WO2015182931A1 - Combined propeller cap for reducing rotating flow and hub vortex and enhancing propulsion efficiency - Google Patents

Combined propeller cap for reducing rotating flow and hub vortex and enhancing propulsion efficiency Download PDF

Info

Publication number
WO2015182931A1
WO2015182931A1 PCT/KR2015/005184 KR2015005184W WO2015182931A1 WO 2015182931 A1 WO2015182931 A1 WO 2015182931A1 KR 2015005184 W KR2015005184 W KR 2015005184W WO 2015182931 A1 WO2015182931 A1 WO 2015182931A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
cap
propeller cap
diffusion
hub vortex
Prior art date
Application number
PCT/KR2015/005184
Other languages
French (fr)
Korean (ko)
Inventor
설한신
백부근
김경열
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140064150A external-priority patent/KR101439134B1/en
Priority claimed from KR1020140121285A external-priority patent/KR101464570B1/en
Priority claimed from KR1020150030443A external-priority patent/KR20160107551A/en
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to CN201580000739.5A priority Critical patent/CN105377692B/en
Priority to SG11201609082YA priority patent/SG11201609082YA/en
Priority to EP15799494.8A priority patent/EP3150482B1/en
Publication of WO2015182931A1 publication Critical patent/WO2015182931A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/20Hubs; Blade connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency

Definitions

  • the present invention relates to the structure of a propeller cap, and more particularly, to reduce the noise and vibration of the vessel by reducing the hub vortex cavitation generated in the rear of the propeller used as the propeller of the vessel
  • the present invention relates to a hybrid propeller cap for reducing rotational flow and hub vortex and improving propulsion efficiency, which is configured to prevent erosion and corrosion of a rudder and improve fuel efficiency.
  • the present invention because it is configured to reduce the number of hub vortex by attaching a plurality of small fin (fin) to the propeller cap, precision processing is required to design and manufacture the pin has a difficult manufacturing and high production cost problem
  • PBCF Propeller Boss Cap Fin
  • the composite propeller cap structure that combines the diffusion type propeller cap to the end of the conventional contraction type propeller cap in the rear of the propeller Since it is configured to reduce the generated hub vortex cavitation, it relates to a hybrid propeller cap for reducing the rotational flow and hub vortex reduction and propulsion efficiency that can be manufactured much cheaper and easier with a very simple structure compared to the conventional PBCF.
  • the present invention forms a complex propeller cap combining a diffusion type propeller cap at the end of a conventional contraction type propeller cap, and the contraction portion or the contraction portion and the diffusion portion of such a propeller cap.
  • a guide pin in the form of a plate between the mold parts, it is possible to further reduce the occurrence of hub vortex cavitation, thereby reducing the rotational flow and the hub vortex cavitation occurring at the rear of the propeller.
  • the present invention relates to a hybrid propeller cap for reducing the rotational flow and hub vortex and improving propulsion efficiency, which can be manufactured at a much lower cost and easier with a very simple configuration compared to conventional PBCF.
  • propulsion generating propulsion such as, for example, propellers, which propeller type propellers are connected to the rotating shaft of the engine of the hull to rotate with the driving force of the engine.
  • the propeller-type propeller includes a propeller cap, which is largely divided into a propeller cap connected to a rotating shaft of the engine and forming a main body of the propeller, and a plurality of wings formed on the outer circumferential surface of the propeller cap, passing through each wing. Thrust and torque are generated by the flow. At this time, the torque is overcome by the driving force of the engine and the ship is advanced by using the generated thrust.
  • the propulsion of the ship is used as the propulsion force to advance the ship only about 70% of the power generated by the main engine, the remaining engine power is propeller friction, heat loss and rotational flow behind the propeller, propeller hub vortex (hub vortex) and so on.
  • the rotational flow and the hub vortex behind the propeller correspond to about 5 to 7% and 1 to 3% of the power.
  • the strong hub vortex generates a hub vortex cavitation, producing noise, vibration and rudder.
  • various devices have been developed and applied to ships.
  • the propulsion device of the ship presented in the above-mentioned Patent Publication No. 10-2011-0120267 and the ship provided with the same while providing a pin in the propeller boss cap mounted on the rear side of the propeller boss of the screw propeller,
  • the rear end part of the said propeller boss cap is formed in cross section, or the shape of the rear end part of the propeller boss cap is formed from the periphery of the full length of the propeller boss cap.
  • the overall length of the propeller boss cap is 0.28 times to 0.76 times the diameter of the cap front end, and the diameter of the cap rear end of the propeller boss cap is 0.35 times 0.95 times the diameter of this cap front end.
  • the present invention relates to a ship propulsion device and a ship having the same, which are configured to increase propeller efficiency, workability, and light weight, as compared with the related art. A.
  • the propeller boss cap of the ship presented in the above-mentioned Patent Publication No. 10-2012-0134647 is a boss cap installed on the rear of the propeller boss connected to the shaft of the propeller, the rudder side of the boss cap
  • the boss vortex cavitation is formed on the surface, but the depth of the boss groove is not the same as the center and the edge of the boss groove, the organic vortex cavitation is formed by the wake of the propeller while excluding the increase of the added resistance by the boss cap
  • It relates to a propeller boss cap of a ship that is configured to suppress the erosion of the rudder.
  • Contra-Rotating Propeller CCP
  • Pre-swirl current fixed wing
  • Postswirl Stators Van-Wheels
  • Rudder thrust fins etc.
  • PBCF Propeller Boss Cap Fin
  • rudder bulb rudder bulb
  • PBCF which has been developed since the 1970s, improves propeller efficiency by 1 to 3% by absorbing hub vortex energy by attaching a small fin to the propeller cap located at the rear hub of the propeller, and the hub vortex of the propeller Reducing cavitation has the effect of reducing noise caused by hub vortex cavitation and reducing erosion and corrosion of the rudder.
  • the fins attached to the PBCF must be designed differently each time to show suitable characteristics according to the type of vessel and the environment of use.
  • the propeller hub vortex reduction using the PBCF of the prior art which has a problem that the precise design is required for each vessel separately and manufactured in the same manner as the propeller, and thus the manufacturing is not easy and the manufacturing cost increases accordingly.
  • the existing PBCF instead of the existing PBCF, it is possible to manufacture in a simpler and cheaper to reduce the hub vortex cavitation generated from the rear of the propeller, thereby reducing the noise and vibration of the ship, It is desirable to provide a new propeller structure that can prevent erosion and corrosion of the rudder and improve the propulsion efficiency to save fuel, but there are no devices or methods that meet all such requirements. I can't do it.
  • the present invention seeks to solve the problems of the prior art as described above, and therefore the object of the present invention is to design a pin because it is configured to reduce the hub vortex cavitation by attaching a plurality of small fins to the propeller cap.
  • PBCF Propeller Boss Cap Fin
  • a diffusion type is formed at the end of a conventional contraction type propeller cap. diffusion type) It is configured to reduce hub vortex cavitation generated at the rear of the propeller through the propeller cap structure combined with the propeller cap, so that it is much cheaper and easier to manufacture with a very simple configuration than the conventional PBCF.
  • Hybrid pro for reduced rotational flow, hub vortex reduction and propulsion efficiency Intended to provide a multiple cap.
  • the hub generated from the rear of the propeller through the propeller cap structure of the composite type coupled to the diffusion type propeller cap end of the conventional contraction type propeller cap as described above.
  • the occurrence of hub vortex cavitation is further reduced by attaching a plate-shaped guide fin between the constricted or constricted and diffused portions of the propeller cap. It is designed to reduce the rotational flow and hub vortex cavitation generated at the rear of the propeller, and it is much cheaper and easier to manufacture with a very simple configuration compared to the conventional PBCF, while reducing the noise and vibration of the ship and the rudder. Erosion and corrosion can be prevented in addition to improving propulsion efficiency.
  • Rotating flow and a hub vortex is configured to be able to reduce it to provide a hybrid propeller cap for the reduction and improving propulsion efficiency.
  • the shrinkage portion is formed to reduce the diameter toward the opposite side of the propeller; And a diffusion mold portion extending to the contraction portion to increase in diameter toward the opposite side of the propeller, whereby the pressure of the propeller flow is restored by the shape in which the diameter of the contraction portion decreases, and the propulsion efficiency is improved.
  • the composite propeller cap is configured to reduce the occurrence of hub vortex cavitation by weakening the rotational vortex due to the increase in the diameter of the diffuser portion of the propeller cap end.
  • the composite propeller cap characterized in that the inclination angle of the contraction portion is set between 0 ⁇ 40 °.
  • the composite propeller cap the side of the shrinkage portion is formed in a straight shape, or the side of the shrinkage portion is formed so as to be convex outward in a curved form having a predetermined curvature, or the shrinkage portion Side of the is characterized in that it is formed to be convex inward in a curved form having a predetermined predetermined curvature.
  • the first diffusion type formed to increase in diameter from the end of the propeller toward the opposite side of the propeller; A straight portion formed to extend horizontally to the first diffusion portion; A contraction portion extending to the straight portion and formed to decrease in diameter toward the opposite side of the propeller; And a second diffusion die extending to the contracting portion to increase in diameter toward the opposite side of the propeller, whereby the front portion of the propeller cap is protruded convexly by the first diffusion die.
  • a composite propeller cap is provided, characterized in that it is configured such that the occurrence of hub vortex cavitation can be reduced by weakening the strength of the rotating vortex of the vortex.
  • the composite propeller cap is characterized in that the inclination angle of the first diffusion portion and the second diffusion portion is set between 0 to 40 °, respectively.
  • the composite propeller cap is formed such that the side surface of the shrinkage portion is formed in a straight line shape, or the side surface of the shrinkage portion is formed to be convex outward in a curved shape having a predetermined curvature, or the shrinkage portion Side of the is characterized in that it is formed to be convex inward in a curved form having a predetermined predetermined curvature.
  • the shrinkage portion is formed to reduce the diameter toward the opposite side of the propeller;
  • a diffusion mold extending to the contracting portion and configured to increase in diameter toward the opposite side of the propeller;
  • a plurality of guide pins formed in a thin plate shape having a rectangular or streamlined cross section formed at a predetermined predetermined thickness and installed at predetermined predetermined intervals between the contracting portion or the contracting portion and the diffusion portion.
  • the composite propeller cap characterized in that the inclination angle of the contraction portion is set between 0 ⁇ 40 °.
  • the composite propeller cap the side of the shrinkage portion is formed in a straight shape, or the side of the shrinkage portion is formed so as to be convex outward in a curved form having a predetermined curvature, or the shrinkage portion Side of the is characterized in that it is formed to be convex inward in a curved form having a predetermined predetermined curvature.
  • the guide pin is formed in the form of a triangular thin plate and is attached between the contracted portion of the propeller cap and the diffused portion by simple welding, and to avoid an increase in resistance by the guide pin itself, Characterized in that the size of the guide pin is determined according to the diameter.
  • the guide pin is formed in the form of a pentagonal thin plate and is attached by simple welding between the contracted portion of the propeller cap and the diffused portion, and the length of the portion extending from the end of the diffused portion is the diffusion. It is characterized by being comprised so that it may become within 2 times of the diameter of a mold part.
  • the guide pin is formed in the shape of a trapezoidal thin plate and is configured to be attached to the side of the shrinkage portion of the propeller cap by simple welding, and the short portion of the length of the portion extending from the side of the shrinkage portion. It is characterized in that the length is configured to be within twice the diameter of the diffusion die.
  • the guide pin is installed between the shrinkage portion of the propeller cap or between the shrinkage portion and the diffusion portion in the number of 2 to 8, when viewed from the vertical upward direction +10 relative to 0 degrees It is characterized in that it is configured to be installed at an attachment angle having a tolerance of ⁇ -10 degrees, or +20 ⁇ -20 degrees.
  • the first diffusion type formed to increase in diameter from the end of the propeller toward the opposite side of the propeller; A straight portion formed to extend horizontally to the first diffusion portion; A contraction portion extending to the straight portion and formed to decrease in diameter toward the opposite side of the propeller; A second diffusion mold portion extending to the contraction portion and formed to increase in diameter toward the opposite side of the propeller; And a plurality of guides formed in a thin plate shape having a rectangular or streamlined cross section formed at a predetermined predetermined thickness and installed at predetermined predetermined intervals between the contracting portion or the contracting portion and the second diffusion portion.
  • the front portion of the propeller cap protrudes convex by the first diffusion die to increase the pressure of the propeller pressure side (pressure side) to increase the propulsion efficiency
  • the contracting portion recovers the pressure of the propeller flow passing through the propeller cap, thereby improving propulsion efficiency
  • the second diffusing portion weakens the strength of the rotational vortex of the propeller flow, thereby reducing the occurrence of hub vortex cavitation.
  • the guide pin allows rotational flow due to propeller rotation
  • This hybrid cap propeller being configured so as to be further reduced occurrence of the hub vortex cavitation is provided by being converted into a straight line flow direction of the front barrel.
  • the composite propeller cap characterized in that the inclination angle of the first diffusion portion and the contraction portion is set between 0 ⁇ 40 °.
  • the composite propeller cap is formed such that the side surface of the shrinkage portion is formed in a straight line shape, or the side surface of the shrinkage portion is formed to be convex outward in a curved shape having a predetermined curvature, or the shrinkage portion Side of the is characterized in that it is formed to be convex inward in a curved form having a predetermined predetermined curvature.
  • the guide pin is formed in the form of a triangular thin plate is attached between the shrinkage portion and the second diffusion portion of the propeller cap by simple welding, in order to avoid an increase in resistance by the guide pin itself, It is characterized in that the size of the guide pin is determined according to the diameter of the extended portion.
  • the guide pin is formed in the form of a pentagonal thin plate and attached by simple welding between the contracted portion of the propeller cap and the second diffused portion, and extending from an end of the second diffused portion. It is characterized in that the length is configured to be within twice the diameter of the second diffusion die.
  • the guide pin is formed in the shape of a trapezoidal thin plate and is configured to be attached to the side of the shrinkage portion of the propeller cap by simple welding, and the short portion of the length of the portion extending from the side of the shrinkage portion. It is characterized in that the length is configured to be within twice the diameter of the second diffusion die.
  • the guide pin is installed between the shrinkage portion of the propeller cap or between the shrinkage portion and the second diffusion portion in the number of 2 to 8, based on 0 degrees when viewed from the vertical upward direction It is characterized in that it is configured to be installed at an attachment angle having a tolerance of +10 ⁇ -10 degrees, or +20 ⁇ -20 degrees.
  • the energy loss due to the hub vortex cavitation and the propeller cap shape is prevented compared to the conventional propeller to improve the propulsion efficiency, vibration and noise is reduced
  • erosion and corrosion of the rudder due to the hub vortex cavitation is prevented, and at the same time is provided a ship propeller, characterized in that configured to reduce the manufacturing cost compared to the existing PBCF.
  • PBCF Propeller Boss Cap Fin
  • the occurrence of hub vortex cavitation can be further reduced by attaching a guide fin in the form of a plate between the retractable portion or the retractable portion and the diffused portion of the propeller cap.
  • Combination of propeller caps to reduce rotational flow and hub vortex and improve propulsion efficiency is achieved by reducing the rotational flow and hub vortex cavitation occurring at the rear of the propeller, and much cheaper than the conventional PBCF.
  • 1 is a view schematically showing the structure of a conventional propeller cap.
  • FIG. 2 is a view schematically showing the overall configuration of a hybrid propeller cap according to the first embodiment of the present invention.
  • FIG 3 is a view schematically showing the overall configuration of a hybrid propeller cap according to a second embodiment of the present invention.
  • Figure 4 is a view showing a comparison of the efficiency of the propeller using a propeller cap according to the first embodiment of the present invention shown in Figure 2 and the conventional propeller cap, respectively.
  • FIG. 5 is a view schematically showing the overall configuration of a hybrid propeller cap according to a third embodiment of the present invention.
  • FIG. 6 is a view schematically showing the overall configuration of a composite propeller cap according to a fourth embodiment of the present invention.
  • FIG. 7 is a view showing a comparison of the efficiency of the propeller using a propeller cap according to the third and fourth embodiments of the present invention shown in Figures 5 and 6, respectively.
  • FIG. 8 is a view schematically showing the overall configuration of a hybrid propeller cap according to a fifth embodiment of the present invention.
  • FIG. 9 is a view showing a comparison of the thrust, torque and efficiency of the propeller cap using the propeller cap according to the fifth embodiment of the present invention shown in FIG.
  • FIG. 10 is a view schematically showing the overall configuration of a hybrid propeller cap according to a sixth embodiment of the present invention.
  • FIG. 11 is a view schematically showing the overall configuration of a hybrid propeller cap according to a seventh embodiment of the present invention.
  • FIG. 12 is a view showing a comparison between the efficiency of the propeller using a propeller cap according to the seventh embodiment of the present invention shown in FIG.
  • FIG. 13 is a view schematically showing the overall configuration of a hybrid propeller cap according to an eighth embodiment of the present invention.
  • FIG. 14 is a view schematically showing the overall configuration of a composite propeller cap according to a ninth embodiment of the present invention.
  • 15 is a view schematically showing the overall configuration of a composite propeller cap according to a tenth embodiment of the present invention.
  • FIG. 16 is a view showing a comparison of the thrust, torque and efficiency of the propeller using a propeller cap according to the ninth embodiment of the present invention shown in FIG.
  • the present invention by attaching a plurality of small fin (fin) to the propeller cap is configured to reduce the hub vortex cavitation, precision processing is required to design and manufacture the pin is difficult to manufacture and manufacture
  • PBCF Propeller Boss Cap Fin
  • a composite propeller cap structure in which a diffusion type propeller cap is combined with a conventional contraction type propeller cap end It is configured to reduce the hub vortex cavitation generated from the rear of the propeller through the rotation, and the rotational flow and hub vortex reduction and propulsion efficiency is configured to be much cheaper and easier to manufacture with a very simple configuration than the conventional PBCF It relates to a composite propeller cap for.
  • the present invention as described later, the hub vortex cavitation generated from the rear of the propeller through a composite propeller cap structure in which the diffusion type propeller cap is coupled to the existing contraction type propeller cap end
  • the occurrence of hub vortex cavitation can be further reduced by attaching a guide fin in the form of a plate between the retractable portion or the retractable portion and the diffused portion of the propeller cap. It is designed to reduce rotational flow and hub vortex cavitation occurring at the rear of the propeller, and it is much cheaper and easier to manufacture with a very simple configuration than the existing PBCF, while reducing the noise and vibration of the ship and eroding the rudder. In addition to preventing over-corrosion, fuel efficiency is improved by improving propulsion efficiency. It will be related to the rotational flow and the hub vortex hybrid propeller cap for the reduction and improved propulsion efficiency is configured to.
  • FIG. 1 is a view schematically showing a structure of a conventional propeller cap.
  • conventional propeller caps are generally divided into a contraction type propeller cap as shown in Fig. 1A, and a straight type propeller cap as shown in Fig. 1B and Figs. It can be divided into three types of diffusion type propeller cap as shown in 1c.
  • the retractable propeller caps have good propulsion efficiency, but the flow of hubs gathers in the caps, creating a strong hub vortex cavitation, which increases noise and vibration and exacerbates rudder erosion and corrosion problems.
  • the propulsion efficiency is poor, but the strength of the hub vortex cavitation can be weakened to reduce noise and vibration, and to reduce erosion and corrosion problems of the rudder.
  • diffusion propeller caps are mainly used due to erosion of the rudder due to hub vortex cavitation, and PBCF-type additives are added to overcome the deterioration of propulsion efficiency. It is improving the propulsion efficiency and coping with hub vortex cavitation problem.
  • the fin design and manufacturing of the PBCF are the same as those of the existing propeller manufacturing method, compared to the size thereof. There is a disadvantage that the manufacturing cost is relatively high.
  • the present inventors have the effect of improving the propulsion efficiency while reducing the hub vortex cavitation like PBCF, and at the same time, the configuration is made in a very simple form, which is similar to that of PBCF at a very low production cost compared to the production cost of the conventional PBCF.
  • a new propeller cap structure is proposed to achieve the effect.
  • FIG. 2 is a view schematically showing the overall configuration of the hybrid propeller cap 20 according to the first embodiment of the present invention.
  • the shrinkage portion 21 is formed so as to decrease in diameter toward the opposite side of the propeller, and the shrinkage It extends to the mold portion 21 is configured to include a diffusion mold 22 formed to increase in diameter toward the opposite side of the propeller.
  • the composite propeller cap 20 according to the first embodiment of the present invention is gradually reduced in diameter from the end of the propeller is formed in such a form that the diameter increases again at the rear end of the propeller cap It is characterized by.
  • the inclination angle ⁇ of the contracted portion 21 can be set, for example, between 0 and 40 degrees, respectively.
  • [Table 1] shows the performance change according to the change in the angle of the inclination angle ( ⁇ ) of the shrinkage portion 22.
  • FIG. 3 is a diagram schematically showing the overall configuration of the hybrid propeller cap 30 according to the second embodiment of the present invention.
  • the composite propeller cap 30 according to the second embodiment of the present invention the shrinkage portion 31 is formed so as to decrease in diameter toward the opposite side of the propeller, and the shrinkage portion 31 It is the same as the first embodiment shown in Fig. 2 that includes a diffusion type portion 32 is formed so as to increase in diameter toward the opposite side of the propeller extending to the).
  • the propeller cap according to the second embodiment of the present invention 30 is characterized in that the above-mentioned contraction portion 31 is formed in a curved form having a constant curvature rather than a straight form as in the first embodiment shown in FIG.
  • the composite propeller cap 30 according to the second embodiment of the present invention may be formed such that the shape of the contraction portion 31 is convex outward in a curved shape having a predetermined curvature as shown in FIG. 3A, Alternatively, as shown in Figure 3b is characterized in that it is formed to be convex inward in the form of a curve having a certain curvature.
  • the above-mentioned curvature of the contraction part 31 can be set suitably according to the kind or use of a propeller and a ship, and the other part is the same as that of 1st Embodiment mentioned above, and the detailed description is abbreviate
  • the shape of the propeller cap is formed to decrease in diameter and then increase again, so that the propeller flow is first formed by the shape in which the diameter decreases to the contraction portions 21 and 31 in the middle of the propeller caps 20 and 30.
  • the pressure is restored to improve the propulsion efficiency, and the hub vortex cavitation by weakening the strong rotational flow (vortex) by the shape of increasing diameter as it passes through the diffusion parts 22 and 32 at the ends of the propeller caps 20 and 30. The occurrence of can be reduced.
  • Figure 4 is a view showing a comparison of the efficiency of the propeller using the conventional propeller cap and the hybrid propeller cap 20 according to the first embodiment of the present invention shown in FIG. to be.
  • the efficiency of the propeller using the hybrid propeller cap 20 according to the first embodiment of the present invention is similar to that of the conventional contraction type propeller cap, while the hub vortex cavitation Side effects can be greatly reduced, it can be seen that the efficiency of the propeller is significantly improved compared to the diffusion type propeller cap.
  • the pressure recovery according to the shape is performed up to the contraction portions 21 and 31 in the middle of the cap.
  • the strong rotational flow (Vortex) is weakened by the diffusion type (22, 32) as the propeller flow passes through the end of the diffusion type cap can be suppressed the generation of the hub vortex cavitation, accordingly
  • the energy loss due to the vortex and cap shape is prevented, and the propulsion efficiency of the ship is improved by about 1 ⁇ 3% compared with the conventional diffused propeller, and the vibration and noise caused by the hub vortex cavitation is reduced, In comparison, rudder erosion and corrosion can be prevented.
  • the hub vortex cavitation is reduced as in the diffusion propeller cap used for the existing container ship
  • the propulsion efficiency can be improved compared to the conventional diffusion propeller cap, and when applied to a conventional tanker, the propulsion efficiency is similar to that of the shrinkage propeller cap and the hub vortex cavitation can be greatly reduced.
  • the shape of the composite propeller caps 20 and 30 according to the first and second embodiments of the present invention as described above is easy to manufacture due to the simple structure, it is possible to precisely process the pins during the production of the existing PBCF. Due to this, the manufacturing cost, which was at least 100 million won, can be greatly reduced to about 30 million won, similar to the existing propeller cap.
  • FIG. 5 schematically shows the overall configuration of the hybrid propeller cap 50 according to the third embodiment of the present invention.
  • the hybrid propeller cap 50 according to the third embodiment of the present invention, as shown in Figure 5, the first diffusion die 51 formed to increase in diameter from the end of the propeller, and The straight portion 52 is formed to extend horizontally to the first diffusion portion 51, and the contraction portion 53 and the contraction portion are formed so as to extend to the straight portion 52 to decrease the diameter toward the opposite side of the propeller And a second diffusing die 54 which extends to 53 and is formed to increase in diameter again toward the opposite side of the propeller.
  • the hybrid propeller cap 50 increases in diameter from the end of the propeller to a predetermined portion and then decreases the diameter, again at the rear end of the propeller cap. It is characterized by being formed in an increasing form.
  • the hybrid propeller cap 20 according to the third embodiment of the present invention is formed such that the front portion of the propeller cap protrudes convexly by the first diffusion mold 51 as shown in FIG. 5. In this way, the propulsion efficiency is improved by increasing the pressure of the propeller pressure side.
  • the propeller cap 50 for reducing the hub vortex cavitation and improving the propulsion efficiency according to the third embodiment of the present invention as shown in FIG.
  • the propulsion efficiency is further improved, as the propeller flow is passed through the end of the diffusion type cap is weakened by a strong rotational flow (vortex) by the second diffusion type 54 can reduce the hub vortex cavitation.
  • the propulsion efficiency can be improved while more effectively preventing vibration, noise, erosion and corrosion of the rudder.
  • the inclination angles ⁇ and ⁇ of the first diffusion mold 51 and the second diffusion mold 54 can be set between 0 and 40 degrees, respectively.
  • [Table 2] shows the performance change according to the change in the angle of the inclination angle ( ⁇ , ⁇ ) of the second diffusion die 54.
  • FIG. 6 schematically shows the overall configuration of the hybrid propeller cap 60 according to the fourth embodiment of the present invention.
  • the composite propeller cap 60 according to the fourth embodiment of the present invention, the first diffused portion 61 is formed so as to increase the diameter from the end of the propeller, the first diffusion
  • the straight portion 62 is formed to extend horizontally to the mold portion 61
  • the shrinkage portion 63 and the shrinkage portion 63 is formed to extend to the straight portion 62 to decrease the diameter toward the opposite side of the propeller
  • a second diffused portion 64 which extends to the opposite side of the propeller to increase in diameter again, the diameter increases initially to a certain portion at the end of the propeller, then decreases, and again at the rear end of the propeller cap. It is formed in the form of increasing is the same as the third embodiment shown in FIG.
  • the composite propeller cap 60 according to the fourth embodiment of the present invention has a shape in which the above-mentioned contraction portion 63 is not curved in the straight form as in the third embodiment shown in FIG. It is characterized in that formed in the form.
  • the composite propeller cap 60 according to the fourth embodiment of the present invention may be formed such that the shape of the contraction portion 63 is convex outward in a curved shape having a predetermined curvature as shown in FIG. 6A. Or, as shown in Figure 6b is characterized in that it is formed to be convex inward in a curved form having a certain curvature.
  • the curvature of the contraction portion 63 can be appropriately set according to the type or use of the propeller or the ship, and other parts are the same as in the above-described third embodiment, and the detailed description thereof will be omitted.
  • FIG. 7 shows the efficiency of the propeller using a conventional propeller cap and propeller caps 50 and 60 according to the third and fourth embodiments of the present invention shown in FIGS. 5 and 6. Is a diagram comparing each.
  • the first diffusion molds 51 and 61 are provided such that the front portion of the propeller cap protrudes convexly. Since the propulsion efficiency is improved by increasing the pressure of the propeller pressure side, the propulsion efficiency is also improved through the pressure recovery according to the shape of the contraction portions 53 and 63 in the middle of the cap.
  • the vortex of the propeller flow is strongly twisted as the propeller flow passes through the diffusion end of the cap by the second diffusion die 54, 64, thereby reducing the hub vortex cavitation, and the propulsion efficiency of the ship is reduced. It is about 1 to 3% improvement compared to the diffuse propeller, vibration and noise due to hub vortex cavitation is reduced, and erosion and corrosion of the rudder can be prevented as compared with the conventional contracted propeller cap.
  • the hub vortex cavitation is reduced like the diffusion type propeller cap used for the existing container ship.
  • the propulsion efficiency can be improved compared to the conventional diffusion propeller cap, and when applied to a conventional tanker, the propulsion efficiency is similar to that of the shrinkage propeller cap and the hub vortex cavitation can be greatly reduced.
  • the shape of the composite propeller caps 50 and 60 according to the third and fourth embodiments of the present invention as described above is simple in structure and easy to manufacture. Due to this, the manufacturing cost, which was at least 100 million won, can be greatly reduced to about 30 million won, similar to the existing propeller cap.
  • FIG. 8 schematically shows the overall configuration of the hybrid propeller cap 80 according to the fifth embodiment of the present invention.
  • the contraction portion 81 is formed so as to decrease in diameter toward the opposite side of the propeller, and the contraction The contraction portion 82 is formed in the form of a thin plate having a cross section of a rectangular or streamlined shape having a predetermined thickness and extending to the opposite side of the propeller and extending to the opposite side of the propeller. 81 and a plurality of guide fins 83 provided at regular intervals between the diffusion die 82.
  • the composite propeller cap 80 according to the fifth embodiment of the present invention is formed in a form in which the diameter gradually decreases from the end of the propeller and then again increases in diameter at the rear end of the propeller cap, as shown in FIG. 8.
  • a triangular plate-shaped guide pin 83 is added between the contracting portion 81 or the contracting portion 81 and the diffusion portion 82 of the propeller cap 80.
  • the inclination angle ⁇ of the contraction portion 81 may be set, for example, between 0 and 40 °, and if the inclination angle of the contraction portion 81 exceeds 40 degrees, the inclination angle ⁇ may be abrupt due to flow separation. This results in a drop in performance, and when a flow delamination occurs, no pressure recovery occurs at the propeller cap surface, increasing resistance.
  • [Table 3] shows the performance change according to the change in the angle of the inclination angle ( ⁇ ) of the contraction portion 82.
  • the propeller flow is first restored to the pressure by the shape of the diameter decreases up to the contraction portion 81 in the middle of the propeller cap 80.
  • the propulsion efficiency is improved, and the strong vortex can be weakened by the shape of increasing diameter while passing through the diffusion die 82 at the end of the propeller cap 80, thereby reducing the hub vortex cavitation.
  • the guide pin 83 is a triangular thin plate, as shown in FIG. 8A, for example, to engage a concave portion between the contracted portion 81 and the diffused portion 82 of the propeller cap 80. It is formed in the form and is configured to be attached to a plurality at regular intervals through a simple welding, by which the rotational flow derived from the propeller rotation is released as it passes through the expansion portion 82, the rotational flow derived from the propeller rotation propeller By releasing the twisted flow in advance before reaching the diffused portion 82 of the cap 80, the occurrence of hub vortex cavitation can be further reduced by converting the rotational flow resulting from the propeller rotation into a linear flow in the rotational axis direction.
  • the guide pins 83 may be installed in an appropriate number, for example, between 2 and 8 as necessary, and may be fitted in accordance with the diameter of the extended portion 82 to avoid an increase in resistance by the guide pins themselves.
  • the size can be determined.
  • the attachment angle of the guide pin 83 is based on 0 degrees when viewed from the vertically upward direction, and preferably, may have a manufacturing tolerance of about +20 to -20 degrees, more preferably It may be configured to have a manufacturing tolerance of about +10 to -10 degrees.
  • the propulsion efficiency is improved through the pressure recovery according to the shape to the contraction portion 81 in the middle of the cap, the propeller flow is diffused Rotational flow (vortex) strongly twisted by the diffusion die 82 is weakened while passing through the cap end of the die, so that the occurrence of the hub vortex cavitation can be reduced, and as described above, the contracted portion of the propeller cap 80 ( By attaching a plurality of guide pins 83 formed in the form of a triangular plate between the 81 and the diffuser 82, before the rotational flow induced from propeller rotation reaches the diffuser 82 of the propeller cap 80.
  • the occurrence of the hub vortex cavitation can be further reduced by converting the rotational flow due to the propeller rotation into a linear flow in the rotational axis direction. Therefore, the rotational flow and the generation of hub vortex cavitation due to the rotation of the propeller can be reduced together, thereby preventing the energy loss caused by the hub vortex, thereby improving the propulsion efficiency of the vessel by about 1 to 3% compared to the conventional diffused propeller.
  • the vibration and noise caused by the hub vortex cavitation can be reduced, and erosion and corrosion of the rudder can be prevented as compared with the conventional shrinking propeller cap.
  • the propulsion efficiency is improved through the pressure recovery according to the shape to the contraction portion 81 in the middle of the cap,
  • the propeller flow passing through the cap end is reduced by hub vortex cavitation due to weakening of the rotational flow (vortex) strongly twisted by the diffuser 82, whereby the contraction 81 and the diffuser 81 of the propeller cap 80
  • a plurality of guide pins 83 formed in the form of a plate between the 82 flows by the guide pins 83 before the rotary flow induced from the propeller rotation reaches the diffused portion 82 of the propeller cap 80.
  • the hybrid propeller cap 80 according to the fifth embodiment of the present invention configured as described above, in addition to reducing the hub vortex cavitation through the diffusion type 82 of the propeller cap 80 as described above.
  • the linear flow in the direction of the axis of rotation of the rotating shaft due to the propeller rotation is released by releasing the twisted flow to some extent before the rotational flow induced by the propeller rotation by the guide pin 83 reaches the diffusion portion 82 of the propeller cap 80. It is possible to further reduce the occurrence of the hub vortex cavitation by switching to, thereby improving propulsion efficiency through the prevention of energy loss by the hub vortex, vibration by the hub vortex cavitation, noise reduction and prevention of erosion and corrosion of the rudder can do.
  • the composite propeller cap 80 according to the fifth embodiment of the present invention configured as described above has a very simple structure, and the guide pin 83 is a simple plate plate. Since it is easy to manufacture and can be easily attached by simple welding, the manufacturing cost of the existing PBCF can be greatly reduced due to the precise processing of fins.
  • FIG. 9 is a view showing a comparison between the efficiency of a propeller cap using a propeller cap 80 according to the fifth embodiment of the present invention shown in FIG. 8.
  • the efficiency of the propeller using the propeller cap 80 according to the fifth embodiment of the present invention is superior to the conventional contraction type (contraction type) propeller and at the same time can greatly reduce the side effects caused by the hub vortex, It can be seen that the efficiency of the propeller is greatly improved compared to the diffusion type propeller cap.
  • the propulsion efficiency is improved through the pressure recovery according to the shape to the contraction portion 81 in the middle of the cap, propeller flow
  • the rotational flow (vortex) strongly twisted by the diffusion die 82 is weakened while passing through the tip of the diffusion die, the occurrence of the hub vortex cavitation can be reduced, and as described above, the contraction of the propeller cap 80 is reduced.
  • the rotational flow induced from the propeller rotation reaches the diffused die 82 of the propeller cap 80.
  • the occurrence of hub vortex cavitation can be further reduced by previously releasing the flow by the guide pins 23 in advance to convert the rotational flow due to the propeller rotation into a linear flow in the direction of the axis of rotation. Therefore, the rotational flow and the generation of hub vortex cavitation due to the rotation of the propeller can be reduced together, thereby preventing the energy loss caused by the hub vortex, thereby improving the propulsion efficiency of the vessel by about 1 to 3% compared to the conventional diffused propeller.
  • the vibration and noise caused by the hub vortex cavitation can be reduced, and erosion and corrosion of the rudder can be prevented as compared with the conventional shrinking propeller cap.
  • the conventional diffusion type propeller cap 80 according to the fifth embodiment of the present invention as described above, the conventional diffusion type propeller cap while reducing the hub vortex cavitation similar to the diffusion type propeller cap used for the existing container ship
  • the propulsion efficiency is greatly improved, and when applied to the existing tanker, the propulsion efficiency is excellent and the hub vortex cavitation can be greatly reduced as compared to the conventional shrinking propeller cap.
  • the conventional PBCF has a problem in that the manufacturing cost is a rise factor due to the precise processing of the pin during manufacturing, the shape of the propeller cap 80 according to the fifth embodiment of the present invention as described above is simple in structure Since it is easy to manufacture, the manufacturing cost, which was at least 100 million won due to the precision processing of the pins during the manufacturing of the existing PBCF, has a merit that can be greatly reduced to about 30 million won or less similar to the existing propeller cap.
  • FIG. 10 schematically shows the overall configuration of the hybrid propeller cap 60 according to the sixth embodiment of the present invention.
  • the composite propeller cap 100 according to the sixth embodiment of the present invention, the shrinkage portion 101 is formed so as to decrease in diameter toward the opposite side of the propeller, and the shrinkage portion 101 And a diffusion pin 102 formed to extend toward the opposite side of the propeller and a guide pin 103 attached between the contraction portion 101 and the diffusion die 102.
  • the shrinkage portion 101 is formed so as to decrease in diameter toward the opposite side of the propeller, and the shrinkage portion 101
  • a diffusion pin 102 formed to extend toward the opposite side of the propeller and a guide pin 103 attached between the contraction portion 101 and the diffusion die 102.
  • the shape of the contraction portion 101 is not a straight line shape as in the fifth embodiment shown in FIG. 8, but a curve having a constant curvature. It is characterized in that formed in the form.
  • the composite propeller cap 100 according to the sixth embodiment of the present invention is formed such that the shape of the contraction portion 101 is convex outward in a curved form having a constant curvature, as shown in FIG. 10A.
  • the shape of the above-mentioned contraction portion 101 is formed so as to be convex inward in a curved form having a predetermined curvature, as shown in FIG. 10B.
  • the above-described curvature of the contraction portion 101 can be appropriately set according to the type or use of the propeller or the ship, and other parts are the same as in the fifth embodiment described above, and thus the detailed description thereof will be omitted.
  • FIG. 11 is a view schematically showing the overall configuration of the hybrid propeller cap 110 according to the seventh embodiment of the present invention.
  • the hybrid propeller cap 110 includes a first diffused portion 111 formed to increase in diameter from the end of the propeller, and The straight portion 112 is formed to extend horizontally to the first diffusion portion 111, and the contraction portion 113 is formed to extend to the straight portion 112 to reduce the diameter toward the opposite side of the propeller, and the contraction
  • the second diffuser 114 and the second diffuser 114 are formed in the form of a thin plate extending to the mold 113 so as to increase in diameter toward the opposite side of the propeller, and the contracted portion 113 and the second diffuser 114. ),
  • a plurality of guide fins 115 are provided at regular intervals.
  • the diameter of the propeller end initially increases to a certain portion and then decreases, the diameter again at the rear end of the propeller cap It is formed in an increasing shape, wherein the guide pin 115 in the form of a triangular plate is added between the contracted portion 113 and the second diffused portion 114 of the propeller cap 110.
  • the inclination angles ⁇ and ⁇ of the first diffusion mold 111 and the contraction portion 113 may be set between 0 and 40 °, for example.
  • [Table 2] shows the performance change according to the change in the angle of the inclination angle ( ⁇ , ⁇ ) of the first diffusion portion 111 and the contraction portion 113. .
  • the front portion of the propeller cap is convex by the first diffusion type 111. Since it is formed to protrude, the propeller pressure stage (pressure side) to increase the pressure of the propulsion efficiency is improved, and the propulsion efficiency is also improved through the pressure recovery according to the shape of the contraction portion 113 in the middle of the cap.
  • the propulsion efficiency is further improved through the pressure recovery according to the shape up to the contraction portion 113 in the middle of the cap, As the propeller flow passes through the diffused cap end, the strong diffusion vortex may be weakened by the second diffuser 114 to reduce hub vortex cavitation.
  • the energy loss by the hub vortex is prevented, the propulsion efficiency of the ship is improved by about 1 to 3% compared to the conventional diffused propeller, the vibration and noise by the hub vortex cavitation is reduced, the conventional shrinkage type Compared to the propeller cap, rudder erosion and corrosion can be prevented.
  • the guide pin 115 described above is triangular so as to engage a concave portion between, for example, the contracted portion 113 and the second diffused portion 114 of the propeller cap 110, as shown in FIG. 11. It is formed in the form of a thin plate and is configured to be attached to a plurality at regular intervals through simple welding, whereby the rotational flow derived from the propeller rotation is released from the propeller rotation in addition to the unwinding of the propeller rotation. By releasing the twisted flow in advance before the rotational flow reaches the second diffused portion 114 of the propeller cap 110, the generation of the hub vortex cavitation is further added by converting the rotational flow due to the propeller rotation into a linear flow in the direction of the rotation axis. May decrease.
  • the guide pins 115 may be installed in an appropriate number, for example, between 2 and 8, if necessary, and the diameter of the second extended portion 114 may be increased in order to avoid an increase in resistance caused by the guide pins themselves.
  • the size can be determined accordingly.
  • the attachment angle of the guide pin 115 is based on 0 degrees when viewed from the vertically upward direction, and preferably, may have a manufacturing tolerance of about +20 to -20 degrees, more preferably It may be configured to have a manufacturing tolerance of about +10 to -10 degrees.
  • the principle of the hybrid propeller cap 110 having a guide pin for rotating flow and hub vortex reduction and propulsion efficiency according to the seventh embodiment of the present invention configured as described above, Propelling efficiency is improved through the pressure recovery according to the shape up to the contracting portion 113, and the rotating flow (vortex) strongly twisted by the second diffusing portion 114 as the propeller flow passes through the tip of the diffusion type hub, thereby expanding the hub.
  • the occurrence of vortex may be reduced, and in this case, as described above, the guide pin 115 formed in the shape of a triangular plate between the contracted portion 113 of the propeller cap 110 and the second diffused portion 114 is formed.
  • the guide pin 115 releases the flow in advance before the rotational flow induced from the propeller rotation reaches the second diffused portion 114 of the propeller cap 110, thereby causing the rotational oil caused by the rotation of the propeller. Since the generation of the hub vortex cavitation can be further reduced by converting the linear flow into the direction of the axis of rotation, the rotational flow due to the propeller rotation and the generation of the hub vortex cavitation can be reduced together, thereby losing energy by the hub vortex. This prevents the ship's propulsion efficiency from improving by 1 to 3% compared to the conventional diffuser, and reduces vibration and noise caused by hub vortex cavitation, and prevents erosion and corrosion of the rudder compared to the conventional contracted propeller cap. Can be.
  • the propulsion efficiency is improved through the pressure recovery according to the shape up to the contraction portion 113 in the middle of the cap,
  • the propeller flow passing through the cap end is reduced by the hub vortex due to the unfolding of the strongly twisted rotational flow (Vortex) by the second diffusion die 114, at this time, the contraction 113 and the second portion of the propeller cap 110
  • By attaching a plurality of guide pins 115 formed in the form of a triangular plate between the diffusion parts 114 the guide pins before the rotational flow induced from the propeller rotation reaches the second diffusion parts 114 of the propeller cap 110.
  • the occurrence of rotational flow and hub vortex cavitation can be reduced by releasing the flow in advance by 115 to convert the rotational flow due to the propeller rotation into a linear flow in the direction of the rotational axis.
  • the hybrid propeller cap 110 configured as described above, to reduce the vortex cavitation through the second diffusion type 114 of the propeller cap 110 as described above
  • the rotational flow induced by the propeller rotation by the guide pin 115 releases the twisted flow to some extent before reaching the second diffused portion 114 of the propeller cap 110, thereby releasing the rotational flow due to the propeller rotation in the rotational axis direction. It is possible to further reduce the occurrence of hub vortex cavitation by switching to a linear flow of, thereby improving propulsion efficiency by preventing energy loss by the hub vortex, reducing vibration and noise caused by hub vortex cavitation, and eroding the rudder. Corrosion can be prevented.
  • the hybrid propeller cap 110 according to the seventh embodiment of the present invention configured as described above has a very simple structure, and the guide pin 115 is a simple plate plate. Because it is easy to manufacture and can be easily attached by simple welding, the manufacturing cost of the existing PBCF can be greatly reduced due to the precise processing of fins.
  • FIG. 12 is a view showing a comparison of the efficiency of a propeller cap using a propeller cap according to the seventh embodiment of the present invention shown in FIG.
  • the efficiency of the propeller using the propeller cap 110 according to the seventh embodiment of the present invention is superior to that of the conventional contraction type (contraction type) propeller cap, and the side effects caused by the hub vortex can be greatly reduced.
  • the efficiency of the propeller is greatly improved.
  • the propeller pressure stage is formed by forming the first diffusion type 111 so that the front portion of the cap protrudes convexly.
  • the propulsion efficiency is improved by increasing the pressure of the side), and the propulsion efficiency is also improved through the pressure recovery according to the shape of the contraction portion 113 in the middle of the cap.
  • the rotational flow (vortex) strongly twisted by the second diffusion portion 114 may be weakened, thereby reducing the occurrence of the hub vortex cavitation, as described above.
  • the guide pin 115 formed in the form of a triangular plate between the contracted portion 113 and the second diffused portion 114 of the cap 110 the occurrence of rotational flow and hub vortex cavitation can be further reduced.
  • the energy loss by the hub vortex is prevented, so that the propulsion efficiency of the ship is improved by about 1 ⁇ 3% compared to the conventional diffuse propeller, the vibration and noise by the hub vortex cavitation is reduced, and the existing shrinkage Compared to the propeller cap, rudder erosion and corrosion can be prevented.
  • the conventional diffusion type while reducing the hub vortex cavitation as in the diffusion type propeller cap used for the existing container ship It is possible to improve the propulsion efficiency than the propeller cap, and also, when applied to the existing tanker, the propulsion efficiency is similar to that of the shrinkable propeller cap and the hub vortex cavitation can be greatly reduced.
  • the guide pin 115 formed in the form of a triangular plate between the contracted portion 113 of the propeller cap 110 and the second diffused portion 114 rotational flow and the generation of hub vortex cavitation are additionally performed. By being reduced, vibration and noise can be reduced while erosion and corrosion of the rudder can be prevented.
  • the conventional PBCF has a problem in that the manufacturing cost is a rise factor due to the precise processing of the pin during manufacturing, the shape of the composite propeller cap 110 according to the seventh embodiment of the present invention as described above Since it is simple and easy to manufacture, the manufacturing cost, which was at least 100 million won due to the precise processing of the pins during the production of the existing PBCF, can be drastically reduced to about 30 million won, similar to the existing propeller cap.
  • FIG. 13 schematically illustrates the overall configuration of the hybrid propeller cap 130 according to the eighth embodiment of the present invention.
  • the hybrid propeller cap 130 according to the eighth embodiment of the present invention, the first diffused portion 131 is formed so as to increase the diameter from the end of the propeller, the first diffusion
  • the straight portion 132 is formed to extend horizontally to the mold portion 131
  • the contraction portion 133 is formed to extend to the straight portion 132 to decrease in diameter toward the opposite side of the propeller, and the contraction portion 133
  • the second diffusing die 134 and the guide pin 135 is coupled to the end of the second diffusing die 134 is formed so as to increase in diameter again toward the opposite side of the propeller extending to It is the same as the seventh embodiment shown in FIG.
  • the shape of the contraction portion 133 is not a straight line shape as in the seventh embodiment shown in FIG. It is characterized in that formed in the form.
  • the composite propeller cap 130 according to the eighth embodiment of the present invention is formed such that the shape of the contraction portion 133 is convex outward in a curved shape having a predetermined curvature, as shown in FIG. 13A.
  • the shape of the above-mentioned contraction portion 133 is formed so as to be convex inward in a curved form having a predetermined curvature, as shown in FIG. 13B.
  • the curvature of the contraction portion 133 can be appropriately set according to the type or use of the propeller or the ship, and other parts are the same as in the seventh embodiment described above, and thus the detailed description thereof will be omitted.
  • FIG. 14 schematically shows the overall configuration of a composite propeller cap according to a ninth embodiment of the present invention
  • FIG. 15 is a composite according to a tenth embodiment of the present invention. It is a figure which shows roughly the whole structure of a type
  • each guide pin is formed in a triangular shape to be attached to a concave space between the contracted portion and the diffused portion, so as not to protrude from the end of the diffused portion.
  • the guide pin 143 It is formed in the form of a thin plate of a pentagonal shape rather than a triangular shape, and is attached by simple welding between the contracting portion 141 and the diffusion portion 142 of the propeller cap 140, thereby guiding at the end of the diffusion portion 142.
  • Pin 143 may be configured to extend.
  • the size of the guide pin 143 preferably, so that the length (L) of the portion extending from the end of the diffusion die 142 is less than twice the diameter (D) of the diffusion die (that is, L ⁇ 2D).
  • the present invention may be configured such that the guide pin 153 is formed in the shape of a trapezoidal thin plate to be attached to the contracted portion 151 of the propeller cap 150 by simple welding. .
  • the size of the guide pin 153 preferably, the shorter portion (L2) of the length of the portion extending from the side of the shrinkage portion 151 is less than twice the diameter (D) of the diffusion type 152 portion. (Ie, L2 ⁇ 2D), and there are no particular restrictions on the other portions L1, W.
  • FIGS. 14 and 15 show an example in which the configuration of the guide pins 143 and 153 as described above is applied to the propeller cap of the first embodiment shown in FIG. 2, but the present invention is only in this configuration.
  • the configuration of the guide pins 143 and 153 described above with reference to FIGS. 14 and 15 is not limited to the first and second embodiments shown in FIG. 2 as well as the remaining second to fourth embodiments. It should be noted that the same applies.
  • FIG. 16 is a view showing comparison of thrust, torque, and efficiency of the propeller cap using the propeller cap 140 according to the ninth embodiment of the present invention shown in FIG. to be.
  • the efficiency of the propeller using the propeller cap 140 according to the ninth embodiment of the present invention is superior to the conventional contraction type (contraction type) propeller cap and at the same time can greatly reduce the side effects caused by the hub vortex
  • the efficiency of the propeller is greatly improved compared to the diffusion type propeller cap, and the efficiency of the propeller is also improved compared to the case of the first, fifth and seventh embodiments. You can see further improvements.
  • the existing contraction type (contraction type) propeller cap end It is designed to reduce hub vortex cavitation occurring at the rear of the propeller through the composite propeller cap structure combined with the diffusion type propeller cap, which is much cheaper and easier to manufacture than the conventional PBCF.
  • the hybrid propeller cap is provided to reduce the rotational flow and hub vortex and improve propulsion efficiency.It is designed to reduce hub vortex cavitation by attaching a plurality of small fins to the propeller cap. Precise machining is required to manufacture, making manufacturing difficult and cost It can solve the problems of the conventional PBCF (Propeller Boss Cap Fin) had a high problem.
  • the occurrence of hub vortex cavitation can be further reduced by attaching a guide fin in the form of a plate between the retractable portion or the retractable portion and the diffused portion of the propeller cap.
  • Combination of propeller caps to reduce rotational flow and hub vortex and improve propulsion efficiency is achieved by reducing the rotational flow and hub vortex cavitation occurring at the rear of the propeller, and much cheaper than the conventional PBCF.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

The present invention relates to a structure of a propeller cap. In order to solve the problem of a conventional propeller boss cap fin (PBCF) which requires precision processing and thus is difficult to manufacture and has high manufacturing costs, the present invention provides a combined propeller cap configured by combining a diffusion type propeller cap with the tip end of an existing contraction type propeller cap so that hub vortex cavitation occurring in the rear of a propeller can be reduced. In addition, provided is a combined propeller cap having a guide fin for reducing rotating flow and hub vortex and enhancing propulsion efficiency, the combined propeller cap being configured so as to be capable of additionally reducing occurrence of hub vortex cavitation due to attachment of a plate shaped guide fin to a contraction type portion of such a propeller cap or between a contraction type portion and a diffusion type portion thereof.

Description

회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡 Hybrid propeller cap for reduced rotational flow and hub vortex reduction and improved propulsion efficiency
본 발명은 프로펠러 캡(propeller cap)의 구조에 관한 것으로, 더 상세하게는, 선박의 추진기로 사용되는 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션(hub vortex cavitation)을 저감하여 선박의 소음과 진동을 감소하고, 러더(rudder)의 침식과 부식을 방지하며, 추진 효율을 향상시킴으로써 연료를 절감할 수 있도록 구성 되는 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 관한 것이다. The present invention relates to the structure of a propeller cap, and more particularly, to reduce the noise and vibration of the vessel by reducing the hub vortex cavitation generated in the rear of the propeller used as the propeller of the vessel The present invention relates to a hybrid propeller cap for reducing rotational flow and hub vortex and improving propulsion efficiency, which is configured to prevent erosion and corrosion of a rudder and improve fuel efficiency.
또한, 본 발명은, 프로펠러 캡에 작은 핀(fin)을 복수 개 부착하여 허브 볼텍스를 감소하도록 구성됨으로 인해 핀을 설계하고 제조하기 위해 정밀가공이 요구되어 제작이 난해하고 제작비용도 높은 문제가 있었던 종래의 PBCF(Propeller Boss Cap Fin)의 문제점을 해결하기 위해, 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡 구조를 통하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감할 수 있도록 구성됨으로써, 기존의 PBCF에 비해 매우 간단한 구조로 훨씬 저렴하고 용이하게 제작이 가능한 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 관한 것이다. In addition, the present invention, because it is configured to reduce the number of hub vortex by attaching a plurality of small fin (fin) to the propeller cap, precision processing is required to design and manufacture the pin has a difficult manufacturing and high production cost problem In order to solve the problem of the conventional PBCF (Propeller Boss Cap Fin), through the composite propeller cap structure that combines the diffusion type propeller cap to the end of the conventional contraction type propeller cap in the rear of the propeller Since it is configured to reduce the generated hub vortex cavitation, it relates to a hybrid propeller cap for reducing the rotational flow and hub vortex reduction and propulsion efficiency that can be manufactured much cheaper and easier with a very simple structure compared to the conventional PBCF.
아울러, 본 발명은, 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡을 형성하고, 이러한 프로펠러 캡의 수축형 부분 또는 수축형 부분과 확산형 부분 사이에 판(plate) 형태의 가이드 핀(guide fin)을 부착하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있도록 구성됨으로써, 프로펠러의 후방에서 발생하는 회전유동과 허브 볼텍스 캐비테이션을 저감할 수 있는 동시에, 기존의 PBCF에 비해 매우 간단한 구성으로 훨씬 저렴하고 용이하게 제작이 가능한 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 관한 것이다.In addition, the present invention forms a complex propeller cap combining a diffusion type propeller cap at the end of a conventional contraction type propeller cap, and the contraction portion or the contraction portion and the diffusion portion of such a propeller cap. By attaching a guide pin in the form of a plate between the mold parts, it is possible to further reduce the occurrence of hub vortex cavitation, thereby reducing the rotational flow and the hub vortex cavitation occurring at the rear of the propeller. At the same time, the present invention relates to a hybrid propeller cap for reducing the rotational flow and hub vortex and improving propulsion efficiency, which can be manufactured at a much lower cost and easier with a very simple configuration compared to conventional PBCF.
일반적으로, 선박은, 예를 들면, 프로펠러와 같이, 추진력을 발생시키는 추진기를 통해 전진하며, 이러한 프로펠러형 추진기는 선체의 엔진의 회전축에 연결되어 엔진의 구동력으로 회전하게 된다. In general, ships advance through propulsion generating propulsion, such as, for example, propellers, which propeller type propellers are connected to the rotating shaft of the engine of the hull to rotate with the driving force of the engine.
더 상세하게는, 프로펠러형 추진기는, 크게 나누어, 엔진의 회전축에 연결되고 프로펠러의 본체를 형성하는 프로펠러 캡과, 프로펠러 캡의 외주면에 형성되는 복수의 날개를 포함하여 이루어지며, 각각의 날개를 지나는 유동에 의해 추력과 토크를 발생하게 되는데, 이때, 토크가 엔진의 구동력으로 극복되고 발생하는 추력을 이용하여 선박이 전진하게 된다. More specifically, the propeller-type propeller includes a propeller cap, which is largely divided into a propeller cap connected to a rotating shaft of the engine and forming a main body of the propeller, and a plurality of wings formed on the outer circumferential surface of the propeller cap, passing through each wing. Thrust and torque are generated by the flow. At this time, the torque is overcome by the driving force of the engine and the ship is advanced by using the generated thrust.
여기서, 일반적으로, 선박의 추진기는 주엔진에서 발생하는 동력의 약 70% 정도만을 선박을 전진시키는 추진력으로 사용하며, 나머지 엔진의 동력은프로펠러 마찰, 열 손실 및 프로펠러 후방의 회전류, 프로펠러 허브 볼텍스(hub vortex) 등으로 낭비되게 된다. Here, in general, the propulsion of the ship is used as the propulsion force to advance the ship only about 70% of the power generated by the main engine, the remaining engine power is propeller friction, heat loss and rotational flow behind the propeller, propeller hub vortex (hub vortex) and so on.
이 중, 프로펠러 후방의 회전류와 허브 볼텍스는 동력의 약 5 ~ 7% 및 1 ~ 3%에 해당하며, 또한, 강한 허브 볼텍스는 허브 볼텍스 캐비테이션(hub vortex cavitation)을 생성하여 소음과 진동, 러더의 침식 및 부식과 같은 문제점을 야기 시키므로, 이와 같이 낭비되는 에너지의 회수와 캐비테이션에 의해 야기되는 문제점을 해결하기 위하여, 다양한 장치가 종래부터 개발되어 선박에 적용되어 왔다. Among these, the rotational flow and the hub vortex behind the propeller correspond to about 5 to 7% and 1 to 3% of the power. In addition, the strong hub vortex generates a hub vortex cavitation, producing noise, vibration and rudder. In order to solve the problems caused by the recovery and cavitation of such wasted energy, various devices have been developed and applied to ships.
여기서, 상기한 바와 같이 프로펠러 후방의 허브 볼텍스 캐비테이션을 감소시켜 추진력을 향상하고 연료를 절감하기 위한 종래기술의 예로는, 예를 들면, 한국 공개특허공보 제10-2011-0120267호에 제시된 바와 같은 "선박의 추진 장치와 그를 구비한 선박"이 있다.Here, as an example of the prior art for reducing the hub vortex cavitation behind the propeller to improve the driving force and save fuel as described above, for example, as shown in Korean Patent Publication No. 10-2011-0120267 Propulsion device of a ship and a ship equipped with the ship ".
더 상세하게는, 상기한 공개특허공보 제10-2011-0120267호에 제시된 선박의 추진 장치와 그를 구비한 선박은, 스크류 프로펠러의 프로펠러 보스의 후측에 장착하는 프로펠러 보스 캡에 핀을 마련하는 동시에, 이 핀을 프로펠러 날개의 사이의 후방에 배치한 선박의 추진 장치에 있어서, 상기 프로펠러 보스 캡의 후단부를 단면으로 형성하거나, 또는, 상기 프로펠러 보스 캡의 후단부의 형상을 주연부로부터 프로펠러 보스 캡의 전장의 20%의 범위 내에 집어넣는 동시에, 이 프로펠러 보스 캡의 전장을 캡 전단부의 지름의 0.28배 ~ 0.76배로 하고, 이 프로펠러 보스 캡의 캡 후단부의 지름을 이 캡 전단부의 지름의 0.35배 ~ 0.95배로 함으로써, 종래에 비해 추진기 효율과 공작성을 높이고 경량화가 가능하도록 구성되는 선박의 추진 장치와 그를 구비한 선박에 관한 것이다. More specifically, the propulsion device of the ship presented in the above-mentioned Patent Publication No. 10-2011-0120267 and the ship provided with the same, while providing a pin in the propeller boss cap mounted on the rear side of the propeller boss of the screw propeller, In the ship propulsion device in which this pin was arrange | positioned in the back between propeller blades, the rear end part of the said propeller boss cap is formed in cross section, or the shape of the rear end part of the propeller boss cap is formed from the periphery of the full length of the propeller boss cap. By inserting it within 20% of the range, the overall length of the propeller boss cap is 0.28 times to 0.76 times the diameter of the cap front end, and the diameter of the cap rear end of the propeller boss cap is 0.35 times 0.95 times the diameter of this cap front end. The present invention relates to a ship propulsion device and a ship having the same, which are configured to increase propeller efficiency, workability, and light weight, as compared with the related art. A.
또한, 프로펠러 후방의 허브 볼텍스 캐비테이션을 감소시켜 추진력을 향상하고 연료를 절감하기 위한 종래기술의 또 다른 예로는, 예를 들면, 한국공개특허공보 제10-2012-0134647호에 제시된 바와 같은 "선박의 프로펠러 보스캡"이 있다. Further, another example of the prior art for reducing the hub vortex cavitation behind the propeller to improve propulsion and save fuel is, for example, as described in Korean Patent Publication No. 10-2012-0134647 Propeller boss cap. "
더 상세하게는, 상기한 공개특허공보 제10-2012-0134647호에 제시된 선박의 프로펠러 보스 캡은, 프로펠러의 샤프트와 연결되는 프로펠러 보스의 후면에 설치되는 보스 캡에 있어서, 상기 보스 캡의 러더측 면에 보스 홈을 형성하되, 상기 보스 홈의 깊이는 상기 보스 홈의 중심부와 가장자리가 동일하지 않도록 함으로써, 보스 캡에 의한 부가 저항의 증가를 배제하면서 프로펠러의 후류에 의해 유기되어 형성되는 허브 볼텍스 캐비테이션을 억제하여 러더의 침식을 방지할 수 있도록 구성되는 선박의 프로펠러 보스 캡에 관한 것이다. More specifically, the propeller boss cap of the ship presented in the above-mentioned Patent Publication No. 10-2012-0134647 is a boss cap installed on the rear of the propeller boss connected to the shaft of the propeller, the rudder side of the boss cap The boss vortex cavitation is formed on the surface, but the depth of the boss groove is not the same as the center and the edge of the boss groove, the organic vortex cavitation is formed by the wake of the propeller while excluding the increase of the added resistance by the boss cap It relates to a propeller boss cap of a ship that is configured to suppress the erosion of the rudder.
상기한 바와 같이, 종래, 프로펠러의 회전시 프로펠러의 후방에 발생되는 회전류와 허브 볼텍스 캐비테이션을 감소하여 추진력을 증가시키고 연료를 절감하기 위한 여러 가지 기술내용이 제시된 바 있으나, 이러한 종래의 방법들은, 프로펠러 캡의 형상을 기존과 달리 특별하게 형성하거나, 프로펠러 날개와 별도의 복수의 핀 날개를 설치하는 등으로 인해, 그 구성이 복잡해지고, 그에 따라 추진기의 설계 및 제작에 어려움이 따르며 비용 또한 증가하는 등의 문제가 있는 것이었다. As described above, in the related art, various techniques for reducing propulsion force and saving fuel have been proposed by reducing the rotational flow and hub vortex cavitation generated at the rear of the propeller when the propeller rotates. Due to the special shape of the propeller cap, which is different from the existing one, or the installation of a plurality of propeller blades and a plurality of separate pin blades, the configuration becomes complicated, and thus, the design and manufacturing of the propeller is difficult and the cost is increased. There was a problem.
즉, 더 상세하게는, 먼저, 상기한 바와 같이 추진기 후방의 회전 에너지를 회수하기 위한 장치에 대한 종래기술의 예로는, 이중 반전 추진기(Contra-Rotating Propeller ; CRP), 전류고정날개(Pre-swirl Stator), 후류고정날개(Postswirl Stator), 후류날개(Vane-Wheel), 러더 추력 날개(Rudder thrust(bulb) fin) 등이 알려져 있으며, 이러한 종래의 장치들은 약 2~5%의 에너지 절감 효과가 있다고 알려져 있으나, 비교적 대형 구조물로서 설치 및 부착에 큰 비용이 발생하며, 구조적인 위험을 가지는 문제가 있다. That is, more specifically, first, as an example of the prior art for the device for recovering the rotational energy behind the propeller, as described above, Contra-Rotating Propeller (CRP), current fixed wing (Pre-swirl) Stators, Postswirl Stators, Van-Wheels, Rudder thrust fins, etc. are known, and these conventional devices have energy savings of about 2-5%. It is known that, as a relatively large structure, there is a large cost in installation and attachment, there is a problem that has a structural risk.
또한, 추진기 허브 볼텍스 캐비테이션에 의한 문제점을 극복하기 위한 장치로는, 예를 들면, PBCF(Propeller Boss Cap Fin) 및 러더 벌브(Rudder bulb) 등이 알려져 있으며, 약 1 ~ 3%의 에너지 절감 효과와 함께 상기한 추진기 후방의 회전 에너지를 회수하기 위한 장치들에 비하여 그 구성이 작고 단순하여 부착이 쉬우며 제작비가 적은 장점이 있다. In addition, as a device for overcoming the problems caused by the propeller hub vortex cavitation, for example, PBCF (Propeller Boss Cap Fin) and rudder bulb (Rudder bulb) is known, and energy saving effect of about 1 to 3% and Compared with the devices for recovering the rotational energy of the rear of the propeller, the configuration is small and simple, so that it is easy to attach and the manufacturing cost is low.
여기서, PBCF는, 1970년대부터 개발되어 왔으며, 추진기 후방 허브에 위치한 프로펠러 캡에 작은 핀(fin)을 부착하여 허브 볼텍스 에너지를 흡수하는 것에 의해 추진기 효율을 1 ~ 3% 향상시키며, 추진기의 허브 볼텍스 캐비테이션을 감소하여 허브 볼텍스 캐비테이션에 의한 소음 감소 및 러더의 침식과 부식 현상을 줄여주는 효과를 가진다. Here, PBCF, which has been developed since the 1970s, improves propeller efficiency by 1 to 3% by absorbing hub vortex energy by attaching a small fin to the propeller cap located at the rear hub of the propeller, and the hub vortex of the propeller Reducing cavitation has the effect of reducing noise caused by hub vortex cavitation and reducing erosion and corrosion of the rudder.
그러나 PBCF에 부착되는 핀(fin)은 선박의 종류 및 사용환경에 따라 그에 적합한 특성을 나타내도록 매번 다르게 설계해야 하고, 매우 정밀한 설계가However, the fins attached to the PBCF must be designed differently each time to show suitable characteristics according to the type of vessel and the environment of use.
요구되며, 또한, 설계 완료 후의 제작에 있어서도 실질적으로 추진기의 제작방식과 동일하게 하여 제작해야 하므로 러더 벌브 등에 비해 상대적으로 제작비용이 비싼 단점이 있다. In addition, there is a disadvantage that the manufacturing cost is relatively high in comparison with the rudder bulb because it is required to be manufactured in the same manner as the manufacturing method of the propeller also in the production after completion of the design.
따라서 상기한 바와 같이, 선박마다 각각 따로 정밀한 설계가 요구되고 추진기와 동일한 방식으로 제작해야 함으로 인해 제작이 용이하지 못하고 그에 따라 제작비용이 증가하는 문제가 있었던 종래기술의 PBCF를 이용한 프로펠러 허브 볼텍스 캐비테이션 감소방법들의 문제점을 해결하기 위하여는, 기존의 PBCF 대신에, 보다 간단한 구성으로 저렴하게 제작 가능하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감할 수 있도록 구성됨으로써, 선박의 소음과 진동을 감소하고, 러더의 침식과 부식을 방지할 수 있으며, 추진 효율을 향상시켜 연료를 절감할 수 있도록 구성되는 새로운 구성의 프로펠러 구조를 제공하는 것이 바람직하나, 아직까지 그러한 요구를 모두 만족시키는 장치나 방법은 제공되지 못하고 있는 실정이다. Therefore, as described above, the propeller hub vortex reduction using the PBCF of the prior art, which has a problem that the precise design is required for each vessel separately and manufactured in the same manner as the propeller, and thus the manufacturing is not easy and the manufacturing cost increases accordingly. In order to solve the problems of the methods, instead of the existing PBCF, it is possible to manufacture in a simpler and cheaper to reduce the hub vortex cavitation generated from the rear of the propeller, thereby reducing the noise and vibration of the ship, It is desirable to provide a new propeller structure that can prevent erosion and corrosion of the rudder and improve the propulsion efficiency to save fuel, but there are no devices or methods that meet all such requirements. I can't do it.
[선행기술문헌] [Preceding technical literature]
1. 한국 공개특허공보 제10-2011-0120267호 (2011.11.03.)1. Korean Patent Application Publication No. 10-2011-0120267 (2011.11.03.)
2. 한국 공개특허공보 제10-2012-0134647호 (2012.12.12.)2. Korean Unexamined Patent Publication No. 10-2012-0134647 (Dec. 12, 2012)
본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하고자 하는 것으로, 따라서 본 발명의 목적은, 프로펠러 캡에 작은 핀(fin)을 복수 개 부착하여 허브 볼텍스 캐비테이션을 저감하도록 구성됨으로 인해 핀을 설계하고 제조하기 위해 정밀가공이 요구되어 제작이 난해하고 제작비용도 높은 문제가 있었던 종래의 PBCF(Propeller Boss Cap Fin)의 문제점을 해결하기 위해, 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡 구조를 통하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감할 수 있도록 구성됨으로써, 기존의 PBCF에 비해 매우 간단한 구성으로 훨씬 저렴하고 용이하게 제작이 가능하도록 구성되는 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡을 제공하고자 하는 것이다. The present invention seeks to solve the problems of the prior art as described above, and therefore the object of the present invention is to design a pin because it is configured to reduce the hub vortex cavitation by attaching a plurality of small fins to the propeller cap. In order to solve the problem of the conventional PBCF (Propeller Boss Cap Fin), which requires a precise processing to manufacture and has a problem of difficulty in manufacturing and high manufacturing cost, a diffusion type is formed at the end of a conventional contraction type propeller cap. diffusion type) It is configured to reduce hub vortex cavitation generated at the rear of the propeller through the propeller cap structure combined with the propeller cap, so that it is much cheaper and easier to manufacture with a very simple configuration than the conventional PBCF. Hybrid pro for reduced rotational flow, hub vortex reduction and propulsion efficiency Intended to provide a multiple cap.
또한, 본 발명의 다른 목적은, 상기한 바와 같이 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡 구조를 통하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감하는 것에 더하여, 이러한 프로펠러 캡의 수축형 부분 또는 수축형 부분과 확산형 부분 사이에 판(plate) 형태의 가이드 핀(guide fin)을 부착하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있도록 구성됨으로써, 프로펠러의 후방에서 발생하는 회전유동과 허브 볼텍스 캐비테이션을 저감하고, 기존의 PBCF에 비해 매우 간단한 구성으로 훨씬 저렴하고 용이하게 제작이 가능한 동시에, 선박의 소음과 진동을 감소하고 러더의 침식과 부식을 방지할 수 있는데 더하여, 추진 효율을 향상시켜 연료를 절감할 수 있도록 구성되는 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡을 제공하고자 하는 것이다. In addition, another object of the present invention, the hub generated from the rear of the propeller through the propeller cap structure of the composite type coupled to the diffusion type propeller cap end of the conventional contraction type propeller cap as described above. In addition to reducing vortex cavitation, the occurrence of hub vortex cavitation is further reduced by attaching a plate-shaped guide fin between the constricted or constricted and diffused portions of the propeller cap. It is designed to reduce the rotational flow and hub vortex cavitation generated at the rear of the propeller, and it is much cheaper and easier to manufacture with a very simple configuration compared to the conventional PBCF, while reducing the noise and vibration of the ship and the rudder. Erosion and corrosion can be prevented in addition to improving propulsion efficiency. Rotating flow and a hub vortex is configured to be able to reduce it to provide a hybrid propeller cap for the reduction and improving propulsion efficiency.
상기한 바와 같은 목적을 달성하기 위해, 본 발명에 따르면, 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 있어서, 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부; 및 상기 수축형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 확산형부를 포함하여 구성됨으로써, 상기 수축형부의 직경이 감소하는 형상에 의해 프로펠러 유동의 압력이 회복되어 추진효율이 향상되고, 상기 프로펠러 캡 끝단의 상기 확산형부의 직경이 증가하는 형상에 의해 회전 유동(vortex)이 약화됨으로써 허브 볼텍스 캐비테이션의 발생이 감소될 수 있도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡이 제공된다. In order to achieve the object as described above, according to the present invention, in the composite propeller cap for reducing the rotational flow and hub vortex and improve the propulsion efficiency, the shrinkage portion is formed to reduce the diameter toward the opposite side of the propeller; And a diffusion mold portion extending to the contraction portion to increase in diameter toward the opposite side of the propeller, whereby the pressure of the propeller flow is restored by the shape in which the diameter of the contraction portion decreases, and the propulsion efficiency is improved. The composite propeller cap is configured to reduce the occurrence of hub vortex cavitation by weakening the rotational vortex due to the increase in the diameter of the diffuser portion of the propeller cap end.
여기서, 상기 복합형 프로펠러 캡은, 상기 수축형부의 경사각이 0 ~ 40° 사이로 설정되는 것을 특징으로 한다. Here, the composite propeller cap, characterized in that the inclination angle of the contraction portion is set between 0 ~ 40 °.
또한, 상기 복합형 프로펠러 캡은, 상기 수축형부의 측면이 직선 형태로 형성되거나, 또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, 또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 한다. In addition, the composite propeller cap, the side of the shrinkage portion is formed in a straight shape, or the side of the shrinkage portion is formed so as to be convex outward in a curved form having a predetermined curvature, or the shrinkage portion Side of the is characterized in that it is formed to be convex inward in a curved form having a predetermined predetermined curvature.
아울러, 본 발명에 따르면, 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 있어서, 프로펠러의 끝단에서부터 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 제 1 확산형부; 상기 제 1 확산형부에 수평으로 연장하도록 형성되는 직선형부; 상기 직선형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부; 및 상기 수축형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 제 2 확산형부를 포함하여 구성됨으로써, 상기 제 1 확산형부에 의해 상기 프로펠러 캡의 앞 부분이 볼록하게 돌출하도록 형성됨으로써 프로펠러 압력단(Pressure side)의 압력을 증가시켜 추진 효율이 향상되고, 상기 수축형부에 의해 상기 프로펠러 캡을 지나는 프로펠러 유동의 압력이 회복되어 추진효율이 향상되며, 상기 제 2 확산형부에 의해 상기 프로펠러 유동의 회전 유동(vortex)의 강도를 약화시켜 허브 볼텍스 캐비테이션의 발생이 감소될 수 있도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡이 제공된다. In addition, according to the present invention, in the hybrid propeller cap for reducing the rotational flow and hub vortex and improve the propulsion efficiency, the first diffusion type formed to increase in diameter from the end of the propeller toward the opposite side of the propeller; A straight portion formed to extend horizontally to the first diffusion portion; A contraction portion extending to the straight portion and formed to decrease in diameter toward the opposite side of the propeller; And a second diffusion die extending to the contracting portion to increase in diameter toward the opposite side of the propeller, whereby the front portion of the propeller cap is protruded convexly by the first diffusion die. The propulsion efficiency is improved by increasing the pressure at the pressure side, and the pressure of the propeller flow passing through the propeller cap is restored by the contracting portion to improve the propulsion efficiency, and the propeller flow by the second diffusion portion. A composite propeller cap is provided, characterized in that it is configured such that the occurrence of hub vortex cavitation can be reduced by weakening the strength of the rotating vortex of the vortex.
여기서, 상기 복합형 프로펠러 캡은, 상기 제 1 확산형부 및 상기 제 2 확산형부의 경사각이 각각 0 ~ 40°사이로 설정되는 것을 특징으로 한다. Here, the composite propeller cap is characterized in that the inclination angle of the first diffusion portion and the second diffusion portion is set between 0 to 40 °, respectively.
더욱이, 상기 복합형 프로펠러 캡은, 상기 수축형부의 측면이 직선 형태로 형성되거나, 또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, 또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 한다. Further, the composite propeller cap is formed such that the side surface of the shrinkage portion is formed in a straight line shape, or the side surface of the shrinkage portion is formed to be convex outward in a curved shape having a predetermined curvature, or the shrinkage portion Side of the is characterized in that it is formed to be convex inward in a curved form having a predetermined predetermined curvature.
또한, 본 발명에 따르면, 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 있어서, 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부; 상기 수축형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 확산형부; 및 미리 정해진 일정한 두께로 형성된 직사각형이나 유선형 형상의 단면을 가지는 얇은 판(plate) 형태로 형성되어 상기 수축형부 또는 상기 수축형부와 상기 확산형부의 사이에 미리 정해진 일정 간격으로 설치되는 복수의 가이드 핀(guide fin)을 포함하여 구성됨으로써, 상기 수축형부의 직경이 감소하는 형상에 의해 프로펠러 유동의 압력이 회복되어 추진효율이 향상되고, 상기 프로펠러 캡 끝단의 상기 확산형부의 직경이 증가하는 형상에 의해 회전 유동(vortex)이 약화됨으로써 허브 볼텍스 캐비테이션의 발생이 감소될 수 있는 데 더하여, 상기 가이드 핀에 의해 추진기 회전으로 인한 회전 유동이 회전축 방향의 직선 유동으로 전환됨으로써 상기 허브 볼텍스 캐비테이션의 발생이 추가로 감소될 수 있도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡이 제공된다. In addition, according to the present invention, in the hybrid propeller cap for reducing the rotational flow and hub vortex and improve the propulsion efficiency, the shrinkage portion is formed to reduce the diameter toward the opposite side of the propeller; A diffusion mold extending to the contracting portion and configured to increase in diameter toward the opposite side of the propeller; And a plurality of guide pins formed in a thin plate shape having a rectangular or streamlined cross section formed at a predetermined predetermined thickness and installed at predetermined predetermined intervals between the contracting portion or the contracting portion and the diffusion portion. guide fin), the pressure of the propeller flow is restored by the shape of reducing the diameter of the shrinkage portion, the propulsion efficiency is improved, the rotation by the shape of increasing the diameter of the diffusion portion of the end of the propeller cap In addition to the weakening of the vortex, the occurrence of hub vortex cavitation can be reduced, and in addition, the rotational flow due to the propeller rotation by the guide pin is further reduced by the generation of the hub vortex cavitation. Combination propeller, characterized in that configured to be A rubbing cap is provided.
여기서, 상기 복합형 프로펠러 캡은, 상기 수축형부의 경사각이 0 ~ 40° 사이로 설정되는 것을 특징으로 한다. Here, the composite propeller cap, characterized in that the inclination angle of the contraction portion is set between 0 ~ 40 °.
아울러, 상기 복합형 프로펠러 캡은, 상기 수축형부의 측면이 직선 형태로 형성되거나, 또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, 또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 한다. In addition, the composite propeller cap, the side of the shrinkage portion is formed in a straight shape, or the side of the shrinkage portion is formed so as to be convex outward in a curved form having a predetermined curvature, or the shrinkage portion Side of the is characterized in that it is formed to be convex inward in a curved form having a predetermined predetermined curvature.
더욱이, 상기 가이드 핀은, 삼각형의 얇은 판 형태로 형성되어 단순 용접으로 상기 프로펠러 캡의 상기 수축형부와 상기 확산형부의 사이에 부착되며, 상기 가이드 핀 자체에 의한 저항 증가를 피하기 위해, 상기 확장형부의 직경에 맞추어 상기 가이드 핀의 크기가 결정되도록 구성되는 것을 특징으로 한다. Furthermore, the guide pin is formed in the form of a triangular thin plate and is attached between the contracted portion of the propeller cap and the diffused portion by simple welding, and to avoid an increase in resistance by the guide pin itself, Characterized in that the size of the guide pin is determined according to the diameter.
또는, 상기 가이드 핀은, 오각형의 얇은 판 형태로 형성되어 상기 프로펠러 캡의 상기 수축형부와 상기 확산형부의 사이에 단순 용접에 의해 부착되며, 상기 확산형부의 끝단에서 연장하는 부분의 길이가 상기 확산형부의 직경의 2배 이내가 되도록 구성되는 것을 특징으로 한다. Alternatively, the guide pin is formed in the form of a pentagonal thin plate and is attached by simple welding between the contracted portion of the propeller cap and the diffused portion, and the length of the portion extending from the end of the diffused portion is the diffusion. It is characterized by being comprised so that it may become within 2 times of the diameter of a mold part.
또는, 상기 가이드 핀은, 사다리꼴 형태의 얇은 판 형태로 형성되어 상기 프로펠러 캡의 상기 수축형부의 측면에 단순 용접에 의해 부착되도록 구성되며, 상기 수축형부의 측면에서 연장하는 부분의 길이 중 짧은 부분의 길이가 상기 확산형부의 직경의 2배 이내가 되도록 구성되는 것을 특징으로 한다. Alternatively, the guide pin is formed in the shape of a trapezoidal thin plate and is configured to be attached to the side of the shrinkage portion of the propeller cap by simple welding, and the short portion of the length of the portion extending from the side of the shrinkage portion. It is characterized in that the length is configured to be within twice the diameter of the diffusion die.
또한, 상기 가이드 핀은, 상기 프로펠러 캡의 상기 수축형부 또는 상기 수축형부와 상기 확산형부의 사이에 2 ~ 8개 사이의 개수로 설치되고, 수직 위 방향에서 보았을 때 0도를 기준으로 하여 +10 ~ -10도, 또는, +20 ~ -20도의 공차를 가지는 부착 각도로 설치되도록 구성되는 것을 특징으로 한다. In addition, the guide pin is installed between the shrinkage portion of the propeller cap or between the shrinkage portion and the diffusion portion in the number of 2 to 8, when viewed from the vertical upward direction +10 relative to 0 degrees It is characterized in that it is configured to be installed at an attachment angle having a tolerance of ~ -10 degrees, or +20 ~ -20 degrees.
아울러, 본 발명에 따르면, 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 있어서, 프로펠러의 끝단에서부터 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 제 1 확산형부; 상기 제 1 확산형부에 수평으로 연장하도록 형성되는 직선형부; 상기 직선형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부; 상기 수축형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 제 2 확산형부; 및 미리 정해진 일정한 두께로 형성된 직사각형이나 유선형 형상의 단면을 가지는 얇은 판(plate) 형태로 형성되어 상기 수축형부 또는 상기 수축형부와 상기 제 2 확산형부의 사이에 미리 정해진 일정 간격으로 설치되는 복수의 가이드 핀(guide fin)을 포함하여 구성됨으로써, 상기 제 1 확산형부에 의해 상기 프로펠러 캡의 앞 부분이 볼록하게 돌출하도록 형성됨으로써 프로펠러 압력단(Pressure side)의 압력을 증가시켜 추진 효율이 향상되고, 상기 수축형부에 의해 상기 프로펠러 캡을 지나는 프로펠러 유동의 압력이 회복되어 추진효율이 향상되며, 상기 제 2 확산형부에 의해 상기 프로펠러 유동의 회전 유동(vortex)의 강도를 약화시켜 허브 볼텍스 캐비테이션의 발생이 감소될 수 있는 데 더하여, 상기 가이드 핀에 의해 추진기 회전으로 인한 회전 유동이 회전축 방향의 직선 유동으로 전환됨으로써 상기 허브 볼텍스 캐비테이션의 발생이 추가로 감소될 수 있도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡이 제공된다. In addition, according to the present invention, in the hybrid propeller cap for reducing the rotational flow and hub vortex and improve the propulsion efficiency, the first diffusion type formed to increase in diameter from the end of the propeller toward the opposite side of the propeller; A straight portion formed to extend horizontally to the first diffusion portion; A contraction portion extending to the straight portion and formed to decrease in diameter toward the opposite side of the propeller; A second diffusion mold portion extending to the contraction portion and formed to increase in diameter toward the opposite side of the propeller; And a plurality of guides formed in a thin plate shape having a rectangular or streamlined cross section formed at a predetermined predetermined thickness and installed at predetermined predetermined intervals between the contracting portion or the contracting portion and the second diffusion portion. By including a fin (guide fin), it is formed so that the front portion of the propeller cap protrudes convex by the first diffusion die to increase the pressure of the propeller pressure side (pressure side) to increase the propulsion efficiency, The contracting portion recovers the pressure of the propeller flow passing through the propeller cap, thereby improving propulsion efficiency, and the second diffusing portion weakens the strength of the rotational vortex of the propeller flow, thereby reducing the occurrence of hub vortex cavitation. In addition, the guide pin allows rotational flow due to propeller rotation This hybrid cap propeller being configured so as to be further reduced occurrence of the hub vortex cavitation is provided by being converted into a straight line flow direction of the front barrel.
여기서, 상기 복합형 프로펠러 캡은, 상기 제 1 확산형부 및 상기 수축형부의 경사각이 각각 0 ~ 40° 사이로 설정되는 것을 특징으로 한다. Here, the composite propeller cap, characterized in that the inclination angle of the first diffusion portion and the contraction portion is set between 0 ~ 40 °.
더욱이, 상기 복합형 프로펠러 캡은, 상기 수축형부의 측면이 직선 형태로 형성되거나, 또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, 또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 한다. Further, the composite propeller cap is formed such that the side surface of the shrinkage portion is formed in a straight line shape, or the side surface of the shrinkage portion is formed to be convex outward in a curved shape having a predetermined curvature, or the shrinkage portion Side of the is characterized in that it is formed to be convex inward in a curved form having a predetermined predetermined curvature.
또한, 상기 가이드 핀은, 삼각형의 얇은 판 형태로 형성되어 단순 용접으로 상기 프로펠러 캡의 상기 수축형부와 상기 제 2 확산형부의 사이에 부착되며, 상기 가이드 핀 자체에 의한 저항 증가를 피하기 위해, 상기 확장형부의 직경에 맞추어 상기 가이드 핀의 크기가 결정되도록 구성되는 것을 특징으로 한다. In addition, the guide pin is formed in the form of a triangular thin plate is attached between the shrinkage portion and the second diffusion portion of the propeller cap by simple welding, in order to avoid an increase in resistance by the guide pin itself, It is characterized in that the size of the guide pin is determined according to the diameter of the extended portion.
또는, 상기 가이드 핀은, 오각형의 얇은 판 형태로 형성되어 상기 프로펠러 캡의 상기 수축형부와 상기 제 2 확산형부의 사이에 단순 용접에 의해 부착되며, 상기 제 2 확산형부의 끝단에서 연장하는 부분의 길이가 상기 제 2 확산형부의 직경의 2배 이내가 되도록 구성되는 것을 특징으로 한다. Alternatively, the guide pin is formed in the form of a pentagonal thin plate and attached by simple welding between the contracted portion of the propeller cap and the second diffused portion, and extending from an end of the second diffused portion. It is characterized in that the length is configured to be within twice the diameter of the second diffusion die.
또는, 상기 가이드 핀은, 사다리꼴 형태의 얇은 판 형태로 형성되어 상기 프로펠러 캡의 상기 수축형부의 측면에 단순 용접에 의해 부착되도록 구성되며, 상기 수축형부의 측면에서 연장하는 부분의 길이 중 짧은 부분의 길이가 상기 제 2 확산형부의 직경의 2배 이내가 되도록 구성되는 것을 특징으로 한다. Alternatively, the guide pin is formed in the shape of a trapezoidal thin plate and is configured to be attached to the side of the shrinkage portion of the propeller cap by simple welding, and the short portion of the length of the portion extending from the side of the shrinkage portion. It is characterized in that the length is configured to be within twice the diameter of the second diffusion die.
아울러, 상기 가이드 핀은, 상기 프로펠러 캡의 상기 수축형부 또는 상기 수축형부와 상기 제 2 확산형부의 사이에 2 ~ 8개 사이의 개수로 설치되고, 수직 위 방향에서 보았을 때 0도를 기준으로 하여 +10 ~ -10도, 또는, +20 ~ -20도의 공차를 가지는 부착 각도로 설치되도록 구성되는 것을 특징으로 한다. In addition, the guide pin is installed between the shrinkage portion of the propeller cap or between the shrinkage portion and the second diffusion portion in the number of 2 to 8, based on 0 degrees when viewed from the vertical upward direction It is characterized in that it is configured to be installed at an attachment angle having a tolerance of +10 ~ -10 degrees, or +20 ~ -20 degrees.
더욱이, 본 발명에 따르면, 상기에 기재된 복합형 프로펠러 캡을 이용하여 구성됨으로써, 기존의 추진기에 비해 허브 볼텍스 캐비테이션 및 프로펠러 캡 형상에 의한 에너지 손실이 방지되어 추진효율이 향상되며, 진동 및 소음이 감소되고, 상기 허브 볼텍스 캐비테이션에 의한 러더의 침식과 부식이 방지될 수 있는 동시에, 기존의 PBCF에 비하여 제작비용을 절감할 수 있도록 구성되는 것을 특징으로 하는 선박용 추진기가 제공된다. Furthermore, according to the present invention, by using the composite propeller cap described above, the energy loss due to the hub vortex cavitation and the propeller cap shape is prevented compared to the conventional propeller to improve the propulsion efficiency, vibration and noise is reduced In addition, erosion and corrosion of the rudder due to the hub vortex cavitation is prevented, and at the same time is provided a ship propeller, characterized in that configured to reduce the manufacturing cost compared to the existing PBCF.
상기한 바와 같이, 본 발명에 따르면, 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡 구조를 통하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감할 수 있도록 구성되어, 기존의 PBCF에 비해 매우 간단한 구성으로 훨씬 저렴하고 용이하게 제작 가능하도록 구성되는 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡이 제공됨으로써, 프로펠러 캡에 작은 핀(fin)을 복수 개 부착하여 허브 볼텍스 캐비테이션을 저감하도록 구성됨으로 인해 핀을 설계하고 제조하기 위해 정밀가공이 요구되어 제작이 난해하고 제작비용도 높은 문제가 있었던 종래의 PBCF(Propeller Boss Cap Fin)의 문제점을 해결할 수 있다. As described above, according to the present invention, the hub vortex cavitation generated from the rear of the propeller through a composite propeller cap structure in which a conventional propeller cap end is coupled to a diffusion type propeller cap. It is designed to reduce the weight of the propeller cap by providing a hybrid propeller cap for reducing the rotational flow and hub vortex and improving propulsion efficiency. It is designed to reduce hub vortex cavitation by attaching a plurality of fins. Therefore, the PBCF (Propeller Boss Cap Fin) (PBCF), which has been difficult to manufacture and has high manufacturing cost due to the precise processing required to design and manufacture the pin. Can solve the problem.
또한, 본 발명에 따르면, 상기한 바와 같이 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡 구조를 통하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감하는 것에 더하여, 이러한 프로펠러 캡의 수축형 부분 또는 수축형 부분과 확산형 부분 사이에 판(plate) 형태의 가이드 핀(guide fin)을 부착하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있도록 구성되는 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡이 제공됨으로써, 프로펠러의 후방에서 발생하는 회전유동과 허브 볼텍스 캐비테이션을 저감하고, 기존의 PBCF에 비해 매우 간단한 구성으로 훨씬 저렴하고 용이하게 제작이 가능한 동시에, 선박의 소음과 진동을 감소하고 러더의 침식과 부식을 방지할 수 있는데 더하여, 추진 효율을 향상시켜 연료를 절감할 수 있다. In addition, according to the present invention, the hub vortex cavitation generated from the rear of the propeller through a composite propeller cap structure in which the diffusion type propeller cap is coupled to the existing contraction type propeller cap end as described above. In addition to reducing this, the occurrence of hub vortex cavitation can be further reduced by attaching a guide fin in the form of a plate between the retractable portion or the retractable portion and the diffused portion of the propeller cap. Combination of propeller caps to reduce rotational flow and hub vortex and improve propulsion efficiency is achieved by reducing the rotational flow and hub vortex cavitation occurring at the rear of the propeller, and much cheaper than the conventional PBCF. Can be manufactured easily and easily In addition to cattle, and may be prevented from erosion and corrosion of the rudder, it is possible to improve the propulsion efficiency by reducing the fuel.
도 1은 종래의 프로펠러 캡의 구조를 개략적으로 나타내는 도면이다. 1 is a view schematically showing the structure of a conventional propeller cap.
도 2는 본 발명의 제 1 실시예에 따른 복합형 프로펠러 캡의 전체적인 구성을 개략적으로 나타내는 도면이다. 2 is a view schematically showing the overall configuration of a hybrid propeller cap according to the first embodiment of the present invention.
도 3는 본 발명의 제 2 실시예에 따른 복합형 프로펠러 캡의 전체적인 구성을 개략적으로 나타내는 도면이다. 3 is a view schematically showing the overall configuration of a hybrid propeller cap according to a second embodiment of the present invention.
도 4는 종래의 프로펠러 캡과 도 2에 나타낸 본 발명의 제 1 실시예에 따른 복합형 프로펠러 캡을 이용한 추진기의 효율을 각각 비교하여 나타낸 도면이다. Figure 4 is a view showing a comparison of the efficiency of the propeller using a propeller cap according to the first embodiment of the present invention shown in Figure 2 and the conventional propeller cap, respectively.
도 5는 본 발명의 제 3 실시예에 따른 복합형 프로펠러 캡의 전체적인 구성을 개략적으로 나타내는 도면이다. 5 is a view schematically showing the overall configuration of a hybrid propeller cap according to a third embodiment of the present invention.
도 6은 본 발명의 제 4 실시예에 따른 복합형 프로펠러 캡의 전체적인 구성을 개략적으로 나타내는 도면이다. 6 is a view schematically showing the overall configuration of a composite propeller cap according to a fourth embodiment of the present invention.
도 7은 종래의 프로펠러 캡과 도 5 및 도 6에 나타낸 본 발명의 제 3 및 제 4 실시예에 따른 프로펠러 캡을 이용한 추진기의 효율을 각각 비교하여 나타낸 도면이다. 7 is a view showing a comparison of the efficiency of the propeller using a propeller cap according to the third and fourth embodiments of the present invention shown in Figures 5 and 6, respectively.
도 8은 본 발명의 제 5 실시예에 따른 복합형 프로펠러 캡의 전체적인 구성을 개략적으로 나타내는 도면이다. 8 is a view schematically showing the overall configuration of a hybrid propeller cap according to a fifth embodiment of the present invention.
도 9는 종래의 프로펠러 캡과 도 8에 나타낸 본 발명의 제 5 실시예에 따른 프로펠러 캡을 이용한 추진기의 추력, 토크 및 효율을 각각 비교하여 나타낸 도면이다. 9 is a view showing a comparison of the thrust, torque and efficiency of the propeller cap using the propeller cap according to the fifth embodiment of the present invention shown in FIG.
도 10은 본 발명의 제 6 실시예에 따른 복합형 프로펠러 캡의 전체적인 구성을 개략적으로 나타내는 도면이다. 10 is a view schematically showing the overall configuration of a hybrid propeller cap according to a sixth embodiment of the present invention.
도 11은 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡의 전체적인 구성을 개략적으로 나타내는 도면이다. 11 is a view schematically showing the overall configuration of a hybrid propeller cap according to a seventh embodiment of the present invention.
도 12는 종래의 프로펠러 캡과 도 11에 나타낸 본 발명의 제 7 실시예에 따른 프로펠러 캡을 이용한 추진기의 효율을 각각 비교하여 나타낸 도면이다. 12 is a view showing a comparison between the efficiency of the propeller using a propeller cap according to the seventh embodiment of the present invention shown in FIG.
도 13은 본 발명의 제 8 실시예에 따른 복합형 프로펠러 캡의 전체적인 구성을 개략적으로 나타내는 도면이다. 13 is a view schematically showing the overall configuration of a hybrid propeller cap according to an eighth embodiment of the present invention.
도 14는 본 발명의 제 9 실시예에 따른 복합형 프로펠러 캡 전체적인 구성을 개략적 으로 나타내는 도면이다. 14 is a view schematically showing the overall configuration of a composite propeller cap according to a ninth embodiment of the present invention.
도 15는 본 발명의 제 10 실시예에 따른 복합형 프로펠러 캡 전체적인 구성을 개략적으로 나타내는 도면이다. 15 is a view schematically showing the overall configuration of a composite propeller cap according to a tenth embodiment of the present invention.
도 16은 종래의 프로펠러 캡과 도 14에 나타낸 본 발명의 제 9 실시예에 따른 프로펠러 캡을 이용한 추진기의 추력, 토크 및 효율을 각각 비교하여 나타낸 도면이다. 16 is a view showing a comparison of the thrust, torque and efficiency of the propeller using a propeller cap according to the ninth embodiment of the present invention shown in FIG.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡의 구체적인 실시예에 대하여 설명한다. Hereinafter, with reference to the accompanying drawings, it will be described a specific embodiment of the hybrid propeller cap for reducing rotational flow and hub vortex reduction and propulsion efficiency according to the present invention.
여기서, 이하에 설명하는 내용은 본 발명을 실시하기 위한 하나의 실시예일 뿐이며, 본 발명은 이하에 설명하는 실시예의 내용으로만 한정되는 것은 아니라는 사실에 유념해야 한다. Here, it should be noted that the contents described below are only one embodiment for carrying out the present invention, and the present invention is not limited to the contents of the embodiments described below.
또한, 이하의 본 발명의 실시예에 대한 설명에 있어서, 종래기술의 내용과 동일 또는 유사하거나 당업자의 수준에서 용이하게 이해하고 실시할 수 있다고 판단되는 부분에 대하여는, 설명을 간략히 하기 위해 그 상세한 설명을 생략하였음에 유념해야 한다. In addition, in the following description of the embodiments of the present invention, the same or similar to the contents of the prior art, or the part judged to be easily understood and implemented at the level of those skilled in the art, the detailed description for simplicity of explanation Note that omit.
아울러, 이하의 본 발명의 실시예에 대한 설명에 있어서, 동일 또는 유사한 구성요소에 대해서는, 설명을 간략히 하기 위해 동일한 참조부호를 붙이고 그 상세한 설명을 생략하였음에 유념해야 한다. In addition, in the following description of the embodiment of the present invention, the same or similar components, it should be noted that the same reference numerals for simplifying the description and the detailed description thereof is omitted.
즉, 본 발명은, 후술하는 바와 같이, 프로펠러 캡에 작은 핀(fin)을 복수 개 부착하여 허브 볼텍스 캐비테이션을 저감하도록 구성됨으로 인해 핀을 설계하고 제조하기 위해 정밀가공이 요구되어 제작이 난해하고 제작비용도 높은 문제가 있었던 종래의 PBCF(Propeller Boss Cap Fin)의 문제점을 해결하기 위해, 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡 구조를 통하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감할 수 있도록 구성됨으로써, 기존의 PBCF에 비해 매우 간단한 구성으로 훨씬 저렴하고 용이하게 제작이 가능하도록 구성되는 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 관한 것이다. That is, the present invention, as will be described later, by attaching a plurality of small fin (fin) to the propeller cap is configured to reduce the hub vortex cavitation, precision processing is required to design and manufacture the pin is difficult to manufacture and manufacture In order to solve the problem of the conventional PBCF (Propeller Boss Cap Fin), which has a high cost, a composite propeller cap structure in which a diffusion type propeller cap is combined with a conventional contraction type propeller cap end It is configured to reduce the hub vortex cavitation generated from the rear of the propeller through the rotation, and the rotational flow and hub vortex reduction and propulsion efficiency is configured to be much cheaper and easier to manufacture with a very simple configuration than the conventional PBCF It relates to a composite propeller cap for.
또한, 본 발명은, 후술하는 바와 같이, 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡 구조를 통하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감하는 것에 더하여, 이러한 프로펠러 캡의 수축형 부분 또는 수축형 부분과 확산형 부분 사이에 판(plate) 형태의 가이드 핀(guide fin)을 부착하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있도록 구성됨으로써, 프로펠러의 후방에서 발생하는 회전유동과 허브 볼텍스 캐비테이션을 저감하고, 기존의 PBCF에 비해 매우 간단한 구성으로 훨씬 저렴하고 용이하게 제작이 가능한 동시에, 선박의 소음과 진동을 감소하고 러더의 침식과 부식을 방지할 수 있는데 더하여, 추진 효율을 향상시켜 연료를 절감할 수 있도록 구성되는 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 관한 것이다. In addition, the present invention, as described later, the hub vortex cavitation generated from the rear of the propeller through a composite propeller cap structure in which the diffusion type propeller cap is coupled to the existing contraction type propeller cap end In addition to reducing this, the occurrence of hub vortex cavitation can be further reduced by attaching a guide fin in the form of a plate between the retractable portion or the retractable portion and the diffused portion of the propeller cap. It is designed to reduce rotational flow and hub vortex cavitation occurring at the rear of the propeller, and it is much cheaper and easier to manufacture with a very simple configuration than the existing PBCF, while reducing the noise and vibration of the ship and eroding the rudder. In addition to preventing over-corrosion, fuel efficiency is improved by improving propulsion efficiency. It will be related to the rotational flow and the hub vortex hybrid propeller cap for the reduction and improved propulsion efficiency is configured to.
계속해서, 첨부된 도면을 참조하여, 상기한 바와 같은 본 발명에 따른 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡의 구체적인 실시예에 대하여 설명한다. Subsequently, with reference to the accompanying drawings, it will be described a specific embodiment of the hybrid propeller cap for reducing the rotational flow and hub vortex reduction and propulsion efficiency according to the present invention as described above.
먼저, 도 1을 참조하면, 도 1은 종래의 프로펠러 캡의 구조를 개략적으로 나타내는 도면이다. First, referring to FIG. 1, FIG. 1 is a view schematically showing a structure of a conventional propeller cap.
도 1에 나타낸 바와 같이, 일반적으로, 종래의 프로펠러 캡은, 크게 나누어, 도 1a에 나타낸 바와 같은 수축형(contraction type) 프로펠러 캡과, 도 1b에 나타낸 바와 같은 직선형(straight type) 프로펠러 캡 및 도 1c에 나타낸 바와 같은 확산형(diffusion type) 프로펠러 캡의 3가지 형태로 구분될 수 있다. As shown in Fig. 1, in general, conventional propeller caps are generally divided into a contraction type propeller cap as shown in Fig. 1A, and a straight type propeller cap as shown in Fig. 1B and Figs. It can be divided into three types of diffusion type propeller cap as shown in 1c.
더 상세하게는, 수축형 프로펠러 캡은, 추진효율이 좋은 반면 허브의 유동이 캡에 모여 강한 허브 볼텍스 캐비테이션을 발생시킴으로 인해 소음과 진동이 증가하고 러더의 침식과 부식 문제를 심화시킨다. More specifically, the retractable propeller caps have good propulsion efficiency, but the flow of hubs gathers in the caps, creating a strong hub vortex cavitation, which increases noise and vibration and exacerbates rudder erosion and corrosion problems.
반면, 확산형 프로펠러 캡의 경우는, 추진효율이 나쁜 대신 허브 볼텍스 캐비테이션의 강도를 약화시켜 소음과 진동 저감 및 러더의 침식과 부식 문제를 완화할 수 있다. On the other hand, in the case of the diffusion propeller cap, the propulsion efficiency is poor, but the strength of the hub vortex cavitation can be weakened to reduce noise and vibration, and to reduce erosion and corrosion problems of the rudder.
이에 따라, 일반적으로, 속도가 빠른 컨테이너선 등의 경우는 허브 볼텍스 캐비테이션에 의한 러더의 침식 문제로 인해 확산형 프로펠러 캡을 주로 사용하며, 추진효율의 저하를 극복하기 위해 PBCF 타입의 부가물을 추가하여 추진효율 향상 및 허브 볼텍스 캐비테이션 문제에 대응하고 있다. Accordingly, in the case of high speed container ships, diffusion propeller caps are mainly used due to erosion of the rudder due to hub vortex cavitation, and PBCF-type additives are added to overcome the deterioration of propulsion efficiency. It is improving the propulsion efficiency and coping with hub vortex cavitation problem.
반면, 속도가 느린 탱크선의 경우는 허브 볼텍스 캐비테이션이 약하게 발생하므로 수축형 프로펠러 캡이 많이 사용되고 있다. On the other hand, in the case of a slow tanker, since the hub vortex cavitation occurs weakly, shrinking propeller caps are frequently used.
여기서, 컨테이너선에서 확산형 프로펠러 캡을 사용시에 추진기 효율 저하를 방지하기 위해 연료 절감 장치인 PBCF를 장착할 경우, PBCF의 핀(fin) 설계 및 제작이 기존 추진기 제작 방식과 동일하여 그 크기에 비해 상대적으로 제작비가 높은 단점이 있다. Here, when the PBCF, which is a fuel saving device, is installed in order to prevent the propeller efficiency from being lowered in the container ship, the fin design and manufacturing of the PBCF are the same as those of the existing propeller manufacturing method, compared to the size thereof. There is a disadvantage that the manufacturing cost is relatively high.
이에, 본 발명자들은, PBCF와 마찬가지로 허브 볼텍스 캐비테이션을 저감시키면서 추진효율을 향상시키는 효과를 가지는 동시에, 그 구성이 매우 단순한 형태로 이루어짐으로써 기존의 PBCF의 제작비용에 비해 매우 저렴한 제작비로도 PBCF와 유사한 효과를 얻을 수 있는 새로운 프로펠러 캡의 구조를 제안하였다. Accordingly, the present inventors have the effect of improving the propulsion efficiency while reducing the hub vortex cavitation like PBCF, and at the same time, the configuration is made in a very simple form, which is similar to that of PBCF at a very low production cost compared to the production cost of the conventional PBCF. A new propeller cap structure is proposed to achieve the effect.
계속해서, 도 2를 참조하면, 도 2는 본 발명의 제 1 실시예에 따른 복합형 프로펠러 캡(20)의 전체적인 구성을 개략적으로 나타내는 도면이다. Subsequently, referring to FIG. 2, FIG. 2 is a view schematically showing the overall configuration of the hybrid propeller cap 20 according to the first embodiment of the present invention.
더 상세하게는, 도 2에 나타낸 바와 같이, 본 발명의 제 1 실시예에 따른 복합형 프로펠러 캡(20)은, 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부(21)와, 상기 수축형부(21)에 연장하여 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 확산형부(22)를 포함하여 구성된다. More specifically, as shown in Figure 2, the composite propeller cap 20 according to the first embodiment of the present invention, the shrinkage portion 21 is formed so as to decrease in diameter toward the opposite side of the propeller, and the shrinkage It extends to the mold portion 21 is configured to include a diffusion mold 22 formed to increase in diameter toward the opposite side of the propeller.
즉, 본 발명의 제 1 실시예에 따른 복합형 프로펠러 캡(20)은, 도 2에 나타낸 바와 같이, 프로펠러 끝에서부터 점점 직경이 감소하다가 프로펠러 캡의 후단부에서 다시 직경이 증가하는 형태로 형성되는 것을 특징으로 하는 것이다. That is, the composite propeller cap 20 according to the first embodiment of the present invention, as shown in Figure 2, is gradually reduced in diameter from the end of the propeller is formed in such a form that the diameter increases again at the rear end of the propeller cap It is characterized by.
여기서, 상기한 수축형부(21)의 경사각(α)은, 예를 들면, 각각 0 ~ 40° 사이로 설정할 수 있다. Here, the inclination angle α of the contracted portion 21 can be set, for example, between 0 and 40 degrees, respectively.
이때, 상기한 수축형부(21)의 경사각이 40도를 넘어가면 유동 박리에 의해 급격한 성능 하락을 야기하며, 즉, 유동 박리 현상이 일어나면 프로펠러 캡 표면에서 압력 회복이 발생하지 않아 저항이 증가하게 된다. At this time, when the inclination angle of the contraction portion 21 exceeds 40 degrees, a sudden performance drop is caused by the flow peeling, that is, when the flow peeling phenomenon occurs, pressure recovery does not occur on the surface of the propeller cap, thereby increasing the resistance. .
더 상세하게는, 이하의 [표 1]을 참조하면, [표 1]은 수축형부(22)의 경사각(α)의 각도 변화에 따른 성능 변화를 나타내는 것이다. More specifically, referring to the following [Table 1], [Table 1] shows the performance change according to the change in the angle of the inclination angle (α) of the shrinkage portion 22.
표 1
각도 (α) 10 20 30 40 50 60
성능변화 (%) +1.0 +1.0 +0.9 +0.7 +0.2 +0.2
Table 1
Angle (α) 10 20 30 40 50 60
Performance change (%) +1.0 +1.0 +0.9 +0.7 +0.2 +0.2
여기서, 상기한 [표 1]에 있어서, [표 1]에 제시된 결과는 종래의 확산형 프로펠러 캡을 부착한 추진기와 비교하여 수축형부(22)의 경사각(α)의 각도 변화에 따른 추진성능 추정값을 나타낸 것이다. Here, in the above [Table 1], the results presented in [Table 1] is the estimated propulsion performance according to the change in the angle of the inclination angle (α) of the contracted portion 22 compared to the propeller with a conventional diffusion propeller cap It is shown.
계속해서, 도 3을 참조하면, 도 3은 본 발명의 제 2 실시예에 따른 복합형 프로펠러 캡(30)의 전체적인 구성을 개략적으로 나타내는 도면이다. Subsequently, referring to FIG. 3, FIG. 3 is a diagram schematically showing the overall configuration of the hybrid propeller cap 30 according to the second embodiment of the present invention.
여기서, 이하에 설명하는 본 발명의 제 2 실시예에 있어서는, 설명을 간략히 하기 위해, 상기한 제 1 실시예와 동일하거나 유사한 부분에 대하여는 그 상세한 설명을 생략하고, 다른 부분에 대하여만 설명한다. Here, in the second embodiment of the present invention described below, in order to simplify the description, the same or similar parts as those of the first embodiment will be omitted, and only the other parts will be described.
즉, 도 3에 나타낸 바와 같이, 본 발명의 제 2 실시예에 따른 복합형 프로펠러 캡(30)은, 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부(31)와, 상기 수축형부(31)에 연장하여 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 확산형부(32)를 포함하여 구성되는 점은 도 2에 나타낸 제 1 실시예와 같다.그러나 본 발명의 제 2 실시예에 따른 프로펠러 캡(30)은, 상기한 수축형부(31)의 형상이, 도 2에 나타낸 제 1 실시예와 같은 직선 형태가 아니라, 일정 곡률을 가지는 곡선 형태로 형성되는 것을 특징으로 하는 것이다. That is, as shown in Figure 3, the composite propeller cap 30 according to the second embodiment of the present invention, the shrinkage portion 31 is formed so as to decrease in diameter toward the opposite side of the propeller, and the shrinkage portion 31 It is the same as the first embodiment shown in Fig. 2 that includes a diffusion type portion 32 is formed so as to increase in diameter toward the opposite side of the propeller extending to the). However, the propeller cap according to the second embodiment of the present invention 30 is characterized in that the above-mentioned contraction portion 31 is formed in a curved form having a constant curvature rather than a straight form as in the first embodiment shown in FIG.
즉, 본 발명의 제 2 실시예에 따른 복합형 프로펠러 캡(30)은, 상기한 수축형부(31)의 형상이 도 3a에 나타낸 바와 같이 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, 또는, 도 3b에 나타낸 바와 같이 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 하는 것이다. That is, the composite propeller cap 30 according to the second embodiment of the present invention may be formed such that the shape of the contraction portion 31 is convex outward in a curved shape having a predetermined curvature as shown in FIG. 3A, Alternatively, as shown in Figure 3b is characterized in that it is formed to be convex inward in the form of a curve having a certain curvature.
여기서, 상기한 수축형부(31)의 곡률은 추진기나 선박의 종류 또는 용도에 따라 적절히 설정 가능하며, 그 밖의 다른 부분은 상기한 제 1 실시예와 동일하므로, 그 상세한 설명은 생략한다. Here, the above-mentioned curvature of the contraction part 31 can be set suitably according to the kind or use of a propeller and a ship, and the other part is the same as that of 1st Embodiment mentioned above, and the detailed description is abbreviate | omitted.
따라서 상기한 바와 같이 프로펠러 캡의 형상을 직경이 감소하다가 다시 증가하도록 형성함으로써, 프로펠러 유동은, 먼저, 프로펠러 캡(20, 30) 중간의 수축형부(21, 31)까지는 직경이 감소하는 형상에 의해 압력이 회복되어 추진효율이 향상되고, 계속해서 프로펠러 캡(20, 30) 끝단의 확산형부(22, 32)를 지나면서 직경이 증가하는 형상에 의해 강한 회전 유동(볼텍스)을 약화시킴으로써 허브 볼텍스 캐비테이션의 발생이 저감될 수 있다. Therefore, as described above, the shape of the propeller cap is formed to decrease in diameter and then increase again, so that the propeller flow is first formed by the shape in which the diameter decreases to the contraction portions 21 and 31 in the middle of the propeller caps 20 and 30. The pressure is restored to improve the propulsion efficiency, and the hub vortex cavitation by weakening the strong rotational flow (vortex) by the shape of increasing diameter as it passes through the diffusion parts 22 and 32 at the ends of the propeller caps 20 and 30. The occurrence of can be reduced.
또한, 그것에 의해, 허브 볼텍스와 캡 형상에 의한 에너지 손실이 방지되어 추진효율이 기존의 확산형 추진기에 비해 향상되고(1 ~ 3%), 허브 볼텍스에 의한 진동 및 소음이 감소되며, 기존의 수축형 프로펠러 캡에 비하여 러더의 침식과 부식이 방지될 수 있다. In addition, it prevents energy loss due to the hub vortex and cap shape, which improves the propulsion efficiency compared to the conventional diffusion type propeller (1 to 3%), reduces vibration and noise caused by the hub vortex, and reduces the conventional shrinkage. Compared to the propeller cap, rudder erosion and corrosion can be prevented.
더 상세하게는, 도 4를 참조하면, 도 4는 종래의 프로펠러 캡과 도 2에 나타낸 본 발명의 제 1 실시예에 따른 복합형 프로펠러 캡(20)을 이용한 추진기의 효율을 각각 비교하여 나타낸 도면이다. More specifically, referring to Figure 4, Figure 4 is a view showing a comparison of the efficiency of the propeller using the conventional propeller cap and the hybrid propeller cap 20 according to the first embodiment of the present invention shown in FIG. to be.
즉, 도 4에 나타낸 내용으로부터, 본 발명의 제 1 실시예에 따른 복합형 프로펠러 캡(20)을 이용한 추진기의 효율이 종래의 수축형(contraction type) 프로펠러 캡과는 유사한 반면 허브 볼텍스 캐비테이션에 의한 부작용은 크게 줄일 수 있으며, 확산형(diffusion type) 프로펠러 캡에 비하여는 추진기의 효율이 크게 향상된 것을 확인할 수 있다. That is, from the contents shown in FIG. 4, the efficiency of the propeller using the hybrid propeller cap 20 according to the first embodiment of the present invention is similar to that of the conventional contraction type propeller cap, while the hub vortex cavitation Side effects can be greatly reduced, it can be seen that the efficiency of the propeller is significantly improved compared to the diffusion type propeller cap.
즉, 상기한 바와 같이, 본 발명의 제 1 및 제 2 실시예에 따른 복합형 프로펠러 캡(20, 30)의 구성에 따르면, 캡 중간의 수축형부(21, 31)까지는 형상에 따른 압력 회복을 통해 추진효율이 향상되고, 프로펠러 유동이 확산형의 캡 끝단을 지나면서 확산형부(22, 32)에 의해 강한 회전 유동(볼텍스)이 약화됨으로써 허브 볼텍스 캐비테이션의 발생이 억제될 수 있으며, 이에 따라 허브 볼텍스 및 캡 형상에 의한 에너지 손실이 방지되어 선박의 추진효율이 기존의 확산형 추진기에 비해 약 1 ~ 3% 향상되고, 허브 볼텍스 캐비테이션에 의한 진동 및 소음이 감소되며, 기존의 수축형 프로펠러 캡에 비하여 러더의 침식과 부식이 방지될 수 있다. That is, as described above, according to the configuration of the composite propeller caps 20 and 30 according to the first and second embodiments of the present invention, the pressure recovery according to the shape is performed up to the contraction portions 21 and 31 in the middle of the cap. Through the propulsion efficiency is improved, the strong rotational flow (Vortex) is weakened by the diffusion type (22, 32) as the propeller flow passes through the end of the diffusion type cap can be suppressed the generation of the hub vortex cavitation, accordingly The energy loss due to the vortex and cap shape is prevented, and the propulsion efficiency of the ship is improved by about 1 ~ 3% compared with the conventional diffused propeller, and the vibration and noise caused by the hub vortex cavitation is reduced, In comparison, rudder erosion and corrosion can be prevented.
또한, 상기한 바와 같은 본 발명의 제 1 및 제 2 실시예에 따른 복합형 프로펠러 캡(20, 30)의 구성에 따르면, 기존의 컨테이너선에 사용하는 확산형 프로펠러 캡과 마찬가지로 허브 볼텍스 캐비테이션을 저감하면서도 종래의 확산형 프로펠러 캡보다 추진효율의 향상이 가능하며, 또한, 기존의 탱크선에 적용시 수축형 프로펠러 캡과 비교하여 추진효율은 유사하고 허브 볼텍스 캐비테이션은 크게 감소할 수 있는 이점이 있다. In addition, according to the configuration of the hybrid propeller caps 20 and 30 according to the first and second embodiments of the present invention as described above, the hub vortex cavitation is reduced as in the diffusion propeller cap used for the existing container ship However, the propulsion efficiency can be improved compared to the conventional diffusion propeller cap, and when applied to a conventional tanker, the propulsion efficiency is similar to that of the shrinkage propeller cap and the hub vortex cavitation can be greatly reduced.
아울러, 상기한 바와 같은 본 발명의 제 1 및 제 2 실시예에 따른 복합형 프로펠러 캡(20, 30)의 형상은 그 구조가 단순하여 제작이 용이하므로, 기존 PBCF의 제작시 핀의 정밀 가공으로 인해 적어도 1억 원 이상이었던 제작비용을 기존 프로펠러 캡과 유사하게 대략 3000만원 이내로 대폭 절감할 수 있는 장점도 가진다. In addition, since the shape of the composite propeller caps 20 and 30 according to the first and second embodiments of the present invention as described above is easy to manufacture due to the simple structure, it is possible to precisely process the pins during the production of the existing PBCF. Due to this, the manufacturing cost, which was at least 100 million won, can be greatly reduced to about 30 million won, similar to the existing propeller cap.
계속해서 도 5를 참조하면, 도 5는 본 발명의 제 3 실시예에 따른 복합형 프로펠러 캡(50)의 전체적인 구성을 개략적으로 나타내는 도면이다. 5, FIG. 5 schematically shows the overall configuration of the hybrid propeller cap 50 according to the third embodiment of the present invention.
더 상세하게는, 본 발명의 제 3 실시예에 따른 복합형 프로펠러 캡(50)은, 도 5에 나타낸 바와 같이, 프로펠러의 끝단에서부터 직경이 증가하도록 형성되는 제 1 확산형부(51)와, 상기 제 1 확산형부(51)에 수평으로 연장하도록 형성되는 직선형부(52)와, 상기 직선형부(52)에 연장하여 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부(53) 및 상기 수축형부(53)에 연장하여 프로펠러의 반대측으로 갈수록 다시 직경이 증가하도록 형성되는 제 2 확산형부(54)를 포함하여 구성된다. More specifically, the hybrid propeller cap 50 according to the third embodiment of the present invention, as shown in Figure 5, the first diffusion die 51 formed to increase in diameter from the end of the propeller, and The straight portion 52 is formed to extend horizontally to the first diffusion portion 51, and the contraction portion 53 and the contraction portion are formed so as to extend to the straight portion 52 to decrease the diameter toward the opposite side of the propeller And a second diffusing die 54 which extends to 53 and is formed to increase in diameter again toward the opposite side of the propeller.
즉, 본 발명의 제 3 실시예에 따른 복합형 프로펠러 캡(50)은, 도 5에 나타낸 바와 같이, 프로펠러 끝에서 처음에는 일정 부분까지 직경이 증가하다가 감소하고, 프로펠러 캡의 후단부에서 다시 직경이 증가하는 형태로 형성되는 것을 특징으로 하는 것이다. That is, as shown in FIG. 5, the hybrid propeller cap 50 according to the third embodiment of the present invention increases in diameter from the end of the propeller to a predetermined portion and then decreases the diameter, again at the rear end of the propeller cap. It is characterized by being formed in an increasing form.
더 상세하게는, 본 발명의 제 3 실시예에 따른 복합형 프로펠러 캡(20)은, 도 5에 나타낸 바와 같이, 제 1 확산형부(51)에 의해 프로펠러 캡의 앞 부분이 볼록하게 돌출하도록 형성됨으로써, 프로펠러 압력단(Pressure side)의 압력을 증가시켜 추진 효율이 향상되는 효과가 있다. More specifically, the hybrid propeller cap 20 according to the third embodiment of the present invention is formed such that the front portion of the propeller cap protrudes convexly by the first diffusion mold 51 as shown in FIG. 5. In this way, the propulsion efficiency is improved by increasing the pressure of the propeller pressure side.
즉, 본 발명의 제 3 실시예에 따른 허브 볼텍스 캐비테이션 저감 및 추진효율 향상을 위한 프로펠러 캡(50)은, 도 5에 나타낸 바와 같이, 캡 중간의 수축형부(53)까지는 형상에 따른 압력 회복을 통해 추진효율이 추가적으로 향상되고, 프로펠러 유동이 확산형의 캡 끝단을 지나면서 제 2 확산형부(54)에 의해 강한 회전 유동(vortex)을 약화시켜 허브 볼텍스 캐비테이션을 저감할 수 있다. That is, the propeller cap 50 for reducing the hub vortex cavitation and improving the propulsion efficiency according to the third embodiment of the present invention, as shown in FIG. Through the propulsion efficiency is further improved, as the propeller flow is passed through the end of the diffusion type cap is weakened by a strong rotational flow (vortex) by the second diffusion type 54 can reduce the hub vortex cavitation.
또한, 상기한 바와 같이 허브 볼텍스 캐비테이션이 저감됨으로써, 기존의 확산형 프로펠러 캡에 비해 추진효율을 향상시키면서, 허브 볼텍스 캐비테이션에 의한 진동 및 소음, 러더의 침식과 부식을 방지할 수 있으며, 기존의 수축형 프로펠러 캡에 비하여 진동 및 소음, 러더의 침식과 부식을 더욱 효율적으로 방지하면서 추진효율을 향상시킬 수 있다. In addition, as described above, by reducing the hub vortex cavitation, it is possible to prevent vibration and noise caused by the hub vortex cavitation, erosion and corrosion of the rudder while improving the propulsion efficiency compared to the conventional diffusion propeller cap, and the existing shrinkage Compared with the propeller cap, the propulsion efficiency can be improved while more effectively preventing vibration, noise, erosion and corrosion of the rudder.
여기서, 상기한 제 1 확산형부(51) 및 제 2 확산형부(54)의 경사각(α, β)은, 예를 들면, 각각 0 ~ 40° 사이로 설정할 수 있다. Here, the inclination angles α and β of the first diffusion mold 51 and the second diffusion mold 54 can be set between 0 and 40 degrees, respectively.
이때, 상기한 α와 β 값이 40도를 넘어가면 유동 박리에 의해 급격한 성능 하락을 야기하며, 즉, 유동 박리 현상이 일어나면 프로펠러 캡 표면에서 압력 회복이 발생하지 않아 저항이 증가하게 된다. At this time, when the values of α and β exceed 40 degrees, a sudden performance drop is caused by the flow separation, that is, when the flow separation occurs, pressure recovery does not occur on the surface of the propeller cap, thereby increasing resistance.
더 상세하게는, 이하의 [표 2]를 참조하면, [표 2]는 제 2 확산형부(54)의 경사각(α, β)의 각도 변화에 따른 성능 변화를 나타내는 것이다. More specifically, referring to the following [Table 2], [Table 2] shows the performance change according to the change in the angle of the inclination angle (α, β) of the second diffusion die 54.
표 2
각도 (α) 10 20 30 40 50 60
성능변화 (%) +1.1 +1.1 +1.1 +1.0 +0.7 +0.7
각도 (β) 10 20 30 40 50 60
성능변화 (%) +1.1 +1.1 +1.1 +0.8 +0.3 +0.2
TABLE 2
Angle (α) 10 20 30 40 50 60
Performance change (%) +1.1 +1.1 +1.1 +1.0 +0.7 +0.7
Angle (β) 10 20 30 40 50 60
Performance change (%) +1.1 +1.1 +1.1 +0.8 +0.3 +0.2
여기서, 상기한 [표 2]에 있어서, α를 변화시킬 때는 β 값을 30도로 고정하고, β 값을 변화시킬 때는 α 값을 30도로 고정하였으며, [표 2]에 제시된 결과는, 종래의 확산형 프로펠러 캡을 부착한 추진기와 비교하여 각도 변화에 따른 추진성능 추정값을 나타낸 것이다. Here, in the above [Table 2], the β value is fixed at 30 degrees when the α is changed, and the α value is fixed at 30 degrees when the β value is changed, and the results shown in [Table 2] are the conventional diffusions. It shows the propulsion performance estimate according to the angle change compared with the propeller with the propeller cap.
계속해서, 도 6을 참조하면, 도 6은 본 발명의 제 4 실시예에 따른 복합형 프로펠러 캡(60)의 전체적인 구성을 개략적으로 나타내는 도면이다.6, FIG. 6 schematically shows the overall configuration of the hybrid propeller cap 60 according to the fourth embodiment of the present invention.
여기서, 이하에 설명하는 본 발명의 제 4 실시예에 있어서는, 설명을 간략히 하기 위해, 상기한 제 3 실시예와 동일하거나 유사한 부분에 대하여는 그 상세한 설명을 생략하고, 다른 부분에 대하여만 설명한다. Here, in the fourth embodiment of the present invention described below, in order to simplify the description, the same or similar parts as those of the above-described third embodiment will be omitted, and only the other parts will be described.
즉, 도 6에 나타낸 바와 같이, 본 발명의 제 4 실시예에 따른 복합형 프로펠러 캡(60)은, 프로펠러의 끝단에서부터 직경이 증가하도록 형성되는 제 1 확산형부(61)와, 상기 제 1 확산형부(61)에 수평으로 연장하도록 형성되는 직선형부(62)와, 상기 직선형부(62)에 연장하여 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부(63) 및 상기 수축형부(63)에 연장하여 프로펠러의 반대측으로 갈수록 다시 직경이 증가하도록 형성되는 제 2 확산형부(64)를 포함하여, 프로펠러 끝에서 처음에는 일정 부분까지 직경이 증가하다가 감소하고, 프로펠러 캡의 후단부에서 다시 직경이 증가하는 형태로 형성되는 구성되는 점은 도 5에 나타낸 제 3 실시예와 같다. That is, as shown in Figure 6, the composite propeller cap 60 according to the fourth embodiment of the present invention, the first diffused portion 61 is formed so as to increase the diameter from the end of the propeller, the first diffusion The straight portion 62 is formed to extend horizontally to the mold portion 61, the shrinkage portion 63 and the shrinkage portion 63 is formed to extend to the straight portion 62 to decrease the diameter toward the opposite side of the propeller Including a second diffused portion 64, which extends to the opposite side of the propeller to increase in diameter again, the diameter increases initially to a certain portion at the end of the propeller, then decreases, and again at the rear end of the propeller cap. It is formed in the form of increasing is the same as the third embodiment shown in FIG.
그러나 본 발명의 제 4 실시예에 따른 복합형 프로펠러 캡(60)은, 상기한 수축형부(63)의 형상이, 도 5에 나타낸 제 3 실시예와 같은 직선 형태가 아니라, 일정 곡률을 가지는 곡선 형태로 형성되는 것을 특징으로 하는 것이다. However, the composite propeller cap 60 according to the fourth embodiment of the present invention has a shape in which the above-mentioned contraction portion 63 is not curved in the straight form as in the third embodiment shown in FIG. It is characterized in that formed in the form.
즉, 본 발명의 제 4 실시예에 따른 복합형 프로펠러 캡(60)은, 상기한 수축형부(63)의 형상이, 도 6a에 나타낸 바와 같이 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, 또는, 도 6b에 나타낸 바와 같이 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 하는 것이다. That is, the composite propeller cap 60 according to the fourth embodiment of the present invention may be formed such that the shape of the contraction portion 63 is convex outward in a curved shape having a predetermined curvature as shown in FIG. 6A. Or, as shown in Figure 6b is characterized in that it is formed to be convex inward in a curved form having a certain curvature.
여기서, 상기한 수축형부(63)의 곡률은 추진기나 선박의 종류 또는 용도에 따라 적절히 설정 가능하며, 그 밖의 다른 부분은 상기한 제 3 실시예와 동일하므로, 그 상세한 설명은 생략한다. Here, the curvature of the contraction portion 63 can be appropriately set according to the type or use of the propeller or the ship, and other parts are the same as in the above-described third embodiment, and the detailed description thereof will be omitted.
따라서 상기한 바와 같은 구성에 따르면, 간단한 구성으로 허브 볼텍스 캐비테이션을 저감시킬 수 있을 뿐만 아니라, 종래의 프로펠러 캡에 비해 추진효율을 더욱 향상시킬 수 있다. Therefore, according to the configuration as described above, not only can reduce the hub vortex cavitation with a simple configuration, it can further improve the propulsion efficiency compared to the conventional propeller cap.
더 상세하게는, 도 7을 참조하면, 도 7은 종래의 프로펠러 캡과 도 5 및 도 6에 나타낸 본 발명의 제 3 및 제 4 실시예에 따른 프로펠러 캡(50, 60)을 이용한 추진기의 효율을 각각 비교하여 나타낸 도면이다. More specifically, referring to FIG. 7, FIG. 7 shows the efficiency of the propeller using a conventional propeller cap and propeller caps 50 and 60 according to the third and fourth embodiments of the present invention shown in FIGS. 5 and 6. Is a diagram comparing each.
즉, 도 7에 나타낸 내용으로부터, 본 발명의 실시예에 따른 프로펠러 캡(50, 60)을 이용한 추진기의 효율은 종래의 수축형 프로펠러 캡 및 확산형 프로펠러 캡에 비하여 향상된 것을 확인할 수 있다. That is, from the contents shown in Figure 7, it can be seen that the efficiency of the propeller using the propeller caps 50, 60 according to the embodiment of the present invention is improved compared to the conventional shrink type propeller cap and the diffusion type propeller cap.
상기한 바와 같이, 본 발명의 제 3 및 제 4 실시예에 따른 복합형 프로펠러 캡(50, 60)의 구성에 따르면, 프로펠러 캡의 앞 부분이 볼록하게 돌출하도록 제 1 확산형부(51, 61)가 형성됨으로써 프로펠러 압력단(Pressure side)의 압력을 증가시켜 추진 효율이 향상되며, 또한, 캡 중간의 수축형부(53, 63)의 형상에 따른 압력 회복을 통해서도 추진효율이 향상된다.  As described above, according to the configuration of the hybrid propeller caps 50 and 60 according to the third and fourth embodiments of the present invention, the first diffusion molds 51 and 61 are provided such that the front portion of the propeller cap protrudes convexly. Since the propulsion efficiency is improved by increasing the pressure of the propeller pressure side, the propulsion efficiency is also improved through the pressure recovery according to the shape of the contraction portions 53 and 63 in the middle of the cap.
아울러, 제 2 확산형부(54, 64)에 의해 프로펠러 유동이 확산형의 캡 끝단을 지나면서 강하게 꼬인 회전 유동(vortex)이 약화됨으로써 허브 볼텍스 캐비테이션이 저감될 수 있으며, 선박의 추진효율이 기존의 확산형 추진기에 비해 약 1 ~ 3% 향상되고, 허브 볼텍스 캐비테이션에 의한 진동 및 소음이 감소되며, 기존의 수축형 프로펠러 캡에 비하여 러더의 침식과 부식이 방지될 수 있다. In addition, the vortex of the propeller flow is strongly twisted as the propeller flow passes through the diffusion end of the cap by the second diffusion die 54, 64, thereby reducing the hub vortex cavitation, and the propulsion efficiency of the ship is reduced. It is about 1 to 3% improvement compared to the diffuse propeller, vibration and noise due to hub vortex cavitation is reduced, and erosion and corrosion of the rudder can be prevented as compared with the conventional contracted propeller cap.
즉, 상기한 바와 같은 본 발명의 제 3 및 제 4 실시예에 따른 복합형 프로펠러 캡(50, 60)의 구성에 따르면, 기존의 컨테이너선에 사용하는 확산형 프로펠러 캡과 마찬가지로 허브 볼텍스 캐비테이션을 저감하면서도 종래의 확산형 프로펠러 캡보다 추진효율의 향상이 가능하며, 또한, 기존의 탱크선에 적용시 수축형 프로펠러 캡과 비교하여 추진효율은 유사하고 허브 볼텍스 캐비테이션은 크게 줄일 수 있는 이점이 있다. That is, according to the configuration of the composite propeller caps 50 and 60 according to the third and fourth embodiments of the present invention as described above, the hub vortex cavitation is reduced like the diffusion type propeller cap used for the existing container ship. However, the propulsion efficiency can be improved compared to the conventional diffusion propeller cap, and when applied to a conventional tanker, the propulsion efficiency is similar to that of the shrinkage propeller cap and the hub vortex cavitation can be greatly reduced.
더욱이, 상기한 바와 같은 본 발명의 제 3 및 제 4 실시예에 따른 복합형 프로펠러 캡(50, 60)의 형상은 그 구조가 단순하여 제작이 용이하므로, 기존 PBCF의 제작시 핀의 정밀 가공으로 인해 적어도 1억 원 이상이었던 제작비용을 기존 프로펠러 캡과 유사하게 대략 3000만원 이내로 대폭 절감할 수 있는 장점도 가진다. Moreover, the shape of the composite propeller caps 50 and 60 according to the third and fourth embodiments of the present invention as described above is simple in structure and easy to manufacture. Due to this, the manufacturing cost, which was at least 100 million won, can be greatly reduced to about 30 million won, similar to the existing propeller cap.
계속해서 도 8을 참조하면, 도 8은 본 발명의 제 5 실시예에 따른 복합형 프로펠러 캡(80)의 전체적인 구성을 개략적으로 나타내는 도면이다. 8, FIG. 8 schematically shows the overall configuration of the hybrid propeller cap 80 according to the fifth embodiment of the present invention.
더 상세하게는, 도 8에 나타낸 바와 같이, 본 발명의 제 5 실시예에 따른 복합형 프로펠러 캡(80)은, 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부(81)와, 상기 수축형부(81)에 연장하여 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 확산형부(82)와, 일정한 두께로 형성된 직사각형이나 유선형 형상의 단면을 가지는 얇은 판(plate) 형태로 형성되어 상기 수축형부(81)와 확산형부(82)의 사이에 일정 간격으로 설치되는 복수의 가이드 핀(guide fin)(83)을 포함하여 구성되어 있다. More specifically, as shown in Figure 8, the composite propeller cap 80 according to the fifth embodiment of the present invention, the contraction portion 81 is formed so as to decrease in diameter toward the opposite side of the propeller, and the contraction The contraction portion 82 is formed in the form of a thin plate having a cross section of a rectangular or streamlined shape having a predetermined thickness and extending to the opposite side of the propeller and extending to the opposite side of the propeller. 81 and a plurality of guide fins 83 provided at regular intervals between the diffusion die 82.
즉, 본 발명의 제 5 실시예에 따른 복합형 프로펠러 캡(80)은, 도 8에 나타낸 바와 같이, 프로펠러 끝에서부터 점점 직경이 감소하다가 프로펠러 캡의 후단부에서 다시 직경이 증가하는 형태로 형성되고, 이때, 프로펠러 캡(80)의 수축형부(81) 또는 수축형부(81)와 확산형부(82) 사이에는 삼각형 판 형태의 가이드 핀(83)이 추가되는 것을 특징으로 하는 것이다. That is, the composite propeller cap 80 according to the fifth embodiment of the present invention is formed in a form in which the diameter gradually decreases from the end of the propeller and then again increases in diameter at the rear end of the propeller cap, as shown in FIG. 8. In this case, a triangular plate-shaped guide pin 83 is added between the contracting portion 81 or the contracting portion 81 and the diffusion portion 82 of the propeller cap 80.
여기서, 상기한 수축형부(81)의 경사각(α)은, 예를 들면, 각각 0 ~ 40° 사이로 설정할 수 있으며, 상기한 수축형부(81)의 경사각이 40도를 넘어가면 유동 박리에 의해 급격한 성능 하락을 야기하게 되고, 유동 박리 현상이 일어나면 프로펠러 캡 표면에서 압력 회복이 발생하지 않아 저항이 증가하게 된다. Here, the inclination angle α of the contraction portion 81 may be set, for example, between 0 and 40 °, and if the inclination angle of the contraction portion 81 exceeds 40 degrees, the inclination angle α may be abrupt due to flow separation. This results in a drop in performance, and when a flow delamination occurs, no pressure recovery occurs at the propeller cap surface, increasing resistance.
더 상세하게는, 이하의 [표 3]을 참조하면, [표 3]은 수축형부(82)의 경사각(α)의 각도 변화에 따른 성능 변화를 나타내는 것이다. More specifically, referring to the following [Table 3], [Table 3] shows the performance change according to the change in the angle of the inclination angle (α) of the contraction portion 82.
표 3
각도 (α) 10 20 30 40 50 60
성능변화 (%) +1.2 +1.2 +1.1 +0.9 +0.3 +0.2
TABLE 3
Angle (α) 10 20 30 40 50 60
Performance change (%) +1.2 +1.2 +1.1 +0.9 +0.3 +0.2
상기한 [표 3]에 있어서, [표 3]에 제시된 결과는 종래의 확산형 프로펠러 캡을 부착한 추진기와 비교하여 수축형부(82)의 경사각(α)의 각도 변화에 따른 추진성능 추정값을 나타낸 것이다. In the above [Table 3], the results presented in [Table 3] shows the estimated propulsion performance according to the change in the angle of the inclination angle (α) of the contraction portion 82 compared with the propeller with a conventional diffusion propeller cap will be.
따라서 상기한 바와 같이 프로펠러 캡의 형상을 직경이 감소하다가 다시 증가하도록 형성함으로써, 프로펠러 유동은, 먼저, 프로펠러 캡(80) 중간의 수축형부(81)까지는 직경이 감소하는 형상에 의해 압력이 회복되어 추진효율이 향상되고, 계속해서 프로펠러 캡(80) 끝단의 확산형부(82)를 지나면서 직경이 증가하는 형상에 의해 강한 회전 유동(vortex)을 약화시켜 허브 볼텍스 캐비테이션을 저감할 수 있다. Therefore, as described above, by forming the shape of the propeller cap to decrease the diameter and increase again, the propeller flow is first restored to the pressure by the shape of the diameter decreases up to the contraction portion 81 in the middle of the propeller cap 80. The propulsion efficiency is improved, and the strong vortex can be weakened by the shape of increasing diameter while passing through the diffusion die 82 at the end of the propeller cap 80, thereby reducing the hub vortex cavitation.
또한, 그것에 의해, 허브 볼텍스에 의한 에너지 손실이 방지되어 추진효율이 기존의 확산형 추진기에 비해 향상되고, 허브 볼텍스 캐비테이션에 의한 진동 및 소음이 감소되며, 기존의 수축형 프로펠러 캡에 비하여 러더의 침식과 부식이 방지될 수 있다. In addition, this prevents energy loss due to the hub vortex, improving the propulsion efficiency compared to the conventional diffuser type propeller, reducing vibration and noise caused by the hub vortex cavitation, and eroding the rudder compared to the conventional shrinking propeller cap. Over corrosion can be prevented.
아울러, 상기한 가이드 핀(83)은, 도 8a에 나타낸 바와 같이, 예를 들면, 프로펠러 캡(80)의 수축형부(81)와 확산형부(82) 사이의 오목한 부분에 맞물리도록 삼각형의 얇은 판 형태로 형성되어 단순 용접을 통해 일정 간격으로 복수 개 부착되도록 구성되며, 그것에 의해, 추진기 회전으로부터 유도된 회전류가 확장형부(82)를 지나면서 풀리는 것에 더하여, 추진기 회전으로부터 유도된 회전류가 프로펠러 캡(80)의 확산형부(82)에 이르기 전에 꼬인 유동을 미리 풀어 줌으로써, 추진기 회전으로 인한 회전 유동을 회전축 방향의 직선 유동으로 전환하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있다. In addition, the guide pin 83 is a triangular thin plate, as shown in FIG. 8A, for example, to engage a concave portion between the contracted portion 81 and the diffused portion 82 of the propeller cap 80. It is formed in the form and is configured to be attached to a plurality at regular intervals through a simple welding, by which the rotational flow derived from the propeller rotation is released as it passes through the expansion portion 82, the rotational flow derived from the propeller rotation propeller By releasing the twisted flow in advance before reaching the diffused portion 82 of the cap 80, the occurrence of hub vortex cavitation can be further reduced by converting the rotational flow resulting from the propeller rotation into a linear flow in the rotational axis direction.
여기서, 상기한 가이드 핀(83)은, 예를 들면, 2 ~ 8개 사이로 필요에 따라 적절한 개수로 설치 가능하며, 가이드 핀 자체에 의한 저항 증가를 피하기 위해 확장형부(82)의 직경에 맞추어 그 크기가 결정될 수 있다. Here, the guide pins 83 may be installed in an appropriate number, for example, between 2 and 8 as necessary, and may be fitted in accordance with the diameter of the extended portion 82 to avoid an increase in resistance by the guide pins themselves. The size can be determined.
더욱이, 가이드 핀(83)의 부착 각도는, 수직 위 방향에서 보았을 때 0도를 기준으로 하며, 이때, 바람직하게는, +20 ~ -20도 정도의 제작 공차를 가질 수 있고, 보다 바람직하게는, +10 ~ -10도 정도의 제작 공차를 가지도록 구성될 수 있다. Further, the attachment angle of the guide pin 83 is based on 0 degrees when viewed from the vertically upward direction, and preferably, may have a manufacturing tolerance of about +20 to -20 degrees, more preferably It may be configured to have a manufacturing tolerance of about +10 to -10 degrees.
더 상세하게는, 본 발명의 제 1 실시예에 따른 프로펠러 캡(80)의 구성에 따르면, 캡 중간의 수축형부(81)까지는 형상에 따른 압력 회복을 통해 추진효율이 향상되고, 프로펠러 유동이 확산형의 캡 끝단을 지나면서 확산형부(82)에 의해 강하게 꼬인 회전 유동(볼텍스)이 약화됨으로써 허브 볼텍스 캐비테이션의 발생이 감소될 수 있으며, 이때, 상기한 바와 같이 프로펠러 캡(80)의 수축형부(81)와 확산형부(82)의 사이에 삼각형 판 형태로 형성되는 가이드 핀(83)을 복수 개 부착함으로써, 추진기 회전으로부터 유도된 회전류가 프로펠러 캡(80)의 확산형부(82)에 이르기 전에 가이드 핀(83)에 의해 유동을 미리 풀어 주어 추진기 회전으로 인한 회전 유동을 회전축 방향의 직선 유동으로 전환하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있으므로, 추진기 회전에 의한 회전유동과 허브 볼텍스 캐비테이션의 발생이 함께 저감될 수 있고, 그것에 의해 허브 볼텍스에 의한 에너지 손실이 방지되어 선박의 추진효율이 기존의 확산형 추진기에 비해 약 1 ~ 3% 향상되며, 허브 볼텍스 캐비테이션에 의한 진동 및 소음이 감소되고, 기존의 수축형 프로펠러 캡에 비하여 러더의 침식과 부식이 방지될 수 있다. More specifically, according to the configuration of the propeller cap 80 according to the first embodiment of the present invention, the propulsion efficiency is improved through the pressure recovery according to the shape to the contraction portion 81 in the middle of the cap, the propeller flow is diffused Rotational flow (vortex) strongly twisted by the diffusion die 82 is weakened while passing through the cap end of the die, so that the occurrence of the hub vortex cavitation can be reduced, and as described above, the contracted portion of the propeller cap 80 ( By attaching a plurality of guide pins 83 formed in the form of a triangular plate between the 81 and the diffuser 82, before the rotational flow induced from propeller rotation reaches the diffuser 82 of the propeller cap 80. By releasing the flow in advance by the guide pin 83, the occurrence of the hub vortex cavitation can be further reduced by converting the rotational flow due to the propeller rotation into a linear flow in the rotational axis direction. Therefore, the rotational flow and the generation of hub vortex cavitation due to the rotation of the propeller can be reduced together, thereby preventing the energy loss caused by the hub vortex, thereby improving the propulsion efficiency of the vessel by about 1 to 3% compared to the conventional diffused propeller. The vibration and noise caused by the hub vortex cavitation can be reduced, and erosion and corrosion of the rudder can be prevented as compared with the conventional shrinking propeller cap.
즉, 상기한 바와 같이 구성되는 본 발명의 제 5 실시예에 따른 복합형 프로펠러 캡(80)의 원리는, 캡 중간의 수축형부(81)까지는 형상에 따른 압력 회복을 통해 추진 효율이 향상되고, 캡 끝단을 지나는 프로펠러 유동은 확산형부(82)에 의해 강하게 꼬인 회전 유동(볼텍스)이 약화되는 것에 의해 허브 볼텍스 캐비테이션이 감소되며, 이때, 프로펠러 캡(80)의 수축형부(81)와 확산형부(82)의 사이에 판 형태로 형성되는 가이드 핀(83)을 복수 개 부착함으로써 추진기 회전으로부터 유도된 회전류가 프로펠러 캡(80)의 확산형부(82)에 이르기 전에 가이드 핀(83)에 의해 유동을 미리 풀어 주어 추진기 회전으로 인한 회전 유동을 회전축 방향의 직선 유동으로 전환하는 것에 의해 회전 유동 및 허브 볼텍스 캐비테이션의 발생이 저감될 수 있다. That is, the principle of the hybrid propeller cap 80 according to the fifth embodiment of the present invention configured as described above, the propulsion efficiency is improved through the pressure recovery according to the shape to the contraction portion 81 in the middle of the cap, The propeller flow passing through the cap end is reduced by hub vortex cavitation due to weakening of the rotational flow (vortex) strongly twisted by the diffuser 82, whereby the contraction 81 and the diffuser 81 of the propeller cap 80 By attaching a plurality of guide pins 83 formed in the form of a plate between the 82, flows by the guide pins 83 before the rotary flow induced from the propeller rotation reaches the diffused portion 82 of the propeller cap 80. By unscrewing in advance to convert the rotational flow due to the propeller rotation into a linear flow in the direction of the rotation axis, the occurrence of the rotational flow and the hub vortex cavitation can be reduced.
따라서 상기한 바와 같이 구성되는 본 발명의 제 5 실시예에 따른 복합형 프로펠러 캡(80)에 따르면, 상기한 바와 같이 프로펠러 캡(80)의 확산형부(82)를 통해 허브 볼텍스 캐비테이션을 감소하는데 더하여, 가이드 핀(83)에 의해 추진기 회전으로부터 유도된 회전류가 프로펠러 캡(80)의 확산형부(82)에 이르기 전에 꼬인 유동을 미리 어느 정도 풀어 줌으로써 추진기 회전으로 인한 회전 유동을 회전축 방향의 직선 유동으로 전환하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가로 감소할 수 있으며, 그것에 의해 허브 볼텍스에 의한 에너지 손실 방지를 통해 추진 효율 향상, 허브 볼텍스 캐비테이션에 의한 진동, 소음 감소 및 러더의 침식과 부식을 방지할 수 있다. Therefore, according to the hybrid propeller cap 80 according to the fifth embodiment of the present invention configured as described above, in addition to reducing the hub vortex cavitation through the diffusion type 82 of the propeller cap 80 as described above The linear flow in the direction of the axis of rotation of the rotating shaft due to the propeller rotation is released by releasing the twisted flow to some extent before the rotational flow induced by the propeller rotation by the guide pin 83 reaches the diffusion portion 82 of the propeller cap 80. It is possible to further reduce the occurrence of the hub vortex cavitation by switching to, thereby improving propulsion efficiency through the prevention of energy loss by the hub vortex, vibration by the hub vortex cavitation, noise reduction and prevention of erosion and corrosion of the rudder can do.
또한, 상기한 바와 같이 구성되는 본 발명의 제 5 실시예에 따른 복합형 프로펠러 캡(80)은 그 형상이 매우 간단한 구조를 가지며, 아울러, 상기한 가이드 핀(83)은 단순한 판형 플레이트(plate)로 구성되므로 제작이 쉽고 단순 용접으로 간단히 부착이 가능하므로, 기존 PBCF의 제작 시 핀(fin)의 정밀 가공으로 인한 제작비의 상승도 크게 줄일 수 있는 장점이 있다. In addition, the composite propeller cap 80 according to the fifth embodiment of the present invention configured as described above has a very simple structure, and the guide pin 83 is a simple plate plate. Since it is easy to manufacture and can be easily attached by simple welding, the manufacturing cost of the existing PBCF can be greatly reduced due to the precise processing of fins.
계속해서, 도 9를 참조하면, 도 9는 종래의 프로펠러 캡과 도 8에 나타낸 본 발명의 제 5 실시예에 따른 프로펠러 캡(80)을 이용한 추진기의 효율을 각각 비교하여 나타낸 도면이다. Subsequently, referring to FIG. 9, FIG. 9 is a view showing a comparison between the efficiency of a propeller cap using a propeller cap 80 according to the fifth embodiment of the present invention shown in FIG. 8.
도 9에 나타낸 내용으로부터, 본 발명의 제 5 실시예에 따른 프로펠러 캡(80)을 이용한 추진기의 효율이 종래의 수축형(contraction type) 프로펠러보다 우수한 동시에 허브 볼텍스에 의한 부작용을 크게 줄일 수 있으며, 확산형(diffusion type) 프로펠러 캡에 비하여도 추진기의 효율이 크게 향상된 것을 확인할 수 있다. From the contents shown in Figure 9, the efficiency of the propeller using the propeller cap 80 according to the fifth embodiment of the present invention is superior to the conventional contraction type (contraction type) propeller and at the same time can greatly reduce the side effects caused by the hub vortex, It can be seen that the efficiency of the propeller is greatly improved compared to the diffusion type propeller cap.
즉, 상기한 바와 같이, 본 발명의 제 5 실시예에 따른 프로펠러 캡(80)의 구성에 따르면, 캡 중간의 수축형부(81)까지는 형상에 따른 압력 회복을 통해 추진효율이 향상되고, 프로펠러 유동이 확산형의 캡 끝단을 지나면서 확산형부(82)에 의해 강하게 꼬인 회전 유동(볼텍스)이 약화됨으로써 허브 볼텍스 캐비테이션의 발생이 감소될 수 있으며, 또한, 상기한 바와 같이 프로펠러 캡(80)의 수축형부(81)와 확산형부(82)의 사이에 판 형태로 형성되는 가이드 핀(83)을 복수 개 부착함으로써, 추진기 회전으로부터 유도된 회전류가 프로펠러 캡(80)의 확산형부(82)에 이르기 전에 가이드 핀(23)에 의해 유동을 미리 풀어 주어 추진기 회전으로 인한 회전 유동을 회전축 방향의 직선 유동으로 전환하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있으므로, 추진기 회전에 의한 회전유동과 허브 볼텍스 캐비테이션의 발생이 함께 저감될 수 있고, 그것에 의해 허브 볼텍스에 의한 에너지 손실이 방지되어 선박의 추진효율이 기존의 확산형 추진기에 비해 약 1 ~ 3% 향상되며, 허브 볼텍스 캐비테이션에 의한 진동 및 소음이 감소되고, 기존의 수축형 프로펠러 캡에 비하여 러더의 침식과 부식이 방지될 수 있다. That is, as described above, according to the configuration of the propeller cap 80 according to the fifth embodiment of the present invention, the propulsion efficiency is improved through the pressure recovery according to the shape to the contraction portion 81 in the middle of the cap, propeller flow As the rotational flow (vortex) strongly twisted by the diffusion die 82 is weakened while passing through the tip of the diffusion die, the occurrence of the hub vortex cavitation can be reduced, and as described above, the contraction of the propeller cap 80 is reduced. By attaching a plurality of guide pins 83 formed in the form of a plate between the die 81 and the diffuser 82, the rotational flow induced from the propeller rotation reaches the diffused die 82 of the propeller cap 80. The occurrence of hub vortex cavitation can be further reduced by previously releasing the flow by the guide pins 23 in advance to convert the rotational flow due to the propeller rotation into a linear flow in the direction of the axis of rotation. Therefore, the rotational flow and the generation of hub vortex cavitation due to the rotation of the propeller can be reduced together, thereby preventing the energy loss caused by the hub vortex, thereby improving the propulsion efficiency of the vessel by about 1 to 3% compared to the conventional diffused propeller. The vibration and noise caused by the hub vortex cavitation can be reduced, and erosion and corrosion of the rudder can be prevented as compared with the conventional shrinking propeller cap.
즉, 상기한 바와 같은 본 발명의 제 5 실시예에 따른 프로펠러 캡(80)의 구성에 따르면, 기존의 컨테이너선에 사용하는 확산형 프로펠러 캡과 마찬가지로 허브 볼텍스 캐비테이션을 감소하면서도 종래의 확산형 프로펠러 캡보다 추진효율이 크게 향상되며, 또한, 기존의 탱크선에 적용시 기존의 수축형 프로펠러 캡과 비교하여 추진효율이 우수하고 허브 볼텍스 캐비테이션도 크게 감소할 수 있는 이점이 있는 데 더하여, 상기한 바와 같이 프로펠러 캡(80)의 수축형부(81)와 확산형부(82)의 사이에 삼각형의 판 형태로 형성되는 가이드 핀(83)을 부착하는 것에 의해 회전유동과 허브 볼텍스 캐비테이션의 발생이 추가적으로 감소됨으로써, 허브 볼텍스 캐비테이션에 의한 진동 및 소음을 감소할 수 있는 동시에, 러더의 침식과 부식을 방지할 수 있다. That is, according to the configuration of the propeller cap 80 according to the fifth embodiment of the present invention as described above, the conventional diffusion type propeller cap while reducing the hub vortex cavitation similar to the diffusion type propeller cap used for the existing container ship In addition, the propulsion efficiency is greatly improved, and when applied to the existing tanker, the propulsion efficiency is excellent and the hub vortex cavitation can be greatly reduced as compared to the conventional shrinking propeller cap. By attaching the guide pin 83 formed in the shape of a triangular plate between the constriction portion 81 and the diffusion portion 82 of the propeller cap 80, the occurrence of rotational flow and hub vortex cavitation is further reduced, The vibration and noise caused by the hub vortex cavitation can be reduced while preventing erosion and corrosion of the rudder.
아울러, 종래의 PBCF는 제작시 핀의 정밀 가공이 필요하여 제작비의 상승요인이 되는 문제가 있었으나, 상기한 바와 같은 본 발명의 제 5 실시예에 따른 프로펠러 캡(80)의 형상은 그 구조가 단순하여 제작이 용이하므로, 기존 PBCF의 제작시 핀의 정밀 가공으로 인해 적어도 1억 원 이상이었던 제작비용을 기존 프로펠러 캡과 유사하게 대략 3000만원 이내로 대폭 절감할 수 있는 장점도 함께 가지는 것이다. In addition, the conventional PBCF has a problem in that the manufacturing cost is a rise factor due to the precise processing of the pin during manufacturing, the shape of the propeller cap 80 according to the fifth embodiment of the present invention as described above is simple in structure Since it is easy to manufacture, the manufacturing cost, which was at least 100 million won due to the precision processing of the pins during the manufacturing of the existing PBCF, has a merit that can be greatly reduced to about 30 million won or less similar to the existing propeller cap.
계속해서, 도 10을 참조하면, 도 10은 본 발명의 제 6 실시예에 따른 복합형 프로펠러 캡(60)의 전체적인 구성을 개략적으로 나타내는 도면이다. 10, FIG. 10 schematically shows the overall configuration of the hybrid propeller cap 60 according to the sixth embodiment of the present invention.
여기서, 이하에 설명하는 본 발명의 제 6 실시예에 있어서는, 설명을 간략히 하기 위해, 상기한 제 5 실시예와 동일하거나 유사한 부분에 대하여는 그 상세한 설명을 생략하고, 다른 부분에 대하여만 설명한다. Here, in the sixth embodiment of the present invention described below, in order to simplify the description, the same or similar parts as those of the above-described fifth embodiment will be omitted, and only the other parts will be described.
즉, 도 10에 나타낸 바와 같이, 본 발명의 제 6 실시예에 따른 복합형 프로펠러 캡(100)은, 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부(101)와, 상기 수축형부(101)에 연장하여 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 확산형부(102)와, 상기 수축형부(101)와 확산형부(102)의 사이에 부착되는 가이드 핀(103)을 포함하여 구성되는 점은 도 8에 나타낸 제 5 실시예와 같다. That is, as shown in Figure 10, the composite propeller cap 100 according to the sixth embodiment of the present invention, the shrinkage portion 101 is formed so as to decrease in diameter toward the opposite side of the propeller, and the shrinkage portion 101 And a diffusion pin 102 formed to extend toward the opposite side of the propeller and a guide pin 103 attached between the contraction portion 101 and the diffusion die 102. Is the same as the fifth embodiment shown in FIG.
그러나 본 발명의 제 6 실시예에 따른 복합형 프로펠러 캡(100)은, 상기한 수축형부(101)의 형상이, 도 8에 나타낸 제 5 실시예와 같은 직선 형태가 아니라, 일정 곡률을 가지는 곡선 형태로 형성되는 것을 특징으로 하는 것이다. However, in the hybrid propeller cap 100 according to the sixth embodiment of the present invention, the shape of the contraction portion 101 is not a straight line shape as in the fifth embodiment shown in FIG. 8, but a curve having a constant curvature. It is characterized in that formed in the form.
즉, 본 발명의 제 6 실시예에 따른 복합형 프로펠러 캡(100)은, 상기한 수축형부(101)의 형상이, 도 10a에 나타낸 바와 같이, 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성거나, 또는, 상기한 수축형부(101)의 형상이, 도 10b에 나타낸 바와 같이, 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 하는 것이다. That is, the composite propeller cap 100 according to the sixth embodiment of the present invention is formed such that the shape of the contraction portion 101 is convex outward in a curved form having a constant curvature, as shown in FIG. 10A. Alternatively, the shape of the above-mentioned contraction portion 101 is formed so as to be convex inward in a curved form having a predetermined curvature, as shown in FIG. 10B.
여기서, 상기한 수축형부(101)의 곡률은 추진기나 선박의 종류 또는 용도에 따라 적절히 설정 가능하며, 그 밖의 다른 부분은 상기한 제 5 실시예와 동일하므로, 그 상세한 설명은 생략한다. Here, the above-described curvature of the contraction portion 101 can be appropriately set according to the type or use of the propeller or the ship, and other parts are the same as in the fifth embodiment described above, and thus the detailed description thereof will be omitted.
계속해서, 도 11을 참조하여, 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡에 대하여 설명한다. Next, with reference to FIG. 11, the hybrid propeller cap which concerns on 7th Embodiment of this invention is demonstrated.
즉, 도 11을 참조하면, 도 11은 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)의 전체적인 구성을 개략적으로 나타내는 도면이다. That is, referring to FIG. 11, FIG. 11 is a view schematically showing the overall configuration of the hybrid propeller cap 110 according to the seventh embodiment of the present invention.
더 상세하게는, 도 11에 나타낸 바와 같이, 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)은, 프로펠러의 끝단에서부터 직경이 증가하도록 형성되는 제 1 확산형부(111)와, 상기 제 1 확산형부(111)에 수평으로 연장하도록 형성되는 직선형부(112)와, 상기 직선형부(112)에 연장하여 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부(113)와, 상기 수축형부(113)에 연장하여 프로펠러의 반대측으로 갈수록 다시 직경이 증가하도록 형성되는 제 2 확산형부(114)와, 얇은 판(plate) 형태로 형성되어 상기 수축형부(113)와 제 2 확산형부(114)의 사이에 일정 간격으로 설치되는 복수의 가이드 핀(guide fin)(115)을 포함하여 구성되어 있다. More specifically, as shown in FIG. 11, the hybrid propeller cap 110 according to the seventh embodiment of the present invention includes a first diffused portion 111 formed to increase in diameter from the end of the propeller, and The straight portion 112 is formed to extend horizontally to the first diffusion portion 111, and the contraction portion 113 is formed to extend to the straight portion 112 to reduce the diameter toward the opposite side of the propeller, and the contraction The second diffuser 114 and the second diffuser 114 are formed in the form of a thin plate extending to the mold 113 so as to increase in diameter toward the opposite side of the propeller, and the contracted portion 113 and the second diffuser 114. ), A plurality of guide fins 115 are provided at regular intervals.
즉, 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)은, 도 11에 나타낸 바와 같이, 프로펠러 끝에서 처음에는 일정 부분까지 직경이 증가하다가 감소하고, 프로펠러 캡의 후단부에서 다시 직경이 증가하는 형태로 형성되고, 이때, 프로펠러 캡(110)의 수축형부(113)와 제 2 확산형부(114) 사이에는 삼각형 판 형태의 가이드 핀(115)이 추가되는 것을 특징으로 하는 것이다. That is, the hybrid propeller cap 110 according to the seventh embodiment of the present invention, as shown in Figure 11, the diameter of the propeller end initially increases to a certain portion and then decreases, the diameter again at the rear end of the propeller cap It is formed in an increasing shape, wherein the guide pin 115 in the form of a triangular plate is added between the contracted portion 113 and the second diffused portion 114 of the propeller cap 110.
여기서, 상기한 제 1 확산형부(111) 및 수축형부(113)의 경사각(α, β)은, 예를 들면, 각각 0 ~ 40° 사이로 설정할 수 있다. Here, the inclination angles α and β of the first diffusion mold 111 and the contraction portion 113 may be set between 0 and 40 °, for example.
이때, 상기한 α와 β 값이 40도를 넘어가면 유동 박리에 의해 급격한 성능 하락을 야기하며, 즉, 유동 박리 현상이 일어나면 프로펠러 캡 표면에서 압력 회복이 발생하지 않아 저항이 증가하게 된다. At this time, when the values of α and β exceed 40 degrees, a sudden performance drop is caused by the flow separation, that is, when the flow separation occurs, pressure recovery does not occur on the surface of the propeller cap, thereby increasing resistance.
더 상세하게는, 이하의 [표 2]를 참조하면, [표 2]는 제 1 확산형부(111) 및 수축형부(113)의 경사각(α, β)의 각도 변화에 따른 성능 변화를 나타내는 것이다. More specifically, referring to the following [Table 2], [Table 2] shows the performance change according to the change in the angle of the inclination angle (α, β) of the first diffusion portion 111 and the contraction portion 113. .
표 4
각도 (α) 10 20 30 40 50 60
성능변화 (%) +1.3 +1.3 +1.3 +1.2 +0.9 +0.9
각도 (β) 10 20 30 40 50 60
성능변화 (%) +1.3 +1.3 +1.3 +1.0 +0.4 +0.4
Table 4
Angle (α) 10 20 30 40 50 60
Performance change (%) +1.3 +1.3 +1.3 +1.2 +0.9 +0.9
Angle (β) 10 20 30 40 50 60
Performance change (%) +1.3 +1.3 +1.3 +1.0 +0.4 +0.4
여기서, 상기한 [표 2]에 있어서, α를 변화시킬 때는 β 값을 30도로 고정하고, β 값을 변화시킬 때는 α 값을 30도로 고정하였으며, [표 2]에 제시된 결과는, 종래의 확산형 프로펠러 캡을 부착한 추진기와 비교하여 각도 변화에 따른 추진성능 추정값을 나타낸 것이다. Here, in the above [Table 2], the β value is fixed at 30 degrees when the α is changed, and the α value is fixed at 30 degrees when the β value is changed, and the results shown in [Table 2] are the conventional diffusions. It shows the propulsion performance estimate according to the angle change compared with the propeller with the propeller cap.
따라서 상기한 바와 같은 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)의 구성에 따르면, 도 11에 나타낸 바와 같이, 제 1 확산형부(111)에 의해 프로펠러 캡의 앞 부분이 볼록하게 돌출하도록 형성됨으로써, 프로펠러 압력단(Pressure side)의 압력을 증가시켜 추진 효율이 향상되는 효과가 있으며, 또한, 캡 중간의 수축형부(113)의 형상에 따른 압력 회복을 통해서도 추진효율이 향상된다.Therefore, according to the configuration of the hybrid propeller cap 110 according to the seventh embodiment of the present invention as described above, as shown in FIG. 11, the front portion of the propeller cap is convex by the first diffusion type 111. Since it is formed to protrude, the propeller pressure stage (pressure side) to increase the pressure of the propulsion efficiency is improved, and the propulsion efficiency is also improved through the pressure recovery according to the shape of the contraction portion 113 in the middle of the cap.
또한, 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)은, 도 11에 나타낸 바와 같이, 캡 중간의 수축형부(113)까지는 형상에 따른 압력 회복을 통해 추진효율이 추가적으로 향상되고, 프로펠러 유동이 확산형의 캡 끝단을 지나면서 제 2 확산형부(114)에 의해 강한 회전 유동(vortex)을 약화시켜 허브 볼텍스 캐비테이션을 저감할 수 있다. In addition, the composite propeller cap 110 according to the seventh embodiment of the present invention, as shown in Figure 11, the propulsion efficiency is further improved through the pressure recovery according to the shape up to the contraction portion 113 in the middle of the cap, As the propeller flow passes through the diffused cap end, the strong diffusion vortex may be weakened by the second diffuser 114 to reduce hub vortex cavitation.
아울러, 그것에 의해, 허브 볼텍스에 의한 에너지 손실이 방지되어 선박의 추진효율이 기존의 확산형 추진기에 비해 약 1 ~ 3% 향상되고, 허브 볼텍스 캐비테이션에 의한 진동 및 소음이 감소되며, 기존의 수축형 프로펠러 캡에 비하여 러더의 침식과 부식이 방지될 수 있다. In addition, by this, the energy loss by the hub vortex is prevented, the propulsion efficiency of the ship is improved by about 1 to 3% compared to the conventional diffused propeller, the vibration and noise by the hub vortex cavitation is reduced, the conventional shrinkage type Compared to the propeller cap, rudder erosion and corrosion can be prevented.
더욱이, 상기한 가이드 핀(115)은, 도 11에 나타낸 바와 같이, 예를 들면, 프로펠러 캡(110)의 수축형부(113)와 제 2 확산형부(114) 사이의 오목한 부분에 맞물리도록 삼각형의 얇은 판 형태로 형성되어 단순 용접을 통해 일정 간격으로 복수 개 부착되도록 구성되며, 그것에 의해, 추진기 회전으로부터 유도된 회전류가 제 2 확장형부(114)를 지나면서 풀리는 것에 더하여, 추진기 회전으로부터 유도된 회전류가 프로펠러 캡(110)의 제 2 확산형부(114)에 이르기 전에 꼬인 유동을 미리 풀어 줌으로써, 추진기 회전으로 인한 회전 유동을 회전축 방향의 직선 유동으로 전환하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있다. Furthermore, the guide pin 115 described above is triangular so as to engage a concave portion between, for example, the contracted portion 113 and the second diffused portion 114 of the propeller cap 110, as shown in FIG. 11. It is formed in the form of a thin plate and is configured to be attached to a plurality at regular intervals through simple welding, whereby the rotational flow derived from the propeller rotation is released from the propeller rotation in addition to the unwinding of the propeller rotation. By releasing the twisted flow in advance before the rotational flow reaches the second diffused portion 114 of the propeller cap 110, the generation of the hub vortex cavitation is further added by converting the rotational flow due to the propeller rotation into a linear flow in the direction of the rotation axis. May decrease.
여기서, 상기한 가이드 핀(115)은, 예를 들면, 2 ~ 8개 사이로 필요에 따라 적절한 개수로 설치 가능하며, 가이드 핀 자체에 의한 저항 증가를 피하기 위해 제 2 확장형부(114)의 직경에 맞추어 그 크기가 결정될 수 있다. Here, the guide pins 115 may be installed in an appropriate number, for example, between 2 and 8, if necessary, and the diameter of the second extended portion 114 may be increased in order to avoid an increase in resistance caused by the guide pins themselves. The size can be determined accordingly.
더욱이, 가이드 핀(115)의 부착 각도는, 수직 위 방향에서 보았을 때 0도를 기준으로 하며, 이때, 바람직하게는, +20 ~ -20도 정도의 제작 공차를 가질 수 있고, 보다 바람직하게는, +10 ~ -10도 정도의 제작 공차를 가지도록 구성될 수 있다. Furthermore, the attachment angle of the guide pin 115 is based on 0 degrees when viewed from the vertically upward direction, and preferably, may have a manufacturing tolerance of about +20 to -20 degrees, more preferably It may be configured to have a manufacturing tolerance of about +10 to -10 degrees.
더 상세하게는, 상기한 바와 같이 구성되는 본 발명의 제 7 실시예에 따른 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 가이드 핀을 가지는 복합형 프로펠러 캡(110)의 원리는, 캡 중간의 수축형부(113)까지는 형상에 따른 압력 회복을 통해 추진효율이 향상되고, 프로펠러 유동이 확산형의 캡 끝단을 지나면서 제 2 확산형부(114)에 의해 강하게 꼬인 회전 유동(볼텍스)이 펴짐으로써 허브 볼텍스의 발생이 감소될 수 있으며, 이때, 상기한 바와 같이 프로펠러 캡(110)의 수축형부(113)와 제 2 확산형부(114)의 사이에 삼각형의 판 형태로 형성되는 가이드 핀(115)을 복수 개 부착함으로써 추진기 회전으로부터 유도된 회전류가 프로펠러 캡(110)의 제 2 확산형부(114)에 이르기 전에 가이드 핀(115)에 의해 유동을 미리 풀어 주어 추진기 회전으로 인한 회전 유동을 회전축 방향의 직선 유동으로 전환하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있으므로, 추진기 회전에 의한 회전유동과 허브 볼텍스 캐비테이션의 발생이 함께 감소될 수 있고, 그것에 의해 허브 볼텍스에 의한 에너지 손실이 방지되어 선박의 추진효율이 기존의 확산형 추진기에 비해 약 1 ~ 3% 향상되며, 허브 볼텍스 캐비테이션에 의한 진동 및 소음이 감소되고, 기존의 수축형 프로펠러 캡에 비하여 러더의 침식과 부식이 방지될 수 있다. More specifically, the principle of the hybrid propeller cap 110 having a guide pin for rotating flow and hub vortex reduction and propulsion efficiency according to the seventh embodiment of the present invention configured as described above, Propelling efficiency is improved through the pressure recovery according to the shape up to the contracting portion 113, and the rotating flow (vortex) strongly twisted by the second diffusing portion 114 as the propeller flow passes through the tip of the diffusion type hub, thereby expanding the hub. The occurrence of vortex may be reduced, and in this case, as described above, the guide pin 115 formed in the shape of a triangular plate between the contracted portion 113 of the propeller cap 110 and the second diffused portion 114 is formed. By attaching a plurality, the guide pin 115 releases the flow in advance before the rotational flow induced from the propeller rotation reaches the second diffused portion 114 of the propeller cap 110, thereby causing the rotational oil caused by the rotation of the propeller. Since the generation of the hub vortex cavitation can be further reduced by converting the linear flow into the direction of the axis of rotation, the rotational flow due to the propeller rotation and the generation of the hub vortex cavitation can be reduced together, thereby losing energy by the hub vortex. This prevents the ship's propulsion efficiency from improving by 1 to 3% compared to the conventional diffuser, and reduces vibration and noise caused by hub vortex cavitation, and prevents erosion and corrosion of the rudder compared to the conventional contracted propeller cap. Can be.
즉, 상기한 바와 같이 구성되는 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)의 원리는, 캡 중간의 수축형부(113)까지는 형상에 따른 압력 회복을 통해 추진 효율이 향상되고, 캡 끝단을 지나는 프로펠러 유동은 제 2 확산형부(114)에 의해 강하게 꼬인 회전 유동(볼텍스)이 펴지는 것에 의해 허브 볼텍스가 감소되며, 이때, 프로펠러 캡(110)의 수축형부(113)와 제 2 확산형부(114)의 사이에 삼각형 판 형태로 형성되는 가이드 핀(115)을 복수 개 부착함으로써 추진기 회전으로부터 유도된 회전류가 프로펠러 캡(110)의 제 2 확산형부(114)에 이르기 전에 가이드 핀(115)에 의해 유동을 미리 풀어 주어 추진기 회전으로 인한 회전 유동을 회전축 방향의 직선 유동으로 전환하는 것에 의해 회전 유동 및 허브 볼텍스 캐비테이션의 발생이 저감될 수 있다. That is, the principle of the hybrid propeller cap 110 according to the seventh embodiment of the present invention configured as described above, the propulsion efficiency is improved through the pressure recovery according to the shape up to the contraction portion 113 in the middle of the cap, The propeller flow passing through the cap end is reduced by the hub vortex due to the unfolding of the strongly twisted rotational flow (Vortex) by the second diffusion die 114, at this time, the contraction 113 and the second portion of the propeller cap 110 By attaching a plurality of guide pins 115 formed in the form of a triangular plate between the diffusion parts 114, the guide pins before the rotational flow induced from the propeller rotation reaches the second diffusion parts 114 of the propeller cap 110. The occurrence of rotational flow and hub vortex cavitation can be reduced by releasing the flow in advance by 115 to convert the rotational flow due to the propeller rotation into a linear flow in the direction of the rotational axis.
따라서 상기한 바와 같이 구성되는 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)에 따르면, 상기한 바와 같이 프로펠러 캡(110)의 제 2 확산형부(114)를 통해 볼텍스 캐비테이션을 감소하는데 더하여, 가이드 핀(115)에 의해 추진기 회전으로부터 유도된 회전류가 프로펠러 캡(110)의 제 2 확산형부(114)에 이르기 전에 꼬인 유동을 미리 어느 정도 풀어 줌으로써 추진기 회전으로 인한 회전 유동을 회전축 방향의 직선 유동으로 전환하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가로 감소할 수 있으며, 그것에 의해 허브 볼텍스에 의한 에너지 손실 방지를 통해 추진 효율 향상, 허브 볼텍스 캐비테이션에 의한 진동과 소음 감소 및 러더의 침식과 부식을 방지할 수 있다. Therefore, according to the hybrid propeller cap 110 according to the seventh embodiment of the present invention configured as described above, to reduce the vortex cavitation through the second diffusion type 114 of the propeller cap 110 as described above In addition, the rotational flow induced by the propeller rotation by the guide pin 115 releases the twisted flow to some extent before reaching the second diffused portion 114 of the propeller cap 110, thereby releasing the rotational flow due to the propeller rotation in the rotational axis direction. It is possible to further reduce the occurrence of hub vortex cavitation by switching to a linear flow of, thereby improving propulsion efficiency by preventing energy loss by the hub vortex, reducing vibration and noise caused by hub vortex cavitation, and eroding the rudder. Corrosion can be prevented.
또한, 상기한 바와 같이 구성되는 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)은, 그 형상이 매우 간단한 구조를 가지며, 아울러, 상기한 가이드 핀(115)은 단순 판형 플레이트(plate)로 구성되므로 제작이 쉽고 단순 용접으로 간단히 부착이 가능하므로, 기존 PBCF의 제작 시 핀(fin)의 정밀 가공으로 인한 제작비의 상승도 크게 줄일 수 있는 장점이 있다. In addition, the hybrid propeller cap 110 according to the seventh embodiment of the present invention configured as described above has a very simple structure, and the guide pin 115 is a simple plate plate. Because it is easy to manufacture and can be easily attached by simple welding, the manufacturing cost of the existing PBCF can be greatly reduced due to the precise processing of fins.
계속해서, 도 12 참조하면, 도 12는 종래의 프로펠러 캡과 도 11에 나타낸 본 발명의 제 7 실시예에 따른 프로펠러 캡을 이용한 추진기의 효율을 각각 비교하여 나타낸 도면이다. 12, FIG. 12 is a view showing a comparison of the efficiency of a propeller cap using a propeller cap according to the seventh embodiment of the present invention shown in FIG.
도 12에 나타낸 내용으로부터, 본 발명의 제 7 실시예에 따른 프로펠러 캡(110)을 이용한 추진기의 효율이 종래의 수축형(contraction type) 프로펠러 캡보다 우수한 동시에 허브 볼텍스에 의한 부작용도 크게 줄일 수 있으며, 확산형(diffusion type) 프로펠러 캡에 비하여도 추진기의 효율이 크게 향상된 것을 확인할 수 있다. From the contents shown in FIG. 12, the efficiency of the propeller using the propeller cap 110 according to the seventh embodiment of the present invention is superior to that of the conventional contraction type (contraction type) propeller cap, and the side effects caused by the hub vortex can be greatly reduced. In comparison with the diffusion type propeller cap, it can be seen that the efficiency of the propeller is greatly improved.
즉, 상기한 바와 같이, 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)은, 캡의 앞 부분이 볼록하게 돌출하도록 제 1 확산형부(111)가 형성됨으로써, 프로펠러 압력단(Pressure side)의 압력을 증가시켜 추진 효율이 향상되며, 또한, 캡 중간의 수축형부(113)의 형상에 따른 압력 회복을 통해서도 추진효율이 향상된다. That is, as described above, in the hybrid propeller cap 110 according to the seventh embodiment of the present invention, the propeller pressure stage is formed by forming the first diffusion type 111 so that the front portion of the cap protrudes convexly. The propulsion efficiency is improved by increasing the pressure of the side), and the propulsion efficiency is also improved through the pressure recovery according to the shape of the contraction portion 113 in the middle of the cap.
또한, 프로펠러 유동이 확산형의 캡 끝단을 지나면서 제 2 확산형부(114)에 의해 강하게 꼬인 회전 유동(볼텍스)이 약화됨으로써 허브 볼텍스 캐비테이션의 발생이 감소될 수 있으며, 이때, 상기한 바와 같이 프로펠러 캡(110)의 수축형부(113)와 제 2 확산형부(114)의 사이에 삼각형의 판 형태로 형성되는 가이드 핀(115)을 부착하는 것에 의해 회전유동과 허브 볼텍스 캐비테이션의 발생이 추가적으로 감소될 수 있고, 그것에 의해, 허브 볼텍스에 의한 에너지 손실이 방지되어 선박의 추진효율이 기존의 확산형 추진기에 비해 약 1 ~ 3% 향상되며, 허브 볼텍스 캐비테이션에 의한 진동 및 소음이 감소되고, 기존의 수축형 프로펠러 캡에 비하여 러더의 침식과 부식이 방지될 수 있다. In addition, as the propeller flow passes through the diffusion end of the cap, the rotational flow (vortex) strongly twisted by the second diffusion portion 114 may be weakened, thereby reducing the occurrence of the hub vortex cavitation, as described above. By attaching the guide pin 115 formed in the form of a triangular plate between the contracted portion 113 and the second diffused portion 114 of the cap 110, the occurrence of rotational flow and hub vortex cavitation can be further reduced. By this, the energy loss by the hub vortex is prevented, so that the propulsion efficiency of the ship is improved by about 1 ~ 3% compared to the conventional diffuse propeller, the vibration and noise by the hub vortex cavitation is reduced, and the existing shrinkage Compared to the propeller cap, rudder erosion and corrosion can be prevented.
즉, 상기한 바와 같은 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)의 구성에 따르면, 기존의 컨테이너선에 사용하는 확산형 프로펠러 캡과 마찬가지로 허브 볼텍스 캐비테이션을 감소하면서도 종래의 확산형 프로펠러 캡보다 추진효율의 향상이 가능하며, 또한, 기존의 탱크선에 적용시 수축형 프로펠러 캡과 비교하여 추진효율은 유사하고 허브 볼텍스 캐비테이션은 크게 감소할 수 있는 이점이 있는 데 더하여, 상기한 바와 같이 프로펠러 캡(110)의 수축형부(113)와 제 2 확산형부(114)의 사이에 삼각형의 판 형태로 형성되는 가이드 핀(115)을 부착하는 것에 의해 회전유동과 허브 볼텍스 캐비테이션의 발생이 추가적으로 감소됨으로써,진동 및 소음을 감소할 수 있는 동시에, 러더의 침식과 부식을 방지할 수 있다. That is, according to the configuration of the hybrid propeller cap 110 according to the seventh embodiment of the present invention as described above, the conventional diffusion type while reducing the hub vortex cavitation as in the diffusion type propeller cap used for the existing container ship It is possible to improve the propulsion efficiency than the propeller cap, and also, when applied to the existing tanker, the propulsion efficiency is similar to that of the shrinkable propeller cap and the hub vortex cavitation can be greatly reduced. By attaching the guide pin 115 formed in the form of a triangular plate between the contracted portion 113 of the propeller cap 110 and the second diffused portion 114, rotational flow and the generation of hub vortex cavitation are additionally performed. By being reduced, vibration and noise can be reduced while erosion and corrosion of the rudder can be prevented.
아울러, 종래의 PBCF는 제작시 핀의 정밀 가공이 필요하여 제작비의 상승요인이 되는 문제가 있었으나, 상기한 바와 같은 본 발명의 제 7 실시예에 따른 복합형 프로펠러 캡(110)의 형상은 그 구조가 단순하여 제작이 용이하므로, 기존 PBCF의 제작시 핀의 정밀 가공으로 인해 적어도 1억 원 이상이었던 제작비용을 기존 프로펠러 캡과 유사하게 대략 3000만원 이내로 대폭 절감할 수 있는 장점도 함께 가지는 것이다. In addition, the conventional PBCF has a problem in that the manufacturing cost is a rise factor due to the precise processing of the pin during manufacturing, the shape of the composite propeller cap 110 according to the seventh embodiment of the present invention as described above Since it is simple and easy to manufacture, the manufacturing cost, which was at least 100 million won due to the precise processing of the pins during the production of the existing PBCF, can be drastically reduced to about 30 million won, similar to the existing propeller cap.
계속해서, 도 13을 참조하면, 도 13은 본 발명의 제 8 실시예에 따른 복합형 프로펠러 캡(130)의 전체적인 구성을 개략적으로 나타내는 도면이다. Subsequently, referring to FIG. 13, FIG. 13 schematically illustrates the overall configuration of the hybrid propeller cap 130 according to the eighth embodiment of the present invention.
즉, 도 13에 나타낸 바와 같이, 본 발명의 제 8 실시예에 따른 복합형 프로펠러 캡(130)은, 프로펠러의 끝단에서부터 직경이 증가하도록 형성되는 제 1 확산형부(131)와, 상기 제 1 확산형부(131)에 수평으로 연장하도록 형성되는 직선형부(132)와, 상기 직선형부(132)에 연장하여 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부(133)와, 상기 수축형부(133)에 연장하여 프로펠러의 반대측으로 갈수록 다시 직경이 증가하도록 형성되는 제 2 확산형부(134)와, 상기 제 2 확산형부(134)의 끝단에 결합되는 가이드 핀(135)을 포함하여 구성되는 점은 도 11에 나타낸 제 7 실시예와 같다. That is, as shown in Figure 13, the hybrid propeller cap 130 according to the eighth embodiment of the present invention, the first diffused portion 131 is formed so as to increase the diameter from the end of the propeller, the first diffusion The straight portion 132 is formed to extend horizontally to the mold portion 131, the contraction portion 133 is formed to extend to the straight portion 132 to decrease in diameter toward the opposite side of the propeller, and the contraction portion 133 The second diffusing die 134 and the guide pin 135 is coupled to the end of the second diffusing die 134 is formed so as to increase in diameter again toward the opposite side of the propeller extending to It is the same as the seventh embodiment shown in FIG.
그러나 본 발명의 제 8 실시예에 따른 복합형 프로펠러 캡(130)은, 상기한 수축형부(133)의 형상이, 도 11에 나타낸 제 7 실시예와 같은 직선 형태가 아니라, 일정 곡률을 가지는 곡선 형태로 형성되는 것을 특징으로 하는 것이다. However, in the hybrid propeller cap 130 according to the eighth embodiment of the present invention, the shape of the contraction portion 133 is not a straight line shape as in the seventh embodiment shown in FIG. It is characterized in that formed in the form.
즉, 본 발명의 제 8 실시예에 따른 복합형 프로펠러 캡(130)은, 상기한 수축형부(133)의 형상이, 도 13a에 나타낸 바와 같이, 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, 또는, 상기한 수축형부(133)의 형상이, 도 13b에 나타낸 바와 같이, 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 하는 것이다. That is, the composite propeller cap 130 according to the eighth embodiment of the present invention is formed such that the shape of the contraction portion 133 is convex outward in a curved shape having a predetermined curvature, as shown in FIG. 13A. Or the shape of the above-mentioned contraction portion 133 is formed so as to be convex inward in a curved form having a predetermined curvature, as shown in FIG. 13B.
여기서, 상기한 수축형부(133)의 곡률은 추진기나 선박의 종류 또는 용도에 따라 적절히 설정 가능하며, 그 밖의 다른 부분은 상기한 제 7 실시예와 동일하므로, 그 상세한 설명은 생략한다. Here, the curvature of the contraction portion 133 can be appropriately set according to the type or use of the propeller or the ship, and other parts are the same as in the seventh embodiment described above, and thus the detailed description thereof will be omitted.
계속해서, 도 14 및 도 15를 참조하면, 도 14는 본 발명의 제 9 실시예에 따른 복합형 프로펠러 캡 전체적인 구성을 개략적으로 나타내는 도면이고, 도 15는 본 발명의 제 10 실시예에 따른 복합형 프로펠러 캡 전체적인 구성을 개략적으로 나타내는 도면이다. 14 and 15, FIG. 14 schematically shows the overall configuration of a composite propeller cap according to a ninth embodiment of the present invention, and FIG. 15 is a composite according to a tenth embodiment of the present invention. It is a figure which shows roughly the whole structure of a type | mold propeller cap.
더 상세하게는, 상기한 본 발명의 제 5 내지 제 8 실시예에서는, 각각의 가이드핀이 삼각형 형태로 형성되어 수축형부와 확산형부 사이의 오목한 공간에 부착되고, 확산형부의 끝단에서 돌출하지 않도록 확산형부의 직경에 맞는 크기로 형성되는 경우를 예로 하여 본 발명을 설명하였으나, 본 발명은 이러한 구성으로만 한정되는 것은 아니며, 즉, 본 발명은, 도 14에 나타낸 바와 같이, 가이드 핀(143)이 삼각형 형태가 아닌 오각형 형상의 얇은 판 형태로 형성되어 프로펠러 캡(140)의 수축형부(141)와 확산형부(142)의 사이에 단순 용접에 의해 부착됨으로써, 확산형부(142)의 끝단에서 가이드핀(143)이 연장하도록 구성될 수도 있다. More specifically, in the fifth to eighth embodiments of the present invention, each guide pin is formed in a triangular shape to be attached to a concave space between the contracted portion and the diffused portion, so as not to protrude from the end of the diffused portion. Although the present invention has been described with an example in which the diffusing die has a size corresponding to the diameter, the present invention is not limited to this configuration, that is, the present invention, as shown in FIG. 14, the guide pin 143 It is formed in the form of a thin plate of a pentagonal shape rather than a triangular shape, and is attached by simple welding between the contracting portion 141 and the diffusion portion 142 of the propeller cap 140, thereby guiding at the end of the diffusion portion 142. Pin 143 may be configured to extend.
이때, 가이드핀(143)의 크기는, 바람직하게는, 확산형부(142)의 끝단에서 연장하는 부분의 길이(L)가 확산형부의 직경(D)의 2배 이내가 되도록(즉, L ≤ 2D) 구성될 수 있다. At this time, the size of the guide pin 143, preferably, so that the length (L) of the portion extending from the end of the diffusion die 142 is less than twice the diameter (D) of the diffusion die (that is, L ≤ 2D).
또는, 본 발명은, 도 15에 나타낸 바와 같이, 가이드 핀(153)이 사다리꼴 형상의 얇은 판 형태로 형성되어 프로펠러 캡(150)의 수축형부(151)에 단순 용접에 의해 부착되도록 구성될 수도 있다. Alternatively, the present invention, as shown in Figure 15, may be configured such that the guide pin 153 is formed in the shape of a trapezoidal thin plate to be attached to the contracted portion 151 of the propeller cap 150 by simple welding. .
이때, 가이드핀(153)의 크기는, 바람직하게는, 수축형부(151)의 측면에서 연장하는 부분의 길이 중 짧은 곳(L2)이 확산형(152)부의 직경(D)의 2배 이내가 되도록(즉, L2 ≤ 2D) 구성될 수 있으며, 다른 부분(L1, W)에 대하여는 특별한 제한은 없다. At this time, the size of the guide pin 153, preferably, the shorter portion (L2) of the length of the portion extending from the side of the shrinkage portion 151 is less than twice the diameter (D) of the diffusion type 152 portion. (Ie, L2 ≦ 2D), and there are no particular restrictions on the other portions L1, W.
또한, 상기한 가이드 핀(143, 153)의 구성 이외의 부분은 상기한 제 5 내지 제 8 실시예와 동일하게 하여 구성 가능하므로, 그 상세한 설명은 생략한다. In addition, since parts other than the structure of said guide pins 143 and 153 can be comprised similarly to 5th-8th embodiment mentioned above, the detailed description is abbreviate | omitted.
여기서, 도 14 및 도 15에 나타낸 구성예는 도 2에 나타낸 제 1 실시예의 프로펠러 캡에 상기한 바와 같은 가이드 핀(143, 153)의 구성을 적용한 예를 나타내고 있으나, 본 발명은 이러한 구성으로만 한정되는 것은 아니며, 즉, 도 14 및 도 15를 참조하여 상기한 가이드 핀(143, 153)의 구성은, 도 2에 나타낸 제 1 실시예뿐만 아니라, 나머지 제 2 내지 제 4 실시예에 대하여도 동일하게 적용될 수 있는 것임에 유념해야 한다. 14 and 15 show an example in which the configuration of the guide pins 143 and 153 as described above is applied to the propeller cap of the first embodiment shown in FIG. 2, but the present invention is only in this configuration. The configuration of the guide pins 143 and 153 described above with reference to FIGS. 14 and 15 is not limited to the first and second embodiments shown in FIG. 2 as well as the remaining second to fourth embodiments. It should be noted that the same applies.
계속해서, 도 16을 참조하면, 도 16은 종래의 프로펠러 캡과 도 14에 나타낸 본 발명의 제 9 실시예에 따른 프로펠러 캡(140)을 이용한 추진기의 추력, 토크 및 효율을 각각 비교하여 나타낸 도면이다. 16, FIG. 16 is a view showing comparison of thrust, torque, and efficiency of the propeller cap using the propeller cap 140 according to the ninth embodiment of the present invention shown in FIG. to be.
도 16에 나타낸 내용으로부터, 본 발명의 제 9 실시예에 따른 프로펠러 캡(140)을 이용한 추진기의 효율이 종래의 수축형(contraction type) 프로펠러 캡보다 우수한 동시에 허브 볼텍스에 의한 부작용도 크게 줄일 수 있으며, 확산형(diffusion type) 프로펠러 캡에 비하여도 추진기의 효율이 크게 향상된 것을 확인할 수 있으며, 아울러, 상기한 제 1 실시예, 제 5 실시예 및 제 7 실시예의 경우와 비교하여도 추진기의 효율이 더욱 향상된 것을 확인할 수 있다. From the information shown in Figure 16, the efficiency of the propeller using the propeller cap 140 according to the ninth embodiment of the present invention is superior to the conventional contraction type (contraction type) propeller cap and at the same time can greatly reduce the side effects caused by the hub vortex In addition, it can be seen that the efficiency of the propeller is greatly improved compared to the diffusion type propeller cap, and the efficiency of the propeller is also improved compared to the case of the first, fifth and seventh embodiments. You can see further improvements.
따라서 상기한 바와 같이 하여, 본 발명에 따른 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡을 구현할 수 있다. Therefore, as described above, it is possible to implement a composite propeller cap for reducing the rotational flow and hub vortex and the propulsion efficiency according to the present invention.
또한, 상기한 바와 같이 하여 본 발명에 따른 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡을 구현하는 것에 의해, 본 발명에 따르면, 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡 구조를 통하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감할 수 있도록 구성되어, 기존의 PBCF에 비해 매우 간단한 구성으로 훨씬 저렴하고 용이하게 제작 가능하도록 구성되는 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡이 제공됨으로써, 프로펠러 캡에 작은 핀(fin)을 복수 개 부착하여 허브 볼텍스 캐비테이션을 저감하도록 구성됨으로 인해 핀을 설계하고 제조하기 위해 정밀가공이 요구되어 제작이 난해하고 제작비용도 높은 문제가 있었던 종래의 PBCF(Propeller Boss Cap Fin)의 문제점을 해결할 수 있다. In addition, by implementing a composite propeller cap for reducing the rotational flow and hub vortex reduction and propulsion efficiency according to the present invention as described above, in accordance with the present invention, the existing contraction type (contraction type) propeller cap end It is designed to reduce hub vortex cavitation occurring at the rear of the propeller through the composite propeller cap structure combined with the diffusion type propeller cap, which is much cheaper and easier to manufacture than the conventional PBCF. The hybrid propeller cap is provided to reduce the rotational flow and hub vortex and improve propulsion efficiency.It is designed to reduce hub vortex cavitation by attaching a plurality of small fins to the propeller cap. Precise machining is required to manufacture, making manufacturing difficult and cost It can solve the problems of the conventional PBCF (Propeller Boss Cap Fin) had a high problem.
또한, 본 발명에 따르면, 상기한 바와 같이 기존의 수축형(contraction type) 프로펠러 캡 끝단에 확산형(diffusion type) 프로펠러 캡을 결합한 복합 형태의 프로펠러 캡 구조를 통하여 프로펠러의 후방에서 발생하는 허브 볼텍스 캐비테이션을 저감하는 것에 더하여, 이러한 프로펠러 캡의 수축형 부분 또는 수축형 부분과 확산형 부분 사이에 판(plate) 형태의 가이드 핀(guide fin)을 부착하는 것에 의해 허브 볼텍스 캐비테이션의 발생을 추가적으로 감소할 수 있도록 구성되는 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡이 제공됨으로써, 프로펠러의 후방에서 발생하는 회전유동과 허브 볼텍스 캐비테이션을 저감하고, 기존의 PBCF에 비해 매우 간단한 구성으로 훨씬 저렴하고 용이하게 제작이 가능한 동시에, 선박의 소음과 진동을 감소하고 러더의 침식과 부식을 방지할 수 있는데 더하여, 추진 효율을 향상시켜 연료를 절감할 수 있다. In addition, according to the present invention, the hub vortex cavitation generated from the rear of the propeller through a composite propeller cap structure in which the diffusion type propeller cap is coupled to the existing contraction type propeller cap end as described above. In addition to reducing this, the occurrence of hub vortex cavitation can be further reduced by attaching a guide fin in the form of a plate between the retractable portion or the retractable portion and the diffused portion of the propeller cap. Combination of propeller caps to reduce rotational flow and hub vortex and improve propulsion efficiency is achieved by reducing the rotational flow and hub vortex cavitation occurring at the rear of the propeller, and much cheaper than the conventional PBCF. Can be manufactured easily and easily In addition to cattle, and may be prevented from erosion and corrosion of the rudder, it is possible to improve the propulsion efficiency by reducing the fuel.
이상, 상기한 바와 같은 본 발명의 실시예를 통하여 본 발명에 따른 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡의 상세한 내용에 대하여 설명하였으나, 본 발명은 상기한 실시예에 기재된 내용으로만 한정되는 것은 아니며, 따라서 본 발명은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 설계상의 필요 및 기타 다양한 요인에 따라 여러 가지 수정, 변경, 결합 및 대체 등이 가능한 것임은 당연한 일이라 하겠다. As described above, the detailed description of the hybrid propeller cap for reducing the rotational flow and hub vortex and improving propulsion efficiency according to the present invention as described above, but the present invention has been described in the above embodiments. The present invention is not limited only to the contents, and thus, the present invention is capable of various modifications, changes, combinations, and substitutions according to design needs and various other factors by those skilled in the art. Is a matter of course.
[부호의 설명] [Description of the code]
20. 프로펠러 캡 21. 수축형부 20. Propeller cap 21. Shrinkable part
22. 확산형부 30. 프로펠러 캡 22. Diffusion type 30. Propeller cap
31. 수축형부 32. 확산형부 31. Shrinkable part 32. Diffusion type part
50. 프로펠러 캡 51. 제 1 확산형부 50. Propeller cap 51. First diffuser
52. 직선형부 53. 수축형부 52. Straight part 53. Shrinkable part
54. 제 2 확산형부 60. 프로펠러 캡 54. Second diffuser 60. Propeller cap
61. 제 1 확산형부 62. 직선형부 61. First diffusion type 62. Straight part
63. 수축형부 64. 제 2 확산형부 63. Shrinkage Type 64. Second Diffusion Type
80. 프로펠러 캡 81. 수축형부 80. Propeller cap 81. Shrinkable part
82. 확산형부 83. 가이드 핀 82. Diffusion type 83. Guide pin
100. 프로펠러 캡 101. 수축형부 100. Propeller cap 101. Shrinkable part
102. 확산형부 103. 가이드 핀 102. Diffusion type 103. Guide pin
110. 프로펠러 캡 111. 제 1 확산형부 110. Propeller cap 111. First diffuser
112. 직선형부 113. 수축형부 112. Straight section 113. Shrink section
114. 제 2 확산형부 115. 가이드 핀 114. Second Diffusion Type 115. Guide Pins
130. 프로펠러 캡 131. 제 1 확산형부 130. Propeller cap 131. First diffuser
132. 직선형부 133. 수축형부 132. Straight part 133. Shrinkable part
134. 제 2 확산형부 135. 가이드 핀 134. 2nd diffused part 135. Guide pin
140. 프로펠러 캡 141. 수축형부 140. Propeller cap 141. Shrinkable part
142. 확산형부 143. 가이드 핀 142. Diffusion type 143. Guide pin
150. 프로펠러 캡 151. 수축형부 150. Propeller cap 151. Shrinkable part
152. 확산형부 153. 가이드 핀 152. Diffusion type 153. Guide pin

Claims (21)

  1. 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 있어서, In the propeller cap to reduce the rotational flow and hub vortex and improve the propulsion efficiency,
    프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부; 및 Shrinkable portion is formed to decrease in diameter toward the opposite side of the propeller; And
    상기 수축형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 확산형부를 포함하여 구성됨으로써, By including a diffusion die extending to the contraction portion is formed to increase in diameter toward the opposite side of the propeller,
    상기 수축형부의 직경이 감소하는 형상에 의해 프로펠러 유동의 압력이 회복되어 추진효율이 향상되고, The pressure of the propeller flow is restored by the shape in which the diameter of the contracted portion decreases, and the propulsion efficiency is improved.
    상기 프로펠러 캡 끝단의 상기 확산형부의 직경이 증가하는 형상에 의해 회전 유동(vortex)이 약화됨으로써 허브 볼텍스 캐비테이션의 발생이 감소될 수 있도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. The propeller cap is a composite propeller cap, characterized in that configured to reduce the occurrence of hub vortex cavitation by the rotational flow (vortex) is weakened by the shape of the diameter of the diffusion die of the propeller cap end.
  2. 제 1항에 있어서, The method of claim 1,
    상기 복합형 프로펠러 캡은, The composite propeller cap,
    상기 수축형부의 경사각이 0 ~ 40° 사이로 설정되는 것을 특징으로 하는 복합형 프로펠러 캡. Composite propeller cap, characterized in that the inclination angle of the contraction portion is set between 0 ~ 40 °.
  3. 제 1항에 있어서, The method of claim 1,
    상기 복합형 프로펠러 캡은, The composite propeller cap,
    상기 수축형부의 측면이 직선 형태로 형성되거나, The side of the contraction portion is formed in a straight form,
    또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, Alternatively, the side of the contraction portion is formed to be convex outward in a curved shape having a predetermined predetermined curvature,
    또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 하는 복합형 프로펠러 캡. Or, the side of the shrinkage portion is a composite propeller cap characterized in that it is formed to be convex inward in a curved shape having a predetermined predetermined curvature.
  4. 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 있어서, In the propeller cap to reduce the rotational flow and hub vortex and improve the propulsion efficiency,
    프로펠러의 끝단에서부터 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 제 1 확산형부; A first diffusion part formed to increase in diameter from an end of the propeller toward the opposite side of the propeller;
    상기 제 1 확산형부에 수평으로 연장하도록 형성되는 직선형부; A straight portion formed to extend horizontally to the first diffusion portion;
    상기 직선형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부; 및 A contraction portion extending to the straight portion and formed to decrease in diameter toward the opposite side of the propeller; And
    상기 수축형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 제 2 확산형부를 포함하여 구성됨으로써, By including a second diffusion die extending to the contraction portion is formed to increase in diameter toward the opposite side of the propeller,
    상기 제 1 확산형부에 의해 상기 프로펠러 캡의 앞 부분이 볼록하게 돌출하도록 형성됨으로써 프로펠러 압력단(Pressure side)의 압력을 증가시켜 추진 효율이 향상되고, The first diffusion die is formed such that the front portion of the propeller cap protrudes convexly to increase the pressure of the propeller pressure side (propulsion side) to improve the propulsion efficiency,
    상기 수축형부에 의해 상기 프로펠러 캡을 지나는 프로펠러 유동의 압력이 회복되어 추진효율이 향상되며, By the contraction portion, the pressure of the propeller flow passing through the propeller cap is restored, thereby improving the propulsion efficiency,
    상기 제 2 확산형부에 의해 상기 프로펠러 유동의 회전 유동(vortex)의 강도를 약화시켜 허브 볼텍스 캐비테이션의 발생이 감소될 수 있도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. The propeller cap is configured to reduce the intensity of the vortex of the propeller flow by the second diffusion die to reduce the occurrence of hub vortex cavitation.
  5. 제 4항에 있어서, The method of claim 4, wherein
    상기 복합형 프로펠러 캡은, The composite propeller cap,
    상기 제 1 확산형부 및 상기 제 2 확산형부의 경사각이 각각 0 ~ 40°사이로 설정되는 것을 특징으로 하는 복합형 프로펠러 캡. Composite propeller cap, characterized in that the inclination angle of the first diffusion portion and the second diffusion portion is set between 0 ~ 40 °.
  6. 제 4항에 있어서, The method of claim 4, wherein
    상기 복합형 프로펠러 캡은, The composite propeller cap,
    상기 수축형부의 측면이 직선 형태로 형성되거나, The side of the contraction portion is formed in a straight form,
    또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, Alternatively, the side of the contraction portion is formed to be convex outward in a curved shape having a predetermined predetermined curvature,
    또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 하는 복합형 프로펠러 캡. Or, the side of the shrinkage portion is a composite propeller cap characterized in that it is formed to be convex inward in a curved shape having a predetermined predetermined curvature.
  7. 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 있어서, In the propeller cap to reduce the rotational flow and hub vortex and improve the propulsion efficiency,
    프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부; Shrinkable portion is formed to decrease in diameter toward the opposite side of the propeller;
    상기 수축형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 확산형부; 및 A diffusion mold extending to the contracting portion and configured to increase in diameter toward the opposite side of the propeller; And
    미리 정해진 일정한 두께로 형성된 직사각형이나 유선형 형상의 단면을 가지는 얇은 판(plate) 형태로 형성되어 상기 수축형부 또는 상기 수축형부와 상기 확산형부의 사이에 미리 정해진 일정 간격으로 설치되는 복수의 가이드 핀(guide fin)을 포함하여 구성됨으로써, A plurality of guide pins formed in a thin plate shape having a rectangular or streamlined cross section formed at a predetermined constant thickness and installed at predetermined predetermined intervals between the contracting portion or the contracting portion and the diffusion portion; fin), so that
    상기 수축형부의 직경이 감소하는 형상에 의해 프로펠러 유동의 압력이 회복되어 추진효율이 향상되고, The pressure of the propeller flow is restored by the shape in which the diameter of the contracted portion decreases, so that the propulsion efficiency is improved.
    상기 프로펠러 캡 끝단의 상기 확산형부의 직경이 증가하는 형상에 의해 회전 유동(vortex)이 약화됨으로써 허브 볼텍스 캐비테이션의 발생이 감소될 수 있는 데 더하여, In addition, the occurrence of hub vortex cavitation can be reduced by weakening the rotational vortex due to the shape of the diameter of the diffusion portion of the propeller cap end being increased.
    상기 가이드 핀에 의해 추진기 회전으로 인한 회전 유동이 회전축 방향의 직선 유동으로 전환됨으로써 상기 허브 볼텍스 캐비테이션의 발생이 추가로 감소될 수 있도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. The propeller cap is configured such that the rotational flow due to the propeller rotation by the guide pin is converted into a linear flow in the direction of the rotation axis to further reduce the occurrence of the hub vortex cavitation.
  8. 제 7항에 있어서, The method of claim 7, wherein
    상기 복합형 프로펠러 캡은, The composite propeller cap,
    상기 수축형부의 경사각이 0 ~ 40° 사이로 설정되는 것을 특징으로 하는 복합형 프로펠러 캡. Composite propeller cap, characterized in that the inclination angle of the contraction portion is set between 0 ~ 40 °.
  9. 제 8항에 있어서, The method of claim 8,
    상기 복합형 프로펠러 캡은, The composite propeller cap,
    상기 수축형부의 측면이 직선 형태로 형성되거나, The side of the contraction portion is formed in a straight form,
    또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, Alternatively, the side of the contraction portion is formed to be convex outward in a curved shape having a predetermined predetermined curvature,
    또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 하는 복합형 프로펠러 캡. Or, the side of the shrinkage portion is a composite propeller cap characterized in that it is formed to be convex inward in a curved shape having a predetermined predetermined curvature.
  10. 제 9항에 있어서, The method of claim 9,
    상기 가이드 핀은, The guide pin,
    삼각형의 얇은 판 형태로 형성되어 단순 용접으로 상기 프로펠러 캡의 상기 수축형부와 상기 확산형부의 사이에 부착되며, It is formed in the form of a triangular thin plate and is attached between the contracted portion and the diffused portion of the propeller cap by simple welding,
    상기 가이드 핀 자체에 의한 저항 증가를 피하기 위해, 상기 확장형부의 직경에 맞추어 상기 가이드 핀의 크기가 결정되도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. Composite propeller cap, characterized in that configured to determine the size of the guide pin in accordance with the diameter of the extended portion in order to avoid increased resistance by the guide pin itself.
  11. 제 9항에 있어서, The method of claim 9,
    상기 가이드 핀은, The guide pin,
    오각형의 얇은 판 형태로 형성되어 상기 프로펠러 캡의 상기 수축형부와 상기 확산형부의 사이에 단순 용접에 의해 부착되며, It is formed in the form of a pentagonal thin plate and is attached by simple welding between the contracted portion and the diffused portion of the propeller cap,
    상기 확산형부의 끝단에서 연장하는 부분의 길이가 상기 확산형부의 직경의 2배 이내가 되도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. And a length of a portion extending from an end of the diffusion die is less than twice the diameter of the diffusion die.
  12. 제 9항에 있어서, The method of claim 9,
    상기 가이드 핀은, The guide pin,
    사다리꼴 형태의 얇은 판 형태로 형성되어 상기 프로펠러 캡의 상기 수축형부의 측면에 단순 용접에 의해 부착되도록 구성되며, It is formed in the form of a thin plate of a trapezoidal shape is configured to be attached to the side of the shrinkage portion of the propeller cap by simple welding,
    상기 수축형부의 측면에서 연장하는 부분의 길이 중 짧은 부분의 길이가 상기 확산형부의 직경의 2배 이내가 되도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. The composite propeller cap, characterized in that the length of the short portion of the length of the portion extending from the side of the shrinkage portion is configured to be within twice the diameter of the diffusion portion.
  13. 제 9항에 있어서, The method of claim 9,
    상기 가이드 핀은, The guide pin,
    상기 수축형부 또는 상기 프로펠러 캡의 상기 수축형부와 상기 확산형부의 사이에 2 ~ 8개 사이의 개수로 설치되고, It is installed in the number between 2 to 8 between the shrinkage portion or the diffusion portion of the propeller cap and the propeller cap,
    수직 위 방향에서 보았을 때 0도를 기준으로 하여 +10 ~ -10도, 또는, +20 ~ -20도의 공차를 가지는 부착 각도로 설치되도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. Composite propeller cap, characterized in that it is configured to be installed at an attachment angle having a tolerance of +10 ~ -10 degrees, or +20 ~ -20 degrees based on 0 degrees when viewed from the vertical upward direction.
  14. 회전유동과 허브 볼텍스 저감 및 추진효율 향상을 위한 복합형 프로펠러 캡에 있어서, In the propeller cap to reduce the rotational flow and hub vortex and improve the propulsion efficiency,
    프로펠러의 끝단에서부터 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 제 1 확산형부; A first diffusion part formed to increase in diameter from an end of the propeller toward the opposite side of the propeller;
    상기 제 1 확산형부에 수평으로 연장하도록 형성되는 직선형부; A straight portion formed to extend horizontally to the first diffusion portion;
    상기 직선형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 감소하도록 형성되는 수축형부; A contraction portion extending to the straight portion and formed to decrease in diameter toward the opposite side of the propeller;
    상기 수축형부에 연장하여 상기 프로펠러의 반대측으로 갈수록 직경이 증가하도록 형성되는 제 2 확산형부; 및 A second diffusion mold portion extending to the contraction portion and formed to increase in diameter toward the opposite side of the propeller; And
    미리 정해진 일정한 두께로 형성된 직사각형이나 유선형 형상의 단면을 가지는 얇은 판(plate) 형태로 형성되어 상기 수축형부 또는 상기 수축형부와 상기 제 2 확산형부의 사이에 미리 정해진 일정 간격으로 설치되는 복수의 가이드 핀(guide fin)을 포함하여 구성됨으로써, A plurality of guide pins are formed in the form of a thin plate having a rectangular or streamlined cross section formed at a predetermined constant thickness and installed at predetermined predetermined intervals between the contracting portion or the contracting portion and the second diffusion portion. by including a guide fin,
    상기 제 1 확산형부에 의해 상기 프로펠러 캡의 앞 부분이 볼록하게 돌출하도록 형성됨으로써 프로펠러 압력단(Pressure side)의 압력을 증가시켜 추진 효율이 향상되고, The first diffusion die is formed such that the front portion of the propeller cap protrudes convexly to increase the pressure of the propeller pressure side (propulsion side) to improve the propulsion efficiency,
    상기 수축형부에 의해 상기 프로펠러 캡을 지나는 프로펠러 유동의 압력이 회복되어 추진효율이 향상되며, By the contraction portion, the pressure of the propeller flow passing through the propeller cap is restored, thereby improving the propulsion efficiency,
    상기 제 2 확산형부에 의해 상기 프로펠러 유동의 회전 유동(vortex)의 강도를 약화시켜 허브 볼텍스 캐비테이션의 발생이 감소될 수 있는 데 더하여, In addition, the occurrence of hub vortex cavitation can be reduced by weakening the strength of the vortex of the propeller flow by the second diffusion die,
    상기 가이드 핀에 의해 추진기 회전으로 인한 회전 유동이 회전축 방향의 직선 유동으로 전환됨으로써 상기 허브 볼텍스 캐비테이션의 발생이 추가로 감소될 수 있도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. The propeller cap is configured such that the rotational flow due to the propeller rotation by the guide pin is converted into a linear flow in the direction of the rotation axis to further reduce the occurrence of the hub vortex cavitation.
  15. 제 14항에 있어서, The method of claim 14,
    상기 복합형 프로펠러 캡은, The composite propeller cap,
    상기 제 1 확산형부 및 상기 수축형부의 경사각이 각각 0 ~ 40° 사이로 설정되는 것을 특징으로 하는 복합형 프로펠러 캡. Composite propeller cap, characterized in that the inclination angle of the first diffusion portion and the contraction portion is set between 0 ~ 40 °.
  16. 제 15항에 있어서, The method of claim 15,
    상기 복합형 프로펠러 캡은, The composite propeller cap,
    상기 수축형부의 측면이 직선 형태로 형성되거나, The side of the contraction portion is formed in a straight form,
    또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 바깥쪽으로 볼록하도록 형성되거나, Alternatively, the side of the contraction portion is formed to be convex outward in a curved shape having a predetermined predetermined curvature,
    또는, 상기 수축형부의 측면이 미리 정해진 일정 곡률을 가지는 곡선 형태로 안쪽으로 볼록하도록 형성되는 것을 특징으로 하는 복합형 프로펠러 캡. Or, the side of the shrinkage portion is a composite propeller cap characterized in that it is formed to be convex inward in a curved shape having a predetermined predetermined curvature.
  17. 제 16항에 있어서, The method of claim 16,
    상기 가이드 핀은, The guide pin,
    삼각형의 얇은 판 형태로 형성되어 단순 용접으로 상기 프로펠러 캡의 상기 수축형부와 상기 제 2 확산형부의 사이에 부착되며, It is formed in the form of a triangular thin plate and is attached between the contracted portion of the propeller cap and the second diffused portion by simple welding,
    상기 가이드 핀 자체에 의한 저항 증가를 피하기 위해, 상기 확장형부의 직경에 맞추어 상기 가이드 핀의 크기가 결정되도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. Composite propeller cap, characterized in that configured to determine the size of the guide pin in accordance with the diameter of the extended portion in order to avoid increased resistance by the guide pin itself.
  18. 제 16항에 있어서, The method of claim 16,
    상기 가이드 핀은, The guide pin,
    오각형의 얇은 판 형태로 형성되어 상기 프로펠러 캡의 상기 수축형부와 상기 제 2 확산형부의 사이에 단순 용접에 의해 부착되며, It is formed in the form of a pentagonal thin plate and is attached by simple welding between the contracted portion of the propeller cap and the second diffused portion,
    상기 제 2 확산형부의 끝단에서 연장하는 부분의 길이가 상기 제 2 확산형부의 직경의 2배 이내가 되도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. And a length of a portion extending from the end of the second diffusion die to be within two times the diameter of the second diffusion die.
  19. 제 16항에 있어서, The method of claim 16,
    상기 가이드 핀은, The guide pin,
    사다리꼴 형태의 얇은 판 형태로 형성되어 상기 프로펠러 캡의 상기 수축형부의 측면에 단순 용접에 의해 부착되며, It is formed in the form of a trapezoidal thin plate and is attached to the side of the contracted portion of the propeller cap by simple welding,
    상기 수축형부의 측면에서 연장하는 부분의 길이 중 짧은 부분의 길이가 상기 제 2 확산형부의 직경의 2배 이내가 되도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. The composite propeller cap, characterized in that the length of the short portion of the length of the portion extending from the side of the shrinkage portion is configured to be less than twice the diameter of the second diffusion portion.
  20. 제 16항에 있어서, The method of claim 16,
    상기 가이드 핀은, The guide pin,
    상기 프로펠러 캡의 상기 수축형부 또는 상기 수축형부와 상기 제 2 확산형부의 사이에 2 ~ 8개 사이의 개수로 설치되고, Installed between the shrinkage portion of the propeller cap or between the shrinkage portion and the second diffusion portion between 2 and 8,
    수직 위 방향에서 보았을 때 0도를 기준으로 하여 +10 ~ -10도, 또는, +20 ~ -20도의 공차를 가지는 부착 각도로 설치되도록 구성되는 것을 특징으로 하는 복합형 프로펠러 캡. Composite propeller cap, characterized in that it is configured to be installed at an attachment angle having a tolerance of +10 ~ -10 degrees, or +20 ~ -20 degrees based on 0 degrees when viewed from the vertical upward direction.
  21. 청구항 1항 내지 20항 중 어느 한 항에 기재된 복합형 프로펠러 캡을 이용하여 구성됨으로써, 기존의 추진기에 비해 허브 볼텍스 캐비테이션 및 프로펠러 캡 형상에 의한 에너지 손실이 방지되어 추진효율이 향상되며, 진동 및 소음이 감소되고, 상기 허브 볼텍스 캐비테이션에 의한 러더의 침식과 부식이 방지될 수 있는 동시에, 기존의 PBCF에 비하여 제작비용을 절감할 수 있도록 구성되는 것을 특징으로 하는 선박용 추진기. By using the composite propeller cap according to any one of claims 1 to 20, the energy loss due to the hub vortex cavitation and the propeller cap shape is prevented compared to the conventional propeller to improve the propulsion efficiency, vibration and noise The ship propeller is characterized in that it is reduced and can be prevented from erosion and corrosion of the rudder due to the hub vortex cavitation, and at the same time reduce the manufacturing cost compared to the conventional PBCF.
PCT/KR2015/005184 2014-05-28 2015-05-22 Combined propeller cap for reducing rotating flow and hub vortex and enhancing propulsion efficiency WO2015182931A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580000739.5A CN105377692B (en) 2014-05-28 2015-05-22 It is vortexed for reducing rotating flow and propeller hub and improves the composite propeller hub cap of propulsive efficiency
SG11201609082YA SG11201609082YA (en) 2014-05-28 2015-05-22 Combined propeller cap for reducing rotating flow and hub vortex and enhancing propulsion efficiency
EP15799494.8A EP3150482B1 (en) 2014-05-28 2015-05-22 Combined propeller cap for reducing rotating flow and hub vortex and enhancing propulsion efficiency

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020140064150A KR101439134B1 (en) 2014-05-28 2014-05-28 Propeller cap for minimizing hub vortex cavitation and improving propulsion efficiency
KR10-2014-0064150 2014-05-28
KR10-2014-0121285 2014-09-12
KR1020140121285A KR101464570B1 (en) 2014-09-12 2014-09-12 Propeller cap for minimizing hub vortex cavitation
KR10-2015-0030443 2015-03-04
KR1020150030443A KR20160107551A (en) 2015-03-04 2015-03-04 Multi-shape propeller cap with guide fins for minimizing rotational flow and hub vortex and improving propulsion efficiency

Publications (1)

Publication Number Publication Date
WO2015182931A1 true WO2015182931A1 (en) 2015-12-03

Family

ID=54699208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005184 WO2015182931A1 (en) 2014-05-28 2015-05-22 Combined propeller cap for reducing rotating flow and hub vortex and enhancing propulsion efficiency

Country Status (4)

Country Link
EP (1) EP3150482B1 (en)
CN (1) CN105377692B (en)
SG (2) SG10201810020RA (en)
WO (1) WO2015182931A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6812057B2 (en) * 2017-06-21 2021-01-13 ナカシマプロペラ株式会社 Propulsion device for ships and ships equipped with it
CN108058785A (en) * 2017-12-14 2018-05-22 九江精密测试技术研究所 A kind of low noise propeller of ship propeller rudder system and its design method of attached body
CN110219130B (en) * 2018-03-02 2023-05-12 青岛海尔洗衣机有限公司 Pulsator and laundry treating apparatus including the same
CN109625222B (en) * 2018-12-27 2020-10-13 自然资源部第一海洋研究所 Scientific investigation ship with pod type electric propulsion system
CN113320671A (en) * 2021-06-30 2021-08-31 中国船舶科学研究中心 Energy-saving propeller hub cap with notch

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162197U (en) * 1986-04-07 1987-10-15
JPS63154494A (en) * 1986-07-16 1988-06-27 Osaka Shosen Mitsui Senpaku Kk Propeller boss cap provided with fin
JPH032895U (en) * 1989-05-31 1991-01-11
KR20110138858A (en) * 2010-06-22 2011-12-28 주식회사 석진금속 Propeller hub cap with fin for ship decreasing hub voltex
JP2013116727A (en) * 2011-11-18 2013-06-13 Becker Marine Systems Gmbh & Co Kg Propeller arrangement, in particular for watercraft
KR20140038217A (en) * 2012-09-20 2014-03-28 대우조선해양 주식회사 Propeller system for vessel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0255136A1 (en) * 1986-07-31 1988-02-03 Mitsui O.S.K. Lines, Ltd. A screw propeller boss cap with fins
DE19622829A1 (en) * 1995-08-16 1997-02-20 Schottel Werft Hub cap for propellers
AU2006233263B2 (en) * 2006-10-02 2012-05-03 Aon Invent Llc Safety propeller
CN103857589B (en) * 2012-09-13 2016-10-26 现代重工业株式会社 There is the propeller hub cap of fin
KR101464570B1 (en) * 2014-09-12 2014-11-24 한국해양과학기술원 Propeller cap for minimizing hub vortex cavitation
KR101439134B1 (en) * 2014-05-28 2014-09-12 한국해양과학기술원 Propeller cap for minimizing hub vortex cavitation and improving propulsion efficiency

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162197U (en) * 1986-04-07 1987-10-15
JPS63154494A (en) * 1986-07-16 1988-06-27 Osaka Shosen Mitsui Senpaku Kk Propeller boss cap provided with fin
JPH032895U (en) * 1989-05-31 1991-01-11
KR20110138858A (en) * 2010-06-22 2011-12-28 주식회사 석진금속 Propeller hub cap with fin for ship decreasing hub voltex
JP2013116727A (en) * 2011-11-18 2013-06-13 Becker Marine Systems Gmbh & Co Kg Propeller arrangement, in particular for watercraft
KR20140038217A (en) * 2012-09-20 2014-03-28 대우조선해양 주식회사 Propeller system for vessel

Also Published As

Publication number Publication date
EP3150482A1 (en) 2017-04-05
EP3150482B1 (en) 2020-07-01
CN105377692A (en) 2016-03-02
SG11201609082YA (en) 2016-12-29
CN105377692B (en) 2018-02-13
SG10201810020RA (en) 2018-12-28
EP3150482A4 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
WO2015182931A1 (en) Combined propeller cap for reducing rotating flow and hub vortex and enhancing propulsion efficiency
WO2016099023A1 (en) Gear-coupling type steering apparatus and steering method using same
WO2018124494A2 (en) Bus bar assembly and frame assembly
CN1816683B (en) Turbine shroud segment
WO2017014508A1 (en) Vertical take-off and landing aircraft using hybrid electric propulsion system
WO2014157999A1 (en) Canister type thrustor and installation method thereof
WO2017188629A1 (en) Headrest folding device
WO2014123312A1 (en) Variable transmission having internal hub
WO2012173408A2 (en) Power relay assembly driving apparatus and driving method thereof
WO2017078330A1 (en) Flying object
WO2020184778A1 (en) Decorative panel having digital print material
BR112021011824A2 (en) Propulsion system for an aircraft
WO2015180095A1 (en) Drum-shaped retractable wind wheel and horizontal-axis wind-driven generator using wind wheel
US20170009704A1 (en) Thrust reverser staggered translating sleeve
WO2024111859A1 (en) Rotor hub and hybrid drive module equipped with same
WO2011102606A2 (en) Transmission for bicycle
WO2021125526A1 (en) Dual and multiple air gap rotary device
WO2020204296A1 (en) Dry torque converter for electric vehicle and method for controlling same
WO2017057981A1 (en) Top-loading-type washing machine
US10040560B2 (en) Trailing edge core compartment vent for an aircraft engine
WO2020067707A1 (en) Driving device for electric automobile
WO2023158054A1 (en) Core drill
US8439305B2 (en) Non-handed thrust reverser for installation on handed aircraft gas turbine propulsion engines
WO2023132571A1 (en) Deformable variable helical cylinder and propeller and nozzle using same
WO2022114686A1 (en) Wind propulsion system and ship comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799494

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015799494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799494

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE