WO2015183061A1 - Method for preparing highly active fischer-tropsch catalyst - Google Patents

Method for preparing highly active fischer-tropsch catalyst Download PDF

Info

Publication number
WO2015183061A1
WO2015183061A1 PCT/KR2015/005489 KR2015005489W WO2015183061A1 WO 2015183061 A1 WO2015183061 A1 WO 2015183061A1 KR 2015005489 W KR2015005489 W KR 2015005489W WO 2015183061 A1 WO2015183061 A1 WO 2015183061A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst precursor
fischer
tropsch synthesis
producing
cobalt
Prior art date
Application number
PCT/KR2015/005489
Other languages
French (fr)
Korean (ko)
Inventor
정종태
모용기
한자령
Original Assignee
한국가스공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국가스공사 filed Critical 한국가스공사
Publication of WO2015183061A1 publication Critical patent/WO2015183061A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Definitions

  • the present invention relates to a process for preparing Fischer-Tropsch catalysts used to produce hydrocarbons from synthesis gas.
  • Fischer-Tropsch synthesis is known which produces hydrocarbons from a gas mixture comprising carbon monoxide and hydrogen (synthetic gas).
  • the technology of converting liquid hydrocarbons using syngas starts with the reaction of producing syngas through reforming of natural gas and gasification such as coal and biomass.
  • the Fisher-Tropsch synthesis (FTS) reaction is a reaction for generating hydrocarbon compounds from syngas, and is performed by the following main representative reactions on iron-based and cobalt-based catalysts.
  • the water-gas shift (WGS) reaction of the reaction formula (2) which is a competition reaction with the FTS reaction of the reaction formula (1), generates carbon dioxide and hydrogen by reacting carbon monoxide with water generated from the reaction formula (1). Done.
  • the water produced in Scheme (1) changes the ratio of hydrogen and carbon monoxide in the entire Fischer-Tropsch synthesis reaction.
  • catalysts of different components are used depending on reaction conditions and desired products.
  • a main active component of the catalyst one or more components selected from Group 8B (cobalt, ruthenium, iron or nickel) on the standard periodic table, and components used as additionally added enhancers or structural stabilizers, etc.
  • Fischer-Tot using elements of Groups 1A, 3A, 4A, 5A, etc. and at least one of Groups 1B, 2B, 3B, 4B, 5B, 6B, and 7B Ropsch catalysts have been reported to be manufactured and used (US Pat. No. 7,067,562).
  • the catalyst used in the Fischer-Tropsch synthesis reaction changes the product distribution according to the main active ingredient.
  • the Fischer-Tropsch synthesis reaction using the cobalt system has the predominant reaction in Scheme (1) and the water gas shift reaction.
  • the amount of hydrocarbon (HC) produced by the Anderson-Shulz-Flory (ASF) mechanism is maximized when the molar ratio of H 2 / CO is less than 2.0.
  • the reaction proceeds at a low temperature compared to the iron-based catalyst has a more advantageous advantage in the production of hydrocarbons of paraffin-based, such as liquid or wax. Accordingly, special attention has been given to catalysts containing cobalt as the catalytically active component.
  • U.S. Pat.No. 7,585,808 discloses a Fischerthropsch reaction catalyst prepared by using ruthenium as a catalytically active metal and treating with triethanolamine.
  • U. S. Patent No. 5,928, 983 discloses a cobalt-based Fisherthropsch catalyst prepared by adding oxidizing alcohols, oxidizing aldehydes or oxidizing ketones, especially glyoxal.
  • US Pat. No. 5,968,991 discloses a process for activating a catalyst by impregnating and drying a solution comprising cobalt, multifunctional carboxylic acid represented by cobalt, HOOC- (CRR ′) n- COOH, and rhenium to a refractory inorganic carrier. Doing.
  • the present invention is a novel catalyst that ensures high catalytic activity and stability and improves the selectivity to high-boiling hydrocarbons and light hydrocarbons, as compared to cobalt-based catalysts, which are generally reported as catalysts for Fischer-Tropsch synthesis reactions. It is intended to provide a cobalt based catalyst.
  • It provides a method for producing a catalyst precursor for Fischer-Tropsch synthesis of cobalt content contained in the catalyst precursor is about 12% to about 25% by weight based on the weight of the silica carrier.
  • the present invention also provides a hydrocarbon synthesis method comprising the step of reducing and activating a catalyst precursor prepared by the method and contacting it with a mixed gas comprising hydrogen and carbon monoxide.
  • the catalyst according to the present invention is used in the Fischer-Tropsch synthesis reaction to improve the conversion of carbon monoxide and the selectivity to methane, the main by-product, and the effect of improving the yield of high boiling point hydrocarbons and light olefins is excellent.
  • 1 is a graph showing the activity of a catalyst obtained from the catalyst precursor according to Examples 1 to 5.
  • FIG. 2 is a graph showing the activity of a catalyst obtained from catalyst precursors according to Examples 1, 6 and 7.
  • FIG. 1 is a graph showing the activity of a catalyst obtained from catalyst precursors according to Examples 1, 6 and 7.
  • a method for preparing a catalyst precursor for Fischer-Tropsch synthesis which exhibits high carbon monoxide (CO) conversion and high activity.
  • It provides a method for producing a catalyst precursor for Fischer-Tropsch synthesis of cobalt content contained in the catalyst precursor is about 12% to about 25% by weight based on the weight of the silica carrier.
  • the cobalt content contained in the catalyst precursor is preferably about 15% to about 20% by weight based on the weight of the silica carrier.
  • the method may further include adding a second metal compound to the solution of step a).
  • the second metal compound is at least one compound of Group 1A, 2A, 3A, 4A, 5A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 8B to be.
  • the second metal compound may be a compound of zirconium, iron, calcium, aluminum, zinc, nickel, copper, tungsten, boron, chromium, platinum, magnesium or manganese.
  • the second metal compound may be selected from the group consisting of nitrates, carbonates, organic acid salts, oxides, hydroxides, halides, cyanides, hydroxide salts, halide salts and cyanide salts.
  • the polyether compound may be an aliphatic, aromatic or cyclic polyether compound.
  • the aliphatic polyether compound may be paraformaldehyde, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene ether glycol, or a dialkyl ether compound thereof.
  • the cyclic polyether compound is preferably a crown ether.
  • the polyether compound is preferably used in a ratio of 0.01 to 2 mol per mol of cobalt.
  • the impregnation of the cobalt-containing compound and the solution of the polyether compound on the carrier may be performed by spray drying or extrusion drying of a mixture of wet impregnation method, dry impregnation method, reduced pressure impregnation method or slurry form. It may be, but is not limited to these.
  • the content of the cobalt metal may have a range of about 12 to about 25% by weight based on the weight of the silica carrier, and this catalyst precursor was used as a catalyst for FT synthesis after reduction. .
  • the drying of the step c) may be carried out under conditions of normal pressure, room temperature to 200 ° C, 12 to 50 hours or room temperature to 150 ° C and 12 to 24 hours, and the firing of the step d) is 150 It may be carried out under the conditions of heating from 300 ° C. to 300 ° C. over 1 to 50 hours. It is preferable that baking is performed in inert gas atmosphere.
  • the present invention also provides a hydrocarbon synthesis method comprising the step of reducing and activating the catalyst precursor prepared as described above and contacting the activated catalyst with a mixed gas containing hydrogen and carbon monoxide.
  • cobalt is used as the transition metal capable of hydrogenating carbon monoxide.
  • the cobalt is a salt such as cobalt nitrate, cobalt carbonate, cobalt organic acid salt, cobalt oxide, cobalt hydroxide, cobalt halide, cobalt cyanide, cobalt oxide salt, cobalt hydroxide salt, cobalt halide salt, and cobalt cyanide salt It can be used as at least 1 sort (s) of cobalt compound chosen from the group which becomes. Of these, cobalt nitrate or cobalt acetate is particularly preferable.
  • the cobalt compound may be used alone or as a mixture of two or more thereof.
  • the second metal compound may be a compound of zirconium, iron, calcium, aluminum, zinc, nickel, copper, tungsten, boron, chromium, platinum, magnesium or manganese.
  • Such second metal compounds may be used in the form of salts such as nitrates, carbonates, organic acid salts, oxides, hydroxides, halides, cyanides, oxide salts, hydroxide salts, halide salts, and cyanide salts.
  • salts such as nitrates, carbonates, organic acid salts, oxides, hydroxides, halides, cyanides, oxide salts, hydroxide salts, halide salts, and cyanide salts.
  • nitrate or acetate is particularly preferable. You may use a 2nd metal individually or as a mixture of 2 or more types.
  • the polyether compound used in the present invention is preferably an aliphatic, unsaturated hydrocarbon, aromatic or cyclic polyether compound.
  • the aliphatic polyether compound may be selected from paraformaldehyde, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene ether glycol, or dialkyl ether compounds thereof.
  • the polyether compound has 3 to 15 carbon atoms.
  • cyclic polyether compound is preferably a crown ether.
  • the cobalt compound and the polyether compound are dissolved in a solvent to prepare a solution (impregnation solution).
  • a solvent water, alcohols, ethers, ketones and aromatics can be used, and water, alcohols or mixtures of water and alcohols are particularly preferable.
  • the blending ratio of the polyether compound is preferably 0.01 to 2 moles, in particular 0.1 mole or more, per mole of the metal atoms contained in the cobalt compound, but the molar ratio is dependent on the molecular weight of the polyether. You can control its amount.
  • a complex refers to a complex in which a ligand having two or more coordinating atoms forms a ring and is bonded to a central metal.
  • the hydrogen ion index (pH) of the solution is preferably adjusted within a predetermined range.
  • Appropriate pH is determined according to a metal, for example, when using a Co compound, it is preferable to exist in the range of pH 8-11, and 9-10 are more preferable. If the pH of the solution greatly deviates from the above-mentioned range, the dissolution becomes difficult, or there is a possibility that it becomes an unstable solution that can be precipitated in a short time after the primary dissolution.
  • the carrier may be silica (SiO 2 ), and may further include other carriers.
  • the kind, specific surface area, pore volume, and average pore size of such a carrier are not particularly limited, but the specific surface area is at least 10 m 2 / g, the pore volume is at least 0.5 mL / g, and the average pore size is at least 10 nm. It is suitable for preparing a catalyst for carrying out the hydrogenation reaction of.
  • the carrier Prior to impregnation of the solution described above, the carrier is calcined at 300 to 1000 ° C. or 400 to 600 ° C. or 300 to 600 ° C. for 3 to 20 hours, preferably 5 to 15 hours, under air or an inert gas to remove impurities therein. It is preferable to remove.
  • the usage-amount of a solution is a volume amount corresponded to the volume of water small pore inherent to a porous body.
  • the preferred amount of cobalt metal supported on the silica carrier is preferably about 12% by weight to about 25% by weight based on the weight of the silica carrier. Preferably from about 15% to about 20% by weight is preferred.
  • the supported amount is less than 12% by weight, there is a fear that the rate of change of carbon monoxide may decrease during the reaction of a mixed gas of hydrogen and carbon monoxide described later.
  • the case of supporting a large amount of more than 25% by weight can not be expected to improve the carbon monoxide conversion rate as much as the supported amount.
  • the second metal When the second metal compound is used, the second metal may be supported on the silica carrier together with the cobalt metal, and the second metal may be used in a ratio of 0.03 mol to 0.3 mol based on 1 mol of the cobalt metal. have.
  • the impregnation and drying steps may be repeated several times.
  • Silica after impregnating a solution can be shape
  • Drying can be performed by an atmospheric pressure drying method, a vacuum drying method, or the like.
  • an atmospheric pressure drying method it can carry out on condition of room temperature-200 degreeC, and 12 to 50 hours in atmospheric pressure atmosphere.
  • the drying may be carried out by a method of maintaining a certain time while gradually raising the temperature.
  • the initial drying temperature is T1
  • the second stage drying temperature (T2) T1 + 10 ⁇ 50 °C
  • the third stage drying temperature T3 T2 + 10 ⁇ 50 °C
  • the second stage and the third The step drying temperature can be 1 to 30 hours. In general, it is carried out under the conditions of normal pressure, room temperature to 200 ° C, 12 to 50 hours, preferably 12 to 30 hours.
  • baking can be performed at 300-500 degreeC under conditions of air or inert gas for 1 to 50 hours, most preferably about 2 to 5 hours.
  • a catalyst in which cobalt oxide capable of hydrogenating carbon monoxide is highly dispersed on a carrier is prepared.
  • the obtained catalyst can be used for Fischer-Tropsch synthesis reaction after the activation treatment is carried out according to a certain rule.
  • the catalyst before the activating treatment is charged into the reaction column, and 200 to 600 ° C or 200 to 500 ° C or 300 while circulating hydrogen, carbon monoxide or a synthesis gas of hydrogen and carbon monoxide as an activator.
  • prescribed operation temperature is mentioned.
  • Gasoline fuel oil component by reacting the mixed gas containing hydrogen and carbon monoxide in the presence of the catalyst manufactured by the method which concerns on embodiment of this invention at the temperature of 150-350 degreeC, and the pressure of 0.1-5 MPa.
  • the hydrogenation product containing the diesel fuel component is obtained.
  • the catalyst in powder form is filled into a cylindrical stainless steel high pressure reaction tube, and the reaction tube is heated, for example, with a heater arranged externally so that the internal temperature is 150 to 350 ° C.
  • a mixed gas (0.1-5 MPa) containing hydrogen and carbon monoxide is circulated to produce a hydrogenated product.
  • a slurry obtained by dispersing the powdered catalyst in a high boiling point organic solvent is contained in a high pressure tank having an entrance and the like, and the high pressure tank is heated by, for example, a heater disposed externally such that its internal temperature is 150 to 350 ° C. It is also possible to distribute a high pressure mixed gas (0.1-20 MPa) containing hydrogen and carbon monoxide in the state from the inlet into the slurry in one state to produce a hydrogenated product.
  • a high pressure mixed gas 0.1-20 MPa
  • the catalyst produced by the method according to the embodiment of the present invention may be used in the form of powder (for example, an average particle diameter of 50 to 150 microns) or in the form of granules such as pellets of the powder.
  • the component to be selected is a diesel fuel oil component
  • it is preferable to use a mixture of hydrogen (H 2 ): carbon monoxide (CO) 2: 1 as the mixed gas.
  • the flow rate at the time of supplying the mixed gas to the high pressure reaction tube affects the carbon monoxide conversion rate.
  • the flow rate of the mixed gas is slowed, the rate of change of carbon monoxide is increased, but the distribution of each component of the hydrogenated product to be produced also changes, and the yield of the desired component also changes.
  • it is preferable to adjust the flow velocity of the said mixed gas suitably at 0.1-20 MPa and 150-350 degreeC from a viewpoint of raising the yield of the target component, ie, improving selectivity.
  • Evonik's Aerolyst 3041 (SiO 2 , excluded type, 0.40 to 0.46 kg / L, 99 +%) was prepared.
  • the silica was calcined at 450 ° C. for 10 hours while raising the temperature at a rate of 2 ° C./min.
  • the silica was crushed to prepare a size of 100 to 300 mesh.
  • silica having a specific surface area of about 150 m 2 / g, a pore volume of about 0.80 cm 3 / g, and an average pore size of about 20 nm was prepared.
  • Polyethylene glycol dimethyl ether and Co (NO 3 ) 2 .H 2 O were completely dissolved in distilled water so that the molar ratio of polyethylene glycol dimethyl ether and cobalt was 1: 1, and then impregnated with 8.8 g of the silica. After impregnation it was dried for 24 hours at 110 °C. Thereafter, after raising to 130 °C at a rate of 1 °C / min and maintained for 3 hours, after raising to 150 °C at a rate of 0.5 °C / min and maintained for 3 hours. Thereafter, the mixture was raised to 350 ° C. at a rate of 0.5 to 1 ° C./min, and then maintained for 3 hours and calcined to obtain 18 wt% Co / SiO 2 catalyst precursor.
  • Example 1 the content of cobalt was changed to 12% by weight instead of 18%, and Example 1 except that zirconium (Zr) was added as a second metal in an additional 1/16 mole ratio to 1 mole of the cobalt. In the same manner as the catalyst precursor was prepared.
  • Example 2 Except for changing the content of cobalt to 12% by weight instead of 18% in Example 1, except for adding iron (Fe) as a second metal in a 1/16 molar ratio compared to 1 mole of the cobalt Example
  • the catalyst precursor was prepared in the same manner as in 1.
  • Example 1 the content of cobalt was changed to 12% by weight instead of 18% by weight, and zinc (Zn) as a second metal was added in an additional ratio of 1/16 mole to 1 mole of the cobalt.
  • the catalyst precursor was prepared in the same manner as in 1.
  • Example 2 Except for changing the content of cobalt to 12% by weight instead of 18% in Example 1, except for adding calcium (Ca) as a second metal in an additional 1/16 mole ratio of 1 mole of the cobalt Example
  • the catalyst precursor was prepared in the same manner as in 1.
  • a catalyst precursor was prepared in the same manner as in Example 1 except that the cobalt content was changed to 12% by weight instead of 18% by weight in Example 1.
  • a catalyst precursor was prepared in the same manner as in Example 1 except that the cobalt content was changed to 24% by weight instead of 18% by weight in Example 1.
  • the catalysts according to the invention of Examples 1 to 7 exhibit good activity.
  • the catalyst of Example 1 shows the best results.
  • the catalyst precursor according to the invention containing a certain amount of cobalt metal relative to the silica carrier can be used as a useful catalyst in FT synthesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for preparing a catalyst for Fischer-Tropsch synthesis and provides a method for preparing a catalyst precursor for Fischer-Tropsch synthesis, comprising the steps of: a) preparing a solution of a cobalt-containing compound and a polyether compound containing two or more ether groups; b) impregnating a silica carrier with the solution; c) drying the silica carrier impregnated with the solution; and d) firing the dried silica carrier, wherein the content of cobalt comprised in the catalyst precursor is approximately 12-25 wt% based on the weight of the silica carrier.

Description

고활성 피셔-트롭쉬 촉매의 제조방법 Process for preparing a highly active Fischer-Tropsch catalyst
본 발명은 합성 기체로부터 탄화수소를 제조하는데 사용되는 피셔-트롭쉬 촉매의 제조방법에 관한 것이다.The present invention relates to a process for preparing Fischer-Tropsch catalysts used to produce hydrocarbons from synthesis gas.
일산화탄소 및 수소(합성 기체)를 포함하는 기체 혼합물로부터 탄화수소를 제조하는 피셔-트롭쉬 (Fisher-Tropsch) 합성은 공지되어 있다.Fischer-Tropsch synthesis is known which produces hydrocarbons from a gas mixture comprising carbon monoxide and hydrogen (synthetic gas).
합성가스를 이용한 액체탄화수소의 전환기술은 천연가스의 개질 및 석탄 및 바이오매스 등의 가스화를 통하여 합성가스를 제조하는 반응으로부터 시작된다. 일반적으로, 피셔-트롭쉬 합성(FTS: Fisher-Tropsch synthesis) 반응은 합성가스로부터 탄화수소 화합물들을 생성하는 반응으로서, 철계열 및 코발트 계열의 촉매상에서 다음의 주요 대표적인 반응에 의하여 진행되게 된다.The technology of converting liquid hydrocarbons using syngas starts with the reaction of producing syngas through reforming of natural gas and gasification such as coal and biomass. Generally, the Fisher-Tropsch synthesis (FTS) reaction is a reaction for generating hydrocarbon compounds from syngas, and is performed by the following main representative reactions on iron-based and cobalt-based catalysts.
nCO + 2nH2 → (CH2)n + nH2O (1)nCO + 2nH 2 ¡Æ (CH 2 ) n + nH 2 O (1)
CO + H2O → CO2 + H2 (2)CO + H 2 O → CO 2 + H 2 (2)
상기 반응식 (1)의 FTS 반응과 경쟁반응인 상기 반응식 (2)의 수성가스 전환 (WGS: water-gas shift) 반응은 일산화탄소와 상기 반응식 (1)로부터 생성되는 물이 반응하여 이산화탄소와 수소를 발생하게 된다. 따라서, 상기 반응식 (1)에서 생성된 물은 전체 피셔-트롭쉬 합성 반응에서 수소와 일산화탄소의 비를 변화시키게 된다.The water-gas shift (WGS) reaction of the reaction formula (2), which is a competition reaction with the FTS reaction of the reaction formula (1), generates carbon dioxide and hydrogen by reacting carbon monoxide with water generated from the reaction formula (1). Done. Thus, the water produced in Scheme (1) changes the ratio of hydrogen and carbon monoxide in the entire Fischer-Tropsch synthesis reaction.
피셔-트롭쉬 공정에 사용되고 있는 촉매는 반응조건이나 원하는 생성물에 따라서 상이한 성분의 촉매가 사용되고 있다. 그 대표적 예로서, 촉매의 주된 활성 성분으로서 표준주기율표상의 8B족 (코발트, 루테늄, 철 또는 니켈) 중에서 선택된 1종 이상의 성분과, 부가적으로 첨가되는 증진제 또는 구조안정제 등으로 사용되는 성분으로서 표준주기율표상의 1A족, 3A족, 4A족, 5A족 등의 원소들과 1B족, 2B족, 3B족, 4B족, 5B족, 6B족, 7B족 원소들 중 적어도 하나 이상의 성분을 사용하여 피셔-트롭쉬 촉매가 제조되어 사용되는 것으로 보고되어 있다(미국 등록특허 제7,067,562호).As the catalyst used in the Fischer-Tropsch process, catalysts of different components are used depending on reaction conditions and desired products. As a representative example thereof, as a main active component of the catalyst, one or more components selected from Group 8B (cobalt, ruthenium, iron or nickel) on the standard periodic table, and components used as additionally added enhancers or structural stabilizers, etc. Fischer-Tot using elements of Groups 1A, 3A, 4A, 5A, etc. and at least one of Groups 1B, 2B, 3B, 4B, 5B, 6B, and 7B Ropsch catalysts have been reported to be manufactured and used (US Pat. No. 7,067,562).
피셔-트롭쉬 합성 반응에 사용되는 촉매는 주요 활성 성분에 따라서 생성물의 분포가 변화하게 되지만, 일반적으로 코발트계를 이용하는 피셔-트롭쉬 합성 반응은 반응식 (1)의 반응이 우세하고 수성가스 전환반응에 대한 활성이 적어서 H2/CO의 몰비가 2.0인 경우에 ASF (Anderson-Shulz-Flory) 메커니즘에 의하여 생성되는 탄화수소(HC)의 양이 최대화 된다.The catalyst used in the Fischer-Tropsch synthesis reaction changes the product distribution according to the main active ingredient. However, in general, the Fischer-Tropsch synthesis reaction using the cobalt system has the predominant reaction in Scheme (1) and the water gas shift reaction. The amount of hydrocarbon (HC) produced by the Anderson-Shulz-Flory (ASF) mechanism is maximized when the molar ratio of H 2 / CO is less than 2.0.
또한, 코발트 계열의 촉매를 사용하는 경우에는 철 계열의 촉매와 비교하여 저온에서 반응이 진행되므로 액체나 왁스와 같은 파라핀계열의 탄화수소의 생성에 보다 유리한 장점이 있다. 따라서 촉매적 활성 성분으로서 코발트를 함유하는 촉매에 특별한 관심이 주어져 왔다.In addition, when using a cobalt-based catalyst, the reaction proceeds at a low temperature compared to the iron-based catalyst has a more advantageous advantage in the production of hydrocarbons of paraffin-based, such as liquid or wax. Accordingly, special attention has been given to catalysts containing cobalt as the catalytically active component.
또한 피셔트롭쉬 촉매 제조시 유기 첨가제를 첨가하여 촉매활성을 증가시키는 방법에 대한 다양한 연구 결과가 알려져 있다.In addition, various research results on how to increase the catalytic activity by adding an organic additive in the production of Fischer Tropsch catalyst is known.
미국특허 제7,585,808호는 촉매활성 금속으로 루테늄을 사용하고 트리에탄올아민으로 처리하여 제조한 피셔트롭쉬 반응용 촉매를 개시한다.U.S. Pat.No. 7,585,808 discloses a Fischerthropsch reaction catalyst prepared by using ruthenium as a catalytically active metal and treating with triethanolamine.
미국특허 제5,928,983호는 산화성 알코올, 산화성 알데하이드 또는 산화성 케톤, 그 중에서도 특히 글리옥살을 첨가하여 제조된 코발트계 피셔트롭쉬 촉매를 개시한다.U. S. Patent No. 5,928, 983 discloses a cobalt-based Fisherthropsch catalyst prepared by adding oxidizing alcohols, oxidizing aldehydes or oxidizing ketones, especially glyoxal.
미국특허 제5,968,991호는 내화성 무기 담체에 코발트, HOOC-(CRR')n-COOH로 표시되는 다관능성 카르복시산(multifunctional carboxylic acid), 레늄을 포함하는 용액을 함침시키고 건조하여 촉매를 활성화시키는 공정을 개시하고 있다.US Pat. No. 5,968,991 discloses a process for activating a catalyst by impregnating and drying a solution comprising cobalt, multifunctional carboxylic acid represented by cobalt, HOOC- (CRR ′) n- COOH, and rhenium to a refractory inorganic carrier. Doing.
본 발명은 종래의 피셔-트롭쉬 합성 반응용 촉매로서 일반적으로 보고되고 있는 코발트 계열의 촉매와 비교하여 높은 촉매 활성 및 안정성을 확보함과 동시에 고비점의 탄화수소 및 경질 탄화수소로의 선택성을 향상시킨 새로운 코발트 계열의 촉매를 제공하고자 한다.The present invention is a novel catalyst that ensures high catalytic activity and stability and improves the selectivity to high-boiling hydrocarbons and light hydrocarbons, as compared to cobalt-based catalysts, which are generally reported as catalysts for Fischer-Tropsch synthesis reactions. It is intended to provide a cobalt based catalyst.
본 발명은 상기 기술적 과제를 달성하기 위하여,The present invention to achieve the above technical problem,
a) 코발트 함유 화합물, 및 에테르기를 2개 이상 함유하는 폴리에테르 화합물의 용액을 제조하는 단계,a) preparing a solution of a cobalt containing compound and a polyether compound containing two or more ether groups,
b) 상기 용액을 실리카(SiO2) 담체에 함침시키는 단계,b) impregnating the solution into a silica (SiO 2 ) carrier,
c) 상기 용액이 함침된 실리카 담체를 건조하는 단계, 및c) drying the silica carrier impregnated with the solution, and
d) 건조 후의 실리카 담체를 소성하여 촉매 전구체를 형성하는 단계를 포함하며,d) calcining the silica carrier after drying to form a catalyst precursor,
상기 촉매 전구체에 포함된 코발트 함량이 상기 실리카 담체의 중량을 기준으로 약 12중량% 내지 약 25중량%인 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법을 제공한다.It provides a method for producing a catalyst precursor for Fischer-Tropsch synthesis of cobalt content contained in the catalyst precursor is about 12% to about 25% by weight based on the weight of the silica carrier.
또한 본 발명은 상기 방법에 의해 제조된 촉매 전구체를 환원하여 활성화시키고 이를 수소와 일산화탄소를 포함하는 혼합가스와 접촉시키는 단계를 포함하는 탄화수소 합성 방법을 제공한다.The present invention also provides a hydrocarbon synthesis method comprising the step of reducing and activating a catalyst precursor prepared by the method and contacting it with a mixed gas comprising hydrogen and carbon monoxide.
본 발명에 따른 촉매는 피셔-트롭쉬 합성 반응에 사용되어 일산화탄소의 전환율 향상과 주요 부산물인 메탄으로의 선택성을 감소시켜서 고비점의 탄화수소 및 경질올레핀으로의 수율을 향상시키는 효과가 탁월하다.The catalyst according to the present invention is used in the Fischer-Tropsch synthesis reaction to improve the conversion of carbon monoxide and the selectivity to methane, the main by-product, and the effect of improving the yield of high boiling point hydrocarbons and light olefins is excellent.
도 1은 실시예 1 내지 5에 따른 촉매 전구체로부터 얻어진 촉매의 활성을 나타내는 그래프이다.1 is a graph showing the activity of a catalyst obtained from the catalyst precursor according to Examples 1 to 5.
도 2는 실시예 1, 6 및 7에 따른 촉매 전구체로부터 얻어진 촉매의 활성을 나타내는 그래프이다.2 is a graph showing the activity of a catalyst obtained from catalyst precursors according to Examples 1, 6 and 7. FIG.
본 발명에 의하면, 일산화탄소(CO) 전환율이 크고 높은 활성을 나타내는 피셔-트롭쉬 합성용 촉매 전구체를 제조하는 방법이 제공된다.According to the present invention, there is provided a method for preparing a catalyst precursor for Fischer-Tropsch synthesis, which exhibits high carbon monoxide (CO) conversion and high activity.
이하, 본 발명의 바람직한 실시 형태를 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, preferred embodiment of this invention is described.
본 발명에 따른 피셔-트롭쉬(FT) 합성용 촉매 전구체의 제조 방법은The method for preparing a catalyst precursor for Fischer-Tropsch (FT) synthesis according to the present invention
a) 코발트 함유 화합물, 및 에테르기를 2개 이상 함유하는 폴리에테르 화합물의 용액을 제조하는 단계,a) preparing a solution of a cobalt containing compound and a polyether compound containing two or more ether groups,
b) 상기 용액을 실리카(SiO2) 담체에 함침시키는 단계,b) impregnating the solution into a silica (SiO 2 ) carrier,
c) 상기 용액이 함침된 실리카 담체를 건조하는 단계, 및c) drying the silica carrier impregnated with the solution, and
d) 건조 후의 실리카 담체를 소성하여 촉매 전구체를 형성하는 단계를 포함하며,d) calcining the silica carrier after drying to form a catalyst precursor,
상기 촉매 전구체에 포함된 코발트 함량이 상기 실리카 담체의 중량을 기준으로 약 12중량% 내지 약 25중량%인 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법을 제공한다.It provides a method for producing a catalyst precursor for Fischer-Tropsch synthesis of cobalt content contained in the catalyst precursor is about 12% to about 25% by weight based on the weight of the silica carrier.
본 발명의 바람직한 실시예에 따르면, 상기 촉매 전구체에 포함된 코발트 함량은 상기 실리카 담체의 중량을 기준으로 약 15중량% 내지 약 20중량%가 바람직하다.According to a preferred embodiment of the present invention, the cobalt content contained in the catalyst precursor is preferably about 15% to about 20% by weight based on the weight of the silica carrier.
본 발명의 바람직한 실시예에 따르면, 상기 단계 a)의 용액에 제2의 금속화합물을 첨가하는 단계를 더 포함할 수 있다.According to a preferred embodiment of the present invention, the method may further include adding a second metal compound to the solution of step a).
상기 제2의 금속화합물이 하나 이상의 1A족, 2A족, 3A족, 4A족, 5A족, 1B족, 2B족, 3B족, 4B족, 5B족, 6B족, 7B족, 8B족 원소의 화합물이다.The second metal compound is at least one compound of Group 1A, 2A, 3A, 4A, 5A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 8B to be.
특히 바람직하게는 상기 제2의 금속화합물은 지르코늄, 철, 칼슘, 알루미늄, 아연, 니켈, 구리, 텅스텐, 보론, 크롬, 백금, 마그네슘 또는 망간의 화합물일 수 있다.Particularly preferably, the second metal compound may be a compound of zirconium, iron, calcium, aluminum, zinc, nickel, copper, tungsten, boron, chromium, platinum, magnesium or manganese.
상기 제2의 금속화합물은, 질산염, 탄산염, 유기산염, 산화물, 수산화물, 할로겐화물, 시안화물, 수산화물 염, 할로겐화물 염 및 시안화물 염으로 이루어지는 군으로부터 선택될 수 있다.The second metal compound may be selected from the group consisting of nitrates, carbonates, organic acid salts, oxides, hydroxides, halides, cyanides, hydroxide salts, halide salts and cyanide salts.
상기 폴리에테르 화합물은 지방족, 방향족 또는 고리형 폴리에테르 화합물일 수 있다.The polyether compound may be an aliphatic, aromatic or cyclic polyether compound.
상기 지방족 폴리에테르 화합물은 파라포름알데하이드, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜, 폴리테트라메틸렌에테르글리콜 또는 이들의 디알킬에테르 화합물일 수 있다.The aliphatic polyether compound may be paraformaldehyde, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene ether glycol, or a dialkyl ether compound thereof.
본 발명의 실시예에 따르면, 상기 고리형 폴리에테르 화합물은 크라운에테르인 것이 바람직하다.According to an embodiment of the present invention, the cyclic polyether compound is preferably a crown ether.
본 발명에 있어서, 상기 폴리에테르 화합물은 코발트 1 몰당 0.01~2 몰의 비율로 사용되는 것이 바람직하다.In the present invention, the polyether compound is preferably used in a ratio of 0.01 to 2 mol per mol of cobalt.
본 발명의 실시예에 있어서, 상기 용액을 상기 담체에 함침시키기 전에 상기 담체를 공기 중에서 300~1000℃ 또는 400~1000℃로 소성하는 단계를 더 포함하는 것이 바람직하다.In an embodiment of the present invention, it is preferable to further include the step of firing the carrier to 300 ~ 1000 ℃ or 400 ~ 1000 ℃ in air before the solution is impregnated with the carrier.
상기 코발트 함유 화합물, 및 상기 폴리에테르 화합물의 용액을 상기 담체에 함침하는 단계는, 습식 함침법, 건식 함침법, 감압 함침법 또는 슬러리 형태의 혼합물을 분무건조(spray drying) 또는 압출건조에 의하여 행해질 수 있으나, 이들로 한정되는 것은 아니다.The impregnation of the cobalt-containing compound and the solution of the polyether compound on the carrier may be performed by spray drying or extrusion drying of a mixture of wet impregnation method, dry impregnation method, reduced pressure impregnation method or slurry form. It may be, but is not limited to these.
본 발명의 실시예에 따르면, 상기 코발트 금속의 함량은 상기 실리카 담체의 중량을 기준으로 약 12 내지 약 25중량%의 범위를 가질 수 있으며, 이 촉매 전구체를 환원시킨 후 FT 합성용 촉매로서 사용하였다.According to the embodiment of the present invention, the content of the cobalt metal may have a range of about 12 to about 25% by weight based on the weight of the silica carrier, and this catalyst precursor was used as a catalyst for FT synthesis after reduction. .
본 발명에 있어서, 상기 c) 단계의 건조는, 상압, 실온~200℃, 12~50시간 또는 실온~150℃, 12~24시간의 조건으로 행해질 수 있고, 상기 d) 단계의 소성은, 150℃에서 300~500℃로 1~50 시간에 걸쳐 가열시키는 조건으로 행해질 수 있다. 소성이 불활성가스 분위기에서 행해지는 것이 바람직하다.In the present invention, the drying of the step c) may be carried out under conditions of normal pressure, room temperature to 200 ° C, 12 to 50 hours or room temperature to 150 ° C and 12 to 24 hours, and the firing of the step d) is 150 It may be carried out under the conditions of heating from 300 ° C. to 300 ° C. over 1 to 50 hours. It is preferable that baking is performed in inert gas atmosphere.
본 발명은 또한 상기와 같이 제조된 촉매 전구체를 환원하여 활성화시키고, 이 활성화된 촉매를 수소와 일산화탄소를 포함하는 혼합가스와 접촉시키는 단계를 포함하는 탄화수소 합성 방법을 제공한다.The present invention also provides a hydrocarbon synthesis method comprising the step of reducing and activating the catalyst precursor prepared as described above and contacting the activated catalyst with a mixed gas containing hydrogen and carbon monoxide.
이하 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.
FT 합성용 촉매 전구체의 제조 방법에 있어서 일산화탄소를 수소화할 수 있는 전이금속으로서 코발트가 사용된다.In the production method of the catalyst precursor for FT synthesis, cobalt is used as the transition metal capable of hydrogenating carbon monoxide.
상기 코발트는, 코발트 질산염, 코발트 탄산염, 코발트 유기산염 등의 염, 코발트 산화물, 코발트 수산화물, 코발트 할로겐화물, 코발트 시안화물, 코발트 산화물 염, 코발트 수산화물 염, 코발트 할로겐화물 염, 및 코발트 시안화물 염으로 되는 군으로부터 선택되는 적어도 1종의 코발트 화합물로서 이용할 수 있다. 이들 중, 특별히 코발트 질산염 또는 코발트 초산염이 바람직하다. 코발트 화합물은 단독으로 또는 2종 이상의 혼합물로서 이용해도 좋다.The cobalt is a salt such as cobalt nitrate, cobalt carbonate, cobalt organic acid salt, cobalt oxide, cobalt hydroxide, cobalt halide, cobalt cyanide, cobalt oxide salt, cobalt hydroxide salt, cobalt halide salt, and cobalt cyanide salt It can be used as at least 1 sort (s) of cobalt compound chosen from the group which becomes. Of these, cobalt nitrate or cobalt acetate is particularly preferable. The cobalt compound may be used alone or as a mixture of two or more thereof.
또한 촉매 활성을 증대시키기 위하여, 1A족, 2A족, 3A족, 4A족, 5A족, 1B족, 2B족, 3B족, 4B족, 5B족, 6B족, 7B족, 8B족 원소로부터 선택되는 제2의 금속 화합물을 추가로 첨가할 수 있다. 본 발명의 바람직할 실시예에 따르면, 상기 제2의 금속 화합물은 지르코늄, 철, 칼슘, 알루미늄, 아연, 니켈, 구리, 텅스텐, 보론, 크롬, 백금, 마그네슘 또는 망간의 화합물일 수 있다.Also, in order to increase the catalytic activity, selected from Group 1A, 2A, 3A, 4A, 5A, 1B, 2B, 3B, 4B, 5B, 6B, 7B and 8B elements A second metal compound can be further added. According to a preferred embodiment of the present invention, the second metal compound may be a compound of zirconium, iron, calcium, aluminum, zinc, nickel, copper, tungsten, boron, chromium, platinum, magnesium or manganese.
이러한 제2 금속 화합물은 질산염, 탄산염, 유기산염 등의 염, 산화물, 수산화물, 할로겐화물, 시안화물, 산화물 염, 수산화물 염, 할로겐화물 염, 및 시안화물 염 등의 형태로 사용될 수 있다. 이들 중, 특별히 질산염 또는 초산염이 바람직하다. 제2 금속은 단독으로 또는 2종 이상의 혼합물로서 이용해도 좋다.Such second metal compounds may be used in the form of salts such as nitrates, carbonates, organic acid salts, oxides, hydroxides, halides, cyanides, oxide salts, hydroxide salts, halide salts, and cyanide salts. Among these, nitrate or acetate is particularly preferable. You may use a 2nd metal individually or as a mixture of 2 or more types.
본 발명에서 사용하는 상기 폴리에테르 화합물은 지방족, 불포화 탄화수소, 방향족 또는 고리형 폴리에테르 화합물인 것이 바람직하다.The polyether compound used in the present invention is preferably an aliphatic, unsaturated hydrocarbon, aromatic or cyclic polyether compound.
상기 지방족 폴리에테르 화합물은 파라포름알데하이드, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜, 폴리테트라메틸렌에테르글리콜 또는 이들의 디알킬에테르 화합물로부터 선택될 수 있다.The aliphatic polyether compound may be selected from paraformaldehyde, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene ether glycol, or dialkyl ether compounds thereof.
더욱 바람직하게는 폴리에테르화합물은 탄소수 3 ~ 15 인 것이 바람직하다.More preferably, the polyether compound has 3 to 15 carbon atoms.
또한, 상기 고리형 폴리에테르 화합물은 크라운에테르인 것이 바람직하다.In addition, the cyclic polyether compound is preferably a crown ether.
상기 코발트 화합물과 폴리에테르 화합물을 용매에 용해하고 용액(함침액)이 제조된다. 용매로서는, 물, 알코올(alcohol)류, 에테르(ether)류, 케톤(ketone)류 및 방향족류를 이용할 수 있고, 특히 물, 알코올류 또는 물과 알코올류의 혼합물이 바람직하다.The cobalt compound and the polyether compound are dissolved in a solvent to prepare a solution (impregnation solution). As the solvent, water, alcohols, ethers, ketones and aromatics can be used, and water, alcohols or mixtures of water and alcohols are particularly preferable.
폴리에테르 화합물을 코발트 화합물에 작용시키는데 있어서, 폴리에테르 화합물의 배합 비율은, 코발트 화합물에 포함되는 금속 원자 1 몰당 0.01~2몰, 특히 0.1몰 이상인 것이 바람직하나, 이 몰비는 폴리에테르의 분자량에 따라 그의 양을 조절할 수 있다.In the action of the polyether compound on the cobalt compound, the blending ratio of the polyether compound is preferably 0.01 to 2 moles, in particular 0.1 mole or more, per mole of the metal atoms contained in the cobalt compound, but the molar ratio is dependent on the molecular weight of the polyether. You can control its amount.
상기 코발트 화합물과 폴리에테르 화합물을 함유하는 용액 중에서는, 코발트 화합물은 이온화하여 코발트 이온이 생기고, 이 코발트 이온을 중심으로 폴리에테르 화합물이 배위하고, 착체가 형성된다고 추정된다. 또한, 착체란 2개 이상의 배위 원자를 가지는 배위자가 고리를 형성하고 중심 금속에 결합한 착체를 말한다.In the solution containing the cobalt compound and the polyether compound, the cobalt compound is ionized to generate cobalt ions, and the polyether compound is coordinated around the cobalt ions to form a complex. In addition, a complex refers to a complex in which a ligand having two or more coordinating atoms forms a ring and is bonded to a central metal.
코발트 이온을 용액 중에 안정되게 용해시키기 위해, 용액의 수소이온지수(pH)는 소정의 범위 내에서 조정하는 것이 바람직하다. 적절한 pH는, 금속에 따라 결정되고, 예를 들면, Co 화합물을 사용하는 경우에는, pH 8~11의 범위 내인 것이 바람직하고, 9~10이 보다 바람직하다. 용액의 pH가 상술한 범위를 크게 일탈한다면, 그 용해가 곤란해지거나, 또는 1차적인 용해 후, 단시간에 석출할 수 있는 불안정한 용액이 될 우려가 있다.In order to stably dissolve the cobalt ions in the solution, the hydrogen ion index (pH) of the solution is preferably adjusted within a predetermined range. Appropriate pH is determined according to a metal, for example, when using a Co compound, it is preferable to exist in the range of pH 8-11, and 9-10 are more preferable. If the pH of the solution greatly deviates from the above-mentioned range, the dissolution becomes difficult, or there is a possibility that it becomes an unstable solution that can be precipitated in a short time after the primary dissolution.
상기 담체는 실리카(SiO2)일 수 있고, 기타 다른 담체를 더 포함할 수 있다. 이와 같은 담체의 종류, 비표면적, 공극부피, 및 평균 공극사이즈는 특별히 한정되는 것이 아니지만, 비표면적이 10 m2/g 이상, 공극부피가 0.5 mL/g 이상, 평균 공극사이즈 10 nm 이상인 것이 일산화탄소의 수소화 반응을 행하기 위한 촉매를 제조하는데 적합하다.The carrier may be silica (SiO 2 ), and may further include other carriers. The kind, specific surface area, pore volume, and average pore size of such a carrier are not particularly limited, but the specific surface area is at least 10 m 2 / g, the pore volume is at least 0.5 mL / g, and the average pore size is at least 10 nm. It is suitable for preparing a catalyst for carrying out the hydrogenation reaction of.
담체는 전술한 용액을 함침시키기에 앞서, 공기 또는 불활성 가스 하에서 300~1000℃ 또는 400~600℃ 또는 300~600℃로 3~20 시간, 바람직하게는 5~15시간 동안 소성하여 내부의 불순물을 제거해 두는 것이 바람직하다.Prior to impregnation of the solution described above, the carrier is calcined at 300 to 1000 ° C. or 400 to 600 ° C. or 300 to 600 ° C. for 3 to 20 hours, preferably 5 to 15 hours, under air or an inert gas to remove impurities therein. It is preferable to remove.
킬레이트 착체를 함유하는 용액을 실리카에 함침시키는 방법에 있어서는, 예를 들면, 습식 함침법, 건식 함침법 및 감압 함침법 등을 채용할 수 있다. 이 때, 용액의 사용량은 다공체 고유의 수분 작은 구멍 용적량에 상당하는 체적량인 것이 바람직하다.In the method of impregnating a solution containing a chelate complex with silica, for example, a wet impregnation method, a dry impregnation method, a vacuum impregnation method, or the like can be adopted. At this time, it is preferable that the usage-amount of a solution is a volume amount corresponded to the volume of water small pore inherent to a porous body.
또한, 본 발명의 실시 형태에 관련되는 방법에 의하여 제조되는 촉매에 있어서, 상기 실리카 담체에 담지되는 코발트 금속의 바람직한 양은, 상기 실리카 담체의 중량을 기준으로 약 12중량% 내지 약 25중량%, 바람직하게는 약 15중량% 내지 약 20중량%의 범위가 바람직하다. 담지량이 12중량% 미만인 경우에는, 후술하는 수소와 일산화탄소와의 혼합 가스의 반응시 일산화탄소의 변화율이 저하될 우려가 있다. 한편, 25중량%를 넘도록 다량으로 담지하는 경우에는 담지량 만큼 일산화탄소 전환율 향상을 기대할 수 없다.Further, in the catalyst produced by the method according to the embodiment of the present invention, the preferred amount of cobalt metal supported on the silica carrier is preferably about 12% by weight to about 25% by weight based on the weight of the silica carrier. Preferably from about 15% to about 20% by weight is preferred. When the supported amount is less than 12% by weight, there is a fear that the rate of change of carbon monoxide may decrease during the reaction of a mixed gas of hydrogen and carbon monoxide described later. On the other hand, in the case of supporting a large amount of more than 25% by weight can not be expected to improve the carbon monoxide conversion rate as much as the supported amount.
상기 제2 금속 화합물이 사용되는 경우, 상기 코발트 금속과 함께 제2 금속이 실리카 담체에 담지될 수 있으며, 이때 제2 금속은 상기 코발트 금속 1몰을 기준으로 0.03몰 내지 0.3몰의 비율로 사용할 수 있다.When the second metal compound is used, the second metal may be supported on the silica carrier together with the cobalt metal, and the second metal may be used in a ratio of 0.03 mol to 0.3 mol based on 1 mol of the cobalt metal. have.
최종적으로 상술한 양으로 코발트 금속이 담지되도록, 함침의 공정의 횟수를 적절히 결정하는 것이 바람직하다. 1회의 함침만으로는 상술한 코발트 담지량이 되지 않는 경우는, 함침 및 건조 공정을 여러 차례 반복하여 행해도 좋다.Finally, it is preferable to appropriately determine the number of steps of the impregnation so that the cobalt metal is supported in the above-mentioned amount. If the cobalt loading amount described above is not achieved by only one impregnation, the impregnation and drying steps may be repeated several times.
용액을 함침시킨 뒤의 실리카는, 필요에 따라 원주상, 삼엽상, 사엽상, 구상 등의 형상으로 성형할 수 있다.Silica after impregnating a solution can be shape | molded in the shape of a columnar shape, a trilobal shape, a four leaf shape, a spherical shape as needed.
건조는 상압 건조법이나 감압 건조법 등에 의하여 행할 수 있다. 예를 들면, 상압 건조법의 경우, 대기압 분위기 하, 실온~200℃, 12~50 시간의 조건으로 행할 수 있다.Drying can be performed by an atmospheric pressure drying method, a vacuum drying method, or the like. For example, in the case of an atmospheric pressure drying method, it can carry out on condition of room temperature-200 degreeC, and 12 to 50 hours in atmospheric pressure atmosphere.
본 발명의 바람직한 실시예에 따르면 상기 건조는 온도를 점진적으로 올리면서 일정시간 더 유지하는 방법으로 실시될 수 있다. 바람직하게는 초기 건조온도를 T1 이라고 했을 때, 제2단계 건조 온도(T2)=T1+10~50℃, 제3단계 건조 온도 T3=T2+10~50℃ 로 하고, 제 2 단계 및 제 3단계 건조 온도는 1~30 시간으로 할 수 있다. 전체적으로 상압, 실온~200℃, 12~50 시간, 바람직하게는 12~30시간의 조건으로 실시된다.According to a preferred embodiment of the present invention, the drying may be carried out by a method of maintaining a certain time while gradually raising the temperature. Preferably, when the initial drying temperature is T1, the second stage drying temperature (T2) = T1 + 10 ~ 50 ℃, the third stage drying temperature T3 = T2 + 10 ~ 50 ℃, the second stage and the third The step drying temperature can be 1 to 30 hours. In general, it is carried out under the conditions of normal pressure, room temperature to 200 ° C, 12 to 50 hours, preferably 12 to 30 hours.
그 뒤, 공기 또는 불활성 가스 하에서 300~500℃로 1~50 시간, 가장 바람직하게는 2~5 시간 정도의 조건으로 소성을 행할 수 있다. 상술한 방법에 의하여, 일산화탄소를 수소화할 수 있는 코발트 산화물이 담체 상에 고분산된 촉매가 제조된다. 얻어진 촉매는, 일정한 규칙에 의하여 활성화 처리를 가한 뒤, 피셔-트롭쉬 합성 반응에 이용할 수 있다.Then, baking can be performed at 300-500 degreeC under conditions of air or inert gas for 1 to 50 hours, most preferably about 2 to 5 hours. By the above-described method, a catalyst in which cobalt oxide capable of hydrogenating carbon monoxide is highly dispersed on a carrier is prepared. The obtained catalyst can be used for Fischer-Tropsch synthesis reaction after the activation treatment is carried out according to a certain rule.
활성화 처리로서는, 예를 들면, 반응탑 내에 활성화 처리 전의 촉매를 충전하고, 활성화제로서 수소나 일산화탄소 또는 수소와 일산화탄소와의 합성 가스를 유통시키면서, 200~600℃까지, 또는 200~500℃ 또는 300~500℃ 까지 서서히 가열하고, 소정의 조작 온도로 4~12 시간 정도 유지하는 처리를 들 수 있다.As the activating treatment, for example, the catalyst before the activating treatment is charged into the reaction column, and 200 to 600 ° C or 200 to 500 ° C or 300 while circulating hydrogen, carbon monoxide or a synthesis gas of hydrogen and carbon monoxide as an activator. The process of heating gradually to -500 degreeC, and maintaining about 4 to 12 hours at predetermined | prescribed operation temperature is mentioned.
본 발명의 실시 형태에 관련되는 방법에 의하여 제조되는 촉매의 존재 하, 수소와 일산화탄소를 포함하는 혼합 가스를 150~350℃의 온도, 0.1~5 MPa의 압력에 반응시키는 것에 의해, 가솔린 연료유 성분, 디젤 연료 성분을 포함하는 수소화 생성물이 얻어진다.Gasoline fuel oil component by reacting the mixed gas containing hydrogen and carbon monoxide in the presence of the catalyst manufactured by the method which concerns on embodiment of this invention at the temperature of 150-350 degreeC, and the pressure of 0.1-5 MPa. The hydrogenation product containing the diesel fuel component is obtained.
구체적으로는, 원통상의 스테인리스제 고압 반응관 내에 상기 분말 형태의 촉매를 충전하고, 이 반응관을 예를 들면 외부에 배치한 히터로, 그 내부 온도가 150~350℃가 되도록 가열한다. 이 상태로, 수소와 일산화탄소를 포함하는 혼합 가스(0.1~5MPa)를 유통시켜 수소화 생성물을 제조한다.Specifically, the catalyst in powder form is filled into a cylindrical stainless steel high pressure reaction tube, and the reaction tube is heated, for example, with a heater arranged externally so that the internal temperature is 150 to 350 ° C. In this state, a mixed gas (0.1-5 MPa) containing hydrogen and carbon monoxide is circulated to produce a hydrogenated product.
이 밖에, 출입구를 가지는 고압 탱크 내에 고비등점 유기 용매에 분말상의 상기 촉매를 분산시킨 슬러리를 수용하고, 이 고압 탱크를 예를 들면 외부에 배치한 히터로 그 내부 온도가 150~350℃가 되도록 가열한 상태로 수소와 일산화탄소를 포함하는 고압 혼합 가스(0.1~20MPa)를 상기 입구로부터 상기 슬러리 내로 유통시켜 수소화 생성물을 제조하는 것도 가능하다.In addition, a slurry obtained by dispersing the powdered catalyst in a high boiling point organic solvent is contained in a high pressure tank having an entrance and the like, and the high pressure tank is heated by, for example, a heater disposed externally such that its internal temperature is 150 to 350 ° C. It is also possible to distribute a high pressure mixed gas (0.1-20 MPa) containing hydrogen and carbon monoxide in the state from the inlet into the slurry in one state to produce a hydrogenated product.
본 발명의 실시 형태에 관련되는 방법에 의하여 제조되는 촉매는, 분말상(예를 들면, 평균 입경 50~150 미크론) 또는 이 분말의 펠릿(pellet)과 같은 과립상의 형태로 사용해도 좋다.The catalyst produced by the method according to the embodiment of the present invention may be used in the form of powder (for example, an average particle diameter of 50 to 150 microns) or in the form of granules such as pellets of the powder.
전술의 혼합 가스의 각 성분 비율은, 수소화 생성물 중에 선택되는 목적으로 하는 성분의 종류 등에 의존하기 때문에 한 마디로 규정할 수 없지만, 통상 수소(H2):일산화탄소(CO)=1~4:1로 하는 것이 바람직하다. 예를 들면, 선택하는 성분이 디젤 연료유 성분인 경우에는 상기 혼합 가스로서 수소(H2):일산화탄소(CO)=2:1의 혼합비율의 것을 이용하는 것이 바람직하다.Although the ratio of each component of the above-described mixed gas depends on the kind of the component to be selected in the hydrogenation product, etc., it cannot be defined in one word, but it is usually hydrogen (H 2 ): carbon monoxide (CO) = 1 to 4: 1 It is preferable to set it as. For example, when the component to be selected is a diesel fuel oil component, it is preferable to use a mixture of hydrogen (H 2 ): carbon monoxide (CO) = 2: 1 as the mixed gas.
상기 촉매의 존재 하에서 상기 혼합 가스를 반응시키는 반응계에 있어서, 온도 및 압력을 상기 범위에 설정하는 것에 의해, 목적으로 하는 성분으로서 C1의 메탄으로부터 C4의 부탄과, C5~C9의 가솔린 연료유 성분 및 C10~C20의 디젤 연료유 성분과, 왁스와 같은 고비등점 파라핀을 임의로 선택하는 것이 가능해진다.In the reaction system for reacting the mixed gas in the presence of the catalyst, by setting the temperature and pressure in the above range, C 4 butane and C 5 ~ C 9 gasoline from C 1 methane as the target component and fuel oil component and a C 10 ~ C 20 diesel fuel oil component and, like waxes, it is possible to optionally select the boiling paraffin.
상기 혼합 가스를 상기 고압 반응관에 공급하는 때의 유속은, 일산화탄소 전환율에 영향을 미친다. 일반적으로, 상기 혼합 가스의 유속을 느리게 한다면, 일산화탄소의 변화율이 높아지지만, 제조되는 수소화 생성물의 각 성분의 분포도 변화하고 목적으로 하는 성분의 수확량도 변화한다. 이 때문에, 상기 혼합 가스의 유속은 목적으로 하는 성분의 수확량을 높이는, 즉 선택성을 높인다는 관점에서, 0.1~20 MPa, 150~350℃에서 적절히 조절하는 것이 바람직하다.The flow rate at the time of supplying the mixed gas to the high pressure reaction tube affects the carbon monoxide conversion rate. In general, if the flow rate of the mixed gas is slowed, the rate of change of carbon monoxide is increased, but the distribution of each component of the hydrogenated product to be produced also changes, and the yield of the desired component also changes. For this reason, it is preferable to adjust the flow velocity of the said mixed gas suitably at 0.1-20 MPa and 150-350 degreeC from a viewpoint of raising the yield of the target component, ie, improving selectivity.
이하, 구체적인 예를 들어 본 발명을 더욱 상세히 설명한다. 하기 실시예는 예시일 뿐이므로 본 발명의 범위가 하기 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with specific examples. The following examples are only illustrative, and the scope of the present invention is not limited to the following examples.
<제조예: 실리카 담체의 제조>Preparation Example: Preparation of Silica Carrier
코발트 금속을 담지하기 위한 실리카 담체로서, Evonik사의 Aerolyst 3041 (SiO2, excluded type, 0.40~0.46kg/L, 99+%)를 준비하였다. 실리카는 2℃/min의 속도로 온도를 올리며 450℃에서 10시간 동안 소성시켰고, 소성 후 이를 파쇄하여 100~300mesh의 크기로 준비하였다. BET로 측정한 결과 비표면적 약 150 m²/g, 공극부피 약 0.80 cm³/g, 평균 공극사이즈 약 20 nm 인 실리카를 준비하였다.As a silica carrier for supporting cobalt metal, Evonik's Aerolyst 3041 (SiO 2 , excluded type, 0.40 to 0.46 kg / L, 99 +%) was prepared. The silica was calcined at 450 ° C. for 10 hours while raising the temperature at a rate of 2 ° C./min. The silica was crushed to prepare a size of 100 to 300 mesh. As a result of measurement by BET, silica having a specific surface area of about 150 m 2 / g, a pore volume of about 0.80 cm 3 / g, and an average pore size of about 20 nm was prepared.
<실시예 1><Example 1>
폴리에틸렌글리콜디메틸에테르와 코발트의 몰비가 1:1이 되도록, 폴리에틸렌글리콜디메틸에테르와 Co(NO3)2·H2O 를 증류수에 넣어 완전히 녹인 후 상기 실리카 8.8g에 함침시켰다. 함침 후 110℃ 온도로 24시간 동안 건조시켰다. 그 후 130℃로 1℃/min의 속도로 올려준 뒤 3시간 동안 유지시킨 후, 150℃로 0.5℃/min의 속도로 올려준 뒤 3시간 동안 유지시켰다. 그 후 다시 350℃로 0.5~1℃/min의 속도로 올려준 뒤 3시간 동안 유지시켜 소성시킴으로써 18중량% Co/SiO2 촉매 전구체를 얻었다.Polyethylene glycol dimethyl ether and Co (NO 3 ) 2 .H 2 O were completely dissolved in distilled water so that the molar ratio of polyethylene glycol dimethyl ether and cobalt was 1: 1, and then impregnated with 8.8 g of the silica. After impregnation it was dried for 24 hours at 110 ℃. Thereafter, after raising to 130 ℃ at a rate of 1 ℃ / min and maintained for 3 hours, after raising to 150 ℃ at a rate of 0.5 ℃ / min and maintained for 3 hours. Thereafter, the mixture was raised to 350 ° C. at a rate of 0.5 to 1 ° C./min, and then maintained for 3 hours and calcined to obtain 18 wt% Co / SiO 2 catalyst precursor.
<실시예 2><Example 2>
상기 실시예 1에서 코발트의 함량을 18중량% 대신 12중량%로 변경하고, 제2 금속으로서 지르코늄(Zr)을 상기 코발트 1몰 대비 1/16몰비로 추가로 첨가한 것을 제외하고 상기 실시예 1과 동일하게 촉매 전구체를 제조하였다.In Example 1, the content of cobalt was changed to 12% by weight instead of 18%, and Example 1 except that zirconium (Zr) was added as a second metal in an additional 1/16 mole ratio to 1 mole of the cobalt. In the same manner as the catalyst precursor was prepared.
<실시예 3><Example 3>
상기 실시예 1에서 코발트의 함량을 18중량% 대신 12중량%로 변경하고, 제2의 금속으로서 철(Fe)을 상기 코발트 1몰 대비 1/16몰비로 추가로 첨가한 것을 제외하고 상기 실시예 1과 동일하게 촉매 전구체를 제조하였다.Except for changing the content of cobalt to 12% by weight instead of 18% in Example 1, except for adding iron (Fe) as a second metal in a 1/16 molar ratio compared to 1 mole of the cobalt Example The catalyst precursor was prepared in the same manner as in 1.
<실시예 4><Example 4>
상기 실시예 1에서 코발트의 함량을 18중량% 대신 12중량%로 변경하고, 제2의 금속으로서 아연(Zn)을 상기 코발트 1몰 대비 1/16몰비로 추가로 첨가한 것을 제외하고 상기 실시예 1과 동일하게 촉매 전구체를 제조하였다.In Example 1, the content of cobalt was changed to 12% by weight instead of 18% by weight, and zinc (Zn) as a second metal was added in an additional ratio of 1/16 mole to 1 mole of the cobalt. The catalyst precursor was prepared in the same manner as in 1.
<실시예 5>Example 5
상기 실시예 1에서 코발트의 함량을 18중량% 대신 12중량%로 변경하고, 제2의 금속으로서 칼슘(Ca)을 상기 코발트 1몰 대비 1/16몰비로 추가로 첨가한 것을 제외하고 상기 실시예 1과 동일하게 촉매 전구체를 제조하였다.Except for changing the content of cobalt to 12% by weight instead of 18% in Example 1, except for adding calcium (Ca) as a second metal in an additional 1/16 mole ratio of 1 mole of the cobalt Example The catalyst precursor was prepared in the same manner as in 1.
<실시예 6><Example 6>
상기 실시예 1에서 코발트의 함량을 18중량% 대신 12중량%로 변경한 것을 제외하고 상기 실시예 1과 동일하게 촉매 전구체를 제조하였다.A catalyst precursor was prepared in the same manner as in Example 1 except that the cobalt content was changed to 12% by weight instead of 18% by weight in Example 1.
<실시예 7><Example 7>
상기 실시예 1에서 코발트의 함량을 18중량% 대신 24중량%로 변경한 것을 제외하고 상기 실시예 1과 동일하게 촉매 전구체를 제조하였다.A catalyst precursor was prepared in the same manner as in Example 1 except that the cobalt content was changed to 24% by weight instead of 18% by weight in Example 1.
피셔 트롭쉬 반응 실험Fisher Tropsch Reaction Experiment
실시예 1 내지 7에서 제조한 촉매 전구체 1g을 각각 3g의 촉매희석제(석영 분말)와 섞어서 고압 고정상 반응기에 수용하고, 수소 기류중 723K에서 활성화 처리를 가했다. 그 뒤, 수소와 일산화탄소를 포함하는 혼합 가스를 도입하고, 다음의 조건으로 FT 반응을 행하여 수소화 생성물을 제조했다.1 g of the catalyst precursors prepared in Examples 1 to 7 were each mixed with 3 g of a catalyst diluent (quartz powder) and placed in a high pressure fixed bed reactor, and activated at 723 K in a hydrogen stream. Then, the mixed gas containing hydrogen and carbon monoxide was introduce | transduced, and the FT reaction was performed on condition of the following, and the hydrogenation product was manufactured.
반응 온도 200℃, 반응 압력 20 bar, H2/CO=2 (4% 질소를 GC 내부표준물질로 포함), SV=4000 hr-1 [standard cc syngas / hr ·g catalyst (standard = 25 ℃, 1 atm 조건에서 측정)Reaction temperature 200 ° C, reaction pressure 20 bar, H 2 / CO = 2 (with 4% nitrogen as GC internal standard), SV = 4000 hr -1 [standard cc syngas / hrg catalyst (standard = 25 ℃, Measured at 1 atm)
반응 개시 15 시간 후 각 촉매의 활성이 안정된 후에 인라인 (in line) GC 분석을 통하여 활성(mol/g-Co/hr)을 조사하였다. 얻어진 결과를 도 1 및 도 2에 나타내었다.After 15 hours from the start of the reaction, the activity of each catalyst was stabilized, and then the activity (mol / g-Co / hr) was investigated through in-line GC analysis. The obtained results are shown in FIGS. 1 and 2.
활성: 전환된 CO 몰 / g Co hrActive: converted CO moles / g Co hr
도 1 및 도 2의 결과로부터 알 수 있는 바와 같이, 실시예 1 내지 7의 본 발명에 따른 촉매는 우수한 활성을 나타낸다. 특히 실시예 1의 촉매가 가장 우수한 결과를 보임을 알 수 있다. 따라서 실리카 담체 대비 특정 함량의 코발트 금속을 함유하는 본 발명에 따른 촉매 전구체는 FT 합성에서 유용한 촉매로서 사용될 수 있다.As can be seen from the results of FIGS. 1 and 2, the catalysts according to the invention of Examples 1 to 7 exhibit good activity. In particular, it can be seen that the catalyst of Example 1 shows the best results. Thus the catalyst precursor according to the invention containing a certain amount of cobalt metal relative to the silica carrier can be used as a useful catalyst in FT synthesis.

Claims (19)

  1. a) 코발트 함유 화합물과 에테르기를 2개 이상 함유하는 폴리에테르 화합물을 함유하는 용액을 제조하는 단계,a) preparing a solution containing a cobalt-containing compound and a polyether compound containing two or more ether groups,
    b) 상기 용액을 실리카 담체에 함침시키는 단계,b) impregnating the solution into a silica carrier,
    c) 상기 용액이 함침된 실리카 담체를 건조하는 단계, 및c) drying the silica carrier impregnated with the solution, and
    d) 건조 후의 실리카 담체를 소성하여 촉매 전구체를 형성하는 단계를 포함하며,d) calcining the silica carrier after drying to form a catalyst precursor,
    상기 촉매 전구체에 포함된 코발트 함량이 상기 실리카 담체의 중량을 기준으로 약 12중량% 내지 약 25중량%인 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The cobalt content contained in the catalyst precursor is about 12% to about 25% by weight based on the weight of the silica carrier Fischer-Tropsch synthesis method for producing a catalyst precursor.
  2. 제1항에 있어서,The method of claim 1,
    상기 촉매 전구체에 포함된 코발트 함량이 상기 실리카 담체의 중량을 기준으로 약 15중량% 내지 약 20중량%인 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The cobalt content contained in the catalyst precursor is about 15% to about 20% by weight based on the weight of the silica carrier Fischer-Tropsch synthesis method for producing a catalyst precursor.
  3. 제1항에 있어서,The method of claim 1,
    상기 단계 a)의 용액에 제2의 금속화합물을 첨가하는 단계를 더 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.Fischer-Tropsch synthesis catalyst precursor characterized in that it further comprises the step of adding a second metal compound to the solution of step a).
  4. 제3항에 있어서,The method of claim 3,
    상기 제2의 금속화합물이 하나 이상의 1A족, 2A족, 3A족, 4A족, 5A족, 1B족, 2B족, 3B족, 4B족, 5B족, 6B족, 7B족, 8B족 원소의 화합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The second metal compound is at least one compound of Group 1A, 2A, 3A, 4A, 5A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 8B A method for producing a catalyst precursor for Fischer-Tropsch synthesis, characterized in that.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제2의 금속화합물은 지르코늄, 철, 칼슘, 알루미늄, 아연, 니켈, 구리, 텅스텐, 보론, 크롬, 백금, 마그네슘 또는 망간의 화합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The second metal compound is zirconium, iron, calcium, aluminum, zinc, nickel, copper, tungsten, boron, chromium, platinum, magnesium or manganese compound of the method for producing a catalyst precursor for the synthesis of Fischer-Tropsch .
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 제2의 금속화합물은, 질산염, 탄산염, 유기산염, 산화물, 수산화물, 할로겐화물, 시안화물, 수산화물 염, 할로겐화물 염 및 시안화물 염으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.Fischer-Tropsch synthesis, wherein the second metal compound is selected from the group consisting of nitrates, carbonates, organic acid salts, oxides, hydroxides, halides, cyanides, hydroxide salts, halide salts and cyanide salts Method for producing a catalyst precursor for.
  7. 제3항에 있어서,The method of claim 3,
    상기 제2의 금속화합물은, 상기 코발트 금속 1몰을 기준으로 0.03몰 내지 0.3몰의 비율로 첨가되는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The second metal compound is a method for producing a catalyst precursor for Fischer-Tropsch synthesis, characterized in that added in a ratio of 0.03 to 0.3 mol based on 1 mol of the cobalt metal.
  8. 제1항에 있어서,The method of claim 1,
    상기 폴리에테르 화합물은 지방족, 방향족 또는 고리형 폴리에테르 화합물인것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The polyether compound is a method for producing a catalyst precursor for Fischer-Tropsch synthesis, characterized in that the aliphatic, aromatic or cyclic polyether compound.
  9. 제8항에 있어서,The method of claim 8,
    상기 지방족 폴리에테르 화합물은 파라포름알데하이드, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜, 폴리테트라메틸렌에테르글리콜 또는 이들의 디알킬에테르 화합물인 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The aliphatic polyether compound is a paraformaldehyde, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polytetramethylene ether glycol or a method for producing a catalyst precursor for Fischer-Tropsch synthesis, characterized in that dialkyl ether compounds thereof .
  10. 제8항에 있어서,The method of claim 8,
    상기 고리형 폴리에테르 화합물은 크라운에테르인 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The cyclic polyether compound is a method of producing a catalyst precursor for Fischer-Tropsch synthesis, characterized in that the crown ether.
  11. 제1항에 있어서,The method of claim 1,
    상기 폴리에테르 화합물은 코발트 1 몰당 0.01~2 몰의 비율로 사용되는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The polyether compound is a method for producing a catalyst precursor for Fischer-Tropsch synthesis, characterized in that used in a ratio of 0.01 to 2 mol per mole of cobalt.
  12. 제1항에 있어서,The method of claim 1,
    상기 용액을 상기 담체에 함침 시키기 전에 상기 담체를 공기 또는 불활성 가스 중에서 300~1000℃로 소성하는 단계를 더 포함하는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The method of producing a catalyst precursor for Fischer-Tropsch synthesis, further comprising the step of calcining the carrier to 300 ~ 1000 ℃ in air or inert gas before the solution is impregnated with the carrier.
  13. 제1항에 있어서,The method of claim 1,
    상기 단계 b)의 용액을 상기 담체에 함침하는 단계는, 습식 함침법, 건식 함침법, 감압 함침법 또는 슬러리 형태의 혼합물을 분무건조(spray drying) 또는 압출건조에 의하여 행해지는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The step of impregnating the carrier of the solution of step b), wet impregnation method, dry impregnation method, reduced pressure impregnation method or a mixture in the form of a slurry is carried out by spray drying or spray drying -Preparation of catalyst precursor for Tropsch synthesis.
  14. 제1항에 있어서,The method of claim 1,
    상기 c) 단계의 건조는, 상압, 실온~200℃, 12~50 시간의 조건으로 행해지는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.Drying in step c) is a method for producing a catalyst precursor for Fischer-Tropsch synthesis, characterized in that carried out under the conditions of atmospheric pressure, room temperature ~ 200 ℃, 12-50 hours.
  15. 제1항에 있어서,The method of claim 1,
    상기 c) 단계의 건조는 3단계로 이루어지며, 초기 건조온도를 T1이라고 했을때, The drying of step c) is made of three steps, when the initial drying temperature is T1,
    제2단계의 건조온도 T2는 T2=T1+10~50℃ 이고, Drying temperature T2 of the second stage is T2 = T1 + 10 ~ 50 ℃,
    제3단계의 건조온도T3은 T3=T2+10~50℃ 이며,Drying temperature T3 of the third stage is T3 = T2 + 10 ~ 50 ℃,
    상기 각 단계에서 건조시간은 각각 1 내지 30시간인 것을 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.Drying time in each of the steps is a method for producing a catalyst precursor for Fischer-Tropsch synthesis, characterized in that 1 to 30 hours each.
  16. 제1항에 있어서,The method of claim 1,
    상기 d) 단계의 소성은, 150℃에서 300~500℃로 1~50 시간에 걸쳐 가열시키는 조건으로 행해지는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.The firing of the step d) is carried out under conditions that are heated at 150 to 300 to 500 ° C. over 1 to 50 hours. Fischer-Tropsch synthesis method for producing a catalyst precursor.
  17. 제16항에 있어서,The method of claim 16,
    소성이 불활성가스 분위기에서 행해지는 것을 특징으로 하는 피셔-트롭쉬 합성용 촉매 전구체의 제조 방법.Firing is carried out in an inert gas atmosphere.
  18. 제1항 내지 제17항 중 어느 한 항의 방법에 의해 제조된 촉매 전구체.A catalyst precursor prepared by the method of any one of claims 1 to 17.
  19. 제18항의 촉매 전구체를 환원하여 활성화시키고, 이 활성화된 촉매를 수소와 일산화탄소를 포함하는 혼합가스와 접촉시키는 단계를 포함하는 탄화수소 합성 방법.19. A hydrocarbon synthesis method comprising the steps of reducing and activating the catalyst precursor of claim 18, and contacting the activated catalyst with a mixed gas comprising hydrogen and carbon monoxide.
PCT/KR2015/005489 2014-05-30 2015-06-01 Method for preparing highly active fischer-tropsch catalyst WO2015183061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0066125 2014-05-30
KR1020140066125A KR20150137733A (en) 2014-05-30 2014-05-30 Process for the preparation of fisher-tropsch catalysts with high activity

Publications (1)

Publication Number Publication Date
WO2015183061A1 true WO2015183061A1 (en) 2015-12-03

Family

ID=54699318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005489 WO2015183061A1 (en) 2014-05-30 2015-06-01 Method for preparing highly active fischer-tropsch catalyst

Country Status (2)

Country Link
KR (1) KR20150137733A (en)
WO (1) WO2015183061A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186407A1 (en) 2016-04-29 2017-11-02 IFP Energies Nouvelles Cobalt catalyst based on a support containing a mixed oxide phase containing cobalt and/or nickel prepared by the use of a dicarboxylic acid comprising at least three carbon atoms
WO2017186408A1 (en) 2016-04-29 2017-11-02 IFP Energies Nouvelles Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel prepared using an ester compound
WO2017186405A1 (en) 2016-04-29 2017-11-02 IFP Energies Nouvelles Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel, prepared using oxalic acid or oxalate
WO2018072921A1 (en) 2016-10-17 2018-04-26 IFP Energies Nouvelles Cobalt catalyst comprising a support containing a mixed oxide phase including cobalt and/or nickel produced using a hydrocarbon compound
CN108654637A (en) * 2017-03-29 2018-10-16 中国石油化工股份有限公司 A kind of cobalt-base catalyst and preparation method and application and Fischer-Tropsch synthesis method
EP3643767A1 (en) 2018-10-25 2020-04-29 IFP Energies nouvelles Fischer-tropsch synthesis method comprising a catalyst prepared by adding a gaseous-phase organic compound
EP3643401A1 (en) 2018-10-25 2020-04-29 IFP Energies nouvelles Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel prepared from a dilactone compound
EP3643404A1 (en) 2018-10-25 2020-04-29 IFP Energies nouvelles Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel prepared from an ether compound and fischer-tropsch process using said catalyst
FR3087672A1 (en) 2018-10-25 2020-05-01 IFP Energies Nouvelles SUPPORT-BASED COBALT CATALYST COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED FROM AN ORGANIC COMPOUND FROM THE CARBOXYANHYDRIDE FAMILY
FR3119556A1 (en) 2021-02-11 2022-08-12 IFP Energies Nouvelles Process for preparing a Fischer-Tropsch catalyst in the presence of an additive and a specific calcination step

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021168A (en) * 2000-06-12 2003-03-12 사솔 테크날러지 (프로프라이어터리) 리미티드 Cobalt catalysts
KR20090113552A (en) * 2008-04-28 2009-11-02 한국화학연구원 Iron-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
KR101230625B1 (en) * 2010-05-06 2013-02-06 한국과학기술연구원 Structured Mesoporous Silica Supported Fischer-Tropsch Catalyst
KR101298783B1 (en) * 2012-12-14 2013-08-26 한국가스공사 Process for the preparation of fisher-tropsch catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030021168A (en) * 2000-06-12 2003-03-12 사솔 테크날러지 (프로프라이어터리) 리미티드 Cobalt catalysts
KR20090113552A (en) * 2008-04-28 2009-11-02 한국화학연구원 Iron-based catalyst for Fischer-Tropsch synthesis and method for preparing the same
KR101230625B1 (en) * 2010-05-06 2013-02-06 한국과학기술연구원 Structured Mesoporous Silica Supported Fischer-Tropsch Catalyst
KR101298783B1 (en) * 2012-12-14 2013-08-26 한국가스공사 Process for the preparation of fisher-tropsch catalysts

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017186407A1 (en) 2016-04-29 2017-11-02 IFP Energies Nouvelles Cobalt catalyst based on a support containing a mixed oxide phase containing cobalt and/or nickel prepared by the use of a dicarboxylic acid comprising at least three carbon atoms
WO2017186408A1 (en) 2016-04-29 2017-11-02 IFP Energies Nouvelles Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel prepared using an ester compound
WO2017186405A1 (en) 2016-04-29 2017-11-02 IFP Energies Nouvelles Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel, prepared using oxalic acid or oxalate
WO2018072921A1 (en) 2016-10-17 2018-04-26 IFP Energies Nouvelles Cobalt catalyst comprising a support containing a mixed oxide phase including cobalt and/or nickel produced using a hydrocarbon compound
CN108654637A (en) * 2017-03-29 2018-10-16 中国石油化工股份有限公司 A kind of cobalt-base catalyst and preparation method and application and Fischer-Tropsch synthesis method
CN108654637B (en) * 2017-03-29 2021-10-08 中国石油化工股份有限公司 Cobalt-based catalyst, preparation method and application thereof, and Fischer-Tropsch synthesis method
FR3087786A1 (en) 2018-10-25 2020-05-01 IFP Energies Nouvelles FISCHER-TROPSCH SYNTHESIS PROCESS COMPRISING A CATALYST PREPARED BY ADDITION OF AN ORGANIC COMPOUND IN THE GASEOUS PHASE
EP3643404A1 (en) 2018-10-25 2020-04-29 IFP Energies nouvelles Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel prepared from an ether compound and fischer-tropsch process using said catalyst
EP3643401A1 (en) 2018-10-25 2020-04-29 IFP Energies nouvelles Cobalt catalyst comprising a support with a mixed oxide phase containing cobalt and/or nickel prepared from a dilactone compound
FR3087672A1 (en) 2018-10-25 2020-05-01 IFP Energies Nouvelles SUPPORT-BASED COBALT CATALYST COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED FROM AN ORGANIC COMPOUND FROM THE CARBOXYANHYDRIDE FAMILY
FR3087673A1 (en) 2018-10-25 2020-05-01 IFP Energies Nouvelles SUPPORT-BASED COBALT CATALYST COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED FROM A DILACTONE COMPOUND
FR3087671A1 (en) 2018-10-25 2020-05-01 IFP Energies Nouvelles SUPPORT-BASED COBALT CATALYST COMPRISING A MIXED OXIDE PHASE CONTAINING COBALT AND / OR NICKEL PREPARED FROM AN ETHER COMPOUND
US11071972B2 (en) 2018-10-25 2021-07-27 IFP Energies Nouvelles Cobalt catalyst comprising a support comprising a mixed oxide phase including cobalt and/or nickel produced from an ether compound
EP3643767A1 (en) 2018-10-25 2020-04-29 IFP Energies nouvelles Fischer-tropsch synthesis method comprising a catalyst prepared by adding a gaseous-phase organic compound
FR3119556A1 (en) 2021-02-11 2022-08-12 IFP Energies Nouvelles Process for preparing a Fischer-Tropsch catalyst in the presence of an additive and a specific calcination step
EP4043537A1 (en) 2021-02-11 2022-08-17 IFP Energies nouvelles Method for preparing a fischer-tropsch catalyst in the presence of an additive and a specific calcination step

Also Published As

Publication number Publication date
KR20150137733A (en) 2015-12-09

Similar Documents

Publication Publication Date Title
WO2015183061A1 (en) Method for preparing highly active fischer-tropsch catalyst
WO2015183059A1 (en) Method for preparing fischer-tropsch catalyst having improved activity and lifespan properties
KR101298783B1 (en) Process for the preparation of fisher-tropsch catalysts
KR101529906B1 (en) Process for operating hts reactor
WO2010013958A2 (en) Catalyst for preparing synthesis gas from natural gas and carbon dioxide, and preparation method thereof
US4368142A (en) Methanation catalyst
JP2007069151A (en) Catalyst for catalytic partial oxidation of hydrocarbon and manufacturing method of synthetic gas
KR20180127267A (en) Perovskite-type Metal Oxide Catalyst for Dry Reforming of Methane for Inhibiting Carbon Deposition with an Increased Nickel Concentration and Method of Manufacturing the Same
KR101816787B1 (en) Storage method of activated catalysts for Fischer-Tropsch synthesis
JP4132295B2 (en) Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide gas
Ajamein et al. Ammonium nitrate-enhanced microwave solution combustion fabrication of CuO/ZnO/Al2O3 nanocatalyst for fuel cell grade hydrogen supply
KR101421825B1 (en) Catalysts for preparing syn-gas by steam-carbon dioxide reforming reaction and process for preparing syn-gas using same
WO1984000749A1 (en) Catalytic process for the production of methanol
RU2638534C1 (en) Catalyst of converting natural or associated gas into synthesis gas in autothermal riforming process and method of its production
RU2493913C1 (en) Method of producing cobalt catalyst for fischer-tropsch synthesis of liquid hydrocarbons
KR102186058B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
MXPA02006437A (en) Process for selective oxidation of carbon monoxide in a hydrogen containing stream.
JP3086867B2 (en) Catalyst for syngas production and method for syngas production
KR102073959B1 (en) Catalyst for synthesizing synthetic natural gas and manufacturing method for high calorific synthetic natural gas using the same
AU2016208333B2 (en) Process for the preparation of a catalyst intended for use in a Fischer-Tropsch reaction
KR20150129566A (en) Ni-based catalysts for combined steam and carbon dioxide reforming with natural gas
KR101440193B1 (en) Catalyst for the mixed reforming of natural gas, preparation method thereof and method for mixed reforming of natural gas using the catalyst
KR20160048752A (en) Process for the preparation of fisher-tropsch catalysts with high activity
JP4681265B2 (en) Syngas production method and synthesis gas production reactor.
Wigmans et al. Catalyst Structure and Mechanism in Carbon Gasification Reactions; Influence of Preparation on the Ni and K Catalysed Hydrogenative and Steam Gasification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799058

Country of ref document: EP

Kind code of ref document: A1