WO2015186418A1 - Sputtering target container and sputtering device - Google Patents

Sputtering target container and sputtering device Download PDF

Info

Publication number
WO2015186418A1
WO2015186418A1 PCT/JP2015/060367 JP2015060367W WO2015186418A1 WO 2015186418 A1 WO2015186418 A1 WO 2015186418A1 JP 2015060367 W JP2015060367 W JP 2015060367W WO 2015186418 A1 WO2015186418 A1 WO 2015186418A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
container
sputtering target
sputtering
storage container
Prior art date
Application number
PCT/JP2015/060367
Other languages
French (fr)
Japanese (ja)
Inventor
渡邉 哲也
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Publication of WO2015186418A1 publication Critical patent/WO2015186418A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the present invention relates to a sputtering target storage container and a sputtering apparatus including the container.
  • a III-V group compound-nitrided on a growth substrate As a semiconductor material used for high-frequency devices used in wireless communications, high-power electronic devices used in power electronics, and light-emitting devices used in traffic lights and lighting, etc., a III-V group compound-nitrided on a growth substrate A thin film element shaped on a semiconductor substrate formed by depositing gallium (GaN) or the like is used. This thin film element is usually manufactured by a sputtering method. The sputtering method has features such as uniform film thickness, good film adhesion, excellent film composition reproducibility, and easy film thickness control.
  • gallium When gallium is used as a sputtering target and a gas containing argon (Ar) and nitrogen (N) is used as a sputtering gas and gallium nitride is deposited on the growth substrate by a sputtering method, the sputtering gas is cationized and collides with gallium, Will occur. Since gallium has a low melting point of 29.8 ° C., it melts by the heat generated at the time of collision. Gallium is desirably maintained in a solid state to prevent fluctuations in its position during sputtering.
  • Patent Document 1 shows an example in which gallium is stored in a cylindrical container and the container is cooled. However, a part of the gallium still melts into a liquid state. In particular, when the amount of gallium in the container is reduced, it is inevitable that the whole is in a liquid state. When gallium is in a liquid state, gallium is likely to swing in the container. As a result, the position of gallium in the container becomes unstable. If the position of gallium in the container becomes unstable, the amount of gallium released by collision with the cationized sputtering gas becomes unstable, and the film thickness becomes non-uniform. In addition, the cationized sputtering gas may collide with the exposed bottom surface of the container and the material constituting the container may be sputtered and mixed into the film as an impurity.
  • Patent Document 2 discloses a technique for improving the wettability between a liquid gallium and a container by forming a diamond-like carbon film on the inner surface of a cylindrical container. In the container with improved wettability, the contact state between the liquid gallium and the container becomes good, so that the position hardly swings even if the amount of gallium becomes small.
  • a container containing gallium is generally cylindrical and has a flat bottom surface. Therefore, when the sputtering progresses and the liquid gallium in the container becomes a small amount and becomes droplets, the position of gallium in the container becomes unstable.
  • the present invention has been made in view of such circumstances, and provides a sputtering target storage container capable of stabilizing the position of a sputtering target in a liquid state in the container during sputtering, and a sputtering apparatus including the container.
  • the purpose is to do.
  • the sputtering target storage container which concerns on the 1st viewpoint of this invention is a sputtering target storage container provided with the storage part which stores a sputtering target in the hollow which has an outer peripheral part and an inner surface, Comprising:
  • the said inner surface is the said outer peripheral part. From the above, it is characterized in that the depression becomes deeper toward one region of the inner surface.
  • the recess may have a shape in which the depth of the recess is different in two directions orthogonal to each other.
  • a sputtering apparatus includes a vacuum chamber, gas introduction means for introducing a sputtering gas into the vacuum chamber, and exhausting the gas in the vacuum chamber to adjust the pressure in the vacuum chamber.
  • a gas evacuation means for adjusting, a sputtering apparatus comprising: The said vacuum chamber is arrange
  • a holder and a power supply device that applies either a negative voltage or a high-frequency voltage to the sputtering target storage container are provided.
  • a magnetic field forming means provided with a moving mechanism for moving each position in the horizontal direction, a detecting means for detecting the size of the region where the sputtering target is present in the sputtering target storage container, and a detection result by the detecting means.
  • a controller that controls the moving mechanism to move the position of the magnet in the horizontal direction.
  • One magnet is arranged at the center of the projection position on the horizontal plane of the one region so that the N pole and the S pole are opposite to each other in the vertical direction on the horizontal plane below the sputtering target storage container.
  • a plurality of other magnets are arranged on the circumference of a circle centered on the one magnet, and the moving mechanism is arranged so that the movement of the other magnet in the radial direction of the circle centered on the one magnet.
  • Each position may be configured to move.
  • a sputtering target storage container that can stabilize the position of a sputtering target in a liquid state in the container during sputtering, and a sputtering apparatus including the container.
  • FIG. 2B is a cross-sectional view taken along the line AA shown in FIG. 1A of the sputtering target storage container according to the first embodiment of the present invention that stores gallium in a liquid state.
  • FIG. 2C is a cross-sectional view in the AA direction shown in FIG. 1A of the sputtering target storage container according to the first embodiment of the present invention that stores gallium in the form of droplets.
  • FIG. 6 is a cross-sectional view in the AA direction shown in FIG.
  • FIG. 1A of a sputtering target storage container according to a first modification of the first embodiment.
  • A It is sectional drawing of the AA direction shown to Fig.1 (a) of the sputtering target storage container which concerns on the 2nd modification of 1st Embodiment.
  • B It is sectional drawing of the AA direction shown to Fig.1 (a) of the sputtering target storage container which concerns on the 3rd modification of 1st Embodiment.
  • C It is sectional drawing of the AA direction shown to Fig.1 (a) of the sputtering target storage container which concerns on the 4th modification of 1st Embodiment.
  • a sputtering target storage container (hereinafter simply referred to as a container) according to an embodiment of the present invention will be described.
  • a container a sputtering target storage container (hereinafter simply referred to as a container) according to an embodiment of the present invention.
  • the container 1 includes a storage portion 2.
  • the storage part 2 includes an outer peripheral part 3 and an inner surface 5.
  • the inner surface 5 has a shape in which a dent deepens in a curved shape from the outer peripheral portion 3 toward the central portion 4 of the region surrounded by the outer peripheral portion 3.
  • Gallium 6 is accommodated in this recess.
  • the container 1 has a circular outer shape in a plan view and is formed of a conductive material such as copper (Cu).
  • the gallium 6 shown in this figure collides with the positive ionization of the sputtering gas, and is melted by the heat generated at that time to be in a liquid state.
  • FIG. 1A is different from FIGS. 1B and 1C in scale.
  • the storage part 2 has a shape in which the inner surface 5 has a curvature, as shown in FIGS. 1 (b) and (c).
  • the curvature may be any size.
  • the container 1 having such a storage unit 2 can be manufactured by, for example, cutting or casting.
  • the sputtering progresses from the initial state in which the liquid gallium 6 is stored (see FIG. 1 (b)), and the gallium 6 becomes a small amount and becomes a droplet ( Also in FIG. 1C, the gallium 6 is held in a region centered on the central portion 4 of the region surrounded by the outer peripheral portion 3. Therefore, the gallium 6 does not oscillate in the storage unit 2 and the position of the gallium 6 is stabilized.
  • the material of the container 1 is not limited to copper (Cu), but may be another conductive material, and may be an insulating material.
  • the conductive material include stainless steel (SUS) in addition to copper (Cu).
  • the insulating material include silicon dioxide (SiO 2 ).
  • the outer peripheral part 3 of the container 1 with a wall part 7 projecting vertically upward (Z direction) according to the degree. .
  • Z direction vertically upward
  • the width control speed is moderated. it can.
  • the shape of the XZ cross section passing through the central portion 4 of the recess of the storage portion 2 may be as shown in FIGS.
  • the container 1 according to the second modified example shown in FIG. 3A has an inner surface 5 formed so that the dent deepens linearly from the outer peripheral portion 3 toward the central portion 4.
  • the container 1 according to the third modified example shown in FIG. 3B has an inner surface 5 formed so that a recess becomes deeper in a stepped manner from the outer peripheral portion 3 toward the central portion 4.
  • a container 1 according to a fourth modification shown in FIG. 3C has an inner surface 5 in which a recess becomes deeper in a spiral step shape from the outer peripheral portion 3 toward the central portion 4.
  • the gallium 6 is held in a region centered on the central portion 4 of the region surrounded by the outer peripheral portion 3, and the gallium 6 is prevented from swinging in the storage portion 2. As a result, the position of gallium 6 in the storage unit 2 can be stabilized.
  • the shape of the inner surface 5 of the storage part 2 may be as shown in FIGS. 4 (a) and 4 (b).
  • the container 1 according to the fifth modification shown in FIG. 4A is formed in a stepped shape on the inner surface 5 of the storage portion 2 in the container 1 according to the third modification shown in FIG.
  • the upper surface is inclined downward from the outer peripheral portion 3 toward the central portion 4.
  • the container 1 according to the sixth modification shown in FIG. 4B is formed in a spiral step shape on the inner surface 5 of the storage portion 2 in the container 1 according to the fourth modification shown in FIG.
  • the upper surface is inclined downward from the outer peripheral portion 3 toward the central portion 4.
  • the gallium 6 when the horizontal end of the gallium 6 is on the upper surface of the stepped portion of the inner surface 5 of the storage portion 2, the gallium 6 can be held on the upper surface of the inclined stepped portion. Further, the positional stability of gallium 6 in the storage unit 2 can be further improved.
  • the inner surface 5 of the storage portion 2 is shown as a shape having the same curvature as a whole, but the curvatures of the inner surface 5 of the storage portion 2 need not all be the same.
  • the inner surface 5 of the storage portion 2 may have a toroidal shape in which the curvature in the X direction and the curvature in the Y direction are different. In the drawing, the curvature in the Y direction is smaller than the curvature in the X direction.
  • Wall portions 7 as shown in FIG. 5B are formed on the outer peripheral portions 3 at both ends in the Y direction where the curvature is small.
  • the toroidal inner surface 5 can be formed by a method similar to that used in the production of a toroidal mirror.
  • the container 1 of the seventh modification even when the amount of gallium 6 in the container 1 becomes small, the degree of reduction in the width in the Y direction of the remaining region of gallium 6 in the storage unit 2 is reduced in the X axis direction.
  • the width can be reduced compared to the degree of reduction.
  • the shape of the container 1 that changes the degree of the depression in the X and Y directions is not limited to the examples in FIGS.
  • the degree of linear inclination may be changed between the X direction and the Y direction. In this case, the same effect as in the case of FIG. 5 can be obtained.
  • FIG. 1 to 5 show an example in which the deepest portion of the recess on the inner surface 5 of the storage portion 2 coincides with the central portion 4, but the position of the deepest portion of the recess on the inner surface 5 of the storage portion 2 is shown here.
  • the position is not limited and may be an arbitrary position in the inner surface 5.
  • the container 1 can hold the gallium 6 in a liquid state and has an inner surface 5 with an appropriate depth in a shape in which a dent deepens toward a region of the inner surface 5. What is necessary is just to have.
  • the inner surface 5 can be formed in any shape regardless of symmetric or asymmetric.
  • the outer shape of the container 1 is formed in a circular shape in plan view, but the outer shape is not limited thereto. For example, it may be formed in an elliptical shape, a rectangular shape, or the like in plan view.
  • the shape of the inner surface 5 in plan view may be formed in accordance with this outer shape.
  • the container 1 can be applied to other examples.
  • the present invention can be applied to an example using a gallium-containing material having a low melting point (for example, 100 ° C. or less) such as gallium indium, which is difficult to maintain a solid state during sputtering.
  • the container 1 can be used as long as it is a material that melts by heat generated during sputtering, even if it does not have a low melting point.
  • the sputtering apparatus 30 will be described using the magnetron sputtering apparatus shown in FIG. 6 as an example.
  • the sputtering apparatus 30 includes a vacuum chamber 31, a container 1, a container holder 34, a substrate holder 35, a magnet mechanism 37 surrounded by a broken line, an image sensor 38, and an outside of the vacuum chamber 31. Provided with a power source 36, a control device 38, and a cooling device 40.
  • the vacuum chamber 31 is a hermetically sealed container that can keep the inside in a state close to a vacuum.
  • a gas introduction port 32 and an exhaust port 33 are provided on one side surface (the surface along the Z axis in FIG. 6) of the vacuum chamber 31.
  • a sputtering gas is supplied into the vacuum chamber 31 from the gas inlet 32.
  • the sputtering gas is composed of argon (Ar) and nitrogen (N). Further, excess sputtering gas in the vacuum chamber 31 is discharged from the exhaust port 33 during sputtering, and the vacuum chamber 31 is maintained at a predetermined degree of vacuum.
  • the container holding part 34 is disposed so as to face the substrate holder 35. On the surface of the container holding part 34 facing the substrate holder 35, the container 1 containing gallium 6 as a sputtering target is fixed by a bonding layer 41. When the container 1 is formed of a conductive material, the bonding layer 41 is formed of a conductive material.
  • the container holding part 34 includes a conduit for circulating the refrigerant sent from the cooling device 40 therein.
  • a growth substrate 42 as a film formation target is attached to the surface of the substrate holder 35 facing the container holding portion 34.
  • the substrate holder 35 is grounded.
  • the power source 36 applies a voltage to the container holding unit 34.
  • the power source 36 may be either a DC power source or a high frequency power source.
  • a negative high voltage is applied to the container holding unit 34.
  • the power source 36 is a high frequency power source, when a high frequency voltage is applied to the container holding unit 34, a high frequency discharge is generated, and a negative bias voltage called a self-bias voltage is generated in the container holding unit 34.
  • the gallium 6 in the container 1 is negatively charged by a negative voltage applied to the container holding part 34 or a negative bias voltage generated in the container holding part 34.
  • glow discharge is generated in the gallium 6 in the container 1, and electrons generated by the glow discharge collide with the sputtering gas introduced into the vacuum chamber 31, and the sputtering gas is cationized.
  • the magnet mechanism 37 is installed on the opposite side of the container 1 from the substrate holder 35 side.
  • the magnet mechanism 37 includes a magnet and a moving mechanism for the magnet.
  • Magnets are disposed at two locations on the container 1 opposite to the substrate holder 35 side. The two positions are on both sides of the projection position on the horizontal plane in the region where the depression of the inner surface 5 of the storage portion 2 of the container 1 is deepest on the horizontal plane at the bottom of the container 1.
  • Each magnet has N and S poles parallel to the vertical direction (Z-axis direction), and on both sides of the projection position on the horizontal plane in the region where the recess of the inner surface 5 of the container 2 of the container 1 is deepest.
  • the different magnetic poles are arranged to be fixed.
  • the moving mechanism moves the magnets arranged in two locations in the horizontal direction (X direction) in opposite directions with respect to the region where the depression is deepest.
  • region which forms a magnetic field can be changed.
  • the image sensor 38 forms an image of the subject on the light receiving surface of the sensor, converts the light and darkness of the formed image into an electrical signal (photoelectric conversion), and sequentially reads the converted signal to obtain the image of the subject. It can be a device.
  • the image sensor 38 acquires an image of gallium 6 in the container 1 in order to grasp the remaining amount of gallium 6 in the container 1.
  • the image sensor 38 may be any system such as a CCD image sensor or a CMOS image sensor.
  • the control device 39 is a computer including an input unit, an output unit, a central processing unit, and a storage unit.
  • the control device 39 is connected to the magnet mechanism 37 and the image sensor 38, inputs image information measured by the image sensor 38, operates the moving mechanism of the magnet mechanism 37 based on this image information, and controls the X of the magnet. Control to change the direction position. As a result, the width in the X direction of the magnetic field region formed by the magnet mechanism 37 is changed, and the width of the region in which the sputtering gas cationized collides is controlled.
  • the control device 39 is also connected to the cooling device 40, and controls the operating conditions of the cooling device 40, such as the temperature of the refrigerant and the circulation speed of the refrigerant.
  • the cooling device 40 supplies a refrigerant to the container holding unit 34.
  • the cooling device 40 includes a pump, a refrigerant, a pipe line through which the refrigerant circulates, and a heat radiating unit, and is connected to the container holding unit 34 via the forward pipe and the return pipe.
  • the refrigerant is sent by the pump from the cooling device 40 to the pipe in the container holding part 34 through the forward pipe, and cools the gallium 6 that becomes high temperature during sputtering and the container 1 that stores the gallium 6.
  • the refrigerant after cooling the container 1 returns to the cooling device 40 through the forward path pipe and is cooled by the heat radiating unit. This cooling prevents the temperature of the container 1 from rising too much. Cooling water is usually used as the refrigerant.
  • the magnet mechanism 37 includes a magnet part 37a, a magnet driving part 37b, a moving part 37c, and a power part 37d.
  • the magnet part 37a includes a first magnet part 37a1 and a second magnet part 37a2.
  • the 1st magnet part 37a1 and the 2nd magnet 37a2 are comprised from a permanent magnet or an electromagnet.
  • the first magnet portion 37a1 is disposed at one end of the container 1 along the X axis opposite to the substrate holder 35 side, and the second magnet portion 37a2 is disposed on the substrate holder 35 side of the container 1. Is installed at the other end along the opposite X-axis.
  • the hatched area of the first magnet portion 37a1 and the second magnet section 37a2 indicates the N pole of the magnet, and the non-hatched area indicates the S pole of the magnet.
  • first magnet part 37a1 and the second magnet part 37a2 a magnetic field substantially parallel to the X axis is formed in the storage part 2 of the container 1 as shown by a one-dot chain line in the drawing.
  • first magnet portion 37a1 second magnet portion 37a2 is of container holding portion 34, in the opposite side of the parallel rails to the X axis to be placed on the surface (not shown) to the side of the substrate holder 35
  • the inner surface 5 of the storage part 2 is attached so as to move in the opposite directions around the region where the depression is deepest. Therefore, by adjusting the distance L between the first magnet part 37a1 and the second magnet part 37a2, the width in the X direction of the region where the magnetic field is formed can be changed.
  • the magnet drive unit 37b includes a cylindrical body 37b1 and a rod 37b2.
  • the cylindrical body 37b1 is formed hollow.
  • One end surface of the cylindrical body 37b1 is fixed to a substantially central portion of the surface of the container holding portion 34 opposite to the substrate holder 35, and a hole (not shown) is formed in the substantially central portion of the other end surface. It is formed.
  • a part of the rod 37b2 passes through the hole and is accommodated in the cylindrical body 37b1, and the remaining part projects from the hole along the Z axis to the outside of the cylindrical body 37b1.
  • the rod 37b2 moves freely in the Z direction.
  • Any magnet drive unit 37b can be used as long as it is a mechanism including a linearly moving element.
  • the magnet drive unit 37b for example, a mechanism in which a rotary motor and a ball screw are combined, or a linear motor in which a shaft portion moves directly without rotating is used.
  • the moving unit 37c includes a plate body 37c1, a first link unit 37c2, and a second link unit 37c3.
  • the plate body 37c1 is, for example, a plate-shaped member, and is disposed on the side of the container holding portion 34 opposite to the substrate holder 35 side.
  • a rod 37b2 is fixed to a substantially central portion of the surface of the plate body 37c1 facing the container holding portion 34. Therefore, the position of the plate body 37c1 in the Z direction moves together with the rod 37b2.
  • the first link part 37c2 and the second link part 37c3 are rod-like members that are arranged substantially symmetrically with respect to the rod 37b2.
  • One end of the first link portion 37c2 is fixed to the first magnet portion 37a1, and the other end is rotatably connected to one end of the surface along the X axis of the plate body 37c1.
  • One end of the second link portion 37c3 is fixed to the second magnet portion 37a2, and the other end is rotatably connected to the other end of the surface along the X axis of the plate body 37c1.
  • the power unit 37d is a power source that drives the magnet drive unit 37b, and an appropriate one is selected according to the configuration of the magnet drive unit 37b.
  • the power unit 37d is connected to the control device 39 and its operation is controlled.
  • the position of the plate body 37c1 in the Z direction is changed by controlling the operation of the power unit 37d.
  • the positions in the X direction of the first magnet portion 37a1 and the second magnet portion 37a2 change, and the distance L changes.
  • the width of the region where the sputtering gas that has become cations collides is set according to the region where the gallium 6 stored in the container 1 remains. A specific example of control will be described.
  • the image sensor 38 provided in the vacuum chamber 31 acquires an image of a region where the gallium 6 in the container 1 remains.
  • Information about the acquired image is input to the control device 39 via the input unit and temporarily stored in the storage unit.
  • the central processing unit reads information about the acquired image from the storage unit, and displays, for example, the width of the remaining region of the gallium 6 in the container 1 on an XY graph with the center of the container 1 as the origin. Such a calculation is performed, and a control signal corresponding to the width of the gallium 6 region displayed on the XY graph is output from the output unit to the power unit 37d.
  • the power unit 37d drives the rod 37b.
  • the rod 37b2 and the plate body 37c1 are moved in the Z direction
  • the first magnet part 37a1 and the second magnet part 37a2 are moved in the X direction.
  • the X-direction positions of the first magnet portion 37a1 and the second magnet portion 37a2 move according to the width in the X direction of the remaining region of gallium 6.
  • the width in the X direction of the region in which the atoms or molecules constituting the sputtering gas collide with the positive ions is controlled.
  • the width in the Y direction of the region where the magnetic field is formed is changed by using electromagnets for the first magnet portion 37a1 and the second magnet 37a2 and changing the energization amount to the coils of the electromagnet.
  • the amount of energization to the electromagnet is controlled by the control device 39.
  • sputtering may be performed with the width in the Y direction of the region where the magnetic field is formed fixed to a predetermined width.
  • the width of the region may be fixed to the lower limit width at which sputtering is performed, that is, the width in the Y direction of the final region where sputtering is scheduled to be performed.
  • the width of the region in the Y direction where the magnetic field is formed is set large. it can. Thereby, sputtering efficiency improves and productivity can be improved.
  • the arrangement of the magnet part 37a is not limited to the example shown in FIG.
  • the first magnet portion 37a1 is placed at a substantially central portion (on the surface of the container holding portion 34 opposite to the substrate holder 35 shown in FIG. 6).
  • one circle is arranged between the container holding portion 34 and the cylindrical body 37b1, and a circle indicated by a broken line centered on the first magnet portion 37a1 in the same plane as the opposite surface.
  • a plurality of second magnet portions 37a2 may be arranged along the circumference (see FIG. 7B).
  • the first magnet portion 37a1 and the second magnet portion 37a2 are arranged on the opposite surfaces so that the N pole and the S pole are opposite to each other in the vertical direction.
  • the first magnet part 37a1 is fixed between the container holding part 34 and the cylindrical body 37b1.
  • the second magnet portion 37a2 is attached to each of the rails 37e extending in the radial direction of the circle indicated by the broken line on the opposite surface.
  • the configuration of the magnet drive unit 37b may be the same as the configuration shown in FIG. 6, but the configuration of the moving unit 37c is the magnet unit 37a.
  • gallium 6 is present as compared to the case where a pair of magnets are arranged as shown in FIG.
  • the circumferential strength of the magnetic field generated on the region can be made uniform.
  • the arrangement of the magnet drive unit 37b is not limited to the example shown in FIG.
  • the cylindrical body 37b1 is fixedly disposed below the vacuum chamber 31, and the rod 37b2, the plate body 37c1, the first link portion 37c2, and the second link portion 37c3 are disposed above the cylindrical body 37b1. Also good.
  • the magnet drive unit 37b does not exist between the first magnet unit 37a1 and the second magnet unit 37a2, the first side of the container 1 on the side opposite to the substrate holder 35 side is provided.
  • the magnet portion 37a1 and the second magnet portion 37a2 can be brought closer to each other.
  • the container 1 according to the first embodiment of the present invention is used for the sputtering apparatus 30 according to the second embodiment of the present invention
  • gallium 6 can be used even when the sputtering progresses to form droplets. Does not rock in the container 1. Therefore, in the sputtering apparatus 30 according to the second embodiment of the present invention, only the size of the region that generates the magnetic field needs to be controlled according to the width of the region in the container 1 where the gallium 6 exists. Therefore, the configuration of the magnet mechanism 37 and the control device 39 can be simplified. With such a simple apparatus configuration, it is possible to form a film with a uniform thickness and a small amount of impurities.
  • Sputtering target storage container (container) 2 Storage part 3 Outer part 4 Center part 5 Inner surface 6 Gallium 7 Wall part 30 Sputtering device 31 Vacuum chamber 32 Gas introduction port 33 Exhaust port 34 Container holding part 35 Substrate holder 36 Power supply 37 Magnet mechanism 37a Magnet part 37a1 First magnet Part 37a2 second magnet part 37b magnet drive part 37b1 cylindrical body 37b2 rod 37c moving part 37c1 plate 37c2 first link part 37c3 second link part 37c 'link part 37d power part 37e rail 38 image sensor 39 control device 40 Cooling device 41 Bonding layer 42 Growth substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

A container (1) including a holding part (2). The holding part (2) comprises a peripheral part (3) and an inner surface (5). The inner surface (5) has such a depressed shape that the depression becomes deeper from the peripheral part (3) toward the center (4) of the region surrounded by the peripheral part (3). Gallium (6) is held in this depression. The container (1) has, for example, a circular contour in terms of plan-view shape and is formed from a conductive material such as copper (Cu). The gallium (6) is melted and brought into a liquid state by the heat generated by the bombardment of cations of a sputtering gas. The inner surface (5) of the holding part (2) has a shape having a curvature.

Description

スパッタリングターゲット収納容器、およびスパッタリング装置Sputtering target storage container and sputtering apparatus
 本発明は、スパッタリングターゲット収納容器、および該容器を備えるスパッタリング装置に関する。 The present invention relates to a sputtering target storage container and a sputtering apparatus including the container.
 無線通信で使用される高周波デバイスやパワーエレクトロニクスで使用される高出力電子デバイス、信号機・照明などに使用される発光デバイスなどに用いられる半導体材料として、成長基板上に、III-V族化合物-窒化ガリウム(GaN)など-を堆積させて形成される半導体基板に形性された薄膜素子が用いられる。この薄膜素子は、通常、スパッタリング法で製造される。スパッタリング法には、膜厚を均一にできる、膜の密着性が良好である、膜組成の再現性に優れる、膜厚制御が容易である等の特徴がある。 As a semiconductor material used for high-frequency devices used in wireless communications, high-power electronic devices used in power electronics, and light-emitting devices used in traffic lights and lighting, etc., a III-V group compound-nitrided on a growth substrate A thin film element shaped on a semiconductor substrate formed by depositing gallium (GaN) or the like is used. This thin film element is usually manufactured by a sputtering method. The sputtering method has features such as uniform film thickness, good film adhesion, excellent film composition reproducibility, and easy film thickness control.
 ガリウムをスパッタリングターゲット、アルゴン(Ar)、窒素(N)を含むガスをスパッタリングガスとし、スパッタリング法で成長基板上に窒化ガリウムを堆積させる場合、スパッタリングガスが陽イオン化され、ガリウムと衝突して、熱が発生する。ガリウムは、融点が29.8℃と低いので、衝突時に発生する熱により溶融する。ガリウムは、スパッタリング中の、その位置の変動を防止するために、固体状態を維持することが望ましい。 When gallium is used as a sputtering target and a gas containing argon (Ar) and nitrogen (N) is used as a sputtering gas and gallium nitride is deposited on the growth substrate by a sputtering method, the sputtering gas is cationized and collides with gallium, Will occur. Since gallium has a low melting point of 29.8 ° C., it melts by the heat generated at the time of collision. Gallium is desirably maintained in a solid state to prevent fluctuations in its position during sputtering.
 特許文献1では、円筒状の容器にガリウムを収納し、該容器を冷却する例を示しているが、それでも一部は溶融し液体状態になる。特に、容器内のガリウム量が少なくなると全体が液体状態になることは避けられない。ガリウムが液体状態になると、ガリウムは容器内で揺動し易くなる。その結果、容器内でのガリウムの位置は不安定になる。容器内でのガリウムの位置が不安定になると、陽イオン化されたスパッタリングガスとの衝突により放出されるガリウムの量が不安定になり、膜厚が不均一になる。また、陽イオン化されたスパッタリングガスが露出した容器の底面に衝突して、容器を構成する材料がスパッタリングされて、膜に不純物として混入する虞もある。 Patent Document 1 shows an example in which gallium is stored in a cylindrical container and the container is cooled. However, a part of the gallium still melts into a liquid state. In particular, when the amount of gallium in the container is reduced, it is inevitable that the whole is in a liquid state. When gallium is in a liquid state, gallium is likely to swing in the container. As a result, the position of gallium in the container becomes unstable. If the position of gallium in the container becomes unstable, the amount of gallium released by collision with the cationized sputtering gas becomes unstable, and the film thickness becomes non-uniform. In addition, the cationized sputtering gas may collide with the exposed bottom surface of the container and the material constituting the container may be sputtered and mixed into the film as an impurity.
 特許文献2では、円筒状の容器の内表面にダイアモンドライクカーボンの膜を形成して、液体状態のガリウムと容器との濡れ性を改善する技術が開示されている。濡れ性が改善された該容器では、液体状態のガリウムと容器との接触状態が良好になるので、ガリウムが少量になってもその位置が揺動しにくくなる。 Patent Document 2 discloses a technique for improving the wettability between a liquid gallium and a container by forming a diamond-like carbon film on the inner surface of a cylindrical container. In the container with improved wettability, the contact state between the liquid gallium and the container becomes good, so that the position hardly swings even if the amount of gallium becomes small.
特開平11-172424号公報Japanese Patent Laid-Open No. 11-172424 特開2009-97078号公報JP 2009-97078 A
 特許文献1及び2に開示されているように、ガリウムを収納する容器は一般に円筒状であり、底面が平坦である。そのため、スパッタリングが進行して容器内の液体状態のガリウムが少量になって液滴状になると、容器内でのガリウムの位置は不安定になる。 As disclosed in Patent Documents 1 and 2, a container containing gallium is generally cylindrical and has a flat bottom surface. Therefore, when the sputtering progresses and the liquid gallium in the container becomes a small amount and becomes droplets, the position of gallium in the container becomes unstable.
 本発明はかかる実情に鑑みてなされたものであり、スパッタリング中に、容器内での液体状態のスパッタリングターゲットの位置を安定化させることができるスパッタリングターゲット収納容器、および該容器を備えるスパッタリング装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a sputtering target storage container capable of stabilizing the position of a sputtering target in a liquid state in the container during sputtering, and a sputtering apparatus including the container. The purpose is to do.
 本発明の第1の観点に係るスパッタリングターゲット収納容器は、外周部と内表面とを有する窪みにスパッタリングターゲットを収納する収納部を備えるスパッタリングターゲット収納容器であって、前記内表面は、前記外周部から、前記内表面の一領域に向かって窪みが深くなる形状である、ことを特徴とする。 The sputtering target storage container which concerns on the 1st viewpoint of this invention is a sputtering target storage container provided with the storage part which stores a sputtering target in the hollow which has an outer peripheral part and an inner surface, Comprising: The said inner surface is the said outer peripheral part. From the above, it is characterized in that the depression becomes deeper toward one region of the inner surface.
 前記窪みは、窪みの深くなる程度が互いに直交する2方向で異なる形状を有してもよい。 The recess may have a shape in which the depth of the recess is different in two directions orthogonal to each other.
 本発明の第2の観点に係るスパッタリング装置は、真空チャンバと、前記真空チャンバ内にスパッタリングガスを導入するガス導入手段と、前記真空チャンバ内のガスを排気して、前記真空チャンバ内の圧力を調整するガス排気手段と、を備えるスパッタリング装置であって、
 前記真空チャンバは、スパッタリングターゲットを収納する請求項1または2に記載のスパッタリングターゲット収納容器と、前記スパッタリングターゲット収納容器に対向して配置されて、スパッタリング対象の基板を固定するとともに、接地される基板ホルダと、前記スパッタリングターゲット収納容器に負の電圧または高周波電圧のいずれかを印加する電源装置と、を備える、ことを特徴とする。
A sputtering apparatus according to a second aspect of the present invention includes a vacuum chamber, gas introduction means for introducing a sputtering gas into the vacuum chamber, and exhausting the gas in the vacuum chamber to adjust the pressure in the vacuum chamber. A gas evacuation means for adjusting, a sputtering apparatus comprising:
The said vacuum chamber is arrange | positioned facing the said sputtering target storage container and the said sputtering target storage container of Claim 1 or 2 which accommodates a sputtering target, and is a board | substrate grounded while fixing the board | substrate of sputtering target. A holder and a power supply device that applies either a negative voltage or a high-frequency voltage to the sputtering target storage container are provided.
 前記スパッタリングターゲット収納容器の下部の水平面上にあって、前記一領域の水平面上への投影位置の両側に、N極とS極が鉛直方向に互いに逆向きに配置される磁石と、前記磁石の位置をそれぞれ水平方向に移動する移動機構と、を備える磁界形成手段と、前記スパッタリングターゲット収納容器内の前記スパッタリングターゲットが存在する領域の大きさを検出する検出手段と、前記検出手段による検出結果に基づいて、前記移動機構を制御して、前記磁石の水平方向の位置を移動する制御部と、を備えてもよい。 A magnet on a horizontal plane at a lower portion of the sputtering target storage container, on both sides of a projection position on the horizontal plane of the one region, a magnet having N poles and S poles arranged in opposite directions in the vertical direction; A magnetic field forming means provided with a moving mechanism for moving each position in the horizontal direction, a detecting means for detecting the size of the region where the sputtering target is present in the sputtering target storage container, and a detection result by the detecting means. And a controller that controls the moving mechanism to move the position of the magnet in the horizontal direction.
 前記スパッタリングターゲット収納容器の下部の水平面上において、N極とS極が鉛直方向に互いに逆向きになるように、前記一領域の水平面上への投影位置の中心部に一方の磁石を1個配置するとともに、前記一方の磁石を中心とする円の円周上に他方の磁石を複数個配置し、前記移動機構は、前記一方の磁石を中心とする円の半径方向に、前記他方の磁石の位置をそれぞれ移動するように構成されてもよい。 One magnet is arranged at the center of the projection position on the horizontal plane of the one region so that the N pole and the S pole are opposite to each other in the vertical direction on the horizontal plane below the sputtering target storage container. In addition, a plurality of other magnets are arranged on the circumference of a circle centered on the one magnet, and the moving mechanism is arranged so that the movement of the other magnet in the radial direction of the circle centered on the one magnet. Each position may be configured to move.
 本発明によれば、スパッタリング中に、容器内での液体状態のスパッタリングターゲットの位置を安定化させることができるスパッタリングターゲット収納容器、および該容器を備えるスパッタリング装置を提供できる。 According to the present invention, it is possible to provide a sputtering target storage container that can stabilize the position of a sputtering target in a liquid state in the container during sputtering, and a sputtering apparatus including the container.
(a)液体状態のガリウムを収納した本発明の第1の実施形態に係るスパッタリングターゲット収納容器の平面図である。(b)液体状態のガリウムを収納した本発明の第1の実施形態に係るスパッタリングターゲット収納容器の図1(a)に示すA-A方向の断面図である。(c)液滴状になったガリウムを収納した、本発明の第1の実施形態に係るスパッタリングターゲット収納容器の図1(a)に示すA-A方向の断面図である。(A) It is a top view of the sputtering target storage container which concerns on the 1st Embodiment of this invention which stored the gallium of the liquid state. FIG. 2B is a cross-sectional view taken along the line AA shown in FIG. 1A of the sputtering target storage container according to the first embodiment of the present invention that stores gallium in a liquid state. FIG. 2C is a cross-sectional view in the AA direction shown in FIG. 1A of the sputtering target storage container according to the first embodiment of the present invention that stores gallium in the form of droplets. 第1の実施形態の第1の変形例に係るスパッタリングターゲット収納容器の図1(a)に示すA-A方向の断面図である。FIG. 6 is a cross-sectional view in the AA direction shown in FIG. 1A of a sputtering target storage container according to a first modification of the first embodiment. (a)第1の実施形態の第2の変形例に係るスパッタリングターゲット収納容器の図1(a)に示すA-A方向の断面図である。(b)第1の実施形態の第3の変形例に係るスパッタリングターゲット収納容器の図1(a)に示すA-A方向の断面図である。(c)第1の実施形態の第4の変形例に係るスパッタリングターゲット収納容器の図1(a)に示すA-A方向の断面図である。(A) It is sectional drawing of the AA direction shown to Fig.1 (a) of the sputtering target storage container which concerns on the 2nd modification of 1st Embodiment. (B) It is sectional drawing of the AA direction shown to Fig.1 (a) of the sputtering target storage container which concerns on the 3rd modification of 1st Embodiment. (C) It is sectional drawing of the AA direction shown to Fig.1 (a) of the sputtering target storage container which concerns on the 4th modification of 1st Embodiment. (a)第1の実施形態の第5の変形例に係るスパッタリングターゲット容器の図1(a)に示すA-A方向の断面図である。(b)第1の実施形態の第6の変形例に係るスパッタリングターゲット収納容器の図1(a)に示すA-A方向の断面図である。(A) It is sectional drawing of the AA direction shown to Fig.1 (a) of the sputtering target container which concerns on the 5th modification of 1st Embodiment. (B) It is sectional drawing of the AA direction shown to Fig.1 (a) of the sputtering target storage container which concerns on the 6th modification of 1st Embodiment. (a)第1の実施形態の第7の変形例に係るスパッタリングターゲット収納容器の図1(a)に示すA-A方向の断面図である。(b)第1の実施形態の第7の変形例に係るスパッタリングターゲット収納容器の図1(a)に示すB-B方向の断面図である。(A) It is sectional drawing of the AA direction shown to Fig.1 (a) of the sputtering target storage container which concerns on the 7th modification of 1st Embodiment. (B) It is sectional drawing of the BB direction shown to Fig.1 (a) of the sputtering target storage container which concerns on the 7th modification of 1st Embodiment. 本発明の第2の実施形態に係るスパッタリング装置の概念図である。It is a conceptual diagram of the sputtering device which concerns on the 2nd Embodiment of this invention. (a)磁石部の他の配置例を示す断面図である。(b)磁石部の他の配置例を示す平面図である。(A) It is sectional drawing which shows the other example of arrangement | positioning of a magnet part. (B) It is a top view which shows the other example of arrangement | positioning of a magnet part.
(第1の実施形態)
 以下、本発明の実施形態に係るスパッタリングターゲット収納容器(以下では単に容器と呼ぶ)について説明する。以下では、理解を容易にするため、鉛直上方をZ軸方向、Z軸に直交するある軸をX軸、X軸とZ軸の両方に直交する軸をY軸とする直交座標を設定し、適宜参照する。また、図2乃至5では、図1(a)のA-A方向またはB-B方向のいずれかの断面図のみを示す。
(First embodiment)
Hereinafter, a sputtering target storage container (hereinafter simply referred to as a container) according to an embodiment of the present invention will be described. In the following, in order to facilitate understanding, set the orthogonal coordinates with the Z axis direction vertically above, the X axis as an axis orthogonal to the Z axis, and the Y axis as the axis orthogonal to both the X axis and the Z axis, Refer to it as appropriate. 2 to 5 show only a cross-sectional view in either the AA direction or the BB direction in FIG.
 図1(a)乃至(c)に示すように、容器1は収納部2を備える。収納部2は、外周部3、および内表面5を備える。内表面5は、外周部3から、外周部3で囲まれた領域の中心部4に向かって窪みが曲線状に深くなる形状を有する。この窪みにガリウム6が収納される。容器1は、例えば、図1(a)に示すように、平面視で円状の外形を有し、銅(Cu)などの導電性材料で形成される。ここで、この図に示すガリウム6は、スパッタリングガスが陽イオン化されたものと衝突して、その際に発生した熱により溶融し、液体状態になったものである。なお、図1(a)は、図1(b)、(c)とは縮尺が異なる。 As shown in FIGS. 1 (a) to (c), the container 1 includes a storage portion 2. The storage part 2 includes an outer peripheral part 3 and an inner surface 5. The inner surface 5 has a shape in which a dent deepens in a curved shape from the outer peripheral portion 3 toward the central portion 4 of the region surrounded by the outer peripheral portion 3. Gallium 6 is accommodated in this recess. For example, as shown in FIG. 1A, the container 1 has a circular outer shape in a plan view and is formed of a conductive material such as copper (Cu). Here, the gallium 6 shown in this figure collides with the positive ionization of the sputtering gas, and is melted by the heat generated at that time to be in a liquid state. FIG. 1A is different from FIGS. 1B and 1C in scale.
 収納部2は、その内表面5が図1(b)および(c)に示すように、曲率を有する形状である。曲率はどのような大きさであってもよい。このような収納部2を有する容器1は、例えば、削り加工や鋳造などで製造できる。 The storage part 2 has a shape in which the inner surface 5 has a curvature, as shown in FIGS. 1 (b) and (c). The curvature may be any size. The container 1 having such a storage unit 2 can be manufactured by, for example, cutting or casting.
 収納部2を有する容器1では、液体状態のガリウム6を収納した初期の状態(図1(b)参照)から、スパッタリングが進行してガリウム6が少量になって液滴状になった状態(図1(c)参照)においても、ガリウム6は、外周部3で囲まれた領域の中心部4を中心とする領域に保持される。そのため、ガリウム6は収納部2内で揺動せず、ガリウム6の位置は安定する。 In the container 1 having the storage unit 2, the sputtering progresses from the initial state in which the liquid gallium 6 is stored (see FIG. 1 (b)), and the gallium 6 becomes a small amount and becomes a droplet ( Also in FIG. 1C, the gallium 6 is held in a region centered on the central portion 4 of the region surrounded by the outer peripheral portion 3. Therefore, the gallium 6 does not oscillate in the storage unit 2 and the position of the gallium 6 is stabilized.
 容器1の材料は、銅(Cu)に限定されるものではなく、他の導電性材料であってもよく、さらに絶縁性材料であってもよい。導電性材料の例としては、銅(Cu)以外に、ステンレス(SUS)などがある。絶縁性材料の例としては、二酸化ケイ素(SiO)などがある。導電性材料を選んだ場合には、容器1は直流電源を用いたスパッタリング装置と高周波電源を用いたスパッタリング装置のいずれにも用いることができ、絶縁性材料を選んだ場合には、容器1は高周波電源を用いたスパッタリング装置に用いることができる。 The material of the container 1 is not limited to copper (Cu), but may be another conductive material, and may be an insulating material. Examples of the conductive material include stainless steel (SUS) in addition to copper (Cu). Examples of the insulating material include silicon dioxide (SiO 2 ). When a conductive material is selected, the container 1 can be used for either a sputtering apparatus using a direct current power source or a sputtering apparatus using a high frequency power source. When an insulating material is selected, the container 1 is It can be used for a sputtering apparatus using a high-frequency power source.
 図2に示すように、内表面5の曲率が小さい場合は、容器1の外周部3に、その程度に応じた高さの鉛直上方(Z方向)に突出する壁部7を設けるのが好ましい。このような壁部7を設けることにより、収納部2に収納できるガリウム6の量を所定量に維持できる。 As shown in FIG. 2, when the curvature of the inner surface 5 is small, it is preferable to provide the outer peripheral part 3 of the container 1 with a wall part 7 projecting vertically upward (Z direction) according to the degree. . By providing such a wall portion 7, the amount of gallium 6 that can be stored in the storage portion 2 can be maintained at a predetermined amount.
 曲率の小さい容器では、曲率の大きい場合と比べ、スパッタリング時にXY平面上でのガリウム6の存在する領域の減少の程度は小さい。そのため、容器1内に収納されたガリウム6の存在する領域の広がりの程度に応じて、スパッタリングガスが陽イオン化されたものが衝突する領域の幅を制御する場合に、幅の制御スピードを緩やかにできる。 In a container with a small curvature, the extent of reduction of the area where gallium 6 exists on the XY plane during sputtering is smaller than in the case with a large curvature. Therefore, when controlling the width of the region where the cationized sputtering gas collides according to the extent of the region in which the gallium 6 accommodated in the container 1 exists, the width control speed is moderated. it can.
 また、収納部2の窪みの中心部4を通るXZ断面の形状は、図3(a)乃至(c)に示すものであってもよい。図3(a)に示す第2の変形例に係る容器1は、外周部3から中心部4に向かって、窪みが直線状に深くなるように形成された内表面5を有する。図3(b)に示す第3の変形例に係る容器1は、外周部3から中心部4に向かって、窪みが階段状に深くなるように形成された内表面5を有する。図3(c)に示す第4の変形例に係る容器1は、外周部3から中心部4に向かって、窪みが螺旋階段状に深くなる内表面5を有する。 Further, the shape of the XZ cross section passing through the central portion 4 of the recess of the storage portion 2 may be as shown in FIGS. The container 1 according to the second modified example shown in FIG. 3A has an inner surface 5 formed so that the dent deepens linearly from the outer peripheral portion 3 toward the central portion 4. The container 1 according to the third modified example shown in FIG. 3B has an inner surface 5 formed so that a recess becomes deeper in a stepped manner from the outer peripheral portion 3 toward the central portion 4. A container 1 according to a fourth modification shown in FIG. 3C has an inner surface 5 in which a recess becomes deeper in a spiral step shape from the outer peripheral portion 3 toward the central portion 4.
 このような形状でも、ガリウム6は、外周部3で囲まれた領域の中心部4を中心とする領域に保持され、収納部2内でのガリウム6の揺動が防止される。その結果、収納部2内でのガリウム6の位置を安定化できる。 Even in such a shape, the gallium 6 is held in a region centered on the central portion 4 of the region surrounded by the outer peripheral portion 3, and the gallium 6 is prevented from swinging in the storage portion 2. As a result, the position of gallium 6 in the storage unit 2 can be stabilized.
 あるいは、収納部2の内表面5の形状は、図4(a)および(b)に示すものであってもよい。図4(a)に示す第5の変形例に係る容器1は、図3(b)に示す第3の変形例に係る容器1において、収納部2の内表面5の階段状に形成された上面を外周部3から中心部4に向けて、下方に傾斜させたものである。図4(b)に示す第6の変形例に係る容器1は、図3(c)に示す第4の変形例に係る容器1において、収納部2の内表面5の螺旋階段状に形成された上面を外周部3から中心部4に向けて、下方に傾斜させたものである。 Alternatively, the shape of the inner surface 5 of the storage part 2 may be as shown in FIGS. 4 (a) and 4 (b). The container 1 according to the fifth modification shown in FIG. 4A is formed in a stepped shape on the inner surface 5 of the storage portion 2 in the container 1 according to the third modification shown in FIG. The upper surface is inclined downward from the outer peripheral portion 3 toward the central portion 4. The container 1 according to the sixth modification shown in FIG. 4B is formed in a spiral step shape on the inner surface 5 of the storage portion 2 in the container 1 according to the fourth modification shown in FIG. The upper surface is inclined downward from the outer peripheral portion 3 toward the central portion 4.
 このようにすれば、ガリウム6の水平方向の端部が、収納部2の内表面5の階段状の部分の上面にある場合に、傾斜した階段状の部分の上面でガリウム6を保持できるので、収納部2内でのガリウム6の位置安定性をさらに向上できる。 In this way, when the horizontal end of the gallium 6 is on the upper surface of the stepped portion of the inner surface 5 of the storage portion 2, the gallium 6 can be held on the upper surface of the inclined stepped portion. Further, the positional stability of gallium 6 in the storage unit 2 can be further improved.
 また、図1および図2では、収納部2の内表面5は、その全体が同じ曲率を有する形状として示したが、収納部2の内表面5の曲率は、全てが同じである必要はない。図5(a)、(b)に第7の変形例として示すように、収納部2の内表面5は、X方向の曲率とY方向の曲率が異なるトロイダル形状であってもよい。図中では、Y方向の曲率はX方向の曲率よりも小さい。容器1の、曲率が小さいY方向の両端の外周部3には、図5(b)に示すような壁部7が形成される。なお、トロイダル形状の内表面5は、トロイダルミラーの制作において使用される方法と同様の方法で形成され得る。 1 and 2, the inner surface 5 of the storage portion 2 is shown as a shape having the same curvature as a whole, but the curvatures of the inner surface 5 of the storage portion 2 need not all be the same. . As shown in FIGS. 5A and 5B as a seventh modification, the inner surface 5 of the storage portion 2 may have a toroidal shape in which the curvature in the X direction and the curvature in the Y direction are different. In the drawing, the curvature in the Y direction is smaller than the curvature in the X direction. Wall portions 7 as shown in FIG. 5B are formed on the outer peripheral portions 3 at both ends in the Y direction where the curvature is small. The toroidal inner surface 5 can be formed by a method similar to that used in the production of a toroidal mirror.
 第7の変形例の容器1によれば、容器1内のガリウム6が少量になった場合でも、収納部2内のガリウム6の残存領域のY方向の幅の減少の程度をX軸方向の幅の減少の程度に比べて小さくできる。これにより、以下の第2の実施形態で説明するような、所定の効果を奏することができる。 According to the container 1 of the seventh modification, even when the amount of gallium 6 in the container 1 becomes small, the degree of reduction in the width in the Y direction of the remaining region of gallium 6 in the storage unit 2 is reduced in the X axis direction. The width can be reduced compared to the degree of reduction. Thereby, a predetermined effect as described in the second embodiment below can be obtained.
 なお、X、Y方向に窪みの程度を変える容器1の形状は、図5(a)、(b)の例に限らない。図3(a)に示す例において、X方向とY方向とで直線の傾斜の程度を変えてもよい。この場合も、図5の場合と同様の効果を奏することができる。 In addition, the shape of the container 1 that changes the degree of the depression in the X and Y directions is not limited to the examples in FIGS. In the example shown in FIG. 3A, the degree of linear inclination may be changed between the X direction and the Y direction. In this case, the same effect as in the case of FIG. 5 can be obtained.
 また、図1乃至5では、収納部2の内表面5の窪みの最深部が中心部4と一致する例について示したが、収納部2の内表面5の窪みの最深部の位置はこれに限られず、内表面5内の任意の位置であってよい。 1 to 5 show an example in which the deepest portion of the recess on the inner surface 5 of the storage portion 2 coincides with the central portion 4, but the position of the deepest portion of the recess on the inner surface 5 of the storage portion 2 is shown here. The position is not limited and may be an arbitrary position in the inner surface 5.
 また、容器1は、図1乃至5に示す例以外にも、液体状態のガリウム6を保持でき、内表面5の一領域に向かって窪みが深くなる形状の適当な深さの内表面5を有するものであればよい。内表面5は、対称、非対称を問わず如何なる形状にも形成できる。 In addition to the examples shown in FIGS. 1 to 5, the container 1 can hold the gallium 6 in a liquid state and has an inner surface 5 with an appropriate depth in a shape in which a dent deepens toward a region of the inner surface 5. What is necessary is just to have. The inner surface 5 can be formed in any shape regardless of symmetric or asymmetric.
 また、図1乃至図5では、容器1の外形を、平面視で円状に形成する例を示したが、外形の形状はこれに限られない。例えば、平面視で、楕円状、矩形状などに形成されてもよい。内表面5の平面視の形状も、この外形に合わせて形成してもよい。 1 to 5 show an example in which the outer shape of the container 1 is formed in a circular shape in plan view, but the outer shape is not limited thereto. For example, it may be formed in an elliptical shape, a rectangular shape, or the like in plan view. The shape of the inner surface 5 in plan view may be formed in accordance with this outer shape.
 また、図1乃至図5では、容器1にガリウム6を収納する例を説明したが、容器1は、これ以外の例にも適用できる。例えば、スパッタリング中に固体状態を維持するのが困難な、ガリウムインジウムなどの低融点(例えば、100℃以下)のガリウム含有材料を用いる例にも適用できる。また、低融点でなくても、スパッタリング中に発生する熱で溶融する材料であれば、容器1を適用できる。 1 to 5, the example in which the gallium 6 is stored in the container 1 has been described. However, the container 1 can be applied to other examples. For example, the present invention can be applied to an example using a gallium-containing material having a low melting point (for example, 100 ° C. or less) such as gallium indium, which is difficult to maintain a solid state during sputtering. Further, the container 1 can be used as long as it is a material that melts by heat generated during sputtering, even if it does not have a low melting point.
(第2の実施形態)
 次に、このような容器1を備えるスパッタリング装置について説明する。
(Second Embodiment)
Next, a sputtering apparatus provided with such a container 1 will be described.
 スパッタリング装置30について、図6に示すマグネトロンスパッタリング装置を例に説明する。 The sputtering apparatus 30 will be described using the magnetron sputtering apparatus shown in FIG. 6 as an example.
 スパッタリング装置30は、真空チャンバ31と、真空チャンバ31内に設けられる、容器1、容器保持部34、基板ホルダ35、破線で囲って示す磁石機構37、およびイメージセンサ38と、真空チャンバ31の外部に設けられる、電源36、制御装置38および冷却装置40と、を備える。 The sputtering apparatus 30 includes a vacuum chamber 31, a container 1, a container holder 34, a substrate holder 35, a magnet mechanism 37 surrounded by a broken line, an image sensor 38, and an outside of the vacuum chamber 31. Provided with a power source 36, a control device 38, and a cooling device 40.
 真空チャンバ31は、内部を真空に近い状態に保つことができる密閉容器である。真空チャンバ31の一側面(図6では、Z軸に沿った面)にはガス導入口32および排気口33が設けられる。ガス導入口32から、スパッタリングガスが真空チャンバ31内に供給される。スパッタリングガスは、アルゴン(Ar)、窒素(N)から構成される。また、真空チャンバ31内の過剰なスパッタリングガスは、スパッタリング中に、排気口33から排出されて真空チャンバ31内は所定の真空度に保たれる。 The vacuum chamber 31 is a hermetically sealed container that can keep the inside in a state close to a vacuum. A gas introduction port 32 and an exhaust port 33 are provided on one side surface (the surface along the Z axis in FIG. 6) of the vacuum chamber 31. A sputtering gas is supplied into the vacuum chamber 31 from the gas inlet 32. The sputtering gas is composed of argon (Ar) and nitrogen (N). Further, excess sputtering gas in the vacuum chamber 31 is discharged from the exhaust port 33 during sputtering, and the vacuum chamber 31 is maintained at a predetermined degree of vacuum.
 容器保持部34は、基板ホルダ35と対向するように配置される。容器保持部34の、基板ホルダ35と対向する面には、スパッタリングターゲットであるガリウム6が収納された容器1が、ボンディング層41により固定される。容器1を導電性材料で形成する場合、ボンディング層41は導電性を有する材料で形成される。容器保持部34は、その内部に、冷却装置40から送られる冷媒を循環させる管路を備える。 The container holding part 34 is disposed so as to face the substrate holder 35. On the surface of the container holding part 34 facing the substrate holder 35, the container 1 containing gallium 6 as a sputtering target is fixed by a bonding layer 41. When the container 1 is formed of a conductive material, the bonding layer 41 is formed of a conductive material. The container holding part 34 includes a conduit for circulating the refrigerant sent from the cooling device 40 therein.
 基板ホルダ35の、容器保持部34と対向する面には、成膜対象である成長基板42が取り付けられる。基板ホルダ35は接地される。 A growth substrate 42 as a film formation target is attached to the surface of the substrate holder 35 facing the container holding portion 34. The substrate holder 35 is grounded.
 電源36は、容器保持部34に電圧を印加するものである。電源36は、直流電源又は高周波電源の何れであってもよい。電源36が直流電源の場合には、容器保持部34に負の高電圧を印加する。電源36が高周波電源の場合には、容器保持部34に高周波電圧を印加すると、高周波放電が生じて、容器保持部34に自己バイアス電圧と呼ばれる負のバイアス電圧が生じる。容器保持部34に印加される負の電圧または容器保持部34で生じる負のバイアス電圧により、容器1内のガリウム6は負に帯電する。また、容器1内のガリウム6でグロー放電が生じ、グロー放電により生じた電子が、真空チャンバ31に導入されるスパッタリングガスと衝突して、該スパッタリングガスが陽イオン化される。 The power source 36 applies a voltage to the container holding unit 34. The power source 36 may be either a DC power source or a high frequency power source. When the power source 36 is a DC power source, a negative high voltage is applied to the container holding unit 34. When the power source 36 is a high frequency power source, when a high frequency voltage is applied to the container holding unit 34, a high frequency discharge is generated, and a negative bias voltage called a self-bias voltage is generated in the container holding unit 34. The gallium 6 in the container 1 is negatively charged by a negative voltage applied to the container holding part 34 or a negative bias voltage generated in the container holding part 34. In addition, glow discharge is generated in the gallium 6 in the container 1, and electrons generated by the glow discharge collide with the sputtering gas introduced into the vacuum chamber 31, and the sputtering gas is cationized.
 磁石機構37は、容器1の、基板ホルダ35側とは反対側に設置される。磁石機構37は、磁石と該磁石の移動機構とを備える。磁石は、容器1の、基板ホルダ35側とは反対側の2箇所に配置される。2箇所の位置は、容器1の下部の水平面上にあって、容器1の収納部2の内表面5の窪みが最深となる領域の水平面上への投影位置の両側である。各磁石は、N極とS極が鉛直方向(Z軸方向)と平行になり、かつ容器1の収納部2の内表面5の窪みが最深となる領域の水平面上への投影位置の両側に、異なる磁極が固定されるように配置される。この配置により、容器1に収納されるガリウム6などのスパッタリングターゲットの表面近傍には、この表面に対して略平行な磁界が形成される。移動機構は、制御装置39の制御により、2箇所に配置される磁石を、水平な方向(X方向)に、窪みが最深となる領域を中心として互いに逆向きに移動する。これにより、磁界を形成する領域のX方向の幅を変更できる。 The magnet mechanism 37 is installed on the opposite side of the container 1 from the substrate holder 35 side. The magnet mechanism 37 includes a magnet and a moving mechanism for the magnet. Magnets are disposed at two locations on the container 1 opposite to the substrate holder 35 side. The two positions are on both sides of the projection position on the horizontal plane in the region where the depression of the inner surface 5 of the storage portion 2 of the container 1 is deepest on the horizontal plane at the bottom of the container 1. Each magnet has N and S poles parallel to the vertical direction (Z-axis direction), and on both sides of the projection position on the horizontal plane in the region where the recess of the inner surface 5 of the container 2 of the container 1 is deepest. The different magnetic poles are arranged to be fixed. With this arrangement, a magnetic field substantially parallel to the surface is formed near the surface of the sputtering target such as gallium 6 accommodated in the container 1. Under the control of the control device 39, the moving mechanism moves the magnets arranged in two locations in the horizontal direction (X direction) in opposite directions with respect to the region where the depression is deepest. Thereby, the width | variety of the X direction of the area | region which forms a magnetic field can be changed.
 イメージセンサ38は、被写体をセンサの受光面に結像させ、結像した像の光の明暗を電気信号に変換(光電変換)して、変換した信号を順次読み出すことにより、被写体の画像を取得できるデバイスである。イメージセンサ38は、容器1内のガリウム6の残量を把握するために、容器1内のガリウム6の画像を取得する。イメージセンサ38は、CCDイメージセンサまたはCMOSイメージセンサ等の何れの方式のものであってもよい。 The image sensor 38 forms an image of the subject on the light receiving surface of the sensor, converts the light and darkness of the formed image into an electrical signal (photoelectric conversion), and sequentially reads the converted signal to obtain the image of the subject. It can be a device. The image sensor 38 acquires an image of gallium 6 in the container 1 in order to grasp the remaining amount of gallium 6 in the container 1. The image sensor 38 may be any system such as a CCD image sensor or a CMOS image sensor.
 制御装置39は、入力部、出力部、中央演算処理部、および記憶部を備えるコンピュータである。制御装置39は、磁石機構37およびイメージセンサ38に接続されて、イメージセンサ38が計測する画像情報を入力し、この画像情報に基づいて、磁石機構37の移動機構を作動させて、磁石のX方向の位置を変更する制御を行う。これにより、磁石機構37が形成する磁界の領域のX方向の幅が変更され、スパッタリングガスが陽イオン化されたものが衝突する領域の幅が制御される。また、制御装置39は、冷却装置40にも接続され、冷却装置40の運転条件、例えば、冷媒の温度、冷媒の循環速度などを制御する。 The control device 39 is a computer including an input unit, an output unit, a central processing unit, and a storage unit. The control device 39 is connected to the magnet mechanism 37 and the image sensor 38, inputs image information measured by the image sensor 38, operates the moving mechanism of the magnet mechanism 37 based on this image information, and controls the X of the magnet. Control to change the direction position. As a result, the width in the X direction of the magnetic field region formed by the magnet mechanism 37 is changed, and the width of the region in which the sputtering gas cationized collides is controlled. The control device 39 is also connected to the cooling device 40, and controls the operating conditions of the cooling device 40, such as the temperature of the refrigerant and the circulation speed of the refrigerant.
 冷却装置40は、容器保持部34に冷媒を供給する。冷却装置40は、ポンプ、冷媒、冷媒が循環する管路、および放熱部を備え、往路管および復路管を介して容器保持部34と接続される。冷媒は、ポンプによって、冷却装置40から往路管を通って容器保持部34内の管路に送られ、スパッタリング中に高温になるガリウム6およびガリウム6を収納する容器1を冷却する。容器1を冷却した後の冷媒は、往路管を通って冷却装置40に戻り、放熱部で冷却される。この冷却は、容器1の温度が上がりすぎるのを防止する。冷媒には、通常、冷却水が用いられる。 The cooling device 40 supplies a refrigerant to the container holding unit 34. The cooling device 40 includes a pump, a refrigerant, a pipe line through which the refrigerant circulates, and a heat radiating unit, and is connected to the container holding unit 34 via the forward pipe and the return pipe. The refrigerant is sent by the pump from the cooling device 40 to the pipe in the container holding part 34 through the forward pipe, and cools the gallium 6 that becomes high temperature during sputtering and the container 1 that stores the gallium 6. The refrigerant after cooling the container 1 returns to the cooling device 40 through the forward path pipe and is cooled by the heat radiating unit. This cooling prevents the temperature of the container 1 from rising too much. Cooling water is usually used as the refrigerant.
 次に、磁石機構37の構成の一具体例について説明する。磁石機構37は、磁石部37a、磁石駆動部37b、移動部37c、および動力部37dを備える。 Next, a specific example of the configuration of the magnet mechanism 37 will be described. The magnet mechanism 37 includes a magnet part 37a, a magnet driving part 37b, a moving part 37c, and a power part 37d.
 磁石部37aは第1の磁石部37a1および第2の磁石部37a2を備える。第1の磁石部37a1および第2の磁石37a2は、永久磁石または電磁石から構成される。第1の磁石部37a1は、容器1の、基板ホルダ35の側とは反対側のX軸に沿った一端に配置され、第2の磁石部37a2は、容器1の、基板ホルダ35の側とは反対側のX軸に沿った他端に設置される。第1の磁石部37a1および第2の磁石部37a2の斜線を施した領域は磁石のN極を示し、斜線を施していない領域は磁石のS極を示す。第1の磁石部37a1と第2の磁石部37a2とにより、容器1の収納部2には、図中に一点鎖線で示すように、X軸に対して略平行な磁界が形成される。また、第1の磁石部37a1と第2の磁石部37a2は、容器保持部34の、基板ホルダ35の側とは反対側の面に設置されるX軸に平行なレール(図示略)に、収納部2の内表面5の窪みが最深となる領域を中心として、互いに逆向きに移動するように取り付けられる。そのため、第1の磁石部37a1と第2の磁石部37a2との距離Lを調整することにより、磁界が形成される領域のX方向の幅を変更できる。 The magnet part 37a includes a first magnet part 37a1 and a second magnet part 37a2. The 1st magnet part 37a1 and the 2nd magnet 37a2 are comprised from a permanent magnet or an electromagnet. The first magnet portion 37a1 is disposed at one end of the container 1 along the X axis opposite to the substrate holder 35 side, and the second magnet portion 37a2 is disposed on the substrate holder 35 side of the container 1. Is installed at the other end along the opposite X-axis. The hatched area of the first magnet portion 37a1 and the second magnet section 37a2 indicates the N pole of the magnet, and the non-hatched area indicates the S pole of the magnet. By the first magnet part 37a1 and the second magnet part 37a2, a magnetic field substantially parallel to the X axis is formed in the storage part 2 of the container 1 as shown by a one-dot chain line in the drawing. Further, the first magnet portion 37a1 second magnet portion 37a2 is of container holding portion 34, in the opposite side of the parallel rails to the X axis to be placed on the surface (not shown) to the side of the substrate holder 35 The inner surface 5 of the storage part 2 is attached so as to move in the opposite directions around the region where the depression is deepest. Therefore, by adjusting the distance L between the first magnet part 37a1 and the second magnet part 37a2, the width in the X direction of the region where the magnetic field is formed can be changed.
 磁石駆動部37bは、筒状体37b1およびロッド37b2を備える。筒状体37b1は中空に形成される。筒状体37b1の一端面は、容器保持部34の、基板ホルダ35の側とは反対側の面の略中央部に固定され、他の端面の略中央部には孔部(図示略)が形成される。ロッド37b2の一部は、孔部を通って筒状体37b1内に収納され、残部は、該孔部から、Z軸に沿って筒状体37b1の外部に突出する。ロッド37b2は、Z方向に自在に直動する。磁石駆動部37bは、直動する要素を備える機構であれば、どのようなものでも用いることができる。磁石駆動部37bには、例えば、回転型モータとボールねじを組み合わせた機構、あるいは軸部が回転せずに直動するリニアモータなどが用いられる。 The magnet drive unit 37b includes a cylindrical body 37b1 and a rod 37b2. The cylindrical body 37b1 is formed hollow. One end surface of the cylindrical body 37b1 is fixed to a substantially central portion of the surface of the container holding portion 34 opposite to the substrate holder 35, and a hole (not shown) is formed in the substantially central portion of the other end surface. It is formed. A part of the rod 37b2 passes through the hole and is accommodated in the cylindrical body 37b1, and the remaining part projects from the hole along the Z axis to the outside of the cylindrical body 37b1. The rod 37b2 moves freely in the Z direction. Any magnet drive unit 37b can be used as long as it is a mechanism including a linearly moving element. As the magnet drive unit 37b, for example, a mechanism in which a rotary motor and a ball screw are combined, or a linear motor in which a shaft portion moves directly without rotating is used.
 移動部37cは、板体37c1、第1のリンク部37c2、および第2のリンク部37c3を備える。 The moving unit 37c includes a plate body 37c1, a first link unit 37c2, and a second link unit 37c3.
 板体37c1は、例えば、平板状をなす部材であり、容器保持部34の、基板ホルダ35の側とは反対側に配置される。板体37c1の、容器保持部34と対向する面の略中央部には、ロッド37b2が固定される。そのため、板体37c1のZ方向の位置は、ロッド37b2とともに移動する。 The plate body 37c1 is, for example, a plate-shaped member, and is disposed on the side of the container holding portion 34 opposite to the substrate holder 35 side. A rod 37b2 is fixed to a substantially central portion of the surface of the plate body 37c1 facing the container holding portion 34. Therefore, the position of the plate body 37c1 in the Z direction moves together with the rod 37b2.
 第1のリンク部37c2および第2のリンク部37c3は、ロッド37b2に対して略対称に配置される棒状部材である。第1のリンク部37c2の一端は第1の磁石部37a1に固定され、他端は板体37c1のX軸に沿った面の一端に回動自在に接続される。また、第2のリンク部37c3の一端は第2の磁石部37a2に固定され、他端は板体37c1のX軸に沿った面の他端に回動自在に接続される。 The first link part 37c2 and the second link part 37c3 are rod-like members that are arranged substantially symmetrically with respect to the rod 37b2. One end of the first link portion 37c2 is fixed to the first magnet portion 37a1, and the other end is rotatably connected to one end of the surface along the X axis of the plate body 37c1. One end of the second link portion 37c3 is fixed to the second magnet portion 37a2, and the other end is rotatably connected to the other end of the surface along the X axis of the plate body 37c1.
 動力部37dは、磁石駆動部37bを駆動する動力源であり、磁石駆動部37bの構成に応じて適当なものが選ばれる。動力部37dは、制御装置39に接続されて、作動を制御される。動力部37dの作動の制御により、板体37c1のZ方向の位置が変化する。これに伴って、第1の磁石部37a1と第2の磁石部37a2のX方向の位置が変化し、距離Lが変化する。 The power unit 37d is a power source that drives the magnet drive unit 37b, and an appropriate one is selected according to the configuration of the magnet drive unit 37b. The power unit 37d is connected to the control device 39 and its operation is controlled. The position of the plate body 37c1 in the Z direction is changed by controlling the operation of the power unit 37d. Along with this, the positions in the X direction of the first magnet portion 37a1 and the second magnet portion 37a2 change, and the distance L changes.
 次に、磁石機構37、イメージセンサ38、および制御装置39を用いて、容器1内に収納されたガリウム6の残存する領域に応じて、陽イオンとなったスパッタリングガスが衝突する領域の幅を制御する具体例を説明する。 Next, using the magnet mechanism 37, the image sensor 38, and the control device 39, the width of the region where the sputtering gas that has become cations collides is set according to the region where the gallium 6 stored in the container 1 remains. A specific example of control will be described.
 まず、真空チャンバ31内に備えられたイメージセンサ38が、容器1内のガリウム6の残存する領域の画像を取得する。取得された画像に関する情報は、入力部を介して制御装置39に入力され、一旦記憶部に記憶される。中央演算処理部が、記憶部から、取得された画像に関する情報を読み出して、例えば、容器1内のガリウム6の残存する領域の幅を容器1の中心部を原点とするXYグラフ上に表示するような演算を行って、XYグラフ上に表示したガリウム6の領域の幅に応じた制御信号を出力部から動力部37dに出力する。 First, the image sensor 38 provided in the vacuum chamber 31 acquires an image of a region where the gallium 6 in the container 1 remains. Information about the acquired image is input to the control device 39 via the input unit and temporarily stored in the storage unit. The central processing unit reads information about the acquired image from the storage unit, and displays, for example, the width of the remaining region of the gallium 6 in the container 1 on an XY graph with the center of the container 1 as the origin. Such a calculation is performed, and a control signal corresponding to the width of the gallium 6 region displayed on the XY graph is output from the output unit to the power unit 37d.
 動力部37dが、制御装置39から制御信号を受信すると、ロッド37bを駆動させる。これにより、ロッド37b2と板体37c1とをZ方向に移動させて、第1の磁石部37a1と第2の磁石部37a2をX方向に移動させる。このように、第1の磁石部37a1と第2の磁石部37a2のX方向の位置は、ガリウム6の残存領域のX方向の幅に応じて移動する。これに伴って、スパッタリングガスを構成する原子または分子が陽イオン化されたものが衝突する領域のX方向の幅が制御される。 When the power unit 37d receives a control signal from the control device 39, the power unit 37d drives the rod 37b. Thereby, the rod 37b2 and the plate body 37c1 are moved in the Z direction, and the first magnet part 37a1 and the second magnet part 37a2 are moved in the X direction. Thus, the X-direction positions of the first magnet portion 37a1 and the second magnet portion 37a2 move according to the width in the X direction of the remaining region of gallium 6. Along with this, the width in the X direction of the region in which the atoms or molecules constituting the sputtering gas collide with the positive ions is controlled.
 なお、磁界が形成される領域のY方向の幅は、第1の磁石部37a1および第2の磁石37a2に電磁石を用い、該電磁石のコイルへの通電量を変えて変更する。電磁石への通電量は、制御装置39で制御する。 Note that the width in the Y direction of the region where the magnetic field is formed is changed by using electromagnets for the first magnet portion 37a1 and the second magnet 37a2 and changing the energization amount to the coils of the electromagnet. The amount of energization to the electromagnet is controlled by the control device 39.
 また、磁界が形成される領域のY方向の幅を、所定の幅に固定してスパッタリングを行ってもよい。例えば、領域の幅を、スパッタリングを実行する下限の幅、つまり、スパッタリングを実行することを予定している最終的な領域のY方向の幅に固定してもよい。ここで、図5に示す第7の変形例に係る容器1では、ガリウム6の残存領域のY方向の幅の減少の程度が小さいので、磁界が形成されるY方向の領域の幅を大きく設定できる。これにより、スパッタリング効率が向上し、生産性を向上できる。 Further, sputtering may be performed with the width in the Y direction of the region where the magnetic field is formed fixed to a predetermined width. For example, the width of the region may be fixed to the lower limit width at which sputtering is performed, that is, the width in the Y direction of the final region where sputtering is scheduled to be performed. Here, in the container 1 according to the seventh modification shown in FIG. 5, since the degree of reduction in the width in the Y direction of the remaining region of gallium 6 is small, the width of the region in the Y direction where the magnetic field is formed is set large. it can. Thereby, sputtering efficiency improves and productivity can be improved.
 磁石部37aの配置は、図6に示す例には限られない。例えば、図7(a)、(b)に示すように、第1の磁石部37a1を、容器保持部34の、図6に示す基板ホルダ35の側とは反対側の面の略中央部(図中では、容器保持部34と筒状体37b1との間)に1個配置し、該反対側の面と同一面内において、第1の磁石部37a1を中心とする破線で示す円の円周に沿って、第2の磁石部37a2を複数個配置してもよい(図7(b)参照)。第1の磁石部37a1と第2の磁石部37a2は、前記反対側の面において、N極とS極が鉛直方向に互いに逆向きになるように配置される。第1の磁石部37a1は、容器保持部34と筒状体37b1との間に固定される。第2の磁石部37a2は、前記反対側の面において、破線で示す円の半径方向に延びるレール37e内にそれぞれ取り付けられる。第2の磁石部37a2をレール37eに沿ってそれぞれ移動させて、第1の磁石部37a1と第2の磁石部37a2との距離Lを調整することにより、磁界が形成される領域のXY平面上での幅を変更できる。 The arrangement of the magnet part 37a is not limited to the example shown in FIG. For example, as shown in FIGS. 7 (a) and 7 (b), the first magnet portion 37a1 is placed at a substantially central portion (on the surface of the container holding portion 34 opposite to the substrate holder 35 shown in FIG. 6). In the drawing, one circle is arranged between the container holding portion 34 and the cylindrical body 37b1, and a circle indicated by a broken line centered on the first magnet portion 37a1 in the same plane as the opposite surface. A plurality of second magnet portions 37a2 may be arranged along the circumference (see FIG. 7B). The first magnet portion 37a1 and the second magnet portion 37a2 are arranged on the opposite surfaces so that the N pole and the S pole are opposite to each other in the vertical direction. The first magnet part 37a1 is fixed between the container holding part 34 and the cylindrical body 37b1. The second magnet portion 37a2 is attached to each of the rails 37e extending in the radial direction of the circle indicated by the broken line on the opposite surface. By moving the second magnet part 37a2 along the rail 37e and adjusting the distance L between the first magnet part 37a1 and the second magnet part 37a2, the region on the XY plane where the magnetic field is formed is adjusted. The width at can be changed.
 図7(a)、(b)に示すように磁石部37aを配置する場合、磁石駆動部37bの構成は、図6に示す構成と同じでよいが、移動部37cの構成は、磁石部37aの配置に合わせて変更する。具体的には、設置される第2の磁石37a2と同数のリンク部37c’を準備し、各リンク部37c’の一端を第2の磁石部37a2にそれぞれ固定し、他端を板体37c1にそれぞれ固定するように配置する。このようにすれば、破線で示す円の半径方向において、第2の磁石部37a2の位置をそれぞれ均等に移動させることができる。 When the magnet unit 37a is arranged as shown in FIGS. 7A and 7B, the configuration of the magnet drive unit 37b may be the same as the configuration shown in FIG. 6, but the configuration of the moving unit 37c is the magnet unit 37a. Change to match the layout of Specifically, the same number of link portions 37c ′ as the second magnets 37a2 to be installed are prepared, one end of each link portion 37c ′ is fixed to the second magnet portion 37a2, and the other end is attached to the plate body 37c1. Arrange them so that they are fixed. In this way, the positions of the second magnet portions 37a2 can be moved equally in the radial direction of the circle indicated by the broken line.
 上述のように、第1の磁石部37a1を円状に囲むように第2の磁石部37a2を配置すると、図6に示すように一対の磁石を配置する場合と比べて、ガリウム6が存在する領域上に生じる磁界の周方向の強度を均一にできる。これにより、ガリウム6が存在する領域の近傍に生じるプラズマ(図7(a)参照)の周方向の密度を均一にできるので、容器1内に収容されたガリウム6を効率よく消費できる。 As described above, when the second magnet portion 37a2 is arranged so as to surround the first magnet portion 37a1 in a circular shape, gallium 6 is present as compared to the case where a pair of magnets are arranged as shown in FIG. The circumferential strength of the magnetic field generated on the region can be made uniform. Thereby, since the density in the circumferential direction of the plasma (see FIG. 7A) generated in the vicinity of the region where the gallium 6 exists can be made uniform, the gallium 6 accommodated in the container 1 can be consumed efficiently.
 磁石駆動部37bの配置は、図6に示す例には限られない。例えば、筒状体37b1を真空チャンバ31の下方に固定配置し、筒状体37b1の上方に、ロッド37b2、板体37c1、第1のリンク部37c2、および第2のリンク部37c3を配置してもよい。 The arrangement of the magnet drive unit 37b is not limited to the example shown in FIG. For example, the cylindrical body 37b1 is fixedly disposed below the vacuum chamber 31, and the rod 37b2, the plate body 37c1, the first link portion 37c2, and the second link portion 37c3 are disposed above the cylindrical body 37b1. Also good.
 このようにすれば、第1の磁石部37a1と第2の磁石部37a2との間に、磁石駆動部37bが存在しないので、容器1の、基板ホルダ35の側とは反対側において、第1の磁石部37a1と第2の磁石部37a2とをより接近させることができる。 In this case, since the magnet drive unit 37b does not exist between the first magnet unit 37a1 and the second magnet unit 37a2, the first side of the container 1 on the side opposite to the substrate holder 35 side is provided. The magnet portion 37a1 and the second magnet portion 37a2 can be brought closer to each other.
 本発明の第2の実施形態に係るスパッタリング装置30には、本発明の第1の実施形態に係る容器1が用いられるので、スパッタリングが進行して、液滴状になった場合でも、ガリウム6は容器1内で揺動しない。したがって、本発明の第2の実施形態に係るスパッタリング装置30においては、容器1内のガリウム6が存在する領域の幅に応じて、磁界を発生させる領域の大きさだけを制御すればよい。そのため、磁石機構37と制御装置39の構成を簡単にできる。このような簡単な装置構成で、厚さが均一であり、かつ不純物の混入の少ない成膜が可能になる。 Since the container 1 according to the first embodiment of the present invention is used for the sputtering apparatus 30 according to the second embodiment of the present invention, gallium 6 can be used even when the sputtering progresses to form droplets. Does not rock in the container 1. Therefore, in the sputtering apparatus 30 according to the second embodiment of the present invention, only the size of the region that generates the magnetic field needs to be controlled according to the width of the region in the container 1 where the gallium 6 exists. Therefore, the configuration of the magnet mechanism 37 and the control device 39 can be simplified. With such a simple apparatus configuration, it is possible to form a film with a uniform thickness and a small amount of impurities.
 本明細書の実施形態は、本発明の具体的実施態様の例示であって、本発明の技術的範囲を限定するものではない。本発明は、特許請求の範囲に記載された技術的思想の範囲において、自在に変形、応用あるいは改良して実施できる。 The embodiments of the present specification are examples of specific embodiments of the present invention, and do not limit the technical scope of the present invention. The present invention can be freely modified, applied or improved within the scope of the technical idea described in the claims.
 1 スパッタリングターゲット収納容器(容器)
 2 収納部
 3 外周部
 4 中心部
 5 内表面
 6 ガリウム
 7 壁部
30 スパッタリング装置
31 真空チャンバ
32 ガス導入口
33 排気口
34 容器保持部
35 基板ホルダ
36 電源
37 磁石機構
37a 磁石部
37a1 第1の磁石部
37a2 第2の磁石部
37b 磁石駆動部
37b1 筒状体
37b2 ロッド
37c 移動部
37c1 板体
37c2 第1のリンク部
37c3 第2のリンク部
37c’ リンク部
37d 動力部
37e レール
38 イメージセンサ
39 制御装置
40 冷却装置
41 ボンディング層
42 成長基板
 
1 Sputtering target storage container (container)
2 Storage part 3 Outer part 4 Center part 5 Inner surface 6 Gallium 7 Wall part 30 Sputtering device 31 Vacuum chamber 32 Gas introduction port 33 Exhaust port 34 Container holding part 35 Substrate holder 36 Power supply 37 Magnet mechanism 37a Magnet part 37a1 First magnet Part 37a2 second magnet part 37b magnet drive part 37b1 cylindrical body 37b2 rod 37c moving part 37c1 plate 37c2 first link part 37c3 second link part 37c 'link part 37d power part 37e rail 38 image sensor 39 control device 40 Cooling device 41 Bonding layer 42 Growth substrate

Claims (5)

  1.  外周部と内表面とを有する窪みにスパッタリングターゲットを収納する収納部を備えるスパッタリングターゲット収納容器であって、
     前記内表面は、前記外周部から、前記内表面の一領域に向かって窪みが深くなる形状である、
     ことを特徴とするスパッタリングターゲット収納容器。
    A sputtering target storage container comprising a storage unit for storing a sputtering target in a recess having an outer peripheral part and an inner surface,
    The inner surface has a shape in which a recess becomes deeper from the outer peripheral portion toward a region of the inner surface.
    A sputtering target storage container.
  2.  前記窪みは、窪みの深くなる程度が互いに直交する2方向で異なる形状を有する、
     ことを特徴とする請求項1に記載のスパッタリングターゲット収納容器。
    The recess has a shape that is different in two directions in which the depth of the recess is perpendicular to each other,
    The sputtering target storage container according to claim 1.
  3.  真空チャンバと、
     前記真空チャンバ内にスパッタリングガスを導入するガス導入手段と、
     前記真空チャンバ内のガスを排気して、前記真空チャンバ内の圧力を調整するガス排気手段と、を備えるスパッタリング装置であって、
     前記真空チャンバは、
     スパッタリングターゲットを収納する請求項1または2に記載のスパッタリングターゲット収納容器と、
     前記スパッタリングターゲット収納容器に対向して配置されて、スパッタリング対象の基板を固定するとともに、接地される基板ホルダと、
     前記スパッタリングターゲット収納容器に負の電圧または高周波電圧のいずれかを印加する電源装置と、を備える、
     ことを特徴とするスパッタリング装置。
    A vacuum chamber;
    Gas introduction means for introducing a sputtering gas into the vacuum chamber;
    A gas evacuation means for evacuating the gas in the vacuum chamber and adjusting the pressure in the vacuum chamber;
    The vacuum chamber is
    The sputtering target storage container according to claim 1 or 2, which stores a sputtering target;
    A substrate holder that is disposed facing the sputtering target storage container and fixes the substrate to be sputtered, and is grounded.
    A power supply device that applies either a negative voltage or a high-frequency voltage to the sputtering target storage container,
    A sputtering apparatus characterized by that.
  4.  前記スパッタリングターゲット収納容器の下部の水平面上にあって、前記一領域の水平面上への投影位置の両側に、N極とS極が鉛直方向に互いに逆向きに配置される磁石と、前記磁石の位置をそれぞれ水平方向に移動する移動機構と、を備える磁界形成手段と、
     前記スパッタリングターゲット収納容器内の前記スパッタリングターゲットが存在する領域の大きさを検出する検出手段と、
     前記検出手段による検出結果に基づいて、前記移動機構を制御して、前記磁石の水平方向の位置を移動する制御部と、を備える、
     ことを特徴とする請求項3に記載のスパッタリング装置。
    A magnet on a horizontal plane at a lower portion of the sputtering target storage container, on both sides of a projection position on the horizontal plane of the one region, a magnet having N poles and S poles arranged in opposite directions in the vertical direction; A magnetic field forming means comprising: a moving mechanism that moves each position in the horizontal direction;
    Detection means for detecting the size of the region where the sputtering target is present in the sputtering target storage container;
    A control unit that controls the moving mechanism based on a detection result by the detecting unit to move a horizontal position of the magnet.
    The sputtering apparatus according to claim 3.
  5.  前記スパッタリングターゲット収納容器の下部の水平面上において、N極とS極が鉛直方向に互いに逆向きになるように、前記一領域の水平面上への投影位置の中心部に一方の磁石を1個配置するとともに、前記一方の磁石を中心とする円の円周上に他方の磁石を複数個配置し、
     前記移動機構は、前記一方の磁石を中心とする円の半径方向に、前記他方の磁石の位置をそれぞれ移動するように構成される、
     ことを特徴とする請求項4に記載のスパッタリング装置。
     
    One magnet is arranged at the center of the projection position on the horizontal plane of the one region so that the N pole and the S pole are opposite to each other in the vertical direction on the horizontal plane below the sputtering target storage container. And arranging a plurality of other magnets on the circumference of a circle centered on the one magnet,
    The moving mechanism is configured to move the position of the other magnet in the radial direction of a circle centered on the one magnet,
    The sputtering apparatus according to claim 4.
PCT/JP2015/060367 2014-06-04 2015-04-01 Sputtering target container and sputtering device WO2015186418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014115345A JP2015229782A (en) 2014-06-04 2014-06-04 Sputtering target storage container and sputtering device
JP2014-115345 2014-06-04

Publications (1)

Publication Number Publication Date
WO2015186418A1 true WO2015186418A1 (en) 2015-12-10

Family

ID=54766499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060367 WO2015186418A1 (en) 2014-06-04 2015-04-01 Sputtering target container and sputtering device

Country Status (2)

Country Link
JP (1) JP2015229782A (en)
WO (1) WO2015186418A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020186451A (en) * 2019-05-16 2020-11-19 株式会社アルバック Sputtering apparatus
JP7250614B2 (en) * 2019-05-17 2023-04-03 株式会社アルバック Sputtering equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128734A (en) * 1992-10-14 1994-05-10 Sumitomo Chem Co Ltd Sputtering target
JP2004149852A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Magnetron sputtering apparatus and magnetron sputtering method
JP2007505217A (en) * 2003-09-09 2007-03-08 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド Long-life sputtering target
JP2010037656A (en) * 2008-08-01 2010-02-18 Fuji Electric Holdings Co Ltd Sputtering apparatus
JP2012251233A (en) * 2011-06-07 2012-12-20 Sharp Corp Film-forming device, and light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128734A (en) * 1992-10-14 1994-05-10 Sumitomo Chem Co Ltd Sputtering target
JP2004149852A (en) * 2002-10-30 2004-05-27 Matsushita Electric Ind Co Ltd Magnetron sputtering apparatus and magnetron sputtering method
JP2007505217A (en) * 2003-09-09 2007-03-08 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド Long-life sputtering target
JP2010037656A (en) * 2008-08-01 2010-02-18 Fuji Electric Holdings Co Ltd Sputtering apparatus
JP2012251233A (en) * 2011-06-07 2012-12-20 Sharp Corp Film-forming device, and light-emitting device

Also Published As

Publication number Publication date
JP2015229782A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
KR101087525B1 (en) Sputter source, sputtering device, and sputtering method
US9761423B2 (en) Sputtering apparatus and magnet unit
JP2010031353A (en) Sputtering cathode, sputtering apparatus provided with sputtering cathode, film-forming method, and method for manufacturing electronic device
JP5461264B2 (en) Magnetron sputtering apparatus and sputtering method
KR20080056767A (en) Sheet plasma film-forming apparatus
WO2015186418A1 (en) Sputtering target container and sputtering device
CN106715751B (en) Substrate board treatment and substrate processing method using same
TWI613306B (en) Plasma processing apparatus and plasma processing method
US11111577B2 (en) Film-forming apparatus and film-forming method
JP3649933B2 (en) Magnetron sputtering equipment
CN103597913A (en) Plasma generation device, vapor deposition device, and vapor deposition method
KR20210089577A (en) Film forming apparatus and method
US5012064A (en) Electron beam evaporation source
JP2010248576A (en) Magnetron sputtering apparatus
US9607813B2 (en) Magnetic field generation apparatus and sputtering apparatus
JP2014196528A (en) Magnetron sputtering cathode, sputtering apparatus including the cathode, and sputtering film deposition method using the sputtering apparatus
JP5792812B2 (en) Sputtering equipment
JP5850713B2 (en) Magnetron sputtering apparatus and magnetron sputtering method
JP2007317650A (en) Fast atom radiation source and fast atomic beam discharging method and surface reforming device
CN113056573A (en) Sputtering apparatus and thin film manufacturing method
KR20140046065A (en) Plasma processing apparatus and plasma processing method
JP6644617B2 (en) Magnetron sputter deposition system
JP2008081797A (en) Surface treatment device, optical element forming mold, and optical element
JPH10168566A (en) Sputtering system
JP5657354B2 (en) Film forming method and film forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803852

Country of ref document: EP

Kind code of ref document: A1