WO2015184696A1 - 人工椎间盘及其制备方法 - Google Patents

人工椎间盘及其制备方法 Download PDF

Info

Publication number
WO2015184696A1
WO2015184696A1 PCT/CN2014/086103 CN2014086103W WO2015184696A1 WO 2015184696 A1 WO2015184696 A1 WO 2015184696A1 CN 2014086103 W CN2014086103 W CN 2014086103W WO 2015184696 A1 WO2015184696 A1 WO 2015184696A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
repair
wear
polyetheretherketone
active bone
Prior art date
Application number
PCT/CN2014/086103
Other languages
English (en)
French (fr)
Inventor
谭荣伟
Original Assignee
深圳兰度生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳兰度生物材料有限公司 filed Critical 深圳兰度生物材料有限公司
Publication of WO2015184696A1 publication Critical patent/WO2015184696A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs

Definitions

  • the invention belongs to the technical field of biomedical materials, and in particular relates to an artificial intervertebral disc and a preparation method thereof.
  • Cervical spondylosis and lumbar spondylosis are spine diseases caused by degenerative disc disease, and have become a common disease and high incidence that significantly affects the quality of life of middle-aged and elderly people.
  • the total incidence of lumbar disc herniation has reached 15.2 ⁇ 30%, and the number of lumbar spondylosis patients in China has exceeded 200 million, and 80% of adults have had a history of low back pain.
  • Clinical statistics show that more than 40% of those with age greater than 50 years have limited activity in the lumbar spine, 60% of which will produce lumbar vertebrae lesions, and the nervous system will develop symptoms.
  • Non-surgical treatment can only relieve symptoms and cannot be cured. A considerable proportion of patients must undergo surgery. In clinical practice, due to the advantages of quick fusion, good curative effect and simple operation, it has become the "gold standard" for surgical treatment of disc disease for many years. However, there are still some regrets in this surgical treatment.
  • the fusion technique will lead to the loss of physiological activity of the diseased segment, and the increase of adjacent segment movement and load will accelerate the degeneration of adjacent segments to some extent.
  • Clinical studies have found that about 25.6% of patients with adjacent lesions have secondary lesions within 10 years after surgery. During the 21-year follow-up, 14% of patients required reoperation.
  • TDR disc replacement
  • a method for preparing an artificial intervertebral disc is provided, and the artificial intervertebral disc prepared by the method has a long life after being implanted into the human body.
  • An artificial intervertebral disc comprising:
  • a first end plate comprising a laminated first wear layer and a first repair layer, wherein the first wear layer is formed with an arcuate convex surface away from a side of the first repair layer;
  • a second end plate disposed on the first end plate, the second end plate and the first end plate being slidable relative to each other, the second end plate comprising a laminated second wear layer and a second repair a curved concave surface is formed on a side of the second wear layer away from the second repair layer, and the curved convex surface is slidably abutted against the curved concave surface;
  • the material of the first wear layer comprises polyetheretherketone and a first reinforcing fiber mixed in the polyetheretherketone
  • the material of the first repair layer comprises polyetheretherketone and mixed in the a degradable first active bone repair material in polyetheretherketone
  • the material of the second wear layer comprising polyetheretherketone and a second reinforcing fiber mixed in the polyetheretherketone
  • the second The material of the repair layer comprises polyetheretherketone and a degradable second active bone repair material mixed in the polyetheretherketone
  • the first active bone repair material and the second active bone repair material are respectively selected from the group consisting of At least one of hydroxyapatite, ⁇ -tricalcium phosphate, ⁇ -tricalcium phosphate, calcium sulfate, and bioactive glass.
  • the first wear layer comprises a plurality of first wear resistant unit layers stacked in sequence, the material of each first wear resistant unit layer comprising the polyetheretherketone and the first reinforcement a fiber, from one side of the first wear layer to the other side, the mass percentage of the first reinforcing fiber in the material of the plurality of first wear-resistant unit layers is gradually reduced, the first The repair layer is laminated on the first wear-resistant unit layer containing a minimum mass percentage of the first reinforcing fiber, and the curved convex surface is formed on a portion containing the first mass of the first reinforcing fiber On the first wear-resistant unit layer;
  • the second wear layer includes a plurality of second wear resistant layer layers sequentially stacked, and the material of each second wear resistant unit layer includes the polyetheretherketone and the second reinforcing fiber from the second One side of the wear resistant layer to the other side, the mass percentage of the second reinforcing fibers in the material of the plurality of second wear resistant unit layers is gradually reduced, and the second repair layer is laminated on the side
  • the second wear-resistant unit layer having the least mass percentage of the second reinforcing fiber, the curved concave surface being formed on the second wear-resistant unit layer containing the second most reinforcing fiber on.
  • the mass ratio of the first reinforcing fiber to the polyetheretherketone is 0.1:1 ⁇ 0.5:1;
  • the mass ratio of the second reinforcing fiber to the polyetheretherketone is 0.1:1 to 0.5:1.
  • the first wear-resistant unit layer having the largest mass percentage of the first reinforcing fibers has a thickness of 50 ⁇ m to 100 ⁇ m;
  • the second wear-resistant unit layer having the largest mass percentage of the second reinforcing fibers has a thickness of 50 ⁇ m to 100 ⁇ m.
  • the first repair layer comprises a plurality of first repair unit layers stacked in sequence, and the material of each first repair layer unit layer comprises the polyetheretherketone and the first active bone repair a material, from one side of the first repair layer to the other side, the mass percentage of the first active bone repair material in the material of the plurality of first repair unit layers is gradually reduced, including the first The first repair unit layer having a minimum mass percentage of an active bone repair material is laminated with the first wear layer;
  • the second repair layer includes a plurality of second repair unit layers stacked in sequence, the material of each second repair unit layer including the polyetheretherketone and the second active bone repair material, from the second repair One side of the layer to the other side, the mass percentage of the second active bone restorative material in the material of the plurality of second repair unit layers is gradually reduced, and the mass of the second active bone repair material is included
  • the second repair unit layer having the smallest content is laminated with the second wear layer.
  • the first reinforcing fibers and the second reinforcing fibers are each selected from at least one of carbon fibers, glass fibers, graphite fibers, silicon carbide fibers, stainless steel fibers, and titanium-based whisker fibers.
  • the first reinforcing fiber and the second reinforcing fiber have a diameter of 1 nm to 50 ⁇ m and a length of 10 ⁇ m to 1000 ⁇ m.
  • the polyetheretherketone in the material of the first wear layer, the polyetheretherketone in the material of the first repair layer, the polyetheretherketone in the material of the second wear layer, The polyetheretherketone in the material of the second repair layer has a particle size of less than 40 microns.
  • the first active bone restorative material and the second active bone repair material have a particle size of 100 micrometers to 1 millimeter.
  • a method for preparing an artificial intervertebral disc comprises the following steps:
  • the degradable first active bone repair material with polyetheretherketone to obtain a first mixed material, wherein the first active bone repairing material is selected from the group consisting of hydroxyapatite, ⁇ -tricalcium phosphate, and ⁇ -phosphate At least one of calcium, calcium sulfate, and bioactive glass;
  • the degradable second active bone repair material with polyetheretherketone to obtain a second mixed material, wherein the second active bone repairing material is selected from the group consisting of hydroxyapatite, ⁇ -tricalcium phosphate, and ⁇ -phosphate At least one of calcium, calcium sulfate, and bioactive glass;
  • the first blank and the second blank are respectively sintered to obtain a first end plate and a second end plate.
  • the arcuate convex surface of the first end plate is slidably abutted against the curved concave surface of the second end plate to achieve relative sliding of the first end plate and the second end plate, and the artificial intervertebral disc
  • the first end plate comprises a laminated first wear layer and a first repair layer
  • the second end plate comprises a laminated second wear layer and a second repair layer
  • the material of the first wear layer comprises polyether ether a ketone and a first reinforcing fiber
  • the material of the second wear layer comprises a polyetheretherketone and a second reinforcing fiber
  • the curved convex surface is located on the first wear layer
  • the curved concave surface is located on the second wear layer, so that the arc Both the convex surface and the curved concave surface have good wear resistance, and the wear loss is about 0.05 ⁇ 0.4mg/MC (MC represents one million cycles), that is, the wear rate is artificial inter
  • the first repair layer The material comprises polyetheretherketone and a degradable first active bone repair material
  • the material of the second repair layer comprises polyetheretherketone and a degradable second active bone repair material, which can be degraded when the artificial intervertebral disc is implanted
  • the first active bone repair material and the second active bone repair material can be degraded, so that the first repair layer and the second repair layer both become a porous structure, and at this time, the new bone tissue can grow into the porous structure, so that The bone tissue can be closely combined with the first repair layer and the second repair layer, respectively, which increases the long-term stability of the first end plate and the second end plate in the implant body, that is, the artificial inter
  • FIG. 1 is a schematic structural view of an artificial intervertebral disc according to an embodiment
  • FIG. 2 is a flow chart of a method of preparing an artificial intervertebral disc of an embodiment.
  • an artificial intervertebral disc 100 of an embodiment includes a first endplate 110 and a second endplate 120.
  • the second end plate 120 is disposed on the first end plate 110, and the first end plate 110 and the second end plate 120 are relatively slidable.
  • the first end plate 110 includes a laminated first wear layer 112 and a first repair layer 114.
  • the curved surface of the first wear layer 112 away from the first repair layer 114 is formed with an arcuate convex surface 1122.
  • the material of the first wear layer 112 comprises polyetheretherketone and the first reinforcing fiber mixed in the polyetheretherketone.
  • the first reinforcing fibers are mixed in the polyetheretherketone so that the first abrasion resistant layer 112 has better friction resistance.
  • the polyetheretherketone in the material of the first wear layer 112 is an implant grade.
  • the polyetheretherketone has a particle size of less than 40 microns.
  • the small particle size polyetheretherketone is easily mixed uniformly with the first reinforcing fibers and is advantageous for reducing defects, thereby enhancing the mechanical properties of the first abrasion resistant layer 112.
  • Polyetheretherketone is a high polymer containing a repeating unit composed of a ketone bond and two ether bonds in the main chain structure. It is a special polymer material with high temperature resistance, chemical corrosion resistance and self-lubricating property. Such as physical and chemical properties, is a type of crystalline polymer material.
  • the elastic modulus of polyetheretherketone is very close to the elastic modulus of bone, and polyetheretherketone can be quickly fused with bone, has good biocompatibility, and can be placed in living organisms for a long time.
  • polyetheretherketone can transmit X-rays, and even the spine fusion portion can clearly distinguish the surrounding tissue structure during nuclear magnetic resonance examination.
  • the first reinforcing fibers are at least one selected from the group consisting of carbon fibers, glass fibers, graphite fibers, silicon carbide fibers, stainless steel fibers, and titanium-based whisker fibers.
  • the reinforcing fibers described above are advantageous for enhancing the wear resistance of the first wear layer 112.
  • the first reinforcing fibers have a diameter of 1 nm to 50 ⁇ m and a length of 10 ⁇ m to 1000 ⁇ m.
  • the first reinforcing fiber of this size can not only be uniformly mixed with the above polyetheretherketone, thereby improving the continuity and uniformity of the stress of the first wear layer 112, and also capable of enhancing the first resistance. Wear resistance of the wear layer 112.
  • the first wear layer 112 includes a plurality of first wear resistant unit layers 1124 stacked in sequence, and the material of each first wear resistant unit layer 1124 includes polyetheretherketone and first reinforcing fibers. From one side of the first wear layer 112 to the other side, the mass percentage of the first reinforcing fibers in the material of the plurality of first wear resistant unit layers 1124 is gradually reduced.
  • the first wear layer 112 is disposed as a plurality of first wear resistant unit layers 1124 containing a gradual decrease in the mass percentage of the reinforcing fibers, such that the first wear resistant layer 112 forms a gradient structure.
  • the reinforcing fiber functions to improve fatigue resistance and wear resistance
  • the microstructure of the material in which the reinforcing fiber is mixed is not uniform, and the unevenness of the structure is liable to cause microscopic stress and strain distribution unevenness. May cause damage to the material in the areas of maximum or minimum strength or weakest. Therefore, the first wear layer 112 is disposed to the above structure in order to gradually reduce the influence of the first reinforcing fibers on the structure of the first wear layer 112.
  • the mass ratio of the first reinforcing fiber to the polyetheretherketone is 0.001 to 0.5:1.
  • the ratio of the first reinforcing fibers and the polyetheretherketone can satisfy the requirements of the fatigue resistance and wear resistance of the first wear resistant unit layer 1124, and the presence of the reinforcing fibers in the ratio does not damage the first wear resistant unit layer. 1124.
  • the curved convex surface 1122 is formed on the first wear-resistant unit layer 1124 containing the most mass percentage of the first reinforcing fibers.
  • the mass ratio of the first reinforcing fibers to the polyetheretherketone is 0.1:1 to 0.5:1.
  • the first wear-resistant unit layer 1124 having the largest mass percentage of the first reinforcing fibers has a thickness of 50 ⁇ m to 100 ⁇ m.
  • the first wear-resistant unit layer 1124 is 3 to 10.
  • the three to ten first wear-resistant unit layers 1124 not only satisfy the gradient structure, but also play a role of transition.
  • the excessive number of layers of the first wear-resistant unit layer 1124 increases the preparation process.
  • the number of the first wear-resistant unit layers 1124 is three. It can be understood that in other embodiments, the first wear-resistant unit layer 1124 can also be 1, 2, or more than 10.
  • the first repair layer 114 is laminated on the first wear-resistant unit layer 1124 containing the first percentage of the reinforcing fibers.
  • the material of the first repair layer 114 includes polyetheretherketone and a degradable first active bone repair material mixed in polyetheretherketone.
  • the degradable first active bone repair material in the first repair layer 114 can be gradually degraded, thereby making the first repair layer 114 into a porous structure, and the new bone tissue can grow into the body.
  • the bone tissue is tightly bonded to the first repair layer 114 to ensure long-term stability of the first end plate 110 after the artificial intervertebral disc 100 is implanted into the body.
  • the polyetheretherketone of the material of the first repair layer 114 is an implant grade.
  • the polyetheretherketone has a particle size of less than 40 microns.
  • the first active bone repairing material is selected from at least one of hydroxyapatite, ⁇ -tricalcium phosphate, ⁇ -tricalcium phosphate, calcium sulfate, and bioactive glass. These materials not only degrade but also promote new bone growth.
  • the first active bone repair material has a particle size of from 100 micrometers to 1 millimeter. Since the first active bone repair material eventually degrades, the first repair layer 114 forms a porous structure, and the first active bone repair material of the particle size range facilitates the growth of cells and tissues into the porous structure.
  • the first repair layer 114 includes a plurality of first repair unit layers 1144 stacked in sequence, and the material of each of the first repair unit layers 1144 includes polyetheretherketone and a first active bone repair material. From one side of the first repair layer 114 to the other side, the mass percentage of the first active bone restorative material in the material of the plurality of first repair unit layers 1144 is gradually reduced.
  • the first repair layer 114 is disposed as a plurality of second repair unit layers 1144 including a first active bone repair material, in order to make the structure in a transitional stage, so that the new bone grows continuously and fills the pores left after degradation.
  • the first active bone repair material In the first active bone repair material, the first active bone repair material is degraded and absorbed by the human body, and the body is gradually formed into a new active bone repair material before the absorption of the new bone. In this case, the non-degraded component remains. It acts as a mechanical support without causing the structure of the artificial intervertebral disc to be destroyed by the stratification of the degraded component and the non-degraded component during the degradation process.
  • the first repair unit layer 1144 containing the least mass percentage of the first active bone repair material is laminated with the first wear layer 112. Specifically, the first repair unit layer 1144 containing the least mass percent of the first active bone repair material is laminated with the first wear resistant unit layer 1124 having the least mass percentage of the first reinforcing fibers.
  • the mass ratio of the first active bone repair material to the polyetheretherketone is 0.005 to 1:1.
  • the ratio of the first active bone restorative material to the polyetheretherketone is capable of uniformly stressing the first repair unit layer 1144 during degradation.
  • the first repair unit layer 1144 is 3 to 5. In the illustration of the present embodiment, there are three first repair unit layers 1144. It can be understood that in other embodiments, the first repair unit layer 1144 may also be 1, 2, or more than 5.
  • the first repair layer 114 is formed with a fixing protrusion 1146, and the fixing protrusion 1146 is located on a side of the first repair layer 114 away from the first wear layer 112, and the fixing protrusion 1146 is equivalent to the bone nail.
  • the fixing protrusion 1146 is disposed on the first repair unit layer 1144 containing the most mass percentage of the first active bone repairing material.
  • the second end plate 120 includes a stacked second wear layer 122 and a second repair layer 124.
  • An arcuate concave surface 1222 is formed on a side of the second wear layer 122 away from the second repair layer 124.
  • the curved convex surface 1122 is slidably abutted against the curved concave surface 1222, thereby implementing the first end plate 110 and the second end plate 120. Relative sliding between.
  • the curvature of the curved concave surface 1222 is equal to the curvature of the curved convex surface 1122.
  • the curvature of the curved concave surface 1222 coincides with the curvature of the curved convex surface 1122 to facilitate movement between the first end plate 110 and the second end plate 120.
  • the material of the second wear layer 122 includes polyetheretherketone and a second reinforcing fiber mixed in polyetheretherketone.
  • the second reinforcing fibers are mixed in the polyetheretherketone so that the second abrasion resistant layer 122 has better friction resistance.
  • the polyetheretherketone in the material of the second wear layer 122 is an implant grade.
  • the polyetheretherketone has a particle size of less than 40 microns.
  • the second reinforcing fibers are at least one selected from the group consisting of carbon fibers, glass fibers, graphite fibers, silicon carbide fibers, stainless steel fibers, and titanium-based whisker fibers.
  • the second reinforcing fiber has a diameter of 1 nm to 50 ⁇ m and a length of 10 ⁇ m to 1000 ⁇ m.
  • the reinforcing fiber of the above size can not only be uniformly mixed with the polyetheretherketone, but also can improve the continuity and uniformity of the stress of the second wear layer 122, and can also function as a nano-reinforcing effect, thereby improving the second wear-resistant layer 122. Wear resistance.
  • the second wear layer 122 includes a plurality of first wear resistant unit layers 1224 stacked in sequence, and the material of each second wear resistant unit layer 1224 includes polyetheretherketone and second reinforcing fibers. From one side of the second wear layer 122 to the other side, the mass percentage of the second reinforcing fibers in the material of the plurality of second wear resistant unit layers 1224 is gradually reduced.
  • the second wear layer 122 is disposed as a plurality of second wear resistant unit layers 1224 containing a gradual decrease in the mass percentage of the reinforcing fibers, so that the second wear layer 122 forms a gradient structure.
  • the reinforcing fiber plays a role of improving fatigue resistance and wear resistance
  • the microstructure of the first material mixed with the reinforcing fibers is uneven, and the unevenness of the structure is liable to cause microscopic stress and strain distribution unevenness. May cause damage to the material in the areas of maximum or minimum strength or weakest. Therefore, the second wear layer 122 is disposed in the above structure in order to gradually reduce the influence of the reinforcing fibers on the second wear layer 122.
  • the mass ratio of the second reinforcing fibers to the polyetheretherketone is 0.001 to 0.5:1.
  • the ratio of reinforcing fibers and polyetheretherketone can meet the fatigue and wear resistance requirements of the second wear resistant unit layer 1224, and the presence of the reinforcing fibers in this ratio does not destroy the second wear resistant unit layer 1224.
  • the curved concave surface 1222 is formed on the second wear-resistant unit layer 1224 containing the most mass percentage of the second reinforcing fibers. More preferably, in the material of the second wear-resistant unit layer 1224 containing the most mass percentage of the second reinforcing fibers, the mass ratio of the second reinforcing fibers to the polyetheretherketone is from 0.1:1 to 0.5:1.
  • the second wear-resistant unit layer 1224 having the largest mass percentage of the second reinforcing fibers has a thickness of 50 ⁇ m to 100 ⁇ m.
  • the second wear resistant unit layer 1224 is from 3 to 10. In the illustration of the present embodiment, there are three second wear resistant unit layers 1224. It can be understood that in other embodiments, the second wear resistant unit layer 1224 can also be 1, 2, or more than 10.
  • the second repair layer 124 is laminated on the second wear-resistant unit layer 1224 containing the second percentage of the reinforcing fibers.
  • the material of the second repair layer 124 includes polyetheretherketone and a degradable second active bone repair material mixed in polyetheretherketone.
  • the degradable second active bone repairing material in the second repair layer 124 can be gradually degraded, so that the second repair layer 124 becomes a porous structure, and the new bone tissue can grow into In the porous structure, the bone tissue and the second repair layer 124 are tightly combined to further ensure that the second end plate 120 has long-term stability after the artificial intervertebral disc 100 is implanted into the human body.
  • the polyetheretherketone of the material of the second repair layer 124 is an implant grade.
  • the polyetheretherketone has a particle size of less than 40 microns.
  • the second active bone repairing material is selected from at least one of hydroxyapatite, ⁇ -tricalcium phosphate, ⁇ -tricalcium phosphate, calcium sulfate, and bioactive glass.
  • the second active bone repair material has a particle size of from 100 micrometers to 200 micrometers.
  • the second repair layer 124 includes a plurality of second repair unit layers 1244 stacked in sequence, and the material of each second repair unit layer 1244 includes polyetheretherketone and a second active bone repair material. From one side of the second repair layer 124 to the other side, the mass percentage of the second active bone restorative material in the material of the plurality of second repair unit layers 1244 is gradually reduced.
  • the second repair layer 124 is disposed as a plurality of second repair unit layers 1244 stacked in sequence, and the second active bone repair material is gradually reduced, so that the second repair layer 124 is in a transitional stage, so that the new bone continues to grow.
  • the non-degrading component still functions as a mechanical support, and does not cause the structure of the artificial intervertebral disc to be destroyed due to the stratification of the degraded component and the non-degraded component during the degradation process.
  • the second repair unit layer 1244 containing the second mass fraction of the second active bone repair material is laminated with the second wear layer 122. Specifically, the second repair unit layer 1244 having the least mass percentage of the second active bone repair material is laminated with the second wear resistant unit layer 1224 containing the second most reinforcing fiber.
  • the mass ratio of the second active bone repair material to the polyetheretherketone is 0.005 to 1:1.
  • the ratio range can be evenly stressed under the premise of ensuring that the second active bone repairing material has a certain pore after degradation.
  • the second repair unit layer 1244 is three to five. In the illustration of the present embodiment, there are three second repair unit layers 1244. It can be understood that in other embodiments, the second repair unit layer 1244 can also be 1, 2, or more than 5.
  • the second repair layer 124 is formed with a connection protrusion 1246, and the connection protrusion 1246 is located on a side of the second repair layer 124 away from the second wear layer 122, and the connection protrusion 1246 is equivalent to the bone nail.
  • the effect can enhance the stability of the second end plate 120 in the human body.
  • the connecting protrusion 1246 is located on the second repair unit layer 1244 containing the second active bone repair material.
  • the arcuate convex surface 1122 of the first end plate 110 is slidably abutted against the curved concave surface 1222 of the second end plate 120 to realize the first end plate 110 and the second end plate 120.
  • the first end plate 110 of the artificial intervertebral disc 100 includes a first wear layer 112 and a first repair layer 114
  • the second end plate 120 includes a second wear layer 122 and a second repair layer.
  • the material of the first wear layer 112 comprises polyetheretherketone and the first reinforcing fiber
  • the material of the second wear layer 122 comprises polyetheretherketone and the second reinforcing fiber
  • the curved convex surface 1122 is located at the first resistant
  • the curved concave surface 1222 is located on the second wear layer 122, so that the curved convex surface 1122 and the curved concave surface 1222 have good wear resistance, and the wear loss is about 0.05 ⁇ 0.4 mg/MC (MC).
  • the wear rate is 2% to 14.5% of the artificial intervertebral disc made of polyetheretherketone alone, which is far lower than the wear rate of the conventional artificial intervertebral disc, due to the curved convex surface 1122 of the artificial intervertebral disc 100 described above. Both the curved concave surface 1222 have better wear resistance, thereby effectively reducing The generation of wear debris increases the life of the artificial intervertebral disc 100; in addition, the material of the first repair layer 114 includes polyetheretherketone and a degradable first active bone repair material, and the material of the second repair layer 124 includes polyether.
  • the ether ketone and the degradable second active bone repairing material when the artificial intervertebral disc 100 is implanted, the degradable first active bone repairing material and the second active bone repairing material can be degraded, thereby causing the first repairing layer 114 And the second repair layer 124 both become a porous structure, at which time the new bone tissue can grow into the porous structure, so that the bone tissue can be tightly combined with the first repair layer 114 and the second repair layer 124, respectively.
  • the long-term stability of the first end plate 110 and the second end plate 120 in the implant body is increased, that is, the long-term stability of the artificial intervertebral disc 100 after being implanted into the human body is ensured, and therefore, the artificial intervertebral disc 100 is implanted into the human body. Long life.
  • the artificial intervertebral disc when the microsphere containing the osteoinductive factor is not used as the active bone repairing material, the artificial intervertebral disc can be prepared by using the artificial intervertebral disc preparation method of the embodiment.
  • the preparation method of the artificial intervertebral disc comprises the following steps:
  • Step S210 mixing the first reinforcing fiber with polyetheretherketone to obtain a first mixed material.
  • the polyetheretherketone is an implant grade.
  • the polyetheretherketone has a particle size of less than 40 microns.
  • the first reinforcing fiber is selected from at least one of carbon fiber, glass fiber, graphite fiber, silicon carbide fiber, stainless steel fiber, and titanium-based whisker fiber.
  • the first reinforcing fibers have a diameter of 1 nm to 50 ⁇ m and a length of 10 ⁇ m to 1000 ⁇ m.
  • step S210 the step of mixing the first reinforcing fiber with the polyetheretherketone is specifically: mixing the first reinforcing fiber and the polyetheretherketone according to a plurality of different mass ratios to obtain a plurality of first mixed materials. .
  • the first reinforcing fiber and the polyetheretherketone are separately mixed in three to ten different mass ratios to obtain three to ten first mixed materials.
  • the mass ratio of the first reinforcing fibers to the polyetheretherketone per first mixed material is from 0.001 to 0.5:1.
  • the mass ratio of the first reinforcing fibers to the polyetheretherketone is from 0.1:1 to 0.5:1.
  • Step S220 mixing the degradable first active bone repair material with polyetheretherketone to obtain a first mixed material.
  • the first active bone repairing material is selected from at least one of hydroxyapatite, ⁇ -tricalcium phosphate, ⁇ -tricalcium phosphate, calcium sulfate, and bioactive glass.
  • the first active bone repair material has a particle size of from 100 micrometers to 1 millimeter.
  • the polyetheretherketone is an implant grade.
  • the polyetheretherketone has a particle size of less than 40 microns.
  • step S220 the step of mixing the degradable first active bone repair material with the polyetheretherketone is specifically: the degradable first active bone repair material and the polyetheretherketone are respectively according to different qualities. A plurality of first mixed materials are obtained by mixing.
  • the degradable first active bone repair material and polyetheretherketone are mixed in three to five different mass ratios to obtain three to five first mixed materials.
  • the mass ratio of the first active bone repair material to the polyetheretherketone of each first mixed material is 0.005 to 1:1.
  • Step S230 providing a first mold, the first mold has a convex curved bottom surface, and the first mixed material and the first mixed material are sequentially added to the first mold, and after the molding, the first mold is removed, and the first mold is obtained.
  • a first layer of the wear layer body and the first repair layer body, the first wear layer body is formed with an arcuate convex surface away from the side of the first repair layer body.
  • step S230 the step of sequentially adding the first mixed material and the first mixed material to the first mold is specifically: first according to the quality of the first reinforcing fiber In the order of gradually decreasing the content, a plurality of first mixed materials are sequentially added to the first mold, and then the plurality of first mixed materials are sequentially added in order of increasing mass percentage of the first active bone repairing material. Go to the first mold. Wherein the first mixture containing the first mass of the first reinforcing fiber is added to the bottom of the first mold.
  • the molding method used in the step S230 is cold press forming; wherein, the molding method is specifically: pressurizing the first mold to which the first mixed material and the first mixed material are added to 110 MPa to 250 MPa in a cold state, Hold pressure for 10 minutes to 20 minutes.
  • the first blank can also be repaired as needed. For example, a burr or the like on the first blank can be removed by repair.
  • Step S240 mixing the second reinforcing fiber with polyetheretherketone to obtain a second mixture.
  • the polyetheretherketone is an implant grade.
  • the polyetheretherketone has a particle size of less than 40 microns.
  • the second reinforcing fiber is selected from at least one of carbon fiber, glass fiber, graphite fiber, silicon carbide fiber, stainless steel fiber, and titanium-based whisker fiber.
  • the second reinforcing fiber has a diameter of 1 nm to 50 ⁇ m and a length of 10 ⁇ m to 1000 ⁇ m.
  • the step of mixing the second reinforcing fiber with the polyetheretherketone is specifically: mixing the second reinforcing fiber and the polyetheretherketone according to a plurality of different mass ratios to obtain a plurality of second mixed materials.
  • the second reinforcing fiber and the polyetheretherketone are separately mixed in a ratio of 3 to 10 different mass ratios to obtain 3 to 10 second mixed materials.
  • the mass ratio of the second reinforcing fibers to the polyetheretherketone in each second mixture is from 0.001 to 0.5:1.
  • the mass ratio of the second reinforcing fiber to the polyetheretherketone in the second mixture containing the second most reinforcing fiber is 0.1:1 to 0.5:1.
  • Step S250 mixing the degradable second active bone repair material with polyetheretherketone to obtain a second mixed material.
  • the polyetheretherketone is an implant grade.
  • the polyetheretherketone has a particle size of less than 40 microns.
  • the second active bone repairing material is selected from at least one of hydroxyapatite, ⁇ -tricalcium phosphate, ⁇ -tricalcium phosphate, calcium sulfate, and bioactive glass.
  • the second active bone repair material has a particle size of 100 micrometers to 1 millimeter.
  • step S250 the step of mixing the degradable second active bone repair material with the polyetheretherketone is specifically: the degradable second active bone repair material and the polyetheretherketone are respectively according to different qualities. A plurality of second mixed materials are obtained by mixing.
  • the degradable second active bone repair material and the polyetheretherketone are mixed in three to five different mass ratios to obtain three to five second mixed materials.
  • the mass ratio of the second active bone repair material to the polyetheretherketone in each second mixed material is 0.005 to 1:1.
  • Step S260 providing a second mold having a concave curved bottom surface, sequentially adding the second mixed material and the second mixed material to the second mold, and after forming, removing the second mold to obtain a layer containing the laminate A second sample of the second wear layer body and the second repair layer body, and a side of the second wear layer body away from the second repair layer body is formed with a curved concave surface.
  • step S260 the step of sequentially adding the second mixed material and the second mixed material to the second mold is specifically: first according to the quality of the second reinforcing fiber In the order of gradually decreasing the content, a plurality of second mixed materials are sequentially added to the second mold, and then a plurality of second mixed materials are sequentially added in the order of increasing mass percentage of the second active bone repairing material. Go to the second mold. Wherein the second mixture having the largest mass percentage of the second reinforcing fibers is added to the bottom of the second mold.
  • the molding method used in the step S260 is cold press forming; wherein the molding method is specifically: pressurizing the second mold to which the second mixed material and the second mixed material are added to 110 MPa to 250 MPa in a cold state, Hold pressure for 10 minutes to 20 minutes.
  • the second sample can also be repaired as needed.
  • Step S270 sintering the first blank and the second blank respectively to obtain a first end plate and a second end plate. That is, an artificial intervertebral disc is obtained.
  • the sintering step in step S270 is specifically: the first blank and the second blank are incubated at 355 ° C to 400 ° C for 20 minutes to 30 minutes, and then sintered at 220 ° C to 280 ° C for 1 hour. 2 hours.
  • the first blank and the second blank are first sintered at 355 ° C ⁇ 400 ° C, and then sintered at 220 ° C ⁇ 280 ° C, in order to avoid the grain growth process in the late sintering stage, by first raising the sintering temperature to The higher temperature, in the molten state, removes the bubbles, so that the relative density of the sample reaches about 70%; then, the sintering temperature is lowered to a lower temperature for a longer period of time to allow the sintering to continue, and complete densification is achieved. Chemical. There is no significant growth of the grains at this stage.
  • the two-step sintering method is carried out by ingeniously controlling the temperature change, while suppressing grain boundary migration (which will cause grain growth) while maintaining the grain boundary diffusion (which is the power for densification of the body) to be active.
  • the purpose of sintering is completed without the grain being grown.
  • step S270 the steps of partially repairing, cleaning, drying, and sterilizing the first end plate and the second end plate, respectively, are further included.
  • step S210 and step S220 may be used to change the order; or, steps S240 to S260 may be performed first, and then step S210 is performed. S230 and so on.
  • the above artificial intervertebral disc is simple to prepare and is suitable for industrial production.
  • first mold having a convex curved bottom surface, according to the first mixed material 1, the first mixed material 2, the first mixed material 3, the first mixed material 1, the first mixed material 2
  • the first mixed material 3 and the first mixed material 4 are sequentially added to the first mold, wherein the first mixed material 1 is added to the bottom of the first mold, and after the material is added, the first mold is pressurized to 110MPa was subjected to cold press forming, and the pressure was maintained for 10 minutes to remove the first mold, thereby obtaining a first blank including the laminated first wear layer body and the first repair layer body, wherein the first wear layer body An arc-shaped convex surface is formed on a side away from the first repair layer blank, and the first wear-resistant layer blank has three first wear-resistant unit layer blanks sequentially stacked, and the first repair layer blank has four layers stacked in this order. The first repair unit layer blank. Finally, the first blank can be repaired as needed.
  • the second wear layer has a curved concave surface on a side away from the second repair layer blank, and the second wear layer has three second wear-resistant unit layer blanks sequentially stacked, and the second repair layer has Four second repair unit layers stacked in sequence. Finally, the second sample can be repaired as needed.
  • the first blank and the second blank are first sintered at 355 ° C for 25 minutes, and then sintered at 220 ° C for 2 hours to obtain a first end plate and a second end plate, thereby obtaining the artificial of the embodiment.
  • Intervertebral disc wherein, the first wear-resistant unit layer formed with the curved convex surface has a thickness of 50 ⁇ m, and the second wear-resistant unit layer formed with the curved concave surface has a thickness of 50 ⁇ m.
  • the first end plate and the second end plate are then partially repaired, cleaned, dried, packaged, and sterilized separately.
  • the method of F2423 tests the frictional performance of the curved convex surface of the first end plate and the curved concave surface of the second end plate, and passes the curved convex surface of the first end plate and the curved concave surface of the second end plate of the embodiment. After millions of rubies, the amount of wear of the artificial intervertebral disc of this example was obtained, as shown in Table 1.
  • the method of 527 performs the elastic modulus test on the artificial intervertebral disc of the present embodiment.
  • the elastic modulus of the artificial intervertebral disc of this embodiment is shown in Table 1.
  • the enhancement will be in accordance with the mass ratios of 0.1:1, 0.095:1, 0.090:1, 0.080:1, 0.075:1, 0.070:1, 0.065:1, 0.060:1, 0.055:1 and 0.050:1, respectively.
  • the fiber is mixed with the polyether ether ketone of the implant grade to obtain a first mixed material 1, a first mixed material 2, a first mixed material 3, a first mixed material 4, a first mixed material 5, a first mixed material 6, and a first a mixed material 7, a first mixed material 8, a first mixed material 9 and a first mixed material 10, wherein the reinforcing fibers are two kinds of graphite fibers and silicon carbide fibers, and the reinforcing fibers have a diameter of 1 nm and a length of 1000 ⁇ m;
  • the polyetheretherketone has a particle size of 10 microns.
  • the active bone repair material with the implant grade polyetheretherketone according to the mass ratio of 0.1:1, 0.2:1, 0.3:1, 0.4:1 and 0.5:1, respectively, to obtain the first mixed material 1 a first mixed material 2, a first mixed material 3, a first mixed material 4, and a first mixed material 5, wherein the active bone repairing material is ⁇ -tricalcium phosphate, having a particle diameter of 200 ⁇ m, and a polyetheretherketone pellet The diameter is 10 microns.
  • Cold press forming holding pressure for 20 minutes, removing the first mold, and obtaining a first blank comprising the laminated first wear layer body and the first repair layer body, wherein the first wear layer body is away from the first One side of a repair layer body is formed with a curved convex surface, and the first wear layer body has ten first wear-resistant unit layer bodies stacked in sequence, and the first repair layer body has five first stacked layers. Repair the unit layer blank. Finally, repair the first blank as needed.
  • the enhancement will be in accordance with the mass ratios of 0.1:1, 0.095:1, 0.090:1, 0.080:1, 0.075:1, 0.070:1, 0.065:1, 0.060:1, 0.055:1 and 0.050:1, respectively.
  • the fiber is mixed with the polyetheretherketone of the implant grade to obtain a second mixture 1, a second mixture 2, a second mixture 3, a second mixture 4, a second mixture 5, a second mixture 6, and a second a second mixture material 7, a second mixture material 8, a second mixture material 9 and a second mixture material 10, wherein the reinforcing fibers are two kinds of graphite fibers and silicon carbide fibers, and the reinforcing fibers have a diameter of 1 nm and a length of 10 ⁇ m.
  • the polyetheretherketone has a particle size of 10 microns.
  • the active bone repair material with the implant grade polyetheretherketone according to the mass ratio of 0.1:1, 0.2:1, 0.3:1, 0.4:1 and 0.5:1, respectively, to obtain the second mixed material 1 a second mixed material 2, a second mixed material 3, a second mixed material 4, and a second mixed material 5, wherein the active bone repairing material is ⁇ -tricalcium phosphate, having a particle diameter of 200 ⁇ m, and the polyetheretherketone particles The diameter is 10 microns.
  • the second wear layer body is formed with a curved concave surface on a side away from the second repair layer body, the second wear layer
  • the blank has ten second wear-resistant unit layer bodies stacked in series, and the second repair layer has five second repair unit layers stacked in sequence. Finally, the second sample can be repaired as needed.
  • the first blank and the second blank are sintered at 400 ° C for 20 minutes, and then sintered at 280 ° C for 1 hour to obtain a first end plate and a second end plate, thereby obtaining the artificial of the embodiment.
  • Intervertebral disc wherein, the first wear-resistant unit layer formed with the curved convex surface has a thickness of 100 ⁇ m, and the second wear-resistant unit layer formed with the curved concave surface has a thickness of 100 ⁇ m.
  • the first end plate and the second end plate are then partially repaired, cleaned, dried, packaged, and sterilized separately.
  • the artificial intervertebral disc of the present embodiment was subjected to elastic modulus test according to the method of ISO 527.
  • the elastic modulus of this example is shown in Table 1.
  • the reinforcing fibers are mixed with the polyetheretherketone of the implant grade according to mass ratios of 0.1:1, 0.09:1, 0.08:1, 0.07:1, 0.06:1 and 0.05:1, respectively, to obtain a first mixture.
  • the reinforcing fiber has a diameter of 100 nm and a length of 100 ⁇ m; the polyetheretherketone has a particle diameter of 20 ⁇ m.
  • the active bone repair material (2) mixing the active bone repair material with the implant grade polyetheretherketone according to the mass ratio of 0.1:1, 0.3:1 and 0.5:1, respectively, to obtain the first mixed material 1, the first mixed material 2 and the first A mixed material 3, wherein the active bone repairing material is ⁇ -tricalcium phosphate, calcium sulfate, and bioactive glass, the active bone repairing material has a particle diameter of 150 ⁇ m, and the polyetheretherketone has a particle diameter of 20 ⁇ m.
  • the first mold is pressurized to 200 MPa for cold press forming, and the pressure is maintained for 15 minutes to remove the first mold, thereby obtaining a first blank including the laminated first wear layer body and the first repair layer body, wherein a side of the first wear layer body away from the first repair layer body is formed with an arcuate convex surface, and the first wear layer body has six first wearable unit layer bodies stacked in sequence, the first repair layer The blank has three first repair unit layer blanks stacked in sequence. Finally, the first blank can be repaired as needed.
  • the reinforcing fibers are carbon fiber, silicon carbide fiber, stainless steel fiber and titanium whisker fiber
  • the reinforcing fibers have a diameter of 100 nm and a length of 100 ⁇ m, and polyetheretherketone has a particle size of 20 ⁇ m.
  • the active bone repair material is two kinds of ⁇ -tricalcium phosphate, calcium sulfate and bioactive glass, the active bone repairing material has a particle diameter of 150 ⁇ m, and the polyetheretherketone has a particle diameter of 20 ⁇ m.
  • the second mold having a convex curved bottom surface according to the second mixed material 1, the second mixed material 2, the second mixed material 3, the second mixed material 4, and the second mixed material 5 , the second mixed material 6, the second mixed material 1, the second mixed material 2, and the second mixed material 3 are sequentially added to the second mold, wherein the second mixed material 1 is added to the bottom of the second mold And then pressurizing the second mold to 200 MPa for cold press forming, holding the pressure for 15 minutes, removing the second mold, and obtaining a second sample comprising the laminated second wear layer body and the second repair layer body, wherein, the second wear layer body is formed with a curved concave surface on a side away from the second repair layer blank, and the second wear-resistant unit layer blank has six second wear-resistant unit layer blanks sequentially stacked, second The repair layer has three second repair unit layers stacked in sequence. Finally, the second sample can be repaired as needed.
  • the first blank and the second blank are sintered at 400 ° C for 20 minutes, and then sintered at 280 ° C for 1 hour to obtain a first end plate and a second end plate, thereby obtaining the artificial of the embodiment.
  • Intervertebral disc wherein, the first wear-resistant unit layer formed with the curved convex surface has a thickness of 100 ⁇ m, and the second wear-resistant unit layer formed with the curved concave surface has a thickness of 100 ⁇ m.
  • the first end plate and the second end plate are then partially repaired, cleaned, dried, packaged, and sterilized separately.
  • the method of F2423 tests the frictional performance of the curved convex surface of the first end plate and the curved concave surface of the second end plate, and passes the curved convex surface of the first end plate and the curved concave surface of the second end plate of the embodiment. After millions of rubies, the amount of wear of the artificial intervertebral disc of the present embodiment is shown in Table 1.
  • the artificial intervertebral disc of the present embodiment was subjected to elastic modulus test according to the method of ISO 527.
  • the elastic modulus of this example is shown in Table 1.
  • the reinforcing fiber is mixed with the polyetheretherketone of the implant grade according to a mass ratio of 0.1:1 to obtain a first mixed material, wherein the reinforcing fiber is carbon fiber, the diameter is 50 ⁇ m, the length is 100 ⁇ m, and the polyether The ether ketone has a particle size of 30 microns.
  • the active bone repair material is mixed with the polyetheretherketone of the implant grade to obtain the first mixed material, wherein the active bone repair material is hydroxyapatite with a particle diameter of 100 micrometers.
  • the polyetheretherketone has a particle size of 30 ⁇ m.
  • the reinforcing fibers are carbon fibers, having a diameter of 50 ⁇ m and a length of 100 ⁇ m, and the polyether
  • the ether ketone has a particle size of 30 microns.
  • the first blank and the second blank are first sintered at 355 ° C for 25 minutes, and then sintered at 220 ° C for 2 hours to obtain a first end plate and a second end plate, the first wear layer and the first
  • the thickness of both wear layers was 50 ⁇ m, and the artificial intervertebral disc of this example was obtained.
  • the first end plate and the second end plate are then partially repaired, cleaned, dried, packaged, and sterilized separately.
  • the method of F2423 tests the frictional performance of the curved convex surface of the first end plate and the curved concave surface of the second end plate, and passes the curved convex surface of the first end plate and the curved concave surface of the second end plate of the embodiment. After millions of rubies, the amount of wear of the artificial intervertebral disc of this example was obtained, as shown in Table 1.
  • the artificial intervertebral disc of the present embodiment was subjected to elastic modulus test according to the method of ISO 527.
  • the elastic modulus of this example is shown in Table 1.
  • the first mixed material 3 and the first mixed material 4 wherein the reinforcing fibers are three kinds of graphite fibers, glass fibers and titanium-based whisker fibers, and the reinforcing fibers have a diameter of 25 ⁇ m and a length of 500 ⁇ m, and the polyetheretherketone The particle size is 25 microns.
  • the active bone repair material (2) mixing the active bone repair material with the polyetheretherketone of the implant grade according to the mass ratio of 0.1:1, 0.2:1, 0.3:1 and 0.4:1, respectively, to obtain the first mixed material 1, the first mixture
  • first mold having a convex curved bottom surface, according to the first mixed material 1, the first mixed material 2, the first mixed material 3, the first mixed material 4, and the first mixed material 1.
  • the first mixed material 2, the first mixed material 3 and the first mixed material 4 are sequentially added to the first mold, wherein the first mixed material 1 is added to the bottom of the first mold, and then the first mold is added Pressing to 160 MPa for cold press forming, holding pressure for 16 minutes, removing the first mold, and obtaining a first blank comprising the laminated first wear layer body and the first repair layer body, wherein the first wear layer is The side of the body away from the first repair layer blank is formed with an arcuate convex surface, and the first wear-resistant unit layer blank has four first wear-resistant unit layer blanks sequentially stacked, and the first repair layer blank has four The first repair unit layer body stacked in this order. Repair the first blank as needed.
  • the reinforcing fibers are three kinds of graphite fiber, glass fiber and titanium-based whisker fiber, the reinforcing fiber has a diameter of 25 micrometers, the length is 500 micrometers, and the polyetheretherketone particles The diameter is 25 microns.
  • the active bone repair material is two kinds of ⁇ -tricalcium phosphate and bioactive glass, the active bone repairing material has a particle diameter of 150 ⁇ m, and the polyetheretherketone has a particle diameter of 20 ⁇ m.
  • the first blank and the second blank are sintered at 380 ° C for 30 minutes, and then sintered at 260 ° C for 1.5 hours to obtain a first end plate and a second end plate, thereby obtaining the artificial of the embodiment.
  • Intervertebral disc wherein, the first wear-resistant unit layer formed with the curved convex surface has a thickness of 80 ⁇ m, and the second wear-resistant unit layer formed with the curved concave surface has a thickness of 80 ⁇ m.
  • the first end plate and the second end plate are then partially repaired, cleaned, dried, packaged, and sterilized separately.
  • the method of F2423 tests the frictional performance of the curved convex surface of the first end plate and the curved concave surface of the second end plate, and passes the curved convex surface of the first end plate and the curved concave surface of the second end plate of the embodiment. After millions of rubies, the amount of wear of the artificial intervertebral disc of the present embodiment is shown in Table 1.
  • the artificial intervertebral disc of the present embodiment was subjected to elastic modulus test according to the method of ISO 527.
  • the elastic modulus of this example is shown in Table 1.
  • Table 1 shows the wear rate and elastic modulus of the artificial intervertebral discs of Examples 1 to 5 and Comparative Example 1 after millions of rubies.
  • Comparative Example 1 is a conventional artificial intervertebral disc using only polyetheretherketone as a material.
  • Example 1 0.12mg/MC 20.54GPa
  • Example 2 0.07mg/MC 21.87GPa
  • Example 3 0.08mg/MC 21.10GPa
  • Example 4 0.05mg/MC 22.35GPa
  • Example 5 0.40mg/MC 19.42GPa Comparative example 1 2.50mg/MC (3.86 ⁇ 0.72) GPa
  • the wear of the artificial intervertebral discs of Examples 1 to 5 was at most 0.4 mg/MC, and the minimum was only 0.05 mg/MC, while the wear of the conventional artificial intervertebral disc of Comparative Example 1 was 2.5.
  • the wear rate of the artificial intervertebral disc of the examples 1 to 5 is only 2.0% to 14.5% of the wear amount of the artificial intervertebral disc of the first aspect, and the wear rate of the artificial intervertebral disc of the examples 1 to 5 is much lower than that of the artificial intervertebral disc of the first embodiment.
  • the wear rate of the artificial intervertebral disc of Comparative Example 1, that is, the artificial intervertebral discs of Examples 1 to 5 had good wear resistance.
  • the artificial intervertebral discs of Examples 1 to 5 have an elastic modulus of 19.42 to 22.35 GPa, and the human bone has an elastic modulus of 17 to 20 GPa, and the artificial intervertebral discs of Examples 1 to 5
  • the elastic modulus is very close to the human bone, that is, it has good biocompatibility with human bone.
  • the conventional artificial intervertebral disc using polyetheretherketone has a modulus of elasticity of (3.86 ⁇ 0.72) Gpa, which is obviously different from the elastic modulus of human bone, and biocompatibility is not implemented in Example 1 ⁇
  • the artificial intervertebral disc of Example 5 is good.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种人工椎间盘(100),包括第一终板(110)和第二终板(120),第一终板(110)包括层叠的第一耐磨层(112)及第一修复层(114),第一耐磨层(112)远离第一修复层(114)的一侧形成有弧形凸面(1122);第二终板(120)包括层叠的第二耐磨层(122)及第二修复层(124),第二耐磨层(122)远离第二修复层(124)的一侧形成有弧形凹面(1222),弧形凸面(1122)与弧形凹面(1222)滑动抵接;第一耐磨层(112)的材料包括聚醚醚酮及混合于聚醚醚酮中的第一增强纤维,第一修复层(114)的材料包括聚醚醚酮及混合于聚醚醚酮中的可降解的第一活性骨修复材料,第二耐磨层(122)的材料包括聚醚醚酮及混合于聚醚醚酮中的第二增强纤维,第二修复层(124)的材料包括聚醚醚酮及混合于聚醚醚酮中的可降解的第二活性骨修复材料。上述人工椎间盘(100)植入人体后具有较长的寿命。此外,还提供一种人工椎间盘的制备方法。

Description

人工椎间盘及其制备方法
【技术领域】
本发明属于生物医用材料技术领域,尤其涉及一种人工椎间盘及其制备方法。
【背景技术】
颈椎病及腰椎病是一种由于椎间盘退行性病变而导致的脊柱疾患,已成为显著影响中老年人生活质量的常见病和高发病。其中,在腰椎病方面,腰椎间盘突出症总发病率已达15.2~30%,且我国腰椎病患者目前已突破2亿,80%的成年人有过腰痛病史。临床统计表明,年龄大于50岁者40%以上腰椎有活动受限情况,其中60%会产生腰椎病变,压迫神经***出现病症,约10%-15%的患者最终会发展到脊髓压迫,从而可能造成截瘫。而颈椎病方面更不容乐观,随着人口老龄化、长期伏案面对电脑增加及车祸频发,造成的颈椎损伤逐年增加,颈椎病发病率快速攀升。目前我国发病率约占全国总人口的7%-10%,其中50岁左右人群发病率超过了25%,60~70岁发病率可高达50%,此外中青年患者急剧增加,30岁以下青年患者已占到总患病人数的11%。
椎间盘退变疾病的治疗有手术和非手术两种方法。非手术疗法仅能缓解症状,不能根治,相当比例的患者必须接受手术治疗。临床中,由于脊柱融合术见效快、疗效好、手术简单等优点,多年来一度成为椎间盘疾病手术治疗的“金标准”。然而该项手术疗法仍存在一些遗憾,融合术会导致病变节段的生理活动度丧失,相邻节段运动及负荷增加,将在一定程度上加速邻近节段退变。临床研究发现,融合术后有约25.6%的患者在术后10年内出现邻近节段继发病变。在长达21年的随访中,14%的患者需再次手术。为解决减压后的不稳,维持椎间隙高度,并保留椎节间适度生理活动,受髋关节置换术启发,人工椎间盘置换术(TDR)应运而生。与颈椎前路融合术及腰椎后路融合术相比,TDR具有保持手术节段正常活动度和稳定性、改善邻近椎间隙内压力、减少邻近节段新发病率等优点,被认为是最有发展前景的脊柱生物力学重建技术。而TDR使用的人工颈或腰椎间盘,则理所当然地成为国际研究开发的重点和热点。
国内开展TDR手术已有近20年历史,已有大量临床病例,但遗憾的是所使用的产品全部为进口。然而,随着脊柱非融合技术的快速发展,TDR的日益普及并广泛认可,国人颈腰椎病的发病率持续攀升,开发国产化的人工椎间盘产品已势在必行。而国产化人工椎间盘的开发主要面临以下技术挑战:椎间盘植入人体后,假体在人体复杂力学/生理环境下,关节面材料出现严重磨损,产生大量磨屑,各种磨损微粒诱发炎症反应,致使假体周围骨溶解,最后出现假体松动,导致假体寿命严重不足。
【发明内容】
鉴于此,有必要提供一种植入人体后具有较长寿命的人工椎间盘。
此外,还提供人工椎间盘的制备方法,该方法制备的人工椎间盘植入人体后具有较长的寿命。
一种人工椎间盘,包括:
第一终板,包括层叠的第一耐磨层及第一修复层,所述第一耐磨层远离所述第一修复层的一侧形成有弧形凸面;及
第二终板,设置于所述第一终板上,所述第二终板与所述第一终板可相对滑动,所述第二终板包括层叠的第二耐磨层及第二修复层,所述第二耐磨层远离所述第二修复层的一侧形成有弧形凹面,所述弧形凸面与所述弧形凹面滑动抵接;
其中,所述第一耐磨层的材料包括聚醚醚酮及混合于所述聚醚醚酮中的第一增强纤维,所述第一修复层的材料包括聚醚醚酮及混合于所述聚醚醚酮中的可降解的第一活性骨修复材料,所述第二耐磨层的材料包括聚醚醚酮及混合于所述聚醚醚酮中的第二增强纤维,所述第二修复层的材料包括聚醚醚酮及混合于所述聚醚醚酮中的可降解的第二活性骨修复材料,所述第一活性骨修复材料和所述第二活性骨修复材料分别选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种。
在其中一个实施例中,所述第一耐磨层包括多个依次层叠的第一耐磨单元层,每个第一耐磨单元层的材料包括所述聚醚醚酮和所述第一增强纤维,从所述第一耐磨层的一侧到另一侧,所述多个第一耐磨单元层的材料中的所述第一增强纤维的质量百分含量逐渐减少,所述第一修复层层叠于含所述第一增强纤维的质量百分含量最少的所述第一耐磨单元层上,所述弧形凸面形成于含所述第一增强纤维的质量百分含量最多的所述第一耐磨单元层上;
所述第二耐磨层包括多个依次层叠的第二耐磨单元层,每个第二耐磨单元层的材料包括所述聚醚醚酮和所述第二增强纤维,从所述第二耐磨层的一侧到另一侧,所述多个第二耐磨单元层的材料中的所述第二增强纤维的质量百分含量逐渐减少,所述第二修复层层叠于含所述第二增强纤维的质量百分含量最少的所述第二耐磨单元层上,所述弧形凹面形成于含所述第二增强纤维的质量百分含量最多的所述第二耐磨单元层上。
在其中一个实施例中,含所述第一增强纤维的质量百分含量最多的所述第一耐磨单元层的材料中,所述第一增强纤维与所述聚醚醚酮的质量比为0.1:1~0.5:1;
含所述第二增强纤维的质量百分含量最多的所述第二耐磨单元层的材料中,所述第二增强纤维与所述聚醚醚酮的质量比为0.1:1~0.5:1。
在其中一个实施例中,含所述第一增强纤维的质量百分含量最多的所述第一耐磨单元层的厚度为50微米~100微米;
含所述第二增强纤维的质量百分含量最多的所述第二耐磨单元层的厚度为50微米~100微米。
在其中一个实施例中,所述第一修复层包括多个依次层叠的第一修复单元层,每个第一修复层单元层的材料包括所述聚醚醚酮和所述第一活性骨修复材料,从所述第一修复层的一侧到另一侧,所述多个第一修复单元层的材料中的所述第一活性骨修复材料的质量百分含量逐渐减少,含所述第一活性骨修复材料的质量百分含量最少的所述第一修复单元层与所述第一耐磨层层叠;
所述第二修复层包括多个依次层叠的第二修复单元层,每个第二修复单元层的材料包括所述聚醚醚酮和所述第二活性骨修复材料,从所述第二修复层的一侧到另一侧,所述多个第二修复单元层的材料中的所述第二活性骨修复材料的质量百分含量逐渐减少,含所述第二活性骨修复材料的质量百分含量最少的所述第二修复单元层与所述第二耐磨层层叠。
在其中一个实施例中,所述第一增强纤维和所述第二增强纤维分别选自碳纤维、玻璃纤维、石墨纤维、碳化硅纤维、不锈钢纤维及钛基晶须纤维中的至少一种。
在其中一个实施例中,所述第一增强纤维和所述第二增强纤维的直径均为1纳米~50微米,长度均为10微米~1000微米。
在其中一个实施例中,所述第一耐磨层的材料中的聚醚醚酮、第一修复层的材料中的聚醚醚酮、第二耐磨层的材料中的聚醚醚酮、第二修复层的材料中的聚醚醚酮的粒径均小于40微米。
在其中一个实施例中,所述第一活性骨修复材料和所述第二活性骨修复材料的粒径均为100微米~1毫米。
一种人工椎间盘的制备方法,包括如下步骤:
将第一增强纤维与聚醚醚酮混合,得到第一混合物料;
将可降解的第一活性骨修复材料与聚醚醚酮混合,得到第一混合材料,其中,所述第一活性骨修复材料选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种;
提供第一模具,所述第一模具具有外凸的弧形底面,将所述第一混合物料与所述第一混合材料依次加入所述第一模具中,成型后,去除所述第一模具,得到包含有层叠的第一耐磨层坯体和第一修复层坯体的第一样坯,所述第一耐磨层坯体远离所述第一修复层坯体的一侧形成有弧形凸面;
将第二增强纤维与聚醚醚酮混合,得到第二混合物料;
将可降解的第二活性骨修复材料与聚醚醚酮混合,得到第二混合材料,其中,所述第二活性骨修复材料选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种;
提供第二模具,所述第二模具具有内凹的弧形底面,将所述第二混合物料与所述第二混合材料依次加入所述第二模具中,成型后,去除所述第二模具,得到包含有层叠的第二耐磨层坯体和第二修复层坯体的第二样坯,所述第二耐磨层坯体远离所述第二修复层坯体的一侧形成有弧形凹面;及
分别将所述第一样坯和所述第二样坯进行烧结,得到第一终板和第二终板。
当上述人工椎间盘植入人体后,通过第一终板的弧形凸面与第二终板的弧形凹面滑动抵接,以实现第一终板与第二终板的相对滑动,而上述人工椎间盘的第一终板包括层叠的第一耐磨层及第一修复层,且第二终板包括层叠的第二耐磨层及第二修复层,而第一耐磨层的材料包括聚醚醚酮和第一增强纤维,第二耐磨层的材料包括聚醚醚酮和第二增强纤维,而弧形凸面位于第一耐磨层上,弧形凹面位于第二耐磨层上,使得弧形凸面与弧形凹面均具有较好的耐磨性能,磨损损失量约为0.05~0.4mg/MC(MC表示百万次循环),即磨损率为单纯使用聚醚醚酮为材质的人工椎间盘的2%~14.5%,远远低于传统人工椎间盘的磨损率,由于上述人工椎间盘的弧形凸面与弧形凹面均具有较好的耐磨性能,从而有效地减少了磨屑的产生,增加了人工椎间盘的寿命;另外,第一修复层的材料包括聚醚醚酮和可降解的第一活性骨修复材料,第二修复层的材料包括聚醚醚酮和可降解的第二活性骨修复材料,当上述人工椎间盘被植入后,可降解的第一活性骨修复材料和第二活性骨修复材料能够被降解,从而使第一修复层和第二修复层均变成一个多孔结构,此时,新生骨组织能够长入多孔结构中,使得骨组织能够分别与第一修复层和第二修复层紧密的结合在一起,增加了第一终板和第二终板在植入体内的长期稳定性,即保证了人工椎间盘在植入人体后的长期稳定性,因此,上述人工椎间盘植入人体后具有较长的寿命。
【附图说明】
图1为一实施方式的人工椎间盘的结构示意图;
图2为一实施方式的人工椎间盘的制备方法的流程图。
【具体实施方式】
下面主要结合附图及具体实施例对人工椎间盘及其制备方法作进一步详细的说明。
如图1所示,一实施方式的人工椎间盘100,包括第一终板110及第二终板120。其中,第二终板120设置于第一终板110上,且第一终板110与第二终板120可相对滑动。
第一终板110包括层叠的第一耐磨层112及第一修复层114。
其中,第一耐磨层112远离第一修复层114的一侧形成有弧形凸面1122。
其中,第一耐磨层112的材料包括聚醚醚酮及混合于聚醚醚酮中的第一增强纤维。在聚醚醚酮中混合第一增强纤维,使得第一耐磨层112具有较好的耐摩擦性能。
其中,第一耐磨层112的材料中的聚醚醚酮为植入级。优选的,聚醚醚酮的粒径小于40微米。小粒径的聚醚醚酮易于与第一增强纤维混合均匀,并且有利于减少缺陷,从而增强第一耐磨层112的力学性能。
聚醚醚酮是一种在主链结构中含有由一个酮键和两个醚键组成的重复单元的高聚物,属特种高分子材料,其具有耐高温、耐化学药品腐蚀、自润滑性等物理化学性能,是一类结晶高分子材料。聚醚醚酮的弹性模量与骨的弹性模量十分接近,且聚醚醚酮能够很快地与骨融合,具有良好的生物相容性,可长期置于生物体内。另外,聚醚醚酮可透X光,在核磁共振检查时,即使是脊椎融合部分也能够清楚地分辨出周围的组织结构。
优选的,第一增强纤维选自碳纤维、玻璃纤维、石墨纤维、碳化硅纤维、不锈钢纤维及钛基晶须纤维中的至少一种。上述增强纤维有利于增强第一耐磨层112的耐磨性能。
优选的,第一增强纤维的直径为1纳米~50微米,长度为10微米~1000微米。该尺寸的第一增强纤维不仅能和上述聚醚醚酮混合均匀,从而能够提高第一耐磨层112的应力的连续性和均匀性,还能够起到纳米增强的作用,从而提高第一耐磨层112的耐磨性能。
优选的,第一耐磨层112包括多个依次层叠的第一耐磨单元层1124,每个第一耐磨单元层1124的材料包括聚醚醚酮及第一增强纤维。从第一耐磨层112的一侧到另一侧,多个第一耐磨单元层1124的材料中的第一增强纤维的质量百分含量逐渐减少。将第一耐磨层112设置为多个含增强纤维的质量百分含量逐渐减少的第一耐磨单元层1124,使第一耐磨层112形成一个梯度结构。虽然增强纤维起到一个提高抗疲劳性能、耐磨性能的作用,但混合了增强纤维的材料的微观结构是不均匀的,这种结构的不均匀性容易产生微观的应力和应变分布不均匀,可能导致材料在最大或强度最低或最薄弱的区域发生破坏。因此,将第一耐磨层112设置为上述结构是为了逐渐降低第一增强纤维对第一耐磨层112结构的影响。
优选的,每个第一耐磨单元层1124的材料中,第一增强纤维与聚醚醚酮的质量比为0.001~0.5:1。该比例范围的第一增强纤维和聚醚醚酮能够满足第一耐磨单元层1124的抗疲劳和耐磨性能的要求,且该比例的增强纤维的存在也不会破坏第一耐磨单元层1124。
其中,弧形凸面1122形成于含第一增强纤维的质量百分含量最多的第一耐磨单元层1124上。
优选的,含第一增强纤维的质量百分含量最多的第一耐磨单元层1124的材料中,第一增强纤维与聚醚醚酮的质量比为0.1:1~0.5:1。
优选的,含第一增强纤维的质量百分含量最多的第一耐磨单元层1124的厚度为50微米~100微米。
优选的,第一耐磨单元层1124为3个~10个。3个~10个第一耐磨单元层1124不仅满足了梯度结构,起到了过渡的作用,第一耐磨单元层1124的层数过多反而增加了制备工艺。在本实施方式的图示中,第一耐磨单元层1124为3个。可以理解,在其它实施方式中,第一耐磨单元层1124也可以为1个、2个或者是大于10个。
其中,第一修复层114层叠于含第一增强纤维的质量百分含量最少的第一耐磨单元层1124上。
第一修复层114的材料包括聚醚醚酮及混合于聚醚醚酮中的可降解的第一活性骨修复材料。
在人工椎间盘100植入人体后,第一修复层114中的可降解的第一活性骨修复材料能够逐步被降解,从而使第一修复层114变成一个多孔结构,新生骨组织能够长入该多孔结构中,以使骨组织与第一修复层114紧密的结合在一起,保证人工椎间盘100植入体内后,第一终板110具有长期稳定性。
其中,第一修复层114的材料的聚醚醚酮为植入级。优选的,聚醚醚酮的粒径小于40微米。
其中,第一活性骨修复材料选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种。这些材料不仅能够降解,还能够促进新骨长入。
优选的,第一活性骨修复材料的粒径为100微米~1毫米。由于第一活性骨修复材料最终会降解,第一修复层114形成多孔结构,该粒径范围的第一活性骨修复材料有利于细胞和组织长入多孔结构中。
优选的,第一修复层114包括多个依次层叠的第一修复单元层1144,每个第一修复单元层1144的材料包括聚醚醚酮及第一活性骨修复材料。从第一修复层114的一侧到另一侧,多个第一修复单元层1144的材料中的第一活性骨修复材料的质量百分含量逐渐减少。将第一修复层114设置为多个含第一活性骨修复材料逐渐减少的第二修复单元层1144,是为了使结构处于一个过渡阶段,使新生骨不断长入、充满降解后留下的孔中,因为第一活性骨修复材料是可被人体组织降解吸收,在降解过程中逐渐人体组织生成新骨长入被吸收前的第一活性骨修复材料的位置,此时,不降解组分仍然起到一个力学支撑的作用,而不会导致在降解过程中因降解组分和非降解组分分层明显而破坏人工椎间盘的结构。
其中,含第一活性骨修复材料的质量百分含量最少的第一修复单元层1144与第一耐磨层112层叠。具体的,含第一活性骨修复材料的质量百分含量最少的第一修复单元层1144与含第一增强纤维的质量百分含量最少的第一耐磨单元层1124层叠。
优选的,每个第一修复单元层1144的材料中,第一活性骨修复材料与聚醚醚酮的质量比为0.005~1:1。该比例范围的第一活性骨修复材料与聚醚醚酮能够在保证第一修复单元层1144在降解的过程中仍然均匀受力。
更优选的,第一修复单元层1144为3个~5个。在本实施方式的图示中,第一修复单元层1144为3个。可以理解,在其它实施方式中,第一修复单元层1144也可以为1个、2个或者是大于5个。
在本实施方式中,第一修复层114上形成有固定凸起1146,且固定凸起1146位于第一修复层114远离第一耐磨层112的一侧,该固定凸起1146相当于骨钉的作用,能够加强第一终板110在人体中的稳定性。具体的,固定凸起1146设置于含第一活性骨修复材料的质量百分含量最多的第一修复单元层1144上。
第二终板120包括层叠的第二耐磨层122及第二修复层124。
第二耐磨层122远离第二修复层124的一侧形成有弧形凹面1222,其中,弧形凸面1122与弧形凹面1222滑动抵接,从而实现第一终板110与第二终板120之间的相对滑动。具体的,弧形凹面1222的曲率与弧形凸面1122的曲率相等。弧形凹面1222的曲率与弧形凸面1122的曲率一致,有利于第一终板110和第二终板120之间的运动。
其中,第二耐磨层122的材料包括聚醚醚酮及混合于聚醚醚酮中的第二增强纤维。在聚醚醚酮中混合第二增强纤维,使得第二耐磨层122具有较好的耐摩擦性能。
其中,第二耐磨层122的材料中的聚醚醚酮为植入级。聚醚醚酮的粒径小于40微米。
优选的,第二增强纤维选自碳纤维、玻璃纤维、石墨纤维、碳化硅纤维、不锈钢纤维及钛基晶须纤维中的至少一种。
优选的,第二增强纤维的直径为1纳米~50微米,长度为10微米~1000微米。上述尺寸的增强纤维不仅能和聚醚醚酮混合均匀,从而能够提高第二耐磨层122的应力的连续性和均匀性,还能够起到纳米增强的作用,从而提高第二耐磨层122的耐磨性能。
优选的,第二耐磨层122包括多个依次层叠的第一耐磨单元层1224,每个第二耐磨单元层1224的材料包括聚醚醚酮和第二增强纤维。从第二耐磨层122的一侧到另一侧,多个第二耐磨单元层1224的材料中的第二增强纤维的质量百分含量逐渐减少。将第二耐磨层122设置为多个含增强纤维的质量百分含量逐渐减少的多个第二耐磨单元层1224,使第二耐磨层122形成一个梯度结构。增强纤维虽然起到一个提高抗疲劳性能、耐磨性能的作用,但混合了增强纤维的第材料的微观结构是不均匀的,这种结构的不均匀性容易产生微观的应力和应变分布不均匀,可能导致材料在最大或强度最低或最薄弱的区域发生破坏。因此,将第二耐磨层122设置为上述结构是为了逐渐降低增强纤维对第二耐磨层122的影响。
优选的,在每个第二耐磨单元层1224的材料中,第二增强纤维与聚醚醚酮的质量比为0.001~0.5:1。该比例范围的增强纤维和聚醚醚酮能够满足第二耐磨单元层1224的抗疲劳和耐磨性能的要求,且该比例的增强纤维的存在也不会破坏第二耐磨单元层1224。
其中,弧形凹面1222形成于含第二增强纤维的质量百分含量最多的第二耐磨单元层1224上。更优选的,在含第二增强纤维的质量百分含量最多的第二耐磨单元层1224的材料中,第二增强纤维与聚醚醚酮的质量比为0.1:1~0.5:1。
优选的,含第二增强纤维的质量百分含量最多的第二耐磨单元层1224的厚度为50微米~100微米。
更优选的,第二耐磨单元层1224为3个~10个。在本实施方式的图示中,第二耐磨单元层1224为3个。可以理解,在其它实施方式中,第二耐磨单元层1224也可以为1个、2个或者是大于10个。
其中,第二修复层124层叠于含第二增强纤维的质量百分含量最少的第二耐磨单元层1224上。
第二修复层124的材料包括聚醚醚酮及混合于聚醚醚酮中的可降解的第二活性骨修复材料。
当人工椎间盘100在植入人体后,第二修复层124中的可降解的第二活性骨修复材料能够逐步被降解,从而使第二修复层124变成一个多孔结构,新生骨组织能够长入该多孔结构中,以使骨组织与第二修复层124紧密的结合在一起,进一步保证人工椎间盘100植入人体后,第二终板120具有长期稳定性。
其中,第二修复层124的材料的聚醚醚酮为植入级。聚醚醚酮的粒径小于40微米。
其中,第二活性骨修复材料选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种。
优选的,第二活性骨修复材料的粒径为100微米~200微米。
优选的,第二修复层124包括多个依次层叠的第二修复单元层1244,每个第二修复单元层1244的材料包括聚醚醚酮和第二活性骨修复材料。从第二修复层124的一侧到另一侧,多个第二修复单元层1244的材料中的第二活性骨修复材料的质量百分含量逐渐减少。将第二修复层124设置为多个依次层叠的第二修复单元层1244,并使第二活性骨修复材料逐渐减少,是为了使第二修复层124处于一个过渡阶段,使新生骨不断长入、充满降解后留下的孔中,因为第二活性骨修复材料是可被人体组织降解吸收的,在降解过程中逐渐人体组织生成新骨长入被吸收前的第二活性骨修复材料的位置,此时,不降解组分仍然起到一个力学支撑的作用,而不会导致在降解过程中因降解组分和非降解组分分层明显而破坏人工椎间盘的结构。
其中,含第二活性骨修复材料的质量百分含量最少的第二修复单元层1244与第二耐磨层122层叠。具体的,含第二活性骨修复材料的质量百分含量最少的第二修复单元层1244与含第二增强纤维的质量百分含量最少的第二耐磨单元层1224层叠。
其中,在每个第二修复单元层1244的材料中,第二活性骨修复材料与聚醚醚酮的质量比为0.005~1:1。该比例范围能够在保证第二活性骨修复材料降解后具有一定孔的前提下,仍能均匀受力。
更优选的,第二修复单元层1244为3个~5个。在本实施方式的图示中,第二修复单元层1244为3个。可以理解,在其它实施方式中,第二修复单元层1244也可以为1个、2个或者是大于5个。
在本实施方式中,第二修复层124上形成有连接凸起1246,且连接凸起1246位于第二修复层124远离第二耐磨层122的一面,该连接凸起1246相当于骨钉的作用,能够加强第二终板120在人体中的稳定性。具体的,连接凸起1246位于含第二活性骨修复材料最多的第二修复单元层1244上。
当上述人工椎间盘100植入人体后,通过第一终板110的弧形凸面1122与第二终板120的弧形凹面1222滑动抵接,以实现第一终板110与第二终板120的相对滑动,而上述人工椎间盘100的第一终板110包括层叠的第一耐磨层112及第一修复层114,且第二终板120包括层叠的第二耐磨层122及第二修复层124,而第一耐磨层112的材料包括聚醚醚酮和第一增强纤维,第二耐磨层122的材料包括聚醚醚酮和第二增强纤维,而弧形凸面1122位于第一耐磨层112上,弧形凹面1222位于第二耐磨层122上,使得弧形凸面1122与弧形凹面1222均具有较好的耐磨性能,磨损损失量约为0.05~0.4mg/MC(MC表示百万次循环),即磨损率为单纯使用聚醚醚酮为材质的人工椎间盘的2%~14.5%,远远低于传统人工椎间盘的磨损率,由于上述人工椎间盘100的弧形凸面1122与弧形凹面1222均具有较好的耐磨性能,从而有效地减少了磨屑的产生,增加了上述人工椎间盘100的寿命;另外,第一修复层114的材料包括聚醚醚酮和可降解的第一活性骨修复材料,第二修复层124的材料包括聚醚醚酮和可降解的第二活性骨修复材料,当上述人工椎间盘100被植入后,可降解的第一活性骨修复材料和第二活性骨修复材料能够被降解,从而使第一修复层114和第二修复层124均变成一个多孔的结构,此时,新生骨组织能够长入多孔结构中,使得骨组织能够分别与第一修复层114和第二修复层124紧密的结合在一起,增加了第一终板110和第二终板120在植入体内的长期稳定性,即保证了人工椎间盘100在植入人体后的长期稳定性,因此,上述人工椎间盘100植入人体后具有较长的寿命。
如图2所示,一实施方式的人工椎间盘的制备方法,当不使用含骨诱导因子的微球作为活性骨修复材料时,上述人工椎间盘可以使用该实施方式的人工椎间盘的制备方法来制备。该人工椎间盘的制备方法包括如下步骤:
步骤S210:将第一增强纤维与聚醚醚酮混合,得到第一混合物料。
步骤S210中,聚醚醚酮为植入级。聚醚醚酮的粒径小于40微米。
其中,第一增强纤维选自碳纤维、玻璃纤维、石墨纤维、碳化硅纤维、不锈钢纤维及钛基晶须纤维中的至少一种。
优选的,第一增强纤维的直径为1纳米~50微米,长度为10微米~1000微米。
优选的,步骤S210中,将第一增强纤维与聚醚醚酮混合的步骤具体为:将第一增强纤维与聚醚醚酮分别按照多个不同的质量比混合,得到多个第一混合物料。
在具体的实施例中,将第一增强纤维与聚醚醚酮分别按照3个~10个不同的质量比混合,得到3个~10个第一混合物料。
优选的,每个第一混合物料的第一增强纤维与聚醚醚酮的质量比为0.001~0.5:1。
更优选的,在含第一增强纤维的质量百分含量最多的第一混合物料中,第一增强纤维与聚醚醚酮的质量比为0.1:1~0.5:1。
步骤S220:将可降解的第一活性骨修复材料与聚醚醚酮混合,得到第一混合材料。
其中,第一活性骨修复材料选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种。
优选的,第一活性骨修复材料的粒径为100微米~1毫米。
步骤S220中,聚醚醚酮为植入级。聚醚醚酮的粒径小于40微米。
优选的,步骤S220中,将可降解的第一活性骨修复材料与聚醚醚酮混合的步骤具体为:将可降解的第一活性骨修复材料与聚醚醚酮分别按照多个不同的质量比混合,得到多个第一混合材料。
在具体的实施例中,将可降解的第一活性骨修复材料与聚醚醚酮分别按照3个~5个不同的质量比混合,得到3个~5个第一混合材料。
其中,每个第一混合材料的第一活性骨修复材料与聚醚醚酮的质量比为0.005~1:1。
步骤S230:提供第一模具,第一模具具有外凸的弧形底面,将第一混合物料与第一混合材料依次加入第一模具中,成型后,去除第一模具,得到包含有层叠的第一耐磨层坯体和第一修复层坯体的第一样坯,第一耐磨层坯体远离第一修复层坯体的一侧形成有弧形凸面。
当第一混合物料和第一混合材料均为多个时,步骤S230中,将第一混合物料与第一混合材料依次加入第一模具中的步骤具体为:先按照第一增强纤维的质量百分含量逐渐减少的顺序,依次将多个第一混合物料加入到第一模具中,然后再按照第一活性骨修复材料的质量百分含量逐渐增加的顺序,依次将多个第一混合材料加入到第一模具中。其中,含第一增强纤维的质量百分含量最多的第一混合物料加入到第一模具的底部。
具体的,步骤S230中使用的成型方法为冷压成型;其中,成型方法具体为:在冷态下,将加入有第一混合物料与第一混合材料的第一模具加压至110MPa~250MPa,保压10分钟~20分钟。
步骤S230之后,还可以根据需要对第一样坯进行修理。例如,第一样坯上的毛刺等,可以通过修理去除。
步骤S240:将第二增强纤维与聚醚醚酮混合,得到第二混合物料。
步骤S240中,聚醚醚酮为植入级。聚醚醚酮的粒径小于40微米。
其中,第二增强纤维选自碳纤维、玻璃纤维、石墨纤维、碳化硅纤维、不锈钢纤维及钛基晶须纤维中的至少一种。优选的,第二增强纤维的直径为1纳米~50微米,长度为10微米~1000微米。
优选的,步骤S240中,将第二增强纤维与聚醚醚酮混合的步骤具体为:将第二增强纤维与聚醚醚酮分别按照多个不同的质量比混合,得到多个第二混合物料。在具体的实施例中,将第二增强纤维与聚醚醚酮分别按照3个~10个不同的质量比混合,得到3个~10个第二混合物料。
优选的,每个第二混合物料中的第二增强纤维与聚醚醚酮的质量比为0.001~0.5:1。
更优选的,含第二增强纤维的质量百分含量最多的第二混合物料中的第二增强纤维与聚醚醚酮的质量比为0.1:1~0.5:1。
步骤S250:将可降解的第二活性骨修复材料与聚醚醚酮混合,得到第二混合材料。
步骤S250中,聚醚醚酮为植入级。聚醚醚酮的粒径小于40微米。
其中,第二活性骨修复材料选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种。优选的,第二活性骨修复材料的粒径为100微米~1毫米。
优选的,步骤S250中,将可降解的第二活性骨修复材料与聚醚醚酮混合的步骤具体为:将可降解的第二活性骨修复材料与聚醚醚酮分别按照多个不同的质量比混合,得到多个第二混合材料。
在具体的实施例中,将可降解的第二活性骨修复材料与聚醚醚酮分别按照3个~5个不同的质量比混合,得到3个~5个第二混合材料。
优选的,每个第二混合材料中第二活性骨修复材料与聚醚醚酮的质量比为0.005~1:1。
步骤S260:提供第二模具,第二模具具有内凹的弧形底面,将第二混合物料与第二混合材料依次加入第二模具中,成型后,去除第二模具,得到包含有层叠的第二耐磨层坯体和第二修复层坯体的第二样坯,第二耐磨层坯体远离第二修复层坯体的一侧形成有弧形凹面。
当第二混合物料和第二混合材料均为多个时,步骤S260中,将第二混合物料与第二混合材料依次加入第二模具中的步骤具体为:先按照第二增强纤维的质量百分含量逐渐减少的顺序,依次将多个第二混合物料加入到第二模具中,然后再按照第二活性骨修复材料的质量百分含量逐渐增加的顺序,依次将多个第二混合材料加入到第二模具中。其中,第二增强纤维的质量百分含量最多的第二混合物料加入到第二模具的底部。
具体的,步骤S260中使用的成型方法为冷压成型;其中,成型方法具体为:在冷态下,将加入有第二混合物料与第二混合材料的第二模具加压至110MPa~250MPa,保压10分钟~20分钟。
步骤S260之后,还可以根据需要对第二样坯进行修理。
步骤S270:分别将第一样坯和第二样坯进行烧结,得到第一终板和第二终板。即得到人工椎间盘。
具体的,步骤S270中的烧结步骤具体为:将第一样坯和第二样坯先于355℃~400℃保温烧结20分钟~30分钟,然后再于220℃~280℃保温烧结1小时~2小时。将第一样坯和第二样坯先在355℃~400℃保温烧结,然后再在220℃~280℃保温烧结,是为了避开烧结后期的晶粒生长过程,通过先将烧结温度升至较高的温度,处于熔融状态,除去气泡,使样坯的相对密度达到70%左右;然后,将烧结温度降到较低的温度下保温较长的时间使烧结继续进行,而实现完全的致密化。这一阶段晶粒没有明显生长。两步烧结法是通过巧妙的控制温度的变化,在抑制晶界迁移(这将导致晶粒长大)的同时,保持晶界扩散(这是坯体致密化的动力)处于活跃状态,来实现在晶粒不长大的前提下完成烧结的目的。
在步骤S270之后,还包括分别对第一终板和第二终板进行局部修理、清洗、烘干和灭菌的步骤。
可以理解,在具体的操作过程中,不仅限于采用上述顺序来制备,还可以采用其它顺序,例如,步骤S210和步骤S220可以调换顺序;或者,可以先进行步骤S240~S260,再进行步骤S210~S230等等。
上述人工椎间盘的制备方法简单,适用于工业化生产。
以下为具体实施方式部分:
实施例1
本实施例的人工椎间盘制备如下:
(1)分别按照质量比为0.1:1、0.08:1及0.06:1,将增强纤维与植入级的聚醚醚酮混合,得到第一混合物料1、第一混合物料2及第一混合物料3,其中,增强纤维为碳纤维,直径为50微米,长度为10微米;聚醚醚酮的粒径为30微米。
(2)分别按照质量比为0.1:1、0.4:1、0.7:1及1:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第一混合材料1、第一混合材料2、第一混合材料3及第一混合材料4,其中,活性骨修复材料为羟基磷灰石,粒径为100微米,聚醚醚酮的粒径为30微米。
(3)提供第一模具,第一模具具有外凸的弧形底面,按照第一混合物料1、第一混合物料2、第一混合物料3、第一混合材料1、第一混合材料2、第一混合材料3及第一混合材料4的顺序将上述物料加入到第一模具中,其中,第一混合物料1加入到第一模具的底部,物料加入完毕后,对第一模具加压至110MPa进行冷压成型,保压10分钟,去除第一模具,得到包含有层叠的第一耐磨层坯体和第一修复层坯体的第一样坯,其中,第一耐磨层坯体远离第一修复层坯体的一侧形成有弧形凸面,且第一耐磨层坯体具有三个依次层叠的第一耐磨单元层坯体,第一修复层坯体具有四个依次层叠的第一修复单元层坯体。最后可根据需要对第一样坯进行修理。
(4)分别按照质量比为0.1:1、0.08:1及0.06:1,将增强纤维与植入级的聚醚醚酮混合,得到第二混合物料1、第二混合物料2及第二混合物料3,其中,增强纤维为碳纤维,直径为50微米,长度为10微米;聚醚醚酮的粒径为30微米。
(5)分别按照质量比为0.1:1、0.3:1、0.4:1及0.5:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第二混合材料1、第二混合材料2、第二混合材料3及第二混合材料4,其中,活性骨修复材料为羟基磷灰石,粒径为100微米;聚醚醚酮的粒径为30微米。
(6)提供第二模具,第二模具具有内凹的弧形底面,按照第二混合物料1、第二混合物料2、第二混合物料3、第二混合材料1、第二混合材料2、第二混合材料3及第二混合材料4的顺序将上述物料加入到第二模具中,其中,第二混合物料1加入到第二模具的底部,物料加入完毕后,然后第二模具加压至110MPa进行冷压成型,保压10分钟,去除第二模具,得到包含有层叠的第二耐磨层坯体和第二修复层坯体的第二样坯。其中,第二耐磨层坯体远离第二修复层坯体的一侧形成有弧形凹面,第二耐磨层具有三个依次层叠的第二耐磨单元层坯体,第二修复层具有四个依次层叠的第二修复单元层。最后可根据需要对第二样坯进行修理。
(7)将第一样坯和第二样坯先于355℃保温烧结25分钟,然后再于220℃保温烧结2小时,得到第一终板和第二终板,即得到本实施例的人工椎间盘。其中,形成有弧形凸面的第一耐磨单元层的厚度为50微米,形成有弧形凹面的第二耐磨单元层的厚度为50微米。
然后分别对第一终板和第二终板进行局部修理、清洗、烘干、包装和灭菌。
按照ISO18192-1或ASTM F2423的方法对第一终板的弧形凸面和第二终板的弧形凹面进行的摩擦性能测试,将本实施例的第一终板的弧形凸面和第二终板的弧形凹面经过百万次的摩擦后,即得到本实施例的人工椎间盘的磨损量,见表1。
根据ISO 527的方法对本实施例的人工椎间盘进行弹性模量测试,本实施例的人工椎间盘的弹性模量见表1。
实施例2
本实施例的人工椎间盘制备如下:
(1)分别按照质量比为0.1:1、0.095:1、0.090:1、0.080:1、0.075:1、0.070:1、0.065:1、0.060:1、0.055:1及0.050:1,将增强纤维与植入级的聚醚醚酮混合,得到第一混合物料1、第一混合物料2、第一混合物料3、第一混合物料4、第一混合物料5、第一混合物料6、第一混合物料7、第一混合物料8、第一混合物料9及第一混合物料10,其中,增强纤维为石墨纤维和碳化硅纤维两种,增强纤维的直径为1纳米,长度为1000微米;聚醚醚酮的粒径为10微米。
(2)分别按照质量比为0.1:1、0.2:1、0.3:1、0.4:1及0.5:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第一混合材料1、第一混合材料2、第一混合材料3、第一混合材料4及第一混合材料5,其中,活性骨修复材料为β-磷酸三钙,粒径为200微米,聚醚醚酮的粒径为10微米。
(3)提供第一模具,第一模具具有外凸的弧形底面,按照第一混合物料1、第一混合物料2、第一混合物料3、第一混合物料4、第一混合物料5、第一混合物料6、第一混合物料7、第一混合物料8、第一混合物料9、第一混合物料10、第一混合材料1、第一混合材料2、第一混合材料3、第一混合材料4及第一混合材料5的顺序将上述物料加入到第一模具中,其中,第一混合物料1加入到第一模具的底部,物料加入完毕后,对第一模具加压至110MPa进行冷压成型,保压20分钟,去除第一模具,得到包含有层叠的第一耐磨层坯体和第一修复层坯体的第一样坯,其中,第一耐磨层坯体远离第一修复层坯体的一侧形成有弧形凸面,第一耐磨层坯体具有十个依次层叠的第一耐磨单元层坯体,第一修复层坯体具有五个依次层叠的第一修复单元层坯体。最后,根据需要对第一样坯进行修理。
(4)分别按照质量比为0.1:1、0.095:1、0.090:1、0.080:1、0.075:1、0.070:1、0.065:1、0.060:1、0.055:1及0.050:1,将增强纤维与植入级的聚醚醚酮混合,得到第二混合物料1、第二混合物料2、第二混合物料3、第二混合物料4、第二混合物料5、第二混合物料6、第二混合物料7、第二混合物料8、第二混合物料9及第二混合物料10,其中,增强纤维为石墨纤维和碳化硅纤维两种,增强纤维的直径为1纳米,长度为10微米,聚醚醚酮的粒径为10微米。
(5)分别按照质量比为0.1:1、0.2:1、0.3:1、0.4:1及0.5:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第二混合材料1、第二混合材料2、第二混合材料3、第二混合物料4及第二混合物料5,其中,活性骨修复材料为β-磷酸三钙,粒径为200微米,聚醚醚酮的粒径为10微米。
(6)提供第二模具,第二模具具有内凹的弧形底面,按照第二混合物料1、第二混合物料2、第二混合物料3、第二混合物料4、第二混合物料5、第二混合物料6、第二混合物料7、第二混合物料8、第二混合物料9、第二混合物料10、第二混合材料1、第二混合材料2、第二混合材料3、第二混合材料4及第二混合材料5的顺序将上述物料加入到第二模具中,其中,第二混合物料1加入到第二模具的底部,物料加入完毕后,然后对第一模具加压至110MPa进行冷压成型,保压20分钟,去除第二模具,得到包含有层叠 第二耐磨层坯体和第二修复层坯体的第二样坯,其中,第二耐磨层坯体远离第二修复层坯体的一侧形成有弧形凹面,第二耐磨层坯体具有十个依次层叠的第二耐磨单元层坯体,第二修复层具有五个依次层叠的第二修复单元层。最后,可根据需要对第二样坯进行修理。
(7)将第一样坯和第二样坯先于400℃保温烧结20分钟,然后再于280℃保温烧结1小时,得到第一终板和第二终板,即得到本实施例的人工椎间盘。其中,形成有弧形凸面的第一耐磨单元层的厚度为100微米,形成有弧形凹面的第二耐磨单元层的厚度为100微米。
然后分别对第一终板和第二终板进行局部修理、清洗、烘干、包装和灭菌。
按照ISO18192-1或ASTM F2423的方法对第一终板的弧形凸面和第二终板的弧形凹面进行的摩擦性能测试,本实施例的第一终板的弧形凸面和第二终板的弧形凹面经过百万次的摩擦后,得到本实施例的人工椎间盘的磨损量,见表1。
根据ISO 527的方法对本实施例的人工椎间盘进行弹性模量测试,本实施例的弹性模量见表1。
实施例3
本实施例的人工椎间盘制备如下:
(1)分别按照质量比为0.1:1、0.09:1、0.08:1、0.07:1、0.06:1及0.05:1,将增强纤维与植入级的聚醚醚酮混合,得到第一混合物料1、第一混合物料2、第一混合物料3、第一混合物料4、第一混合物料5及第一混合物料6,其中,增强纤维为碳纤维、碳化硅纤维、不锈钢纤维和钛基晶须纤维四种,增强纤维的直径为100纳米,长度为100微米;聚醚醚酮的粒径为20微米。
(2)分别按照质量比为0.1:1、0.3:1及0.5:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第一混合材料1、第一混合材料2及第一混合材料3,其中,活性骨修复材料为α-磷酸三钙、硫酸钙和生物活性玻璃,活性骨修复材料的粒径为150微米,聚醚醚酮的粒径为20微米。
(3)提供第一模具,第一模具具有外凸的弧形底面,按照第一混合物料1、第一混合物料2、第一混合物料3、第一混合物料4、第一混合物料5、第一混合物料6、第一混合材料1、第一混合材料2及第一混合材料3的顺序将上述物料加入到第一模具中,其中,第一混合物料1加入到第一模具的底部,然后对第一模具加压至200MPa进行冷压成型,保压15分钟,去除第一模具,得到包含有层叠的第一耐磨层坯体和第一修复层坯体的第一样坯,其中,第一耐磨层坯体远离第一修复层坯体的一侧形成有弧形凸面,第一耐磨层坯体具有六个依次层叠的第一耐磨单元层坯体,第一修复层坯体具有三个依次层叠的第一修复单元层坯体。最后可根据需要对第一样坯进行修理。
(4)分别按照质量比为0.1:1、0.09:1、0.08:1、0.07:1、0.06:1及0.05:1,将增强纤维与植入级的聚醚醚酮混合,得到第二混合物料1、第二混合物料2、第二混合物料3、第二混合物料4、第二混合物料5及第二混合物料6,增强纤维为碳纤维、碳化硅纤维、不锈钢纤维和钛基晶须纤维四种,增强纤维的直径为100纳米,长度为100微米,聚醚醚酮的粒径为20微米。
(5)分别按照质量比为0.1:1、0.3:1及0.5:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第二混合材料1、第二混合材料2及第二混合材料3,其中,活性骨修复材料为α-磷酸三钙、硫酸钙及生物活性玻璃两种,活性骨修复材料的粒径为150微米,聚醚醚酮的粒径为20微米。
(6)提供第二模具,第二模具具有外凸的弧形底面,按照将第二混合物料1、第二混合物料2、第二混合物料3、第二混合物料4、第二混合物料5、第二混合物料6、第二混合材料1、第二混合材料2及第二混合材料3的顺序将上述物料加入到第二模具中,其中,第二混合物料1加入到第二模具的底部,然后对第二模具加压至200MPa进行冷压成型,保压15分钟,去除第二模具,得到包含有层叠的第二耐磨层坯体和第二修复层坯体的第二样坯,其中,第二耐磨层坯体远离第二修复层坯体的一侧形成有弧形凹面,第二耐磨单元层坯体具有六个依次层叠的第二耐磨单元层坯体,第二修复层具有三个依次层叠的第二修复单元层。最后可根据需要对第二样坯进行修理。
(7)将第一样坯和第二样坯先于400℃保温烧结20分钟,然后再于280℃保温烧结1小时,得到第一终板和第二终板,即得到本实施例的人工椎间盘。其中,形成有弧形凸面的第一耐磨单元层的厚度为100微米,形成有弧形凹面的第二耐磨单元层的厚度为100微米。
然后分别对第一终板和第二终板进行局部修理、清洗、烘干、包装和灭菌。
按照ISO18192-1或ASTM F2423的方法对第一终板的弧形凸面和第二终板的弧形凹面进行的摩擦性能测试,将本实施例的第一终板的弧形凸面和第二终板的弧形凹面经过百万次的摩擦后,得到本实施例的人工椎间盘的磨损量见表1。
根据ISO 527的方法对本实施例的人工椎间盘进行弹性模量测试,本实施例的弹性模量见表1。
实施例4
本实施例的人工椎间盘制备如下:
(1)按照质量比为0.1:1,将增强纤维与植入级的聚醚醚酮混合,得到第一混合物料,其中,增强纤维为碳纤维,直径为50微米,长度为100微米,聚醚醚酮的粒径为30微米。
(2)按照质量比为0.005:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第一混合材料,其中,活性骨修复材料为羟基磷灰石,粒径为100微米,聚醚醚酮的粒径为30微米。
(3)提供第一模具,第一模具具有外凸的弧形底面,依次将第一混合物料和第一混合材料加入到第一模具中,其中,第一混合物料加入到第一模具的底部,然后对第一模具加压至110MPa进行冷压成型,保压10分钟,去除第一模具,得到包含有层叠的第一耐磨层坯体和第一修复层坯体的第一样坯,根据需要对第一样坯进行修理。且第一耐磨层坯体远离第一修复层坯体的一侧形成有弧形凸面。
(4)按照质量比为0.1:1,将增强纤维与植入级的聚醚醚酮混合,得到第二混合物料,其中,增强纤维为碳纤维,直径为50微米,长度为100微米,聚醚醚酮的粒径为30微米。
(5)按照质量比为0.005:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第二混合材料,其中,活性骨修复材料为羟基磷灰石,粒径为100微米,聚醚醚酮的粒径为30微米。
(6)提供第二模具,第二模具具有内凹的弧形底面,依次将第二混合物料和第二混合材料加入到第二模具中,其中,第二混合物料加入到第二模具的底部,然后对第二模具加压至110MPa进行冷压成型,保压10分钟,去除第二模具,得到包含有层叠的第二耐磨层坯体和第二修复层坯体的第二样坯,根据需要对第二样坯进行修理。且第二耐磨层坯体远离第二修复层坯体的一侧形成有弧形凹面。
(7)将第一样坯和第二样坯先于355℃保温烧结25分钟,然后再于220℃保温烧结2小时,得到第一终板和第二终板,第一耐磨层和第二耐磨层厚度均为50微米,得到本实施例的人工椎间盘。
然后分别对第一终板和第二终板进行局部修理、清洗、烘干、包装和灭菌。
按照ISO18192-1或ASTM F2423的方法对第一终板的弧形凸面和第二终板的弧形凹面进行的摩擦性能测试,将本实施例的第一终板的弧形凸面和第二终板的弧形凹面经过百万次的摩擦后,即得到本实施例的人工椎间盘的磨损量,见表1。
根据ISO 527的方法对本实施例的人工椎间盘进行弹性模量测试,本实施例的弹性模量见表1。
实施例5
本实施例的人工椎间盘制备如下:
(1)分别按照质量比为0.5:1、0.4:1、0.3:1及0.1:1,将增强纤维与植入级的聚醚醚酮混合,得到第一混合物料1、第一混合物料2、第一混合物料3及第一混合物料4,其中,增强纤维为石墨纤维、玻璃纤维和钛基晶须纤维三种,增强纤维的直径为25微米,长度为500微米,聚醚醚酮的粒径为25微米。
(2)分别按照质量比为0.1:1、0.2:1、0.3:1及0.4:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第一混合材料1、第一混合材料2、第一混合材料3及第一混合材料4,其中,活性骨修复材料为α-磷酸三钙和生物活性玻璃两种,活性骨修复材料的粒径为1毫米,聚醚醚酮的粒径为25微米。
(3)提供第一模具,第一模具具有外凸的弧形底面,按照第一混合物料1、第一混合物料2、第一混合物料3、第一混合物料4、第一混合材料1、第一混合材料2、第一混合材料3及第一混合材料4的顺序将上述物料加入到第一模具中,其中,第一混合物料1加入到第一模具的底部,然后对第一模具加压至160MPa进行冷压成型,保压16分钟,去除第一模具,得到包含有层叠的第一耐磨层坯体和第一修复层坯体的第一样坯其中,第一耐磨层坯体远离第一修复层坯体的一侧形成有弧形凸面,且第一耐磨单元层坯体具有四个依次层叠的第一耐磨单元层坯体,第一修复层坯体具有四个依次层叠的第一修复单元层坯体。根据需要对第一样坯进行修理。
(4)分别按照质量比为0.5:1、0.4:1、0.3:1及0.1:1,将增强纤维与植入级的聚醚醚酮混合,得到第二混合物料1、第二混合物料2、第二混合物料3及第二混合物料料4,增强纤维为石墨纤维、玻璃纤维和钛基晶须纤维三种,增强纤维的直径为25微米,长度为500微米,聚醚醚酮的粒径为25微米。
(5)分别按照质量比为0.1:1、0.3:1及0.5:1,将活性骨修复材料与植入级的聚醚醚酮混合,得到第二混合材料1、第二混合材料2及第二混合材料3,其中,活性骨修复材料为α-磷酸三钙和生物活性玻璃两种,活性骨修复材料的粒径为150微米,聚醚醚酮的粒径为20微米。
(6)提供第二模具,第二模具具有外凸的弧形底面,按照将第二混合物料1、第二混合物料2、第二混合物料3、第二混合物料4、第二混合物料5、第二混合物料6、第二混合材料1、第二混合材料2及第二混合材料3的顺序将上述物料加入到第二模具中,其中,第二混合物料1加入到第二模具的底部,然后对第二模具加压至160MPa进行冷压成型,保压16分钟,去除第二模具,得到包含有层叠的第二耐磨层坯体和第二修复层坯体的第二样坯,其中,第二耐磨层坯体远离第二修复层坯体的一侧形成有弧形凹面,且第二耐磨单元层坯体具有四个依次层叠的第二耐磨单元层坯体,第二修复层具有四个依次层叠的第二修复单元层。最后可根据需要对第二样坯进行修理。
(7)将第一样坯和第二样坯先于380℃保温烧结30分钟,然后再于260℃保温烧结1.5小时,得到第一终板和第二终板,即得到本实施例的人工椎间盘。其中,形成有弧形凸面的第一耐磨单元层的厚度为80微米,形成有弧形凹面的第二耐磨单元层的厚度为80微米。
然后分别对第一终板和第二终板进行局部修理、清洗、烘干、包装和灭菌。
按照ISO18192-1或ASTM F2423的方法对第一终板的弧形凸面和第二终板的弧形凹面进行的摩擦性能测试,将本实施例的第一终板的弧形凸面和第二终板的弧形凹面经过百万次的摩擦后,得到本实施例的人工椎间盘的磨损量见表1。
根据ISO 527的方法对本实施例的人工椎间盘进行弹性模量测试,本实施例的弹性模量见表1。
表1表示的是经过百万次的摩擦后,实施例1~实施例5和对比例1的人工椎间盘的磨损率及弹性模量。其中,对比例1为传统的仅采用聚醚醚酮为材料的人工椎间盘。
表 1
磨损量 弹性模量
实施例 1 0.12mg/MC 20.54GPa
实施例 2 0.07mg/MC 21.87GPa
实施例 3 0.08mg/MC 21.10GPa
实施例 4 0.05mg/MC 22.35GPa
实施例 5 0.40mg/MC 19.42GPa
对比例 1 2.50mg/MC (3.86 ± 0.72)GPa
从表1可以看出,实施例1~实施例5的人工椎间盘的磨损量最多仅为0.4mg/MC,最少的只有0.05mg/MC,而对比例1的传统的人工椎间盘的磨损量为2.5mg/MC,即实施例1~5的人工椎间盘的磨损量仅为对比例1的人工椎间盘的磨损量的2.0%~14.5%,实施例1~实施例5的人工椎间盘的磨损率远低于对比例1的人工椎间盘的磨损率,即实施例1~实施例5的人工椎间盘具有较好的耐磨性能。
从表1中还可以得知,实施例1~实施例5的人工椎间盘的弹性模量为19.42~22.35GPa,而人骨的弹性模量为17~20GPa,实施例1~实施例5的人工椎间盘的弹性模量与人骨十分接近,即与人骨具有良好的生物相容性。而对比文件1的传统的仅采用聚醚醚酮的人工椎间盘的弹性模量为(3.86±0.72)Gpa,显然,与人骨的弹性模量相差较大,生物相容性没有实施例1~实施例5的人工椎间盘好。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种人工椎间盘,其特征在于,包括:
    第一终板,包括层叠的第一耐磨层及第一修复层,所述第一耐磨层远离所述第一修复层的一侧形成有弧形凸面;及
    第二终板,设置于所述第一终板上,所述第二终板与所述第一终板可相对滑动,所述第二终板包括层叠的第二耐磨层及第二修复层,所述第二耐磨层远离所述第二修复层的一侧形成有弧形凹面,所述弧形凸面与所述弧形凹面滑动抵接;
    其中,所述第一耐磨层的材料包括聚醚醚酮及混合于所述聚醚醚酮中的第一增强纤维,所述第一修复层的材料包括聚醚醚酮及混合于所述聚醚醚酮中的可降解的第一活性骨修复材料,所述第二耐磨层的材料包括聚醚醚酮及混合于所述聚醚醚酮中的第二增强纤维,所述第二修复层的材料包括聚醚醚酮及混合于所述聚醚醚酮中的可降解的第二活性骨修复材料,所述第一活性骨修复材料和所述第二活性骨修复材料分别选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种。
  2. 根据权利要求1所述的人工椎间盘,其特征在于,所述第一耐磨层包括多个依次层叠的第一耐磨单元层,每个第一耐磨单元层的材料包括所述聚醚醚酮和所述第一增强纤维,从所述第一耐磨层的一侧到另一侧,所述多个第一耐磨单元层的材料中的所述第一增强纤维的质量百分含量逐渐减少,所述第一修复层层叠于含所述第一增强纤维的质量百分含量最少的所述第一耐磨单元层上,所述弧形凸面形成于含所述第一增强纤维的质量百分含量最多的所述第一耐磨单元层上;
    所述第二耐磨层包括多个依次层叠的第二耐磨单元层,每个第二耐磨单元层的材料包括所述聚醚醚酮和所述第二增强纤维,从所述第二耐磨层的一侧到另一侧,所述多个第二耐磨单元层的材料中的所述第二增强纤维的质量百分含量逐渐减少,所述第二修复层层叠于含所述第二增强纤维的质量百分含量最少的所述第二耐磨单元层上,所述弧形凹面形成于含所述第二增强纤维的质量百分含量最多的所述第二耐磨单元层上。
  3. 根据权利要求2所述的人工椎间盘,其特征在于,含所述第一增强纤维的质量百分含量最多的所述第一耐磨单元层的材料中,所述第一增强纤维与所述聚醚醚酮的质量比为0.1:1~0.5:1;
    含所述第二增强纤维的质量百分含量最多的所述第二耐磨单元层的材料中,所述第二增强纤维与所述聚醚醚酮的质量比为0.1:1~0.5:1。
  4. 根据权利要求2所述的人工椎间盘,其特征在于,含所述第一增强纤维的质量百分含量最多的所述第一耐磨单元层的厚度为50微米~100微米;
    含所述第二增强纤维的质量百分含量最多的所述第二耐磨单元层的厚度为50微米~100微米。
  5. 根据权利要求1所述的人工椎间盘,其特征在于,所述第一修复层包括多个依次层叠的第一修复单元层,每个第一修复层单元层的材料包括所述聚醚醚酮和所述第一活性骨修复材料,从所述第一修复层的一侧到另一侧,所述多个第一修复单元层的材料中的所述第一活性骨修复材料的质量百分含量逐渐减少,含所述第一活性骨修复材料的质量百分含量最少的所述第一修复单元层与所述第一耐磨层层叠;
    所述第二修复层包括多个依次层叠的第二修复单元层,每个第二修复单元层的材料包括所述聚醚醚酮和所述第二活性骨修复材料,从所述第二修复层的一侧到另一侧,所述多个第二修复单元层的材料中的所述第二活性骨修复材料的质量百分含量逐渐减少,含所述第二活性骨修复材料的质量百分含量最少的所述第二修复单元层与所述第二耐磨层层叠。
  6. 根据权利要求1所述的人工椎间盘,其特征在于,所述第一增强纤维和所述第二增强纤维分别选自碳纤维、玻璃纤维、石墨纤维、碳化硅纤维、不锈钢纤维及钛基晶须纤维中的至少一种。
  7. 根据权利要求1所述的人工椎间盘,其特征在于,所述第一增强纤维和所述第二增强纤维的直径均为1纳米~50微米,长度均为10微米~1000微米。
  8. 根据权利要求1所述的人工椎间盘,其特征在于,所述第一耐磨层的材料中的聚醚醚酮、第一修复层的材料中的聚醚醚酮、第二耐磨层的材料中的聚醚醚酮、第二修复层的材料中的聚醚醚酮的粒径均小于40微米。
  9. 根据权利要求1所述的人工椎间盘,其特征在于,所述第一活性骨修复材料和所述第二活性骨修复材料的粒径均为100微米~1毫米。
  10. 一种人工椎间盘的制备方法,其特征在于,包括如下步骤:
    将第一增强纤维与聚醚醚酮混合,得到第一混合物料;
    将可降解的第一活性骨修复材料与聚醚醚酮混合,得到第一混合材料,其中,所述第一活性骨修复材料选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种;
    提供第一模具,所述第一模具具有外凸的弧形底面,将所述第一混合物料与所述第一混合材料依次加入所述第一模具中,成型后,去除所述第一模具,得到包含有层叠的第一耐磨层坯体和第一修复层坯体的第一样坯,所述第一耐磨层坯体远离所述第一修复层坯体的一侧形成有弧形凸面;
    将第二增强纤维与聚醚醚酮混合,得到第二混合物料;
    将可降解的第二活性骨修复材料与聚醚醚酮混合,得到第二混合材料,其中,所述第二活性骨修复材料选自羟基磷灰石、α-磷酸三钙、β-磷酸三钙、硫酸钙及生物活性玻璃中的至少一种;
    提供第二模具,所述第二模具具有内凹的弧形底面,将所述第二混合物料与所述第二混合材料依次加入所述第二模具中,成型后,去除所述第二模具,得到包含有层叠的第二耐磨层坯体和第二修复层坯体的第二样坯,所述第二耐磨层坯体远离所述第二修复层坯体的一侧形成有弧形凹面;及
    分别将所述第一样坯和所述第二样坯进行烧结,得到第一终板和第二终板。
PCT/CN2014/086103 2014-06-03 2014-09-09 人工椎间盘及其制备方法 WO2015184696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410243497.X 2014-06-03
CN201410243497.XA CN105147420B (zh) 2014-06-03 2014-06-03 人工椎间盘及其制备方法

Publications (1)

Publication Number Publication Date
WO2015184696A1 true WO2015184696A1 (zh) 2015-12-10

Family

ID=54765992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086103 WO2015184696A1 (zh) 2014-06-03 2014-09-09 人工椎间盘及其制备方法

Country Status (2)

Country Link
CN (1) CN105147420B (zh)
WO (1) WO2015184696A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979391B (zh) * 2017-05-12 2022-11-01 威海纳川管材有限公司 一种非粘结热塑性复合材料柔性管及其制备工艺

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703177A (zh) * 2002-08-15 2005-11-30 新特斯(美国)公司 椎间盘植入体
US20070168038A1 (en) * 2006-01-13 2007-07-19 Sdgi Holdings, Inc. Materials, devices and methods for treating multiple spinal regions including the interbody region
US20070179615A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
CN101220196A (zh) * 2008-01-22 2008-07-16 南京肯特复合材料有限公司 聚醚醚酮复合材料、制备方法及密封件的应用
CN101952341A (zh) * 2008-02-01 2011-01-19 辛西斯有限责任公司 多孔的生物相容性聚合物材料和方法
CN102028971A (zh) * 2010-12-29 2011-04-27 安徽理工大学 生物固定型仿生关节及其制备方法
CN102178983A (zh) * 2011-03-18 2011-09-14 北京奥精医药科技有限公司 Ha纤维增强peek脊柱融合器
CN102440852A (zh) * 2011-12-07 2012-05-09 上海交通大学 一种混合多孔结构椎间融合器及其制备方法
US20120277861A1 (en) * 2011-04-28 2012-11-01 Warsaw Orthopedic, Inc. Expandable spinal interbody implant
CN103417313A (zh) * 2012-05-18 2013-12-04 朱悦 一种人工椎间盘假体
CN103479451A (zh) * 2013-10-10 2014-01-01 北京贝思达生物技术有限公司 一种聚醚醚酮人工脊柱椎间盘

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119088A2 (en) * 2005-05-02 2006-11-09 Seaspine, Inc. Prosthesis for restoring motion
EP2063817A4 (en) * 2006-09-15 2012-04-18 Pioneer Surgical Technology Inc ARTICULAR ARTHROPLASTY DEVICES HAVING JOINT ELEMENTS
CN101534752B (zh) * 2006-09-15 2012-01-04 先锋外科技术公司 确定椎间隙中的植入物尺寸、***和固定植入物的***与方法
AU2008316600B2 (en) * 2007-10-25 2014-09-18 Jeffery D. Arnett Systems and methods for vertebral disc replacement
CN102602000B (zh) * 2012-03-02 2014-07-30 北京奥精医药科技有限公司 一种植入级peek冷压烧结成型方法及脊柱融合器
CN202821726U (zh) * 2012-05-18 2013-03-27 朱悦 一种人工椎间盘假体
CN103006354A (zh) * 2012-11-29 2013-04-03 大连理工大学 一种梯度结构人工髋臼臼杯及其制备方法
CN103483768B (zh) * 2013-09-16 2015-09-30 华东理工大学 生物玻璃/聚醚醚酮复合材料、骨修复体及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1703177A (zh) * 2002-08-15 2005-11-30 新特斯(美国)公司 椎间盘植入体
US20070168038A1 (en) * 2006-01-13 2007-07-19 Sdgi Holdings, Inc. Materials, devices and methods for treating multiple spinal regions including the interbody region
US20070179615A1 (en) * 2006-01-31 2007-08-02 Sdgi Holdings, Inc. Intervertebral prosthetic disc
CN101220196A (zh) * 2008-01-22 2008-07-16 南京肯特复合材料有限公司 聚醚醚酮复合材料、制备方法及密封件的应用
CN101952341A (zh) * 2008-02-01 2011-01-19 辛西斯有限责任公司 多孔的生物相容性聚合物材料和方法
CN102028971A (zh) * 2010-12-29 2011-04-27 安徽理工大学 生物固定型仿生关节及其制备方法
CN102178983A (zh) * 2011-03-18 2011-09-14 北京奥精医药科技有限公司 Ha纤维增强peek脊柱融合器
US20120277861A1 (en) * 2011-04-28 2012-11-01 Warsaw Orthopedic, Inc. Expandable spinal interbody implant
CN102440852A (zh) * 2011-12-07 2012-05-09 上海交通大学 一种混合多孔结构椎间融合器及其制备方法
CN103417313A (zh) * 2012-05-18 2013-12-04 朱悦 一种人工椎间盘假体
CN103479451A (zh) * 2013-10-10 2014-01-01 北京贝思达生物技术有限公司 一种聚醚醚酮人工脊柱椎间盘

Also Published As

Publication number Publication date
CN105147420A (zh) 2015-12-16
CN105147420B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
Liu et al. Tissue‐engineered skin containing mesenchymal stem cells improves burn wounds
Zhang et al. A new material for tissue engineered vagina reconstruction: Acellular porcine vagina matrix
CN111270196B (zh) 制备锆铌合金表面氧化陶瓷层的方法及应用
JP7336597B2 (ja) ジルコニウム・ニオブ合金の酸化層を含む領域毎の骨梁大腿骨顆プロテーゼ及びその製造方法
JP7413554B2 (ja) 骨梁付き酸化物層を含むジルコニウム・ニオブ合金の脛骨プラトープロテーゼ及びその製造方法
Zhang et al. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review
Hartman et al. Effects of pretreatment sterilization and cleaning methods on materials properties and osseoinductivity of a threaded implant.
US20230321729A1 (en) Zonal trabecular uni-compartmental femoral condylar component containing zirconium-niobium alloy on oxidation layer and preparation method thereof
Iezzi et al. Peri-implant bone tissues around retrieved human implants after time periods longer than 5 years: a retrospective histologic and histomorphometric evaluation of 8 cases
WO2015184696A1 (zh) 人工椎间盘及其制备方法
Bian et al. Meniscus repair: up-to-date advances in stem cell-based therapy
Wang et al. Improved human tenocyte proliferation and differentiation in vitro by optimized silk degumming
JP7421484B2 (ja) 増強された固定、耐摩耗性、および機械的特性のための傾斜機能性ポリマー膝インプラントならびにその製造
JP5612801B2 (ja) 上皮幹細胞の増殖方法
CN113842499A (zh) 一种超高分子量聚乙烯基复合材料及其制备方法及应用
JP2023511987A (ja) 酸化物層を含むジルコニウム・ニオブ合金の領域分割骨梁単一コンパートメント脛骨プラトー及びその製造方法
FR2928828A1 (fr) Implant de resurfacage du cartilage
WO2023078167A1 (zh) 聚乙烯关节植入体及其制造方法和关节假体
WO2020207114A1 (zh) 一种具有生物活性的骨水泥及其制备方法
WO2021114577A1 (zh) 一种椎间盘活动假体
Gravvanis et al. Dermal matrix for intraoral lining following composite mandibular defect reconstruction with chimeric fibular osseocutaneous flap
Podoshin et al. Carbon‐Carbon Middle Ear Prosthesis: A Preliminary Clinical Human Trial Report
CN105310802A (zh) 人工椎间盘及其制备方法
WO2024014892A1 (ko) 섬유연골 유래 바이오잉크 조성물, 이를 포함하는 골 이식재 조성물 및 이의 제조방법
CN115581811B (zh) 一种自体组织工程活细胞睑板替代物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.04.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14893924

Country of ref document: EP

Kind code of ref document: A1