WO2015186683A1 - インジェクタユニット - Google Patents

インジェクタユニット Download PDF

Info

Publication number
WO2015186683A1
WO2015186683A1 PCT/JP2015/065836 JP2015065836W WO2015186683A1 WO 2015186683 A1 WO2015186683 A1 WO 2015186683A1 JP 2015065836 W JP2015065836 W JP 2015065836W WO 2015186683 A1 WO2015186683 A1 WO 2015186683A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
injector
injector unit
gaseous fuel
ignition means
Prior art date
Application number
PCT/JP2015/065836
Other languages
English (en)
French (fr)
Inventor
池田 裕二
スリニバス パダラ
Original Assignee
イマジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマジニアリング株式会社 filed Critical イマジニアリング株式会社
Priority to JP2016525174A priority Critical patent/JPWO2015186683A1/ja
Publication of WO2015186683A1 publication Critical patent/WO2015186683A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/06Fuel-injectors combined or associated with other devices the devices being sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to an injector unit.
  • the present invention relates to an injector unit for making it possible to use gaseous fuel such as compressed natural gas (CNG) in an existing diesel engine.
  • gaseous fuel such as compressed natural gas (CNG)
  • Retrofit technology improves engine exhaust performance by changing or adding parts to an existing engine. For example, it is recommended by the United States Environmental Protection Agency (EPA) (Non-Patent Document 1).
  • EPA United States Environmental Protection Agency
  • CNG which is a gaseous fuel
  • light oil which is a liquid fuel
  • the density of CNG is approximately 180 [kg / m 3 ] at 250 atmospheres
  • the density of light oil is slightly higher than 700 [kg / m 3 ] (Note: The density of light oil as liquid fuel is the pressure Regardless of whether or not). That is, the density of CNG is about 1/4 of that of light oil at 250 atmospheres.
  • the injection time of CNG needs to be about four times that of light oil. is there.
  • the injection time of CNG needs to be about four times that of light oil. is there.
  • the injection pressure of CNG is increased to 500 atmospheres, the injection can be terminated when the piston reaches the bottom dead center.
  • the reason why the injection time can be shortened is that the density of CNG is about 270 [kg / m 3 ] under 500 atm, and the density is higher than under 250 atm.
  • CNG has an ignition temperature higher than that of light oil, it cannot be ignited by simply replacing the injector, and it is necessary to use light oil as a pilot or to use ignition means such as a spark plug (non-patent) Reference 2).
  • the present invention has been made in view of the above points.
  • a certain aspect of the present invention is a direct injection type injector unit, and includes a plurality of gaseous fuel injectors and ignition means for igniting the gaseous fuel.
  • gas fuel such as CNG can be used in an existing diesel engine.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • FIG. 4 is a sectional view taken along line BB in FIG. 3.
  • FIG. It is sectional drawing of the diesel engine 10, and is a figure which shows the state by which the injector unit 1 was inserted.
  • 2 is a cross-sectional front view of an igniter 3.
  • FIG. This is an equivalent circuit of the igniter 3. It is a figure which shows the relationship between the ignition timing by the injector unit 1, and the injection period of an injector. It is a figure which shows the relationship between the ignition timing at the time of using one CNG injector, and the injection period of an injector.
  • FIG. 1 and 2 are cross-sectional views showing a configuration of a diesel engine 10 which is an example of a compression ignition internal combustion engine.
  • FIG. 1 is a view showing a state in which the light oil injector 20 is inserted into the through hole 11 of the cylinder head 6, and
  • FIG. 2 is a view showing a state in which the light oil injector 20 is not inserted.
  • the diesel engine 10 includes a cylinder head 6, a cylinder liner 7 joined to the cylinder head 6, and a piston 8 that is in sliding contact with the cylinder liner 7.
  • a space surrounded by these members is a combustion chamber.
  • the cylinder head 6 is provided with an intake port and an exhaust port.
  • An intake valve 9A is disposed at the boundary between the intake port and the combustion chamber.
  • An exhaust valve 9B is disposed at the boundary between the exhaust port and the combustion chamber.
  • the cylinder head 6 is provided with a through hole 11.
  • This through-hole 11 is a hole for attaching the light oil injector 20 which injects light oil originally.
  • FIG. 3 is a cross-sectional view of the injector unit 1.
  • FIG. 4 is another cross section of the injector unit 1, and is a cross-sectional view taken along the line AA of FIG. 5 is a cross-sectional view taken along the line BB in FIG.
  • the injector unit 1 includes two CNG injectors 2 and 2 for injecting CNG which is a kind of gaseous fuel, an igniter 3 which is an ignition means, and a casing 4 which houses these.
  • the casing 4 has a size that matches the through hole 11 of the cylinder head 6. As shown in FIG. 7, the injector unit 1 can be inserted into the cylinder head 6 together with the casing 4. Thereby, the exchange operation from the light oil injector 20 becomes easy.
  • the casing 4 preferably employs a metal having high thermal conductivity.
  • the casing 4 has an inlet 41 for injecting fuel into the CNG injector.
  • the igniter 3 is for igniting CNG fuel. As described above, CNG has an ignition temperature higher than that of light oil, and cannot be ignited by simple compression ignition. Therefore, an igniter 3 is provided. As the igniter 3, a spark plug, a corona discharge plug (for example, EcoFlash (US registered trademark) manufactured by BorgWarner), a microwave discharge plug, or the like can be used.
  • the microwave discharge plug is a microwave resonance plug developed by the applicant of the present application and driven by a microwave in the 2.45 GHz band.
  • the configuration of the plug is also described in Japanese patent applications (Japanese Patent Application Nos. 2014-111755 and 2013-171781) filed by the present applicant, but will be briefly described here.
  • the microwave discharge plug (igniter 3) includes a case 51, a center electrode, and an insulator 59 that is provided between the case portion and the center electrode and insulates them.
  • a ground electrode 51 a is formed at the tip of the case 51.
  • a discharge electrode 55a is formed at the tip of the center electrode. A potential difference is generated between the discharge electrode 55a and the ground electrode 51a, thereby causing discharge.
  • the center electrode is divided into an input side electrode 53, a coupling portion electrode 54, and an output side electrode 55.
  • the output side electrode 55 has a discharge electrode 55 a and a shaft portion 55 b and is electrically coupled to the coupling portion electrode 54.
  • the coupling portion electrode 54 has a bottomed cylindrical shape.
  • the input side electrode 53 is electrically connected to an oscillation circuit MW provided outside the injector unit 1 via the input end 52.
  • FIG. 9 is a diagram showing an equivalent circuit of the igniter 3.
  • An AC signal (voltage V1, frequency 2.45 GHz) input from the oscillation circuit MW is connected to a series resonant circuit including a capacitor C3, a reactance L, and a capacitor C2 via a capacitor C1 (here, C1 is C2). , It is assumed to be sufficiently smaller than C3).
  • a discharge unit is provided in parallel with the capacitor C3.
  • C1 corresponds to a coupling capacitance, is determined by the shape and gap of the coupling portion electrode 54 and the input side electrode 53, and is a portion for performing impedance matching between the oscillation circuit and the igniter 3.
  • the input side electrode 53 can be moved in the axial direction, thereby adjusting the impedance.
  • the capacitor C2 is a grounded capacitor formed by the coupling portion electrode 54 and the case 51. This is determined by the shape of the electrode 54, the gap with the case 51, and the dielectric constant of the insulator 59c.
  • the reactance L corresponds to a coil component of the shaft portion 55b of the output side electrode 55.
  • the capacity C3 is a discharge capacity formed by the output side electrode 55 and the case 51. This is determined by the shapes of the discharge electrode 55a and the shaft portion 55b, the gap between the output-side electrode 55 and the case 51, the thickness of the insulator 59c, the dielectric constant, and the like. If C3 ⁇ C2 is designed, the potential difference between both ends of the capacitor C3 can be made sufficiently larger than V1, and as a result, a high potential is generated in the discharge part (gap between the discharge electrode 55a and the ground electrode 51a). be able to.
  • the coupling capacitance C1 when it can be considered that the coupling capacitance C1 is sufficiently small, the capacitance C3, the reactance L, and the capacitance C2 form a series resonance circuit, and the resonance frequency f can be expressed by Equation 1.
  • the igniter 3 is designed so that the discharge capacity C3, the coil reactance L, and the ground capacity C2 satisfy the relationship of Formula 1.
  • the igniter 3 can be made compact by adopting the above configuration.
  • the igniter 3 functions as an ignition means.
  • FIG. 10 is a diagram showing the relationship between the ignition timing by the injector unit 1 and the injection period of the injector. Assuming that the injection pressure of one of the CNG injectors 2 is 250 atmospheres and the injection pressure of the other injector is 300 atmospheres, fuel injection is completed before the piston reaches bottom dead center. By completing the fuel injection at an early stage, the fuel is uniformly diffused in the combustion chamber at the ignition timing, so that the stability of the ignition is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Spark Plugs (AREA)

Abstract

【課題】 既存のディーゼルエンジンにおいてCNG等の気体燃料を使用可能とする。 【解決手段】 直噴式のインジェクタユニットであって、複数の気体燃料インジェクタと、気体燃料を着火する着火手段と、を備え、前記着火手段は、ケース部と、中心電極と、ケース部と中心電極を絶縁する絶縁体を有し、中心電極は、マイクロ波を入力する第1電極と、第1電極に容量結合する第2電極と、放電を行う放電部を含む第3電極を有し、第1電極と第2電極を用いてマイクロ波のインピーダンス整合を行い、第2電極とケース部で定まる接地容量、第3電極のコイルリアクタンス成分、及び第3電極とケース部で定まる放電容量からなる直列回路がマイクロ波と共振するように構成されることを特徴とする。

Description

インジェクタユニット
 本発明は、インジェクタユニットに関する。特に、既存のディーゼルエンジンにおいて圧縮天然ガス(CNG:Compressed Natural Gas)等の気体燃料を使用可能とするためのインジェクタユニットに関する。
 ディーゼル排ガスを減らすための一手法として、レトロフィット技術がある。レトロフィット技術とは、既存のエンジンに対して部品を変更・追加することによりエンジンの排気性能を改善するものである。例えば、アメリカ合衆国環境保護庁(EPA:Environmental Protection Agency)が推奨している(非特許文献1)。
 また、ディーゼル排ガスを減らす方法として、燃料を軽油からCNGに変更することも有効である。そこで、軽油インジェクタをCNGインジェクタに交換することも考えられる。
http://www.epa.gov/cleandiesel/technologies/index.htm(米国EPAホームページ、平成26年5月30日検索) 「高効率大型ガスエンジンを開発」(三井造船技報No.191(2007-6), P.19-25) 特開2012-149537号公報 米国公開2012-103302号公報 米国特許8091528号公報 特開2007-113570号公報 国際公開第2012/005201号公報
 しかし、気体燃料であるCNGは、液体燃料である軽油より密度が低い。例えば、250気圧下ではCNGの密度は凡そ180[kg/m]であるのに対し、軽油の密度は700[kg/m]強である(注:液体燃料である軽油の密度は圧力に係らずほぼ一定である)。つまり、250気圧下ではCNGの密度は軽油の1/4程度である。
 軽油使用時とCNG使用時の燃費(A/F)が同じと仮定した場合、軽油と同量のCNGを燃焼室に供給するには、CNGの噴射時間を軽油の4倍程度にする必要がある。この場合、排気弁の閉鎖と同時に燃料噴射を開始した場合、着火タイミングの直前まで燃料を噴射し続ける必要がある(図11参照)。これにより、燃焼室内のCNG濃度が均一になりにくくなり、着火の安定性が低下する。
 これに対し、CNGの噴射圧を500気圧と高くすれば、ピストンが下死点に到達した時点で噴射を終了させることができる。噴射時間を短くできる理由は、500気圧下ではCNGの密度は凡そ270[kg/m]であり、250気圧下よりも密度が高いからである。しかし、噴射圧が500気圧のインジェクタは製作が困難である。
 更に、CNGは軽油よりも着火温度が高いので、単にインジェクタを交換するだけでは着火することができず、軽油をパイロットとして使用するか、点火プラグ等の着火手段を併用する必要がある(非特許文献2)。
 本発明は、以上の点に鑑みてなされたものである。
 本発明のある態様は、直噴式のインジェクタユニットであって、複数の気体燃料インジェクタと、気体燃料を着火する着火手段と、を備える。
 本発明のインジェクタユニットによれば、既存のディーゼルエンジンにおいてCNG等の気体燃料を使用可能とする。
ディーゼルエンジン10の断面図であり、軽油インジェクタ20が挿入された状態を示す図である。 ディーゼルエンジン10の断面図であり、軽油インジェクタ20が挿入されていない状態を示す図である。 インジェクタユニット1の断面図である。 図3のA-A断面図である。 図3のB-B断面図である。 CNGインジェクタ2、イグナイタ3、ケーシング4の外形を示す図である。 ディーゼルエンジン10の断面図であり、インジェクタユニット1が挿入された状態を示す図である。 イグナイタ3の断面正面図である。 イグナイタ3の等価回路である。 インジェクタユニット1による着火タイミングとインジェクタの噴射期間の関係を示す図である。 1つのCNGインジェクタを用いた場合の着火タイミングとインジェクタの噴射期間の関係を示す図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 本発明の実施形態に係るインジェクタユニット1の説明を行う前に、インジェクタユニット1が取付けられるディーゼルエンジン10の構成を先に説明する。
 図1及び図2は、圧縮着火内燃機関の一例であるディーゼルエンジン10の構成を示す断面図である。図1はシリンダヘッド6の貫通孔11に軽油インジェクタ20が挿入された状態、図2は軽油インジェクタ20が挿入されていない状態を示す図である。
 これらの図を参照して、ディーゼルエンジン10は、シリンダヘッド6と、シリンダヘッド6に接合されるシリンダライナ7と、シリンダライナ7に摺接するピストン8を有する。これらの部材により取り囲まれた空間が燃焼室となる。
 シリンダヘッド6には、吸気ポートと排気ポートとが設けられている。吸気ポートと燃焼室の境界部には吸気バルブ9Aが配置される。排気ポートと燃焼室の境界部には排気バルブ9Bが配置される。
 シリンダヘッド6には、貫通孔11が設けられている。この貫通孔11は、本来は軽油を噴射する軽油インジェクタ20を取付けるための孔である。
 次に本実施形態に係るインジェクタユニット1の構成を説明する。図3はインジェクタユニット1の断面図である。図4は、インジェクタユニット1の他の断面であり、図3のA-A断面図である。図5は、図3のB-B断面図である。
 これらの図を参照して、インジェクタユニット1は、気体燃料の一種であるCNGを噴射する2個のCNGインジェクタ2、2と、着火手段であるイグナイタ3と、これらを収納するケーシング4からなる。
 ケーシング4の外径D1、CNGインジェクタ2の外径D2、イグナイタ3の外径D3を図6のように定義した場合、一例として、D11=30mm、D12=20mm、D2=8mm、D3=5mmである。ケーシング4はシリンダヘッド6の貫通孔11に合致する大きさである。図7に示すようにインジェクタユニット1はシリンダヘッド6にケーシング4ごと挿入することができる。これにより、軽油インジェクタ20からの交換作業が容易になる。なお、CNGインジェクタ2、イグナイタ3の放熱の関係上、ケーシング4は熱伝導率の高い金属を採用するのが好ましい。また、ケーシング4は、CNGインジェクタに燃料を注入するための注入口41を有している。
 イグナイタ3は、CNG燃料を着火するためのものである。上述のように、CNGは軽油よりも着火温度が高く、単なる圧縮着火では着火できない。そこで、イグナイタ3が設けられている。イグナイタ3としては、スパークプラグ、コロナ放電プラグ(例えばボルグワーナー社のEcoFlash(米国登録商標))、又はマイクロ波放電プラグ等を用いることができる。
 マイクロ波放電プラグは、本願の出願人が開発した、2.45GHz帯のマイクロ波により駆動するマイクロ波共振のプラグである。このプラグの構成については、本出願人による日本特許出願(特願2014-111755、及び特願2013-171781)でも説明されているが、本願でも簡単に説明する。
 図8を参照して、マイクロ波放電プラグ(イグナイタ3)は、大きくはケース51、中心電極、及びケース部と中心電極の間に設けられ、これらを絶縁する絶縁体59からなる。ケース51の先端部には接地電極51aが形成される。中心電極の先端部には放電電極55aが形成される。放電電極55aと接地電極51a間には電位差を発生させ、これにより放電をさせるようにしている。
 中心電極は入力側電極53、結合部電極54、及び出力側電極55に分かれる。
 出力側電極55は、放電電極55a、軸部55bを有しており、結合部電極54と電気的に結合される。結合部電極54は有底の筒状である。入力側電極53は、インジェクタユニット1の外部に設けられた発振回路MWに入力端52を介して電気的に接続される。
 図9は、イグナイタ3の等価回路を示す図である。発振回路MWから入力される交流信号(電圧V1、周波数2.45GHz)は容量C1を介して、容量C3、リアクタンスL、容量C2からなる直列共振回路に接続される(尚、ここではC1はC2、C3に比して十分に小さいと仮定している)。また、容量C3と並列に放電部が設けられる。
 ここで、C1は結合容量に相当し、結合部電極54及び入力側電極53の形状、間隙により決まり、発振回路とイグナイタ3のインピーダンス整合を行うための部分である。入力側電極53は軸芯方向に移動可能であり、これによりインピーダンスの調整ができる。
 容量C2は、結合部電極54とケース51によって形成される接地容量である。これは電極54の形状、ケース51との間隙及び絶縁体59cの誘電率によって決まる。
 リアクタンスLは、出力側電極55の軸部55bのコイル成分に相当する。
 容量C3は、出力側電極55とケース51によって形成される放電容量である。これは、放電電極55a及び軸部55bの形状、出力側電極55とケース51との間隙、絶縁体59cの厚みや誘電率等で決まる。C3<<C2に設計すれば、容量C3の両端の電位差をV1よりも十分に大きくすることができ、その結果、放電部(放電電極55aと接地電極51a間のギャップ)に高電位を発生させることができる。
 上述のように、結合容量C1が十分に小さいと看做せる場合、容量C3、リアクタンスL、容量C2は直列共振回路をなし、共振周波数fは数式1で表現できる。
Figure JPOXMLDOC01-appb-M000001
   但し、
Figure JPOXMLDOC01-appb-I000002
 つまり、f=2.45GHzとした場合に、数式1の関係を満たすような放電容量C3、コイルリアクタンスL、及び接地容量C2となるようにイグナイタ3は設計される。
 また、イグナイタ3は、上記構成を採用することにより、コンパクトにすることができる。
 また、上述のようにイグナイタ3では放電電極と接地電極間に高電圧が発生し、高電圧の放電が生じる。この放電により、その近辺のガス分子から電子が放出されて非平衡プラズマが生成され、燃料が点火しやすくなる。このようにしてイグナイタ3は着火手段として機能する。
 図10は、インジェクタユニット1による着火タイミングとインジェクタの噴射期間の関係を示す図である。CNGインジェクタ2のうち、1つのインジェクタの噴射圧が250気圧で、他方のインジェクタの噴射圧が300気圧と仮定すると、ピストンが下死点に到達する前に燃料噴射が完了する。早期に燃料噴射が完了することで、着火タイミングにおいては燃焼室内で燃料が均一に拡散されるので、着火の安定性が確保される。
 以上、本発明の実施形態について説明した。本発明の範囲はあくまでも特許請求の範囲に記載された発明に基づいて定められるものであり、上記実施形態に限定されるべきものではない。
1  インジェクタユニット
2  インジェクタ
3  イグナイタ
4  ケーシング
6  シリンダヘッド
7  シリンダライナ
8  ピストン
9A 吸気バルブ
9B 排気バルブ
10 ディーゼルエンジン
11 貫通孔

Claims (3)

  1.  直噴式のインジェクタユニットであって、
     複数の気体燃料インジェクタと、
     気体燃料を着火する着火手段と、
     を備えることを特徴とするインジェクタユニット。
  2.  圧縮着火内燃機関のシリンダヘッドに設けられた軽油インジェクタを挿入するための貫通孔に挿入可能なインジェクタユニットであって、
     複数の気体燃料インジェクタと、
     気体燃料を着火する着火手段と、
     気体燃料インジェクタと着火手段を収納する収納部材と、
     を備えることを特徴とするインジェクタユニット。
  3.  前記着火手段は、ケース部と、中心電極と、ケース部と中心電極を絶縁する絶縁体を有し、
     中心電極は、マイクロ波を入力する第1電極と、第1電極に容量結合する第2電極と、放電を行う放電部を含む第3電極を有し、
     第1電極と第2電極を用いてマイクロ波のインピーダンス整合を行い、
     第2電極とケース部で定まる接地容量、第3電極のコイルリアクタンス成分、及び第3電極とケース部で定まる放電容量からなる直列回路がマイクロ波と共振するように構成されることを特徴とする、請求項1又は2記載のインジェクタユニット。
     
PCT/JP2015/065836 2014-06-02 2015-06-02 インジェクタユニット WO2015186683A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016525174A JPWO2015186683A1 (ja) 2014-06-02 2015-06-02 インジェクタユニット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014114462 2014-06-02
JP2014-114462 2014-06-02

Publications (1)

Publication Number Publication Date
WO2015186683A1 true WO2015186683A1 (ja) 2015-12-10

Family

ID=54766753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065836 WO2015186683A1 (ja) 2014-06-02 2015-06-02 インジェクタユニット

Country Status (2)

Country Link
JP (1) JPWO2015186683A1 (ja)
WO (1) WO2015186683A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506651A (ja) * 1992-05-11 1995-07-20 ユナイテッド・フューエルズ・リミテッド 内燃機関または内燃機関に関する改良
JP2013533416A (ja) * 2010-07-02 2013-08-22 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド ディーゼルエンジン及びガスエンジン用二重燃料噴射バルブ
WO2015025913A1 (ja) * 2013-08-21 2015-02-26 イマジニアリング株式会社 内燃機関の点火装置及び内燃機関

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506651A (ja) * 1992-05-11 1995-07-20 ユナイテッド・フューエルズ・リミテッド 内燃機関または内燃機関に関する改良
JP2013533416A (ja) * 2010-07-02 2013-08-22 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド ディーゼルエンジン及びガスエンジン用二重燃料噴射バルブ
WO2015025913A1 (ja) * 2013-08-21 2015-02-26 イマジニアリング株式会社 内燃機関の点火装置及び内燃機関

Also Published As

Publication number Publication date
JPWO2015186683A1 (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
US10161369B2 (en) Injector built-in ignition device, internal combustion engine, gas burner, and ignition device
JP5934851B2 (ja) 内燃機関
US9331458B2 (en) Ignition system
JP2010096109A (ja) 点火装置
JP2014501431A5 (ja)
JP6650085B2 (ja) プラズマ発生装置及び内燃機関
JP6677877B2 (ja) 点火装置内蔵インジェクタ
JP2012184718A (ja) 非熱平衡プラズマ点火装置
JP6685518B2 (ja) 点火装置内蔵インジェクタ
KR20160145070A (ko) 이중 신호 동축 공동 공진기 플라스마 발생
JP6739348B2 (ja) 点火ユニット、点火システム、及び内燃機関
JP6635342B2 (ja) 圧縮着火式内燃機関、及び内燃機関
WO2015186683A1 (ja) インジェクタユニット
JP6620748B2 (ja) インジェクタユニット、及び点火プラグ
US20180298873A1 (en) Igniter
JP2012149608A (ja) 内燃機関の点火装置
WO2015186682A1 (ja) インジェクタユニット
EP1384295A1 (en) Ignition system for internal combustion engine and ignition method of fuel charged in a fuel chamber
JP6635341B2 (ja) 圧縮着火式内燃機関の修理方法
JPWO2016024563A1 (ja) 点火装置
JPS5970886A (ja) 内燃機関の点火方法
WO2016027877A1 (ja) 点火プラグ、圧縮着火式内燃機関
JPWO2013035881A1 (ja) アンテナ構造、高周波放射用プラグ、及び内燃機関
JP2005048656A (ja) 内燃機関
WO2016021735A1 (ja) 内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525174

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802396

Country of ref document: EP

Kind code of ref document: A1