WO2015184609A1 - 资源优化的方法和装置 - Google Patents

资源优化的方法和装置 Download PDF

Info

Publication number
WO2015184609A1
WO2015184609A1 PCT/CN2014/079211 CN2014079211W WO2015184609A1 WO 2015184609 A1 WO2015184609 A1 WO 2015184609A1 CN 2014079211 W CN2014079211 W CN 2014079211W WO 2015184609 A1 WO2015184609 A1 WO 2015184609A1
Authority
WO
WIPO (PCT)
Prior art keywords
optimization
time period
time
optimization policy
target cell
Prior art date
Application number
PCT/CN2014/079211
Other languages
English (en)
French (fr)
Inventor
张洁涛
庄宏成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480050091.8A priority Critical patent/CN105532031B/zh
Priority to PCT/CN2014/079211 priority patent/WO2015184609A1/zh
Priority to EP14893705.5A priority patent/EP3154290B1/en
Publication of WO2015184609A1 publication Critical patent/WO2015184609A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention relates to the field of communications and, more particularly, to methods and apparatus for resource optimization. Background technique
  • a self-organizing network (SON) technology is known, and specifically, the SON entity performs long-term granular resource optimization according to network key performance parameter (KPI, Key Performance Indicator) statistics, and The result of resource optimization for a long time granularity (such as network sub-band power limit, antenna downtilt, handover parameters, and other network resources or configuration parameters) is sent to a Radio Resource Management (RRM) entity, and then, the RRM entity Within the scope of related resources and configuration parameters sent by the SON entity, short-time granularity of service scheduling and resource allocation is performed according to the QoS (Quality of Service) requirements and instantaneous channel quality of the currently activated user service.
  • QoS Quality of Service
  • the business scheduling and resource allocation results of the RRM entity are reflected in the performance of the network in a short time granularity.
  • the network performance statistics unit of the base station continuously statistics the short-time granularity of the network in each short period of time, and forms a statistical performance indicator KPI of the network for a long time granularity, and then detects and analyzes the network statistical performance through the network performance detecting unit, and performs network analysis on the network.
  • the SON entity is triggered to optimize resources, thereby forming a resource optimization loop for network performance detection, SON network optimization, RRM cell optimization, and network performance statistics.
  • the SON entity has its own optimization strategy
  • the RRM entity also has its own preset optimization strategy. Therefore, in the prior art, the optimization strategies of SON and RRM may cause the network.
  • the resource optimization of the network cannot be effectively matched, the system resources cannot be fully utilized, and the overall performance of the network cannot be optimized.
  • a method for resource optimization includes: receiving, by a first network device, optimization policy information sent by a second network device, where the optimization policy information is used to indicate a first optimization policy, where the first optimization policy is a strategy used by the second network device to optimize the time-frequency resource of the target cell in the unit of the first time period; obtaining the first optimization policy according to the received optimization policy information; and according to the acquired first optimization policy,
  • the second time period is optimized for the time-frequency resource of the target cell, where the length of the second time period is less than the length of the first time period, and the second time period is within the first time period.
  • the time-frequency resource of the target cell is optimized according to the obtained first optimization policy in a second time period, including: determining to use the target The transmission rate of the user equipment of the time-frequency resource of the cell in the third time period, wherein the length of the third time period is less than the length of the first time period, and the third time period is before the first time period;
  • the first optimization policy and the transmission rate of the user equipments in the third period determine a second optimization policy.
  • the time-frequency resources of the target cell are optimized in units of the second time period.
  • the time-frequency resource of the target cell is optimized according to the acquired first optimization policy, including Determining, according to the first optimization strategy, a third optimization strategy, where the third optimization strategy is in a proportional relationship with the first optimization policy; according to the third optimization policy, the target cell is in a second time period Time-frequency resources are optimized.
  • a second aspect provides a resource optimization method, where the method includes: determining, by a second network device, a first optimization policy, and optimizing, according to the first optimization policy, a time-frequency resource of a target cell in a first time period. Transmitting the optimization policy information to the first network device, where the optimization policy information is used to indicate the first optimization policy, so that the first network device, according to the first optimization policy, the time of the target cell in a second time period The frequency resource is optimized, wherein the length of the second time period is less than the length of the first time period, and the second time period is within the first time period.
  • the determining, according to the first optimization policy, the time-frequency resource of the target cell in the unit of the first time period including: according to the first The optimization strategy optimizes the time-frequency resource of the target cell in units of the first time period based on the capacity characteristics and the coverage characteristics of the target time-frequency resource in the fourth time period, wherein the fourth time period is before the first time period.
  • a device for resource optimization includes: a receiving unit, configured to receive optimization policy information sent by a second network device, where the optimization policy information is used to indicate a first optimization policy, where the first optimization policy is a strategy used by the second network device to optimize the time-frequency resource of the target cell in the unit of the first time period; the acquiring unit, configured to acquire the first optimization policy according to the optimization policy information received by the receiving unit; a unit, configured to optimize a time-frequency resource of the target cell in a second time period according to the first optimization policy that is obtained by the acquiring unit, where a length of the second time period is less than a length of the first time period, and The second time period is within the first time period.
  • the optimization unit is specifically configured to determine a transmission rate of each user equipment that uses the time-frequency resource of the target cell for data transmission in a third period, where The length of the third time period is less than the length of the first time period, and the third time period is before the first time period, and the second optimization strategy is determined according to the first optimization policy and the transmission rate of each user equipment in the third time period. According to the second optimization strategy, the time-frequency resource of the target cell is optimized in units of the second time period.
  • the optimization unit is specifically configured to determine a third optimization policy according to the first optimization policy, where the third optimization policy is The first optimization strategy is in a proportional relationship, and according to the third optimization strategy, the time-frequency resource of the target cell is optimized in units of the second time period.
  • the apparatus includes a radio resource management RRM entity
  • the second network device includes an ad hoc network SON entity.
  • a fourth aspect provides a resource optimization apparatus, where the apparatus includes: a determining unit, configured to determine a first optimization policy; and an optimization unit, configured to determine, according to the first optimization policy, the first time period
  • the unit optimizes the time-frequency resource of the target cell
  • the sending unit is configured to send the optimization policy information to the first network device, where the optimization policy information is used to indicate the first optimization policy, so that the first network device is configured according to the first
  • the optimization strategy is to optimize the time-frequency resource of the target cell in units of the second time period, wherein the length of the second time period is less than the length of the first time period, and the second time period is within the first time period.
  • the optimization unit is specifically configured to: according to the first optimization policy, based on a capacity characteristic and a coverage characteristic of the target time-frequency resource in a fourth time period, The time-frequency resource of the target cell is optimized for a period of time, wherein the fourth time period is before the first time period.
  • the first network device includes a radio resource management RRM entity, and the device includes an ad hoc network SON entity.
  • the resource optimization of the short-time granularity is performed by the first network device
  • the resource optimization of the long-term granularity is performed by the second network device
  • the second network entity is in accordance with the
  • the first optimization policy is sent to the first network device, so that the first network device can adapt the first optimization policy to perform short-time granularity on the target cell.
  • the resource optimization can ensure the optimization of the time-frequency resources in the short-time granularity and the optimization in the long-term granularity, and in turn, can effectively improve the effect of time-frequency resource optimization and improve network performance.
  • FIG. 1 is a schematic diagram showing a configuration relationship between a first network device and a second network device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration relationship between a first network device and a second network device according to another embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for resource optimization according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method for resource optimization according to another embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of an apparatus for resource optimization according to an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of an apparatus for resource optimization according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a device for resource optimization according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a device for resource optimization according to another embodiment of the present invention. Detailed ways
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • data can be transmitted between the user equipment and the base station.
  • a user equipment which may also be called a mobile terminal, a mobile user equipment, or the like, may be connected to one or more core networks via a radio access network (eg, RAN, Radio Access Network).
  • a radio access network eg, RAN, Radio Access Network
  • the user device can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a mobile device that can be portable, pocket, handheld, computer built, or in-vehicle. They exchange language and/or data with the wireless access network.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • the bearer is a basic unit for controlling the capacity, delay, and bit rate of the user service on the radio access network (RAN) side.
  • RAN radio access network
  • the foregoing communication system may include one or more base stations, and one or more cells that one base station may provide, which is not specifically limited in the present invention.
  • the second network device may be configured, and the number of the second network device may be one or more, and the present invention is not particularly limited.
  • only one second network device can be configured in the above communication system.
  • the second network device uniformly performs the foregoing long-term granular resource optimization for each cell, wherein, in one embodiment (as shown in FIG. 1), the second network device may be set in the network coordinator (or Within the network controller, the network coordinator can communicate with the controlled base stations to obtain the network status of each cell from each base station (for example, the transmission rate of each user in the cell on the target time-frequency resource, etc.) .
  • the second network device may be disposed in a base station, and the base station may be in communication connection with other base stations in the communication system to obtain each base station.
  • the network status of the cell for example, the transmission rate of each user in the cell on the target time-frequency resource, etc.
  • a second network device may be separately configured for each cell, so that a second network device performs the above-mentioned long-time granular resource optimization only for the corresponding cell.
  • the first network device may be configured, and the number of the first network device used by the first network device may be determined according to the number of base stations in the communication system, and the present invention is not particularly limited, for example, as shown in FIG. 1 and As shown in FIG. 2, a first network device may be configured for each base station, and the first network device uniformly performs the short-time granularity resource optimization for each cell provided by the base station; for example, each cell may also be separately configured.
  • a first network device is configured, so that a first network device performs resource optimization of the short-time granularity only on the corresponding cell.
  • the first network device comprises a radio resource management RRM entity
  • the second network device comprises an ad hoc network SON entity.
  • a self-organizing network (SON, Self Organizing Network) entity may be used as the second network device, and the target time-frequency resource (that is, the wireless communication resource used by the target cell) is performed for a long time.
  • the SON entity may be set in a base station or a network coordinator (or network controller), or may be in communication connection with a base station or a network coordinator to obtain network status of each cell from a base station or a network coordinator (for example, each cell in the cell) The transmission rate of the user on the target time-frequency resource, etc.).
  • a Radio Resource Management (RRM) entity may be used as the first network device to perform a short time for the target time-frequency resource (ie, the wireless communication resource used by the target cell). Granular resource optimization.
  • the RRM entity may be set in the base station or may be in communication connection with the base station to obtain the network status of each cell from the base station or the network coordinator (for example, the transmission rate of each user in the cell on the target time-frequency resource, etc.).
  • the foregoing SON entity as the second network device is only an exemplary description, and the present invention is not particularly limited. Other devices capable of realizing resource optimization for long-term granularity of time-frequency resources fall into the protection of the present invention.
  • the RRM entity as the first network device enumerated above is only an exemplary description, and other devices capable of realizing resource optimization for short-time granularity of time-frequency resources fall within the protection scope of the present invention.
  • the period (or length) of the above long-term granularity is larger than the period (or length) of the short-time granularity described above.
  • the specific process of the resource optimization method in the embodiment of the present invention is described by using the SON entity as the second network device and the RRM entity as the first network device.
  • a time-frequency resource used by the SON entity for one cell ie, one target cell is one
  • the target time-frequency resource is one of the frequency domain bandwidths allocated by the communication system for the cell
  • the resource optimization of the long-term granularity of the frequency band is explained.
  • the resource optimization of the short-time granularity of one sub-band used by the target cell by the RRM entity will be described.
  • FIG. 3 is a schematic flowchart of a method 100 for resource optimization according to an embodiment of the present invention, as shown in FIG. 3.
  • the method 100 includes:
  • the first network device receives the optimization policy information that is sent by the second network device, where the optimization policy information is used to indicate the first optimization policy, where the first optimization policy is that the second network device uses the first time period as a unit to the target cell.
  • the time-frequency resource of the target cell is optimized according to the acquired first optimization policy, where the length of the second time period is less than the length of the first time period, and the second time period is During the first time period.
  • the SON entity ie, the second network device
  • the time-frequency resources used for example, frequency domain resources, hereinafter, for ease of understanding and explanation, are described as: sub-band s) are strategies for resource optimization for long-term granularity.
  • the second network device is configured to perform time-frequency resources of the target cell in units of the first time period according to the first optimization policy, based on the capacity characteristics and the coverage characteristics of the target time-frequency resource in the fourth time period. Optimized, wherein the fourth time period is before the first time period.
  • the SON entity is mainly used to perform long-time granular resource optimization on the capacity and coverage of the corresponding cell, thereby implementing a communication system corresponding to the SON entity (or, Optimization of the capacity and coverage of the long-term granularity, for example, for any one of the time-frequency resources used by any one of the cells b, its long-term granularity optimization utility function [/ 6 can be expressed as:
  • the SON entity can calculate the average of the transmission rates that all user equipments in the sub-band s of the cell b can achieve in a relatively long time (for example, the first time period or the fourth time period), thereby enabling
  • a relatively long time for example, the first time period or the fourth time period
  • the calculation method of the J s may be The techniques are similar, and the detailed description thereof is omitted here in order to avoid redundancy.
  • 3 ⁇ 4 s can use the SON entity to calculate the transmission that can be achieved by a user (such as a 5% lowest rate user) in a sub-band s of cell b over a relatively long period of time (eg, a first time period or a fourth time period)
  • An average of the rates (hereinafter, referred to as an average rate), wherein the user equipment may be a preset ratio (for example, 5%) of all user equipments in the cell b, and the user equipment is The average rate of any of the user equipments is lower than the average rate of any of the other 95% of the user equipments, and thus, can be used to characterize the long-time coverage characteristics of the cell b on the sub-band s.
  • the i b , s (for example, the calculation method in the first time period may be similar to the prior art, and a detailed description thereof is omitted here to avoid redundancy.
  • s denotes the above-mentioned first optimization strategy, that is, an optimization strategy of SON for the sub-band s of the cell b under the current network state (corresponding to the long-term capacity characteristic and the long-time coverage characteristic of the cell b), wherein 6s
  • the value range can be [0,1].
  • the SON entity may determine the first optimization policy in the first time period, that is, the value of ⁇ , based on the current network state and based on the long-term statistical network KPI in the fourth time period.
  • the SON entity can reduce 6 , s (relative to the optimization strategy 6s in the fourth time period), or use a smaller 6s value, in particular, if the SON entity is selected When it approaches 0, the strategy indicating that the SON entity optimizes the sub-band s of the cell b is to maximize its coverage characteristics.
  • the network KPI is based on long-term statistics, it is determined that the above s is in the fourth time period. Below the preset threshold (for the sake of distinction, it is recorded as the second preset threshold), indicating that the capacity of the cell b is poor, and it is necessary to increase the capacity characteristic of the cell b.
  • the SON entity can make 6 s (relative to The optimization strategy in the fourth period 6 s ) increases, or uses a larger 6 s value, in particular, when the SON entity selects; ⁇ tends to 1, indicating that the SON entity to the sub-band s of the cell b at this time
  • the strategy of optimization is to maximize its capacity characteristics.
  • the SON entity may perform long-term granular resource optimization on the time-frequency resource of the cell b based on the first optimization policy, and the process may be There is a technical similarity, and here, in order to avoid redundancy, the repeated description is omitted.
  • the power limitation of the sub-band s on the base station of the cell b, the downtilt angle of the antenna corresponding to the cell b, and the handover parameter in the cell b are provided.
  • the invention is not limited thereto, and other parameters or configurations that can be optimized according to the first optimization strategy (i.e., 6 s ) fall within the scope of the present invention.
  • the SON entity may send the optimization policy information used to indicate the first optimization policy to the RRM entity corresponding to the cell b (ie, the first network device).
  • the corresponding cell b RRM entity may receive information on the above-described optimization strategy, and in S120, the extracting the first optimization strategy (i.e., 6 s) information from the optimization strategy 0 Thereafter, in S130, The RRM entity may, according to the first optimization policy, the corresponding cell
  • the time-frequency resource of cell b performs resource optimization for a short time granularity of the second time period.
  • the time-frequency resource of the target cell is optimized according to the acquired first optimization policy in a second time period, including:
  • the time-frequency resource of the target cell is optimized in units of the second time period.
  • the RRM entity can acquire a user who uses the sub-band s in the cell b (hereinafter, For ease of understanding and differentiation, it is recorded as: the target user's transmission rate during the third time period (specifically, the average transmission rate of the data).
  • the number of the target users may be any value, and the present invention is not particularly limited.
  • the general processing is performed for the target user k as an example, and the subsequent processing is performed. The process is described.
  • the RRM entity may record the instantaneous transmission rate of the target user k at each moment in the third period (hereinafter, for ease of understanding, the third period T), wherein the length of the third period is less than the length of the fourth period
  • the third time period is in the fourth time period.
  • the division of the foregoing first time period and the fourth time period may be based on the current time t, for example, a period of a predetermined time length (belonging to the duration of the third time period) before the current time t
  • the time period of the predetermined time length (belonging to the time length of the second time period) after the current time t is the first time period.
  • the division of the second time period and the third time period may also be based on the current time t.
  • the period of the prescribed time length before the current time t is the third time period
  • the time period of the prescribed time length (the time length shorter than the first time period) after the current time t is the second time period
  • the target user k is in the third time period.
  • the average transmission rate is: — ⁇
  • the user utility function (3 ⁇ 4 (t)) of the target user k in the second time period is determined from the perspective of the service scheduling of the target user k, that is,
  • the user utility function ⁇ (t)) may reflect the case where the service of the target user k is scheduled by the RRM entity in the second time period.
  • it may be the QoS weighting coefficient of the target user k, which may be preset according to the level of the target user k (for example, a gold medal user, a silver card user, or a bronze medal user).
  • each target user obtains different scheduling opportunities, and each user has a different transmission rate. Therefore, the performance of the cell also changes. Thereby, resource optimization for a short time granularity for the second time period can be performed according to the scheduling factor ⁇ .
  • the RRM entity In order to optimize the cell performance, the RRM entity needs to perform cell resource allocation to maximize the sum of the utility functions of all user equipments in the cell, that is, to maximize the user utility function V (RW) of all users in the cell b in the second period, if All user equipments on the cell b are referred to as "B": as an example and not by way of limitation, in the embodiment of the present invention, the gradient resource-based optimization method may be used to perform cell resource allocation, specifically, the RRM entity The cell direction resource allocation is performed by maximizing the gradient direction component of the total utility function of each user in the cell as a criterion. As an example and not by way of limitation, the above-described optimized criterion side max VV (R (t)) T ⁇ r (t) can be expressed as:
  • the RRM calculates the rate calculated according to the interference situation (for example, the signal-to-noise ratio) after the resource is allocated, and the calculation process can be consistent with the prior art, and in order to avoid redundancy, the description is omitted. Description.
  • the RRM entity determines the scheduling factor for the sub-band s of the cell b; ⁇ is a process, for example,
  • the RRM entity can determine an optimized utility function M 6 S of the short time granularity of the subband s of the cell b, ie
  • the average of the transmission rates of all user equipments in the sub-band s of the cell b calculated by the RRM entity in a short time (for example, the second period or the third period) can be used to represent the cell b.
  • JI s can be determined according to the following formula 1:
  • s is the number of user equipments that communicate using the cell b subband s.
  • is the number of subcarriers in the subband s occupied by the user equipment. Is the power that the communication system allocates to user equipment k on subcarrier n.
  • ⁇ user equipment k on the sub-carrier for the base station to the user equipment w and services (for convenience of distinction, the base station denoted a) channel gain value, and, during the acquisition method and ⁇ values prior art may be the same or Similarly, in order to avoid redundancy, detailed descriptions thereof are omitted herein.
  • ⁇ 2 is the power of Gaussian white noise on each subcarrier.
  • 3 ⁇ 4s may use an average value (hereinafter, referred to as an average rate) of a short-term transmission rate of a device (eg, a 5% lowest rate user) in a sub-band s of the calculated cell b in a second time period, where
  • the user equipment may be a preset proportion (for example, 5%) of all user equipments in the cell b, and the average rate of any one of the user equipments is lower than the other 95% of the users.
  • apparatus according to any average rate of a user equipment, so that, 3 ⁇ 45 can be used to characterize the coverage characteristics of the short cell b subbands of s.
  • the difference between the RRM entity operation and the SON entity operation is that the SON entity utilizes the average ⁇ and ⁇ roof values obtained over a long period of time (as in the fourth time period) to optimize the long time (as in the first time period).
  • Network resources, and the RRM entity optimizes short-term (eg, within the second time period) cell resources using average sum values obtained over a short period of time (eg, during the third time period).
  • Another major difference is that in the RRM entity
  • the selection of the second optimization strategy ie, the scheduling factor ⁇
  • the 3 ⁇ 4s can be determined according to the fairness of the user scheduling. Equation 2 below determines:
  • s is the number of user equipments that communicate using the cell b subband s.
  • is the number of subcarriers occupied by the user equipment. Is the power that the communication system allocates to the user equipment k on the subcarrier w.
  • is the base of user equipment k on the subcarriers to serve the user equipment
  • the channel gain value of the station (referred to as base station a for convenience of distinction), and the method and process for acquiring the value may be the same as or similar to the prior art, and a detailed description thereof will be omitted herein to avoid redundancy.
  • It is the power allocated by the system to the user equipment on the subcarrier.
  • It is the channel gain value of the user equipment on the subcarrier w to the base station serving as the user equipment/service (for convenience of distinction, denoted as the base station b).
  • ⁇ 2 is Gaussian white. The power of the noise on each subcarrier.
  • s represents an optimization strategy used by the RRM entity for resource optimization of the sub-band s source for the short-time granularity of the second time period (hereinafter, for ease of understanding and differentiation, recorded as the third optimization strategy), that is, in the current network state ( It covers a short time and the short cell capacity characteristics corresponding to the characteristics of b) under, the RRM entities band optimized strategy for the sub-cell s b, where s may be in the range [ ⁇ , ⁇ ].
  • the value of the / ⁇ is related to the following definition a:
  • the time-frequency resource of the target cell is optimized according to the acquired first optimization policy in a second time period, including:
  • the time-frequency resource of the target cell is optimized in units of the second time period.
  • A is a positive real number (for example, 1), which can be preset and stored in the RRM entity.
  • the value may also be related to the following definition b
  • the RRM entity may determine the value of the third optimization policy, that is, based on the current network state, based on the network KPI of the short-term statistics in the third period.
  • the RRM entity can reduce (relative to the optimization strategy in the third time period), in particular, if the RRM entity chooses to make % s tend to 0, indicating that the RRM entity optimizes the sub-band s of the cell b The strategy is to maximize its coverage characteristics.
  • the above threshold is determined to be lower than the preset threshold.
  • the RRM entity can make (relative to the optimization strategy in the third time period)? 7' 6 , s ) increases, in particular, when the RRM entity selection % s tends to 1, indicating that the RRM entity's strategy for optimizing the sub-band s of the cell b at this time is to maximize its capacity characteristics.
  • the above limitation a may be used alone or in combination with the above limitation b.
  • the change trend of % s may be determined according to the above definition b, and then, in combination with the above definition a, the specificity of s is determined. value, for example, are stored in the plurality of available values of a case, a selection can be made according to the determined defining, s a value satisfying the requirements defined above b.
  • the target time-frequency resource may be optimized for the short-time granularity of the second time period according to the third optimization policy.
  • the foregoing resource optimization for the short time granularity of the second time period includes the following two aspects, namely, aspect 1: determining the second optimization policy; and aspect 2: performing radio resources on each user equipment in the target cell. Distribution.
  • the processing procedure for the sub-band s of the cell b will be described as an example.
  • the RRM entity can obtain the power constraint from the SON entity, ie the maximum power constraint on the subband s of cell b.
  • the RRM entity can obtain the interference condition %cken (t) of the user equipment using the sub-band s of the cell b from the SON entity.
  • the RRM entity traverses each subcarrier on the subband s by the Lagrangian dual solution method based on the different values of [ ⁇ ] calculated in the different values in step 3, respectively, to obtain the optimal subcarrier allocation ( 0 and power allocation (0, that is, the function of (0 and () can be expressed as s) ( ).
  • the optimization utility function M&s ( s (), s (), s) ()) of the user equipment on the sub-band s of the cell b is determined, where s () is represented as a An allocation indication obtained by the user equipment on each subcarrier in the subband s (0 composition is a vector, S W table Shown as a vector consisting of the power allocated by the user equipment on each subcarrier in subband S.
  • the RRM entity can calculate a second optimization strategy of the above-mentioned cell in the sub-band s by using the optimized utility function and the above formula 1 and formula 2 to obtain the maximum value (or close to the maximum value) of the cell;
  • the RRM entity obtains the sum corresponding to f( 6 's )(t) calculated in step 4 according to f ( ⁇ (t;) calculated in step 5, as Optimal subcarrier and power allocation at time t.
  • the resource optimization of the short-time granularity is performed by the first network device
  • the resource optimization of the long-term granularity is performed by the second network device
  • the second network entity is optimized according to the first
  • the first optimization policy is sent to the first network device, so that the first network device can adapt the first optimization policy to perform short-time granular resources on the target cell. Optimization, therefore, can ensure the effective improvement of time-frequency resource optimization and improve network performance.
  • FIG. 4 is a schematic flowchart of a resource optimization method 200 according to an embodiment of the present invention, as shown in FIG. 4.
  • the method 200 includes:
  • the second network device determines a first optimization policy, and optimizes time-frequency resources of the target cell in units of the first time period according to the first optimization policy.
  • S220 sending, to the first network device, the optimization policy information, where the optimization policy information is used to indicate the first optimization policy, so that the first network device, according to the first optimization policy, is in the unit of the second time period.
  • the time-frequency resource is optimized, wherein the length of the second time period is less than the length of the first time period, and the second time period is within the first time period.
  • the RRM entity corresponding to the cell b can receive the foregoing optimization policy information, and extract the foregoing first optimization policy (ie, ) from the optimized policy information.
  • the first network device eg, an RRM entity
  • the time-frequency resources of the corresponding cell ie, cell b
  • the resource optimization of the short-time granularity is performed by the first network device
  • the resource optimization of the long-term granularity is performed by the second network device
  • the second network entity is optimized according to the first
  • the first optimization policy is sent to the first network device, so that the first network device can adapt the first optimization policy to perform short-time granular resources on the target cell. Optimization, therefore, can ensure the effective improvement of time-frequency resource optimization and improve network performance.
  • FIG. 5 shows a schematic block diagram of a resource optimization 300 in accordance with an embodiment of the present invention.
  • the apparatus 300 includes:
  • the receiving unit 310 is configured to receive the optimization policy information that is sent by the second network device, where the optimization policy information is used to indicate the first optimization policy, where the first optimization policy is that the second network device uses the first time period as a unit to the target cell.
  • the obtaining unit 320 is configured to obtain the first optimization policy according to the optimization policy information received by the receiving unit 310.
  • the optimization unit 330 is configured to optimize the time-frequency resource of the target cell according to the first optimization policy acquired by the acquiring unit 320, where the length of the second time period is smaller than the first time period. Length, and the second time period is within the first time period.
  • the optimization unit 330 is specifically configured to determine a transmission rate of each user equipment that uses the time-frequency resource of the target cell for data transmission, where the length of the third time period is less than the length of the first time period. Determining, according to the first optimization policy and the transmission rate of each user equipment in the third time period, determining a second optimization policy according to the second optimization policy, in the second time period, before the first time period is before the first time period. The time-frequency resource of the target cell is optimized for the unit.
  • the optimization unit 330 is specifically configured to determine a third optimization policy according to the first optimization policy, where the third optimization policy is proportional to the first optimization policy, according to the third optimization policy,
  • the time-frequency resource of the target cell is optimized in units of the second time period.
  • the second network device is configured according to the first optimization policy, based on a capacity characteristic and a coverage characteristic of the target time-frequency resource in a fourth time period, and a time-frequency of the target cell in a first time period.
  • the resource is optimized, wherein the fourth time period is before the first time period.
  • the apparatus 300 includes a radio resource management RRM entity, the second network device including an ad hoc network SON entity.
  • the resource-optimized device 300 may correspond to a first network device (for example, an RRM entity) in the method of the embodiment of the present invention, and each unit in the resource-optimized device 300 is a module and the other
  • the operations and/or functions are respectively implemented in order to implement the corresponding processes of the method 100 in FIG. 3, and are not described herein for brevity.
  • the resource optimization of the short-time granularity is performed by the first network device
  • the resource optimization of the long-term granularity is performed by the second network device
  • the second network entity is optimized according to the first
  • the first optimization policy is sent to the first network device, so that the first network device can adapt the first optimization policy to perform short-time granular resources on the target cell. Optimization, therefore, can ensure the effective improvement of time-frequency resource optimization and improve network performance.
  • FIG. 6 shows a schematic block diagram of a resource optimization 400 in accordance with an embodiment of the present invention.
  • the apparatus 400 includes:
  • a determining unit 410 configured to determine a first optimization strategy
  • the optimizing unit 420 is configured to optimize the time-frequency resource of the target cell in units of the first time period according to the first optimization policy determined by the determining unit 410.
  • the sending unit 430 is configured to send the optimization policy information to the first network device, where the optimization policy information is used to indicate the first optimization policy, so that the first network device, according to the first optimization policy, is in a second time period.
  • the time-frequency resource of the target cell is optimized, wherein the length of the second time period is less than the length of the first time period, and the second time period is within the first time period.
  • the optimization unit 430 is specifically configured to perform time-frequency resources of the target cell in units of the first time period according to the capacity characteristics and the coverage characteristics of the target time-frequency resource in the fourth time period according to the first optimization policy. Optimizing, wherein the fourth time period is before the first time period.
  • the first network device comprises a radio resource management RRM entity
  • the device 400 comprises an ad hoc network SON entity.
  • the resource-optimized device 400 may correspond to a second network device (for example, a SON entity) in the method of the embodiment of the present invention, and each unit in the resource-optimized device 400 is a module and the other
  • the operations and/or functions are respectively implemented to achieve the phase of the method 200 of FIG. The process should be omitted for brevity.
  • the resource optimization of the short-time granularity is performed by the first network device
  • the resource optimization of the long-term granularity is performed by the second network device
  • the second network entity is optimized according to the first
  • the first optimization policy is sent to the first network device, so that the first network device can adapt the first optimization policy to perform short-time granular resources on the target cell. Optimization, therefore, can ensure the effective improvement of time-frequency resource optimization and improve network performance.
  • FIG. 7 shows a resource-optimized device 500 according to an embodiment of the present invention.
  • the device 500 includes:
  • processor 520 connected to the bus 510;
  • a memory 530 connected to the bus 510;
  • a receiver 540 connected to the bus 510;
  • the processor 520 by using the bus 510, invokes a program stored in the memory 530, for controlling the receiver 540 to receive optimization policy information sent by the second network device, where the optimization policy information is used to indicate the first optimization.
  • the first optimization policy is a policy used by the second network device to optimize time-frequency resources of the target cell in units of the first time period;
  • the time-frequency resource of the target cell is optimized according to the acquired first optimization policy, where the length of the second time period is less than the length of the first time period, and the second time period is During the first time period.
  • the processor 520 is specifically configured to determine a transmission rate of each user equipment that uses the time-frequency resource of the target cell for data transmission, where the length of the third time period is less than the length of the first time period. And the third time period is before the first time period;
  • the processor 520 is specifically configured to determine a third optimization policy according to the first optimization policy, where the third optimization policy is directly proportional to the first optimization policy;
  • the second network device optimizes time-frequency resources of the target cell according to the first optimization policy, based on the capacity characteristics and the coverage characteristics of the target time-frequency resource in the fourth time period.
  • the fourth time period is before the first time period.
  • the device comprises 500 radio resource management RRM entities
  • the second network device comprises an ad hoc network SON entity.
  • the processing unit may also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and signals to the processor.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the device for transmitting signals may be embedded or may be a standard Ethernet communication device such as a personal computer.
  • the modules of the device for transmitting signals are coupled together by a bus system, wherein the bus system includes a signal bus. In addition, it includes a power bus, a control bus, and a status signal bus.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the decoding unit or the processing unit reads the information in the memory, and completes the steps of the above method in combination with the hardware.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), dedicated Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be implemented by using a combination of hardware and software modules in the processor.
  • the line is complete.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the foregoing method. To avoid repetition, it will not be described in detail here.
  • a first network device for example, an RRM entity
  • each unit in the resource-optimized device 500, and the other operations and/or functions described above, respectively, in order to implement the corresponding process of the method 100 in FIG. will not repeat them here.
  • the resource optimization of the short-time granularity is performed by the first network device
  • the resource optimization of the long-term granularity is performed by the second network device
  • the second network entity is optimized according to the first
  • the first optimization policy is sent to the first network device, so that the first network device can adapt the first optimization policy to perform short-time granular resources on the target cell. Optimization, therefore, can ensure the effective improvement of time-frequency resource optimization and improve network performance.
  • FIG. 8 shows a resource optimized device 600 according to an embodiment of the present invention. As shown in FIG. 8, the device 600 includes:
  • processor 620 connected to the bus 610;
  • a memory 630 connected to the bus 610;
  • a transmitter 640 connected to the bus 610;
  • the processor 620 by using the bus 610, invokes a program stored in the memory 630, for determining a first optimization policy, and according to the first optimization policy, the time of the target cell in a unit of the first time period. Frequency resources are optimized;
  • the control transmitter 640 is configured to send the optimization policy information to the first network device, where the optimization policy information is used to indicate the first optimization policy, so that the first network device is in the second time period according to the first optimization policy.
  • the time-frequency resource of the target cell is optimized, wherein the length of the second time period is less than the length of the first time period, and the second time period is within the first time period.
  • the processor 620 is specifically configured to: according to the first optimization policy, perform time-frequency resources of the target cell in units of the first time period based on the capacity characteristics and the coverage characteristics of the target time-frequency resource in the fourth time period. Optimizing, wherein the fourth time period is before the first time period.
  • the first network device comprises a radio resource management RRM entity
  • the device 600 comprises an ad hoc network SON entity.
  • the processing unit may also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and signals to the processor.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • the device for transmitting signals may be embedded or may be a standard Ethernet communication device such as a personal computer.
  • the modules of the device for transmitting signals are coupled together by a bus system, wherein the bus system includes a signal bus. In addition, it includes a power bus, a control bus, and a status signal bus.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor, decoder or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the decoding unit or the processing unit reads the information in the memory, and completes the steps of the above method in combination with the hardware.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), dedicated Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the foregoing method. To avoid repetition, it will not be described in detail here.
  • a second network device e.g., a SON entity
  • the process should be omitted for brevity.
  • the resource optimization of the short-time granularity is performed by the first network device
  • the resource optimization of the long-term granularity is performed by the second network device
  • the second network entity is optimized according to the first
  • the first optimization policy is sent to the first network device, so that the first network device can adapt the first optimization policy to perform short-time granular resources on the target cell. Optimization, therefore, can ensure the effective improvement of time-frequency resource optimization and improve network performance.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in various embodiments of the present invention may be integrated into one processing unit
  • each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (OM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种资源优化的方法,能够提高资源优化的效果,该方法包括:第一网络设备接收第二网络设备发送的优化策略信息,该优化策略信息用于指示第一优化策略,该第一优化策略是该第二网络设备以第一时段为单位对目标小区的时频资源进行优化时使用的策略;根据接收的该优化策略信息,获取该第一优化策略;根据获取的该第一优化策略,以第二时段为单位对该目标小区的时频资源进行优化,其中,该第二时段的长度小于该第一时段的长度,且该第二时段处于该第一时段内。

Description

资源优化的方法和装置 技术领域
本发明涉及通信领域, 并且更具体地, 涉及资源优化的方法和装置。 背景技术
随着网络规模和用户需求的快速增长,通过空口传输技术和网络管理优 化技术提升无线网络性能和效率已经成为成功运营无线网络的关键。 当前正 交频分复用 ( OFDM, Orthogonal Frequency Division Multiplex )、 多天线传 输、各种信道编解码技术等先进的空口传输技术已经使单链路性能非常接近 香农极限, ***级别的网络性能优化(或者说, 资源优化)技术将是提升网 络性能的重点。 另一方面, 为了提高网络效率, 需要使网络配置适应网络环 境变化。 因此, 在进行资源优化时, 需要了解网络环境的变化。 釆用不同的 釆样频率可以感知不同时间粒度的网络环境变化, 从而可以发现变化规律, 釆取适当的资源优化技术和算法。
作为上述资源优化技术, 已知有自组织网络 SON ( Self-Organization Network )技术, 具体地说, SON 实体根据网络关键性能参数(KPI, Key Performance Indicator )统计进行长时间粒度的资源优化, 并将长时间粒度的 资源优化后的结果(如基站各子频带功率限制、 天线下倾角、 切换参数等网 络资源或配置参数) 发送给无线资源管理 ( RRM, Radio Resource Management )实体, 其后, RRM实体在 SON实体发送的相关资源和配置参 数范围内, 根据当前激活用户业务的服务质量(QoS, Quality of Service )需 求和瞬时信道质量, 进行短时间粒度的业务调度和资源分配。 RRM 实体的 业务调度和资源分配结果反映到网络在短时间粒度上的性能。基站的网络性 能统计单元在每个短时间周期不断统计网络短时间粒度的性能, 形成网络长 时间粒度的统计性能指标 KPI, 再经过网络性能检测单元来对网络统计性能 进行检测分析, 并在网络性能出现问题时触发 SON实体进行资源优化, 从 而形成网络性能检测、 SON网络优化、 RRM小区优化以及网络性能统计的 资源优化环。
但是, 现有技术中 SON实体有自身的优化策略, RRM实体也有自身预 设的优化策略。 因此, 现有技术中 SON和 RRM的优化策略, 有可能造成网 络的资源优化不能有效地匹配, ***资源不能得到充分利用, 网络整体性能 达不到最优化。
发明内容
本发明提供一种资源优化的方法和装置, 能够提高资源优化的效果。 第一方面, 提供了一种资源优化的方法, 该方法包括: 第一网络设备接 收第二网络设备发送的优化策略信息, 该优化策略信息用于指示第一优化策 略, 该第一优化策略是该第二网络设备以第一时段为单位对目标小区的时频 资源进行优化时使用的策略; 根据接收的该优化策略信息, 获取该第一优化 策略; 根据获取的该第一优化策略, 以第二时段为单位对该目标小区的时频 资源进行优化, 其中, 该第二时段的长度小于该第一时段的长度, 且该第二 时段处于该第一时段内。
结合第一方面, 在第一方面的第一种实现方式中, 该根据获取的该第一 优化策略, 以第二时段为单位对该目标小区的时频资源进行优化, 包括: 确 定使用该目标小区的时频资源进行数据传输的各用户设备在第三时段的传 输速率, 其中, 该第三时段的长度小于该第一时段的长度, 且该第三时段处 于该第一时段之前; 根据该第一优化策略和该各用户设备在该第三时段的传 输速率, 确定第二优化策略; 根据该第二优化策略, 以第二时段为单位对该 目标小区的时频资源进行优化。
结合第一方面及其上述实现方式, 在第一方面的第二种实现方式中, 该 根据获取的该第一优化策略, 以第二时段为单位对该目标小区的时频资源进 行优化, 包括: 根据该第一优化策略, 确定第三优化策略, 其中, 该第三优 化策略与该第一优化策略之间成正比例关系; 根据该第三优化策略, 以第二 时段为单位对该目标小区的时频资源进行优化。
第二方面, 提供了一种资源优化的方法, 该方法包括: 第二网络设备确 定第一优化策略, 并根据该第一优化策略, 以第一时段为单位对目标小区的 时频资源进行优化; 向第一网络设备发送优化策略信息, 该优化策略信息用 于指示该第一优化策略, 以便于该第一网络设备根据该第一优化策略, 以第 二时段为单位对该目标小区的时频资源进行优化, 其中, 该第二时段的长度 小于该第一时段的长度, 且该第二时段处于该第一时段内。
结合第二方面, 在第二方面的第一种实现方式中, 该根据该第一优化策 略, 以第一时段为单位对目标小区的时频资源进行优化, 包括: 根据该第一 优化策略, 基于该目标时频资源在第四时段内的容量特性和覆盖特性, 以第 一时段为单位对目标小区的时频资源进行优化, 其中, 该第四时段处于该第 一时段之前。
第三方面, 提供了一种资源优化的装置, 该装置包括: 接收单元, 用于 接收第二网络设备发送的优化策略信息,该优化策略信息用于指示第一优化 策略, 该第一优化策略是该第二网络设备以第一时段为单位对目标小区的时 频资源进行优化时使用的策略; 获取单元, 用于根据该接收单元接收的该优 化策略信息, 获取该第一优化策略; 优化单元, 用于根据该获取单元获取的 该第一优化策略, 以第二时段为单位对该目标小区的时频资源进行优化, 其 中, 该第二时段的长度小于该第一时段的长度, 且该第二时段处于该第一时 段内。
结合第三方面, 在第三方面的第一种实现方式中, 该优化单元具体用于 确定使用该目标小区的时频资源进行数据传输的各用户设备在第三时段的 传输速率, 其中, 该第三时段的长度小于该第一时段的长度, 且该第三时段 处于该第一时段之前,根据该第一优化策略和该各用户设备在该第三时段的 传输速率, 确定第二优化策略, 根据该第二优化策略, 以第二时段为单位对 该目标小区的时频资源进行优化。
结合第三方面及其上述实现方式, 在第三方面的第二种实现方式中, 该 优化单元具体用于根据该第一优化策略, 确定第三优化策略, 其中, 该第三 优化策略与该第一优化策略之间成正比例关系, 根据该第三优化策略, 以第 二时段为单位对该目标小区的时频资源进行优化。
结合第三方面及其上述实现方式, 在第三方面的第三种实现方式中, 该 装置包括无线资源管理 RRM实体,该第二网络设备包括自组织网络 SON实 体。
第四方面, 提供了一种资源优化的装置, 该装置包括: 确定单元, 用于 确定第一优化策略;优化单元,用于根据该确定单元确定的该第一优化策略, 以第一时段为单位对目标小区的时频资源进行优化; 发送单元, 用于向第一 网络设备发送优化策略信息, 该优化策略信息用于指示该第一优化策略, 以 便于该第一网络设备根据该第一优化策略, 以第二时段为单位对该目标小区 的时频资源进行优化, 其中, 该第二时段的长度小于该第一时段的长度, 且 该第二时段处于该第一时段内。 结合第四方面, 在第四方面的第一种实现方式中, 该优化单元具体用于 根据该第一优化策略,基于该目标时频资源在第四时段内的容量特性和覆盖 特性, 以第一时段为单位对目标小区的时频资源进行优化, 其中, 该第四时 段处于该第一时段之前。
结合第四方面及其上述实现方式, 在第四方面的第二种实现方式中, 该 第一网络设备包括无线资源管理 RRM实体,该装置包括自组织网络 SON实 体。
根据本发明实施例的资源优化的方法和装置,通过第一网络设备进行短 时间粒度的资源优化,通过第二网络设备进行长时间粒度的资源优化,并且, 在该第二网络实体在根据第一优化策略对目标小区进行长时间粒度的资源 优化后, 将该第一优化策略发送给第一网络设备, 从而, 第一网络设备能够 适配该第一优化策略, 对目标小区进行短时间粒度的资源优化, 因此, 能够 确保时频资源在短时间粒度上的优化和在长时间粒度上的优化的一致性, 进 而, 能够有效提高时频资源优化的效果, 提升网络性能。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是表示本发明一实施例的第一网络设备与第二网络设备的配置关系 的示意图。
图 2是表示本发明另一实施例的第一网络设备与第二网络设备的配置关 系的示意图。
图 3是本发明一实施例的资源优化的方法的示意性流程图。
图 4是本发明另一实施例的资源优化的方法的示意性流程图。
图 5是本发明一实施例的资源优化的装置的示意性框图。
图 6是本发明另一实施例的资源优化的装置的示意性框图。
图 7是本发明一实施例的资源优化的设备的示意性结构图。
图 8是本发明另一实施例的资源优化的设备的示意性结构图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
首先, 对本发明所适用的通信***的架构进行说明。
本发明的技术方案, 可以应用于各种通信***, 例如: 全球移动通讯系 统(GSM , Global System of Mobile communication ), 码分多址( CDMA, Code Division Multiple Access ) ***, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ),通用分组无线业务( GPRS, General Packet Radio Service ), 长期演进 ( LTE, Long Term Evolution )等。
在上述***中, 用户设备与基站之间可以传输数据。
其中, 用户设备(UE, User Equipment ), 也可称之为移动终端( Mobile Terminal ),移动用户设备等, 可以经无线接入网(例如, RAN, Radio Access Network ) 与一个或多个核心网进行通信, 用户设备可以是移动终端, 如移 动电话(或称为"蜂窝"电话)和具有移动终端的计算机, 例如, 可以是便携 式、 袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入 网交换语言和 /或数据。
基站,可以是 GSM或 CDMA中的基站( BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站( NodeB ),还可以是 LTE中的演进型基站( eNB 或 e-NodeB, evolutional Node B ), 本发明并不限定, 但为描述方便, 下述实 施例以 Node B为例进行说明。
承载是无线接入网( RAN, Radio Access Network )侧对用户业务的容量、 时延、 比特率进行控制的基本单位。 一个用户可以使用多个承载开展不同的 业务。
需要说明的是, 在本发明实施例中, 上述通信***可以包括一个或多个 基站, 并且, 一个基站可以提供的一个或多个小区, 本发明并未特别限定。
并且, 在上述通信***中, 可以配置第二网络设备, 该第二网络设备用 第二网络设备的数量可以是一个也可以是多个, 本发明并未特别限定。
例如, 如图 1和图 2所示, 可以在上述通信***仅配置一个第二网络设 备,由第二网络设备对各小区统一地进行上述长时间粒度的资源优化,其中, 在一个实施例中 (如图 1 所示), 可以将该第二网络设备设置在网络协调器 (或网络控制器) 内, 并且, 该网络协调器可以与所控制各基站通信连接, 以从各基站获得各小区的网络状态(例如, 该小区内各用户在目标时频资源 上的传输速率等)。
或者, 在另一个实施例中 (如图 2所示), 可以将该第二网络设备设置 在一个基站内, 并且, 该基站可以与通信***中的其他基站通信连接, 以从 各基站获得各小区的网络状态(例如, 该小区内各用户在目标时频资源上的 传输速率等)。
再例如, 也可以为每一个小区分别配置一个第二网络设备, 从而, 一个 第二网络设备仅对所对应的小区进行上述长时间粒度的资源优化。
另外, 在上述通信***中, 可以配置第一网络设备, 该第一网络设备用 第一网络设备的数量可以根据通信***中基站的数量确定, 本发明并未特别 限定, 例如, 如图 1和图 2所示, 可以为每个基站配置一个第一网络设备, 由第一网络设备对该基站提供的各小区统一地进行上述短时间粒度的资源 优化; 再例如, 也可以为每一个小区分别配置一个第一网络设备, 从而, 一 个第一网络设备仅对所对应的小区进行上述短时间粒度的资源优化。
可选地, 该第一网络设备包括无线资源管理 RRM实体, 该第二网络设 备包括自组织网络 SON实体。
具体地说,在本发明实施例中,可以由自组织网络( SON, Self Organizing Network ) 实体作为第二网络设备, 进行针对目标时频资源 (即, 目标小区 使用的无线通信资源)的长时间粒度的资源优化。 并且, SON实体可以设置 基站或网络协调器(或网络控制器) 内, 也可以与基站或网络协调器通信连 接, 以从基站或网络协调器获得各小区的网络状态(例如, 该小区内各用户 在目标时频资源上的传输速率等)。
另夕卜,在本发明实施例中, 可以由无线资源管理(RRM, Radio Resource Management )实体作为第一网络设备, 进行针对目标时频资源(即, 目标小 区使用的无线通信资源) 的短时间粒度的资源优化。 并且, RRM 实体可以 设置在基站内, 也可以与基站通信连接, 以从基站或网络协调器获得各小区 的网络状态 (例如, 该小区内各用户在目标时频资源上的传输速率等)。 应理解, 以上列举的作为第二网络设备的 SON实体仅为示例性说明, 本发明并未特别限定, 其他能够实现对时频资源的长时间粒度的资源优化的 设备均落入本发明的保护范围内, 同样, 以上列举的作为第一网络设备的 RRM 实体仅为示例性说明, 其他能够实现对时频资源的短时间粒度的资源 优化的设备均落入本发明的保护范围内。
另外, 上述长时间粒度的周期(或者说, 长度)大于上述短时间粒度的 周期 (或者说长度)。
以下, 为了便于理解和说明, 以 SON实体作为第二网络设备, 以 RRM 实体作为第一网络设备,对本发明实施例的资源优化的方法的具体流程进行 说明。 另外, 不失一般性, 以 SON实体对一个小区 (即, 目标小区为一个) 使用的一个时频资源(例如, 目标时频资源是通信***为该小区所分配的频 域带宽中的一个子频带 )的长时间粒度的资源优化进行说明。 同样, 以 RRM 实体对目标小区使用的一个子频带的短时间粒度的资源优化进行说明。
图 3 是从第一网络设备角度描述的本发明一实施例的资源优化的方法 100的示意性流程图, 如图 3所示, 该方法 100包括:
S110, 第一网络设备接收第二网络设备发送的优化策略信息, 该优化策 略信息用于指示第一优化策略, 该第一优化策略是该第二网络设备以第一时 段为单位对目标小区的时频资源进行优化时使用的策略;
S120, 根据接收的该优化策略信息, 获取该第一优化策略;
S130, 根据获取的该第一优化策略, 以第二时段为单位对该目标小区的 时频资源进行优化, 其中, 该第二时段的长度小于该第一时段的长度, 且该 第二时段处于该第一时段内。
具体地说, SON实体(即, 第二网络设备)可以确定第一优化策略, 该 优化策略是用于在第一时段对目标小区(以下, 为了便于理解和说明,记做: 小区 b )所使用的时频资源(例如, 频域资源, 以下, 为了便于理解和说明, 记做: 子频带 s )进行长时间粒度的资源优化的策略。
可选地, 所述第二网络设备是根据该第一优化策略、 基于该目标时频资 源在第四时段内的容量特性和覆盖特性、 以第一时段为单位对目标小区的时 频资源进行优化的, 其中, 该第四时段处于该第一时段之前。
具体地说, SON实体主要用于对所对应的小区的容量和覆盖进行长时间 粒度的资源优化, 进而实现对该 SON实体所对应的通信***(或者说, 网 络)容量和覆盖的长时间粒度的优化, 例如, 对于任意一个小区 b所使用的 时频资源中的任意一个子频带 s,其长时间粒度的优化效用函数 [/6 可以表示 为:
U s=Mb Ubs+ -Mbs)-U s
s可釆用 SON实体计算小区 b的子频带 s中所有用户设备在相对较长 的时间 (例如, 第一时段或第四时段) 内所能达到的传输速率的平均值, 从 而, Ϊ ^能够用以表征小区 b在子频带 s上的长时间容量特性, 需要说明的 是, 在本发明实施例中, 该 (J s (例如, 第一时段内的^ s )的计算方法可以 与现有技术相似, 这里, 为了避免赘述, 省略其详细说明。
¾s可釆用 SON实体计算小区 b的子频带 s中釆样用户 (如 5%最低速 率用户)设备在相对较长的时间 (例如, 第一时段或第四时段) 内所能达到 的传输速率的平均值(以下, 称为平均速率), 其中, 该釆样用户设备可以 是该小区 b内的所有用户设备中预设比例 (例如, 5%) 的用户设备, 并且, 釆样用户设备中任一用户设备的平均速率低于其他 95%的用户设备中任一 用户设备的平均速率, 从而, ζ ^能够用以表征小区 b在子频带 s上的长时 间覆盖特性。 需要说明的是, 在本发明实施例中, 该 ib,s (例如, 第一时段 内的 的计算方法可以与现有技术相似, 这里, 为了避免赘述, 省略其 详细说明。
s表示上述第一优化策略, 即在当前网络状态 (与该小区 b的长时间 容量特性和长时间覆盖特性相对应 )下, SON针对小区 b的子频带 s的优化 的策略, 其中, 6s的取值范围可以为 [0,1]。
在实际网络运行中, SON实体可以根据当前的网络状态,基于在第四时 段内的长时间统计的网络 KPI来决定第一时段内的第一优化策略,即, ^的 取值。
例如, 如果基于长时间统计的网络 KPI, 确定上述 ζ ^在第四时段内低 于预设的门限(为了便于区分, 记做第一预设门限), 表明小区 b的覆盖较 差, 需要增大小区 b的覆盖特性, 此情况下, SON实体可以使 6,s (相对于 第四时段内的优化策略 6s )减小, 或者使用一个较小的 6s值, 特别地, 如 果 SON实体选择使 趋于 0时, 表明 SON实体对小区 b的子频带 s的优 化的策略为最大化其覆盖特性。
再例如, 如果基于长时间统计的网络 KPI, 确定上述 s在第四时段内 低于预设的门限(为了便于区分, 记做第二预设门限), 表明小区 b的容量 较差, 需要增大小区 b的容量特性, 此情况下, SON实体可以使 6 s (相对 于第四时段内的优化策略 6 s )增大, 或者使用一个较大的 6 s值, 特别地, 当 SON实体选择; ^趋于 1时, 表明此时 SON实体对小区 b的子频带 s的 优化的策略为最大化其容量特性。
SON实体在如上所述, 确定了第一优化策略(即, ,s )后, 可以基于 该第一优化策略对小区 b的时频资源进行长时间粒度的资源优化, 并且, 该 过程可以与现有技术相似, 这里, 为了避免赘述, 省略重复说明。
另外, 作为该长时间粒度的资源优化的结果, 可以包括但不限于以下参 数:
提供该小区 b的基站上子频带 s的功率限制, 与该小区 b相对应的天线 的下倾角、 该小区 b内的切换参数。 发明并不限定于此, 其他能够根据第一优化策略(即, 6 s ) 来优化的参数 或配置均落入本发明的保护范围内。
其后, SON实体可以将用于指示上述第一优化策略的优化策略信息发送 给小区 b所对应的 RRM实体(即, 第一网络设备)。
从而,在 S110,小区 b所对应的 RRM实体可以接收上述优化策略信息, 并在 S120中, 从该优化策略信息中提取出上述第一优化策略(即, 6 s )0 其后, 在 S130, RRM实体可以根据该第一优化策略, 对所对应的小区
(即, 小区 b ) 的时频资源进行针对第二时段的短时间粒度的资源优化。
可选地, 该根据获取的该第一优化策略, 以第二时段为单位对该目标小 区的时频资源进行优化, 包括:
确定使用该目标小区的时频资源进行数据传输的各用户设备在第三时 段的传输速率, 其中, 该第三时段的长度小于该第一时段的长度, 且该第三 时段处于该第一时段之前;
根据该第一优化策略和该各用户设备在该第三时段的传输速率,确定第 二优化策略;
根据该第二优化策略, 以第二时段为单位对该目标小区的时频资源进行 优化。
具体地说, RRM实体可以获取小区 b中使用子频带 s的用户 (以下, 为了便于理解和区分, 记做: 目标用户)在第三时段内的传输速率(具体地 说, 是数据的平均传输速率)。
在本发明实施例中, 该目标用户的数量可以为任意值, 本发明并未特别 限定, 以下, 为了便于理解和说明, 不失一般性以针对目标用户 k的处理过 程为例, 对后续处理过程进行说明。
例如, RRM实体可以记录目标用户 k在第三时段(以下, 为了便于理 解, 记做第三时段 T ) 内各时刻的即时传输速率, 其中, 该第三时段的长度 小于上述第四时段的长度, 该第三时段处于第四时段内。
需要说明的是, 在本发明实施例中, 上述第一时段和第四时段的划分, 可以以当前时刻 t为基准, 例如, 当前时刻 t之前的规定时长(长于第三时 段的时长) 的时段为第四时段, 当前时刻 t之后的规定时长(长于第二时段 的时长)的时段为第一时段, 同样的, 上述第二时段和第三时段的划分, 也 可以以当前时刻 t为基准, 例如, 当前时刻 t之前的规定时长(短于第四时 段的时长) 的时段为第三时段, 当前时刻 t之后的规定时长(短于第一时段 的时长) 的时段为第二时段,
不失一般性, 如果当前 t时刻 (此情况下, 第三时段为从 t-T时刻到 t-1 时刻 )的即时传输速率记做 rt (t), 则该目标用户 k在第三时段内的平均传输 速率 为: —τ
并且, 在本发明实施例中, 从目标用户 k的业务调度角度出发, 确定目 标用户 k在第二时段的用户效用函数 (¾ (t)), 即
V摘 )
Figure imgf000011_0001
、" g( (0), r = o
即, 用户效用函数 ^ (t))可以反映在第二时段该目标用户 k的业务被 RRM实体调度的情况。 其中, 可以是目标用户 k的 QoS加权系数, 可以 根据目标用户 k的级别 (例如, 金牌用户、 银牌用户或铜牌用户 )而预先设 定设置。
γ表示调度因子, 由 RRM实体根据上述第一优化策略确定, 反映基站 RRM 实体在对目标小区内的各目标用户进行业务调度时使用的第二优化策 略,其中,该 γ的取值范围可以为 [0, 1], = 0对应为比例公平优化策略, = l 对应为最大吞吐量优化策略。
可见, 当基站 RRM实体釆用不同的第二优化策略时, 每个目标用户获 得的调度机会不同, 每个用户的传输速率也不同。 因此, 小区的性能也之发 生变化。 从而, 能够根据该调度因子 γ, 进行针对第二时段的短时间粒度的 资源优化。
为了使小区性能最优化, RRM 实体需要进行小区资源分配, 以最大化 小区内所有用户设备的效用函数总和, 即最大化小区 b上所有用户在第二时 段的用户效用函数 V (RW), 如果将小区 b上的所有用户设备记做 , 贝' J : 作为示例而非限定,在本发明实施例中,可釆用基于梯度的最优化方法, 进行小区资源分配, 具体地说, RRM 实体以最大化小区内各用户的总效用 函数的梯度方向分量为准则, 进行小区资源分配。 作为示例而非限定, 上述 优化准侧 max VV (R (t))T · r (t)可以表示为:
max W (R (t))T τ( =賺∑te V (Rk (ή) · rk (t) =賺 ^ akRk
Figure imgf000012_0001
· rk (t)。 其中, )表示 RRM进行分配完资源后, 即获得后述 和 后根 据干扰情况(例如, 信噪比)计算出来的速率, 并且, 该计算过程可以与现 有技术一致, 为了避免赘述, 省略其说明。
下面, 对 RRM实体根据上述第一优化策略来确定针对第二时段的第二 优化策略(即, 调度因子 γ ) 的过程进行详细说明。
为了便于理解和说明, 以下, 以 RRM实体确定针对小区 b的子频带 s 的调度因子; ^的过程为例, 进行说明
RRM实体可以确定小区 b的子频带 s的短时间粒度的优化效用函数 M6 S , 即
ub,s = %,s - wfe,s + (l - %,s ) - ¾,s
可釆用 RRM实体所计算的小区 b的子频带 s中所有用户设备在较短 的时间 (例如, 第二时段或第三时段) 内的传输速率的平均值, 从而, 能 够用以表征小区 b在子频带 s上的短时间容量特性。在本发明实施例中, JI s 可以根据以下公式 1确定:
_ 1 ∑ . ¾»
公式 1
"&K\Kb,
是通信***中的总的用户设备的数量, 其中, 该通信***由包括小区 b在内的多个小区构成, 并且, 例如, RRM实体可以从上层管理实体获取该 κ的具体取值。 s是使用小区 b子频带 s进行通信的用户设备的数量。 ≠、 是用户设备 所占用的子频带 s中的子载波数目。 是该通信***在子载波 n上分配给用户设备 k的功率。 Ψίη 是用户设备 k在子载波 w上到为该用户设 备 服务的基站(为了便于区分, 记做基站 a )的信道增益值, 并且, 该 Ψ 值的获取方法和过程可以与现有技术相同或相似, 这里为了避免赘述, 省略 其详细说明。 是***在子载波 上分配给用户设备 Ζ的功率。 ( ^„是用户设 备 在子载波 w上到为用户设备 /服务的基站(为了便于区分, 记做基站 b ) 的信道增益值, 并且, 该 < ^„值的获取方法和过程可以与现有技术相同或相 似, 这里为了避免赘述, 省略其详细说明。 σ2是高斯白噪声在每个子载波上 的功率。
¾s可釆用所计算的小区 b的子频带 s中釆样用户(如 5%最低速率用户 ) 设备在第二时段内短时间的传输速率的平均值(以下, 称为平均速率), 其 中, 该釆样用户设备可以是该小区 b内的所有用户设备中预设比例 (例如, 5% ) 的用户设备, 并且, 釆样用户设备中任一用户设备的平均速率低于其 他 95%的用户设备中任一用户设备的平均速率, 从而, ¾5能够用以表征小 区 b在子频带 s上的短时间覆盖特性。在 RRM实体操作与 SON实体操作的 差别在于, SON实体利用的是长时间(如在第四时段内)获取的平均 ^^和 < ^„值来优化长时间 (如在第一时段内 ) 的网络资源, 而 RRM实体是利用 短时间 (如在第三时段内)获取的平均 和 值来优化短时间 (如在第 二时段内) 的小区资源。 另一个主要的区别在于, 在 RRM实体中, 由于需 要考虑用户调度的公平性, 其第二优化策略(即, 调度因子 γ ) 的选择对于 小区资源的分配(如子载波和功率)有决定性影响。 在本发明实施例中, ¾s 可以根据以下公式 2确定:
Figure imgf000013_0001
是通信***中的总的用户设备的数量, 其中, 该通信***由包括小区 b在内的多个小区构成, 并且, 例如, RRM实体可以从上层管理实体获取该 κ的具体取值。 s是使用小区 b子频带 s进行通信的用户设备的数量。 ≠、 是用户设备 所占用的子载波数目。 是该通信***在子载波 w上分配给用 户设备 k的功率。 Ψίη 是用户设备 k在子载波"上到为该用户设备 服务的基 站(为了便于区分, 记做基站 a ) 的信道增益值, 并且, 该 值的获取方 法和过程可以与现有技术相同或相似,这里为了避免赘述,省略其详细说明。 是***在子载波"上分配给用户设备 的功率。 是用户设备 在子载波 w上到为用户设备 /服务的基站(为了便于区分,记做基站 b )的信道增益值。 σ2是高斯白噪声在每个子载波上的功率。
s表示 RRM实体对子频带 s源进行的针对第二时段的短时间粒度的资 源优化时使用的优化策略(以下,为了便于理解和区分,记做第三优化策略), 即在当前网络状态(与该小区 b的短时间容量特性和短时间覆盖特性相对应) 下, RRM实体针对小区 b的子频带 s的优化的策略, 其中, s的取值范围 可以为 [ο,ι]。
在本发明实施例中, 该 /^的取值, 与以下限定 a相关:
限定 a
可选地, 该根据获取的该第一优化策略, 以第二时段为单位对该目标小 区的时频资源进行优化, 包括:
根据该第一优化策略, 确定第三优化策略, 其中, 该第三优化策略与该 第一优化策略之间成正比例关系;
根据该第三优化策略, 以第二时段为单位对该目标小区的时频资源进行 优化。
具体地说, 在 RRM实体如上所述获得来自 SON实体的 6 s之后, 可以 根据 ^确定 的取值, 即:
二入
其中, A为正实数(例如, 1 ), 可以预先设定并存储在 RRM实体中。 可选地, 该 的取值, 还可以与以下限定 b相关
限定 b
在实际网络运行中, RRM 实体可以根据当前的网络状态, 基于在第三 时段内的短时间统计的网络 KPI来决定第三优化策略, 即, 的取值。
例如,如果基于短时间统计的网络 KPI,确定上述 低于预设的门限(为 了便于区分, 记做第三预设门限), 表明小区 b的覆盖较差, 需要增大小区 b 的覆盖特性, 此情况下, RRM实体可以使 (相对于第三时段内的优化策 略 )减小, 特别地, 如果 RRM实体选择使%s趋于 0时, 表明 RRM实体 对小区 b的子频带 s的优化的策略为最大化其覆盖特性。 再例如,如果基于短时间统计的网络 KPI, 确定上述 低于预设的门限
(为了便于区分, 记做第四预设门限), 表明小区 b的容量较差, 需要增大 小区 b的容量特性, 此情况下, RRM实体可以使 (相对于第三时段内的 优化策略 ?7'6,s )增大,特别地, 当 RRM实体选择%s趋于 1时,表明此时 RRM 实体对小区 b的子频带 s的优化的策略为最大化其容量特性。
需要说明的是, 上述限定 a可以单独使用, 也可以与上述限定 b联合使 用, 例如, 可以首先根据以上限定 b, 确定%s的变化趋势, 其后, 并结合上 述限定 a, 确定 s的具体值, 例如, 在存储有可供使用的多个 A值的情况下, 可以选择能够使根据限定 a确定的 ,s满足上述限定 b要求的 A值。
应理解以上列举的, 确定 的方法仅为示例性说明, 本发明并未限定 于此, 例如, 也可以直接使用 ^作为 。
在确定了第三优化策略(即, %,s )后, 可以根据该第三优化策略, 对 该目标时频资源进行针对第二时段的短时间粒度的资源优化。
需要说明的是, 上述针对第二时段的短时间粒度的资源优化, 包括以下 两个方面, 即, 方面 1: 第二优化策略的确定; 方面 2: 对目标小区内的各 用户设备进行无线资源的分配。
以针对小区 b的子频带 s的处理过程为例进行说明。
1. RRM实体可以从 SON实体获取功率约束 即小区 b的子频带 s 上的最大功率约束。
2. RRM实体可以从 SON实体获取使用小区 b的子频带 s的用户设备 长时间统计的干扰情况%„ (t)。
3. RRM实体可以计算上述 (Rk (ή) = akRk (i)r< ( _1, 即通过遍历 M (t)的 取值(如上所述; ^的取值范围为 Ω e [0,1],因此 RRM实体可以基于例如, 0.01 的步长遍历上述取值范围内的各值), 计算相应的 。
4. RRM实体基于步骤 3中不同„;)取值下计算得到的各个 ^ (》 值, 分别通过拉格朗日对偶解法等方法遍历子频带 s上每个子载波, 获得最 优子载波分配 (0和功率分配 (0, 即, 该 (0和 ()可以表示为产 s)( ) 的函数。
从而, 在如上所述获得以上参数后, 确定用户设备 在小区 b的子频带 s 上的优化效用函数 M&s( s( ), s( ), s)()), 其中 s( )表示为一个由用户设 备 在子频带 s中每个子载波上获得的分配指示 (0组成是矢量, SW表 示为一个由用户设备 在子频带 S中每个子载波上分配的功率 组成的矢 量。
5. RRM实体可以根据上述优化效用函数以及上述公式 1和公式 2, 计 算出使该 ^;))达到最大值(或接近达到最大值) 的上述小 区在子频带 s的第二优化策略, 即调度因子^的值, 即:
) (t) K^s (½ (t) , s (t) , (t))
6. RRM实体针对每个子频带 s, 根据步骤 5中计算得到的 f(^ (t;), 获 取在步骤 4中计算得到的与 f (6's) (t)相对应的 和 ,作为在时刻 t的最 优子载波和功率分配。
根据本发明实施例的资源优化的方法,通过第一网络设备进行短时间粒 度的资源优化, 通过第二网络设备进行长时间粒度的资源优化, 并且, 在该 第二网络实体在根据第一优化策略对目标小区进行长时间粒度的资源优化 后, 将该第一优化策略发送给第一网络设备, 从而, 第一网络设备能够适配 该第一优化策略, 对目标小区进行短时间粒度的资源优化, 因此, 能够确保 能够有效提高时频资源优化的效果, 提升网络性能。
图 4 是从第二网络设备角度描述的本发明一实施例的资源优化的方法 200的示意性流程图, 如图 4所示, 该方法 200包括:
S210, 第二网络设备确定第一优化策略, 并根据该第一优化策略, 以第 一时段为单位对目标小区的时频资源进行优化;
S220, 向第一网络设备发送优化策略信息, 该优化策略信息用于指示该 第一优化策略, 以便于该第一网络设备根据该第一优化策略, 以第二时段为 单位对该目标小区的时频资源进行优化, 其中, 该第二时段的长度小于该第 一时段的长度, 且该第二时段处于该第一时段内。
第二网络设备的功能以及与其它实体之间的交互过程, 均与前面实施例 中提到的 SON实体相同, 因此, 此处不再赘述。
对于任意一个小区 b所使用的时频资源中的任意一个子频带 s, 其长时 间粒度的优化效用函数 t/6 s在前面的实施例中也已经介绍过, 此处不再赘述。
小区 b所对应的 RRM实体可以接收上述优化策略信息, 并从该优化策 略信息中提取出上述第一优化策略 (即, )。
其后, 第一网络设备(如, RRM 实体)可以根据该第一优化策略, 对 所对应的小区 (即, 小区 b ) 的时频资源进行针对第二时段的短时间粒度的 资源优化。 具体的优化方式可以参见前面实施例中的描述, 此处不再赘述。
根据本发明实施例的资源优化的方法,通过第一网络设备进行短时间粒 度的资源优化, 通过第二网络设备进行长时间粒度的资源优化, 并且, 在该 第二网络实体在根据第一优化策略对目标小区进行长时间粒度的资源优化 后, 将该第一优化策略发送给第一网络设备, 从而, 第一网络设备能够适配 该第一优化策略, 对目标小区进行短时间粒度的资源优化, 因此, 能够确保 能够有效提高时频资源优化的效果, 提升网络性能。 下面, 结合图 5至图 6详细说明根据本发明实施例的资源优化的装置。
图 5示出了根据本发明实施例的资源优化 300的示意性框图。如图 5所 示, 该装置 300包括:
接收单元 310, 用于接收第二网络设备发送的优化策略信息, 该优化策 略信息用于指示第一优化策略, 该第一优化策略是该第二网络设备以第一时 段为单位对目标小区的时频资源进行优化时使用的策略;
获取单元 320, 用于根据该接收单元 310接收的该优化策略信息, 获取 该第一优化策略;
优化单元 330, 用于根据该获取单元 320获取的该第一优化策略, 以第 二时段为单位对该目标小区的时频资源进行优化, 其中, 该第二时段的长度 小于该第一时段的长度, 且该第二时段处于该第一时段内。
可选地, 该优化单元 330具体用于确定使用该目标小区的时频资源进行 数据传输的各用户设备在第三时段的传输速率, 其中, 该第三时段的长度小 于该第一时段的长度, 且该第三时段处于该第一时段之前, 根据该第一优化 策略和该各用户设备在该第三时段的传输速率, 确定第二优化策略, 根据该 第二优化策略, 以第二时段为单位对该目标小区的时频资源进行优化。
可选地, 该优化单元 330具体用于根据该第一优化策略, 确定第三优化 策略, 其中, 该第三优化策略与该第一优化策略之间成正比例关系, 根据该 第三优化策略, 以第二时段为单位对该目标小区的时频资源进行优。
可选地, 该第二网络设备是根据该第一优化策略、 基于该目标时频资源 在第四时段内的容量特性和覆盖特性、 以第一时段为单位对目标小区的时频 资源进行优化的, 其中, 该第四时段处于该第一时段之前。
可选地, 该装置 300包括无线资源管理 RRM实体, 该第二网络设备包 括自组织网络 SON实体。
根据本发明实施例的资源优化的装置 300可对应于本发明实施例的方法 中的第一网络设备(例如, RRM实体), 并且, 该资源优化的装置 300中的 各单元即模块和上述其他操作和 /或功能分别为了实现图 3中的方法 100的相 应流程, 为了简洁, 在此不再赘述。
根据本发明实施例的资源优化的装置,通过第一网络设备进行短时间粒 度的资源优化, 通过第二网络设备进行长时间粒度的资源优化, 并且, 在该 第二网络实体在根据第一优化策略对目标小区进行长时间粒度的资源优化 后, 将该第一优化策略发送给第一网络设备, 从而, 第一网络设备能够适配 该第一优化策略, 对目标小区进行短时间粒度的资源优化, 因此, 能够确保 能够有效提高时频资源优化的效果, 提升网络性能。
图 6示出了根据本发明实施例的资源优化 400的示意性框图。如图 6所 示, 该装置 400包括:
确定单元 410, 用于确定第一优化策略;
优化单元 420, 用于根据该确定单元 410确定的该第一优化策略, 以第 一时段为单位对目标小区的时频资源进行优化;
发送单元 430, 用于向第一网络设备发送优化策略信息, 该优化策略信 息用于指示该第一优化策略, 以便于该第一网络设备根据该第一优化策略, 以第二时段为单位对该目标小区的时频资源进行优化, 其中, 该第二时段的 长度小于该第一时段的长度, 且该第二时段处于该第一时段内。
可选地, 该优化单元 430具体用于根据该第一优化策略, 基于该目标时 频资源在第四时段内的容量特性和覆盖特性, 以第一时段为单位对目标小区 的时频资源进行优化, 其中, 该第四时段处于该第一时段之前。
可选地, 该第一网络设备包括无线资源管理 RRM实体, 该装置 400包 括自组织网络 SON实体。
根据本发明实施例的资源优化的装置 400可对应于本发明实施例的方法 中的第二网络设备(例如, SON实体), 并且, 该资源优化的装置 400中的 各单元即模块和上述其他操作和 /或功能分别为了实现图 4中的方法 200的相 应流程, 为了简洁, 在此不再赘述。
根据本发明实施例的资源优化的装置,通过第一网络设备进行短时间粒 度的资源优化, 通过第二网络设备进行长时间粒度的资源优化, 并且, 在该 第二网络实体在根据第一优化策略对目标小区进行长时间粒度的资源优化 后, 将该第一优化策略发送给第一网络设备, 从而, 第一网络设备能够适配 该第一优化策略, 对目标小区进行短时间粒度的资源优化, 因此, 能够确保 能够有效提高时频资源优化的效果, 提升网络性能。 面, 结合图 7和图 8, 详细说明本发明实施例的资源优化的设备。
图 7示出了本发明实施例的资源优化的设备 500, 如图 7所示, 该设备 500包括:
总线 510;
与所述总线 510相连的处理器 520;
与所述总线 510相连的存储器 530;
与所述总线 510相连的接收机 540;
其中, 该处理器 520通过所述总线 510, 调用所述存储器 530中存储的 程序, 以用于控制接收机 540接收第二网络设备发送的优化策略信息, 该优 化策略信息用于指示第一优化策略, 该第一优化策略是该第二网络设备以第 一时段为单位对目标小区的时频资源进行优化时使用的策略;
用于根据该优化策略信息, 获取该第一优化策略;
用于根据获取的该第一优化策略, 以第二时段为单位对该目标小区的时 频资源进行优化, 其中, 该第二时段的长度小于该第一时段的长度, 且该第 二时段处于该第一时段内。
可选地, 该处理器 520具体用于确定使用该目标小区的时频资源进行数 据传输的各用户设备在第三时段的传输速率, 其中, 该第三时段的长度小于 该第一时段的长度, 且该第三时段处于该第一时段之前;
用于根据该第一优化策略和该各用户设备在该第三时段的传输速率,确 定第二优化策略;
用于根据该第二优化策略, 以第二时段为单位对该目标小区的时频资源 进行优化。 可选地, 该处理器 520具体用于根据该第一优化策略, 确定第三优化策 略, 其中, 该第三优化策略与该第一优化策略之间成正比例关系;
用于根据该第三优化策略, 以第二时段为单位对该目标小区的时频资源 进行优化。。
可选地, 该第二网络设备是根据该第一优化策略、 基于该目标时频资源 在第四时段内的容量特性和覆盖特性、 以第一时段为单位对目标小区的时频 资源进行优化的, 其中, 该第四时段处于该第一时段之前。
可选地, 该设备包括 500无线资源管理 RRM实体, 该第二网络设备包 括自组织网络 SON实体。
在本发明实施例中,处理单器还可以称为 CPU。存储器可以包括只读存 储器和随机存取存储器, 并向处理器提供指令和信号。 存储器的一部分还可 以包括非易失行随机存取存储器(NVRAM )。 具体的应用中, 传输信号的设 备可以嵌入或者本身可以就是例如个人电脑之类的标准以太网通信设备,传 输信号的设备的各个模块通过总线***耦合在一起, 其中, 总线***除包括 信号总线之外, 还包括电源总线、 控制总线和状态信号总线。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑 框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理 器, 解码器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件 处理器执行完成, 或者用解码处理器中的硬件及软件模块组合执行完成。 软 件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电 可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于 存储器, 解码单元或者处理单元读取存储器中的信息, 结合其硬件完成上述 方法的步骤。
应理解, 在本发明实施例中, 该处理器可以是中央处理单元 (Central Processing Unit, 简称为 "CPU" ), 该处理器还可以是其他通用处理器、 数 字信号处理器(DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑 电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤可以 直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执 行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存 储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存 储介质位于存储器, 处理器读取存储器中的信息, 结合其硬件完成上述方法 的步骤。 为避免重复, 这里不再详细描述。 中的第一网络设备 (例如, RRM实体), 并且, 该资源优化的设备 500中的 各单元即模块和上述其他操作和 /或功能分别为了实现图 3中的方法 100的相 应流程, 为了简洁, 在此不再赘述。
根据本发明实施例的资源优化的设备,通过第一网络设备进行短时间粒 度的资源优化, 通过第二网络设备进行长时间粒度的资源优化, 并且, 在该 第二网络实体在根据第一优化策略对目标小区进行长时间粒度的资源优化 后, 将该第一优化策略发送给第一网络设备, 从而, 第一网络设备能够适配 该第一优化策略, 对目标小区进行短时间粒度的资源优化, 因此, 能够确保 能够有效提高时频资源优化的效果, 提升网络性能。
图 8示出了本发明实施例的资源优化的设备 600, 如图 8所示, 该设备 600包括:
总线 610;
与所述总线 610相连的处理器 620;
与所述总线 610相连的存储器 630;
与所述总线 610相连的发送机 640;
其中, 该处理器 620通过所述总线 610, 调用所述存储器 630中存储的 程序, 以用于确定第一优化策略, 并根据该第一优化策略, 以第一时段为单 位对目标小区的时频资源进行优化;
用于控制该发射机 640向第一网络设备发送优化策略信息, 该优化策略 信息用于指示该第一优化策略, 以便于该第一网络设备根据该第一优化策 略, 以第二时段为单位对该目标小区的时频资源进行优化, 其中, 该第二时 段的长度小于该第一时段的长度, 且该第二时段处于该第一时段内。
可选地, 该处理器 620具体用于根据该第一优化策略, 基于该目标时频 资源在第四时段内的容量特性和覆盖特性, 以第一时段为单位对目标小区的 时频资源进行优化, 其中, 该第四时段处于该第一时段之前。 可选地, 该第一网络设备包括无线资源管理 RRM实体, 该设备 600包 括自组织网络 SON实体。
在本发明实施例中,处理单器还可以称为 CPU。存储器可以包括只读存 储器和随机存取存储器, 并向处理器提供指令和信号。 存储器的一部分还可 以包括非易失行随机存取存储器(NVRAM )。 具体的应用中, 传输信号的设 备可以嵌入或者本身可以就是例如个人电脑之类的标准以太网通信设备,传 输信号的设备的各个模块通过总线***耦合在一起, 其中, 总线***除包括 信号总线之外, 还包括电源总线、 控制总线和状态信号总线。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑 框图。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理 器, 解码器等。 结合本发明实施例所公开的方法的步骤可以直接体现为硬件 处理器执行完成, 或者用解码处理器中的硬件及软件模块组合执行完成。 软 件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存储器或者电 可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于 存储器, 解码单元或者处理单元读取存储器中的信息, 结合其硬件完成上述 方法的步骤。
应理解, 在本发明实施例中, 该处理器可以是中央处理单元 (Central Processing Unit, 简称为 "CPU" ), 该处理器还可以是其他通用处理器、 数 字信号处理器(DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑 电路或者软件形式的指令完成。 结合本发明实施例所公开的方法的步骤可以 直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执 行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只读存 储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存 储介质位于存储器, 处理器读取存储器中的信息, 结合其硬件完成上述方法 的步骤。 为避免重复, 这里不再详细描述。 中的第二网络设备(例如, SON实体), 并且, 该资源优化的设备 600中的 各单元即模块和上述其他操作和 /或功能分别为了实现图 4中的方法 200的相 应流程, 为了简洁, 在此不再赘述。
根据本发明实施例的资源优化的设备,通过第一网络设备进行短时间粒 度的资源优化, 通过第二网络设备进行长时间粒度的资源优化, 并且, 在该 第二网络实体在根据第一优化策略对目标小区进行长时间粒度的资源优化 后, 将该第一优化策略发送给第一网络设备, 从而, 第一网络设备能够适配 该第一优化策略, 对目标小区进行短时间粒度的资源优化, 因此, 能够确保 能够有效提高时频资源优化的效果, 提升网络性能。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的***、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 ***, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接辆合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( OM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1、 一种资源优化的方法, 其特征在于, 所述方法包括:
第一网络设备接收第二网络设备发送的优化策略信息, 所述优化策略信 息用于指示第一优化策略, 所述第一优化策略是所述第二网络设备以第一时 段为单位对目标小区的时频资源进行优化时使用的策略;
根据接收的所述优化策略信息, 获取所述第一优化策略;
根据获取的所述第一优化策略, 以第二时段为单位对所述目标小区的时 频资源进行优化, 其中, 所述第二时段的长度小于所述第一时段的长度, 且 所述第二时段处于所述第一时段内。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述根据获取的所述第 一优化策略,以第二时段为单位对所述目标小区的时频资源进行优化,包括: 确定使用所述目标小区的时频资源进行数据传输的各用户设备在第三 时段的传输速率, 其中, 所述第三时段的长度小于所述第一时段的长度, 且 所述第三时段处于所述第一时段之前;
根据所述第一优化策略和所述各用户设备在所述第三时段的传输速率, 确定第二优化策略;
根据所述第二优化策略, 以第二时段为单位对所述目标小区的时频资源 进行优化。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述根据获取的所 述第一优化策略, 以第二时段为单位对所述目标小区的时频资源进行优化, 包括:
根据所述第一优化策略, 确定第三优化策略, 其中, 所述第三优化策略 与所述第一优化策略之间成正比例关系;
根据所述第三优化策略, 以第二时段为单位对所述目标小区的时频资源 进行优化。
4、 一种资源优化的方法, 其特征在于, 所述方法包括:
第二网络设备确定第一优化策略, 并根据所述第一优化策略, 以第一时 段为单位对目标小区的时频资源进行优化;
向第一网络设备发送优化策略信息, 所述优化策略信息用于指示所述第 一优化策略, 以便于所述第一网络设备根据所述第一优化策略, 以第二时段 为单位对所述目标小区的时频资源进行优化, 其中, 所述第二时段的长度小 于所述第一时段的长度, 且所述第二时段处于所述第一时段内。
5、 根据权利要求 4所述的方法, 其特征在于, 所述根据所述第一优化 策略, 以第一时段为单位对目标小区的时频资源进行优化, 包括:
根据所述第一优化策略,基于所述目标时频资源在第四时段内的容量特 性和覆盖特性, 以第一时段为单位对目标小区的时频资源进行优化, 其中, 所述第四时段处于所述第一时段之前。
6、 一种资源优化的装置, 其特征在于, 所述装置包括:
接收单元, 用于接收第二网络设备发送的优化策略信息, 所述优化策略 信息用于指示第一优化策略, 所述第一优化策略是所述第二网络设备以第一 时段为单位对目标小区的时频资源进行优化时使用的策略;
获取单元, 用于根据所述接收单元接收的所述优化策略信息, 获取所述 第一优化策略;
优化单元, 用于根据所述获取单元获取的所述第一优化策略, 以第二时 段为单位对所述目标小区的时频资源进行优化, 其中, 所述第二时段的长度 小于所述第一时段的长度, 且所述第二时段处于所述第一时段内。
7、 根据权利要求 6所述的装置, 其特征在于, 所述优化单元具体用于 确定使用所述目标小区的时频资源进行数据传输的各用户设备在第三时段 的传输速率, 其中, 所述第三时段的长度小于所述第一时段的长度, 且所述 第三时段处于所述第一时段之前,根据所述第一优化策略和所述各用户设备 在所述第三时段的传输速率, 确定第二优化策略, 根据所述第二优化策略, 以第二时段为单位对所述目标小区的时频资源进行优化。
8、 根据权利要求 6或 7所述的装置, 其特征在于, 所述优化单元具体 用于根据所述第一优化策略, 确定第三优化策略, 其中, 所述第三优化策略 与所述第一优化策略之间成正比例关系, 根据所述第三优化策略, 以第二时 段为单位对所述目标小区的时频资源进行优化。
9、 根据权利要求 6至 8中任一项所述的装置, 其特征在于, 所述装置 包括无线资源管理 RRM实体,所述第二网络设备包括自组织网络 SON实体。
10、 一种资源优化的装置, 其特征在于, 所述装置包括:
确定单元, 用于确定第一优化策略;
优化单元, 用于根据所述确定单元确定的所述第一优化策略, 以第一时 段为单位对目标小区的时频资源进行优化; 发送单元, 用于向第一网络设备发送优化策略信息, 所述优化策略信息 用于指示所述第一优化策略, 以便于所述第一网络设备根据所述第一优化策 略, 以第二时段为单位对所述目标小区的时频资源进行优化, 其中, 所述第 二时段的长度小于所述第一时段的长度,且所述第二时段处于所述第一时段 内。
11、 根据权利要求 10所述的装置, 其特征在于, 所述优化单元具体用 于根据所述第一优化策略,基于所述目标时频资源在第四时段内的容量特性 和覆盖特性, 以第一时段为单位对目标小区的时频资源进行优化, 其中, 所 述第四时段处于所述第一时段之前。
12、 根据权利要求 10或 11所述的装置, 其特征在于, 所述第一网络设 备包括无线资源管理 RRM实体, 所述装置包括自组织网络 SON实体。
PCT/CN2014/079211 2014-06-05 2014-06-05 资源优化的方法和装置 WO2015184609A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480050091.8A CN105532031B (zh) 2014-06-05 2014-06-05 资源优化的方法和装置
PCT/CN2014/079211 WO2015184609A1 (zh) 2014-06-05 2014-06-05 资源优化的方法和装置
EP14893705.5A EP3154290B1 (en) 2014-06-05 2014-06-05 Resource optimization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079211 WO2015184609A1 (zh) 2014-06-05 2014-06-05 资源优化的方法和装置

Publications (1)

Publication Number Publication Date
WO2015184609A1 true WO2015184609A1 (zh) 2015-12-10

Family

ID=54765947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079211 WO2015184609A1 (zh) 2014-06-05 2014-06-05 资源优化的方法和装置

Country Status (3)

Country Link
EP (1) EP3154290B1 (zh)
CN (1) CN105532031B (zh)
WO (1) WO2015184609A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518354A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种确定策略的方法、装置及***
CN113919663A (zh) * 2021-09-23 2022-01-11 广东工业大学 工业园区水网的水资源配置方法、装置、介质和电子设备
CN114745733A (zh) * 2022-03-30 2022-07-12 中山大学 一种基于son和rrm联合优化的无线网络优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730224A (zh) * 2008-10-29 2010-06-09 中国科学院自动化研究所 基于分布式优化策略的无线传感器网络节点定位方法
CN101951628A (zh) * 2010-09-13 2011-01-19 华为技术有限公司 业务优化策略通知方法、网络侧设备、终端
CN103151802A (zh) * 2013-02-06 2013-06-12 上海交通大学 多时间尺度的主动配电网dg协调控制***及方法
CN103279353A (zh) * 2013-05-31 2013-09-04 新浪网技术(中国)有限公司 一种应用优化策略确定方法、装置及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2647239A1 (en) * 2010-12-03 2013-10-09 Huawei Technologies Co., Ltd. Method and apparatus of communications
EP2672749A1 (en) * 2012-06-08 2013-12-11 Telefonaktiebolaget L M Ericsson AB (Publ) Self-organising network
CN103580898B (zh) * 2012-08-01 2016-12-21 华为技术有限公司 网络协调方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101730224A (zh) * 2008-10-29 2010-06-09 中国科学院自动化研究所 基于分布式优化策略的无线传感器网络节点定位方法
CN101951628A (zh) * 2010-09-13 2011-01-19 华为技术有限公司 业务优化策略通知方法、网络侧设备、终端
CN103151802A (zh) * 2013-02-06 2013-06-12 上海交通大学 多时间尺度的主动配电网dg协调控制***及方法
CN103279353A (zh) * 2013-05-31 2013-09-04 新浪网技术(中国)有限公司 一种应用优化策略确定方法、装置及***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3154290A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518354A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种确定策略的方法、装置及***
CN113518354B (zh) * 2020-04-10 2023-08-22 华为技术有限公司 一种确定策略的方法、装置及***
CN113919663A (zh) * 2021-09-23 2022-01-11 广东工业大学 工业园区水网的水资源配置方法、装置、介质和电子设备
CN113919663B (zh) * 2021-09-23 2024-05-03 广东工业大学 工业园区水网的水资源配置方法、装置、介质和电子设备
CN114745733A (zh) * 2022-03-30 2022-07-12 中山大学 一种基于son和rrm联合优化的无线网络优化方法
CN114745733B (zh) * 2022-03-30 2023-02-03 中山大学 基于son和rrm联合优化的无线网络优化方法及***

Also Published As

Publication number Publication date
EP3154290B1 (en) 2019-09-04
CN105532031A (zh) 2016-04-27
EP3154290A4 (en) 2017-07-19
EP3154290A1 (en) 2017-04-12
CN105532031B (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
US10333612B2 (en) Wireless communication methods, systems, and computer program products
US10123268B2 (en) Wireless communication methods, systems, and computer program products
CN106332187B (zh) 一种WLAN中的QoS参数配置方法、装置及***
TWI812603B (zh) 數據傳輸方法和裝置
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
BRPI0617911A2 (pt) controle de acesso ao meio (mac) flexìvel para redes sem fio desenvolvidas ad hoc
JP7150042B2 (ja) 信号伝送方法、ネットワーク装置及び端末装置
WO2018132988A1 (zh) 传输数据包的方法和终端
WO2017193334A1 (zh) 设备间通信的方法和装置
WO2015089834A1 (zh) 优化网络的***、设备和方法
JP2020533921A (ja) キャリア選択方法及び通信装置
WO2019095266A1 (en) Method and apparatus for uplink scheduling
WO2015184609A1 (zh) 资源优化的方法和装置
WO2022067802A1 (zh) 探测参考信号配置方法与装置、终端和网络设备
KR101614071B1 (ko) 링크 내에서 송신 우선순위 결정을 위한 방법 및 장치
WO2021212464A1 (zh) 用于资源选择的方法和终端装置
WO2018107457A1 (zh) 数据复用装置、方法以及通信***
WO2023273869A1 (zh) 信道状态信息报告的优先级确定方法与装置、相关设备
JP7278303B2 (ja) 上りチャネルを送受信する方法及びデバイス
WO2014101056A1 (zh) 功率控制方法和设备
WO2022205387A1 (zh) 边链路资源的重选方法及装置
CN110050493A (zh) 用于传输信号的方法和网络设备
CN115189851B (zh) 频域资源位置确定方法与装置、终端和网络设备
WO2023066202A1 (zh) 参考信号的资源映射方法与装置、终端和网络设备
WO2023131319A1 (zh) 定时提前确定方法及相关装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050091.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014893705

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014893705

Country of ref document: EP