WO2015182181A1 - Liquid crystal display device and data processing method for liquid crystal display device - Google Patents

Liquid crystal display device and data processing method for liquid crystal display device Download PDF

Info

Publication number
WO2015182181A1
WO2015182181A1 PCT/JP2015/055126 JP2015055126W WO2015182181A1 WO 2015182181 A1 WO2015182181 A1 WO 2015182181A1 JP 2015055126 W JP2015055126 W JP 2015055126W WO 2015182181 A1 WO2015182181 A1 WO 2015182181A1
Authority
WO
WIPO (PCT)
Prior art keywords
data value
liquid crystal
pixel
display device
crystal display
Prior art date
Application number
PCT/JP2015/055126
Other languages
French (fr)
Japanese (ja)
Inventor
張 小▲忙▼
正実 尾崎
浩和 奥野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015182181A1 publication Critical patent/WO2015182181A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a liquid crystal display device and a data processing method in the liquid crystal display device, and more particularly to a technique of image processing applied to an input signal of the liquid crystal display device.
  • an active matrix type liquid crystal display device including a TFT (thin film transistor) as a switching element.
  • This liquid crystal display device includes a liquid crystal panel composed of two insulating substrates facing each other. On one substrate (TFT array substrate) of the liquid crystal panel, a gate bus line (scanning signal line) and a source bus line (video signal line) are arranged so as to intersect each other, A TFT is provided in the vicinity of the intersection.
  • the TFT includes a gate electrode connected to the gate bus line, a source electrode connected to the source bus line, and a drain electrode.
  • the drain electrode of the TFT is connected to pixel electrodes arranged in a matrix on the TFT array substrate in order to form an image.
  • the other substrate (counter substrate) of the liquid crystal panel is provided with a common electrode for applying a voltage to the pixel electrode through the liquid crystal.
  • a common electrode for applying a voltage to the pixel electrode through the liquid crystal.
  • the liquid crystal has a property of deteriorating when a DC voltage is continuously applied.
  • burn-in occurs, and the display quality is greatly lowered.
  • flicker has been an issue. Therefore, in order to prevent burn-in and suppress flicker, various inversion driving methods are employed in the liquid crystal display device.
  • a frame reversal method is employed in which the polarity of the liquid crystal applied voltage is reversed every frame period.
  • the frame inversion method if the polarity of the liquid crystal applied voltage in a certain frame is positive in an arbitrary pixel portion, the polarity of the liquid crystal applied voltage in the next frame is negative.
  • an inversion driving method for suppressing flicker for example, a source line inversion method for inverting the polarity of the liquid crystal applied voltage for each column is employed. When the source line inversion method is adopted, as shown in FIG.
  • the liquid crystal application voltage in the pixel portion in the adjacent column is positive.
  • the polarity of is negative.
  • a method is used that combines a method of reversing the polarity of the liquid crystal applied voltage temporally as in the frame inversion method and a method of spatially reversing the polarity of the liquid crystal applied voltage as in the source line inversion method. ing. Therefore, if the polarity of the liquid crystal applied voltage in each pixel portion in a certain frame is as shown in FIG. 31, the polarity of the liquid crystal applied voltage in each pixel portion in the next frame is as shown in FIG. It will be a thing.
  • an inversion driving method As an inversion driving method, as shown in FIG. 33, a gate line inversion method for inverting the polarity of the liquid crystal applied voltage for each row, and as shown in FIG. 34, a positive polarity and a negative polarity in both the vertical and horizontal directions. In some cases, a dot inversion method or the like for alternately generating the dots is employed. Further, regarding the source line inversion method and the gate line inversion method, there is a method for inverting the polarity of the liquid crystal applied voltage for each of a plurality of lines. By adopting the inversion driving method as described above, the liquid crystal is prevented from being deteriorated and flicker is suppressed.
  • killer patterns such as image patterns that cause flicker and image patterns that cause an increase in power consumption.
  • a killer pattern that causes flicker is a major cause of deterioration in display quality.
  • a killer pattern that causes an increase in power consumption causes a battery to be quickly consumed in a portable terminal device (mobile device) driven by the battery.
  • the existence of such a killer pattern is caused by the arrangement of pixels (pixel arrangement) and the inversion driving method. This will be described below.
  • a liquid crystal display device capable of 256 gradation display will be described as an example.
  • one pixel is composed of a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel.
  • R red
  • G green
  • B blue
  • pixel portion a portion constituting each of the sub-pixels.
  • Such pixel portions are arranged side by side in the vertical direction (the direction in which the source bus lines extend) and in the horizontal direction (the direction in which the gate bus lines extend) in the display portion as shown in FIG.
  • a pixel matrix is formed. In the configuration shown in FIG.
  • FIG. 37 is a diagram illustrating a configuration of a main part of the liquid crystal display device.
  • the display unit 91 includes a plurality of source bus lines SL, a plurality of gate bus lines GL, and intersections of the plurality of source bus lines SL and the plurality of gate bus lines GL.
  • a plurality of pixel portions 92 provided corresponding to each of the first and second pixel portions 92 are included.
  • FIG. 37 shows only components for 5 rows ⁇ 6 columns.
  • the liquid crystal display device is provided with a source driver 93 that drives a plurality of source bus lines SL and a gate driver 94 that drives a plurality of gate bus lines GL.
  • FIG. 38 is a diagram showing a maximum power consumption image pattern in a liquid crystal display device adopting a vertical stripe RGB sub-pixel configuration and a source line inversion method.
  • FIG. 38 shows the gradation value of each pixel unit 92 in a certain frame. In FIG. 38, focusing on the vertical direction, 255 and 0 are alternately arranged. When attention is paid to the horizontal direction in FIG. 38, all the gradation values are the same.
  • a source driver 93 that can output 8-bit data is used.
  • the maximum value is 255 and the minimum value is 0 with respect to the data value (gradation value) output from the source driver 93. From the above, when attention is paid to an arbitrary column in FIG. 38, it is understood that the maximum value of the gradation value and the minimum value of the gradation value are alternately arranged. Since the gate driver 94 sequentially selects a plurality of gate bus lines GL one by one, if the image pattern is as shown in FIG. 38, each time the gate bus line GL to be selected is switched (one horizontal). For each scanning period), the video signal voltage applied to the source bus line SL varies greatly. That is, if the image pattern is as shown in FIG. 38, the amplitude of the video signal voltage is maximized in all the columns, so that the power consumption is maximized. Note that even if 0 and 255 are interchanged in all the pixel portions 92 in FIG. 38, the power consumption is similarly maximized.
  • FIG. 39 is a diagram showing another example of the maximum power consumption image pattern in the liquid crystal display device adopting the vertical stripe RGB sub-pixel configuration and the source line inversion method.
  • 255 and 0 are alternately arranged in both the vertical direction and the horizontal direction. Therefore, focusing on an arbitrary column, the maximum value of the gradation value and the minimum value of the gradation value are alternately arranged as in FIG. Therefore, even when the image pattern is as shown in FIG. 39, the amplitude of the video signal voltage is maximized in all the columns, so that the power consumption is maximized.
  • the power consumption is similarly maximized.
  • FIG. 40 is a diagram showing a flicker image pattern in a liquid crystal display device adopting a vertical stripe RGB sub-pixel configuration and a frame inversion method.
  • FIG. 40 when attention is paid to the horizontal direction, 128 and 0 are alternately arranged. Further, when attention is paid to the vertical direction in FIG. 40, all gradation values are the same.
  • the frame inversion method the polarity of the liquid crystal applied voltage is inverted every frame. Therefore, even if the gradation value is the same in a plurality of consecutive frames, the liquid crystal responds for each frame.
  • an object of the present invention is to realize a liquid crystal display device that does not cause a significant increase in power consumption or flicker even if the image pattern is a specific pattern called a killer pattern.
  • a plurality of scanning signal lines, a plurality of video signal lines intersecting with the plurality of scanning signal lines, and intersections of the plurality of scanning signal lines and the plurality of video signal lines are respectively provided.
  • a liquid crystal display device that includes a liquid crystal panel including a plurality of pixel portions arranged in a matrix so as to correspond, and displays an image based on an input signal on the liquid crystal panel, Using the conversion pattern comprising P (P is an integer of 2 or more) coefficients corresponding to a plurality of rows ⁇ one column of pixel portions, or one row ⁇ multiple columns of pixel portions, or multiple rows ⁇ multiple columns of pixel portions.
  • a data value correction unit that generates a display image signal to be given to the liquid crystal panel by correcting the data value of the input signal for the pixel unit;
  • a video signal line driving unit that drives the plurality of video signal lines based on the display image signal;
  • a scanning signal line driving unit that drives the plurality of scanning signal lines, The sum of the values of P coefficients included in the conversion pattern is 1,
  • the data value correction portion has a one-to-one correspondence between the pixel portion included in the group and the coefficient included in the conversion pattern.
  • the group is constituted by the pixel portion of interest and (P-1) pixel portions that are determined according to the conversion pattern and display the same color as the pixel portion of interest, and are included in the group
  • the sum of the products of the data value of the input signal for each pixel portion and the coefficient value corresponding to each pixel portion is used as the data value of the display image signal for the pixel portion of interest.
  • the data value correcting unit corrects the data value of the input signal for the plurality of pixel units using only one type of conversion pattern.
  • the conversion pattern includes two coefficients corresponding to a pixel portion of 2 rows ⁇ 1 column.
  • the conversion pattern includes two coefficients corresponding to a pixel portion of 1 row ⁇ 2 columns.
  • the conversion pattern is obtained by multiplying a first pattern composed of two coefficients corresponding to a pixel portion of 2 rows ⁇ 1 column and a second pattern composed of two coefficients corresponding to a pixel portion of 1 row ⁇ 2 columns. It consists of four coefficients obtained by this.
  • the data value correction unit obtains a data value of the display image signal for the target pixel unit by a weighted average.
  • a coefficient value corresponding to the target pixel portion is larger than values of other coefficients.
  • the data value correction unit corrects data values of the input signal for the plurality of pixel units by sequentially using a plurality of types of conversion patterns.
  • the data value correction unit corrects the data value of the input signal for the plurality of pixel units using a conversion pattern selected based on a switching control signal from a plurality of types of conversion patterns prepared in advance. It is characterized by that.
  • An eleventh aspect of the present invention is the first or tenth aspect of the present invention, When processing for correcting the data value of the input signal for the plurality of pixel units is defined as data value correction processing, whether or not the data value correction processing is performed by the data value correction unit is switched based on a switching control signal It is characterized by being able to.
  • a degamma correction processing section for performing degamma correction processing on the input signal A gamma correction processing unit that performs gamma correction processing on the display image signal;
  • the data value correction unit may generate the display image signal by correcting a data value of an input signal that has been subjected to the degamma correction processing by the degamma correction processing unit.
  • a thirteenth aspect of the present invention is the twelfth aspect of the present invention.
  • processing for correcting the data value of the input signal for the plurality of pixel portions is defined as data value correction processing, the degamma correction processing, the data value correction processing by the data value correction portion, and the gamma correction processing
  • the presence or absence of execution of a series of processes is switched based on a switching control signal.
  • a fourteenth aspect of the present invention is a data processing method in a liquid crystal display device that displays an image based on an input signal on a liquid crystal panel including a plurality of pixel portions, An input signal receiving step for receiving the input signal; Using the conversion pattern comprising P (P is an integer of 2 or more) coefficients corresponding to a plurality of rows ⁇ one column of pixel portions, or one row ⁇ multiple columns of pixel portions, or multiple rows ⁇ multiple columns of pixel portions.
  • the sum of the values of P coefficients included in the conversion pattern is 1,
  • the data value correction step has a one-to-one correspondence between the pixel portion included in the group and the coefficient included in the conversion pattern.
  • the group is configured by the pixel portion of interest and (P-1) pixel portions that are determined according to the conversion pattern and display the same color as the pixel portion of interest, and are included in the group
  • the sum of the products of the data value of the input signal for each pixel unit and the value of the coefficient corresponding to each pixel unit is used as the data value of the display image signal for the pixel unit of interest.
  • a data value correction unit that generates a display image signal by correcting a data value of an input signal using a conversion pattern composed of P coefficients. For this reason, compared with the case where the data value of the input signal is not corrected, for example, the amplitude of the video signal voltage can be reduced and the luminance difference between adjacent pixels can be significantly reduced. As a result, power consumption can be reduced and flicker can be suppressed. From the above, even if the image pattern is a specific pattern called a killer pattern, a liquid crystal display device that does not cause inconveniences such as an increase in power consumption and occurrence of flicker is realized.
  • a liquid crystal display device having a relatively simple configuration and causing no inconvenience due to a specific killer pattern is realized.
  • the power consumption is more than conventional without affecting the visual effect generated from the display image. It becomes possible to reduce.
  • the occurrence of flicker is suppressed without affecting the visual effect generated from the display image. Is possible.
  • the liquid crystal display device adopting the vertical stripe RGB sub-pixel configuration, the source line inversion method, and the frame inversion method, it does not affect the visual effect generated from the display image.
  • the power consumption can be reduced and the occurrence of flicker can be suppressed.
  • the data values of the display image signals of the pixels in the group are all the same. Therefore, compared with the case where the data value of the input signal is not corrected, it is possible to significantly reduce power consumption and effectively suppress flicker.
  • the seventh aspect of the present invention when the data value of the input signal is corrected, the image before correction can be emphasized. This effectively suppresses the occurrence of a phenomenon called “color blur” and a phenomenon called “edge blur”.
  • the eighth aspect of the present invention when the data value of the input signal is corrected, the correction with an emphasis on the image before correction is reliably performed. Thereby, like the seventh aspect of the present invention, the occurrence of a phenomenon called “color blur” and a phenomenon called “edge blur” are effectively suppressed.
  • a plurality of types of conversion patterns are sequentially used when correcting data values. Thereby, it becomes possible to adapt to various killer patterns.
  • a plurality of types of conversion patterns are prepared in advance, and the conversion pattern used when correcting the data value is selected based on the switching control signal. For this reason, for example, the data value can be corrected in accordance with the specifications of the liquid crystal display device or the user's request.
  • the degamma correction process is performed on the input signal before the process of correcting the data value of the input signal is performed. For this reason, even if the input signal is non-linear data, a corrected data value is obtained appropriately.
  • the display image signal generated by the data value correction unit is subjected to gamma correction processing. Thereby, even when the liquid crystal panel has non-linear characteristics, image display is performed in consideration of the characteristics of the liquid crystal panel.
  • the same effect as that of the first aspect of the present invention can be achieved in the data processing method in the liquid crystal display device.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a detailed configuration of a liquid crystal display device in the first embodiment.
  • it is an example of the conversion pattern aiming at prevention of the significant increase in power consumption.
  • it is a figure for demonstrating correction
  • it is a figure for demonstrating correction
  • FIG. 5 is a diagram illustrating data values of display image signals in each pixel unit when masking processing is performed using a flicker mask conversion pattern in the first embodiment. It is the figure which extracted 4 pixels worth of FIG.
  • the said 2nd Embodiment it is a figure which shows the data value of the image signal for a display in each pixel part when a masking process is performed using a flicker mask conversion pattern. It is the figure which extracted 4 pixels of FIG. It is a figure which shows an example of the comprehensive mask conversion pattern in the said 2nd Embodiment. In the said 2nd Embodiment, it is a figure which shows the data value of the image signal for a display in each pixel part when a masking process is performed using the comprehensive mask conversion pattern. It is a block diagram which shows the structure of the masking process part in the 3rd Embodiment of this invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • the liquid crystal display device includes a masking processing unit 100, a panel driving unit 200, and a liquid crystal panel 300.
  • the masking processing unit 100 performs a masking process to be described later on the input signal Din, and outputs a display image signal Dout obtained by the masking process.
  • the panel driving unit 200 gives a driving signal SD to the liquid crystal panel 300 based on the display image signal Dout output from the masking processing unit 100.
  • the liquid crystal panel 300 displays an image based on the drive signal SD.
  • the drive signal SD is composed of a scanning signal, which will be described later, and a driving video signal.
  • the inversion driving method a combination of the frame inversion method and the source line inversion method is adopted as the inversion driving method, and the vertical stripe RGB sub-pixel configuration (see FIG. 36) is adopted as the pixel configuration. It has been adopted.
  • the present invention can also be applied to a case where an inversion driving method different from that of the present embodiment is adopted or a case where a pixel configuration different from that of the present embodiment is adopted.
  • FIG. 2 is a diagram showing a detailed configuration of the liquid crystal display device.
  • the masking processing unit 100 is included in the timing controller 10.
  • the panel driving unit 200 includes a source driver 210 and a gate driver 220.
  • the display unit 310 in the liquid crystal panel 300 includes a plurality of source bus lines SL, a plurality of gate bus lines GL, and intersections of the plurality of source bus lines SL and the plurality of gate bus lines GL.
  • a plurality of corresponding pixel portions 312 are included.
  • the plurality of pixel portions 312 are arranged in a matrix to form a pixel array.
  • Each pixel unit 312 includes a TFT (thin film transistor) having a gate electrode connected to a gate bus line GL passing through a corresponding intersection and a source electrode connected to a source bus line SL passing through the intersection, and a drain of the TFT.
  • the timing controller 10 receives the input signal Din, and receives the display image signal Dout, the source control signal Sctl for controlling the operation of the source driver 210, and the gate control signal Gctl for controlling the operation of the gate driver 220. Output.
  • the source control signal Sctl includes a source start pulse signal, a source clock signal, and a latch strobe signal
  • the gate control signal Gctl includes a gate start pulse signal and a gate clock signal.
  • the source driver 210 receives the display image signal Dout and the source control signal Sctl (source start pulse signal, source clock signal, and latch strobe signal) sent from the timing controller 10 and supplies a video signal for driving to the source bus line SL. Apply. At this time, the source driver 210 sequentially holds the display image signal Dout indicating the voltage to be applied to each source bus line SL at the timing when the pulse of the source clock signal is generated. The held display image signal Dout is converted to an analog voltage at the timing when the pulse of the latch strobe signal is generated. The converted analog voltage is applied simultaneously to all the source bus lines SL as a driving video signal.
  • Sctl source start pulse signal, source clock signal, and latch strobe signal
  • the gate driver 220 Based on the gate control signal Gctl (gate start pulse signal and gate clock signal) sent from the timing controller 10, the gate driver 220 applies an active scanning signal to each gate bus line GL with a period of one vertical scanning period. repeat.
  • a scanning signal is applied to each gate bus line GL and a driving video signal is applied to each source bus line SL, whereby an image corresponding to the input signal Din is displayed on the display unit 310.
  • a data value correcting unit is realized by the masking processing unit 100
  • a video signal line driving unit is realized by the source driver 210
  • a scanning signal line driving unit is realized by the gate driver 220.
  • the input signal reception step is realized by the process in which the timing controller 10 receives the input signal Din
  • the data value correction step is realized by the masking process by the masking processing unit 100
  • the source driver 210 displays the display image.
  • a display image signal output step is realized by applying a driving video signal to the source bus line SL based on the signal Dout.
  • the masking process performed in the masking process part 100 is demonstrated.
  • processing for correcting the data value of the input signal Din to a value suitable for processing in the liquid crystal display device is performed. For example, even if the image pattern based on the input signal Din is the killer pattern described above, the data value of the input signal Din is corrected so as not to cause a significant increase in power consumption or the occurrence of flicker. At this time, the data value is corrected so that the appearance of the display image does not change before and after the correction.
  • a specific method of the masking process will be described.
  • the liquid crystal display device is prepared in advance with a conversion pattern defining a coefficient used when correcting the data value of the input signal Din.
  • a conversion pattern defining a coefficient used when correcting the data value of the input signal Din.
  • three examples of the conversion pattern will be described.
  • the masking process may be performed using a conversion pattern other than the three conversion patterns described below.
  • FIG. 3 is an example of a conversion pattern for the purpose of preventing a significant increase in power consumption.
  • this conversion pattern is referred to as a “power mask conversion pattern”.
  • the power mask conversion pattern is configured by two coefficients corresponding to the pixel portion 312 of 2 rows ⁇ 1 column. In the present embodiment, the values of the two coefficients are both “1 ⁇ 2”.
  • P is an integer of 2 or more
  • the value of each coefficient is determined so that the sum of the values of P coefficients is 1.
  • each pixel unit 312 in the display unit 310 is expressed in the form of PIX (x, y) as shown in FIG. 4, and how the data value of the input signal Din for each pixel unit 312 is corrected.
  • the corrected data value for the pixel portion PIX (1,1) in the first row and first column is the data value before correction for the pixel portion PIX (1,1) in the first row and first column and the second row. It is obtained based on the data value before correction for the pixel portion PIX (2, 1) in the first column.
  • the corrected data value for the pixel portion PIX (2,1) in the second row and first column is the data value before the correction for the pixel portion PIX (2,1) in the second row and first column, and the third row.
  • the corrected data value for the pixel portion PIX (1,2) in the first row and the second column is the data value before the correction for the pixel portion PIX (1,2) in the first row and the second column, and the second row. It is obtained based on the data value before correction for the pixel portion PIX (2, 2) in the second column.
  • the corrected data value for the pixel portion PIX (2,2) in the second row and second column is the data value before the correction for the pixel portion PIX (2,2) in the second row and second column and the third row. It is obtained based on the data value before correction for the pixel portion PIX (3, 2) in the second column.
  • the corrected data value for the pixel portion PIX (i, j) of the i-th row and j-th column (i and j are natural numbers) is the pixel portion PIX (i, j) of the i-th row and j-th column. ) For the pixel portion PIX (i + 1, j) in the (i + 1) -th row and j-th column.
  • the pixel part 312 which comprises a group, and the coefficient which comprises a conversion pattern are matched by 1 to 1.
  • the pixel portion PIX (i, j) in the i-th row and the j-th column is associated with the coefficient indicated by reference numeral 67 in FIG. 3, and the pixel portion PIX (i + 1, j in the (i + 1) th row and the j-th column. ) Is associated with the coefficient indicated by reference numeral 68 in FIG.
  • the data value of the input signal Din for the pixel portion PIX (i, j) in the i-th row and j-th column is D1
  • the input for the pixel portion PIX (i + 1, j) in the (i + 1) -th row and j-th column is D2
  • the coefficient indicated by reference numeral 67 in FIG. 3 is C1
  • the coefficient indicated by reference numeral 68 in FIG. 3 is C2
  • the corrected input signal data value (data value of the display image signal Dout) ) Is V, V is obtained by the following equation (1).
  • V D1 ⁇ C1 + D2 ⁇ C2 (1)
  • the data value of the pixel portion PIX (2, 2) in the second row and second column is 100, and the pixel portion PIX ( Assume that the data value of 3,2) is 20.
  • the coefficient indicated by reference numeral 67 in FIG. 3 corresponds to the pixel part PIX (2, 2) in the second row and second column
  • the coefficient indicated by reference numeral 68 in FIG. 3 is the pixel part PIX in the third row and second column. This corresponds to (3, 2).
  • the corrected input signal data value (data value of the display image signal Dout) for the pixel portion PIX (2, 2) in the second row and second column is 60 ( (See FIG. 7).
  • the data value of the display image signal Dout for all the pixel units 312 included in the display unit 310 is obtained by correcting the data value of the input signal Din using the power mask conversion pattern. It is done.
  • the data of the display image signal Dout in each pixel unit 312 is displayed.
  • the values are as shown in FIG.
  • the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG.
  • the data value of all the pixel units 312 is 128.
  • the amplitude of the video signal voltage is remarkably reduced as compared with the case where the data value of the input signal Din is not corrected, so that power consumption is greatly reduced.
  • the appearance of the display image does not change before and after the correction of the data value of the input signal Din. This will be described below.
  • FIG. 9 is a diagram in which four pixels of FIG. 38 are extracted.
  • FIG. 10 is a diagram in which four pixels of FIG. 39 are extracted.
  • FIG. 11 is a diagram in which four pixels of FIG. 8 are extracted.
  • the data values in the first row are all 255, and the data values in the second row are all 0.
  • all data values are 128.
  • the data value of each pixel unit 312 is completely different between FIG. 9 and FIG. Therefore, if the human eye can distinguish individual pixels, the display image based on the image pattern shown in FIG. 9 is completely different from the display image based on the image pattern shown in FIG. It is visually recognized as an image.
  • the size of the pixels is so small that the human eye cannot distinguish between the individual pixels.
  • the human eye recognizes an image in units of a plurality of pixels. For this reason, the display image based on the image pattern shown in FIG. 9 looks the same as the display image based on the image pattern shown in FIG. Similarly, the display image based on the image pattern shown in FIG. 10 looks to the human eye in the same manner as the display image based on the image pattern shown in FIG.
  • the power consumption is reduced as compared with the conventional case without affecting the visual effect generated from the display image.
  • the data value correction processing is performed in an extremely small unit (every two subpixels) as compared with general image processing. Therefore, the occurrence of a phenomenon called “color blur” in which colors appear blurred and a phenomenon called “edge blur” in which outlines appear blurred are suppressed.
  • FIG. 12 is an example of a conversion pattern for the purpose of preventing the occurrence of flicker.
  • this conversion pattern is referred to as a “flicker mask conversion pattern”.
  • the flicker mask conversion pattern is composed of two coefficients corresponding to the pixel portion 312 of 1 row ⁇ 2 columns. In the present embodiment, the values of the two coefficients are both “1 ⁇ 2”.
  • the sub-pixels are arranged in the order of “red (R) sub-pixel, green (G) sub-pixel, blue (B) sub-pixel”. Are repeatedly arranged (see FIG. 36).
  • R red
  • G green
  • B blue
  • these coefficients are associated with pixel portions (sub-pixels) 312 that display the same color.
  • the pixel part PIX (i, j) of the i-th row and the j-th column form a group.
  • the pixel portion PIX (4,1) in the fourth row and first column form a group.
  • a group is formed by a thick frame pixel portion indicated by reference numeral 62 and a pixel portion PIX (4, 4) in the fourth row and fourth column (thick frame pixel portion indicated by reference numeral 63 in FIG. 5). Further, the two pixel units 312 included in the group are associated with the two coefficients constituting the flicker mask conversion pattern. Then, using the flicker mask conversion pattern, the data value of the display image signal Dout is obtained in the same manner as in the first example described above.
  • the data of the display image signal Dout in each pixel unit 312 is displayed.
  • the values are as shown in FIG. That is, the data value of all the pixel units 312 is 64. Accordingly, since the liquid crystal is driven in the same manner in all the pixel portions 312, the occurrence of flicker is suppressed. Further, the appearance of the display image does not change before and after the correction of the data value of the input signal Din. This will be described below.
  • FIG. 14 is a diagram in which four pixels of FIG. 40 are extracted.
  • FIG. 15 is a diagram in which four pixels of FIG. 13 are extracted.
  • the data values in the odd-numbered columns are all 128, and the data values in the even-numbered columns are all 0.
  • all data values are 64 in FIG.
  • the data value of each pixel unit 312 is completely different between FIG. 14 and FIG.
  • the human eye cannot distinguish individual pixels as described above, the display image based on the image pattern shown in FIG. 14 is different from the display image based on the image pattern shown in FIG. Looks the same.
  • the occurrence of flicker is suppressed without affecting the visual effect generated from the display image.
  • the data value correction process is performed in an extremely small unit (every two subpixels), the phenomenon called “color blur” and the phenomenon called “edge blur” are suppressed.
  • FIG. 16 is an example of a conversion pattern for the purpose of preventing a significant increase in power consumption and preventing the occurrence of flicker.
  • this conversion pattern is referred to as “total mask conversion pattern”.
  • the total mask conversion pattern is composed of four coefficients corresponding to the pixel portion 312 of 2 rows ⁇ 2 columns.
  • this total mask conversion pattern corresponds to a power mask conversion pattern (first pattern) composed of two coefficients corresponding to the pixel portion 312 of 2 rows ⁇ 1 column and a pixel portion 312 of 1 row ⁇ 2 columns. It is composed of four coefficients obtained by multiplying a flicker mask conversion pattern (second pattern) composed of two coefficients.
  • the values of the four coefficients are all “1/4”.
  • the pixel part PIX (i, j) of the i-th row and j-th column is calculated.
  • a group is formed by the pixel portion PIX (i + 1, j + 3). That is, a group is formed by four pixel portions 312 for displaying the same color.
  • the four pixel units 312 included in the group are associated with the four coefficients constituting the total mask conversion pattern.
  • the pixel portion PIX (i, j) in the i-th row and the j-th column is associated with the coefficient denoted by reference numeral 71 in FIG. 16
  • the pixel portion PIX (i + 1, j) in the (i + 1) -th row and the j-th column is 16
  • the pixel part PIX (i, j + 3) in the i-th row (j + 3) column is associated with the coefficient denoted by reference numeral 73 in FIG.
  • the display image signal Dout in each pixel unit 312 is displayed.
  • the data values are as shown in FIG.
  • the image pattern based on the input signal Din is the maximum power consumption image pattern as shown in FIG. 39
  • the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG.
  • the image pattern based on the input signal Din is a flicker image pattern as shown in FIG. 40
  • the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG.
  • the appearance of the display image does not change before and after the correction of the data value of the input signal Din.
  • the power consumption is reduced more than before and the occurrence of flicker is suppressed without affecting the visual effect generated from the display image.
  • the data value correction processing is performed in an extremely small unit (every four subpixels), the phenomenon called “color blur” and the phenomenon called “edge blur” are suppressed.
  • the method for obtaining the data value of the display image signal Dout when the conversion pattern includes P coefficients (P is an integer of 2 or more) is generalized.
  • the pixel unit 312 pixel unit that is to correct the data value of the input signal Din
  • the target pixel unit is defined as a “target pixel unit”.
  • the data value of the input signal Din for the kth pixel unit 312 is Dk
  • the kth pixel unit The value of the coefficient corresponding to 312 is Ck.
  • the data value V of the display image signal Dout for the target pixel portion is obtained by the following equation (2). That is, the sum of the products of the data value of the input signal Din for each pixel unit 312 included in the group and the coefficient value corresponding to each pixel unit 312 is the data of the display image signal Dout for the pixel unit of interest. Value.
  • the data value of the display image signal Dout for each pixel unit 312 in the display unit 310 is obtained by the above equation (2).
  • the liquid crystal display device is provided with the masking processing unit 100 that generates the display image signal Dout by correcting the data value of the input signal Din using a conversion pattern prepared in advance.
  • the power mask conversion pattern is used as the conversion pattern, the amplitude of the video signal voltage is significantly reduced as compared with the case where the data value of the input signal Din is not corrected, and the power consumption is greatly reduced.
  • the flicker mask conversion pattern is used as the conversion pattern, the luminance difference between adjacent pixels is remarkably reduced as compared with the case where the data value of the input signal Din is not corrected, and the occurrence of flicker is suppressed.
  • Second Embodiment> ⁇ 2.1 Overview>
  • the configuration (see FIGS. 1 and 2) and the inversion driving method of the liquid crystal display device in the present embodiment are the same as those in the first embodiment.
  • examples of three conversion patterns will be described with respect to the masking processing in the present embodiment.
  • FIG. 17 is a diagram illustrating an example of a power mask conversion pattern in the present embodiment.
  • This power mask conversion pattern is configured by two coefficients corresponding to the pixel portion 312 of 2 rows ⁇ 1 column.
  • the value of the coefficient in the first row is “2/3”
  • the value of the coefficient in the second row is “1/3”.
  • a group is formed by the above-described target pixel portion (the pixel portion 312 that is the target of calculation of the data value of the display image signal Dout) and the pixel portion in the next row of the target pixel portion.
  • the data value of the display image signal Dout is obtained in the same manner as in the first embodiment.
  • the two coefficient values may be values other than the above values.
  • the value of the coefficient corresponding to the target pixel portion is made larger than the values of the other coefficients.
  • the corrected data value for the target pixel portion is obtained by the weighted averaging process that places importance on the data value before correction for the target pixel portion.
  • the display image signal in each pixel unit 312 is displayed.
  • the data value of Dout is as shown in FIG.
  • the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG.
  • the data value of all the pixel portions 312 in the odd-numbered rows is 170
  • the data value of all the pixel portions 312 in the even-numbered rows is 85.
  • the amplitude of the video signal voltage is reduced as compared with the case where the data value of the input signal Din is not corrected, and an increase in power consumption is suppressed.
  • FIG. 19 is a diagram in which four pixels of FIG. 18 are extracted. Since the human eye cannot distinguish individual pixels as described above, the display image based on the image pattern shown in FIG. 19 is similar to the display image based on the image pattern shown in FIG. Looks like. Further, as described above, the display image based on the image pattern shown in FIG. 9 (a diagram obtained by extracting four pixels in FIG. 38) or FIG. 10 (a diagram obtained by extracting four pixels in FIG. 39) is a human eye. Looks the same as the display image based on the image pattern shown in FIG. From the above, the appearance of the display image does not change before and after the correction of the data value of the input signal Din.
  • the power consumption is reduced as compared with the conventional case without affecting the visual effect generated from the display image.
  • the data value correction processing is performed in an extremely small unit (every two subpixels) as compared with general image processing.
  • one of the coefficients included in the power mask conversion pattern (the value of the coefficient associated with the pixel unit 312 that is the data value calculation target) is the other value. Is bigger than.
  • the original image (the image before the data value is corrected) is emphasized, and a phenomenon called “color blur” or a phenomenon called “edge blur” occurs. Generation is effectively suppressed.
  • FIG. 20 is a diagram illustrating an example of a flicker mask conversion pattern in the present embodiment.
  • This flicker mask conversion pattern is constituted by two coefficients corresponding to the pixel portion 312 of 1 row ⁇ 2 columns.
  • the value of the coefficient in the first column is “2/3”, and the value of the coefficient in the second column is “1/3”.
  • a group is formed by the above-described pixel portion of interest (the pixel portion 312 to which the data value of the display image signal Dout is calculated) and the pixel portion adjacent to the right of the three columns of the pixel portion of interest. Is done. That is, a group is formed by two adjacent sub-pixels for displaying the same color.
  • the data value of the display image signal Dout is obtained in the same manner as in the first embodiment.
  • the two coefficient values may be values other than the above values.
  • the value of the coefficient corresponding to the target pixel portion is made larger than the values of the other coefficients.
  • the corrected data value for the target pixel portion is obtained by the weighted averaging process that places importance on the data value before correction for the target pixel portion.
  • FIG. 22 is a diagram in which four pixels of FIG. 21 are extracted. Since the human eye cannot distinguish individual pixels as described above, the display image based on the image pattern shown in FIG. 22 is similar to the display image based on the image pattern shown in FIG. Looks like. Further, as described above, the display image based on the image pattern shown in FIG. 14 (the figure obtained by extracting four pixels in FIG. 40) is similar to the display image based on the image pattern shown in FIG. Looks like. From the above, the appearance of the display image does not change before and after the correction of the data value of the input signal Din.
  • the occurrence of flicker is suppressed without affecting the visual effect generated from the display image.
  • the data value correction processing is performed in an extremely small unit (every two subpixels) as compared with general image processing.
  • one of the coefficients included in the flicker mask conversion pattern (the value of the coefficient associated with the pixel unit 312 for which the data value is calculated) is the other value. Is bigger than.
  • the original image (the image before the data value is corrected) is emphasized, and a phenomenon called “color blur” or a phenomenon called “edge blur” occurs. Generation is effectively suppressed.
  • FIG. 23 is a diagram showing an example of a general mask conversion pattern in the present embodiment.
  • This total mask conversion pattern is composed of four coefficients corresponding to the pixel portion 312 of 2 rows ⁇ 2 columns.
  • the value of the upper left coefficient is “1/2”, and the values of the other coefficients are “1/6”.
  • Pixel part PIX (i, j) in the i-th row and the j-th column is the target pixel portion (the pixel portion 312 for which the data value of the display image signal Dout is calculated)
  • Pixel part PIX (i, j) Pixel part PIX (i, j + 3) of pixel part PIX (i + 1, j) and i line (j + 3) column of (i + 1) line and j column
  • a group is formed by the pixel portion PIX (i + 1, j + 3) in the (j + 3) column. That is, a group is formed by four adjacent sub-pixels for displaying the same color.
  • the pixel portion of interest PIX (i, j) is associated with the coefficient indicated by reference numeral 75 in FIG. 23, and the pixel portion PIX (i + 1, j) of the (i + 1) th row and jth column is shown in FIG.
  • the pixel portion PIX (i, j + 3) in the i-th row (j + 3) column is associated with the coefficient indicated by the symbol 77 in FIG. 23, and the (i + 1) -th row (j + 3) column.
  • the pixel portion PIX (i + 1, j + 3) of the eye is associated with a coefficient indicated by reference numeral 78 in FIG. Then, using this comprehensive mask conversion pattern, the data value of the display image signal Dout is obtained in the same manner as in the first embodiment.
  • the display image signal in each pixel unit 312 is displayed.
  • the data value of Dout is as shown in FIG.
  • the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG.
  • the data value of all the pixel portions 312 is either 170 or 85.
  • the image pattern based on the input signal Din is a flicker image pattern as shown in FIG. 40
  • the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG.
  • the luminance difference between adjacent pixels is reduced as compared with the case where the data value of the input signal Din is not corrected, and the occurrence of flicker is suppressed.
  • the appearance of the display image does not change before and after the correction of the data value of the input signal Din.
  • the power consumption is reduced more than before and the occurrence of flicker is suppressed without affecting the visual effect generated from the display image.
  • the data value correction processing is performed in an extremely small unit (every four subpixels) as compared with general image processing.
  • one of the four coefficients included in the total mask conversion pattern (the value of the coefficient associated with the pixel unit 312 for which the data value is calculated) is set. It is larger than the values of other coefficients.
  • the original image (the image before the data value is corrected) is emphasized, and a phenomenon called “color blur” or a phenomenon called “edge blur” occurs. Generation is effectively suppressed.
  • a liquid crystal display device that does not cause a significant increase in power consumption or flicker even if the image pattern is a specific pattern called a killer pattern is realized. Is done. In the masking process, the data value of the input signal Din is corrected so as to be closer to the image before correction compared to the first embodiment. This effectively suppresses the occurrence of a phenomenon called “color blur” and a phenomenon called “edge blur”.
  • FIG. 25 is a block diagram showing a configuration of the masking processing unit 100 in the present embodiment.
  • the masking processing unit 100 includes a first masking processing unit 101 and a second masking processing unit 102.
  • the first masking processing unit 101 generates intermediate data Dm by performing masking processing on the input signal Din using one of a plurality of conversion patterns prepared in advance.
  • the second masking processing unit 102 generates a display image signal Dout by performing masking processing on the intermediate data Dm using a conversion pattern different from the conversion pattern used by the first masking processing unit 101.
  • the display image signal Dout generated by the second masking processing unit 102 is given to the panel driving unit 200 (see FIG. 1).
  • the first masking processing unit 101 performs masking processing using the power mask conversion pattern
  • the second masking processing unit 102 performs masking processing using the flicker mask conversion pattern.
  • a display image signal Dout similar to that when the masking process is performed using the total mask conversion pattern is generated.
  • the first masking processing unit 101 and the second masking processing unit 102 can perform masking processing using conversion patterns other than the three conversion patterns described in the first embodiment.
  • the masking process is performed using one conversion pattern other than the three conversion patterns described in the first embodiment and any one of the power mask conversion pattern, the flicker mask conversion pattern, and the total mask conversion pattern. It may be done.
  • the masking process may be performed using two conversion patterns other than the three conversion patterns described in the first embodiment.
  • the present invention is not limited to this, and masking processing may be performed using three or more types of conversion patterns. .
  • FIG. 26 is a block diagram showing a schematic configuration of a liquid crystal display device according to the fourth embodiment of the present invention.
  • the masking processing unit 100 includes a first masking processing unit 111, a second masking processing unit 112, and a switching control unit 120.
  • the first masking processing unit 111 generates first internal data d1 by performing a masking process on the input signal Din using a certain type of conversion pattern.
  • the second masking processing unit 112 generates the second internal data d2 by performing masking processing on the input signal Din using a conversion pattern different from the conversion pattern used by the first masking processing unit 111.
  • the switching control unit 120 switches a signal supplied to the panel driving unit 200 as the display image signal Dout, for example, according to a switching control signal SW1 supplied from the outside.
  • the input signal Din is directly supplied to the panel driving unit 200 as the display image signal Dout.
  • the first internal data d1 generated by the first masking processing unit 111 is given to the panel driving unit 200 as the display image signal Dout.
  • the second internal data d2 generated by the second masking processing unit 112 is given to the panel driving unit 200 as the display image signal Dout.
  • the first masking processing unit 111 can perform masking processing using the power mask conversion pattern
  • the second masking processing unit 112 can perform masking processing using the flicker mask conversion pattern.
  • the switching control signal SW1 is given to the switching control unit 120 according to the specifications of the liquid crystal display device and the user's request.
  • the input control signal SW1 is supplied to the switching control unit 120 so that the point K and the point K2 are connected, thereby using the power mask conversion pattern to input the signal Din. It is possible to provide the panel driver 200 with the data subjected to the masking process.
  • ⁇ 4.2 Effects> two types of conversion patterns are prepared in advance, and the conversion pattern used for the masking process is appropriately selected. Further, the masking process can be prevented from being performed. As described above, a liquid crystal display device can be realized that can suppress a significant increase in power consumption and occurrence of flicker without unnecessarily correcting the data value of the input signal Din.
  • the relationship between the gradation level of the input signal to the liquid crystal panel 300 and the display luminance is described on the assumption that the liquid crystal panel 300 has linear characteristics. It was. However, in general, the liquid crystal panel 300 has nonlinear characteristics. Therefore, in the present embodiment, it is assumed that the liquid crystal panel 300 having nonlinear characteristics is employed.
  • the signal input to the liquid crystal display device is generally a signal that has been subjected to gamma correction processing. Therefore, in the present embodiment, it is assumed that an input signal Din that has been subjected to gamma correction processing is input to the liquid crystal display device.
  • FIG. 27 is a block diagram showing a schematic configuration of a liquid crystal display device according to the fifth embodiment of the present invention.
  • the liquid crystal display device according to the present embodiment is provided with a degamma correction processing unit 410 and a gamma correction processing unit 420 in addition to the components in the first embodiment (see FIG. 1). Yes.
  • the degamma correction processing unit 410 performs degamma correction processing on the input signal Din.
  • the input signal Din is converted from nonlinear RGB data to linear RGB data.
  • the masking processing unit 100 masking processing is performed in the same manner as in the above embodiments. Thereby, the display image signal Dout is generated.
  • the gamma correction processing unit 420 performs gamma correction processing on the display image signal Dout generated by the masking processing unit 100. Thereby, the display image signal Dout given to the panel drive unit 200 becomes nonlinear RGB data.
  • the gamma correction processing in the gamma correction processing unit 420 is performed according to the gamma characteristics of the liquid crystal panel 300.
  • a known technique can be used for the degamma correction process and the gamma correction process.
  • FIG. 28 is a block diagram showing a schematic configuration of a liquid crystal display device according to the sixth embodiment of the present invention.
  • the liquid crystal display device according to the present embodiment includes a first masking control unit 131 and a second masking control unit 132 in addition to the components in the fifth embodiment (see FIG. 27). Is provided.
  • the first masking control unit 131 switches whether to supply the input signal Din to the degamma correction processing unit 410 according to the switching control signal SW2.
  • the second masking control unit 132 switches a signal supplied to the panel drive unit 200 as the display image signal Dout according to the switching control signal SW2.
  • the switching control signal SW2 is at a high level, the point P1 and the point P2 are connected and the point Q and the point Q1 are connected. If the switching control signal SW2 is at a low level, the point P1 and the point P2 are connected. Assume that P2 is disconnected and point Q and point Q2 are connected.
  • the switching control signal SW2 is at a high level
  • the input signal Din is given to the degamma correction processing unit 410, and the degamma correction processing unit 410 performs degamma correction processing on the input signal Din.
  • the masking processing unit 100 masking processing is performed in the same manner as in the above embodiments.
  • the gamma correction processing unit 420 performs gamma correction processing on the display image signal Dout generated by the masking processing unit 100. Then, the display image signal Dout subjected to the gamma correction processing is given to the panel drive unit 200.
  • the switching control signal SW2 when the switching control signal SW2 is at the low level, the input signal Din is directly supplied to the panel drive unit 200 as the display image signal Dout. At this time, the degamma correction process, the masking process, and the gamma correction process are not performed.
  • FIG. 29 is a block diagram illustrating a configuration example of a liquid crystal display device when the masking processing unit 100 is provided in the source driver IC 500.
  • the liquid crystal display device includes a liquid crystal panel 300 including a display unit 310 and a gate driving unit 320, and a source driver IC 500 including a masking processing unit 100, a timing control unit 510, and a source driving unit 520. It is configured.
  • the display image signal Dout generated by the masking processing unit 100 is supplied to the source driving unit 520, and the source driving unit 520 drives the source bus line SL based on the display image signal Dout.
  • the present invention can also be applied to a liquid crystal display device having such a configuration.
  • the vertical stripe RGB sub-pixel configuration has been described as an example.
  • the present invention is not limited to this, and a pixel configuration other than the vertical stripe RGB sub-pixel configuration is also employed.
  • the present invention can be applied.
  • a pixel configuration in which the source bus line SL connected to the source electrode of the TFT in the pixel portion of each column is different between the odd and even rows this configuration is “Z inversion”.
  • the present invention can also be applied to the case where the above is adopted.
  • the type of liquid crystal display device and the presence / absence of the use of a backlight are not mentioned, but the masking process using the power mask conversion pattern is not necessary to provide a backlight or the like. This is particularly effective for a reflective liquid crystal display device that displays an image by utilizing reflection of light.
  • DESCRIPTION OF SYMBOLS 10 ... Timing controller 100 ... Masking process part 101, 111 ... 1st masking process part 102, 112 ... 2nd masking process part 120 ... Switching control part 131 ... 1st masking control part 132 ... 2nd masking control part 200 ... Panel driver 210 ... Source driver 220 ... Gate driver 300 ... Liquid crystal panel 310 ... Display unit 312 ... Pixel unit 410 ... De-gamma correction processing unit 420 ... Gamma correction processing unit GL ... Gate bus line SL ... Source bus line Din ... Input signal Dout ... Image signal for display

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

The present invention achieves a liquid crystal display device that does not significantly increase power consumption and does not generate flicker, even when an image pattern is a specific pattern known as a killer pattern. A liquid crystal display device that is provided with a masking unit (100) that generates a display image signal (Dout) by using a conversion pattern that comprises P coefficients to correct an input signal (Din) data value. When a section of pixels that is the computation target for a display image signal (Dout) data value is defined as a pixel section of interest, the masking unit (100) creates a group that is constituted by the pixel section of interest and P-1 pixel sections that are determined in accordance with the conversion pattern, said group being created such that a 1-to-1 correspondence exists between the pixel sections included in the group and the coefficients included in the conversion pattern, and makes the sum of the products of the input signal (Din) data value for each of the pixel sections included in the group and the value of the coefficient that corresponds to each pixel section the display image signal (Dout) data value for the pixel section of interest.

Description

液晶表示装置および液晶表示装置におけるデータ処理方法Liquid crystal display device and data processing method in liquid crystal display device
 本発明は、液晶表示装置および液晶表示装置におけるデータ処理方法に関し、特に、液晶表示装置の入力信号に施す画像処理の技術に関する。 The present invention relates to a liquid crystal display device and a data processing method in the liquid crystal display device, and more particularly to a technique of image processing applied to an input signal of the liquid crystal display device.
 従来より、スイッチング素子としてTFT(薄膜トランジスタ)を備えるアクティブマトリクス型の液晶表示装置が知られている。この液晶表示装置は、互いに対向する2枚の絶縁性の基板から構成される液晶パネルを備えている。液晶パネルの一方の基板(TFTアレイ基板)には、ゲートバスライン(走査信号線)とソースバスライン(映像信号線)とが互いに交差するように配設され、ゲートバスラインとソースバスラインとの交差部近傍にTFTが設けられている。TFTは、ゲートバスラインに接続されたゲート電極,ソースバスラインに接続されたソース電極,およびドレイン電極とから構成される。TFTのドレイン電極は、画像を形成するためにTFTアレイ基板上にマトリクス状に配置された画素電極と接続されている。また、液晶パネルの他方の基板(対向基板)には、液晶を介して画素電極との間に電圧を印加するための共通電極が設けられている。このような構成において、各画素部では、TFTのゲート電極がゲートバスラインからアクティブな走査信号を受けたときに当該TFTのソース電極がソースバスラインから与えられている映像信号の電圧(電位)と、共通電極の電圧(電位)とに基づいて、液晶に電圧が印加される。これにより液晶が駆動され、画面上に所望の画像が表示される。 Conventionally, an active matrix type liquid crystal display device including a TFT (thin film transistor) as a switching element is known. This liquid crystal display device includes a liquid crystal panel composed of two insulating substrates facing each other. On one substrate (TFT array substrate) of the liquid crystal panel, a gate bus line (scanning signal line) and a source bus line (video signal line) are arranged so as to intersect each other, A TFT is provided in the vicinity of the intersection. The TFT includes a gate electrode connected to the gate bus line, a source electrode connected to the source bus line, and a drain electrode. The drain electrode of the TFT is connected to pixel electrodes arranged in a matrix on the TFT array substrate in order to form an image. The other substrate (counter substrate) of the liquid crystal panel is provided with a common electrode for applying a voltage to the pixel electrode through the liquid crystal. In such a configuration, in each pixel portion, when the gate electrode of the TFT receives an active scanning signal from the gate bus line, the voltage (potential) of the video signal applied to the source electrode of the TFT from the source bus line. And a voltage is applied to the liquid crystal based on the voltage (potential) of the common electrode. As a result, the liquid crystal is driven and a desired image is displayed on the screen.
 ところで、液晶には、直流電圧が加わり続けると劣化するという性質がある。液晶が劣化すると、いわゆる「焼き付き」が生じ、表示品位が大きく低下する。また、液晶表示装置に関しては、従来より、フリッカの抑制が課題となっている。そこで、焼き付きの防止やフリッカの抑制を図るため、液晶表示装置においては各種の反転駆動方式が採用されている。 By the way, the liquid crystal has a property of deteriorating when a DC voltage is continuously applied. When the liquid crystal deteriorates, so-called “burn-in” occurs, and the display quality is greatly lowered. Further, with respect to a liquid crystal display device, conventionally, the suppression of flicker has been an issue. Therefore, in order to prevent burn-in and suppress flicker, various inversion driving methods are employed in the liquid crystal display device.
 焼き付きを防止するための反転駆動方式としては、1フレーム期間毎に液晶印加電圧の極性を反転させるフレーム反転方式が採用されている。フレーム反転方式が採用されている場合、任意の画素部において、或るフレームにおける液晶印加電圧の極性がプラスであれば、その次のフレームにおける液晶印加電圧の極性はマイナスになる。また、フリッカを抑制するための反転駆動方式としては、例えば1列毎に液晶印加電圧の極性を反転させるソースライン反転方式が採用されている。ソースライン反転方式が採用されている場合、任意のフレームにおいて、図31に示すように、或る画素部における液晶印加電圧の極性がプラスであれば、その隣の列の画素部における液晶印加電圧の極性はマイナスとなる。なお、通常、フレーム反転方式のように時間的に液晶印加電圧の極性を反転させる方式とソースライン反転方式のように空間的に液晶印加電圧の極性を反転させる方式とを組み合わせた方式が採用されている。従って、或るフレームにおける各画素部での液晶印加電圧の極性が図31に示すようなものであれば、その次のフレームにおける各画素部での液晶印加電圧の極性は図32に示すようなものとなる。なお、反転駆動方式として、図33に示すように1行毎に液晶印加電圧の極性を反転させるゲートライン反転方式や図34に示すように縦方向および横方向の双方においてプラス極性とマイナス極性とを交互に発生させるドット反転方式などが採用されることもある。さらに、ソースライン反転方式やゲートライン反転方式に関し、液晶印加電圧の極性を複数ライン毎に反転させる方式もある。以上のような反転駆動方式を採用することによって、液晶の劣化の防止やフリッカの抑制が図られている。 As a reversal drive method for preventing burn-in, a frame reversal method is employed in which the polarity of the liquid crystal applied voltage is reversed every frame period. When the frame inversion method is adopted, if the polarity of the liquid crystal applied voltage in a certain frame is positive in an arbitrary pixel portion, the polarity of the liquid crystal applied voltage in the next frame is negative. As an inversion driving method for suppressing flicker, for example, a source line inversion method for inverting the polarity of the liquid crystal applied voltage for each column is employed. When the source line inversion method is adopted, as shown in FIG. 31, in any frame, if the polarity of the liquid crystal application voltage in a certain pixel portion is positive, the liquid crystal application voltage in the pixel portion in the adjacent column is positive. The polarity of is negative. In general, a method is used that combines a method of reversing the polarity of the liquid crystal applied voltage temporally as in the frame inversion method and a method of spatially reversing the polarity of the liquid crystal applied voltage as in the source line inversion method. ing. Therefore, if the polarity of the liquid crystal applied voltage in each pixel portion in a certain frame is as shown in FIG. 31, the polarity of the liquid crystal applied voltage in each pixel portion in the next frame is as shown in FIG. It will be a thing. As an inversion driving method, as shown in FIG. 33, a gate line inversion method for inverting the polarity of the liquid crystal applied voltage for each row, and as shown in FIG. 34, a positive polarity and a negative polarity in both the vertical and horizontal directions. In some cases, a dot inversion method or the like for alternately generating the dots is employed. Further, regarding the source line inversion method and the gate line inversion method, there is a method for inverting the polarity of the liquid crystal applied voltage for each of a plurality of lines. By adopting the inversion driving method as described above, the liquid crystal is prevented from being deteriorated and flicker is suppressed.
 なお、本件発明に関連して、以下の先行技術文献が知られている。日本の特開2005-140891号公報に開示された液晶表示装置においては、液晶印加電圧の極性についての空間的な現れ方を定義した極性パターンを複数用意しておき、それら複数の極性パターンを不規則に選択して液晶を駆動することによりキラーパターンに起因するフリッカの発生が抑制されている。 The following prior art documents are known in relation to the present invention. In the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 2005-140891, a plurality of polarity patterns defining the spatial appearance of the polarity of the liquid crystal applied voltage are prepared, and the plurality of polarity patterns are not displayed. Generation of flicker due to a killer pattern is suppressed by selecting the rule and driving the liquid crystal.
日本の特開2005-140891号公報Japanese Unexamined Patent Publication No. 2005-140891
 ところで、液晶表示装置については、フリッカを引き起こすような画像パターンや電力消費の増大を引き起こすような画像パターンなど、「キラーパターン」と呼ばれる特定の画像パターンが存在する。フリッカを引き起こすキラーパターンは、表示品位低下の大きな原因となる。また、電力消費の増大を引き起こすキラーパターンは、電池で駆動する携帯端末装置(モバイル機器)において、電池がすぐに消耗する原因となる。このようなキラーパターンの存在は、画素の並び方(画素の配列)や反転駆動方式に起因している。以下、これについて説明する。なお、以下においては、256階調の階調表示が可能な液晶表示装置を例に挙げて説明する。 By the way, for liquid crystal display devices, there are specific image patterns called “killer patterns” such as image patterns that cause flicker and image patterns that cause an increase in power consumption. A killer pattern that causes flicker is a major cause of deterioration in display quality. In addition, a killer pattern that causes an increase in power consumption causes a battery to be quickly consumed in a portable terminal device (mobile device) driven by the battery. The existence of such a killer pattern is caused by the arrangement of pixels (pixel arrangement) and the inversion driving method. This will be described below. In the following, a liquid crystal display device capable of 256 gradation display will be described as an example.
 ここでは、まず、液晶表示装置における画素の構造など基本的な事項について説明する。一般的なカラー液晶表示装置では、図35に示すように、1つの画素は赤色(R)のサブ画素,緑色(G)のサブ画素,および青色(B)のサブ画素によって構成されている。但し、本明細書においては、これら各サブ画素を構成する部分のことを「画素部」という。このような画素部が図36に示すように表示部内において縦方向(ソースバスラインが伸びる方向)および横方向(ゲートバスラインの伸びる方向)に並べて配置されることにより、複数行×複数列の画素マトリクスが形成されている。図36に示す構成においては、縦方向に着目すると、同じ色のサブ画素が連続して配置されている。このような構成を以下「縦ストライプRGBサブ画素構成」という。図37は、液晶表示装置の要部の構成を示す図である。図37に示すように、表示部91には、複数本のソースバスラインSLと、複数本のゲートバスラインGLと、それら複数本のソースバスラインSLと複数本のゲートバスラインGLとの交差点にそれぞれ対応して設けられた複数個の画素部92とが含まれている。なお、図37には、5行×6列分の構成要素のみを示している。また、液晶表示装置には、複数本のソースバスラインSLを駆動するソースドライバ93と、複数本のゲートバスラインGLを駆動するゲートドライバ94とが設けられている。 Here, first, basic matters such as a pixel structure in a liquid crystal display device will be described. In a general color liquid crystal display device, as shown in FIG. 35, one pixel is composed of a red (R) sub-pixel, a green (G) sub-pixel, and a blue (B) sub-pixel. However, in the present specification, a portion constituting each of the sub-pixels is referred to as a “pixel portion”. Such pixel portions are arranged side by side in the vertical direction (the direction in which the source bus lines extend) and in the horizontal direction (the direction in which the gate bus lines extend) in the display portion as shown in FIG. A pixel matrix is formed. In the configuration shown in FIG. 36, when attention is paid to the vertical direction, sub-pixels of the same color are continuously arranged. Such a configuration is hereinafter referred to as “vertical stripe RGB subpixel configuration”. FIG. 37 is a diagram illustrating a configuration of a main part of the liquid crystal display device. As shown in FIG. 37, the display unit 91 includes a plurality of source bus lines SL, a plurality of gate bus lines GL, and intersections of the plurality of source bus lines SL and the plurality of gate bus lines GL. A plurality of pixel portions 92 provided corresponding to each of the first and second pixel portions 92 are included. FIG. 37 shows only components for 5 rows × 6 columns. Further, the liquid crystal display device is provided with a source driver 93 that drives a plurality of source bus lines SL and a gate driver 94 that drives a plurality of gate bus lines GL.
 次に、電力消費の増大を引き起こすキラーパターンについて説明する。なお、以下においては、電力消費が最大になるような画像パターンのことを「電力消費最大画像パターン」という。図38は、縦ストライプRGBサブ画素構成およびソースライン反転方式を採用している液晶表示装置における電力消費最大画像パターンを示す図である。図38には、或るフレームにおける各画素部92の階調値を示している。図38において縦方向に着目すると、255と0とが交互に並んでいる。また、図38において横方向に着目すると、全ての階調値は同じになっている。ところで、256階調の階調表示を実現する液晶表示装置では、8ビットのデータを出力することのできるソースドライバ93が用いられる。従って、ソースドライバ93から出力されるデータの値(階調値)に関し、最大値は255となり、最小値は0となる。以上より、図38において任意の列に着目すると、階調値の最大値と階調値の最小値とが交互に並んでいることが把握される。ゲートドライバ94は複数本のゲートバスラインGLを1本ずつ順次に選択するので、画像パターンが図38に示すようなものであれば、選択状態になるゲートバスラインGLが切り替わる毎に(1水平走査期間毎に)、ソースバスラインSLに印加される映像信号電圧が大きく変動する。すなわち、画像パターンが図38に示すようなものであれば、全ての列において映像信号電圧の振幅が最大となるので、電力消費が最大となる。なお、図38において全ての画素部92で0と255を入れ替えても、同様に、電力消費は最大となる。 Next, a killer pattern that causes an increase in power consumption will be described. In the following, an image pattern that maximizes power consumption is referred to as a “maximum power consumption image pattern”. FIG. 38 is a diagram showing a maximum power consumption image pattern in a liquid crystal display device adopting a vertical stripe RGB sub-pixel configuration and a source line inversion method. FIG. 38 shows the gradation value of each pixel unit 92 in a certain frame. In FIG. 38, focusing on the vertical direction, 255 and 0 are alternately arranged. When attention is paid to the horizontal direction in FIG. 38, all the gradation values are the same. By the way, in a liquid crystal display device that realizes 256 gray scale display, a source driver 93 that can output 8-bit data is used. Therefore, the maximum value is 255 and the minimum value is 0 with respect to the data value (gradation value) output from the source driver 93. From the above, when attention is paid to an arbitrary column in FIG. 38, it is understood that the maximum value of the gradation value and the minimum value of the gradation value are alternately arranged. Since the gate driver 94 sequentially selects a plurality of gate bus lines GL one by one, if the image pattern is as shown in FIG. 38, each time the gate bus line GL to be selected is switched (one horizontal). For each scanning period), the video signal voltage applied to the source bus line SL varies greatly. That is, if the image pattern is as shown in FIG. 38, the amplitude of the video signal voltage is maximized in all the columns, so that the power consumption is maximized. Note that even if 0 and 255 are interchanged in all the pixel portions 92 in FIG. 38, the power consumption is similarly maximized.
 図39は、縦ストライプRGBサブ画素構成およびソースライン反転方式を採用している液晶表示装置における電力消費最大画像パターンの別の例を示す図である。図39においては、縦方向についても横方向についても、255と0とが交互に並んでいる。従って、任意の列に着目すると、図38と同様、階調値の最大値と階調値の最小値とが交互に並んでいる。従って、画像パターンが図39に示すようなものである場合にも、全ての列において映像信号電圧の振幅が最大となるので、電力消費が最大となる。なお、図39において全ての画素部92で0と255を入れ替えても、同様に、電力消費は最大となる。 FIG. 39 is a diagram showing another example of the maximum power consumption image pattern in the liquid crystal display device adopting the vertical stripe RGB sub-pixel configuration and the source line inversion method. In FIG. 39, 255 and 0 are alternately arranged in both the vertical direction and the horizontal direction. Therefore, focusing on an arbitrary column, the maximum value of the gradation value and the minimum value of the gradation value are alternately arranged as in FIG. Therefore, even when the image pattern is as shown in FIG. 39, the amplitude of the video signal voltage is maximized in all the columns, so that the power consumption is maximized. In addition, even if 0 and 255 are interchanged in all the pixel portions 92 in FIG. 39, the power consumption is similarly maximized.
 次に、フリッカを引き起こすキラーパターンについて説明する。なお、以下においては、フリッカを引き起こすような画像パターンのことを「フリッカ画像パターン」という。図40は、縦ストライプRGBサブ画素構成およびフレーム反転方式を採用している液晶表示装置におけるフリッカ画像パターンを示す図である。図40において横方向に着目すると、128と0とが交互に並んでいる。また、図40において縦方向に着目すると、全ての階調値は同じになっている。ところで、フレーム反転方式においては、液晶印加電圧の極性が1フレーム毎に反転する。従って、連続する複数のフレームにおいて階調値が同じであっても、液晶は1フレーム毎に応答する。液晶に関しては中間階調での応答速度が低いので、画像パターンが図40に示すようなものである場合にはフリッカの発生が顕著となる。なお、図40において全ての画素部92で0と128を入れ替えても、同様に、フリッカの発生は顕著となる。 Next, the killer pattern that causes flicker will be described. In the following, an image pattern that causes flicker is referred to as a “flicker image pattern”. FIG. 40 is a diagram showing a flicker image pattern in a liquid crystal display device adopting a vertical stripe RGB sub-pixel configuration and a frame inversion method. In FIG. 40, when attention is paid to the horizontal direction, 128 and 0 are alternately arranged. Further, when attention is paid to the vertical direction in FIG. 40, all gradation values are the same. By the way, in the frame inversion method, the polarity of the liquid crystal applied voltage is inverted every frame. Therefore, even if the gradation value is the same in a plurality of consecutive frames, the liquid crystal responds for each frame. With respect to the liquid crystal, since the response speed in the intermediate gradation is low, the occurrence of flicker becomes remarkable when the image pattern is as shown in FIG. In addition, even if 0 and 128 are interchanged in all the pixel portions 92 in FIG. 40, the occurrence of flicker becomes remarkable similarly.
 以上のように、例えば縦ストライプRGBサブ画素構成およびソースライン反転方式を採用している液晶表示装置においては、画像パターンが図38あるいは図39に示すような電力消費最大画像パターンである場合に、電力消費の増大が顕著になる。また、例えば縦ストライプRGBサブ画素構成およびフレーム反転方式を採用している液晶表示装置においては、画像パターンが図40に示すようなフリッカ画像パターンである場合に、フリッカの発生が顕著になる。日本の特開2005-140891号公報に開示された発明によれば、フリッカの発生は抑制されるが、駆動動作が複雑になる。また、画像パターンが電力消費最大画像パターンである場合の対策は何ら施されていない。 As described above, for example, in a liquid crystal display device adopting the vertical stripe RGB sub-pixel configuration and the source line inversion method, when the image pattern is the maximum power consumption image pattern as shown in FIG. 38 or 39, The increase in power consumption becomes significant. Further, in a liquid crystal display device adopting, for example, a vertical stripe RGB sub-pixel configuration and a frame inversion method, the occurrence of flicker becomes significant when the image pattern is a flicker image pattern as shown in FIG. According to the invention disclosed in Japanese Unexamined Patent Publication No. 2005-140891, the occurrence of flicker is suppressed, but the driving operation is complicated. Further, no countermeasure is taken when the image pattern is the maximum power consumption image pattern.
 そこで本発明は、画像パターンがキラーパターンと呼ばれる特定のパターンであっても電力消費の大幅な増大やフリッカの発生を引き起こすことのない液晶表示装置を実現することを目的とする。 Accordingly, an object of the present invention is to realize a liquid crystal display device that does not cause a significant increase in power consumption or flicker even if the image pattern is a specific pattern called a killer pattern.
 本発明の第1の局面は、複数の走査信号線と、前記複数の走査信号線と交差する複数の映像信号線と、前記複数の走査信号線と前記複数の映像信号線との交差点にそれぞれ対応するようにマトリクス状に配置された複数の画素部とを含む液晶パネルを有し、入力信号に基づく画像を前記液晶パネルに表示する液晶表示装置であって、
 複数行×1列の画素部または1行×複数列の画素部または複数行×複数列の画素部に対応するP個(Pは2以上の整数)の係数からなる変換パターンを用いて前記複数の画素部についての前記入力信号のデータ値を補正することによって、前記液晶パネルに与えるための表示用画像信号を生成するデータ値補正部と、
 前記表示用画像信号に基づいて前記複数の映像信号線を駆動する映像信号線駆動部と、
 前記複数の走査信号線を駆動する走査信号線駆動部と
を備え、
 前記変換パターンに含まれるP個の係数の値の総和は1であって、
 前記入力信号のデータ値を補正しようとしている画素部を着目画素部と定義したとき、前記データ値補正部は、グループに含まれる画素部と前記変換パターンに含まれる係数とが1対1で対応するように、前記着目画素部と、前記変換パターンに応じて定まり前記着目画素部と同じ色を表示するための(P-1)個の画素部とによって前記グループを構成し、前記グループに含まれる各画素部についての前記入力信号のデータ値と当該各画素部に対応する係数の値との積の総和を前記着目画素部についての前記表示用画像信号のデータ値とすることを特徴とする。
According to a first aspect of the present invention, a plurality of scanning signal lines, a plurality of video signal lines intersecting with the plurality of scanning signal lines, and intersections of the plurality of scanning signal lines and the plurality of video signal lines are respectively provided. A liquid crystal display device that includes a liquid crystal panel including a plurality of pixel portions arranged in a matrix so as to correspond, and displays an image based on an input signal on the liquid crystal panel,
Using the conversion pattern comprising P (P is an integer of 2 or more) coefficients corresponding to a plurality of rows × one column of pixel portions, or one row × multiple columns of pixel portions, or multiple rows × multiple columns of pixel portions. A data value correction unit that generates a display image signal to be given to the liquid crystal panel by correcting the data value of the input signal for the pixel unit;
A video signal line driving unit that drives the plurality of video signal lines based on the display image signal;
A scanning signal line driving unit that drives the plurality of scanning signal lines,
The sum of the values of P coefficients included in the conversion pattern is 1,
When the pixel portion that is to correct the data value of the input signal is defined as the pixel portion of interest, the data value correction portion has a one-to-one correspondence between the pixel portion included in the group and the coefficient included in the conversion pattern. As described above, the group is constituted by the pixel portion of interest and (P-1) pixel portions that are determined according to the conversion pattern and display the same color as the pixel portion of interest, and are included in the group The sum of the products of the data value of the input signal for each pixel portion and the coefficient value corresponding to each pixel portion is used as the data value of the display image signal for the pixel portion of interest. .
 本発明の第2の局面は、本発明の第1の局面において、
 前記データ値補正部は、1種類のみの変換パターンを用いて、前記複数の画素部についての前記入力信号のデータ値を補正することを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention,
The data value correcting unit corrects the data value of the input signal for the plurality of pixel units using only one type of conversion pattern.
 本発明の第3の局面は、本発明の第2の局面において、
 前記変換パターンは、2行×1列の画素部に対応する2個の係数からなることを特徴とする。
According to a third aspect of the present invention, in the second aspect of the present invention,
The conversion pattern includes two coefficients corresponding to a pixel portion of 2 rows × 1 column.
 本発明の第4の局面は、本発明の第2の局面において、
 前記変換パターンは、1行×2列の画素部に対応する2個の係数からなることを特徴とする。
According to a fourth aspect of the present invention, in the second aspect of the present invention,
The conversion pattern includes two coefficients corresponding to a pixel portion of 1 row × 2 columns.
 本発明の第5の局面は、本発明の第2の局面において、
 前記変換パターンは、2行×1列の画素部に対応する2個の係数からなる第1パターンと1行×2列の画素部に対応する2個の係数からなる第2パターンとを掛け合わせることによって得られる4個の係数からなることを特徴とする。
According to a fifth aspect of the present invention, in the second aspect of the present invention,
The conversion pattern is obtained by multiplying a first pattern composed of two coefficients corresponding to a pixel portion of 2 rows × 1 column and a second pattern composed of two coefficients corresponding to a pixel portion of 1 row × 2 columns. It consists of four coefficients obtained by this.
 本発明の第6の局面は、本発明の第3から第5までのいずれかの局面において、
 前記変換パターンに含まれるP個の係数の値が全て同じであることを特徴とする。
According to a sixth aspect of the present invention, in any one of the third to fifth aspects of the present invention,
The values of P coefficients included in the conversion pattern are all the same.
 本発明の第7の局面は、本発明の第3から第5までのいずれかの局面において、
 前記データ値補正部は、重み付き平均によって前記着目画素部についての前記表示用画像信号のデータ値を求めることを特徴とする。
According to a seventh aspect of the present invention, in any one of the third to fifth aspects of the present invention,
The data value correction unit obtains a data value of the display image signal for the target pixel unit by a weighted average.
 本発明の第8の局面は、本発明の第7の局面において、
 前記変換パターンに含まれるP個の係数のうち前記着目画素部に対応する係数の値が他の係数の値よりも大きいことを特徴とする。
According to an eighth aspect of the present invention, in the seventh aspect of the present invention,
Of the P coefficients included in the conversion pattern, a coefficient value corresponding to the target pixel portion is larger than values of other coefficients.
 本発明の第9の局面は、本発明の第1の局面において、
 前記データ値補正部は、複数種類の変換パターンを順次に用いて、前記複数の画素部についての前記入力信号のデータ値を補正することを特徴とする。
According to a ninth aspect of the present invention, in the first aspect of the present invention,
The data value correction unit corrects data values of the input signal for the plurality of pixel units by sequentially using a plurality of types of conversion patterns.
 本発明の第10の局面は、本発明の第1の局面において、
 前記データ値補正部は、予め用意された複数種類の変換パターンの中から切り替え制御信号に基づいて選択される変換パターンを用いて、前記複数の画素部についての前記入力信号のデータ値を補正することを特徴とする。
According to a tenth aspect of the present invention, in the first aspect of the present invention,
The data value correction unit corrects the data value of the input signal for the plurality of pixel units using a conversion pattern selected based on a switching control signal from a plurality of types of conversion patterns prepared in advance. It is characterized by that.
 本発明の第11の局面は、本発明の第1または第10の局面において、
 前記複数の画素部についての前記入力信号のデータ値を補正する処理をデータ値補正処理と定義したとき、前記データ値補正部による前記データ値補正処理の実行の有無が切り替え制御信号に基づいて切り替えられることを特徴とする。
An eleventh aspect of the present invention is the first or tenth aspect of the present invention,
When processing for correcting the data value of the input signal for the plurality of pixel units is defined as data value correction processing, whether or not the data value correction processing is performed by the data value correction unit is switched based on a switching control signal It is characterized by being able to.
 本発明の第12の局面は、本発明の第1の局面において、
 前記入力信号に対してデガンマ補正処理を施すデガンマ補正処理部と、
 前記表示用画像信号に対してガンマ補正処理を施すガンマ補正処理部と
を更に備え、
 前記データ値補正部は、前記デガンマ補正処理部によってデガンマ補正処理が施された入力信号のデータ値を補正することによって、前記表示用画像信号を生成することを特徴とする。
According to a twelfth aspect of the present invention, in the first aspect of the present invention,
A degamma correction processing section for performing degamma correction processing on the input signal;
A gamma correction processing unit that performs gamma correction processing on the display image signal;
The data value correction unit may generate the display image signal by correcting a data value of an input signal that has been subjected to the degamma correction processing by the degamma correction processing unit.
 本発明の第13の局面は、本発明の第12の局面において、
 前記複数の画素部についての前記入力信号のデータ値を補正する処理をデータ値補正処理と定義したとき、前記デガンマ補正処理,前記データ値補正部による前記データ値補正処理,および前記ガンマ補正処理からなる一連の処理の実行の有無が切り替え制御信号に基づいて切り替えられることを特徴とする。
A thirteenth aspect of the present invention is the twelfth aspect of the present invention,
When processing for correcting the data value of the input signal for the plurality of pixel portions is defined as data value correction processing, the degamma correction processing, the data value correction processing by the data value correction portion, and the gamma correction processing The presence or absence of execution of a series of processes is switched based on a switching control signal.
 本発明の第14の局面は、複数の画素部を含む液晶パネルに入力信号に基づく画像を表示する液晶表示装置におけるデータ処理方法であって、
 前記入力信号を受信する入力信号受信ステップと、
 複数行×1列の画素部または1行×複数列の画素部または複数行×複数列の画素部に対応するP個(Pは2以上の整数)の係数からなる変換パターンを用いて前記複数の画素部についての前記入力信号のデータ値を補正することによって、前記液晶パネルに与えるための表示用画像信号を生成するデータ値補正ステップと、
 前記表示用画像信号を前記液晶パネルに出力する表示用画像信号出力ステップと
を含み、
 前記変換パターンに含まれるP個の係数の値の総和は1であって、
 前記入力信号のデータ値を補正しようとしている画素部を着目画素部と定義したとき、前記データ値補正ステップでは、グループに含まれる画素部と前記変換パターンに含まれる係数とが1対1で対応するように、前記着目画素部と、前記変換パターンに応じて定まり前記着目画素部と同じ色を表示するための(P-1)個の画素部とによって前記グループが構成され、前記グループに含まれる各画素部についての前記入力信号のデータ値と当該各画素部に対応する係数の値との積の総和が前記着目画素部についての前記表示用画像信号のデータ値とされることを特徴とする。
A fourteenth aspect of the present invention is a data processing method in a liquid crystal display device that displays an image based on an input signal on a liquid crystal panel including a plurality of pixel portions,
An input signal receiving step for receiving the input signal;
Using the conversion pattern comprising P (P is an integer of 2 or more) coefficients corresponding to a plurality of rows × one column of pixel portions, or one row × multiple columns of pixel portions, or multiple rows × multiple columns of pixel portions. A data value correcting step for generating a display image signal to be given to the liquid crystal panel by correcting the data value of the input signal for the pixel portion of
A display image signal output step of outputting the display image signal to the liquid crystal panel,
The sum of the values of P coefficients included in the conversion pattern is 1,
When the pixel portion to be corrected for the data value of the input signal is defined as the pixel portion of interest, the data value correction step has a one-to-one correspondence between the pixel portion included in the group and the coefficient included in the conversion pattern. As described above, the group is configured by the pixel portion of interest and (P-1) pixel portions that are determined according to the conversion pattern and display the same color as the pixel portion of interest, and are included in the group The sum of the products of the data value of the input signal for each pixel unit and the value of the coefficient corresponding to each pixel unit is used as the data value of the display image signal for the pixel unit of interest. To do.
 本発明の第1の局面によれば、P個の係数からなる変換パターンを用いて入力信号のデータ値を補正することによって表示用画像信号を生成するデータ値補正部が設けられている。このため、入力信号のデータ値を補正しない場合と比較して、例えば映像信号電圧の振幅を小さくすることや隣接画素間の輝度差を顕著に小さくすることが可能となる。これにより、電力消費の削減やフリッカの抑制が可能となる。以上より、画像パターンがキラーパターンと呼ばれる特定のパターンであっても例えば電力消費の増大やフリッカの発生などの不都合を生じることのない液晶表示装置が実現される。 According to the first aspect of the present invention, there is provided a data value correction unit that generates a display image signal by correcting a data value of an input signal using a conversion pattern composed of P coefficients. For this reason, compared with the case where the data value of the input signal is not corrected, for example, the amplitude of the video signal voltage can be reduced and the luminance difference between adjacent pixels can be significantly reduced. As a result, power consumption can be reduced and flicker can be suppressed. From the above, even if the image pattern is a specific pattern called a killer pattern, a liquid crystal display device that does not cause inconveniences such as an increase in power consumption and occurrence of flicker is realized.
 本発明の第2の局面によれば、比較的簡単な構成で、特定のキラーパターンに起因する不都合を生じることのない液晶表示装置が実現される。 According to the second aspect of the present invention, a liquid crystal display device having a relatively simple configuration and causing no inconvenience due to a specific killer pattern is realized.
 本発明の第3の局面によれば、縦ストライプRGBサブ画素構成およびソースライン反転方式が採用されている液晶表示装置において、表示画像から生じる視覚効果に影響を及ぼすことなく従来よりも電力消費を低減することが可能となる。 According to the third aspect of the present invention, in the liquid crystal display device adopting the vertical stripe RGB sub-pixel configuration and the source line inversion method, the power consumption is more than conventional without affecting the visual effect generated from the display image. It becomes possible to reduce.
 本発明の第4の局面によれば、縦ストライプRGBサブ画素構成およびフレーム反転方式が採用されている液晶表示装置において、表示画像から生じる視覚効果に影響を及ぼすことなくフリッカの発生を抑制することが可能となる。 According to the fourth aspect of the present invention, in the liquid crystal display device adopting the vertical stripe RGB sub-pixel configuration and the frame inversion method, the occurrence of flicker is suppressed without affecting the visual effect generated from the display image. Is possible.
 本発明の第5の局面によれば、縦ストライプRGBサブ画素構成およびソースライン反転方式およびフレーム反転方式が採用されている液晶表示装置において、表示画像から生じる視覚効果に影響を及ぼすことなく従来よりも電力消費を低減するとともにフリッカの発生を抑制することが可能となる。 According to the fifth aspect of the present invention, in the liquid crystal display device adopting the vertical stripe RGB sub-pixel configuration, the source line inversion method, and the frame inversion method, it does not affect the visual effect generated from the display image. In addition, the power consumption can be reduced and the occurrence of flicker can be suppressed.
 本発明の第6の局面によれば、グループ内の画素の表示用画像信号のデータ値が全て同じになる。これにより、入力信号のデータ値を補正しない場合と比較して、電力消費の大幅な削減やフリッカの効果的な抑制が可能となる。 According to the sixth aspect of the present invention, the data values of the display image signals of the pixels in the group are all the same. Thereby, compared with the case where the data value of the input signal is not corrected, it is possible to significantly reduce power consumption and effectively suppress flicker.
 本発明の第7の局面によれば、入力信号のデータ値が補正される際、補正前の画像を重視することが可能となる。これにより、「色にじみ」と呼ばれる現象や「エッジボケ」と呼ばれる現象の発生が効果的に抑制される。 According to the seventh aspect of the present invention, when the data value of the input signal is corrected, the image before correction can be emphasized. This effectively suppresses the occurrence of a phenomenon called “color blur” and a phenomenon called “edge blur”.
 本発明の第8の局面によれば、入力信号のデータ値が補正される際、補正前の画像を重視した補正が確実に行われる。これにより、本発明の第7の局面と同様、「色にじみ」と呼ばれる現象や「エッジボケ」と呼ばれる現象の発生が効果的に抑制される。 According to the eighth aspect of the present invention, when the data value of the input signal is corrected, the correction with an emphasis on the image before correction is reliably performed. Thereby, like the seventh aspect of the present invention, the occurrence of a phenomenon called “color blur” and a phenomenon called “edge blur” are effectively suppressed.
 本発明の第9の局面によれば、データ値を補正する際に、複数種類の変換パターンが順次に使用される。これにより、様々なキラーパターンに適応することが可能となる。 According to the ninth aspect of the present invention, a plurality of types of conversion patterns are sequentially used when correcting data values. Thereby, it becomes possible to adapt to various killer patterns.
 本発明の第10の局面によれば、予め複数種類の変換パターンが用意され、データ値を補正する際に用いる変換パターンが切り替え制御信号に基づいて選択される。このため、例えば液晶表示装置の仕様やユーザーの要求に応じてデータ値を補正することが可能となる。 According to the tenth aspect of the present invention, a plurality of types of conversion patterns are prepared in advance, and the conversion pattern used when correcting the data value is selected based on the switching control signal. For this reason, for example, the data value can be corrected in accordance with the specifications of the liquid crystal display device or the user's request.
 本発明の第11の局面によれば、データ値補正処理の実行の有無が、切り替え制御信号に基づいて切り替えられる。これにより、データ値補正処理を不必要に実行することを防止することができ、電力消費の増大が抑制される。 According to the eleventh aspect of the present invention, whether or not the data value correction process is performed is switched based on the switching control signal. Thereby, it is possible to prevent the data value correction process from being performed unnecessarily, and an increase in power consumption is suppressed.
 本発明の第12の局面によれば、入力信号のデータ値を補正する処理が行われる前に、入力信号にデガンマ補正処理が施される。このため、入力信号が非線形のデータであっても、補正後のデータ値が適切に求められる。また、データ値補正部で生成された表示用画像信号にガンマ補正処理が施される。これにより、液晶パネルが非線形の特性を有している場合でも、液晶パネルの特性を考慮した画像表示が行われる。 According to the twelfth aspect of the present invention, the degamma correction process is performed on the input signal before the process of correcting the data value of the input signal is performed. For this reason, even if the input signal is non-linear data, a corrected data value is obtained appropriately. The display image signal generated by the data value correction unit is subjected to gamma correction processing. Thereby, even when the liquid crystal panel has non-linear characteristics, image display is performed in consideration of the characteristics of the liquid crystal panel.
 本発明の第13の局面によれば、デガンマ補正処理,データ値補正処理,およびガンマ補正処理からなる一連の処理の実行の有無が、切り替え制御信号に基づいて切り替えられる。これにより、上記一連の処理を不必要に実行することを防止することができ、電力消費の増大が抑制される。 According to the thirteenth aspect of the present invention, whether or not to execute a series of processes including the degamma correction process, the data value correction process, and the gamma correction process is switched based on the switching control signal. Thereby, it is possible to prevent the above series of processes from being performed unnecessarily, and an increase in power consumption is suppressed.
 本発明の第14の局面によれば、本発明の第1の局面と同様の効果を液晶表示装置におけるデータ処理方法において奏することができる。 According to the fourteenth aspect of the present invention, the same effect as that of the first aspect of the present invention can be achieved in the data processing method in the liquid crystal display device.
本発明の第1の実施形態に係る液晶表示装置の概略構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of a liquid crystal display device according to a first embodiment of the present invention. 上記第1の実施形態において、液晶表示装置の詳細な構成を示す図である。FIG. 3 is a diagram illustrating a detailed configuration of a liquid crystal display device in the first embodiment. 上記第1の実施形態において、電力消費の大幅な増大の防止を目的とする変換パターンの一例である。In the said 1st Embodiment, it is an example of the conversion pattern aiming at prevention of the significant increase in power consumption. 上記第1の実施形態において、入力信号のデータ値の補正について説明するための図である。In the said 1st Embodiment, it is a figure for demonstrating correction | amendment of the data value of an input signal. 上記第1の実施形態において、入力信号のデータ値の補正について説明するための図である。In the said 1st Embodiment, it is a figure for demonstrating correction | amendment of the data value of an input signal. 上記第1の実施形態において、入力信号のデータ値の補正について説明するための図である。In the said 1st Embodiment, it is a figure for demonstrating correction | amendment of the data value of an input signal. 上記第1の実施形態において、入力信号のデータ値の補正について説明するための図である。In the said 1st Embodiment, it is a figure for demonstrating correction | amendment of the data value of an input signal. 上記第1の実施形態において、電力マスク変換パターンを用いてマスキング処理が行われた場合の各画素部における表示用画像信号のデータ値を示す図である。In the said 1st Embodiment, it is a figure which shows the data value of the image signal for a display in each pixel part when a masking process is performed using a power mask conversion pattern. 図38の4画素分を抽出した図である。It is the figure which extracted 4 pixels of FIG. 図39の4画素分を抽出した図である。It is the figure which extracted 4 pixels of FIG. 図8の4画素分を抽出した図である。It is the figure which extracted 4 pixels of FIG. 上記第1の実施形態において、フリッカの発生の防止を目的とする変換パターンの一例である。In the first embodiment, it is an example of a conversion pattern for the purpose of preventing the occurrence of flicker. 上記第1の実施形態において、フリッカマスク変換パターンを用いてマスキング処理が行われた場合の各画素部における表示用画像信号のデータ値を示す図である。FIG. 5 is a diagram illustrating data values of display image signals in each pixel unit when masking processing is performed using a flicker mask conversion pattern in the first embodiment. 図40の4画素分を抽出した図である。It is the figure which extracted 4 pixels worth of FIG. 図13の4画素分を抽出した図である。It is the figure which extracted 4 pixels worth of FIG. 上記第1の実施形態において、電力消費の大幅な増大の防止およびフリッカの発生の防止を目的とする変換パターンの一例である。In the first embodiment, it is an example of a conversion pattern for the purpose of preventing a significant increase in power consumption and preventing occurrence of flicker. 本発明の第2の実施形態における電力マスク変換パターンの一例を示す図である。It is a figure which shows an example of the power mask conversion pattern in the 2nd Embodiment of this invention. 上記第2の実施形態において、電力マスク変換パターンを用いてマスキング処理が行われた場合の各画素部における表示用画像信号のデータ値を示す図である。In the said 2nd Embodiment, it is a figure which shows the data value of the image signal for a display in each pixel part when a masking process is performed using a power mask conversion pattern. 図18の4画素分を抽出した図である。It is the figure which extracted 4 pixels of FIG. 上記第2の実施形態におけるフリッカマスク変換パターンの一例を示す図である。It is a figure which shows an example of the flicker mask conversion pattern in the said 2nd Embodiment. 上記第2の実施形態において、フリッカマスク変換パターンを用いてマスキング処理が行われた場合の各画素部における表示用画像信号のデータ値を示す図である。In the said 2nd Embodiment, it is a figure which shows the data value of the image signal for a display in each pixel part when a masking process is performed using a flicker mask conversion pattern. 図21の4画素分を抽出した図である。It is the figure which extracted 4 pixels of FIG. 上記第2の実施形態における総合マスク変換パターンの一例を示す図である。It is a figure which shows an example of the comprehensive mask conversion pattern in the said 2nd Embodiment. 上記第2の実施形態において、総合マスク変換パターンを用いてマスキング処理が行われた場合の各画素部における表示用画像信号のデータ値を示す図である。In the said 2nd Embodiment, it is a figure which shows the data value of the image signal for a display in each pixel part when a masking process is performed using the comprehensive mask conversion pattern. 本発明の第3の実施形態におけるマスキング処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the masking process part in the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る液晶表示装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the liquid crystal display device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る液晶表示装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the liquid crystal display device which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る液晶表示装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the liquid crystal display device which concerns on the 6th Embodiment of this invention. マスキング処理部がソースドライバIC内に設けられている場合の液晶表示装置の一構成例を示すブロック図である。It is a block diagram which shows the example of 1 structure of the liquid crystal display device in case a masking process part is provided in source driver IC. Zインバージョンと呼ばれる画素構成を示す図である。It is a figure which shows the pixel structure called Z inversion. ソースライン反転方式について説明するための図である。It is a figure for demonstrating a source line inversion system. フレーム反転方式について説明するための図である。It is a figure for demonstrating a frame inversion system. ゲートライン反転方式について説明するための図である。It is a figure for demonstrating a gate line inversion system. ドット反転方式について説明するための図である。It is a figure for demonstrating a dot inversion system. 画素部について説明するための図である。It is a figure for demonstrating a pixel part. 画素部の配置について説明するための図である。It is a figure for demonstrating arrangement | positioning of a pixel part. 液晶表示装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of a liquid crystal display device. 電力消費最大画像パターン(電力消費が最大になるような画像パターン)を示す図である。It is a figure which shows a power consumption maximum image pattern (image pattern that power consumption becomes the maximum). 電力消費最大画像パターンの別の例を示す図である。It is a figure which shows another example of a power consumption maximum image pattern. フリッカ画像パターン(フリッカを引き起こすような画像パターン)を示す図である。It is a figure which shows a flicker image pattern (image pattern which causes a flicker).
 以下、添付図面を参照しつつ本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
<1.第1の実施形態>
<1.1 液晶表示装置の構成>
 図1は、本発明の第1の実施形態に係る液晶表示装置の概略構成を示すブロック図である。この液晶表示装置は、マスキング処理部100とパネル駆動部200と液晶パネル300とによって構成されている。マスキング処理部100は、入力信号Dinに後述するマスキング処理を施し、当該マスキング処理によって得られる表示用画像信号Doutを出力する。パネル駆動部200は、マスキング処理部100から出力される表示用画像信号Doutに基づいて、液晶パネル300に駆動信号SDを与える。液晶パネル300は、駆動信号SDに基づいて画像を表示する。駆動信号SDは、後述する走査信号と駆動用の映像信号とからなる。
<1. First Embodiment>
<1.1 Configuration of liquid crystal display device>
FIG. 1 is a block diagram showing a schematic configuration of a liquid crystal display device according to a first embodiment of the present invention. The liquid crystal display device includes a masking processing unit 100, a panel driving unit 200, and a liquid crystal panel 300. The masking processing unit 100 performs a masking process to be described later on the input signal Din, and outputs a display image signal Dout obtained by the masking process. The panel driving unit 200 gives a driving signal SD to the liquid crystal panel 300 based on the display image signal Dout output from the masking processing unit 100. The liquid crystal panel 300 displays an image based on the drive signal SD. The drive signal SD is composed of a scanning signal, which will be described later, and a driving video signal.
 なお、本実施形態における液晶表示装置においては、反転駆動方式についてはフレーム反転方式とソースライン反転方式とを組み合わせた方式が採用され、画素構成については縦ストライプRGBサブ画素構成(図36参照)が採用されている。但し、本実施形態とは異なる反転駆動方式が採用されている場合や本実施形態とは異なる画素構成が採用されている場合にも本発明を適用することができる。 In the liquid crystal display device according to the present embodiment, a combination of the frame inversion method and the source line inversion method is adopted as the inversion driving method, and the vertical stripe RGB sub-pixel configuration (see FIG. 36) is adopted as the pixel configuration. It has been adopted. However, the present invention can also be applied to a case where an inversion driving method different from that of the present embodiment is adopted or a case where a pixel configuration different from that of the present embodiment is adopted.
 図2は、液晶表示装置の詳細な構成を示す図である。本実施形態においては、マスキング処理部100はタイミングコントローラ10内に含まれている。また、パネル駆動部200は、ソースドライバ210およびゲートドライバ220によって構成されている。液晶パネル300内の表示部310には、複数本のソースバスラインSLと、複数本のゲートバスラインGLと、それら複数本のソースバスラインSLと複数本のゲートバスラインGLとの交差点にそれぞれ対応して設けられた複数個の画素部312とが含まれている。これら複数個の画素部312はマトリクス状に配置されて画素アレイを構成している。各画素部312は、対応する交差点を通過するゲートバスラインGLにゲート電極が接続されるとともに当該交差点を通過するソースバスラインSLにソース電極が接続されたTFT(薄膜トランジスタ)と、そのTFTのドレイン電極に接続された画素電極と、上記複数個の画素部312に共通的に設けられた対向電極である共通電極と、上記複数個の画素部312に共通的に設けられ画素電極と共通電極との間に挟持された液晶層とからなる。 FIG. 2 is a diagram showing a detailed configuration of the liquid crystal display device. In the present embodiment, the masking processing unit 100 is included in the timing controller 10. The panel driving unit 200 includes a source driver 210 and a gate driver 220. The display unit 310 in the liquid crystal panel 300 includes a plurality of source bus lines SL, a plurality of gate bus lines GL, and intersections of the plurality of source bus lines SL and the plurality of gate bus lines GL. A plurality of corresponding pixel portions 312 are included. The plurality of pixel portions 312 are arranged in a matrix to form a pixel array. Each pixel unit 312 includes a TFT (thin film transistor) having a gate electrode connected to a gate bus line GL passing through a corresponding intersection and a source electrode connected to a source bus line SL passing through the intersection, and a drain of the TFT. A pixel electrode connected to the electrode; a common electrode which is a common electrode provided in common to the plurality of pixel portions 312; a pixel electrode and a common electrode provided in common to the plurality of pixel portions 312; And a liquid crystal layer sandwiched between them.
 タイミングコントローラ10は、入力信号Dinを受け取り、表示用画像信号Doutと、ソースドライバ210の動作を制御するためのソース制御信号Sctlと、ゲートドライバ220の動作を制御するためのゲート制御信号Gctlとを出力する。なお、ソース制御信号Sctlはソーススタートパルス信号,ソースクロック信号,およびラッチストローブ信号からなり、ゲート制御信号Gctlはゲートスタートパルス信号およびゲートクロック信号からなる。 The timing controller 10 receives the input signal Din, and receives the display image signal Dout, the source control signal Sctl for controlling the operation of the source driver 210, and the gate control signal Gctl for controlling the operation of the gate driver 220. Output. The source control signal Sctl includes a source start pulse signal, a source clock signal, and a latch strobe signal, and the gate control signal Gctl includes a gate start pulse signal and a gate clock signal.
 ソースドライバ210は、タイミングコントローラ10から送られる表示用画像信号Doutとソース制御信号Sctl(ソーススタートパルス信号,ソースクロック信号,およびラッチストローブ信号)とを受け取り、ソースバスラインSLに駆動用の映像信号を印加する。このとき、ソースドライバ210では、ソースクロック信号のパルスが発生するタイミングで、各ソースバスラインSLに印加すべき電圧を示す表示用画像信号Doutが順次に保持される。そして、ラッチストローブ信号のパルスが発生するタイミングで、上記保持された表示用画像信号Doutがアナログ電圧に変換される。その変換されたアナログ電圧は、駆動用の映像信号として全てのソースバスラインSLに一斉に印加される。 The source driver 210 receives the display image signal Dout and the source control signal Sctl (source start pulse signal, source clock signal, and latch strobe signal) sent from the timing controller 10 and supplies a video signal for driving to the source bus line SL. Apply. At this time, the source driver 210 sequentially holds the display image signal Dout indicating the voltage to be applied to each source bus line SL at the timing when the pulse of the source clock signal is generated. The held display image signal Dout is converted to an analog voltage at the timing when the pulse of the latch strobe signal is generated. The converted analog voltage is applied simultaneously to all the source bus lines SL as a driving video signal.
 ゲートドライバ220は、タイミングコントローラ10から送られるゲート制御信号Gctl(ゲートスタートパルス信号およびゲートクロック信号)に基づいて、アクティブな走査信号の各ゲートバスラインGLへの印加を1垂直走査期間を周期として繰り返す。 Based on the gate control signal Gctl (gate start pulse signal and gate clock signal) sent from the timing controller 10, the gate driver 220 applies an active scanning signal to each gate bus line GL with a period of one vertical scanning period. repeat.
 以上のようにして、各ゲートバスラインGLに走査信号が印加され、各ソースバスラインSLに駆動用の映像信号が印加されることにより、入力信号Dinに応じた画像が表示部310に表示される。 As described above, a scanning signal is applied to each gate bus line GL and a driving video signal is applied to each source bus line SL, whereby an image corresponding to the input signal Din is displayed on the display unit 310. The
 なお、本実施形態においては、マスキング処理部100によってデータ値補正部が実現され、ソースドライバ210によって映像信号線駆動部が実現され、ゲートドライバ220によって走査信号線駆動部が実現されている。また、本実施形態においては、タイミングコントローラ10が入力信号Dinを受け取る処理によって入力信号受信ステップが実現され、マスキング処理部100によるマスキング処理によってデータ値補正ステップが実現され、ソースドライバ210が表示用画像信号Doutに基づいて駆動用の映像信号をソースバスラインSLに印加する処理によって表示用画像信号出力ステップが実現されている。 In this embodiment, a data value correcting unit is realized by the masking processing unit 100, a video signal line driving unit is realized by the source driver 210, and a scanning signal line driving unit is realized by the gate driver 220. In the present embodiment, the input signal reception step is realized by the process in which the timing controller 10 receives the input signal Din, the data value correction step is realized by the masking process by the masking processing unit 100, and the source driver 210 displays the display image. A display image signal output step is realized by applying a driving video signal to the source bus line SL based on the signal Dout.
<1.2 マスキング処理>
 次に、マスキング処理部100で行われるマスキング処理について説明する。マスキング処理部100では、入力信号Dinのデータ値をこの液晶表示装置での処理に適した値に補正する処理が行われる。例えば、入力信号Dinに基づく画像パターンが上述したキラーパターンであっても電力消費の大幅な増大やフリッカの発生を引き起こすことのないように、当該入力信号Dinのデータ値に補正が施される。その際、補正の前後で表示画像の見た目が変わることのないように、データ値が補正される。以下、マスキング処理の具体的な手法について説明する。
<1.2 Masking process>
Next, the masking process performed in the masking process part 100 is demonstrated. In the masking processing unit 100, processing for correcting the data value of the input signal Din to a value suitable for processing in the liquid crystal display device is performed. For example, even if the image pattern based on the input signal Din is the killer pattern described above, the data value of the input signal Din is corrected so as not to cause a significant increase in power consumption or the occurrence of flicker. At this time, the data value is corrected so that the appearance of the display image does not change before and after the correction. Hereinafter, a specific method of the masking process will be described.
 マスキング処理を行うために、この液晶表示装置には、入力信号Dinのデータ値を補正する際に用いる係数を定義した変換パターンが予め用意される。ここでは、変換パターンについて3つの例を説明する。但し、以下で説明する3つの変換パターン以外の変換パターンを用いてマスキング処理が行われても良い。 In order to perform the masking process, the liquid crystal display device is prepared in advance with a conversion pattern defining a coefficient used when correcting the data value of the input signal Din. Here, three examples of the conversion pattern will be described. However, the masking process may be performed using a conversion pattern other than the three conversion patterns described below.
<1.2.1 第1の例>
 図3は、電力消費の大幅な増大の防止を目的とする変換パターンの一例である。以下、この変換パターンのことを「電力マスク変換パターン」という。電力マスク変換パターンは、2行×1列の画素部312に対応する2個の係数によって構成されている。本実施形態においては、2個の係数の値はいずれも「1/2」となっている。なお、変換パターンがP個(Pは2以上の整数)の係数からなる場合、P個の係数の値の総和が1となるように、各係数の値が定められる。
<1.2.1 First Example>
FIG. 3 is an example of a conversion pattern for the purpose of preventing a significant increase in power consumption. Hereinafter, this conversion pattern is referred to as a “power mask conversion pattern”. The power mask conversion pattern is configured by two coefficients corresponding to the pixel portion 312 of 2 rows × 1 column. In the present embodiment, the values of the two coefficients are both “½”. When the conversion pattern includes P coefficients (P is an integer of 2 or more), the value of each coefficient is determined so that the sum of the values of P coefficients is 1.
 ここで、表示部310内の各画素部312を図4に示すようにPIX(x,y)の形式で表記して、各画素部312についての入力信号Dinのデータ値がどのように補正されるのかについて説明する。1行目1列目の画素部PIX(1,1)についての補正後のデータ値は、1行目1列目の画素部PIX(1,1)についての補正前のデータ値と2行目1列目の画素部PIX(2,1)についての補正前のデータ値とに基づいて求められる。2行目1列目の画素部PIX(2,1)についての補正後のデータ値は、2行目1列目の画素部PIX(2,1)についての補正前のデータ値と3行目1列目の画素部PIX(3,1)についての補正前のデータ値とに基づいて求められる。1行目2列目の画素部PIX(1,2)についての補正後のデータ値は、1行目2列目の画素部PIX(1,2)についての補正前のデータ値と2行目2列目の画素部PIX(2,2)についての補正前のデータ値とに基づいて求められる。2行目2列目の画素部PIX(2,2)についての補正後のデータ値は、2行目2列目の画素部PIX(2,2)についての補正前のデータ値と3行目2列目の画素部PIX(3,2)についての補正前のデータ値とに基づいて求められる。 Here, each pixel unit 312 in the display unit 310 is expressed in the form of PIX (x, y) as shown in FIG. 4, and how the data value of the input signal Din for each pixel unit 312 is corrected. I will explain. The corrected data value for the pixel portion PIX (1,1) in the first row and first column is the data value before correction for the pixel portion PIX (1,1) in the first row and first column and the second row. It is obtained based on the data value before correction for the pixel portion PIX (2, 1) in the first column. The corrected data value for the pixel portion PIX (2,1) in the second row and first column is the data value before the correction for the pixel portion PIX (2,1) in the second row and first column, and the third row. It is obtained based on the data value before correction for the pixel portion PIX (3, 1) in the first column. The corrected data value for the pixel portion PIX (1,2) in the first row and the second column is the data value before the correction for the pixel portion PIX (1,2) in the first row and the second column, and the second row. It is obtained based on the data value before correction for the pixel portion PIX (2, 2) in the second column. The corrected data value for the pixel portion PIX (2,2) in the second row and second column is the data value before the correction for the pixel portion PIX (2,2) in the second row and second column and the third row. It is obtained based on the data value before correction for the pixel portion PIX (3, 2) in the second column.
 以上のように、i行目j列目(iおよびjは自然数)の画素部PIX(i,j)についての補正後のデータ値は、i行目j列目の画素部PIX(i,j)についての補正前のデータ値と(i+1)行目j列目の画素部PIX(i+1,j)についての補正前のデータ値とに基づいて求められる。すなわち、i行目j列目の画素部PIX(i,j)についての補正後のデータ値の算出が行われる際には、i行目j列目の画素部PIX(i,j)と(i+1)行目j列目の画素部PIX(i+1,j)とによってグループが構成される。そして、グループを構成する画素部312と変換パターンを構成する係数とが1対1で対応付けられる。この例の場合、i行目j列目の画素部PIX(i,j)は図3で符号67で示す係数に対応付けられ、(i+1)行目j列目の画素部PIX(i+1,j)は図3で符号68で示す係数に対応付けられる。 As described above, the corrected data value for the pixel portion PIX (i, j) of the i-th row and j-th column (i and j are natural numbers) is the pixel portion PIX (i, j) of the i-th row and j-th column. ) For the pixel portion PIX (i + 1, j) in the (i + 1) -th row and j-th column. That is, when the corrected data value for the pixel portion PIX (i, j) in the i-th row and j-th column is calculated, the pixel portion PIX (i, j) in the i-th row and j-th column and ( A group is formed by the pixel portion PIX (i + 1, j) in the (i + 1) th row and the jth column. And the pixel part 312 which comprises a group, and the coefficient which comprises a conversion pattern are matched by 1 to 1. In this example, the pixel portion PIX (i, j) in the i-th row and the j-th column is associated with the coefficient indicated by reference numeral 67 in FIG. 3, and the pixel portion PIX (i + 1, j in the (i + 1) th row and the j-th column. ) Is associated with the coefficient indicated by reference numeral 68 in FIG.
 ここで、i行目j列目の画素部PIX(i,j)についての入力信号Dinのデータ値をD1とし、(i+1)行目j列目の画素部PIX(i+1,j)についての入力信号Dinのデータ値をD2とし、図3で符号67で示す係数をC1とし、図3で符号68で示す係数をC2とし、補正後の入力信号のデータ値(表示用画像信号Doutのデータ値)をVとすると、Vは次式(1)で求められる。
 V=D1×C1+D2×C2   ・・・(1)
Here, the data value of the input signal Din for the pixel portion PIX (i, j) in the i-th row and j-th column is D1, and the input for the pixel portion PIX (i + 1, j) in the (i + 1) -th row and j-th column. The data value of the signal Din is D2, the coefficient indicated by reference numeral 67 in FIG. 3 is C1, the coefficient indicated by reference numeral 68 in FIG. 3 is C2, and the corrected input signal data value (data value of the display image signal Dout) ) Is V, V is obtained by the following equation (1).
V = D1 × C1 + D2 × C2 (1)
 例えば、図5で符号61で示す太枠で囲まれた2個の画素部312に着目する。ここで、補正前においては、図6に示すように、2行目2列目の画素部PIX(2,2)のデータ値が100であって、3行目2列目の画素部PIX(3,2)のデータ値が20であると仮定する。このとき、図3で符号67で示す係数は2行目2列目の画素部PIX(2,2)に対応し、図3で符号68で示す係数は3行目2列目の画素部PIX(3,2)に対応している。従って、上式(1)より、2行目2列目の画素部PIX(2,2)についての補正後の入力信号のデータ値(表示用画像信号Doutのデータ値)は、60となる(図7参照)。以上のようにして、表示部310に含まれている全ての画素部312についての表示用画像信号Doutのデータ値が、電力マスク変換パターンを用いて入力信号Dinのデータ値を補正することによって求められる。 For example, attention is paid to two pixel portions 312 surrounded by a thick frame 61 shown in FIG. Here, before correction, as shown in FIG. 6, the data value of the pixel portion PIX (2, 2) in the second row and second column is 100, and the pixel portion PIX ( Assume that the data value of 3,2) is 20. At this time, the coefficient indicated by reference numeral 67 in FIG. 3 corresponds to the pixel part PIX (2, 2) in the second row and second column, and the coefficient indicated by reference numeral 68 in FIG. 3 is the pixel part PIX in the third row and second column. This corresponds to (3, 2). Therefore, from the above equation (1), the corrected input signal data value (data value of the display image signal Dout) for the pixel portion PIX (2, 2) in the second row and second column is 60 ( (See FIG. 7). As described above, the data value of the display image signal Dout for all the pixel units 312 included in the display unit 310 is obtained by correcting the data value of the input signal Din using the power mask conversion pattern. It is done.
 以上のようなマスキング処理が行われることによって、入力信号Dinに基づく画像パターンが図38に示したような電力消費最大画像パターンである場合には、各画素部312における表示用画像信号Doutのデータ値は図8に示すようなものとなる。入力信号Dinに基づく画像パターンが図39に示したような電力消費最大画像パターンである場合にも、各画素部312における表示用画像信号Doutのデータ値は図8に示すようなものとなる。このように、全ての画素部312のデータ値が128となる。これにより、入力信号Dinのデータ値を補正しない場合と比較して映像信号電圧の振幅が顕著に小さくなるので、電力消費が大幅に削減される。また、入力信号Dinのデータ値の補正前後で表示画像の見た目は変わらない。これについて、以下に説明する。 When the image pattern based on the input signal Din is the maximum power consumption image pattern as shown in FIG. 38 by performing the masking process as described above, the data of the display image signal Dout in each pixel unit 312 is displayed. The values are as shown in FIG. Even when the image pattern based on the input signal Din is the maximum power consumption image pattern as shown in FIG. 39, the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG. Thus, the data value of all the pixel units 312 is 128. As a result, the amplitude of the video signal voltage is remarkably reduced as compared with the case where the data value of the input signal Din is not corrected, so that power consumption is greatly reduced. Further, the appearance of the display image does not change before and after the correction of the data value of the input signal Din. This will be described below.
 図9は、図38の4画素分を抽出した図である。また、図10は、図39の4画素分を抽出した図である。また、図11は、図8の4画素分を抽出した図である。図9においては、1行目のデータ値は全て255であり、2行目のデータ値は全て0である。これに対して、図11においては、全てのデータ値が128である。このように、図9と図11とでは、各画素部312のデータ値は全く異なっている。従って、仮に人の目が個々の画素を区別することができるのであれば、図9に示す画像パターンに基づく表示画像と図11に示す画像パターンに基づく表示画像とは人の目には全く異なった画像として視認される。しかしながら、実際には、画素のサイズは極めて小さいので、人の目は個々の画素を区別することができない。従って、人の目では、複数の画素のまとまりを単位として画像の認識が行われる。このため、図9に示す画像パターンに基づく表示画像は、人の目には、図11に示す画像パターンに基づく表示画像と同じように見える。同様に、図10に示す画像パターンに基づく表示画像は、人の目には、図11に示す画像パターンに基づく表示画像と同じように見える。 FIG. 9 is a diagram in which four pixels of FIG. 38 are extracted. FIG. 10 is a diagram in which four pixels of FIG. 39 are extracted. FIG. 11 is a diagram in which four pixels of FIG. 8 are extracted. In FIG. 9, the data values in the first row are all 255, and the data values in the second row are all 0. In contrast, in FIG. 11, all data values are 128. Thus, the data value of each pixel unit 312 is completely different between FIG. 9 and FIG. Therefore, if the human eye can distinguish individual pixels, the display image based on the image pattern shown in FIG. 9 is completely different from the display image based on the image pattern shown in FIG. It is visually recognized as an image. However, in practice, the size of the pixels is so small that the human eye cannot distinguish between the individual pixels. Therefore, the human eye recognizes an image in units of a plurality of pixels. For this reason, the display image based on the image pattern shown in FIG. 9 looks the same as the display image based on the image pattern shown in FIG. Similarly, the display image based on the image pattern shown in FIG. 10 looks to the human eye in the same manner as the display image based on the image pattern shown in FIG.
 以上より、第1の例によれば、表示画像から生じる視覚効果に影響を及ぼすことなく従来よりも電力消費が低減される。また、データ値の補正処理は、一般的な画像処理と比べて極めて小さい単位(2サブ画素毎)で行われる。従って、色がにじんで見える「色にじみ」と呼ばれる現象や輪郭がぼやけて見える「エッジボケ」と呼ばれる現象の発生が抑制される。 As described above, according to the first example, the power consumption is reduced as compared with the conventional case without affecting the visual effect generated from the display image. Further, the data value correction processing is performed in an extremely small unit (every two subpixels) as compared with general image processing. Therefore, the occurrence of a phenomenon called “color blur” in which colors appear blurred and a phenomenon called “edge blur” in which outlines appear blurred are suppressed.
<1.2.2 第2の例>
 図12は、フリッカの発生の防止を目的とする変換パターンの一例である。以下、この変換パターンのことを「フリッカマスク変換パターン」という。フリッカマスク変換パターンは、1行×2列の画素部312に対応する2個の係数によって構成されている。本実施形態においては、2個の係数の値はいずれも「1/2」となっている。
<1.2.2 Second Example>
FIG. 12 is an example of a conversion pattern for the purpose of preventing the occurrence of flicker. Hereinafter, this conversion pattern is referred to as a “flicker mask conversion pattern”. The flicker mask conversion pattern is composed of two coefficients corresponding to the pixel portion 312 of 1 row × 2 columns. In the present embodiment, the values of the two coefficients are both “½”.
 ところで、本実施形態においては、ゲートバスラインGLの伸びる方向に着目すると、「赤色(R)のサブ画素、緑色(G)のサブ画素、青色(B)のサブ画素」の順序で、サブ画素が繰り返し配置されている(図36参照)。フリッカマスク変換パターンのように複数列の画素部312に対応する係数を含む変換パターンを用いる場合、それらの係数は同じ色を表示する画素部(サブ画素)312に対応付けられる。従って、この第2の例においては、i行目j列目の画素部PIX(i,j)についての補正後のデータ値の算出が行われる際、i行目j列目の画素部PIX(i,j)とi行目(j+3)列目の画素部PIX(i,j+3)とによってグループが形成される。例えば、4行目1列目の画素部PIX(4,1)についての補正後のデータ値の算出が行われる際、4行目1列目の画素部PIX(4,1)(図5で符号62で示す太枠の画素部)と4行目4列目の画素部PIX(4,4)(図5で符号63で示す太枠の画素部)とによってグループが形成される。また、そのグループに含まれる2つの画素部312とフリッカマスク変換パターンを構成する2個の係数とがそれぞれ対応付けられる。そして、フリッカマスク変換パターンを用いて上述した第1の例と同様にして表示用画像信号Doutのデータ値が求められる。 By the way, in this embodiment, paying attention to the extending direction of the gate bus line GL, the sub-pixels are arranged in the order of “red (R) sub-pixel, green (G) sub-pixel, blue (B) sub-pixel”. Are repeatedly arranged (see FIG. 36). When a conversion pattern including coefficients corresponding to a plurality of columns of pixel portions 312 is used, such as a flicker mask conversion pattern, these coefficients are associated with pixel portions (sub-pixels) 312 that display the same color. Therefore, in the second example, when the corrected data value is calculated for the pixel part PIX (i, j) of the i-th row and the j-th column, the pixel part PIX ( i, j) and the pixel portion PIX (i, j + 3) in the i-th row (j + 3) column form a group. For example, when the corrected data value is calculated for the pixel portion PIX (4,1) in the fourth row and first column, the pixel portion PIX (4,1) in the fourth row and first column (in FIG. 5). A group is formed by a thick frame pixel portion indicated by reference numeral 62 and a pixel portion PIX (4, 4) in the fourth row and fourth column (thick frame pixel portion indicated by reference numeral 63 in FIG. 5). Further, the two pixel units 312 included in the group are associated with the two coefficients constituting the flicker mask conversion pattern. Then, using the flicker mask conversion pattern, the data value of the display image signal Dout is obtained in the same manner as in the first example described above.
 フリッカマスク変換パターンを用いてマスキング処理が行われると、入力信号Dinに基づく画像パターンが図40に示したようなフリッカ画像パターンである場合には、各画素部312における表示用画像信号Doutのデータ値は図13に示すようなものとなる。すなわち、全ての画素部312のデータ値が64となる。これにより、全ての画素部312において液晶が同じように駆動されるので、フリッカの発生が抑制される。また、入力信号Dinのデータ値の補正前後で表示画像の見た目は変わらない。これについて、以下に説明する。 When masking processing is performed using the flicker mask conversion pattern, when the image pattern based on the input signal Din is a flicker image pattern as shown in FIG. 40, the data of the display image signal Dout in each pixel unit 312 is displayed. The values are as shown in FIG. That is, the data value of all the pixel units 312 is 64. Accordingly, since the liquid crystal is driven in the same manner in all the pixel portions 312, the occurrence of flicker is suppressed. Further, the appearance of the display image does not change before and after the correction of the data value of the input signal Din. This will be described below.
 図14は、図40の4画素分を抽出した図である。また、図15は、図13の4画素分を抽出した図である。図14においては、奇数列目のデータ値は全て128であり、偶数列目のデータ値は全て0である。これに対して、図15においては、全てのデータ値が64である。このように、図14と図15とでは、各画素部312のデータ値は全く異なっている。しかしながら、上述したように人の目は個々の画素を区別することができないので、図14に示す画像パターンに基づく表示画像は、人の目には、図15に示す画像パターンに基づく表示画像と同じように見える。 FIG. 14 is a diagram in which four pixels of FIG. 40 are extracted. FIG. 15 is a diagram in which four pixels of FIG. 13 are extracted. In FIG. 14, the data values in the odd-numbered columns are all 128, and the data values in the even-numbered columns are all 0. On the other hand, all data values are 64 in FIG. As described above, the data value of each pixel unit 312 is completely different between FIG. 14 and FIG. However, since the human eye cannot distinguish individual pixels as described above, the display image based on the image pattern shown in FIG. 14 is different from the display image based on the image pattern shown in FIG. Looks the same.
 以上より、第2の例によれば、表示画像から生じる視覚効果に影響を及ぼすことなくフリッカの発生が抑制される。また、データ値の補正処理は極めて小さい単位(2サブ画素毎)で行われるので、「色にじみ」と呼ばれる現象や「エッジボケ」と呼ばれる現象の発生が抑制される。 As described above, according to the second example, the occurrence of flicker is suppressed without affecting the visual effect generated from the display image. In addition, since the data value correction process is performed in an extremely small unit (every two subpixels), the phenomenon called “color blur” and the phenomenon called “edge blur” are suppressed.
<1.2.3 第3の例>
 図16は、電力消費の大幅な増大の防止およびフリッカの発生の防止を目的とする変換パターンの一例である。以下、この変換パターンのことを「総合マスク変換パターン」という。総合マスク変換パターンは、2行×2列の画素部312に対応する4個の係数によって構成されている。詳しくは、この総合マスク変換パターンは、2行×1列の画素部312に対応する2個の係数からなる電力マスク変換パターン(第1パターン)と1行×2列の画素部312に対応する2個の係数からなるフリッカマスク変換パターン(第2パターン)とを掛け合わせることによって得られる4個の係数によって構成されている。本実施形態においては、4個の係数の値はいずれも「1/4」となっている。
<1.2.3 Third Example>
FIG. 16 is an example of a conversion pattern for the purpose of preventing a significant increase in power consumption and preventing the occurrence of flicker. Hereinafter, this conversion pattern is referred to as “total mask conversion pattern”. The total mask conversion pattern is composed of four coefficients corresponding to the pixel portion 312 of 2 rows × 2 columns. Specifically, this total mask conversion pattern corresponds to a power mask conversion pattern (first pattern) composed of two coefficients corresponding to the pixel portion 312 of 2 rows × 1 column and a pixel portion 312 of 1 row × 2 columns. It is composed of four coefficients obtained by multiplying a flicker mask conversion pattern (second pattern) composed of two coefficients. In the present embodiment, the values of the four coefficients are all “1/4”.
 この第3の例においては、i行目j列目の画素部PIX(i,j)についての補正後のデータ値の算出が行われる際、i行目j列目の画素部PIX(i,j)と(i+1)行目j列目の画素部PIX(i+1,j)とi行目(j+3)列目の画素部PIX(i,j+3)と(i+1)行目(j+3)列目の画素部PIX(i+1,j+3)とによってグループが形成される。すなわち、同じ色を表示するための4つの画素部312によってグループが形成されている。また、そのグループに含まれる4つの画素部312と総合マスク変換パターンを構成する4個の係数とがそれぞれ対応付けられる。詳しくは、i行目j列目の画素部PIX(i,j)は図16で符号71で示す係数に対応付けられ、(i+1)行目j列目の画素部PIX(i+1,j)は図16で符号72で示す係数に対応付けられ、i行目(j+3)列目の画素部PIX(i,j+3)は図16で符号73で示す係数に対応付けられ、(i+1)行目(j+3)列目の画素部PIX(i+1,j+3)は図16で符号74で示す係数に対応付けられる。そして、上述した第1の例と同様にして、表示用画像信号Doutのデータ値が求められる。 In the third example, when the corrected data value is calculated for the pixel part PIX (i, j) of the i-th row and j-th column, the pixel part PIX (i, j, i-th row and j-th column) is calculated. j) and (i + 1) th row of jth column pixel portion PIX (i + 1, j), ith row (j + 3) th column pixel portion PIX (i, j + 3) and (i + 1) th row (j + 3) th column A group is formed by the pixel portion PIX (i + 1, j + 3). That is, a group is formed by four pixel portions 312 for displaying the same color. Further, the four pixel units 312 included in the group are associated with the four coefficients constituting the total mask conversion pattern. Specifically, the pixel portion PIX (i, j) in the i-th row and the j-th column is associated with the coefficient denoted by reference numeral 71 in FIG. 16, and the pixel portion PIX (i + 1, j) in the (i + 1) -th row and the j-th column is 16, the pixel part PIX (i, j + 3) in the i-th row (j + 3) column is associated with the coefficient denoted by reference numeral 73 in FIG. 16, and the (i + 1) -th row ( The pixel portion PIX (i + 1, j + 3) in the j + 3) column is associated with the coefficient indicated by reference numeral 74 in FIG. Then, similarly to the first example described above, the data value of the display image signal Dout is obtained.
 総合マスク変換パターンを用いてマスキング処理が行われると、入力信号Dinに基づく画像パターンが図38に示したような電力消費最大画像パターンである場合には、各画素部312における表示用画像信号Doutのデータ値は図8に示すようなものとなる。入力信号Dinに基づく画像パターンが図39に示したような電力消費最大画像パターンである場合にも、各画素部312における表示用画像信号Doutのデータ値は図8に示すようなものとなる。これにより、第1の例と同様、電力消費が大幅に削減されることが把握される。また、入力信号Dinに基づく画像パターンが図40に示したようなフリッカ画像パターンである場合には、各画素部312における表示用画像信号Doutのデータ値は図13に示すようなものとなる。これにより、第2の例と同様、フリッカの発生が抑制されることが把握される。また、第1の例および第2の例と同様の理由により、入力信号Dinのデータ値の補正前後で表示画像の見た目は変わらない。 When masking processing is performed using the total mask conversion pattern, when the image pattern based on the input signal Din is the maximum power consumption image pattern as shown in FIG. 38, the display image signal Dout in each pixel unit 312 is displayed. The data values are as shown in FIG. Even when the image pattern based on the input signal Din is the maximum power consumption image pattern as shown in FIG. 39, the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG. As a result, as in the first example, it is understood that the power consumption is greatly reduced. When the image pattern based on the input signal Din is a flicker image pattern as shown in FIG. 40, the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG. Thereby, it is understood that the occurrence of flicker is suppressed as in the second example. For the same reason as in the first example and the second example, the appearance of the display image does not change before and after the correction of the data value of the input signal Din.
 以上より、第3の例によれば、表示画像から生じる視覚効果に影響を及ぼすことなく、従来よりも電力消費が低減され、かつ、フリッカの発生が抑制される。また、データ値の補正処理は極めて小さい単位(4サブ画素毎)で行われるので、「色にじみ」と呼ばれる現象や「エッジボケ」と呼ばれる現象の発生が抑制される。 As described above, according to the third example, the power consumption is reduced more than before and the occurrence of flicker is suppressed without affecting the visual effect generated from the display image. In addition, since the data value correction processing is performed in an extremely small unit (every four subpixels), the phenomenon called “color blur” and the phenomenon called “edge blur” are suppressed.
<1.2.4 表示用画像信号のデータ値の求め方の一般化>
 変換パターンにP個(Pは2以上の整数)の係数が含まれている場合の表示用画像信号Doutのデータ値の求め方について一般化する。なお、ここでは、表示用画像信号Doutのデータ値の算出対象とする画素部(入力信号Dinのデータ値を補正しようとしている画素部)312を「着目画素部」と定義する。マスキング処理が行われる際には、着目画素部と、変換パターンに応じて定まり着目画素部と同じ色を表示するための(P-1)個の画素部とによってグループが形成される。ここで、そのグループを構成する4個の画素部312に1からPまでの番号を割り当てたとき、k番目の画素部312についての入力信号Dinのデータ値をDkとし、当該k番目の画素部312に対応する係数の値をCkとする。そうすると、着目画素部についての表示用画像信号Doutのデータ値Vは、次式(2)で求められる。
Figure JPOXMLDOC01-appb-M000001
 すなわち、上記グループに含まれる各画素部312についての入力信号Dinのデータ値と当該各画素部312に対応する係数の値との積の総和が、着目画素部についての表示用画像信号Doutのデータ値となる。
<1.2.4 Generalization of how to obtain data value of display image signal>
The method for obtaining the data value of the display image signal Dout when the conversion pattern includes P coefficients (P is an integer of 2 or more) is generalized. Here, the pixel unit 312 (pixel unit that is to correct the data value of the input signal Din) 312 that is the target of calculation of the data value of the display image signal Dout is defined as a “target pixel unit”. When the masking process is performed, a group is formed by the pixel portion of interest and (P-1) pixel portions that are determined according to the conversion pattern and display the same color as the pixel portion of interest. Here, when the numbers from 1 to P are assigned to the four pixel units 312 constituting the group, the data value of the input signal Din for the kth pixel unit 312 is Dk, and the kth pixel unit The value of the coefficient corresponding to 312 is Ck. Then, the data value V of the display image signal Dout for the target pixel portion is obtained by the following equation (2).
Figure JPOXMLDOC01-appb-M000001
That is, the sum of the products of the data value of the input signal Din for each pixel unit 312 included in the group and the coefficient value corresponding to each pixel unit 312 is the data of the display image signal Dout for the pixel unit of interest. Value.
 後述する各実施形態においても、表示部310内の各画素部312についての表示用画像信号Doutのデータ値は上式(2)によって求められる。 Also in each embodiment described later, the data value of the display image signal Dout for each pixel unit 312 in the display unit 310 is obtained by the above equation (2).
<1.3 効果>
 本実施形態によれば、液晶表示装置には、予め用意された変換パターンを用いて入力信号Dinのデータ値を補正することによって表示用画像信号Doutを生成するマスキング処理部100が設けられている。変換パターンとして電力マスク変換パターンが使用されると、入力信号Dinのデータ値を補正しない場合と比較して映像信号電圧の振幅が顕著に小さくなり、電力消費が大幅に削減される。変換パターンとしてフリッカマスク変換パターンが使用されると、入力信号Dinのデータ値を補正しない場合と比較して隣接画素間の輝度差が顕著に小さくなり、フリッカの発生が抑制される。変換パターンとして総合マスク変換パターンが使用されると、電力消費が大幅に削減されるとともにフリッカの発生が抑制される。このように、画像パターンがキラーパターンと呼ばれる特定のパターンであっても電力消費の大幅な増大やフリッカの発生を引き起こすことのない液晶表示装置が実現される。
<1.3 Effect>
According to the present embodiment, the liquid crystal display device is provided with the masking processing unit 100 that generates the display image signal Dout by correcting the data value of the input signal Din using a conversion pattern prepared in advance. . When the power mask conversion pattern is used as the conversion pattern, the amplitude of the video signal voltage is significantly reduced as compared with the case where the data value of the input signal Din is not corrected, and the power consumption is greatly reduced. When the flicker mask conversion pattern is used as the conversion pattern, the luminance difference between adjacent pixels is remarkably reduced as compared with the case where the data value of the input signal Din is not corrected, and the occurrence of flicker is suppressed. When the total mask conversion pattern is used as the conversion pattern, power consumption is greatly reduced and occurrence of flicker is suppressed. In this way, a liquid crystal display device is realized that does not cause a significant increase in power consumption or flicker even if the image pattern is a specific pattern called a killer pattern.
<2.第2の実施形態>
<2.1 概要>
 本実施形態においては、マスキング処理に用いられる変換パターンのみが上記第1の実施形態と異なっている。従って、本実施形態における液晶表示装置の構成(図1および図2を参照)や反転駆動方式については、上記第1の実施形態と同様である。以下、本実施形態におけるマスキング処理に関し、3つの変換パターンの例を説明する。
<2. Second Embodiment>
<2.1 Overview>
In the present embodiment, only the conversion pattern used for the masking process is different from that of the first embodiment. Therefore, the configuration (see FIGS. 1 and 2) and the inversion driving method of the liquid crystal display device in the present embodiment are the same as those in the first embodiment. Hereinafter, examples of three conversion patterns will be described with respect to the masking processing in the present embodiment.
<2.2 マスキング処理>
<2.2.1 第1の例>
 図17は、本実施形態における電力マスク変換パターンの一例を示す図である。この電力マスク変換パターンは、2行×1列の画素部312に対応する2個の係数によって構成されている。本実施形態においては、1行目の係数の値は「2/3」となっていて、2行目の係数の値は「1/3」となっている。マスキング処理が行われる際には、上述した着目画素部(表示用画像信号Doutのデータ値の算出対象とする画素部312)と当該着目画素部の次の行の画素部とでグループが形成される。そして、この電力マスク変換パターンを用いて上記第1の実施形態と同様にして表示用画像信号Doutのデータ値が求められる。なお、係数の値の総和が1になるのであれば、2個の係数の値は上記の値以外の値であっても良い。但し、着目画素部に対応する係数の値が、他の係数の値よりも大きくされる。これにより、着目画素部についての補正前のデータ値を重視する重み付け平均処理によって、当該着目画素部についての補正後のデータ値が求められる。
<2.2 Masking process>
<2.2.1 First Example>
FIG. 17 is a diagram illustrating an example of a power mask conversion pattern in the present embodiment. This power mask conversion pattern is configured by two coefficients corresponding to the pixel portion 312 of 2 rows × 1 column. In the present embodiment, the value of the coefficient in the first row is “2/3”, and the value of the coefficient in the second row is “1/3”. When the masking process is performed, a group is formed by the above-described target pixel portion (the pixel portion 312 that is the target of calculation of the data value of the display image signal Dout) and the pixel portion in the next row of the target pixel portion. The Then, using this power mask conversion pattern, the data value of the display image signal Dout is obtained in the same manner as in the first embodiment. If the sum of the coefficient values is 1, the two coefficient values may be values other than the above values. However, the value of the coefficient corresponding to the target pixel portion is made larger than the values of the other coefficients. As a result, the corrected data value for the target pixel portion is obtained by the weighted averaging process that places importance on the data value before correction for the target pixel portion.
 この電力マスク変換パターンを用いてマスキング処理が行われると、入力信号Dinに基づく画像パターンが図38に示したような電力消費最大画像パターンである場合には、各画素部312における表示用画像信号Doutのデータ値は図18に示すようなものとなる。入力信号Dinに基づく画像パターンが図39に示したような電力消費最大画像パターンである場合にも、各画素部312における表示用画像信号Doutのデータ値は図18に示すようなものとなる。このように、奇数行目の全ての画素部312のデータ値は170となり、偶数行目の全ての画素部312のデータ値は85となる。これにより、入力信号Dinのデータ値を補正しない場合と比較して映像信号電圧の振幅が小さくなるので、電力消費の増大が抑制される。 When masking processing is performed using this power mask conversion pattern, when the image pattern based on the input signal Din is the maximum power consumption image pattern as shown in FIG. 38, the display image signal in each pixel unit 312 is displayed. The data value of Dout is as shown in FIG. Even when the image pattern based on the input signal Din is the maximum power consumption image pattern as shown in FIG. 39, the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG. As described above, the data value of all the pixel portions 312 in the odd-numbered rows is 170, and the data value of all the pixel portions 312 in the even-numbered rows is 85. As a result, the amplitude of the video signal voltage is reduced as compared with the case where the data value of the input signal Din is not corrected, and an increase in power consumption is suppressed.
 図19は、図18の4画素分を抽出した図である。上述したように人の目は個々の画素を区別することができないので、図19に示す画像パターンに基づく表示画像は、人の目には、図11に示す画像パターンに基づく表示画像と同じように見える。また、上述したように、図9(図38の4画素分を抽出した図)や図10(図39の4画素分を抽出した図)に示す画像パターンに基づく表示画像は、人の目には、図11に示す画像パターンに基づく表示画像と同じように見える。以上より、入力信号Dinのデータ値の補正前後で表示画像の見た目は変わらない。 FIG. 19 is a diagram in which four pixels of FIG. 18 are extracted. Since the human eye cannot distinguish individual pixels as described above, the display image based on the image pattern shown in FIG. 19 is similar to the display image based on the image pattern shown in FIG. Looks like. Further, as described above, the display image based on the image pattern shown in FIG. 9 (a diagram obtained by extracting four pixels in FIG. 38) or FIG. 10 (a diagram obtained by extracting four pixels in FIG. 39) is a human eye. Looks the same as the display image based on the image pattern shown in FIG. From the above, the appearance of the display image does not change before and after the correction of the data value of the input signal Din.
 以上より、上記第1の実施形態の第1の例と同様、表示画像から生じる視覚効果に影響を及ぼすことなく従来よりも電力消費が低減される。また、データ値の補正処理は、一般的な画像処理と比べて極めて小さい単位(2サブ画素毎)で行われる。ここで、本実施形態においては、電力マスク変換パターンに含まれている係数のうちの一方の値(データ値の算出対象となっている画素部312に対応付けられる係数の値)が他方の値よりも大きくなっている。これにより、上記第1の実施形態の第1の例と比較して、元画像(データ値を補正する前の画像)が重視され、「色にじみ」と呼ばれる現象や「エッジボケ」と呼ばれる現象の発生が効果的に抑制される。 As described above, similarly to the first example of the first embodiment, the power consumption is reduced as compared with the conventional case without affecting the visual effect generated from the display image. Further, the data value correction processing is performed in an extremely small unit (every two subpixels) as compared with general image processing. Here, in the present embodiment, one of the coefficients included in the power mask conversion pattern (the value of the coefficient associated with the pixel unit 312 that is the data value calculation target) is the other value. Is bigger than. As a result, compared to the first example of the first embodiment, the original image (the image before the data value is corrected) is emphasized, and a phenomenon called “color blur” or a phenomenon called “edge blur” occurs. Generation is effectively suppressed.
<2.2.2 第2の例>
 図20は、本実施形態におけるフリッカマスク変換パターンの一例を示す図である。このフリッカマスク変換パターンは、1行×2列の画素部312に対応する2個の係数によって構成されている。本実施形態においては、1列目の係数の値は「2/3」となっていて、2列目の係数の値は「1/3」となっている。マスキング処理が行われる際には、上述した着目画素部(表示用画像信号Doutのデータ値の算出対象とする画素部312)と当該着目画素部の3列右隣の画素部とでグループが形成される。すなわち、同じ色を表示するための隣接する2つのサブ画素によってグループが形成される。そして、このフリッカマスク変換パターンを用いて上記第1の実施形態と同様にして表示用画像信号Doutのデータ値が求められる。なお、係数の値の総和が1になるのであれば、2個の係数の値は上記の値以外の値であっても良い。但し、着目画素部に対応する係数の値が、他の係数の値よりも大きくされる。これにより、着目画素部についての補正前のデータ値を重視する重み付け平均処理によって、当該着目画素部についての補正後のデータ値が求められる。
<2.2.2 Second Example>
FIG. 20 is a diagram illustrating an example of a flicker mask conversion pattern in the present embodiment. This flicker mask conversion pattern is constituted by two coefficients corresponding to the pixel portion 312 of 1 row × 2 columns. In the present embodiment, the value of the coefficient in the first column is “2/3”, and the value of the coefficient in the second column is “1/3”. When the masking process is performed, a group is formed by the above-described pixel portion of interest (the pixel portion 312 to which the data value of the display image signal Dout is calculated) and the pixel portion adjacent to the right of the three columns of the pixel portion of interest. Is done. That is, a group is formed by two adjacent sub-pixels for displaying the same color. Then, using this flicker mask conversion pattern, the data value of the display image signal Dout is obtained in the same manner as in the first embodiment. If the sum of the coefficient values is 1, the two coefficient values may be values other than the above values. However, the value of the coefficient corresponding to the target pixel portion is made larger than the values of the other coefficients. As a result, the corrected data value for the target pixel portion is obtained by the weighted averaging process that places importance on the data value before correction for the target pixel portion.
 このフリッカマスク変換パターンを用いてマスキング処理が行われると、入力信号Dinに基づく画像パターンが図40に示したようなフリッカ画像パターンである場合には、各画素部312における表示用画像信号Doutのデータ値は図21に示すようなものとなる。このように、奇数列目の全ての画素部312のデータ値は85となり、偶数列目の全ての画素部312のデータ値は43となる。これにより、入力信号Dinのデータ値を補正しない場合と比較して隣接画素間の輝度差が小さくなるので、フリッカの発生が抑制される。 When masking processing is performed using this flicker mask conversion pattern, if the image pattern based on the input signal Din is a flicker image pattern as shown in FIG. 40, the display image signal Dout in each pixel unit 312 is displayed. Data values are as shown in FIG. Thus, the data value of all the pixel portions 312 in the odd-numbered columns is 85, and the data value of all the pixel portions 312 in the even-numbered columns is 43. As a result, the luminance difference between adjacent pixels is reduced as compared with the case where the data value of the input signal Din is not corrected, and the occurrence of flicker is suppressed.
 図22は、図21の4画素分を抽出した図である。上述したように人の目は個々の画素を区別することができないので、図22に示す画像パターンに基づく表示画像は、人の目には、図15に示す画像パターンに基づく表示画像と同じように見える。また、上述したように、図14(図40の4画素分を抽出した図)に示す画像パターンに基づく表示画像は、人の目には、図15に示す画像パターンに基づく表示画像と同じように見える。以上より、入力信号Dinのデータ値の補正前後で表示画像の見た目は変わらない。 FIG. 22 is a diagram in which four pixels of FIG. 21 are extracted. Since the human eye cannot distinguish individual pixels as described above, the display image based on the image pattern shown in FIG. 22 is similar to the display image based on the image pattern shown in FIG. Looks like. Further, as described above, the display image based on the image pattern shown in FIG. 14 (the figure obtained by extracting four pixels in FIG. 40) is similar to the display image based on the image pattern shown in FIG. Looks like. From the above, the appearance of the display image does not change before and after the correction of the data value of the input signal Din.
 以上より、上記第1の実施形態の第2の例と同様、表示画像から生じる視覚効果に影響を及ぼすことなくフリッカの発生が抑制される。また、データ値の補正処理は、一般的な画像処理と比べて極めて小さい単位(2サブ画素毎)で行われる。ここで、本実施形態においては、フリッカマスク変換パターンに含まれている係数のうちの一方の値(データ値の算出対象となっている画素部312に対応付けられる係数の値)が他方の値よりも大きくなっている。これにより、上記第1の実施形態の第2の例と比較して、元画像(データ値を補正する前の画像)が重視され、「色にじみ」と呼ばれる現象や「エッジボケ」と呼ばれる現象の発生が効果的に抑制される。 As described above, as in the second example of the first embodiment, the occurrence of flicker is suppressed without affecting the visual effect generated from the display image. Further, the data value correction processing is performed in an extremely small unit (every two subpixels) as compared with general image processing. Here, in the present embodiment, one of the coefficients included in the flicker mask conversion pattern (the value of the coefficient associated with the pixel unit 312 for which the data value is calculated) is the other value. Is bigger than. As a result, compared to the second example of the first embodiment, the original image (the image before the data value is corrected) is emphasized, and a phenomenon called “color blur” or a phenomenon called “edge blur” occurs. Generation is effectively suppressed.
<2.2.3 第3の例>
 図23は、本実施形態における総合マスク変換パターンの一例を示す図である。この総合マスク変換パターンは、2行×2列の画素部312に対応する4個の係数によって構成されている。本実施形態においては、左上の係数の値は「1/2」となっていて、それ以外の係数の値は「1/6」となっている。マスキング処理が行われる際には、i行目j列目の画素部PIX(i,j)を着目画素部(表示用画像信号Doutのデータ値の算出対象とする画素部312)とすると、着目画素部PIX(i,j)と(i+1)行目j列目の画素部PIX(i+1,j)とi行目(j+3)列目の画素部PIX(i,j+3)と(i+1)行目(j+3)列目の画素部PIX(i+1,j+3)とでグループが形成される。すなわち、同じ色を表示するための隣接する4つのサブ画素によってグループが形成される。なお、この例では、着目画素部PIX(i,j)は図23で符号75で示す係数に対応付けられ、(i+1)行目j列目の画素部PIX(i+1,j)は図23で符号76で示す係数に対応付けられ、i行目(j+3)列目の画素部PIX(i,j+3)は図23で符号77で示す係数に対応付けられ、(i+1)行目(j+3)列目の画素部PIX(i+1,j+3)は図23で符号78で示す係数に対応付けられる。そして、この総合マスク変換パターンを用いて上記第1の実施形態と同様にして表示用画像信号Doutのデータ値が求められる。
<2.2.3 Third Example>
FIG. 23 is a diagram showing an example of a general mask conversion pattern in the present embodiment. This total mask conversion pattern is composed of four coefficients corresponding to the pixel portion 312 of 2 rows × 2 columns. In the present embodiment, the value of the upper left coefficient is “1/2”, and the values of the other coefficients are “1/6”. When the masking process is performed, if the pixel portion PIX (i, j) in the i-th row and the j-th column is the target pixel portion (the pixel portion 312 for which the data value of the display image signal Dout is calculated), Pixel part PIX (i, j), pixel part PIX (i, j + 3) of pixel part PIX (i + 1, j) and i line (j + 3) column of (i + 1) line and j column A group is formed by the pixel portion PIX (i + 1, j + 3) in the (j + 3) column. That is, a group is formed by four adjacent sub-pixels for displaying the same color. In this example, the pixel portion of interest PIX (i, j) is associated with the coefficient indicated by reference numeral 75 in FIG. 23, and the pixel portion PIX (i + 1, j) of the (i + 1) th row and jth column is shown in FIG. The pixel portion PIX (i, j + 3) in the i-th row (j + 3) column is associated with the coefficient indicated by the symbol 77 in FIG. 23, and the (i + 1) -th row (j + 3) column. The pixel portion PIX (i + 1, j + 3) of the eye is associated with a coefficient indicated by reference numeral 78 in FIG. Then, using this comprehensive mask conversion pattern, the data value of the display image signal Dout is obtained in the same manner as in the first embodiment.
 この総合マスク変換パターンを用いてマスキング処理が行われると、入力信号Dinに基づく画像パターンが図38に示したような電力消費最大画像パターンである場合には、各画素部312における表示用画像信号Doutのデータ値は図18に示すようなものとなる。入力信号Dinに基づく画像パターンが図39に示したような電力消費最大画像パターンである場合には、各画素部312における表示用画像信号Doutのデータ値は図24に示すようなものとなる。このように、全ての画素部312のデータ値は170または85のいずれかとなる。これにより、入力信号Dinのデータ値を補正しない場合と比較して映像信号電圧の振幅が小さくなるので、電力消費の増大が抑制される。また、入力信号Dinに基づく画像パターンが図40に示したようなフリッカ画像パターンである場合には、各画素部312における表示用画像信号Doutのデータ値は図21に示すようなものとなる。これにより、第2の例と同様、入力信号Dinのデータ値を補正しない場合と比較して隣接画素間の輝度差が小さくなるので、フリッカの発生が抑制される。また、第1の例および第2の例と同様の理由により、入力信号Dinのデータ値の補正前後で表示画像の見た目は変わらない。 When masking processing is performed using this total mask conversion pattern, when the image pattern based on the input signal Din is the maximum power consumption image pattern as shown in FIG. 38, the display image signal in each pixel unit 312 is displayed. The data value of Dout is as shown in FIG. When the image pattern based on the input signal Din is the maximum power consumption image pattern as shown in FIG. 39, the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG. As described above, the data value of all the pixel portions 312 is either 170 or 85. As a result, the amplitude of the video signal voltage is reduced as compared with the case where the data value of the input signal Din is not corrected, and an increase in power consumption is suppressed. When the image pattern based on the input signal Din is a flicker image pattern as shown in FIG. 40, the data value of the display image signal Dout in each pixel unit 312 is as shown in FIG. As a result, as in the second example, the luminance difference between adjacent pixels is reduced as compared with the case where the data value of the input signal Din is not corrected, and the occurrence of flicker is suppressed. For the same reason as in the first example and the second example, the appearance of the display image does not change before and after the correction of the data value of the input signal Din.
 以上より、上記第1の実施形態の第3の例と同様、表示画像から生じる視覚効果に影響を及ぼすことなく、従来よりも電力消費が低減され、かつ、フリッカの発生が抑制される。また、データ値の補正処理は、一般的な画像処理と比べて極めて小さい単位(4サブ画素毎)で行われる。ここで、本実施形態においては、総合マスク変換パターンに含まれている4個の係数のうちの1つの値(データ値の算出対象となっている画素部312に対応付けられる係数の値)が他の係数の値よりも大きくなっている。これにより、上記第1の実施形態の第3の例と比較して、元画像(データ値を補正する前の画像)が重視され、「色にじみ」と呼ばれる現象や「エッジボケ」と呼ばれる現象の発生が効果的に抑制される。 As described above, similarly to the third example of the first embodiment, the power consumption is reduced more than before and the occurrence of flicker is suppressed without affecting the visual effect generated from the display image. Further, the data value correction processing is performed in an extremely small unit (every four subpixels) as compared with general image processing. Here, in the present embodiment, one of the four coefficients included in the total mask conversion pattern (the value of the coefficient associated with the pixel unit 312 for which the data value is calculated) is set. It is larger than the values of other coefficients. As a result, compared to the third example of the first embodiment, the original image (the image before the data value is corrected) is emphasized, and a phenomenon called “color blur” or a phenomenon called “edge blur” occurs. Generation is effectively suppressed.
<2.3 効果>
 本実施形態によれば、上記第1の実施形態と同様、画像パターンがキラーパターンと呼ばれる特定のパターンであっても電力消費の大幅な増大やフリッカの発生を引き起こすことのない液晶表示装置が実現される。また、マスキング処理の際には、上記第1の実施形態と比較して補正前の画像に近くなるように、入力信号Dinのデータ値が補正される。これにより、「色にじみ」と呼ばれる現象や「エッジボケ」と呼ばれる現象の発生が効果的に抑制される。
<2.3 Effects>
According to the present embodiment, as in the first embodiment, a liquid crystal display device that does not cause a significant increase in power consumption or flicker even if the image pattern is a specific pattern called a killer pattern is realized. Is done. In the masking process, the data value of the input signal Din is corrected so as to be closer to the image before correction compared to the first embodiment. This effectively suppresses the occurrence of a phenomenon called “color blur” and a phenomenon called “edge blur”.
<3.第3の実施形態>
<3.1 構成など>
 上記第1の実施形態および上記第2の実施形態においては、マスキング処理部100では1つの変換パターンを用いてマスキング処理が行われることを前提に説明していた。これに対して、本実施形態においては、2種類の変換パターンを順次に用いてマスキング処理が行われる。
<3. Third Embodiment>
<3.1 Configuration etc.>
In the first embodiment and the second embodiment described above, the masking processing unit 100 has been described on the assumption that masking processing is performed using one conversion pattern. On the other hand, in this embodiment, masking processing is performed using two types of conversion patterns in sequence.
 図25は、本実施形態におけるマスキング処理部100の構成を示すブロック図である。本実施形態においては、マスキング処理部100は、第1マスキング処理部101と第2マスキング処理部102とによって構成されている。第1マスキング処理部101は、予め用意された複数の変換パターンのうちの1つを用いて入力信号Dinにマスキング処理を施すことによって、中間データDmを生成する。第2マスキング処理部102は、第1マスキング処理部101によって用いられた変換パターンとは異なる変換パターンを用いて中間データDmにマスキング処理を施すことによって、表示用画像信号Doutを生成する。第2マスキング処理部102で生成された表示用画像信号Doutは、パネル駆動部200(図1参照)に与えられる。 FIG. 25 is a block diagram showing a configuration of the masking processing unit 100 in the present embodiment. In the present embodiment, the masking processing unit 100 includes a first masking processing unit 101 and a second masking processing unit 102. The first masking processing unit 101 generates intermediate data Dm by performing masking processing on the input signal Din using one of a plurality of conversion patterns prepared in advance. The second masking processing unit 102 generates a display image signal Dout by performing masking processing on the intermediate data Dm using a conversion pattern different from the conversion pattern used by the first masking processing unit 101. The display image signal Dout generated by the second masking processing unit 102 is given to the panel driving unit 200 (see FIG. 1).
 例えば、第1マスキング処理部101では、電力マスク変換パターンを用いてマスキング処理が行われ、第2マスキング処理部102では、フリッカマスク変換パターンを用いてマスキング処理が行われる。これにより、総合マスク変換パターンを用いてマスキング処理が行われた場合と同様の表示用画像信号Doutが生成される。 For example, the first masking processing unit 101 performs masking processing using the power mask conversion pattern, and the second masking processing unit 102 performs masking processing using the flicker mask conversion pattern. As a result, a display image signal Dout similar to that when the masking process is performed using the total mask conversion pattern is generated.
 なお、第1マスキング処理部101および第2マスキング処理部102では、第1の実施形態で説明した3つの変換パターン以外の変換パターンを用いてマスキング処理を行うこともできる。例えば、第1の実施形態で説明した3つの変換パターン以外の1つの変換パターンと、電力マスク変換パターン,フリッカマスク変換パターン,および総合マスク変換パターンのうちのいずれか1つとを用いてマスキング処理が行われても良い。また、例えば、第1の実施形態で説明した3つの変換パターン以外の2つの変換パターンを用いてマスキング処理が行われても良い。さらに、ここでは2種類の変換パターンを用いてマスキング処理が行われる例を示しているが、本発明はこれに限定されず、3種類以上の変換パターンを用いてマスキング処理が行われても良い。 Note that the first masking processing unit 101 and the second masking processing unit 102 can perform masking processing using conversion patterns other than the three conversion patterns described in the first embodiment. For example, the masking process is performed using one conversion pattern other than the three conversion patterns described in the first embodiment and any one of the power mask conversion pattern, the flicker mask conversion pattern, and the total mask conversion pattern. It may be done. Further, for example, the masking process may be performed using two conversion patterns other than the three conversion patterns described in the first embodiment. Furthermore, although an example in which masking processing is performed using two types of conversion patterns is shown here, the present invention is not limited to this, and masking processing may be performed using three or more types of conversion patterns. .
<3.2 効果>
 本実施形態によれば、マスキング処理が行われる際に、複数種類の変換パターンが順次に使用される。これにより、様々なキラーパターンに適応することのできる液晶表示装置が実現される。
<3.2 Effects>
According to the present embodiment, when the masking process is performed, a plurality of types of conversion patterns are sequentially used. Thereby, a liquid crystal display device that can be adapted to various killer patterns is realized.
<4.第4の実施形態>
<4.1 構成など>
 図26は、本発明の第4の実施形態に係る液晶表示装置の概略構成を示すブロック図である。図26に示すように、本実施形態においては、マスキング処理部100には、第1マスキング処理部111と第2マスキング処理部112と切替制御部120とが含まれている。第1マスキング処理部111は、或る1つの種類の変換パターンを用いて入力信号Dinにマスキング処理を施すことによって、第1の内部データd1を生成する。第2マスキング処理部112は、第1マスキング処理部111によって用いられた変換パターンとは異なる変換パターンを用いて入力信号Dinにマスキング処理を施すことによって、第2の内部データd2を生成する。切替制御部120は、例えば外部から与えられる切り替え制御信号SW1に応じて、表示用画像信号Doutとしてパネル駆動部200に与えられる信号を切り替える。
<4. Fourth Embodiment>
<4.1 Configuration etc.>
FIG. 26 is a block diagram showing a schematic configuration of a liquid crystal display device according to the fourth embodiment of the present invention. As shown in FIG. 26, in the present embodiment, the masking processing unit 100 includes a first masking processing unit 111, a second masking processing unit 112, and a switching control unit 120. The first masking processing unit 111 generates first internal data d1 by performing a masking process on the input signal Din using a certain type of conversion pattern. The second masking processing unit 112 generates the second internal data d2 by performing masking processing on the input signal Din using a conversion pattern different from the conversion pattern used by the first masking processing unit 111. The switching control unit 120 switches a signal supplied to the panel driving unit 200 as the display image signal Dout, for example, according to a switching control signal SW1 supplied from the outside.
 切り替え制御信号SW1によって点Kと点K1とが接続された場合には、入力信号Dinがそのまま表示用画像信号Doutとしてパネル駆動部200に与えられる。切り替え制御信号SW1によって点Kと点K2とが接続された場合には、第1マスキング処理部111によって生成された第1の内部データd1が表示用画像信号Doutとしてパネル駆動部200に与えられる。切り替え制御信号SW1によって点Kと点K3とが接続された場合には、第2マスキング処理部112によって生成された第2の内部データd2が表示用画像信号Doutとしてパネル駆動部200に与えられる。 When the point K and the point K1 are connected by the switching control signal SW1, the input signal Din is directly supplied to the panel driving unit 200 as the display image signal Dout. When the point K and the point K2 are connected by the switching control signal SW1, the first internal data d1 generated by the first masking processing unit 111 is given to the panel driving unit 200 as the display image signal Dout. When the point K and the point K3 are connected by the switching control signal SW1, the second internal data d2 generated by the second masking processing unit 112 is given to the panel driving unit 200 as the display image signal Dout.
 例えば、第1マスキング処理部111では電力マスク変換パターンを用いてマスキング処理が行われ、かつ、第2マスキング処理部112ではフリッカマスク変換パターンを用いてマスキング処理が行われるようにすることができる。そして、液晶表示装置の仕様やユーザーの要求に応じて、切り替え制御信号SW1が切替制御部120に与えられる。このとき、例えば低消費電力を重視する液晶表示装置において、点Kと点K2とが接続されるよう切り替え制御信号SW1を切替制御部120に与えることによって、電力マスク変換パターンを用いて入力信号Dinにマスキング処理が施されたデータをパネル駆動部200に与えることが可能となる。また、例えば入力信号Dinの内容を解析して切り替え制御信号SW1を切替制御部120に与える構成とすることにより、不必要に入力信号Dinのデータ値に補正を施すことなく、電力消費の大幅な増大やフリッカの発生を抑制することが可能となる。 For example, the first masking processing unit 111 can perform masking processing using the power mask conversion pattern, and the second masking processing unit 112 can perform masking processing using the flicker mask conversion pattern. Then, the switching control signal SW1 is given to the switching control unit 120 according to the specifications of the liquid crystal display device and the user's request. At this time, for example, in a liquid crystal display device in which low power consumption is important, the input control signal SW1 is supplied to the switching control unit 120 so that the point K and the point K2 are connected, thereby using the power mask conversion pattern to input the signal Din. It is possible to provide the panel driver 200 with the data subjected to the masking process. In addition, for example, by analyzing the contents of the input signal Din and providing the switching control signal SW1 to the switching control unit 120, power consumption is significantly increased without unnecessarily correcting the data value of the input signal Din. Increase and occurrence of flicker can be suppressed.
<4.2 効果>
 本実施形態によれば、予め2種類の変換パターンが用意され、マスキング処理に用いる変換パターンが適宜選択される。また、マスキング処理が行われないようにすることもできる。以上より、不必要に入力信号Dinのデータ値に補正を施すことなく電力消費の大幅な増大やフリッカの発生を抑制することのできる液晶表示装置が実現される。
<4.2 Effects>
According to this embodiment, two types of conversion patterns are prepared in advance, and the conversion pattern used for the masking process is appropriately selected. Further, the masking process can be prevented from being performed. As described above, a liquid crystal display device can be realized that can suppress a significant increase in power consumption and occurrence of flicker without unnecessarily correcting the data value of the input signal Din.
<5.第5の実施形態>
<5.1 構成など>
 上記第1~第4の実施形態においては、液晶パネル300への入力信号の階調レベルと表示輝度との関係について、液晶パネル300が線形の特性を有していることを前提に説明していた。しかしながら、一般的には、液晶パネル300は非線形の特性を有している。そこで、本実施形態においては、非線形の特性を有する液晶パネル300が採用されているものとする。また、液晶表示装置に入力される信号は、一般的には、ガンマ補正処理が施された信号である。そこで、本実施形態においては、液晶表示装置にはガンマ補正処理が施された入力信号Dinが入力されるものとする。
<5. Fifth Embodiment>
<5.1 Configuration etc.>
In the first to fourth embodiments, the relationship between the gradation level of the input signal to the liquid crystal panel 300 and the display luminance is described on the assumption that the liquid crystal panel 300 has linear characteristics. It was. However, in general, the liquid crystal panel 300 has nonlinear characteristics. Therefore, in the present embodiment, it is assumed that the liquid crystal panel 300 having nonlinear characteristics is employed. The signal input to the liquid crystal display device is generally a signal that has been subjected to gamma correction processing. Therefore, in the present embodiment, it is assumed that an input signal Din that has been subjected to gamma correction processing is input to the liquid crystal display device.
 図27は、本発明の第5の実施形態に係る液晶表示装置の概略構成を示すブロック図である。図27に示すように、本実施形態における液晶表示装置には、上記第1の実施形態における構成要素(図1参照)に加えて、デガンマ補正処理部410およびガンマ補正処理部420が設けられている。デガンマ補正処理部410は、入力信号Dinにデガンマ補正処理を施す。これにより、入力信号Dinは非線形のRGBデータから線形のRGBデータに変換される。マスキング処理部100では、上記各実施形態と同様にしてマスキング処理が行われる。これにより、表示用画像信号Doutが生成される。このとき、非線形のRGBデータではなく線形のRGBデータに対してデータ値を補正する処理が行われるので、補正後のデータ値が適切に求められる。ガンマ補正処理部420は、マスキング処理部100で生成された表示用画像信号Doutにガンマ補正処理を施す。これによりパネル駆動部200に与えられる表示用画像信号Doutは、非線形のRGBデータとなる。なお、ガンマ補正処理部420でのガンマ補正処理は、液晶パネル300のガンマ特性に応じて行われる。典型的には、液晶パネル300は、“γ=2.2”のガンマ特性を有している。この場合、ガンマ補正処理部420では、“γ=2.2”のガンマ補正処理が行われる。デガンマ補正処理およびガンマ補正処理については、公知の手法を用いることができる。 FIG. 27 is a block diagram showing a schematic configuration of a liquid crystal display device according to the fifth embodiment of the present invention. As shown in FIG. 27, the liquid crystal display device according to the present embodiment is provided with a degamma correction processing unit 410 and a gamma correction processing unit 420 in addition to the components in the first embodiment (see FIG. 1). Yes. The degamma correction processing unit 410 performs degamma correction processing on the input signal Din. As a result, the input signal Din is converted from nonlinear RGB data to linear RGB data. In the masking processing unit 100, masking processing is performed in the same manner as in the above embodiments. Thereby, the display image signal Dout is generated. At this time, since the process of correcting the data value is performed on the linear RGB data instead of the non-linear RGB data, the corrected data value is appropriately obtained. The gamma correction processing unit 420 performs gamma correction processing on the display image signal Dout generated by the masking processing unit 100. Thereby, the display image signal Dout given to the panel drive unit 200 becomes nonlinear RGB data. Note that the gamma correction processing in the gamma correction processing unit 420 is performed according to the gamma characteristics of the liquid crystal panel 300. Typically, the liquid crystal panel 300 has a gamma characteristic of “γ = 2.2”. In this case, the gamma correction processing unit 420 performs gamma correction processing of “γ = 2.2”. A known technique can be used for the degamma correction process and the gamma correction process.
<5.2 効果>
 本実施形態によれば、上記第1の実施形態と同様の効果が得られるのに加えて、次のような効果が得られる。本実施形態においては、入力信号Dinにデガンマ補正処理が施され、デガンマ補正処理後のデータにマスキング処理が施される。このため、入力信号Dinが非線形のデータであっても、補正後のデータ値が適切に求められる。また、マスキング処理部100で生成された表示用画像信号Doutにガンマ補正処理が施される。これにより、液晶パネル300が非線形の特性を有している場合でも、液晶パネル300の特性を考慮した画像表示が行われる。
<5.2 Effects>
According to the present embodiment, in addition to the same effects as those of the first embodiment, the following effects can be obtained. In the present embodiment, degamma correction processing is performed on the input signal Din, and masking processing is performed on the data after the degamma correction processing. For this reason, even if the input signal Din is non-linear data, the corrected data value is obtained appropriately. Further, the display image signal Dout generated by the masking processing unit 100 is subjected to gamma correction processing. Thereby, even when the liquid crystal panel 300 has a non-linear characteristic, the image display which considered the characteristic of the liquid crystal panel 300 is performed.
<6.第6の実施形態>
<6.1 構成など>
 図28は、本発明の第6の実施形態に係る液晶表示装置の概略構成を示すブロック図である。図28に示すように、本実施形態における液晶表示装置には、上記第5の実施形態における構成要素(図27参照)に加えて、第1のマスキング制御部131および第2のマスキング制御部132が設けられている。第1のマスキング制御部131は、切り替え制御信号SW2に応じて、デガンマ補正処理部410への入力信号Dinの供給の可否を切り替える。第2のマスキング制御部132は、切り替え制御信号SW2に応じて、表示用画像信号Doutとしてパネル駆動部200に与えられる信号を切り替える。なお、ここでは、切り替え制御信号SW2がハイレベルであれば点P1と点P2とが接続されるとともに点Qと点Q1とが接続され、切り替え制御信号SW2がローレベルであれば点P1と点P2とが切断されるとともに点Qと点Q2とが接続されるものと仮定する。
<6. Sixth Embodiment>
<6.1 Configuration etc.>
FIG. 28 is a block diagram showing a schematic configuration of a liquid crystal display device according to the sixth embodiment of the present invention. As shown in FIG. 28, the liquid crystal display device according to the present embodiment includes a first masking control unit 131 and a second masking control unit 132 in addition to the components in the fifth embodiment (see FIG. 27). Is provided. The first masking control unit 131 switches whether to supply the input signal Din to the degamma correction processing unit 410 according to the switching control signal SW2. The second masking control unit 132 switches a signal supplied to the panel drive unit 200 as the display image signal Dout according to the switching control signal SW2. Here, if the switching control signal SW2 is at a high level, the point P1 and the point P2 are connected and the point Q and the point Q1 are connected. If the switching control signal SW2 is at a low level, the point P1 and the point P2 are connected. Assume that P2 is disconnected and point Q and point Q2 are connected.
 以上のような構成により、液晶パネル300のガンマ特性を考慮したマスキング処理の実行の有無が、切り替え制御信号SW2に応じて切り替えられる。切り替え制御信号SW2がハイレベルになっているときには、入力信号Dinはデガンマ補正処理部410に与えられ、デガンマ補正処理部410は、当該入力信号Dinにデガンマ補正処理を施す。マスキング処理部100では、上記各実施形態と同様にしてマスキング処理が行われる。ガンマ補正処理部420は、マスキング処理部100で生成された表示用画像信号Doutにガンマ補正処理を施す。そして、ガンマ補正処理が施された表示用画像信号Doutがパネル駆動部200に与えられる。これに対して、切り替え制御信号SW2がローレベルになっているときには、入力信号Dinがそのまま表示用画像信号Doutとしてパネル駆動部200に与えられる。このとき、デガンマ補正処理,マスキング処理,およびガンマ補正処理は行われない。 With the above configuration, whether or not the masking process is performed in consideration of the gamma characteristic of the liquid crystal panel 300 is switched according to the switching control signal SW2. When the switching control signal SW2 is at a high level, the input signal Din is given to the degamma correction processing unit 410, and the degamma correction processing unit 410 performs degamma correction processing on the input signal Din. In the masking processing unit 100, masking processing is performed in the same manner as in the above embodiments. The gamma correction processing unit 420 performs gamma correction processing on the display image signal Dout generated by the masking processing unit 100. Then, the display image signal Dout subjected to the gamma correction processing is given to the panel drive unit 200. On the other hand, when the switching control signal SW2 is at the low level, the input signal Din is directly supplied to the panel drive unit 200 as the display image signal Dout. At this time, the degamma correction process, the masking process, and the gamma correction process are not performed.
<6.2 効果>
 本実施形態によれば、デガンマ補正処理,マスキング処理,およびガンマ補正処理からなる一連の処理の実行の有無が、切り替え制御信号SW2に基づいて切り替えられる。これにより、上記一連の処理を不必要に実行することを防止することができ、電力消費の増大が抑制される。
<6.2 Effects>
According to the present embodiment, whether or not to execute a series of processes including a degamma correction process, a masking process, and a gamma correction process is switched based on the switching control signal SW2. Thereby, it is possible to prevent the above series of processes from being performed unnecessarily, and an increase in power consumption is suppressed.
<7.その他>
 本発明は、上述の各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、上記各実施形態においては、マスキング処理部100はタイミングコントローラ10内に設けられていることを前提に説明したが、本発明はこれに限定されない。図29は、マスキング処理部100がソースドライバIC500内に設けられている場合の液晶表示装置の一構成例を示すブロック図である。図29に示す構成においては、液晶表示装置は、表示部310およびゲート駆動部320を含む液晶パネル300と、マスキング処理部100,タイミング制御部510,およびソース駆動部520を含むソースドライバIC500とによって構成されている。この構成においては、マスキング処理部100で生成された表示用画像信号Doutはソース駆動部520に与えられ、ソース駆動部520は当該表示用画像信号Doutに基づいてソースバスラインSLを駆動する。このような構成の液晶表示装置においても、本発明を適用することができる。
<7. Other>
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in each of the above embodiments, the masking processing unit 100 has been described on the assumption that it is provided in the timing controller 10, but the present invention is not limited to this. FIG. 29 is a block diagram illustrating a configuration example of a liquid crystal display device when the masking processing unit 100 is provided in the source driver IC 500. In the configuration shown in FIG. 29, the liquid crystal display device includes a liquid crystal panel 300 including a display unit 310 and a gate driving unit 320, and a source driver IC 500 including a masking processing unit 100, a timing control unit 510, and a source driving unit 520. It is configured. In this configuration, the display image signal Dout generated by the masking processing unit 100 is supplied to the source driving unit 520, and the source driving unit 520 drives the source bus line SL based on the display image signal Dout. The present invention can also be applied to a liquid crystal display device having such a configuration.
 また、上記各実施形態においては縦ストライプRGBサブ画素構成を例に挙げて説明したが、本発明はこれに限定されず、縦ストライプRGBサブ画素構成以外の画素構成が採用されている場合にも本発明を適用することができる。例えば、図30に示すように各列の画素部内のTFTのソース電極の接続先のソースバスラインSLが奇数行目と偶数行目とで異なるような画素構成(この構成は「Zインバージョン」などと呼ばれている。)が採用されている場合にも、本発明を適用することができる。 In each of the above embodiments, the vertical stripe RGB sub-pixel configuration has been described as an example. However, the present invention is not limited to this, and a pixel configuration other than the vertical stripe RGB sub-pixel configuration is also employed. The present invention can be applied. For example, as shown in FIG. 30, a pixel configuration in which the source bus line SL connected to the source electrode of the TFT in the pixel portion of each column is different between the odd and even rows (this configuration is “Z inversion”). The present invention can also be applied to the case where the above is adopted.
 さらに、上記各実施形態においては液晶表示装置のタイプやバックライトの使用の有無については言及していないが、電力マスク変換パターンを用いたマスキング処理は、バックライトを設けることなく太陽光などの外光の反射を利用して画像表示を行う反射型の液晶表示装置に特に有効である。 Furthermore, in each of the above embodiments, the type of liquid crystal display device and the presence / absence of the use of a backlight are not mentioned, but the masking process using the power mask conversion pattern is not necessary to provide a backlight or the like. This is particularly effective for a reflective liquid crystal display device that displays an image by utilizing reflection of light.
 10…タイミングコントローラ
 100…マスキング処理部
 101,111…第1マスキング処理部
 102,112…第2マスキング処理部
 120…切替制御部
 131…第1のマスキング制御部
 132…第2のマスキング制御部
 200…パネル駆動部
 210…ソースドライバ
 220…ゲートドライバ
 300…液晶パネル
 310…表示部
 312…画素部
 410…デガンマ補正処理部
 420…ガンマ補正処理部
 GL…ゲートバスライン
 SL…ソースバスライン
 Din…入力信号
 Dout…表示用画像信号
DESCRIPTION OF SYMBOLS 10 ... Timing controller 100 ... Masking process part 101, 111 ... 1st masking process part 102, 112 ... 2nd masking process part 120 ... Switching control part 131 ... 1st masking control part 132 ... 2nd masking control part 200 ... Panel driver 210 ... Source driver 220 ... Gate driver 300 ... Liquid crystal panel 310 ... Display unit 312 ... Pixel unit 410 ... De-gamma correction processing unit 420 ... Gamma correction processing unit GL ... Gate bus line SL ... Source bus line Din ... Input signal Dout ... Image signal for display

Claims (14)

  1.  複数の走査信号線と、前記複数の走査信号線と交差する複数の映像信号線と、前記複数の走査信号線と前記複数の映像信号線との交差点にそれぞれ対応するようにマトリクス状に配置された複数の画素部とを含む液晶パネルを有し、入力信号に基づく画像を前記液晶パネルに表示する液晶表示装置であって、
     複数行×1列の画素部または1行×複数列の画素部または複数行×複数列の画素部に対応するP個(Pは2以上の整数)の係数からなる変換パターンを用いて前記複数の画素部についての前記入力信号のデータ値を補正することによって、前記液晶パネルに与えるための表示用画像信号を生成するデータ値補正部と、
     前記表示用画像信号に基づいて前記複数の映像信号線を駆動する映像信号線駆動部と、
     前記複数の走査信号線を駆動する走査信号線駆動部と
    を備え、
     前記変換パターンに含まれるP個の係数の値の総和は1であって、
     前記入力信号のデータ値を補正しようとしている画素部を着目画素部と定義したとき、前記データ値補正部は、グループに含まれる画素部と前記変換パターンに含まれる係数とが1対1で対応するように、前記着目画素部と、前記変換パターンに応じて定まり前記着目画素部と同じ色を表示するための(P-1)個の画素部とによって前記グループを構成し、前記グループに含まれる各画素部についての前記入力信号のデータ値と当該各画素部に対応する係数の値との積の総和を前記着目画素部についての前記表示用画像信号のデータ値とすることを特徴とする、液晶表示装置。
    A plurality of scanning signal lines, a plurality of video signal lines intersecting with the plurality of scanning signal lines, and an intersection of the plurality of scanning signal lines and the plurality of video signal lines are arranged in a matrix. A liquid crystal display device including a plurality of pixel portions and displaying an image based on an input signal on the liquid crystal panel,
    Using the conversion pattern comprising P (P is an integer of 2 or more) coefficients corresponding to a plurality of rows × one column of pixel portions, or one row × multiple columns of pixel portions, or multiple rows × multiple columns of pixel portions. A data value correction unit that generates a display image signal to be given to the liquid crystal panel by correcting the data value of the input signal for the pixel unit;
    A video signal line driving unit that drives the plurality of video signal lines based on the display image signal;
    A scanning signal line driving unit that drives the plurality of scanning signal lines,
    The sum of the values of P coefficients included in the conversion pattern is 1,
    When the pixel portion that is to correct the data value of the input signal is defined as the pixel portion of interest, the data value correction portion has a one-to-one correspondence between the pixel portion included in the group and the coefficient included in the conversion pattern. As described above, the group is constituted by the pixel portion of interest and (P-1) pixel portions that are determined according to the conversion pattern and display the same color as the pixel portion of interest, and are included in the group The sum of the products of the data value of the input signal for each pixel portion and the coefficient value corresponding to each pixel portion is used as the data value of the display image signal for the pixel portion of interest. Liquid crystal display device.
  2.  前記データ値補正部は、1種類のみの変換パターンを用いて、前記複数の画素部についての前記入力信号のデータ値を補正することを特徴とする、請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the data value correction unit corrects the data value of the input signal for the plurality of pixel units using only one type of conversion pattern.
  3.  前記変換パターンは、2行×1列の画素部に対応する2個の係数からなることを特徴とする、請求項2に記載の液晶表示装置。 The liquid crystal display device according to claim 2, wherein the conversion pattern includes two coefficients corresponding to a pixel portion of 2 rows x 1 column.
  4.  前記変換パターンは、1行×2列の画素部に対応する2個の係数からなることを特徴とする、請求項2に記載の液晶表示装置。 The liquid crystal display device according to claim 2, wherein the conversion pattern includes two coefficients corresponding to a pixel portion of 1 row x 2 columns.
  5.  前記変換パターンは、2行×1列の画素部に対応する2個の係数からなる第1パターンと1行×2列の画素部に対応する2個の係数からなる第2パターンとを掛け合わせることによって得られる4個の係数からなることを特徴とする、請求項2に記載の液晶表示装置。 The conversion pattern is obtained by multiplying a first pattern composed of two coefficients corresponding to a pixel portion of 2 rows × 1 column and a second pattern composed of two coefficients corresponding to a pixel portion of 1 row × 2 columns. The liquid crystal display device according to claim 2, wherein the liquid crystal display device is composed of four coefficients.
  6.  前記変換パターンに含まれるP個の係数の値が全て同じであることを特徴とする、請求項3から5までのいずれか1項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 3 to 5, wherein all of the P coefficients included in the conversion pattern have the same value.
  7.  前記データ値補正部は、重み付き平均によって前記着目画素部についての前記表示用画像信号のデータ値を求めることを特徴とする、請求項3から5までのいずれか1項に記載の液晶表示装置。 6. The liquid crystal display device according to claim 3, wherein the data value correction unit obtains a data value of the display image signal for the target pixel unit by a weighted average. .
  8.  前記変換パターンに含まれるP個の係数のうち前記着目画素部に対応する係数の値が他の係数の値よりも大きいことを特徴とする、請求項7に記載の液晶表示装置。 The liquid crystal display device according to claim 7, wherein a value of a coefficient corresponding to the target pixel portion among P coefficients included in the conversion pattern is larger than values of other coefficients.
  9.  前記データ値補正部は、複数種類の変換パターンを順次に用いて、前記複数の画素部についての前記入力信号のデータ値を補正することを特徴とする、請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the data value correction unit corrects the data value of the input signal for the plurality of pixel units by sequentially using a plurality of types of conversion patterns.
  10.  前記データ値補正部は、予め用意された複数種類の変換パターンの中から切り替え制御信号に基づいて選択される変換パターンを用いて、前記複数の画素部についての前記入力信号のデータ値を補正することを特徴とする、請求項1に記載の液晶表示装置。 The data value correction unit corrects the data value of the input signal for the plurality of pixel units using a conversion pattern selected based on a switching control signal from a plurality of types of conversion patterns prepared in advance. The liquid crystal display device according to claim 1, wherein:
  11.  前記複数の画素部についての前記入力信号のデータ値を補正する処理をデータ値補正処理と定義したとき、前記データ値補正部による前記データ値補正処理の実行の有無が切り替え制御信号に基づいて切り替えられることを特徴とする、請求項1または10に記載の液晶表示装置。 When processing for correcting the data value of the input signal for the plurality of pixel units is defined as data value correction processing, whether or not the data value correction processing is performed by the data value correction unit is switched based on a switching control signal The liquid crystal display device according to claim 1, wherein the liquid crystal display device is a liquid crystal display device.
  12.  前記入力信号に対してデガンマ補正処理を施すデガンマ補正処理部と、
     前記表示用画像信号に対してガンマ補正処理を施すガンマ補正処理部と
    を更に備え、
     前記データ値補正部は、前記デガンマ補正処理部によってデガンマ補正処理が施された入力信号のデータ値を補正することによって、前記表示用画像信号を生成することを特徴とする、請求項1に記載の液晶表示装置。
    A degamma correction processing section for performing degamma correction processing on the input signal;
    A gamma correction processing unit that performs gamma correction processing on the display image signal;
    The said data value correction | amendment part produces | generates the said image signal for a display by correct | amending the data value of the input signal to which the degamma correction process part performed the said degamma correction process part, The display image signal is produced | generated. Liquid crystal display device.
  13.  前記複数の画素部についての前記入力信号のデータ値を補正する処理をデータ値補正処理と定義したとき、前記デガンマ補正処理,前記データ値補正部による前記データ値補正処理,および前記ガンマ補正処理からなる一連の処理の実行の有無が切り替え制御信号に基づいて切り替えられることを特徴とする、請求項12に記載の液晶表示装置。 When processing for correcting the data value of the input signal for the plurality of pixel portions is defined as data value correction processing, the degamma correction processing, the data value correction processing by the data value correction portion, and the gamma correction processing 13. The liquid crystal display device according to claim 12, wherein whether or not to execute a series of processing is switched based on a switching control signal.
  14.  複数の画素部を含む液晶パネルに入力信号に基づく画像を表示する液晶表示装置におけるデータ処理方法であって、
     前記入力信号を受信する入力信号受信ステップと、
     複数行×1列の画素部または1行×複数列の画素部または複数行×複数列の画素部に対応するP個(Pは2以上の整数)の係数からなる変換パターンを用いて前記複数の画素部についての前記入力信号のデータ値を補正することによって、前記液晶パネルに与えるための表示用画像信号を生成するデータ値補正ステップと、
     前記表示用画像信号を前記液晶パネルに出力する表示用画像信号出力ステップと
    を含み、
     前記変換パターンに含まれるP個の係数の値の総和は1であって、
     前記入力信号のデータ値を補正しようとしている画素部を着目画素部と定義したとき、前記データ値補正ステップでは、グループに含まれる画素部と前記変換パターンに含まれる係数とが1対1で対応するように、前記着目画素部と、前記変換パターンに応じて定まり前記着目画素部と同じ色を表示するための(P-1)個の画素部とによって前記グループが構成され、前記グループに含まれる各画素部についての前記入力信号のデータ値と当該各画素部に対応する係数の値との積の総和が前記着目画素部についての前記表示用画像信号のデータ値とされることを特徴とする、データ処理方法。
    A data processing method in a liquid crystal display device for displaying an image based on an input signal on a liquid crystal panel including a plurality of pixel portions,
    An input signal receiving step for receiving the input signal;
    Using the conversion pattern comprising P (P is an integer of 2 or more) coefficients corresponding to a plurality of rows × one column of pixel portions, or one row × multiple columns of pixel portions, or multiple rows × multiple columns of pixel portions. A data value correcting step for generating a display image signal to be given to the liquid crystal panel by correcting the data value of the input signal for the pixel portion of
    A display image signal output step of outputting the display image signal to the liquid crystal panel,
    The sum of the values of P coefficients included in the conversion pattern is 1,
    When the pixel portion to be corrected for the data value of the input signal is defined as the pixel portion of interest, the data value correction step has a one-to-one correspondence between the pixel portion included in the group and the coefficient included in the conversion pattern. As described above, the group is configured by the pixel portion of interest and (P-1) pixel portions that are determined according to the conversion pattern and display the same color as the pixel portion of interest, and are included in the group The sum of the products of the data value of the input signal for each pixel unit and the value of the coefficient corresponding to each pixel unit is used as the data value of the display image signal for the pixel unit of interest. Data processing method.
PCT/JP2015/055126 2014-05-26 2015-02-24 Liquid crystal display device and data processing method for liquid crystal display device WO2015182181A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014107889 2014-05-26
JP2014-107889 2014-05-26

Publications (1)

Publication Number Publication Date
WO2015182181A1 true WO2015182181A1 (en) 2015-12-03

Family

ID=54698523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055126 WO2015182181A1 (en) 2014-05-26 2015-02-24 Liquid crystal display device and data processing method for liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2015182181A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204019A (en) * 2018-05-24 2019-11-28 シャープ株式会社 Display device and television receiver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245975A (en) * 2003-02-12 2004-09-02 Nec Corp Vdt impediment and risk level information generation system and generating method
JP2005027301A (en) * 2003-06-30 2005-01-27 Texas Instr Inc <Ti> Video correction system and method of using logarithmic conversion
JP2006285238A (en) * 2005-03-30 2006-10-19 Chi Mei Optoelectronics Corp Display method for use in display device and display device
JP2007147692A (en) * 2005-11-24 2007-06-14 Sony Corp Image display apparatus, image display method, program for image display method, and recording medium with program for image display method recorded thereon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245975A (en) * 2003-02-12 2004-09-02 Nec Corp Vdt impediment and risk level information generation system and generating method
JP2005027301A (en) * 2003-06-30 2005-01-27 Texas Instr Inc <Ti> Video correction system and method of using logarithmic conversion
JP2006285238A (en) * 2005-03-30 2006-10-19 Chi Mei Optoelectronics Corp Display method for use in display device and display device
JP2007147692A (en) * 2005-11-24 2007-06-14 Sony Corp Image display apparatus, image display method, program for image display method, and recording medium with program for image display method recorded thereon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019204019A (en) * 2018-05-24 2019-11-28 シャープ株式会社 Display device and television receiver
JP7082905B2 (en) 2018-05-24 2022-06-09 シャープ株式会社 Display device and TV receiver

Similar Documents

Publication Publication Date Title
US9934736B2 (en) Liquid crystal display and method for driving the same
EP2833352B1 (en) Display device and driving method thereof
US8115714B2 (en) Display device and method of driving the same
US20100328360A1 (en) Liquid crystal display apparatus and method of driving the same
US9704428B2 (en) Display device and display method
CN108109596B (en) Driving method and driving device of display panel
KR20140058252A (en) Liquid crystal display device and driving method the same
KR20090131039A (en) Method for driving pixel and display apparatus for performing the method
JP2009103766A (en) Method for driving liquid crystal display device
KR102269487B1 (en) Method of driving display panel and display apparatus for performing the same
WO2014034235A1 (en) Liquid crystal display device and method for driving same
JP5510858B2 (en) Driving device and driving method for liquid crystal display panel, and liquid crystal display device
KR20150069748A (en) Method of driving display panel and display apparatus for performing the same
TW200912868A (en) Dithering method for an LCD
KR102198250B1 (en) Display apparatus and driving method thereof
CN110827733B (en) Display method and display device for display panel
CN107833564B (en) Display panel driving method, driving device and display device
WO2015182181A1 (en) Liquid crystal display device and data processing method for liquid crystal display device
CN108109587B (en) Driving method and driving device of display panel
KR101985245B1 (en) Liquid crystal display
US9236004B2 (en) Liquid crystal display device
KR20170008351A (en) Display device and driving method thereof
KR102244985B1 (en) Display panel
KR102278396B1 (en) Method of driving display panel and display apparatus for performing the same
KR20140003242A (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP