontal direction with respect to the surface of the fixed electrode is adopted, the weight portion is almost horizontal in any case. While maintaining this, it moves above the fixed electrode with vibration. That is, since the gap between the weight portion and the fixed electrode is less likely to change due to the vibration of the movable portion, generation of an interference signal (Quadrature Error) can be reduced by using the MEMES structure.
 そして、本発明の他の側面に係るMEMS構造体は、請求項1記載のMEMS構造体であって、前記枠状部は、前記第1トーションバーと前記第2トーションバーとの間を結ぶと共に、弾性変形可能に構成された一対の連結部を有することを特徴とする。 A MEMS structure according to another aspect of the present invention is the MEMS structure according to claim 1, wherein the frame-like portion connects between the first torsion bar and the second torsion bar. It has a pair of connecting parts configured to be elastically deformable.
 当該MEMS構造体において、前記枠状部は、一対の連結部を有しており、当該一対の連結部は、前記第1トーションバーと前記第2トーションバーとの間を結ぶと共に、弾性変形可能に構成されている。ここで、一対の連結部は、当該MEMS構造体の錘部が垂直方向に移動する場合、及び水平方向に移動する場合の何れにおいても弾性変形する。従って、当該MEMS構造体によれば、一対の連結部のバネ定数を調整することで、錘部の垂直移動及び水平移動時の状態を、容易に所望の状態に調整することが可能となる。 In the MEMS structure, the frame-shaped portion has a pair of connecting portions, and the pair of connecting portions connects the first torsion bar and the second torsion bar and is elastically deformable. It is configured. Here, the pair of connecting portions are elastically deformed both when the weight portion of the MEMS structure moves in the vertical direction and when it moves in the horizontal direction. Therefore, according to the MEMS structure, by adjusting the spring constants of the pair of connecting portions, it is possible to easily adjust the state of the weight portion during vertical movement and horizontal movement to a desired state.
 本発明に係るMEMS構造体によれば、一の錘部に対して二軸方向の自由度を与えることができ、矩形板状の錘部をほぼ水平を保った状態で移動させ得る。 According to the MEMS structure of the present invention, it is possible to give a single weight part a degree of freedom in the biaxial direction, and it is possible to move the rectangular plate-shaped weight part while maintaining a substantially horizontal state.
第1実施形態に係るMEMS構造体の構成を示す平面図である。It is a top view which shows the structure of the MEMS structure which concerns on 1st Embodiment. 第1実施形態に係るMEMS構造体の構成を示す斜視図である。It is a perspective view which shows the structure of the MEMS structure which concerns on 1st Embodiment. MEMS構造体の垂直方向への動作に関する斜視図である。It is a perspective view regarding the operation | movement to the perpendicular direction of a MEMS structure. MEMS構造体を垂直方向への動作に関する側面図である。It is a side view regarding the operation | movement to a perpendicular direction of a MEMS structure. MEMS構造体の横方向への動作に関する斜視説明図である。It is a perspective explanatory view about the operation to the horizontal direction of a MEMS structure. MEMS構造体の横方向への動作に関する平面説明図である。It is plane explanatory drawing regarding the operation | movement to the horizontal direction of a MEMS structure. MEMS構造体の横方向への動作に関する側面説明図である。It is side surface explanatory drawing regarding the operation | movement to the horizontal direction of a MEMS structure. 第2実施形態に係るMEMS構造体の構成を示す平面図である。It is a top view which shows the structure of the MEMS structure which concerns on 2nd Embodiment.
 以下、本発明に係るMEMS構造体を、静電容量型の角速度センサの一部を構成するMEMS構造体1に適用した実施形態について図面を参照しつつ詳細に説明する。尚、下記の説明に用いる図面は、説明の便宜上、実際の寸法・縮尺とは異なって図示されている部分がある。 Hereinafter, an embodiment in which a MEMS structure according to the present invention is applied to a MEMS structure 1 constituting a part of a capacitive angular velocity sensor will be described in detail with reference to the drawings. In addition, the drawings used for the following description include portions that are illustrated differently from actual dimensions and scales for convenience of description.
 (第1実施形態)
 先ず、第1実施形態に係るMEMS構造体1の概略構成について、図面を参照しつつ詳細に説明する。上述したように、第1実施形態に係るMEMS構造体1は、公知のMEMS(Micro Electro Mechanical Systems)技術を用いて製造されており、静電容量型の角速度センサの一部を構成している。
(First embodiment)
First, a schematic configuration of the MEMS structure 1 according to the first embodiment will be described in detail with reference to the drawings. As described above, the MEMS structure 1 according to the first embodiment is manufactured using a well-known MEMS (Micro Electro Mechanical Systems) technique, and constitutes a part of a capacitive angular velocity sensor. .
 (MEMS構造体の構成)
 図1に示すように、MEMS構造体1は、支持部10と、平面視で長方形状を為す可動部20とを有しており、支持部10及び可動部20は、静電容量型の角速度センサのベース部分を構成する基板表面に対して所定の間隔を隔てて配置されている。
(Configuration of MEMS structure)
As shown in FIG. 1, the MEMS structure 1 includes a support portion 10 and a movable portion 20 that has a rectangular shape in plan view. The sensor is disposed at a predetermined interval with respect to the substrate surface constituting the base portion of the sensor.
 尚、以下の説明においては、図1に矢印で示すように、可動部20の長手方向に沿った方向をX方向、X方向に対して直角で可動部20の短手方向に沿った方向をY方向、X方向とY方向との両方に直角となる方向をZ方向と定義して説明する。 In the following description, as indicated by an arrow in FIG. 1, the direction along the longitudinal direction of the movable portion 20 is the X direction, and the direction perpendicular to the X direction is along the short direction of the movable portion 20. In the following description, the Y direction and the direction perpendicular to both the X direction and the Y direction are defined as the Z direction.
 又、当該角速度センサのベース部分を構成する基板表面には、後述する可動部20における錘部21の変位を検出する為の固定電極や、支持部10及び可動部20をX軸方向へ振動可能に支持する為のアンカー等が、例えば導電性を有する低抵抗なシリコン材料等にエッチング加工を施すことによって形成されている。 Further, on the substrate surface constituting the base portion of the angular velocity sensor, the fixed electrode for detecting the displacement of the weight portion 21 in the movable portion 20 described later, the support portion 10 and the movable portion 20 can be vibrated in the X-axis direction. For example, an anchor or the like is formed by etching an electrically conductive low-resistance silicon material or the like.
 当該MEMS構造体1において、支持部10は、基板表面に対して所定の間隔を隔てて平行に配置されている。当該支持部10は、振動用可動電極(図示せず)を有しており、基板表面に配設された振動用固定電極(図示せず)と協働させることによって、X方向に振動可能に形成されている。又、支持部10は、スルーホール(図示せず)、基板の電極を介して、外部回路と電気的に接続されている。 In the MEMS structure 1, the support portion 10 is arranged in parallel with a predetermined interval with respect to the substrate surface. The support portion 10 has a vibration movable electrode (not shown), and can vibrate in the X direction by cooperating with a vibration fixed electrode (not shown) disposed on the substrate surface. Is formed. The support 10 is electrically connected to an external circuit through a through hole (not shown) and a substrate electrode.
 図1、図2に示すように、MEMS構造体1に係る可動部20は、長方形をなす板状の錘部21と、前記錘部21の外縁を囲む方形の枠状に形成された枠状部22と、第1トーションバー23と、第2トーションバー24とを有しており、静電容量型の角速度センサにおける検出部分を構成する。可動部20は、支持部10に対して相対的に運動可能に形成されており、基板表面に配置された固定電極に対して、所定の間隔を隔てて対向するように配置されている。従って、可動部20は、支持部10に対して相対的に運動することによって、固定電極との間の静電容量を変化させることができ、当該静電容量の変化によって、角速度の変化を検出することができる。 As shown in FIG. 1 and FIG. 2, the movable portion 20 according to the MEMS structure 1 is a frame-like shape formed in a rectangular plate-like weight portion 21 and a rectangular frame shape surrounding the outer edge of the weight portion 21. It has a section 22, a first torsion bar 23, and a second torsion bar 24, and constitutes a detection part in a capacitive angular velocity sensor. The movable portion 20 is formed to be movable relative to the support portion 10 and is disposed so as to face the fixed electrode disposed on the substrate surface with a predetermined interval. Therefore, the movable part 20 can change the electrostatic capacity between the movable part 20 and the fixed electrode by moving relative to the support part 10, and a change in angular velocity is detected by the change in the electrostatic capacity. can do.
 尚、図1、図2に示すように、可動部20は、通常(即ち、何等の外因も作用していない場合)、支持部10と略同一平面上に位置するように形成されており、錘部21上面、枠状部22上面は、支持部10上面とZ方向における位置が同一となる。 As shown in FIGS. 1 and 2, the movable portion 20 is usually formed so as to be positioned substantially on the same plane as the support portion 10 (that is, when no external factors are acting) The upper surface of the weight portion 21 and the upper surface of the frame-shaped portion 22 are at the same position in the Z direction as the upper surface of the support portion 10.
 錘部21は、平面視が略長方形の板状に形成されており、基板表面の固定電極に対向する位置に配置されている。当該錘部21は、後述するように、当該支持部10に対して相対的に変位可能に配設されており、固定電極との間の距離や対向面積を変化させることによって、錘部21と固定電極の間の静電容量も変化させ得る。 The weight portion 21 is formed in a substantially rectangular plate shape in plan view, and is disposed at a position facing the fixed electrode on the substrate surface. As will be described later, the weight portion 21 is disposed so as to be relatively displaceable with respect to the support portion 10, and by changing the distance between the fixed electrode and the facing area, The capacitance between the fixed electrodes can also be changed.
 枠状部22は、平面視形状が長方形枠状に形成され、枠状部22の内壁が内側に設けられた錘部21の外縁と離間している。当該枠状部22の長辺方向における一端側(即ち、-X方向側の端部)において、一対の第1トーションバーによって、支持部10に対して接続されている。従って、枠状部22は、支持部10に対して、第1トーションバー23を軸として揺動可能に支持されており、枠状部22の他端側をZ方向へ変位させることができる。又、枠状部22の長辺方向における他端側(即ち、+X方向側の端部)には、一対の第2トーションが形成されており、当該枠状部22の内側に配置された錘部21の端部と、枠状部22とを接続している。 The frame-like part 22 is formed in a rectangular frame shape in plan view, and the inner wall of the frame-like part 22 is separated from the outer edge of the weight part 21 provided inside. On one end side in the long side direction of the frame-shaped portion 22 (that is, the end portion on the −X direction side), the frame-shaped portion 22 is connected to the support portion 10 by a pair of first torsion bars. Therefore, the frame-like portion 22 is supported so as to be swingable with respect to the support portion 10 about the first torsion bar 23 as an axis, and the other end side of the frame-like portion 22 can be displaced in the Z direction. Further, a pair of second torsion is formed on the other end side in the long side direction of the frame-shaped portion 22 (that is, the end portion on the + X direction side), and the weights arranged inside the frame-shaped portion 22 The end of the part 21 and the frame-like part 22 are connected.
 そして、長方形枠状に形成された枠状部22の長辺部分には、一対の連結部22Aが形成されている。当該連結部22Aは、枠状部22の短辺部分よりも低い剛性を示すように形成されており、Y方向、Z方向へ撓み変形可能に構成されている。 A pair of connecting portions 22A is formed on the long side portion of the frame-shaped portion 22 formed in a rectangular frame shape. 22 A of said connection parts are formed so that the rigidity lower than the short side part of the frame-shaped part 22 may be shown, and it is comprised so that bending deformation is possible to a Y direction and a Z direction.
 第1トーションバー23は、長辺方向における枠状部22の一端側(即ち、-X方向側の端部)に形成されており、枠状部22の短辺方向(Y方向)に沿って伸びる棒状をなしている。第1トーションバー23の一端部は、支持部10に対して接続されており、他端部は、X方向における枠状部22の一端側に接続されている。従って、当該第1トーションバー23は、X方向における枠状部22の一端側を、支持部10に対して揺動可能に支持しており、枠状部22の揺動に伴って捩れ変形する。 The first torsion bar 23 is formed on one end side of the frame-shaped portion 22 in the long side direction (that is, the end portion on the −X direction side), and along the short side direction (Y direction) of the frame-shaped portion 22. It has a growing rod shape. One end portion of the first torsion bar 23 is connected to the support portion 10, and the other end portion is connected to one end side of the frame-like portion 22 in the X direction. Therefore, the first torsion bar 23 supports one end side of the frame-shaped portion 22 in the X direction so as to be swingable with respect to the support portion 10, and twists and deforms as the frame-shaped portion 22 swings. .
 第2トーションバー24は、長辺方向における枠状部22の他端側(即ち、+X方向側の端部)に形成されており、枠状部22の短辺方向(Y方向)に沿って伸びる棒状をなしている。第2トーションバー24の一端部は、X方向における枠状部22の他端側に対して接続されており、他端部は、X方向における錘部21の他端部に接続されている。従って、当該第2トーションバー24は、X方向における錘部21の他端部側を、枠状部22に対して揺動可能に支持しており、錘部21の揺動に伴って捩れ変形する。 The second torsion bar 24 is formed on the other end side of the frame-shaped portion 22 in the long side direction (that is, the end portion on the + X direction side), and along the short side direction (Y direction) of the frame-shaped portion 22. It has a growing rod shape. One end portion of the second torsion bar 24 is connected to the other end side of the frame-like portion 22 in the X direction, and the other end portion is connected to the other end portion of the weight portion 21 in the X direction. Accordingly, the second torsion bar 24 supports the other end portion side of the weight portion 21 in the X direction so as to be swingable with respect to the frame-shaped portion 22, and torsionally deforms as the weight portion 21 swings. To do.
 (Z方向への変位時の動作)
 上述した第1実施形態に係るMEMS構造体1において、可動部20がZ方向に変位する場合の動作について、図3、図4を参照しつつ説明する。尚、以下の説明においては、可動部20の錘部21が-Z方向に変位する場合を例として説明する。
(Operation during displacement in the Z direction)
In the MEMS structure 1 according to the first embodiment described above, an operation when the movable part 20 is displaced in the Z direction will be described with reference to FIGS. 3 and 4. In the following description, a case where the weight portion 21 of the movable portion 20 is displaced in the −Z direction will be described as an example.
 可動部20の錘部21が-Z方向に変位する場合、当該可動部20の枠状部22は、第1トーションバー23を軸として支持部10に対して揺動し、+X方向側における枠状部22の端部が-Z方向に変位する。この時、第1トーションバー23は、枠状部22の揺動に伴って捩れ変形する。従って、支持部10に対する枠状部22の揺動の程度(傾き)は、捩れ変形する第1トーションバー23のバネ定数による影響を受ける。この時、枠状部22における連結部22Aは、錘部21の-Z方向への変位に伴って撓み変形し得る。 When the weight portion 21 of the movable portion 20 is displaced in the −Z direction, the frame-like portion 22 of the movable portion 20 swings with respect to the support portion 10 with the first torsion bar 23 as an axis, and the frame on the + X direction side. The end of the shape portion 22 is displaced in the −Z direction. At this time, the first torsion bar 23 is twisted and deformed as the frame-shaped portion 22 swings. Therefore, the degree of swing (inclination) of the frame-like portion 22 relative to the support portion 10 is affected by the spring constant of the first torsion bar 23 that is torsionally deformed. At this time, the connecting portion 22A in the frame-shaped portion 22 can be bent and deformed as the weight portion 21 is displaced in the −Z direction.
 図3、図4に示すように、-Z方向に変位した枠状部22の端部には、第2トーションバー24が配置されており、錘部21の端部を揺動可能に支持している。従って、この場合、錘部21は、第2トーションバー24を軸として枠状部22に対して揺動し、-X方向における錘部21の端部が-Z方向へ変位する。この時、第2トーションバー24は、錘部21の揺動に伴って捩れ変形する。従って、枠状部22に対する錘部21の揺動の程度(傾き)は、捩れ変形する第2トーションバー24のバネ定数による影響を受ける。 As shown in FIGS. 3 and 4, a second torsion bar 24 is disposed at the end of the frame-like portion 22 displaced in the −Z direction, and supports the end of the weight portion 21 so as to be swingable. ing. Accordingly, in this case, the weight portion 21 swings with respect to the frame-shaped portion 22 around the second torsion bar 24, and the end portion of the weight portion 21 in the −X direction is displaced in the −Z direction. At this time, the second torsion bar 24 is twisted and deformed as the weight portion 21 swings. Therefore, the degree of swing (inclination) of the weight portion 21 with respect to the frame-like portion 22 is affected by the spring constant of the second torsion bar 24 that is torsionally deformed.
 このように、当該MEMS構造体1において、Z方向に変位する場合の錘部21の姿勢は、連結部22A、第1トーションバー23、第2トーションバー24におけるバネ定数の影響を受け、特に、第1トーションバー23、第2トーションバー24の影響を強く受ける。従って、当該MEMS構造体1によれば、第1トーションバー23等のバネ定数を調整することによって、錘部21が固定電極に対して水平な姿勢を維持したまま、Z方向へ変位させることが可能となる。 Thus, in the MEMS structure 1, the posture of the weight portion 21 when displaced in the Z direction is affected by the spring constants in the connecting portion 22A, the first torsion bar 23, and the second torsion bar 24. The first torsion bar 23 and the second torsion bar 24 are strongly influenced. Therefore, according to the MEMS structure 1, by adjusting the spring constant of the first torsion bar 23 and the like, the weight portion 21 can be displaced in the Z direction while maintaining a horizontal posture with respect to the fixed electrode. It becomes possible.
 (Y方向への変位時の動作)
 続いて、上述した第1実施形態に係るMEMS構造体1において、可動部20がY方向に変位する場合の動作について、図5~図7を参照しつつ説明する。以下の説明においては、可動部20の錘部21が+Y方向へ変位する場合について説明する。
(Operation when displacement in Y direction)
Next, in the MEMS structure 1 according to the first embodiment described above, an operation when the movable part 20 is displaced in the Y direction will be described with reference to FIGS. In the following description, a case where the weight portion 21 of the movable portion 20 is displaced in the + Y direction will be described.
 尚、図5~図7においては、当該MEMS構造体1における各構成がどのように変形するかわかりやすくするために動作を強調して記載しており、図7に示すように、この場合の錘部21、枠状部22は、Z方向に変位していない。図5、図6は、あくまでも説明用の図面であり、錘部21が実際にY方向に変位する場合、錘部21は、その外縁に位置する枠状部22の内側をY方向へ変位することは言うまでもない。 5 to 7, the operation is emphasized for easy understanding of how each configuration in the MEMS structure 1 is deformed. As shown in FIG. The weight part 21 and the frame-like part 22 are not displaced in the Z direction. 5 and 6 are drawings for explanation only, and when the weight portion 21 is actually displaced in the Y direction, the weight portion 21 is displaced in the Y direction on the inner side of the frame-like portion 22 located at the outer edge thereof. Needless to say.
 上述したように、-X方向側における枠状部22の端部は、第1トーションバー23によって支持部10に接続されており、+X方向側における枠状部22の端部は、自由端として構成されている。可動部20の錘部21が+Y方向に変位する場合には、+X方向側における枠状部22の端部が+Y方向へ変位するように移動する。ここで、枠状部22を構成する連結部22Aは、Y方向に弾性変形可能に形成されている。従って、当該MEMS構造体1によれば、各連結部22Aの撓み変形によって、錘部21を固定電極に対して水平な状態を維持したまま、Y方向へ移動させ得る。尚、錘部21のY方向への変位に際し、第1トーションバー23、第2トーションバー24のX方向への撓み変形も影響し得る。 As described above, the end portion of the frame-like portion 22 on the −X direction side is connected to the support portion 10 by the first torsion bar 23, and the end portion of the frame-like portion 22 on the + X direction side is a free end. It is configured. When the weight portion 21 of the movable portion 20 is displaced in the + Y direction, the end portion of the frame-like portion 22 on the + X direction side is moved so as to be displaced in the + Y direction. Here, the connecting portion 22A constituting the frame-like portion 22 is formed to be elastically deformable in the Y direction. Therefore, according to the MEMS structure 1, the weight portion 21 can be moved in the Y direction while maintaining the horizontal state with respect to the fixed electrode by the bending deformation of each connecting portion 22 </ b> A. In addition, when the weight part 21 is displaced in the Y direction, the deformation of the first torsion bar 23 and the second torsion bar 24 in the X direction can also be affected.
 つまり、錘部21がY方向に変位する場合においても、連結部22A、第1トーションバー23、第2トーションバー24等の撓み変形を生じる為、連結部22A等のバネ定数の影響を受ける。当該MEMS構造体1によれば、特に、枠状部22における連結部22Aのバネ定数を調整することによって、錘部21が固定電極に対して水平な姿勢を維持したまま、Y方向へ変位させることが可能となる。 That is, even when the weight portion 21 is displaced in the Y direction, the connecting portion 22A, the first torsion bar 23, the second torsion bar 24, and the like are bent and deformed, so that they are affected by the spring constant of the connecting portion 22A and the like. According to the MEMS structure 1, in particular, by adjusting the spring constant of the connecting portion 22 </ b> A in the frame-like portion 22, the weight portion 21 is displaced in the Y direction while maintaining a horizontal posture with respect to the fixed electrode. It becomes possible.
 以上説明したように、第1実施形態に係るMEMS構造体1は、支持部10、可動部20を有しており、可動部20は、錘部21と、枠状部22と、第1トーションバー23と、第2トーションバー24を有している。枠状部22は、-X方向側の端部において、第1トーションバー23によって支持部10に対して揺動可能に支持されており、錘部21は、+X方向側の枠状部22の端部において、第2トーションバー24によって揺動可能に支持されている。従って、図3、図4に示すように、当該MEMS構造体1によれば、特に第1トーションバー23、第2トーションバー24のバネ定数を調整することによって、固定電極に対して水平な状態を維持したままで、錘部21をZ方向に変位させ得る。 As described above, the MEMS structure 1 according to the first embodiment includes the support portion 10 and the movable portion 20, and the movable portion 20 includes the weight portion 21, the frame-like portion 22, and the first torsion. A bar 23 and a second torsion bar 24 are provided. The frame-like portion 22 is supported at the end on the −X direction side so as to be swingable with respect to the support portion 10 by the first torsion bar 23, and the weight portion 21 is formed on the + X-direction side of the frame-like portion 22. At the end, the second torsion bar 24 is supported so as to be swingable. Therefore, as shown in FIGS. 3 and 4, according to the MEMS structure 1, the spring structure of the first torsion bar 23 and the second torsion bar 24 is adjusted to be horizontal with respect to the fixed electrode. The weight portion 21 can be displaced in the Z direction while maintaining the above.
 又、枠状部22の連結部22Aは、Y方向に撓み変形可能に構成されている。従って、図5~図7に示すように、当該MEMS構造体1によれば、連結部22Aのバネ定数を調整することによって、固定電極に対して水平な状態を維持したままで、錘部21をY方向に変位させ得る。このように、当該MEMS構造体1によれば、Z方向、Y方向の二方向へ錘部21を移動可能に支持しているので、一の錘部21に対して二方向の自由度を与えることができる。 Further, the connecting portion 22A of the frame-like portion 22 is configured to be able to bend and deform in the Y direction. Therefore, as shown in FIGS. 5 to 7, according to the MEMS structure 1, the weight portion 21 is maintained while maintaining a horizontal state with respect to the fixed electrode by adjusting the spring constant of the connecting portion 22A. Can be displaced in the Y direction. As described above, according to the MEMS structure 1, the weight portion 21 is supported so as to be movable in the two directions of the Z direction and the Y direction. Therefore, the one weight portion 21 is given a degree of freedom in two directions. be able to.
 上述したように、当該MEMS構造体1によれば、錘部21をZ方向に変位させる場合には、水平状態を維持したまま錘部21を変位させることができるので、板状の錘部における一端側を軸として揺動可能に支持した場合に比べて、錘部21の平均変位量を25%程高くすることができ、もって、センサの感度を高め得る。 As described above, according to the MEMS structure 1, when the weight portion 21 is displaced in the Z direction, the weight portion 21 can be displaced while maintaining a horizontal state. Compared to the case where the one end side is swingably supported, the average displacement amount of the weight portion 21 can be increased by about 25%, and the sensitivity of the sensor can be increased.
 更に、当該MEMS構造体1において、上述したように、錘部21は、ほぼ水平状態を維持しつつZ方向に移動するので、錘部21の変位量は、錘部の一端部側を支持する構成における自由端の変位量よりも小さくなる。従って、当該MEMS構造体1によれば、錘部の一端部側を支持する構成に比べて、錘部21に作用する静電引力を小さくすることができ、プルイン現象の発生を抑制することができる。 Furthermore, in the MEMS structure 1, as described above, the weight portion 21 moves in the Z direction while maintaining a substantially horizontal state, so that the displacement amount of the weight portion 21 supports one end side of the weight portion. It becomes smaller than the amount of displacement of the free end in the configuration. Therefore, according to the MEMS structure 1, the electrostatic attraction acting on the weight portion 21 can be reduced as compared with the configuration supporting the one end portion side of the weight portion, and the occurrence of the pull-in phenomenon can be suppressed. it can.
 第1実施形態に係るMEMS構造体1においては、支持部10及び可動部20は、X方向に振動するように構成されており、錘部21は、Y方向、Z方向の何れに変位する場合も、固定電極に対して水平な状態で変位している。従って、当該MEMS構造体1によれば、X方向に振動する何れの過程においても、錘部21を固定電極に対して水平な状態で移動させることができる。X方向への振動によって、錘部21と固定電極の間におけるギャップが変化しにくくなるため、当該MEMS構造体1によれば、干渉信号(Quadrature Error)の発生を低減することができる。 In the MEMS structure 1 according to the first embodiment, the support portion 10 and the movable portion 20 are configured to vibrate in the X direction, and the weight portion 21 is displaced in either the Y direction or the Z direction. Is displaced in a horizontal state with respect to the fixed electrode. Therefore, according to the MEMS structure 1, the weight portion 21 can be moved in a horizontal state with respect to the fixed electrode in any process that vibrates in the X direction. Since the gap between the weight portion 21 and the fixed electrode is less likely to change due to vibration in the X direction, the MEMS structure 1 can reduce the generation of interference signals (Quadrature Error).
 (第2実施形態)
 次に、上述した第1実施形態と異なる実施形態(第2実施形態)について、図8を参照しつつ詳細に説明する。尚、第2実施形態に係るMEMS構造体1は、第1実施形態に係るMEMS構造体1と略同一の基本的構成を有しており、第1トーションバー23の配設位置が相違する。第1実施形態と同一の構成については、その説明を省略し、相違点に係る構成について、詳細に説明する。
(Second Embodiment)
Next, an embodiment (second embodiment) different from the first embodiment described above will be described in detail with reference to FIG. The MEMS structure 1 according to the second embodiment has substantially the same basic configuration as the MEMS structure 1 according to the first embodiment, and the arrangement position of the first torsion bar 23 is different. The description of the same configuration as in the first embodiment will be omitted, and the configuration related to the difference will be described in detail.
 第2実施形態に係るMEMS構造体1は、第1実施形態と同様に、支持部10と、可動部20とを有しており、可動部20は、錘部21と、枠状部22と、第1トーションバー23と、第2トーションバー24を有している。 Similar to the first embodiment, the MEMS structure 1 according to the second embodiment includes a support portion 10 and a movable portion 20, and the movable portion 20 includes a weight portion 21, a frame-shaped portion 22, and the like. The first torsion bar 23 and the second torsion bar 24 are provided.
 支持部10は、第1実施形態と同様に、-X方向側における端部において、枠状部22を支持している。図8に示すように、第2実施形態に係る支持部10は、長方形状を為す枠状部22の短辺中央部分において、枠状部22側に突出形成されている。そして、第2実施形態に係る第1トーションバー23は、枠状部22の短辺中央部分に位置する支持部10から、それぞれY方向に沿って伸びる棒状に形成されており、支持部10と連結部22Aとの間を接続している。即ち、第2実施形態に係る第1トーションバー23は、支持部10に対して、-X方向側における枠状部22を揺動可能に支持すると共に、-X方向側における枠状部22の一部を構成している。 The support portion 10 supports the frame-like portion 22 at the end on the −X direction side, as in the first embodiment. As shown in FIG. 8, the support portion 10 according to the second embodiment is formed to protrude toward the frame-shaped portion 22 at the short side center portion of the rectangular frame-shaped portion 22. The first torsion bar 23 according to the second embodiment is formed in a bar shape extending along the Y direction from the support portion 10 located in the center portion of the short side of the frame-shaped portion 22. The connection part 22A is connected. That is, the first torsion bar 23 according to the second embodiment supports the frame portion 22 on the −X direction side so as to be swingable with respect to the support portion 10, and the frame portion 22 on the −X direction side. Part of it.
 この第2実施形態に係るMEMS構造体1によれば、第1実施形態に係るMEMS構造体1と同様に、特に第1トーションバー23、第2トーションバー24のバネ定数を調整することによって、固定電極に対して水平な状態を維持したままで、錘部21をZ方向に変位させ得る。又、第2実施形態においても、枠状部22の連結部22Aは、Y方向に撓み変形可能に構成されているので、当該MEMS構造体1によれば、連結部22Aのバネ定数を調整することによって、固定電極に対して水平な状態を維持したままで、錘部21をY方向に変位させ得る。このように、当該MEMS構造体1によれば、第2実施形態においても、Z方向、Y方向の二方向へ錘部21を移動可能に支持しているので、一の錘部21に対して二方向の自由度を与えることができる。 According to the MEMS structure 1 according to the second embodiment, like the MEMS structure 1 according to the first embodiment, by adjusting the spring constants of the first torsion bar 23 and the second torsion bar 24 in particular, The weight portion 21 can be displaced in the Z direction while maintaining a horizontal state with respect to the fixed electrode. Also in the second embodiment, the connecting portion 22A of the frame-like portion 22 is configured to be able to bend and deform in the Y direction. Therefore, according to the MEMS structure 1, the spring constant of the connecting portion 22A is adjusted. Thus, the weight portion 21 can be displaced in the Y direction while maintaining a horizontal state with respect to the fixed electrode. As described above, according to the MEMS structure 1, the weight portion 21 is supported so as to be movable in the two directions of the Z direction and the Y direction even in the second embodiment. Two degrees of freedom can be given.
 第2実施形態に係るMEMS構造体1においても、錘部21をZ方向に変位させる場合に、水平状態を維持したまま錘部21を変位させることができるので、板状の錘部における一端側を軸として揺動可能に支持した場合に比べて、錘部21の平均変位量を25%程高くすることができ、もって、センサの感度を高め得る。 Also in the MEMS structure 1 according to the second embodiment, when the weight portion 21 is displaced in the Z direction, the weight portion 21 can be displaced while maintaining the horizontal state, so one end side of the plate-like weight portion. As compared with the case where the shaft is pivotably supported, the average displacement amount of the weight portion 21 can be increased by about 25%, and the sensitivity of the sensor can be increased.
 更に、第2実施形態においても、錘部21は、ほぼ水平状態を維持しつつZ方向に移動するので、錘部21の変位量は、錘部の一端部側を支持する構成における自由端の変位量よりも小さくなる。従って、当該MEMS構造体1によれば、錘部の一端部側を支持する構成に比べて、錘部21に作用する静電引力を小さくすることができ、プルイン現象の発生を抑制することができる。 Furthermore, also in the second embodiment, the weight portion 21 moves in the Z direction while maintaining a substantially horizontal state. Therefore, the amount of displacement of the weight portion 21 is the free end in the configuration that supports the one end side of the weight portion. It becomes smaller than the displacement. Therefore, according to the MEMS structure 1, the electrostatic attraction acting on the weight portion 21 can be reduced as compared with the configuration supporting the one end portion side of the weight portion, and the occurrence of the pull-in phenomenon can be suppressed. it can.
 第2実施形態に係るMEMS構造体1においても、支持部10及び可動部20は、X方向に振動するように構成されており、錘部21は、Y方向、Z方向の何れに変位する場合も、固定電極に対して水平な状態で変位している。従って、当該MEMS構造体1によれば、X方向に振動する何れの過程においても、錘部21を固定電極に対して水平な状態で移動させることができる。X方向への振動によって、錘部21と固定電極の間におけるギャップが変化しにくくなるため、当該MEMS構造体1によれば、干渉信号(Quadrature Error)の発生を低減することができる。 Also in the MEMS structure 1 according to the second embodiment, the support portion 10 and the movable portion 20 are configured to vibrate in the X direction, and the weight portion 21 is displaced in either the Y direction or the Z direction. Is displaced in a horizontal state with respect to the fixed electrode. Therefore, according to the MEMS structure 1, the weight portion 21 can be moved in a horizontal state with respect to the fixed electrode in any process that vibrates in the X direction. Since the gap between the weight portion 21 and the fixed electrode is less likely to change due to vibration in the X direction, the MEMS structure 1 can reduce the generation of interference signals (Quadrature Error).
 以上、実施形態に基づき本発明を説明したが、本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、当該MEMS構造体が用いられるセンサによって検出される物理量は、上述した角速度に限定されるものでなく、更に、物理量を検出可能な方向(Z方向等)も適宜変更することができる。又、MEMS構造体1を構成する各部の形状・構成等は一例であり、適宜変更してもよい。 The present invention has been described above based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. For example, the physical quantity detected by the sensor using the MEMS structure is not limited to the angular velocity described above, and the direction in which the physical quantity can be detected (such as the Z direction) can be changed as appropriate. Moreover, the shape and configuration of each part constituting the MEMS structure 1 is an example, and may be changed as appropriate.
 尚、上述した各実施形態において、MEMS構造体1は、本発明のMEMS構造体の一例である。支持部10は、支持部の一例である。可動部20は、可動部の一例である。錘部21は、錘部の一例である。枠状部22は、枠状部の一例である。連結部22Aは、連結部の一例である。第1トーションバー23は、第1トーションバーの一例である。第2トーションバー24は、第2トーションバーの一例である。X方向及びY方向は、基板の平面に平行な平面方向の一例である。Z方向は、基板の平面に対して垂直な方向の一例である。 In each embodiment described above, the MEMS structure 1 is an example of the MEMS structure of the present invention. The support part 10 is an example of a support part. The movable part 20 is an example of a movable part. The weight part 21 is an example of a weight part. The frame-shaped part 22 is an example of a frame-shaped part. The connecting portion 22A is an example of a connecting portion. The first torsion bar 23 is an example of a first torsion bar. The second torsion bar 24 is an example of a second torsion bar. The X direction and the Y direction are examples of plane directions parallel to the plane of the substrate. The Z direction is an example of a direction perpendicular to the plane of the substrate.
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 As mentioned above, although embodiment of this invention was described, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all changes within the scope.
 1 MEMS構造体、10 支持部、20 可動部、21 錘部、22 枠状部、22A 連結部、23 第1トーションバー、24 第2トーションバー。 1 MEMS structure, 10 support section, 20 movable section, 21 weight section, 22 frame section, 22A connection section, 23 first torsion bar, 24 second torsion bar.

Claims (2)

  1.  支持部と、
     前記支持部に支持され、当該支持部に対して相対的に運動する可動部と、を有し、
     前記可動部は、
     矩形板状に形成された錘部と、
     前記錘部の外縁を囲む枠状部と、
     前記枠状部の一端側において、前記支持部に対して当該枠状部を揺動可能に支持すると共に弾性変形可能に構成された第1トーションバーと、
     前記第1トーションバーと逆側である前記枠状部の他端側において、前記錘部の端部を前記枠状部に対して揺動可能に支持すると共に弾性変形可能に構成された第2トーションバーと、を有する、MEMS構造体。
    A support part;
    A movable part supported by the support part and moving relative to the support part;
    The movable part is
    A weight portion formed in a rectangular plate shape;
    A frame-shaped part surrounding the outer edge of the weight part;
    A first torsion bar configured to be elastically deformable while supporting the frame-like portion in a swingable manner with respect to the support portion on one end side of the frame-like portion;
    A second end configured to be elastically deformable while supporting the end of the weight portion so as to be swingable with respect to the frame-like portion on the other end side of the frame-like portion opposite to the first torsion bar. A MEMS structure having a torsion bar.
  2.  前記枠状部は、
     前記第1トーションバーと前記第2トーションバーとの間を結ぶと共に、弾性変形可能に構成された一対の連結部を有する、請求項1記載のMEMS構造体。
    The frame-shaped part is
    The MEMS structure according to claim 1, further comprising a pair of connecting portions configured to connect the first torsion bar and the second torsion bar and to be elastically deformable.
PCT/JP2015/066041 2014-06-04 2015-06-03 Mems structure WO2015186740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-115651 2014-06-04
JP2014115651 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015186740A1 true WO2015186740A1 (en) 2015-12-10

Family

ID=54766809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066041 WO2015186740A1 (en) 2014-06-04 2015-06-03 Mems structure

Country Status (1)

Country Link
WO (1) WO2015186740A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306225A (en) * 1994-05-13 1995-11-21 Omron Corp Acceleration sensor
JPH07306223A (en) * 1994-05-13 1995-11-21 Omron Corp Acceleration sensor
JP2009529666A (en) * 2006-03-10 2009-08-20 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Rotational speed sensor with connecting rod
JP2010096538A (en) * 2008-10-14 2010-04-30 Murata Mfg Co Ltd Angular velocity sensor
JP2013210283A (en) * 2012-03-30 2013-10-10 Denso Corp Rollover gyro sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07306225A (en) * 1994-05-13 1995-11-21 Omron Corp Acceleration sensor
JPH07306223A (en) * 1994-05-13 1995-11-21 Omron Corp Acceleration sensor
JP2009529666A (en) * 2006-03-10 2009-08-20 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Rotational speed sensor with connecting rod
JP2010096538A (en) * 2008-10-14 2010-04-30 Murata Mfg Co Ltd Angular velocity sensor
JP2013210283A (en) * 2012-03-30 2013-10-10 Denso Corp Rollover gyro sensor

Similar Documents

Publication Publication Date Title
EP3225953B1 (en) Micromechanical detection structure of a mems multi-axis gyroscope, with reduced drifts of corresponding electrical parameters
JP3811444B2 (en) MEMS gyroscope with vertical vibrating mass
CN100523821C (en) Accelerometers and method for reducing offset in accelerometers
JP6260706B2 (en) Gyroscope structure and gyroscope with improved quadrature correction
EP2246706B1 (en) Physical quantity sensor
US20180120110A1 (en) Mems link mechanism used for gyroscope
CN101501446A (en) Angular velocity sensor
WO2010140468A1 (en) Physical quantity sensor
KR102032732B1 (en) Micromechanical Coriolis Rate of Rotation Sensor
US9903884B2 (en) Parallel plate capacitor and acceleration sensor comprising same
JP2008014727A (en) Acceleration/angular velocity sensor
KR101328642B1 (en) Mems resonating accelerometer
CN112748258A (en) Triaxial accelerometer based on single mass block
JP2004340716A (en) Acceleration sensor
WO2015186740A1 (en) Mems structure
WO2016108151A1 (en) Micromechanical gyroscope structure
JP6167842B2 (en) Capacitive sensor
US10598686B2 (en) Micromechanical z-acceleration sensor
US9764943B2 (en) MEMS structure
JP2010216842A (en) Dynamic quantity detection sensor
WO2015190363A1 (en) Mems structure
US9964561B2 (en) Acceleration sensor
JP6080752B2 (en) Acceleration sensor
JP6213133B2 (en) MEMS structure, angular velocity sensor, and spring constant adjustment method
JP6714104B2 (en) Micro mechanical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15803058

Country of ref document: EP

Kind code of ref document: A1