WO2015182090A1 - Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film - Google Patents

Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film Download PDF

Info

Publication number
WO2015182090A1
WO2015182090A1 PCT/JP2015/002580 JP2015002580W WO2015182090A1 WO 2015182090 A1 WO2015182090 A1 WO 2015182090A1 JP 2015002580 W JP2015002580 W JP 2015002580W WO 2015182090 A1 WO2015182090 A1 WO 2015182090A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
frequency
organic
film thickness
organic material
Prior art date
Application number
PCT/JP2015/002580
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 敦
万里 深尾
小林 義和
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020187015514A priority Critical patent/KR20180063369A/en
Priority to CN201580020079.7A priority patent/CN106232858A/en
Priority to KR1020167026478A priority patent/KR102035146B1/en
Priority to SG11201608133PA priority patent/SG11201608133PA/en
Priority to JP2016523133A priority patent/JP6078694B2/en
Publication of WO2015182090A1 publication Critical patent/WO2015182090A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to a film forming apparatus including a film thickness sensor, a method for measuring a film thickness of an organic film, and a film thickness sensor for an organic film.
  • a technique called a quartz crystal method (QCM: Quartz Crystal Microbalance) is used to measure the thickness and the film forming speed of a film formed on a substrate.
  • QCM Quartz Crystal Microbalance
  • Patent Document 1 describes a sensor head configured to hold a plurality of quartz plates having a resonance frequency of 5 MHz and to switch the quartz plates to be used individually.
  • the crystal resonator is significantly deteriorated in the resonance characteristics with respect to the adhesion of the organic film, so that it is impossible to perform stable film formation rate control and film thickness control of the organic film. There is a problem. Moreover, the lifetime of the vibrator is short, and the vibrator has to be frequently replaced.
  • an object of the present invention is to form a film forming apparatus, a method for measuring a film thickness of an organic film, and a film for an organic film capable of performing film formation rate control and film thickness measurement with high accuracy. It is to provide a thickness sensor.
  • a film formation apparatus includes a vacuum chamber, an organic material source, a substrate holder, a film thickness sensor, and a measurement unit.
  • the organic material source is disposed inside the vacuum chamber and configured to be able to emit organic material particles.
  • the said substrate holder is arrange
  • the film thickness sensor includes a crystal resonator that is disposed inside the vacuum chamber and has a fundamental frequency of 4 MHz or less.
  • the measurement unit measures the film thickness of the organic film deposited on the substrate on the substrate holder based on the change in the resonance frequency of the crystal resonator.
  • the organic material particles emitted from the organic material source are deposited on the surface of the substrate on the substrate holder and also on the surface of the crystal resonator of the film thickness sensor.
  • the resonance frequency of the quartz crystal unit decreases as the amount of organic material particles deposited increases.
  • the measurement unit measures the film thickness of the organic film formed on the substrate based on the change in the resonance frequency on the crystal resonator.
  • the crystal resonator of the film thickness sensor is composed of a crystal resonator having a fundamental frequency of 4 MHz or less. For this reason, compared to a crystal resonator having a fundamental frequency of 5 MHz or more, the increase in equivalent resistance and half-value frequency width due to the adhesion of the organic film is suppressed, and stable resonance vibration over a long period is ensured. Thereby, it becomes possible to measure the film thickness and film formation rate of the organic film with high accuracy.
  • the above-mentioned crystal resonator is typically composed of an AT cut crystal resonator or an SC cut crystal resonator.
  • the measurement unit may include an oscillation circuit, a reference signal generation circuit, a mixer circuit, a counter, and a controller.
  • the oscillation circuit oscillates the crystal resonator.
  • the reference signal generation circuit oscillates a signal having a reference frequency.
  • the mixer circuit mixes the signal output from the oscillation circuit and the signal of the reference frequency.
  • the counter measures the frequency of a low-frequency component signal among the signals generated by the mixer circuit.
  • the controller calculates an oscillation frequency of the oscillation circuit based on a difference between the frequency measured by the counter and the reference frequency.
  • a film thickness measurement method includes depositing organic material particles emitted from an organic material source on a substrate.
  • the organic material particles are deposited on a crystal resonator that vibrates at a resonance frequency of 4 MHz or less. Based on the change in the resonance frequency of the quartz resonator, the film thickness of the organic material particles deposited on the substrate is measured. Thereby, it becomes possible to measure the film thickness and film formation rate of the organic film with high accuracy.
  • the film thickness sensor for organic films includes a crystal resonator having a fundamental frequency of 4 MHz or less. Thereby, it becomes possible to measure the film thickness and film formation rate of the organic film with high accuracy.
  • the film formation rate control and film thickness measurement of the organic film can be performed with high accuracy.
  • FIG. 1 is a schematic sectional view showing a film forming apparatus according to an embodiment of the present invention.
  • the film forming apparatus of this embodiment is configured as a vacuum vapor deposition apparatus for forming an organic film.
  • the film forming apparatus 10 is disposed in a vacuum chamber 11, an organic material source 12 disposed in the vacuum chamber 11, a substrate holder 13 facing the organic material source 12, and the vacuum chamber 11.
  • a film thickness sensor 14 is disposed in a vacuum chamber 11, an organic material source 12 disposed in the vacuum chamber 11, a substrate holder 13 facing the organic material source 12, and the vacuum chamber 11.
  • the vacuum chamber 11 is connected to an evacuation system 15 and is configured to be able to evacuate and maintain the interior in a predetermined reduced pressure atmosphere.
  • the organic material source 12 is configured to be able to emit organic material particles.
  • the organic material source 12 constitutes an evaporation source that heats and evaporates the organic material to release organic material particles.
  • the type of the evaporation source is not particularly limited, and various methods such as a resistance heating method, an induction heating method, and an electron beam heating method can be applied.
  • the substrate holder 13 is configured to be able to hold a substrate W, which is a film formation target such as a semiconductor wafer or a glass substrate, toward the organic material source 12.
  • the film thickness sensor 14 incorporates a crystal resonator having a predetermined fundamental frequency (natural frequency) and, as will be described later, a sensor head for measuring the film thickness and film formation rate of the organic film deposited on the substrate W. Configure.
  • the film thickness sensor 14 is disposed inside the vacuum chamber 11 and at a position facing the organic material source 12.
  • the film thickness sensor 14 is typically disposed in the vicinity of the substrate holder 13.
  • the output of the film thickness sensor 14 is supplied to the measurement unit 17.
  • the measurement unit 17 measures the film thickness and the film formation rate based on the change in the resonance frequency of the crystal resonator, and controls the organic material source 12 so that the film formation rate becomes a predetermined value.
  • the relationship between the frequency change due to the adsorption of the QCM and the mass load is the Sauerbrey equation expressed by the following equation (1).
  • the film forming apparatus 10 further includes a shutter 16.
  • the shutter 16 is disposed between the organic material source 12 and the substrate holder 13, and can open or shield the incident path of organic material particles from the organic material source 12 to the substrate holder 13 and the film thickness sensor 14. Configured.
  • the opening and closing of the shutter 16 is controlled by a control unit (not shown).
  • the shutter 16 is closed at the beginning of deposition until the organic material source 12 stabilizes the emission of organic material particles.
  • the shutter 16 is opened.
  • the organic material particles from the organic material source 12 reach the substrate W on the substrate holder 13 and the film forming process of the substrate W is started.
  • the organic material particles from the organic material source 12 reach the film thickness sensor 14, and the film thickness of the organic film deposited on the substrate W and its film formation rate are monitored.
  • FIG. 2 is a schematic configuration diagram of the film thickness sensor 14.
  • the film thickness sensor 14 includes an oscillator 20 and a case 140 that accommodates the oscillator 20 so as to vibrate.
  • the oscillator 20 is accommodated in the case 140 such that the surface 21 faces the organic material source 12.
  • 3 and 4 are a front view and a rear view of the resonator 20, respectively.
  • Electrode films 31 and 32 having predetermined shapes are respectively formed on the front surface 21 and the back surface 22 of the oscillator 20.
  • the electrode films 31 and 32 are formed in mutually different shapes as shown by the shaded portions in FIGS. 3 and 4, but the shape of the electrode films 31 and 32 is not limited to the illustrated example.
  • the electrode films 31 and 32 are each formed of a metal film such as gold or silver.
  • the oscillator 20 oscillates in a thickness shear vibration mode when a high frequency voltage is applied to the electrode films 31 and 32.
  • a crystal resonator having a fundamental frequency (natural frequency) of 4 MHz is used as the oscillator 20.
  • the film thickness and the film formation rate can be measured with high accuracy.
  • the fundamental frequency of the oscillator 20 is not limited to 4 MHz, and a crystal resonator having any fundamental frequency of 4 MHz or less (for example, 3.25 MHz, 2.5 MHz, etc.) is applicable.
  • the vibration characteristics of the crystal resonator can be evaluated by the equivalent resistance and the Q value. That is, the smaller the equivalent resistance, the easier the vibration, and the higher the Q value, the more stable resonance vibration can be obtained.
  • the inventors prepared AT cut crystal resonator samples having fundamental frequencies of 3.25 MHz, 4 MHz, 5 MHz, and 6 MHz, respectively, and each sample had an organic film (Alq3 (Tris (8 -Equivalent resistance (R1) and Q value when quinolinolato) aluminum)) was attached, respectively.
  • Alq3 Tris (8 -Equivalent resistance (R1) and Q value when quinolinolato) aluminum
  • the half-value frequency width (FW) means a full frequency width ( ⁇ f) at a point 3 dB (decibel) lower than the peak value at the peak frequency (f 0 ) of the amplitude, and the Q value is expressed by f 0 / ⁇ f.
  • both the equivalent resistance (R1) and the half-value frequency width (FW) increase.
  • the equivalent resistance (R1) and the half-value frequency width (FW) when the fundamental frequency is 5 MHz are about 3.5 k ⁇ and about 4 kHz, respectively, and the equivalent resistance (R1) and the half-value frequency width when the fundamental frequency is 4 MHz ( FW) is about 2 k ⁇ and 800 Hz, respectively.
  • the equivalent resistance (R1) increases, the vibrator is less likely to vibrate, and as the half-value frequency width (FW) increases, the Q value of the vibrator decreases. Therefore, it can be said that the smaller the equivalent resistance (R1) and the half-value frequency width (FW), the more advantageous in the formation of the organic film.
  • FIG. 7 shows an experimental result when the film formation rate of the organic film (Alq3 (Tris (8-quinolinolato) aluminum)) is measured using a crystal resonator having a fundamental frequency of 5 MHz. As shown in FIG. 7, it can be seen that the rate of the quartz crystal resonator starts to fluctuate greatly after about 100 minutes.
  • Alq3 Tris (8-quinolinolato) aluminum
  • FIG. 8 shows an experimental result when the film formation rate of the organic film was measured using a crystal resonator having a fundamental frequency of 4 MHz. As shown in FIG. 8, in the crystal resonator, there is almost no fluctuation in the rate, and a stable resonance state can be maintained for a long time.
  • the difference in rate stability due to the difference in the fundamental frequency of the crystal unit has a strong correlation with the magnitude of the above-mentioned equivalent resistance (R1) and half-value frequency width (FW).
  • R1 equivalent resistance
  • FW half-value frequency width
  • the fundamental frequency of the crystal resonator As described above, by setting the fundamental frequency of the crystal resonator to 4 MHz or less, it is possible to extend the lifetime of the resonator as a film thickness sensor as compared with a crystal resonator having a fundamental frequency of 5 MHz or more. At the same time, the thickness and deposition rate of the organic film can be stably measured. Thereby, for example, in the manufacturing process of the organic EL display, the film thickness control and the film formation rate control of the organic layer can be performed with high accuracy.
  • the equivalent resistance and the half-value frequency width are remarkably large as compared with the case of forming an inorganic film.
  • the equivalent resistance (R1) is 1.2 k ⁇
  • the half-value frequency width is 500 Hz. This also shows that when the organic film is formed, it is preferable that the fundamental frequency of the crystal resonator is low in order to ensure stable resonance vibration.
  • the half-value frequency width (FW) can be expressed by the following equation (2).
  • ⁇ Fw is a half value of the half-value frequency width (FW)
  • G is a complex elastic modulus (MPa) of the organic film
  • G ′′ is a loss elastic modulus (dynamic loss) (MPa) of the organic film
  • is an angle.
  • Frequency h f is the thickness of the deposited organic film (nm)
  • ⁇ f is the density of the deposited organic film (g / cm 2 )
  • F 0 is the fundamental frequency (Hz)
  • Z q is the shear mode sound of the crystal
  • the impedance (gm / sec / cm 2 ) is shown respectively.
  • FIG. 9 shows the temperature characteristics when an organic film (Alq3 (Tris (8-quinolinolato) aluminum) having a thickness of 60 ⁇ m) is deposited on one surface of each of the vibrator samples.
  • the temperature characteristic means the temperature dependence characteristic of the oscillation frequency of the crystal resonator.
  • FIG. 10 shows thermal shock characteristics of each of the vibrators, both when the organic film having the above thickness is deposited and when it is not deposited.
  • the thermal shock characteristic means a frequency characteristic when the crystal resonator is instantaneously subjected to radiant heat, for example, when the shutter 16 (FIG. 1) is opened.
  • a crystal resonator with a fundamental frequency of 4 MHz or less has a very small frequency change with respect to temperature change and thermal shock compared to a crystal resonator with a fundamental frequency of 5 MHz or more. Therefore, according to the present embodiment, it is possible to perform stable film thickness measurement or film formation rate control without being affected by the temperature change in the chamber or the radiant heat accompanying the opening and closing of the shutter. Further, since complicated temperature compensation calculation based on the temperature characteristics of the vibrator and control such as stopping the calculation until the frequency of the crystal vibrator is stabilized when the shutter is opened, control of the measurement unit 17 is simplified. Can be realized.
  • FIG. 11 is a schematic block diagram showing a configuration example of the measurement unit 17.
  • the measurement unit 17 includes an oscillation circuit 41, a measurement circuit 42, and a controller 43.
  • the oscillation circuit 41 oscillates the oscillator 20 (quartz crystal resonator) of the film thickness sensor 14.
  • the measurement circuit 42 is for measuring the resonance frequency of the oscillator 20 output from the oscillation circuit 41.
  • the controller 43 calculates the resonance frequency of the oscillator 20 from the output of the measurement circuit 42, and based on this, calculates the film formation rate of the organic material particles on the substrate W and the film thickness of the organic film deposited on the substrate W. To do.
  • the controller 43 further controls the organic material source 12 so that the film formation rate becomes a predetermined value.
  • the measurement circuit 42 includes a mixer circuit 51, a low-pass filter 52, a low-frequency counter 53, a high-frequency counter 54, and a reference signal generation circuit 55.
  • the signal output from the oscillation circuit 41 is input to the high frequency counter 54, and first, the approximate value of the oscillation frequency of the oscillation circuit 41 is measured.
  • the approximate value of the oscillation frequency of the oscillation circuit 41 measured by the high frequency counter 54 is output to the controller 43.
  • the controller 43 oscillates the reference signal generation circuit 55 at a reference frequency close to the measured approximate value.
  • a signal having a frequency oscillated at the reference frequency and a signal output from the oscillation circuit 41 are input to the mixer circuit 51.
  • the mixer circuit 51 mixes the two types of input signals and outputs them to the low frequency counter 53 via the low pass filter 52.
  • the signal input from the oscillation circuit 41 is cos (( ⁇ + ⁇ ) t) and the signal input from the reference signal generation circuit is cos ( ⁇ t)
  • cos ( ⁇ t) ⁇ cos
  • An AC signal expressed by the equation ( ⁇ + ⁇ ) t) is generated. This equation is in the form of multiplying cos ( ⁇ t) and cos (( ⁇ + ⁇ ) t), and the AC signal represented by this equation is a high frequency component represented by cos ((2 ⁇ ⁇ + ⁇ ) t). And a low frequency component signal represented by cos ( ⁇ t).
  • the signal generated by the mixer circuit 51 is input to the low-pass filter 52, the high-frequency component signal cos ((2 ⁇ ⁇ + ⁇ ) t) is removed, and only the low-frequency component signal cos ( ⁇ t) is input to the low-frequency counter 53. Entered. That is, the low frequency counter 53 has a low frequency component that is an absolute value
  • the low frequency counter 53 measures the frequency of the low frequency component signal and outputs the measured value to the controller 43.
  • the controller 43 calculates the frequency of the signal output from the oscillation circuit 41 from the frequency measured by the low frequency counter 53 and the frequency of the output signal of the reference signal generation circuit 55. Specifically, when the frequency of the output signal of the reference signal generation circuit 55 is smaller than the frequency of the output signal of the oscillation circuit 41, the frequency of the low frequency component signal is added to the output signal of the oscillation circuit 41, In the opposite case, subtract.
  • the oscillation frequency of the reference signal generation circuit 55 is It becomes lower than the actual oscillation frequency of the circuit 41. Therefore, in order to obtain the actual oscillation frequency of the oscillation circuit 41, the frequency
  • the resolution of the low-frequency counter 53 has an upper limit, the resolution can be assigned to measure the difference frequency
  • the oscillation frequency of the reference signal generation circuit 55 is controlled by the controller 43, and the oscillation frequency can be set so that the difference frequency
  • the obtained frequency value is stored in the controller 43.
  • high frequency resolution can be maintained even when a crystal resonator having a relatively low oscillation frequency of 4 MHz or less is used by using the measurement unit 17 having the above configuration. As a result, it is possible to ensure a film thickness measurement accuracy equal to or higher than that of a crystal resonator having a fundamental frequency of 5 MHz or higher.
  • the resonance frequency of the crystal unit gradually decreases as the deposition amount increases, and when the predetermined frequency is reached, stable film thickness measurement is no longer possible. The frequency variation becomes so large that it cannot be performed. For this reason, when the resonance frequency is lowered by a predetermined value or more, it is determined that the lifetime has been reached, and the quartz crystal unit is replaced.
  • a sensor head configured to hold a plurality of crystal resonators and switch each crystal resonator individually is used.
  • a film thickness sensor used for vapor deposition of a metal film or an oxide film generally has a crystal resonator (surface roughness (Ra) of about 0. 27 ⁇ m) is used. The purpose of this was to make it difficult to peel off when the metal film or oxide film was deposited thickly on the film formation surface.
  • FIG. 12 shows a result of an experiment in which 12 crystal units are sequentially switched every 5 minutes by using 12 sensor heads, and the film formation rate is measured.
  • the vertical axis indicates the measurement rate [ ⁇ / s].
  • the horizontal axis represents time [minutes].
  • FIG. 13 is a plot of the average rate variation of each of the above-mentioned crystal resonators.
  • the vertical axis represents the variation [%] with respect to the average rate of the crystal resonator immediately before switching, and the horizontal axis represents the crystal resonator. No. is shown respectively.
  • the measurement unit 17 described with reference to FIG. 11 was used to measure the film formation rate, and a crystal resonator having a fundamental frequency of 5 MHz was used as the crystal resonator (oscillator 20).
  • the measurement rate has changed by about ⁇ 5 to 10% before and after switching of the crystal unit. Further, as shown in FIG. 13, the variation in the rate of each crystal resonator is not constant, and it is difficult to stably measure the film formation rate.
  • the inventors pay attention to the fact that the above-mentioned phenomenon is caused by the roughness of the electrode of the quartz plate on the film quality of the organic film deposited on the film-forming surface of the crystal resonator. It has been found that the organic film is uniformly applied on the quartz plate, and variation in the measurement rate is reduced. Therefore, the present inventors have suppressed the variation in the measurement rate before and after switching the crystal resonator by smoothing the surface of the crystal resonator so that the surface of the film is a mirror surface.
  • FIG. 14 shows a sequence of twelve quartz crystal resonators (hereinafter referred to as “sample 1”) having a fundamental frequency of 5 MHz and having a film surface roughness (Ra) of 0.27 ⁇ m.
  • the variation in the measurement rate is compared with the variation in the measurement rate when twelve crystal resonators (hereinafter referred to as sample 2) having a surface roughness (Ra) of 0.02 ⁇ m are sequentially switched.
  • a gold thin film having a thickness of 0.25 ⁇ m was formed on each surface of samples 1 and 2 as electrode films 31 and 32 (see FIGS. 3 and 4).
  • the surface roughness (Ra) of the electrode films 31 and 32 was equivalent to the surface roughness (Ra) of the crystal resonator.
  • sample 2 has a smaller variation in measurement rate than sample 1, so sample 2 can measure the deposition rate stably and with high accuracy. It becomes.
  • FIG. 15 shows a case where twelve crystal resonators (hereinafter referred to as “sample 3”) having a fundamental frequency of 4 MHz and having a surface roughness (Ra) of 0.02 ⁇ m are sequentially switched. The variation in the measurement rate is shown in comparison with Sample 2.
  • the variation in the measurement rate can be reduced as the crystal resonator film formation surface is closer to the mirror surface or the crystal resonator has a lower fundamental frequency. It becomes possible to measure.
  • the surface roughness (Ra) of the film formation surface of the crystal resonator is, for example, 0.2 ⁇ m or less, and more preferably 0.1 ⁇ m or less. This makes it possible to measure the film formation rate of the organic film with high accuracy.
  • the fundamental frequency may be 5 MHz or less, but is more preferably 4 MHz or less as described above.
  • Alq3 tris (8-quinolinolato) aluminum
  • the organic film is not limited to this, and other organic materials such as a synthetic resin thin film can be used.
  • the present invention can also be applied to a membrane.
  • the vacuum deposition apparatus has been described as an example of the film forming apparatus.
  • the present invention is not limited to this, and the present invention can be applied to other film forming apparatuses such as a sputtering apparatus.
  • the organic material source is constituted by a sputtering cathode including a target made of an organic material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Physical Vapour Deposition (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 Provided are a film-forming device, a method for measuring the film thickness of an organic film, and a film thickness sensor for an organic film, with which it is possible to highly accurately control the film-forming rate and measure the film thickness of an organic film. The film-forming device (10) is provided with a vacuum chamber (11), an organic material source (12), a substrate holder (13), a film thickness sensor (14), and a measuring unit (17). The organic material source (12) is arranged inside the vacuum chamber (11) and is configured so as to be capable of releasing organic material particles. The substrate holder (13) is arranged so as to face the organic material source (12) and is configured so as to be capable of holding a substrate (W). The film thickness sensor (14) is arranged inside the vacuum chamber (11) and has a crystal oscillator having a fundamental frequency of 4 MHz or less. The measuring unit (17) measures the film thickness of an organic film deposited on the substrate (W) on the substrate holder (13) on the basis of changes in the resonance frequency of the crystal oscillator.

Description

成膜装置、有機膜の膜厚測定方法および有機膜用膜厚センサFilm forming apparatus, organic film thickness measuring method, and organic film thickness sensor
 本発明は、膜厚センサを備えた成膜装置、有機膜の膜厚測定方法および有機膜用膜厚センサに関する。 The present invention relates to a film forming apparatus including a film thickness sensor, a method for measuring a film thickness of an organic film, and a film thickness sensor for an organic film.
 従来、真空蒸着装置などの成膜装置において、基板に成膜される膜の厚みおよび成膜速度を測定するために、水晶振動子法(QCM:Quartz Crystal Microbalance)という技術が用いられている。この方法は、チャンバ内に配置されている水晶振動子の共振周波数が、蒸着物の堆積による質量の増加によって減少することを利用したものである。したがって、水晶振動子の共振周波数の変化を測定することにより、膜厚および成膜速度を測定することが可能となる。 Conventionally, in a film forming apparatus such as a vacuum evaporation apparatus, a technique called a quartz crystal method (QCM: Quartz Crystal Microbalance) is used to measure the thickness and the film forming speed of a film formed on a substrate. This method makes use of the fact that the resonance frequency of the crystal resonator disposed in the chamber decreases with an increase in mass due to the deposition of the vapor deposition material. Therefore, it is possible to measure the film thickness and the film formation speed by measuring the change in the resonance frequency of the crystal resonator.
 近年、有機EL(Electro-Luminescence)素子の製造分野においては、有機層の成膜に真空蒸着法が広く利用されている。例えば有機ELディスプレイなどにおいては、画素間における有機層の膜厚のばらつきが画質に大きな影響を及ぼすため、高精度な膜厚制御が要求される。 In recent years, in the field of manufacturing an organic EL (Electro-Luminescence) element, a vacuum deposition method is widely used for forming an organic layer. For example, in an organic EL display or the like, a variation in the film thickness of the organic layer between pixels greatly affects the image quality, so that highly accurate film thickness control is required.
 一方、この種の膜厚センサにおいては、着膜量の増加に伴って、水晶振動子の共振周波数が徐々に低下し、所定の周波数に達すると、もはや安定した膜厚測定を行うことができないほどに周波数の変動が大きくなる。このため、共振周波数が所定以上低下したときは、寿命に達したと判断して水晶振動子の交換が実施される。その交換を容易に行うため、例えば特許文献1には、5MHzの共振周波数を有する複数の水晶板を保持し、使用する水晶板を個々に切り替え可能に構成されたセンサヘッドが記載されている。 On the other hand, in this type of film thickness sensor, when the deposition amount increases, the resonance frequency of the crystal resonator gradually decreases, and when it reaches a predetermined frequency, stable film thickness measurement can no longer be performed. As the frequency fluctuates, the fluctuation increases. For this reason, when the resonance frequency is lowered by a predetermined value or more, it is determined that the lifetime has been reached, and the quartz crystal unit is replaced. In order to perform the replacement easily, for example, Patent Document 1 describes a sensor head configured to hold a plurality of quartz plates having a resonance frequency of 5 MHz and to switch the quartz plates to be used individually.
特開2003-139505号公報JP 2003-139505 A
 しかしながら、水晶振動子は、金属膜や金属化合物膜と比較して、有機膜の付着に対する共振特性の劣化が著しく、このため有機膜の安定した成膜レート制御や膜厚制御を行うことができないという問題がある。また、振動子の寿命が短く、振動子を頻繁に交換する必要があった。 However, compared with a metal film or a metal compound film, the crystal resonator is significantly deteriorated in the resonance characteristics with respect to the adhesion of the organic film, so that it is impossible to perform stable film formation rate control and film thickness control of the organic film. There is a problem. Moreover, the lifetime of the vibrator is short, and the vibrator has to be frequently replaced.
 以上のような事情に鑑み、本発明の目的は、有機膜の成膜レート制御および膜厚測定を高精度に行うことが可能な成膜装置、有機膜の膜厚測定方法および有機膜用膜厚センサを提供することにある。 In view of the circumstances as described above, an object of the present invention is to form a film forming apparatus, a method for measuring a film thickness of an organic film, and a film for an organic film capable of performing film formation rate control and film thickness measurement with high accuracy. It is to provide a thickness sensor.
 本発明の一形態に係る成膜装置は、真空チャンバと、有機材料源と、基板ホルダと、膜厚センサと、測定ユニットとを具備する。
 上記有機材料源は、上記真空チャンバの内部に配置され、有機材料粒子を放出することが可能に構成される。
 上記基板ホルダは、上記有機材料源に対向して配置され、基板を保持することが可能に構成される。
 上記膜厚センサは、上記真空チャンバの内部に配置され、4MHz以下の基本周波数を有する水晶振動子を有する。
 上記測定ユニットは、上記水晶振動子の共振周波数の変化に基づいて、上記基板ホルダ上の基板に堆積した有機膜の膜厚を測定する。
A film formation apparatus according to one embodiment of the present invention includes a vacuum chamber, an organic material source, a substrate holder, a film thickness sensor, and a measurement unit.
The organic material source is disposed inside the vacuum chamber and configured to be able to emit organic material particles.
The said substrate holder is arrange | positioned facing the said organic material source, and is comprised so that a board | substrate can be hold | maintained.
The film thickness sensor includes a crystal resonator that is disposed inside the vacuum chamber and has a fundamental frequency of 4 MHz or less.
The measurement unit measures the film thickness of the organic film deposited on the substrate on the substrate holder based on the change in the resonance frequency of the crystal resonator.
 上記成膜装置において、有機材料源から放出された有機材料粒子は、基板ホルダ上の基板の表面に堆積するとともに、膜厚センサの水晶振動子の表面に堆積する。水晶振動子の共振周波数は、有機材料粒子の堆積量が増加するに従って減少する。測定ユニットは、水晶振動子上の共振周波数の変化に基づいて、基板上に形成された有機膜の膜厚を測定する。 In the film forming apparatus, the organic material particles emitted from the organic material source are deposited on the surface of the substrate on the substrate holder and also on the surface of the crystal resonator of the film thickness sensor. The resonance frequency of the quartz crystal unit decreases as the amount of organic material particles deposited increases. The measurement unit measures the film thickness of the organic film formed on the substrate based on the change in the resonance frequency on the crystal resonator.
 ここで、上記成膜装置においては、膜厚センサの水晶振動子が、4MHz以下の基本周波数を有する水晶振動子で構成されている。このため、5MHz以上の基本周波数を有する水晶振動子と比較して、有機膜の付着による等価抵抗および半値周波数幅の増加量が低く抑えられ、長期にわたる安定した共振振動が確保される。これにより、有機膜の膜厚および成膜レートを高精度に測定することが可能となる。 Here, in the film forming apparatus, the crystal resonator of the film thickness sensor is composed of a crystal resonator having a fundamental frequency of 4 MHz or less. For this reason, compared to a crystal resonator having a fundamental frequency of 5 MHz or more, the increase in equivalent resistance and half-value frequency width due to the adhesion of the organic film is suppressed, and stable resonance vibration over a long period is ensured. Thereby, it becomes possible to measure the film thickness and film formation rate of the organic film with high accuracy.
 上記水晶振動子は、典型的には、ATカット水晶振動子またはSCカット水晶振動子で構成される。 The above-mentioned crystal resonator is typically composed of an AT cut crystal resonator or an SC cut crystal resonator.
 上記測定ユニットは、発振回路と、基準信号発生回路と、ミキサ回路と、カウンタと、コントローラとを有してもよい。
 上記発振回路は、上記水晶振動子を発振させる。上記基準信号発生回路は、基準周波数の信号を発振する。上記ミキサ回路は、上記発振回路から出力される信号と上記基準周波数の信号とを混合する。上記カウンタは、上記ミキサ回路で生成される信号のうち低周波成分の信号の周波数を測定する。上記コントローラは、上記カウンタで測定された周波数と上記基準周波数との差に基づいて、上記発振回路の発振周波数を算出する。
 これにより、4MHz以下という比較的低い発振周波数の水晶振動子を用いる場合においても、高い周波数分解能を維持することができる。
The measurement unit may include an oscillation circuit, a reference signal generation circuit, a mixer circuit, a counter, and a controller.
The oscillation circuit oscillates the crystal resonator. The reference signal generation circuit oscillates a signal having a reference frequency. The mixer circuit mixes the signal output from the oscillation circuit and the signal of the reference frequency. The counter measures the frequency of a low-frequency component signal among the signals generated by the mixer circuit. The controller calculates an oscillation frequency of the oscillation circuit based on a difference between the frequency measured by the counter and the reference frequency.
Thereby, even when a crystal resonator having a relatively low oscillation frequency of 4 MHz or less is used, high frequency resolution can be maintained.
 本発明の一形態に係る膜厚測定方法は、有機材料源から放出された有機材料粒子を基板上に堆積させることを含む。
 4MHz以下の共振周波数で振動する水晶振動子上に上記有機材料粒子が堆積させられる。
 上記水晶振動子の共振周波数の変化に基づいて、上記基板上に堆積したうえ記有機材料粒子の膜厚が測定される。
 これにより、有機膜の膜厚および成膜レートを高精度に測定することが可能となる。
A film thickness measurement method according to an aspect of the present invention includes depositing organic material particles emitted from an organic material source on a substrate.
The organic material particles are deposited on a crystal resonator that vibrates at a resonance frequency of 4 MHz or less.
Based on the change in the resonance frequency of the quartz resonator, the film thickness of the organic material particles deposited on the substrate is measured.
Thereby, it becomes possible to measure the film thickness and film formation rate of the organic film with high accuracy.
 本発明の一形態に係る有機膜用膜厚センサは、4MHz以下の基本周波数を有する水晶振動子を具備する。
 これにより、有機膜の膜厚および成膜レートを高精度に測定することが可能となる。
The film thickness sensor for organic films according to one embodiment of the present invention includes a crystal resonator having a fundamental frequency of 4 MHz or less.
Thereby, it becomes possible to measure the film thickness and film formation rate of the organic film with high accuracy.
 以上のように、本発明によれば、有機膜の成膜レート制御および膜厚測定を高精度に行うことができる。 As described above, according to the present invention, the film formation rate control and film thickness measurement of the organic film can be performed with high accuracy.
本発明の一実施形態に係る成膜装置を示す概略断面図である。It is a schematic sectional drawing which shows the film-forming apparatus which concerns on one Embodiment of this invention. 上記成膜装置における膜厚センサの概略構成図である。It is a schematic block diagram of the film thickness sensor in the said film-forming apparatus. 上記膜厚センサにおける水晶振動子の正面図である。It is a front view of the crystal oscillator in the film thickness sensor. 上記膜厚センサにおける水晶振動子の背面図である。It is a rear view of the crystal oscillator in the film thickness sensor. 基本周波数が異なる複数の水晶振動子各々の等価抵抗を示す一実験結果である。It is one experimental result which shows the equivalent resistance of each of the several quartz oscillator from which fundamental frequency differs. 基本周波数が異なる複数の水晶振動子各々の半値周波数幅を示す一実験結果である。It is one experimental result which shows the half value frequency width | variety of each of the several quartz oscillator from which a fundamental frequency differs. 有機膜(Alq3(トリス(8-キノリノラト)アルミニウム))の成膜レートを基本周波数5MHzの水晶振動子を用いて測定したときの一実験結果である。It is one experimental result when the film-forming rate of the organic film (Alq3 (Tris (8-quinolinolato) aluminum)) is measured using a crystal resonator having a fundamental frequency of 5 MHz. 有機膜(Alq3(トリス(8-キノリノラト)アルミニウム))の成膜レートを基本周波数4MHzの水晶振動子を用いて測定したときの一実験結果である。It is one experimental result when the film-forming rate of the organic film (Alq3 (Tris (8-quinolinolato) aluminum)) is measured using a crystal resonator having a fundamental frequency of 4 MHz. 基本周波数が異なる複数の水晶振動子各々の温度特性を示す一実験結果である。It is one experimental result which shows the temperature characteristic of each of several crystal oscillators from which fundamental frequency differs. 基本周波数が異なる複数の水晶振動子各々の熱衝撃特性を示す一実験結果である。It is one experimental result which shows the thermal shock characteristic of each of several crystal oscillators from which fundamental frequency differs. 上記成膜装置における測定ユニットの構成を示すブロック図である。It is a block diagram which shows the structure of the measurement unit in the said film-forming apparatus. 12個の水晶振動子を5分毎に順次切り替えて成膜レートを測定した一実験結果である。It is one experimental result which measured the film-forming rate by switching 12 crystal oscillators every 5 minutes one by one. 図12の各水晶振動子の平均レートのばらつきをプロットした図である。It is the figure which plotted the dispersion | variation in the average rate of each crystal oscillator of FIG. 基本周波数5MHzの水晶振動子であって、その成膜面の表面粗さ(Ra)が0.27μmである12個の水晶振動子(サンプル1)を順次切り替えたときの測定レートのバラツキと、上記表面粗さ(Ra)が0.02μmである12個の水晶振動子(サンプル2)を順次切り替えたときの測定レートのバラツキとを比較して示す図である。Variation in measurement rate when sequentially switching 12 crystal resonators (sample 1) having a surface roughness (Ra) of 0.27 μm on a crystal resonator having a fundamental frequency of 5 MHz, It is a figure which compares and shows the dispersion | variation in the measurement rate when twelve crystal units (sample 2) whose surface roughness (Ra) is 0.02 μm are sequentially switched. 基本周波数4MHzの水晶振動子であって、その成膜面の表面粗さ(Ra)が0.02μmである12個の水晶振動子(サンプル3)を順次切り替えたときの測定レートのバラツキを示す図である。This shows the variation in measurement rate when twelve crystal resonators (sample 3) having a fundamental frequency of 4 MHz and having a film-forming surface with a surface roughness (Ra) of 0.02 μm are sequentially switched. FIG.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[成膜装置]
 図1は、本発明の一実施形態に係る成膜装置を示す概略断面図である。本実施形態の成膜装置は、有機膜を成膜するための真空蒸着装置として構成される。
[Film deposition system]
FIG. 1 is a schematic sectional view showing a film forming apparatus according to an embodiment of the present invention. The film forming apparatus of this embodiment is configured as a vacuum vapor deposition apparatus for forming an organic film.
 本実施形態の成膜装置10は、真空チャンバ11と、真空チャンバ11の内部に配置された有機材料源12と、有機材料源12と対向する基板ホルダ13と、真空チャンバ11の内部に配置された膜厚センサ14とを有する。 The film forming apparatus 10 according to this embodiment is disposed in a vacuum chamber 11, an organic material source 12 disposed in the vacuum chamber 11, a substrate holder 13 facing the organic material source 12, and the vacuum chamber 11. A film thickness sensor 14.
 真空チャンバ11は、真空排気系15と接続されており、内部を所定の減圧雰囲気に排気し、維持することが可能に構成される。 The vacuum chamber 11 is connected to an evacuation system 15 and is configured to be able to evacuate and maintain the interior in a predetermined reduced pressure atmosphere.
 有機材料源12は、有機材料粒子を放出することが可能に構成される。本実施形態において、有機材料源12は、有機材料を加熱蒸発させて有機材料粒子を放出させる蒸発源を構成する。蒸発源の種類は特に限定されず、抵抗加熱式、誘導加熱式、電子ビーム加熱式などの種々の方式が適用可能である。 The organic material source 12 is configured to be able to emit organic material particles. In the present embodiment, the organic material source 12 constitutes an evaporation source that heats and evaporates the organic material to release organic material particles. The type of the evaporation source is not particularly limited, and various methods such as a resistance heating method, an induction heating method, and an electron beam heating method can be applied.
 基板ホルダ13は、半導体ウエハやガラス基板等の成膜対象である基板Wを、有機材料源12に向けて保持することが可能に構成されている。 The substrate holder 13 is configured to be able to hold a substrate W, which is a film formation target such as a semiconductor wafer or a glass substrate, toward the organic material source 12.
 膜厚センサ14は、所定の基本周波数(固有振動数)を有する水晶振動子を内蔵し、後述するように、基板Wに堆積した有機膜の膜厚および成膜レートを測定するためのセンサヘッドを構成する。膜厚センサ14は、真空チャンバ11の内部であって、有機材料源12と対向する位置に配置される。膜厚センサ14は、典型的には、基板ホルダ13の近傍に配置される。 The film thickness sensor 14 incorporates a crystal resonator having a predetermined fundamental frequency (natural frequency) and, as will be described later, a sensor head for measuring the film thickness and film formation rate of the organic film deposited on the substrate W. Configure. The film thickness sensor 14 is disposed inside the vacuum chamber 11 and at a position facing the organic material source 12. The film thickness sensor 14 is typically disposed in the vicinity of the substrate holder 13.
 膜厚センサ14の出力は、測定ユニット17へ供給される。測定ユニット17は、水晶振動子の共振周波数の変化に基づいて、上記膜厚および成膜レートを測定するとともに、当該成膜レートが所定値となるように有機材料源12を制御する。QCMの吸着による周波数変化と質量負荷の関係は、以下の式(1)で示すSauerbreyの式が用いられる。 The output of the film thickness sensor 14 is supplied to the measurement unit 17. The measurement unit 17 measures the film thickness and the film formation rate based on the change in the resonance frequency of the crystal resonator, and controls the organic material source 12 so that the film formation rate becomes a predetermined value. The relationship between the frequency change due to the adsorption of the QCM and the mass load is the Sauerbrey equation expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、ΔFsは周波数変化量、Δmは質量変化量、f0は基本周波数、ρQは水晶の密度、μQは水晶のせん断応力、Aは電極面積、Nは定数をそれぞれ示している。 In the formula (1),? Fs is the frequency variation, Delta] m is the mass variation, f 0 is the fundamental frequency, [rho Q represents the density of quartz, mu Q quartz shear stress, A is the electrode area, N is the constant, respectively ing.
 成膜装置10は、シャッタ16をさらに有する。シャッタ16は、有機材料源12と基板ホルダ13との間に配置されており、有機材料源12から基板ホルダ13および膜厚センサ14に至る有機材料粒子の入射経路を開放あるいは遮蔽することが可能に構成される。 The film forming apparatus 10 further includes a shutter 16. The shutter 16 is disposed between the organic material source 12 and the substrate holder 13, and can open or shield the incident path of organic material particles from the organic material source 12 to the substrate holder 13 and the film thickness sensor 14. Configured.
 シャッタ16の開閉は、図示しない制御ユニットによって制御される。典型的には、シャッタ16は、蒸着開始時、有機材料源12において有機材料粒子の放出が安定するまで閉塞される。そして、有機材料粒子の放出が安定したとき、シャッタ16は開放される。これにより、有機材料源12からの有機材料粒子が基板ホルダ13上の基板Wに到達し、基板Wの成膜処理が開始される。同時に、有機材料源12からの有機材料粒子は、膜厚センサ14へ到達し、基板Wに堆積した有機膜の膜厚およびその成膜レートが監視される。 The opening and closing of the shutter 16 is controlled by a control unit (not shown). Typically, the shutter 16 is closed at the beginning of deposition until the organic material source 12 stabilizes the emission of organic material particles. When the release of the organic material particles is stabilized, the shutter 16 is opened. As a result, the organic material particles from the organic material source 12 reach the substrate W on the substrate holder 13 and the film forming process of the substrate W is started. At the same time, the organic material particles from the organic material source 12 reach the film thickness sensor 14, and the film thickness of the organic film deposited on the substrate W and its film formation rate are monitored.
[膜厚センサ]
 続いて、膜厚センサ14の詳細について説明する。
[Film thickness sensor]
Next, details of the film thickness sensor 14 will be described.
 図2は、膜厚センサ14の概略構成図である。図2に示すように膜厚センサ14は、発振子20と、発振子20を振動可能に収容するケース140とを有する。発振子20は、その表面21が有機材料源12に対向するようにケース140に収容されている。 FIG. 2 is a schematic configuration diagram of the film thickness sensor 14. As shown in FIG. 2, the film thickness sensor 14 includes an oscillator 20 and a case 140 that accommodates the oscillator 20 so as to vibrate. The oscillator 20 is accommodated in the case 140 such that the surface 21 faces the organic material source 12.
 図3および図4はそれぞれ、発振子20の正面図および背面図である。 3 and 4 are a front view and a rear view of the resonator 20, respectively.
 発振子20は、円盤状の圧電結晶で構成され、本実施形態では、比較的温度特性に優れたATカット水晶振動子(カット角θ=35°15′±20′)が用いられる。これ以外にも、発振子20として、ATカットよりも温度特性に優れたSCカット水晶振動子(カット角θ=33°30′±11′、φ=20°25′±6°)が用いられてもよい。 The oscillator 20 is composed of a disk-shaped piezoelectric crystal, and in this embodiment, an AT-cut quartz crystal resonator (cut angle θ = 35 ° 15 ′ ± 20 ′) having relatively excellent temperature characteristics is used. In addition to this, an SC cut crystal resonator (cut angle θ = 33 ° 30 ′ ± 11 ′, φ = 20 ° 25 ′ ± 6 °) superior in temperature characteristics to AT cut is used as the oscillator 20. May be.
 発振子20の表面21および裏面22には、所定形状の電極膜31,32がそれぞれ形成されている。電極膜31,32は、図3および図4において網掛け部分で示すように相互に異なる形状に形成されているが、電極膜31,32の形状は図示の例に限られない。電極膜31,32はそれぞれ、金、銀等の金属膜で形成されている。 Electrode films 31 and 32 having predetermined shapes are respectively formed on the front surface 21 and the back surface 22 of the oscillator 20. The electrode films 31 and 32 are formed in mutually different shapes as shown by the shaded portions in FIGS. 3 and 4, but the shape of the electrode films 31 and 32 is not limited to the illustrated example. The electrode films 31 and 32 are each formed of a metal film such as gold or silver.
 発振子20は、電極膜31,32へ高周波電圧が印加されることで、厚みすべり振動モードで発振する。本実施形態では、発振子20として、基本周波数(固有振動数)が4MHzの水晶振動子が用いられる。これにより、後述するように、長期にわたり安定した発振動作が可能となるため、膜厚および成膜レートを高精度に測定することができる。 The oscillator 20 oscillates in a thickness shear vibration mode when a high frequency voltage is applied to the electrode films 31 and 32. In the present embodiment, a crystal resonator having a fundamental frequency (natural frequency) of 4 MHz is used as the oscillator 20. Thus, as will be described later, since stable oscillation operation can be performed over a long period of time, the film thickness and the film formation rate can be measured with high accuracy.
 発振子20の基本周波数は4MHzに限られず、4MHz以下の任意の周波数(例えば3.25MHz、2.5MHzなど)を基本周波数とする水晶振動子が適用可能である。 The fundamental frequency of the oscillator 20 is not limited to 4 MHz, and a crystal resonator having any fundamental frequency of 4 MHz or less (for example, 3.25 MHz, 2.5 MHz, etc.) is applicable.
 ここで、水晶振動子の振動特性は、等価抵抗とQ値によって評価することが可能である。すなわち、等価抵抗が小さいほど振動しやすく、Q値が高いほど安定した共振振動が得られる。 Here, the vibration characteristics of the crystal resonator can be evaluated by the equivalent resistance and the Q value. That is, the smaller the equivalent resistance, the easier the vibration, and the higher the Q value, the more stable resonance vibration can be obtained.
 本発明者らは、基本周波数が3.25MHz、4MHz、5MHzおよび6MHzのATカット水晶振動子のサンプルをそれぞれ準備し、各サンプルについて、一方の表面に厚み60μmの有機膜(Alq3(トリス(8-キノリノラト)アルミニウム))が付いたときの等価抵抗(R1)およびQ値をそれぞれ測定した。測定には、ネットワークアナライザを用いた。図5および図6にその結果を示す。 The inventors prepared AT cut crystal resonator samples having fundamental frequencies of 3.25 MHz, 4 MHz, 5 MHz, and 6 MHz, respectively, and each sample had an organic film (Alq3 (Tris (8 -Equivalent resistance (R1) and Q value when quinolinolato) aluminum)) was attached, respectively. A network analyzer was used for the measurement. The results are shown in FIG. 5 and FIG.
 図5および図6は、各振動子サンプルの等価抵抗(R1)および半値周波数幅(FW)をそれぞれ示している。ここでは半値周波数幅(FW)は、振幅のピーク周波数(f)においてピーク値より3dB(デシベル)下がった点の周波数全幅(Δf)を意味し、Q値は、f/Δfで表される。 5 and 6 show the equivalent resistance (R1) and half-value frequency width (FW) of each transducer sample, respectively. Here, the half-value frequency width (FW) means a full frequency width (Δf) at a point 3 dB (decibel) lower than the peak value at the peak frequency (f 0 ) of the amplitude, and the Q value is expressed by f 0 / Δf. The
 図5および図6に示すように、振動子の基本周波数が高くなるにつれて、等価抵抗(R1)および半値周波数幅(FW)がいずれも増加する。例えば、基本周波数が5MHzの場合の等価抵抗(R1)および半値周波数幅(FW)はそれぞれ約3.5kΩおよび約4kHzであり、基本周波数が4MHzの場合の等価抵抗(R1)および半値周波数幅(FW)はそれぞれ約2kΩおよび800Hzである。等価抵抗(R1)が増加するほど、振動子は振動しにくくなり、半値周波数幅(FW)が増加するほど、振動子のQ値は減少する。よって、これら等価抵抗(R1)および半値周波数幅(FW)が小さいほど、有機膜の成膜においては有利であるといえる。 As shown in FIGS. 5 and 6, as the fundamental frequency of the vibrator increases, both the equivalent resistance (R1) and the half-value frequency width (FW) increase. For example, the equivalent resistance (R1) and the half-value frequency width (FW) when the fundamental frequency is 5 MHz are about 3.5 kΩ and about 4 kHz, respectively, and the equivalent resistance (R1) and the half-value frequency width when the fundamental frequency is 4 MHz ( FW) is about 2 kΩ and 800 Hz, respectively. As the equivalent resistance (R1) increases, the vibrator is less likely to vibrate, and as the half-value frequency width (FW) increases, the Q value of the vibrator decreases. Therefore, it can be said that the smaller the equivalent resistance (R1) and the half-value frequency width (FW), the more advantageous in the formation of the organic film.
 本実施形態では、発振子20として、基本周波数が4MHz以下の水晶振動子が採用されているため、5MHz以上の基本周波数を有する水晶振動子と比較して、等価抵抗(R1)および半値周波数幅(FW)がいずれも低く、したがって安定した共振振動を実現することができることになる。 In the present embodiment, since a crystal resonator having a fundamental frequency of 4 MHz or less is adopted as the oscillator 20, compared to a crystal resonator having a fundamental frequency of 5 MHz or more, an equivalent resistance (R1) and a half-value frequency width are used. Since (FW) is low, stable resonance vibration can be realized.
 例えば図7は、有機膜(Alq3(トリス(8-キノリノラト)アルミニウム))の成膜レートを基本周波数5MHzの水晶振動子を用いて測定したときの一実験結果である。図7に示すように、当該水晶振動子では、100分後くらいから大きくレートが変動し始めることがわかる。 For example, FIG. 7 shows an experimental result when the film formation rate of the organic film (Alq3 (Tris (8-quinolinolato) aluminum)) is measured using a crystal resonator having a fundamental frequency of 5 MHz. As shown in FIG. 7, it can be seen that the rate of the quartz crystal resonator starts to fluctuate greatly after about 100 minutes.
 これに対して図8は、上記有機膜の成膜レートを基本周波数4MHzの水晶振動子を用いて測定したときの一実験結果である。図8に示すように、当該水晶振動子では、レートの変動はほとんどなく、長時間にわたって安定した共振状態を持続させることができる。 On the other hand, FIG. 8 shows an experimental result when the film formation rate of the organic film was measured using a crystal resonator having a fundamental frequency of 4 MHz. As shown in FIG. 8, in the crystal resonator, there is almost no fluctuation in the rate, and a stable resonance state can be maintained for a long time.
 このように水晶振動子の基本周波数の相違によるレート安定性の違いは、上述の等価抵抗(R1)および半値周波数幅(FW)の大きさに強い相関を有しており、特に、基本周波数が5MHzの場合と4MHzの場合とでレート安定性に顕著な相違が認められる。 Thus, the difference in rate stability due to the difference in the fundamental frequency of the crystal unit has a strong correlation with the magnitude of the above-mentioned equivalent resistance (R1) and half-value frequency width (FW). A marked difference in rate stability is observed between 5 MHz and 4 MHz.
 以上のように、水晶振動子の基本振動数を4MHz以下とすることで、基本振動数が5MHz以上の水晶振動子と比較して、膜厚センサとしての振動子の寿命を長くすることができるとともに、有機膜の膜厚および成膜レートを安定に測定することができる。これにより、例えば有機ELディスプレイの製造工程などにおいて、有機層の膜厚制御および成膜レート制御を高精度に行うことが可能となる。 As described above, by setting the fundamental frequency of the crystal resonator to 4 MHz or less, it is possible to extend the lifetime of the resonator as a film thickness sensor as compared with a crystal resonator having a fundamental frequency of 5 MHz or more. At the same time, the thickness and deposition rate of the organic film can be stably measured. Thereby, for example, in the manufacturing process of the organic EL display, the film thickness control and the film formation rate control of the organic layer can be performed with high accuracy.
 特に、有機膜の成膜においては、無機膜の成膜と比較して、等価抵抗および半値周波数幅の値が著しく大きい。一例を挙げると、基本周波数5MHzの水晶振動子に厚み60μmの金属アルミニウム膜が付着したときの等価抵抗(R1)は1.2kΩ、半値周波数幅は500Hzである。このことからも、有機膜の成膜に際しては、安定した共振振動を確保するために水晶振動子の基本周波数は低い方が好ましいことがわかる。 In particular, in the case of forming an organic film, the equivalent resistance and the half-value frequency width are remarkably large as compared with the case of forming an inorganic film. As an example, when a 60 μm thick metal aluminum film is attached to a quartz resonator having a fundamental frequency of 5 MHz, the equivalent resistance (R1) is 1.2 kΩ, and the half-value frequency width is 500 Hz. This also shows that when the organic film is formed, it is preferable that the fundamental frequency of the crystal resonator is low in order to ensure stable resonance vibration.
 ここで、有機膜を金属膜のような剛体ではなく、粘弾性膜であると考えると、半値周波数幅(FW)は、以下の式(2)で表すことができる。 Here, assuming that the organic film is not a rigid body such as a metal film but a viscoelastic film, the half-value frequency width (FW) can be expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)において、ΔFwは半値周波数幅(FW)の半値、Gは有機膜の複素弾性率(MPa)、G"は有機膜の損失弾性率(動的損失)(MPa)、ωは角周波数、hfは、堆積した有機膜の厚み(nm)、ρfは、堆積した有機膜の密度(g/cm2)、F0は基本周波数(Hz)、Zqは水晶のせん断モード音響インピーダンス(gm/sec/cm2)をそれぞれ示している。 In Formula (2), ΔFw is a half value of the half-value frequency width (FW), G is a complex elastic modulus (MPa) of the organic film, G ″ is a loss elastic modulus (dynamic loss) (MPa) of the organic film, and ω is an angle. Frequency, h f is the thickness of the deposited organic film (nm), ρ f is the density of the deposited organic film (g / cm 2 ), F 0 is the fundamental frequency (Hz), and Z q is the shear mode sound of the crystal The impedance (gm / sec / cm 2 ) is shown respectively.
 式(2)より、半値周波数幅(FW)は、周波数の約4乗(F0×ω3)に比例することがわかる。一方、等価抵抗(R1)は、FW=R1/2πL、あるいは、F=4π/√(LC)より、周波数の約2乗に比例する。この結果は、図5および図6の結果によく合致する。 From equation (2), it can be seen that the half-value frequency width (FW) is proportional to the fourth power of the frequency (F 0 × ω 3 ). On the other hand, the equivalent resistance (R1) is proportional to the square of the frequency from FW = R1 / 2πL or F = 4π / √ (LC). This result is in good agreement with the results of FIGS.
 さらに、水晶振動子の基本周波数を下げることは、安定した共振振動だけでなく、温度特性および熱衝撃特性の改善にも有効であることが確認された。 Furthermore, it was confirmed that lowering the fundamental frequency of the crystal resonator is effective not only for stable resonance vibration but also for improving temperature characteristics and thermal shock characteristics.
 図9は、上記各振動子のサンプルについて、一方の表面に厚み60μmの有機膜(Alq3(トリス(8-キノリノラト)アルミニウム))が堆積しているときの温度特性を示している。ここで、温度特性とは、水晶振動子の発振周波数の温度依存特性を意味する。 FIG. 9 shows the temperature characteristics when an organic film (Alq3 (Tris (8-quinolinolato) aluminum) having a thickness of 60 μm) is deposited on one surface of each of the vibrator samples. Here, the temperature characteristic means the temperature dependence characteristic of the oscillation frequency of the crystal resonator.
 一方、図10は、上記各振動子の熱衝撃特性であって、上記厚みの上記有機膜が堆積しているときと堆積していないときの双方を示している。ここで、熱衝撃特性とは、例えばシャッタ16(図1)開放時などのように、水晶振動子が瞬間的に輻射熱を受けた時の周波数特性を意味する。 On the other hand, FIG. 10 shows thermal shock characteristics of each of the vibrators, both when the organic film having the above thickness is deposited and when it is not deposited. Here, the thermal shock characteristic means a frequency characteristic when the crystal resonator is instantaneously subjected to radiant heat, for example, when the shutter 16 (FIG. 1) is opened.
 図9および図10に示すように、基本周波数が5MHz以上の水晶振動子と比較して、基本周波数が4MHz以下の水晶振動子は、温度変化および熱衝撃に対する周波数変化が非常に小さい。したがって本実施形態によれば、チャンバ内温度変化やシャッタ開閉に伴う輻射熱の影響を受けることなく、安定した膜厚測定あるいは成膜レート制御を行うことが可能となる。また、振動子の温度特性を踏まえた複雑な温度補償演算や、シャッタ開放時に水晶振動子の周波数が安定するまで演算を中止するなどといった制御が不要となるため、測定ユニット17の制御の簡素化を実現することができる。 As shown in FIG. 9 and FIG. 10, a crystal resonator with a fundamental frequency of 4 MHz or less has a very small frequency change with respect to temperature change and thermal shock compared to a crystal resonator with a fundamental frequency of 5 MHz or more. Therefore, according to the present embodiment, it is possible to perform stable film thickness measurement or film formation rate control without being affected by the temperature change in the chamber or the radiant heat accompanying the opening and closing of the shutter. Further, since complicated temperature compensation calculation based on the temperature characteristics of the vibrator and control such as stopping the calculation until the frequency of the crystal vibrator is stabilized when the shutter is opened, control of the measurement unit 17 is simplified. Can be realized.
[測定ユニット]
 次に、測定ユニット17について説明する。
[Measurement unit]
Next, the measurement unit 17 will be described.
 図11は、測定ユニット17の一構成例を示す概略ブロック図である。測定ユニット17は、発振回路41と、測定回路42と、コントローラ43とを有する。 FIG. 11 is a schematic block diagram showing a configuration example of the measurement unit 17. The measurement unit 17 includes an oscillation circuit 41, a measurement circuit 42, and a controller 43.
 発振回路41は、膜厚センサ14の発振子20(水晶振動子)を発振させる。測定回路42は、発振回路41から出力される発振子20の共振周波数を測定するためのものである。コントローラ43は、測定回路42の出力より発振子20の共振周波数を算出し、これに基づいて、基板W上への有機材料粒子の成膜レートおよび基板Wに堆積した有機膜の膜厚を算出する。コントローラ43はさらに、成膜レートが所定値となるように有機材料源12を制御する。 The oscillation circuit 41 oscillates the oscillator 20 (quartz crystal resonator) of the film thickness sensor 14. The measurement circuit 42 is for measuring the resonance frequency of the oscillator 20 output from the oscillation circuit 41. The controller 43 calculates the resonance frequency of the oscillator 20 from the output of the measurement circuit 42, and based on this, calculates the film formation rate of the organic material particles on the substrate W and the film thickness of the organic film deposited on the substrate W. To do. The controller 43 further controls the organic material source 12 so that the film formation rate becomes a predetermined value.
 測定回路42は、ミキサ回路51と、ローパスフィルタ52と、低周波カウンタ53と、高周波カウンタ54と、基準信号発生回路55とを有する。発振回路41から出力された信号は、高周波カウンタ54に入力され、先ず、発振回路41の発振周波数の概略値が測定される。 The measurement circuit 42 includes a mixer circuit 51, a low-pass filter 52, a low-frequency counter 53, a high-frequency counter 54, and a reference signal generation circuit 55. The signal output from the oscillation circuit 41 is input to the high frequency counter 54, and first, the approximate value of the oscillation frequency of the oscillation circuit 41 is measured.
 高周波カウンタ54で測定された発振回路41の発振周波数の概略値は、コントローラ43に出力される。コントローラ43は、測定された概略値に近い周波数の基準周波数で基準信号発生回路55を発振させる。この基準周波数で発振した周波数の信号と、発振回路41から出力される信号とは、ミキサ回路51に入力される。 The approximate value of the oscillation frequency of the oscillation circuit 41 measured by the high frequency counter 54 is output to the controller 43. The controller 43 oscillates the reference signal generation circuit 55 at a reference frequency close to the measured approximate value. A signal having a frequency oscillated at the reference frequency and a signal output from the oscillation circuit 41 are input to the mixer circuit 51.
 ミキサ回路51は、入力された2種類の信号を混合し、ローパスフィルタ52を介して低周波カウンタ53に出力する。ここで、発振回路41から入力される信号をcos((ω+α)t)とし、基準信号発生回路から入力される信号をcos(ωt)とすると、ミキサ回路51内でcos(ωt)・cos((ω+α)t)なる式で表される交流信号が生成される。この式は、cos(ωt)とcos((ω+α)t)を乗算した形式になっており、この式で表される交流信号は、cos((2・ω+α)t)で表される高周波成分の信号と、cos(αt)で表される低周波成分の信号の和に等しい。 The mixer circuit 51 mixes the two types of input signals and outputs them to the low frequency counter 53 via the low pass filter 52. Here, if the signal input from the oscillation circuit 41 is cos ((ω + α) t) and the signal input from the reference signal generation circuit is cos (ωt), cos (ωt) · cos ( An AC signal expressed by the equation (ω + α) t) is generated. This equation is in the form of multiplying cos (ωt) and cos ((ω + α) t), and the AC signal represented by this equation is a high frequency component represented by cos ((2 · ω + α) t). And a low frequency component signal represented by cos (αt).
 ミキサ回路51で生成された信号は、ローパスフィルタ52に入力され、高周波成分の信号cos((2・ω+α)t)が除去され、低周波成分の信号cos(αt)だけが低周波カウンタ53に入力される。すなわち、低周波カウンタ53には、発振回路41の信号cos((ω+α)t)と、基準信号発生回路55の信号cos(ωt)との差の周波数の絶対値|α|である低周波成分の信号が入力される。 The signal generated by the mixer circuit 51 is input to the low-pass filter 52, the high-frequency component signal cos ((2 · ω + α) t) is removed, and only the low-frequency component signal cos (αt) is input to the low-frequency counter 53. Entered. That is, the low frequency counter 53 has a low frequency component that is an absolute value | α | of the frequency difference between the signal cos ((ω + α) t) of the oscillation circuit 41 and the signal cos (ωt) of the reference signal generation circuit 55. Signal is input.
 低周波カウンタ53は、この低周波成分の信号の周波数を測定し、その測定値をコントローラ43へ出力する。コントローラ43は、低周波カウンタ53で測定された周波数と基準信号発生回路55の出力信号の周波数とから、発振回路41が出力する信号の周波数を算出する。具体的には、基準信号発生回路55の出力信号の周波数が、発振回路41の出力信号の周波数よりも小さい場合には、発振回路41の出力信号に低周波成分の信号の周波数を加算し、その逆の場合には減算する。 The low frequency counter 53 measures the frequency of the low frequency component signal and outputs the measured value to the controller 43. The controller 43 calculates the frequency of the signal output from the oscillation circuit 41 from the frequency measured by the low frequency counter 53 and the frequency of the output signal of the reference signal generation circuit 55. Specifically, when the frequency of the output signal of the reference signal generation circuit 55 is smaller than the frequency of the output signal of the oscillation circuit 41, the frequency of the low frequency component signal is added to the output signal of the oscillation circuit 41, In the opposite case, subtract.
 例えば、高周波カウンタ54による発振回路41の発振周波数の測定値が4MHzを超えており、基準信号発生回路55を4MHzの周波数で発振させた場合には、基準信号発生回路55の発振周波数は、発振回路41の実際の発振周波数よりも低くなる。したがって、実際の発振回路41の発振周波数を求めるためには、低周波カウンタ53で求めた低周波成分の信号の周波数|α|を、基準信号発生回路55の設定周波数4MHzに加算すればよい。低周波成分の周波数|α|が10kHzであれば、発振回路41の正確な発振周波数は4.01MHzとなる。 For example, when the measured value of the oscillation frequency of the oscillation circuit 41 by the high frequency counter 54 exceeds 4 MHz and the reference signal generation circuit 55 is oscillated at a frequency of 4 MHz, the oscillation frequency of the reference signal generation circuit 55 is It becomes lower than the actual oscillation frequency of the circuit 41. Therefore, in order to obtain the actual oscillation frequency of the oscillation circuit 41, the frequency | α | of the low frequency component signal obtained by the low frequency counter 53 may be added to the set frequency 4 MHz of the reference signal generation circuit 55. If the frequency | α | of the low frequency component is 10 kHz, the accurate oscillation frequency of the oscillation circuit 41 is 4.01 MHz.
 低周波カウンタ53の分解能には上限があるが、その分解能は、上記差の周波数|α|を測定するために割り当てることができるため、同じ分解能で発振回路41の発振周波数を測定する場合に比べ、正確な周波数測定を行うことができる。 Although the resolution of the low-frequency counter 53 has an upper limit, the resolution can be assigned to measure the difference frequency | α |, and therefore, compared with the case of measuring the oscillation frequency of the oscillation circuit 41 with the same resolution. Accurate frequency measurement can be performed.
 また、基準信号発生回路55の発振周波数はコントローラ43によって制御されており、その発振周波数を、差の周波数|α|が所定値よりも小さくなるように設定することができるため、低周波カウンタ53の分解能を有効に活用することができる。求められた周波数の値は、コントローラ43に記憶される。 The oscillation frequency of the reference signal generation circuit 55 is controlled by the controller 43, and the oscillation frequency can be set so that the difference frequency | α | is smaller than a predetermined value. Can be effectively utilized. The obtained frequency value is stored in the controller 43.
 以上のように本実施形態によれば、上記構成の測定ユニット17を用いることによって、4MHz以下という比較的低い発振周波数の水晶振動子を用いる場合においても、高い周波数分解能を維持することができる。これにより、5MHz以上の基本周波数を有する水晶振動子と同等以上の膜厚測定精度を確保することが可能となる。 As described above, according to the present embodiment, high frequency resolution can be maintained even when a crystal resonator having a relatively low oscillation frequency of 4 MHz or less is used by using the measurement unit 17 having the above configuration. As a result, it is possible to ensure a film thickness measurement accuracy equal to or higher than that of a crystal resonator having a fundamental frequency of 5 MHz or higher.
[水晶振動子の表面粗さ]
 上述のように、QCM技術を利用した膜厚センサにおいては、着膜量の増加に伴って水晶振動子の共振周波数が徐々に低下し、所定の周波数に達すると、もはや安定した膜厚測定を行うことができないほどに周波数の変動が大きくなる。このため、共振周波数が所定以上低下したときは、寿命に達したと判断して水晶振動子の交換が実施される。その交換を容易に行うため、典型的には、複数の水晶振動子を保持し、各々の水晶振動子を個々に切り替え可能に構成されたセンサヘッドが用いられる。
[Surface roughness of crystal unit]
As described above, in the film thickness sensor using the QCM technology, the resonance frequency of the crystal unit gradually decreases as the deposition amount increases, and when the predetermined frequency is reached, stable film thickness measurement is no longer possible. The frequency variation becomes so large that it cannot be performed. For this reason, when the resonance frequency is lowered by a predetermined value or more, it is determined that the lifetime has been reached, and the quartz crystal unit is replaced. In order to perform the replacement easily, typically, a sensor head configured to hold a plurality of crystal resonators and switch each crystal resonator individually is used.
 また、金属膜や酸化膜の蒸着に用いられる膜厚センサには、一般的に、#1000前後の粒子で成膜面が研磨仕上げされた水晶振動子(表面粗さ(Ra)が約0.27μm)が用いられている。これは、加工上の容易さと、金属膜や酸化膜が成膜面に厚く堆積した際に容易に剥がれにくくするのが目的であった。 In addition, a film thickness sensor used for vapor deposition of a metal film or an oxide film generally has a crystal resonator (surface roughness (Ra) of about 0. 27 μm) is used. The purpose of this was to make it difficult to peel off when the metal film or oxide film was deposited thickly on the film formation surface.
 しかしながら、このような水晶振動子を有機膜の膜厚センサに用いた場合、水晶振動子を切り替える毎に、成膜レートの測定値が大きく変動することがある。例えば図12に、12連のセンサヘッドを用いて12個の水晶振動子を5分毎に順次切り替えて成膜レートを測定した一実験結果であり、縦軸は測定レート[Å/s]を、横軸は時間[分]をそれぞれ示している。また、図13は、上記各水晶振動子の平均レートのばらつきをプロットしたものであり、縦軸は、切り替え直前の水晶振動子の平均レートに対するばらつき[%]を、横軸は水晶振動子のNo.をそれぞれ示している。 However, when such a crystal resonator is used for an organic film thickness sensor, the measured value of the film formation rate may fluctuate greatly each time the crystal resonator is switched. For example, FIG. 12 shows a result of an experiment in which 12 crystal units are sequentially switched every 5 minutes by using 12 sensor heads, and the film formation rate is measured. The vertical axis indicates the measurement rate [Å / s]. The horizontal axis represents time [minutes]. FIG. 13 is a plot of the average rate variation of each of the above-mentioned crystal resonators. The vertical axis represents the variation [%] with respect to the average rate of the crystal resonator immediately before switching, and the horizontal axis represents the crystal resonator. No. is shown respectively.
 なお、成膜レートの測定には、図11を参照して説明した測定ユニット17を用い、水晶振動子(発振子20)としては、基本周波数が5MHzの水晶振動子を用いた。 Note that the measurement unit 17 described with reference to FIG. 11 was used to measure the film formation rate, and a crystal resonator having a fundamental frequency of 5 MHz was used as the crystal resonator (oscillator 20).
 図12に示すように、水晶振動子の切り替え前と切り替え後で測定レートが±5~10%程度変化している。また、図13に示すように、各水晶振動子のレートのばらつきは一定でなく、安定に成膜レートを測定することが困難であった。 As shown in FIG. 12, the measurement rate has changed by about ± 5 to 10% before and after switching of the crystal unit. Further, as shown in FIG. 13, the variation in the rate of each crystal resonator is not constant, and it is difficult to stably measure the film formation rate.
 本発明者らは、上記現象が水晶振動子の成膜面に堆積した有機膜の膜質が水晶板の電極の粗さに起因することに着目し、成膜面の表面粗さが小さいほど当該有機膜が均一に水晶板上に付き、測定レートのばらつきを低減させることを見出した。そこで本発明者らは、水晶振動子の成膜面の表面が鏡面になるように平滑化することで、水晶振動子の切り替え前後における測定レートのばらつきを抑制した。 The inventors pay attention to the fact that the above-mentioned phenomenon is caused by the roughness of the electrode of the quartz plate on the film quality of the organic film deposited on the film-forming surface of the crystal resonator. It has been found that the organic film is uniformly applied on the quartz plate, and variation in the measurement rate is reduced. Therefore, the present inventors have suppressed the variation in the measurement rate before and after switching the crystal resonator by smoothing the surface of the crystal resonator so that the surface of the film is a mirror surface.
 図14に、基本周波数5MHzの水晶振動子であって、その成膜面の表面粗さ(Ra)が0.27μmである12個の水晶振動子(以下、サンプル1という)を順次切り替えたときの測定レートのバラツキと、上記表面粗さ(Ra)が0.02μmである12個の水晶振動子(以下、サンプル2という)を順次切り替えたときの測定レートのバラツキとを比較して示す。 FIG. 14 shows a sequence of twelve quartz crystal resonators (hereinafter referred to as “sample 1”) having a fundamental frequency of 5 MHz and having a film surface roughness (Ra) of 0.27 μm. The variation in the measurement rate is compared with the variation in the measurement rate when twelve crystal resonators (hereinafter referred to as sample 2) having a surface roughness (Ra) of 0.02 μm are sequentially switched.
 なお、電極膜31,32(図3,4参照)として、サンプル1,2の各面に、それぞれ厚み0.25μmの金薄膜を形成した。電極膜31,32の表面粗さ(Ra)は、水晶振動子の表面粗さ(Ra)と同等であった。 In addition, a gold thin film having a thickness of 0.25 μm was formed on each surface of samples 1 and 2 as electrode films 31 and 32 (see FIGS. 3 and 4). The surface roughness (Ra) of the electrode films 31 and 32 was equivalent to the surface roughness (Ra) of the crystal resonator.
 図14に示すように、サンプル1と比較して、サンプル2の方が、測定レートのばらつきが小さいことから、サンプル2によれば、成膜レートを安定にかつ高精度に測定することが可能となる。 As shown in FIG. 14, sample 2 has a smaller variation in measurement rate than sample 1, so sample 2 can measure the deposition rate stably and with high accuracy. It becomes.
 測定レートのばらつきは、水晶振動子の基本周波数が低いほど小さくなる。図15に、基本周波数4MHzの水晶振動子であって、その成膜面の表面粗さ(Ra)が0.02μmである12個の水晶振動子(以下、サンプル3という)を順次切り替えたときの測定レートのバラツキを、サンプル2の場合と比較して示す。 Measured rate variation decreases as the fundamental frequency of the crystal unit decreases. FIG. 15 shows a case where twelve crystal resonators (hereinafter referred to as “sample 3”) having a fundamental frequency of 4 MHz and having a surface roughness (Ra) of 0.02 μm are sequentially switched. The variation in the measurement rate is shown in comparison with Sample 2.
 以上のように、水晶振動子の成膜面が鏡面に近いものほど、水晶振動子の基本周波数が低いものほど、測定レートのばらつきを小さくでき、これにより成膜レートを安定にかつ高精度に測定することが可能となる。 As described above, the variation in the measurement rate can be reduced as the crystal resonator film formation surface is closer to the mirror surface or the crystal resonator has a lower fundamental frequency. It becomes possible to measure.
 水晶振動子の成膜面の表面粗さ(Ra)は、例えば0.2μm以下、より好ましくは、0.1μm以下である。これにより、有機膜の成膜レートを高精度に測定することが可能となる。また、水晶振動子の成膜面が鏡面(例えば0.1μm以下)の場合、その基本周波数は5MHz以下であってもよいが、上述のように4MHz以下であることがより好ましい。 The surface roughness (Ra) of the film formation surface of the crystal resonator is, for example, 0.2 μm or less, and more preferably 0.1 μm or less. This makes it possible to measure the film formation rate of the organic film with high accuracy. In addition, when the film formation surface of the crystal resonator is a mirror surface (for example, 0.1 μm or less), the fundamental frequency may be 5 MHz or less, but is more preferably 4 MHz or less as described above.
 以上、本技術の実施形態について説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this technique was described, this technique is not limited only to the above-mentioned embodiment, Of course, various changes can be added within the range which does not deviate from the summary of this technique.
 例えば以上の実施形態では、有機膜として、Alq3(トリス(8-キノリノラト)アルミニウム)を例に挙げて説明したが、有機膜は勿論これに限られず、合成樹脂薄膜などの他の有機材料の成膜にも、本発明は適用可能である。 For example, in the above embodiment, Alq3 (tris (8-quinolinolato) aluminum) is described as an example of the organic film. However, the organic film is not limited to this, and other organic materials such as a synthetic resin thin film can be used. The present invention can also be applied to a membrane.
 また以上の実施形態では、成膜装置として、真空蒸着装置を例に挙げて説明したが、これに限られず、スパッタ装置などの他の成膜装置にも本発明は適用可能である。スパッタ装置の場合、有機材料源は、有機材料で構成されたターゲットを含むスパッタカソードで構成される。 In the above embodiment, the vacuum deposition apparatus has been described as an example of the film forming apparatus. However, the present invention is not limited to this, and the present invention can be applied to other film forming apparatuses such as a sputtering apparatus. In the case of a sputtering apparatus, the organic material source is constituted by a sputtering cathode including a target made of an organic material.
 10…成膜装置
 11…真空チャンバ
 12…有機材料源
 13…基板ホルダ
 14…膜厚センサ
 16…シャッタ
 17…測定ユニット
 20…発振子
 41…発振回路
 42…測定回路
 43…コントローラ
 W…基板
DESCRIPTION OF SYMBOLS 10 ... Film-forming apparatus 11 ... Vacuum chamber 12 ... Organic material source 13 ... Substrate holder 14 ... Film thickness sensor 16 ... Shutter 17 ... Measuring unit 20 ... Oscillator 41 ... Oscillator circuit 42 ... Measuring circuit 43 ... Controller W ... Substrate

Claims (8)

  1.  真空チャンバと、
     前記真空チャンバの内部に配置され、有機材料粒子を放出することが可能な有機材料源と、
     前記有機材料源に対向して配置され、基板を保持することが可能に構成された基板ホルダと、
     前記真空チャンバの内部に配置され、4MHz以下の基本周波数を有する水晶振動子を有する膜厚センサと、
     前記水晶振動子の共振周波数の変化に基づいて、前記基板ホルダ上の基板に堆積した有機膜の膜厚を測定する測定ユニットと
     を具備する成膜装置。
    A vacuum chamber;
    An organic material source disposed inside the vacuum chamber and capable of emitting organic material particles;
    A substrate holder arranged to face the organic material source and configured to hold the substrate;
    A film thickness sensor having a crystal resonator disposed inside the vacuum chamber and having a fundamental frequency of 4 MHz or less;
    A film forming apparatus comprising: a measurement unit that measures a film thickness of an organic film deposited on a substrate on the substrate holder based on a change in a resonance frequency of the crystal resonator.
  2.  請求項1に記載の成膜装置であって、
     前記水晶振動子は、ATカット水晶振動子またはSCカット水晶振動子である
     成膜装置。
    The film forming apparatus according to claim 1,
    The crystal unit is an AT-cut crystal unit or an SC-cut crystal unit.
  3.  請求項1または2に記載の成膜装置であって、
     前記測定ユニットは、
     前記水晶振動子を発振させる発振回路と、
     基準周波数の信号を発振する基準信号発生回路と、
     前記発振回路から出力される信号と前記基準周波数の信号とを混合するミキサ回路と、
     前記ミキサ回路で生成される信号のうち低周波成分の信号の周波数を測定するカウンタと、
     前記カウンタで測定された周波数と前記基準周波数との差に基づいて、前記発振回路の発振周波数を算出するコントローラと
     を有する
     成膜装置。
    The film forming apparatus according to claim 1 or 2,
    The measurement unit is
    An oscillation circuit for oscillating the crystal unit;
    A reference signal generating circuit for oscillating a signal of a reference frequency;
    A mixer circuit that mixes the signal output from the oscillation circuit and the signal of the reference frequency;
    A counter for measuring the frequency of a low-frequency component signal among the signals generated by the mixer circuit;
    A film forming apparatus comprising: a controller that calculates an oscillation frequency of the oscillation circuit based on a difference between the frequency measured by the counter and the reference frequency.
  4.  請求項1~3のいずれか1つに記載の成膜装置であって、
     前記有機材料源から前記基板ホルダおよび前記水晶振動子への前記有機材料粒子の放出を遮蔽することが可能に構成されたシャッタをさらに具備する
     成膜装置。
    A film forming apparatus according to any one of claims 1 to 3,
    A film forming apparatus, further comprising: a shutter configured to shield release of the organic material particles from the organic material source to the substrate holder and the crystal unit.
  5.  請求項1~4のいずれか1つに記載の成膜装置であって、
     前記水晶振動子は、前記有機膜が堆積する成膜面を有し、前記成膜面の表面粗さ(Ra)は0.1μm以下である
     成膜装置。
    A film forming apparatus according to any one of claims 1 to 4,
    The crystal unit has a film formation surface on which the organic film is deposited, and a surface roughness (Ra) of the film formation surface is 0.1 μm or less.
  6.  有機材料源から放出された有機材料粒子を基板上に堆積させ、
     4MHz以下の共振周波数で振動する水晶振動子上に前記有機材料粒子を堆積させ、
     前記水晶振動子の共振周波数の変化に基づいて、前記基板上に堆積した前記有機材料粒子の膜厚を測定する
     有機膜の膜厚測定方法。
    Depositing organic material particles released from the organic material source on the substrate;
    Depositing the organic material particles on a quartz crystal vibrating at a resonance frequency of 4 MHz or less;
    A method for measuring a film thickness of an organic film, comprising: measuring a film thickness of the organic material particles deposited on the substrate based on a change in a resonance frequency of the crystal resonator.
  7.  有機材料の成膜装置に搭載される有機膜用膜厚センサであって、
     4MHz以下の基本周波数を有する水晶振動子
     を具備する有機膜用膜厚センサ。
    An organic film thickness sensor mounted on an organic material film forming apparatus,
    A film thickness sensor for organic films comprising a crystal resonator having a fundamental frequency of 4 MHz or less.
  8.  請求項7に記載の有機膜用膜厚センサであって、
     前記水晶振動子は、有機膜が堆積する成膜面を有し、前記成膜面の表面粗さ(Ra)は0.1μm以下である
     有機膜用膜厚センサ。
    The film thickness sensor for organic films according to claim 7,
    The crystal oscillator has a film formation surface on which an organic film is deposited, and the film surface has a surface roughness (Ra) of 0.1 μm or less.
PCT/JP2015/002580 2014-05-26 2015-05-22 Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film WO2015182090A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187015514A KR20180063369A (en) 2014-05-26 2015-05-22 Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film
CN201580020079.7A CN106232858A (en) 2014-05-26 2015-05-22 Film formation device, the film thickness measuring method of organic membrane and organic membrane film thickness sensor
KR1020167026478A KR102035146B1 (en) 2014-05-26 2015-05-22 Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film
SG11201608133PA SG11201608133PA (en) 2014-05-26 2015-05-22 Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film
JP2016523133A JP6078694B2 (en) 2014-05-26 2015-05-22 Film forming apparatus, organic film thickness measuring method, and organic film thickness sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014107816 2014-05-26
JP2014-107816 2014-05-26

Publications (1)

Publication Number Publication Date
WO2015182090A1 true WO2015182090A1 (en) 2015-12-03

Family

ID=54698445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002580 WO2015182090A1 (en) 2014-05-26 2015-05-22 Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film

Country Status (5)

Country Link
JP (1) JP6078694B2 (en)
KR (2) KR102035146B1 (en)
CN (1) CN106232858A (en)
SG (1) SG11201608133PA (en)
WO (1) WO2015182090A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155612A1 (en) * 2016-03-11 2017-09-14 Applied Materials, Inc. Wafer processing tool having a micro sensor
TWI606134B (en) * 2016-08-05 2017-11-21 財團法人工業技術研究院 Film thickness monitoring system and method using the same
CN107794509A (en) * 2016-09-06 2018-03-13 株式会社爱发科 Film thickness sensor
KR20180110004A (en) 2016-05-06 2018-10-08 가부시키가이샤 알박 Thin Film Manufacturing Device, Thin Film Manufacturing Method
KR20180137512A (en) 2016-05-13 2018-12-27 울박, 인크 Organic Thin Film Manufacturing Device, Organic Thin Film Manufacturing Method
US10763143B2 (en) 2017-08-18 2020-09-01 Applied Materials, Inc. Processing tool having a monitoring device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110257791B (en) * 2019-04-29 2021-07-20 昆山国显光电有限公司 Speed monitoring device, evaporation equipment and evaporation method
TWI701641B (en) * 2019-10-01 2020-08-11 龍翩真空科技股份有限公司 Wireless transmission film thickness monitoring device
WO2021124448A1 (en) 2019-12-17 2021-06-24 株式会社アルバック Measurement abnormality detection device and measurement abnormality detection method
CN111188020A (en) * 2020-03-03 2020-05-22 成都晶砂科技有限公司 Vacuum steamed bun steaming equipment
CN111206232A (en) * 2020-03-03 2020-05-29 成都晶砂科技有限公司 Vacuum steamed bun steaming equipment
CN111829428B (en) * 2020-06-17 2022-02-15 华中科技大学 Double-quartz-crystal diaphragm thickness control instrument and error correction method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261743A (en) * 1995-03-20 1996-10-11 Ulvac Japan Ltd Oscillation circuit for piezoelectric crystal oscillation type film thickness meter
JPH09250918A (en) * 1996-03-13 1997-09-22 Miyota Kk Monitor for forming film of electrode
JP2003240697A (en) * 2002-02-14 2003-08-27 Semiconductor Leading Edge Technologies Inc Analytical method and device for membrane properties
JP2006118009A (en) * 2004-10-22 2006-05-11 Canon Inc Method for depositing thin film
JP2008245243A (en) * 2007-02-26 2008-10-09 Epson Toyocom Corp Contour resonator and adjustment method therefor
JP2009185344A (en) * 2008-02-07 2009-08-20 Sony Corp Vapor deposition method, vapor deposition apparatus, and method for manufacturing display device
WO2010032328A1 (en) * 2008-09-22 2010-03-25 パイオニア株式会社 Pll circuit and film thickness measuring instrument using the same
JP2010077469A (en) * 2008-09-25 2010-04-08 Hitachi Zosen Corp Film-thickness-detecting device of vacuum vapor-deposition facility
JP2010196082A (en) * 2009-02-23 2010-09-09 Canon Inc Vacuum vapor deposition apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605619A (en) * 1983-06-23 1985-01-12 Seikosha Co Ltd Thickness-shear piezoelectric vibrator
JPH09326668A (en) * 1996-04-02 1997-12-16 Seiko Epson Corp Piezoelectric element and production of the same
JP3953301B2 (en) 2001-11-05 2007-08-08 株式会社アルバック Sensor head for crystal oscillation type film thickness monitor
JP4001296B2 (en) * 2005-08-25 2007-10-31 トッキ株式会社 Method and apparatus for vacuum deposition of organic materials
KR101283161B1 (en) * 2007-09-21 2013-07-05 가부시키가이샤 알박 Thin film forming apparatus, film thickness measuring method and film thickness sensor
WO2011071064A1 (en) * 2009-12-09 2011-06-16 株式会社アルバック Film forming device for organic thin films, and method for forming film using organic materials
JP2014062310A (en) * 2012-09-24 2014-04-10 Hitachi High-Technologies Corp Film thickness sensor, and vacuum evaporation apparatus and vacuum evaporation method using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261743A (en) * 1995-03-20 1996-10-11 Ulvac Japan Ltd Oscillation circuit for piezoelectric crystal oscillation type film thickness meter
JPH09250918A (en) * 1996-03-13 1997-09-22 Miyota Kk Monitor for forming film of electrode
JP2003240697A (en) * 2002-02-14 2003-08-27 Semiconductor Leading Edge Technologies Inc Analytical method and device for membrane properties
JP2006118009A (en) * 2004-10-22 2006-05-11 Canon Inc Method for depositing thin film
JP2008245243A (en) * 2007-02-26 2008-10-09 Epson Toyocom Corp Contour resonator and adjustment method therefor
JP2009185344A (en) * 2008-02-07 2009-08-20 Sony Corp Vapor deposition method, vapor deposition apparatus, and method for manufacturing display device
WO2010032328A1 (en) * 2008-09-22 2010-03-25 パイオニア株式会社 Pll circuit and film thickness measuring instrument using the same
JP2010077469A (en) * 2008-09-25 2010-04-08 Hitachi Zosen Corp Film-thickness-detecting device of vacuum vapor-deposition facility
JP2010196082A (en) * 2009-02-23 2010-09-09 Canon Inc Vacuum vapor deposition apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11348846B2 (en) 2016-03-11 2022-05-31 Applied Materials, Inc. Wafer processing tool having a micro sensor
US10818564B2 (en) 2016-03-11 2020-10-27 Applied Materials, Inc. Wafer processing tool having a micro sensor
WO2017155612A1 (en) * 2016-03-11 2017-09-14 Applied Materials, Inc. Wafer processing tool having a micro sensor
KR20180110004A (en) 2016-05-06 2018-10-08 가부시키가이샤 알박 Thin Film Manufacturing Device, Thin Film Manufacturing Method
KR20180137512A (en) 2016-05-13 2018-12-27 울박, 인크 Organic Thin Film Manufacturing Device, Organic Thin Film Manufacturing Method
US10100410B2 (en) 2016-08-05 2018-10-16 Industrial Technology Research Institute Film thickness monitoring system and method using the same
TWI606134B (en) * 2016-08-05 2017-11-21 財團法人工業技術研究院 Film thickness monitoring system and method using the same
JP2018040604A (en) * 2016-09-06 2018-03-15 株式会社アルバック Film thickness sensor
KR20180027334A (en) 2016-09-06 2018-03-14 가부시키가이샤 아루박 Film thickness sensor
CN107794509A (en) * 2016-09-06 2018-03-13 株式会社爱发科 Film thickness sensor
CN107794509B (en) * 2016-09-06 2021-10-01 株式会社爱发科 Film thickness sensor
KR102341835B1 (en) 2016-09-06 2021-12-21 가부시키가이샤 아루박 Film thickness sensor
US10763143B2 (en) 2017-08-18 2020-09-01 Applied Materials, Inc. Processing tool having a monitoring device
US10957565B2 (en) 2017-08-18 2021-03-23 Applied Materials, Inc. Processing tool having a monitoring device

Also Published As

Publication number Publication date
KR20180063369A (en) 2018-06-11
JPWO2015182090A1 (en) 2017-04-20
JP6078694B2 (en) 2017-02-08
KR102035146B1 (en) 2019-10-22
CN106232858A (en) 2016-12-14
KR20160127078A (en) 2016-11-02
SG11201608133PA (en) 2016-11-29

Similar Documents

Publication Publication Date Title
JP6078694B2 (en) Film forming apparatus, organic film thickness measuring method, and organic film thickness sensor
JP6328253B2 (en) Film thickness monitor and film thickness measuring method
JP2974253B2 (en) Control method of material deposition rate
JP6641649B2 (en) Method for determining life of quartz oscillator, film thickness measuring device, film forming method, film forming device, and electronic device manufacturing method
KR101890540B1 (en) Diagnostic method for film thickness sensor, and film thickness monitor
Wingqvist et al. Shear mode AlN thin film electroacoustic resonator for biosensor applications
TWI683089B (en) Film thickness sensor
JP7217822B1 (en) Film thickness monitoring method and film thickness monitoring device
JPWO2016140321A1 (en) Film thickness monitoring device sensor, film thickness monitoring device including the same, and method for manufacturing film thickness monitoring device sensor
JP6412384B2 (en) Quartz crystal resonator, sensor head having the crystal resonator, film formation control device, and method for manufacturing film formation control device
JP7102588B1 (en) Sensor device
JP2007114015A (en) Humidity measuring instrument
RU2702702C1 (en) Method of determining sensitivity of quartz microbalance
JP2016042643A (en) Oscillation circuit for film thickness monitor
Goel et al. Stress Sensitivity of Micromachined AT-Cut Quartz Resonators Characterized Using Magnetostrictive Metglas Films
JP2024022023A (en) Measuring device, film-forming device, and film thickness measurement method
Yoshimura et al. 2P1-4 Monitoring of Film Growth on Quartz by Acoustic Resonance Method
JPH03218411A (en) Crystal oscillator for monitor and film thickness controller using the same
Wang Micromachined ultrasonic transducers with piezoelectric aluminum nitride thin films
JPH08261743A (en) Oscillation circuit for piezoelectric crystal oscillation type film thickness meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15798918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523133

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020167026478

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15798918

Country of ref document: EP

Kind code of ref document: A1