WO2015180270A1 - 触摸显示面板及其驱动方法、显示装置 - Google Patents

触摸显示面板及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2015180270A1
WO2015180270A1 PCT/CN2014/085098 CN2014085098W WO2015180270A1 WO 2015180270 A1 WO2015180270 A1 WO 2015180270A1 CN 2014085098 W CN2014085098 W CN 2014085098W WO 2015180270 A1 WO2015180270 A1 WO 2015180270A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
display panel
strip electrodes
strip
touch display
Prior art date
Application number
PCT/CN2014/085098
Other languages
English (en)
French (fr)
Inventor
龙跃
黄炜赟
董向丹
王杨
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2015180270A1 publication Critical patent/WO2015180270A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present disclosure relates to the field of display, and in particular, to a touch display panel, a driving method thereof, and a display device. Background technique
  • the touch display has developed rapidly.
  • the current mainstream products adopt the structure design of the external (Add on) touch screen.
  • the traditional external touch screen has a thick overall structure and high cost.
  • the embedded (In Cell) LCD screens have become an important development direction in the field of touch display.
  • the common electrode 10 in a liquid crystal panel having only a display function, generally covers the display area A/A of the entire display panel, that is, the common electrode 10 is an entire transparent conductive layer.
  • the touch driving electrode Tx and the common electrode are shared by means of time division driving, which requires that the common electrode must be divided into individual electrodes 11 in which the segments are not connected to each other ( Each of the individual electrodes 11 is a touch drive electrode in the touch detection phase.
  • the individual electrodes 11 are loaded with a common voltage in the display phase to function as a common electrode, and the touch driving voltage is applied in the touch phase to function as a touch driving electrode, and the touch driving electrode Tx is in contact with the touch sensing electrode Rx (not shown). Cooperate with the touch detection function.
  • the adverse effect of the common electrode splitting design is that the impedance of the common electrode increases to N times that of the ordinary display screen (display screen with display function only) in the display phase, and the delay of the common voltage signal Vcom increases, causing crosstalk. (cross talk) and other defects, affecting the display effect.
  • the present disclosure provides a touch display panel and a driving method thereof, and a display device capable of avoiding or at least reducing one or more problems in the prior art.
  • the present disclosure provides a touch display panel, which may include: a plurality of strip electrodes arranged at intervals, the strip electrodes being connected to each other by a common electrode in one or more rows of pixels, wherein in the display phase The strip electrode is used to load a common voltage to function as a common electrode, and in the touch detection phase, the strip electrode is used to load a touch drive The voltage acts as a touch driving electrode, wherein in the display phase, one ends of the strip electrodes on the same side are electrically connected to each other, and one end on the other side is also electrically connected to each other, and the adjacent strip electrodes are in the same position in the touch detection. One end of the side can be electrically connected to each other through the switch tube, and one end of the other side can also be electrically connected to each other through the switch tube.
  • the switch tube has a first pole, a second pole and a control end, wherein the first pole and the second pole are respectively connected to one ends of two adjacent strip electrodes on the same side, and the control end is connected to the control signal line .
  • the strip electrode is located at an edge of the touch display panel, and at least one of the two ends of the strip electrode may be connected to a common voltage signal line through a switch tube, and the first pole of the switch tube is connected to the common voltage signal line The second pole is connected to one end of the strip electrode, and the control end is connected to the control signal line.
  • the touch display panel may further include: a common voltage output end disposed at an edge of the touch display panel, wherein a strip electrode on a side of the touch display panel closest to the common voltage output end passes A switching transistor is connected to the common voltage signal line.
  • the switch tube may be disposed at an edge of the touch display panel.
  • the switching transistor can be a triode or a thin film transistor.
  • the present disclosure provides a display device including the touch display panel described above.
  • the present disclosure provides a driving method of a touch display panel
  • the touch display panel includes a plurality of strip electrodes arranged at intervals, and the strip electrodes are connected to each other by a common electrode in one or more rows of pixels.
  • the driving method includes: in the display stage, the one ends of the strip electrodes on the same side are electrically connected to each other, and the one ends on the other side are also electrically connected to each other, and then the common electrodes are loaded on the strip electrodes. Voltage;
  • the touch drive signal is loaded line by line on the touch detection step strip electrode to complete the scan of the touch signal. ;mouth
  • the present disclosure provides another method for driving a touch display panel.
  • one end of the adjacent strip electrodes on the same side is electrically connected to each other through a switch tube, and one end of the other side is also
  • the switch tube has a first pole, a second pole and a control end, and the first pole and the second pole of the switch tube are respectively connected to two adjacent strip electrodes on the same side
  • the control terminal is connected to the control signal line.
  • the method shares the strip electrodes in a time division driven manner.
  • the method includes: in a display phase, using a control signal line to output a high level to turn on the switch tube, such that one ends of the strip electrodes on the same side are electrically connected to each other, and one end on the other side is also electrically connected to each other, and then a signal on the common voltage signal line is loaded onto the strip electrode; in the touch detection phase, the control signal line is used to output a low level to turn off the switch tube, so that the strip electrodes are disconnected from each other Separate electrodes that are not in communication with each other, and then the touch drive signals are loaded line by line on the strip electrodes to complete the scanning of the touch signals.
  • the present disclosure provides a touch display panel, a driving method thereof, and a display device.
  • the strip electrodes of the divided design are electrically connected to each other at one end of the same side, and the one ends of the strip electrodes are also electrically connected to each other, that is, the strip electrodes are equivalent to form a whole piece by parallel connection, so that the common voltage is applied in common.
  • the electrode acts, the impedance can be reduced, the delay of the common voltage signal and the resulting crosstalk can be avoided, and the display effect can be improved.
  • the strip electrodes are disconnected from each other, and the strip electrodes become independent electrodes that are not connected to each other, functioning as a touch drive electrode, and do not affect the scanning of the touch signal.
  • FIG. 1 is a schematic view of a common electrode in a liquid crystal panel having only a display function in the prior art
  • FIG. 2 is a schematic diagram of a common electrode division design in an embedded liquid crystal panel in the prior art
  • FIG. 3 is a schematic diagram showing a common voltage loading in a display phase in the prior art
  • FIG. 4 is a schematic structural diagram 1 of a touch display panel provided by the present disclosure.
  • FIG. 5 is a schematic structural diagram 2 of a touch display panel provided by the present disclosure.
  • Reference numeral 1 is a schematic structural diagram 2 of a touch display panel provided by the present disclosure.
  • the present disclosure provides a touch display panel, comprising: a plurality of strip electrodes arranged at intervals, wherein the strip electrodes are connected by a common electrode in one or more rows of pixels; in the display phase, the strip electrodes are located One end of the same side is electrically connected to each other, and one end of the other side is also electrically connected to each other.
  • the strip electrodes are used to load a common voltage and function as a common electrode; in the touch detection phase, the strip electrodes are disconnected from each other.
  • the strip electrodes are independent electrodes that are not in communication with each other.
  • the strip electrodes are used to load a touch driving voltage and function as a touch driving electrode.
  • the strip electrodes may be formed by connecting the common electrodes in one row of pixels to each other, or may be a strip electrode corresponding to a plurality of rows of pixels, that is, the strip electrodes are formed by interconnecting common electrodes in the plurality of rows of pixels.
  • each strip electrode is a touch drive electrode (or touch drive line).
  • the strip electrode in the present disclosure is formed by dividing the original common electrode and adopting a time-division driving method to achieve the purpose of sharing the touch driving electrode Tx with the common electrode.
  • a whole layer of transparent conductive layer is deposited first, and then a plurality of strip electrodes arranged at intervals are formed by photolithography (there are a plurality of specific patterns of the strip electrodes, but this is not related to the present disclosure, and is not detailed here. For details, refer to Figure 2 for details.
  • the strip electrodes are electrically connected to each other at the two ends during the display phase, thereby forming a whole piece, which is equivalent to a whole transparent conductive layer, so that when the common voltage is applied, the impedance can be reduced, and the delay of the common voltage signal Vcom and thus The resulting crosstalk is poor, and the display effect is improved.
  • the strip electrodes are disconnected from each other into independent electrodes that are not connected to each other, and are used to load the touch driving voltage without affecting the scanning of the touch signals. It acts as a touch drive electrode.
  • the driving method of the touch display panel is as follows: In the display phase, one ends of the strip electrodes on the same side are electrically connected to each other, and one end on the other side is also electrically connected to each other, which is equivalent to connecting the strip electrodes into a whole piece. And then loading a common voltage on the strip electrodes, In the touch detection phase, the strip electrodes are disconnected from each other, and the strip electrodes become independent electrodes that are not connected to each other, and then the touch driving voltage is loaded row by row to complete the scanning of the touch signals to realize the touch detection function.
  • a schematic diagram of loading a common voltage during the display phase In the prior art, the edge of the panel is provided with the same number of leads 16 as the strip electrodes. When the signals are loaded, the leads 16 are shared, and the lead drivers 16 are loaded with the same common voltage, and in the touch detection phase, the leads 16 are The line loads the touch drive voltage to complete the scanning of the touch signal.
  • FIG. 4 shows a first embodiment of the present embodiment.
  • the touch display panel is provided with a plurality of spaced strip electrodes 12, and any strip electrodes 12 are connected to the adjacent strip electrodes 12 through the switch tube 13 at least at both ends, that is, the adjacent strip electrodes 12 are located.
  • One end of the same side is electrically connected to each other through the switch tube 13, and one end of the other side is also electrically connected to each other through the switch tube 13.
  • these switching tubes 13 have a first pole, a second pole, and a control terminal.
  • the first pole and the second pole of the switch tube 13 are respectively connected to one ends of the adjacent two strip electrodes 12 on the same side, and the control terminals are connected to the control signal line 14 (signal line EM in Fig. 4).
  • the switch tube 13 is turned on, and the strip electrodes 12 are formed in parallel to form a whole piece, which is similar to the entire transparent conductive layer shown in FIG. 1 as a common electrode, thereby solving the problem of the common electrode division design in the prior art.
  • the display phase has an excessive impedance problem, avoiding crosstalk and other defects, and improving the display effect. It should be noted that the loading of the common voltage signal and the touch driving signal in the specific embodiment is the same as that in the prior art. For details, refer to FIG. 3 and related description, and details are not described herein again.
  • FIG. 5 shows a second embodiment of the present embodiment, which is different from the first embodiment in that the strip electrode 12 located at the edge of the touch display panel (the closest to the lower edge in FIG. 5)
  • Strip electrode 12 also passes through switch tube 13 and common voltage at both ends
  • Signal lines 15 (signal lines Vcom in Fig. 5) are connected.
  • the first pole of the switch tube 13 is connected to the common voltage signal line 15
  • the second pole is connected to the left end of the last strip electrode 12 or the right end of the other side
  • the control end is connected to the control signal line 14 ( Signal line EM) in FIG.
  • the strip electrode 12 may be connected to the common voltage signal line 15 through the switch tube 13 only at one of the two ends.
  • the switch tube 13 is turned on, and the common voltage signal is applied to the strip electrode 12 at the edge of the panel through the switch tube 13 (the strip electrode 12 closest to the lower edge of the panel in FIG. 5), and the common voltage signal is connected from the strip.
  • the electrode 12 begins to transfer to the entire screen. Therefore, in the embodiment shown in Fig. 5, the touch drive signal and the common voltage are originally loaded by sharing the same signal line, and can now also be used only for loading the touch drive signal.
  • the original common voltage signal loading mode may be parallel to the loading of the switch tube 13 in FIG. 5, that is, in the display phase, the common voltage signal is applied to the strip electrode 12 at the edge of the panel through the switch tube 13 while passing through The common voltage signal is loaded in the same way that the same signal line is shared.
  • the switch tube can be disposed at the edge of the touch display panel to facilitate routing the common voltage signal line 15 and the control signal line 14 at the edge of the panel without introducing wiring in the display area.
  • the touch display panel may further include: a common voltage output terminal, the common voltage output terminal is generally designed in a display driver IC (integrated circuit) or an FPC (Flexible Printed Circuit), and the common voltage output end is located at the touch
  • a display driver IC integrated circuit
  • FPC Flexible Printed Circuit
  • the common voltage output end is located at the touch
  • the edge of one side of the display panel such as the lower edge of FIG. 5, the strip electrode 12 closest to the side of the common voltage output end (ie, the last strip electrode 12 at the lower edge of the panel in FIG. 5), It is connected to the common voltage signal line 15 through the switching tube 13.
  • the control signal line 14 is selected to be routed on the left and right edges, and the switch tube 13 is disposed on the inner side of the control signal line 14, outside the strip electrode 12, and the wiring is simple and reasonable, and the narrow frame is more easily realized.
  • each of the adjacent strip electrodes 12 is provided with a switch tube 13 between them, and the adjacent strip electrodes 12 have a conduction point at the display stage.
  • At least one switch tube 13 is disposed at each end of the strip electrode 12, so that when the switch tube 13 is turned on during the display phase, the adjacent strip electrodes 12 are electrically connected to each other at both ends, and adjacent strip electrodes can be A parallel relationship is formed to reduce the impedance of the common electrode in the display phase.
  • adjacent strip electrodes 12 may remain between The switch tube 13 is provided in other areas.
  • a plurality of switch tubes 13 may be disposed in the intermediate display area to connect the adjacent strip electrodes 12 to increase the conduction point, thereby further reducing the impedance of the common electrode in the display phase.
  • this will introduce new wiring in the display area and reduce the transmittance. Therefore, it is advantageous to conduct the conduction at both ends of any adjacent strip electrodes 12 by providing the switch tubes 13 as shown in FIG.
  • the switch tube 13 is disposed at both ends of the adjacent strip electrodes 12 for connection, and the switch signal 13 is controlled to be turned on and off by the control signal line 14, thereby realizing the strip electrodes 12 to be electrically connected to each other during the display phase. , disconnected from each other during the touch detection phase.
  • the specific driving method of the circuit is briefly described as follows: In the display phase, the control signal line 14 outputs a high level to control all the switching tubes 13 to be turned on, and the one ends of the strip electrodes 12 on the same side are electrically connected to each other, and are located on the other side.
  • One end is also electrically connected to each other, and then the signal on the common voltage signal line 15 is loaded onto the strip electrodes 12; in the touch detection phase, the control signal line 14 outputs a low-level independent electrode, and the common voltage signal line 15
  • the connection with the strip electrode 12 is also broken, and then the touch driving voltage is loaded line by line to complete the scanning of the touch signal.
  • the signal on the control signal line 14 is used to control the switch tube 13 to be turned on during the display phase, and is turned off during the touch detection phase, and a new signal conforming to the requirement may be generated through the circuit, or an existing signal may be utilized, such as existing
  • the control signal or the EM signal of the display/touch switching is described by taking the EM signal as an example in FIG. 4 and FIG. 5 in this embodiment.
  • the adjacent strip electrodes 12 are electrically connected to each other at both ends, which corresponds to all the strip electrodes 12 being formed in parallel to form a whole common electrode, thereby solving the display phase impedance caused by the common electrode split design. Big problem, avoid crosstalk and other bad, improve display.
  • the impedance in the present disclosure becomes one of the original N's compared to the transmission of the N common voltage signals Vcom disconnected from each other in the prior art, where N is the number of strip electrodes 12.
  • the above-mentioned switching transistor can be a triode or a thin film transistor, wherein the thin film transistor can be a depletion switching tube or an enhanced switching tube.
  • the touch display panel and the driving method thereof in the embodiment can solve the problem that the impedance of the display stage is too large due to the common electrode division design, avoiding crosstalk and the like, and improving display effect.
  • the present disclosure also provides a display device including the touch display panel described above.
  • the display device shows that the phase impedance is small, energy saving and power saving, and higher display quality can be obtained.
  • the display device may be: a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, or any display product or component.
  • the first, second, etc. are used in the present disclosure to classify similar items, and the first and second words are not limited in number to the present disclosure, but are an example of a preferred mode. It is to be understood that those skilled in the art, in light of the present disclosure, will be apparent to those skilled in the art. , ' , , j ; ' , ' - , , ⁇ . . j , ' , and the same similar parts can be referred to each other, each embodiment focuses on the differences from other embodiments. In particular, for the device embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触摸显示面板及其驱动方法、显示装置,包括多个间隔排列的条状电极(12),所述条状电极(12)由一行或多行像素中的公共电极相互连接而成,其中在显示阶段,所述条状电极(12)位于同一侧的一端相互导通,且位于另一侧的一端也相互导通,所述条状电极(12)用于加载公共电压起公共电极作用,并且在触控检测阶段,所述条状电极(12)相互断开成为彼此不连通的独立电极,所述条状电极(12)用于加载触摸驱动电压起触摸驱动电极作用。

Description

触摸显示面板及其驱动方法、 显示装置 技术领域
本公开涉及显示领域, 尤其涉及一种触摸显示面板及其驱动方法、 显示装置。 背景技术
触摸显示屏发展迅速, 当前主流产品都采用了外置 (Add on ) 触 摸屏的结构设计, 但传统外置触摸屏, 整体机构厚重, 成本较高, 随 着消费者对显示器的薄化需求, 嵌入式(In Cell )液晶屏成为触摸显示 领域中一个重要发展的方向。
如图 1所示, 在仅具备显示功能的液晶面板中, 公共电极 10通常覆 盖整个显示面板的显示区域 A/A, 即公共电极 10为一整层的透明导电 层。 然而, 如图 2所示, 在嵌入式液晶面板中, 触摸驱动电极 Tx与公共 电极采用分时驱动的方式共用 ,这就要求公共电极必须分割成 Ν段彼此 不连通的独立电极 11 ( Ν为触摸驱动电极的总数量) , 每一段独立电极 11在触控检测阶段即为一条触摸驱动电极。 具体而言, 这些独立电极 11在显示阶段加载公共电压起公共电极作用, 并且在触摸阶段加载触 摸驱动电压起触摸驱动电极作用, 触摸驱动电极 Tx与触摸感应电极 Rx (图中未示出) 相配合实现触摸检测功能。 发明内容
发明人发现公共电极分割设计的不利后果是, 处于显示阶段时, 公共电极的阻抗增大为普通显示屏(仅具备显示功能的显示屏)的 N倍, 公共电压信号 Vcom的延迟增加, 造成串扰 (cross talk ) 等不良, 影响 显示效果。
为此, 本公开提供一种触摸显示面板及其驱动方法、 显示装置, 其能够避免或至少减轻现有技术中的问题的一个或多个。
在一方面, 本公开提供一种触摸显示面板, 其可以包括: 多个间 隔排列的条状电极, 所述条状电极由一行或多行像素中的公共电极相 互连接而成, 其中在显示阶段, 所述条状电极用于加载公共电压起公 共电极作用, 并且在触控检测阶段, 所述条状电极用于加载触摸驱动 电压起触摸驱动电极作用, 其中在显示阶段, 所述条状电极位于同一 侧的一端相互导通, 且位于另一侧的一端也相互导通, 并且在触控检 相邻条状电极位于同一侧的一端可以通过开关管相互导通, 且位 于另一侧的一端也可以通过开关管相互导通。
所述开关管具有第一极、 第二极和控制端, 其中第一极和第二极 分别连接至相邻两个所述条状电极位于同一侧的一端, 并且控制端连 接至控制信号线。
条状电极位于所述触摸显示面板边缘, 所述条状电极两端中的至 少一端可以通过开关管与公共电压信号线相连接, 所述开关管的第一 极连接至所述公共电压信号线, 第二极连接至条状电极的一端, 并且 控制端连接至所述控制信号线。
所述触摸显示面板还可以包括: 公共电压输出端, 其设置在所述 触摸显示面板的边缘, 其中所述触摸显示面板上最靠近所述公共电压 输出端所在一侧的条状电极通过所述开关管与所述公共电压信号线相 连接。
所述开关管可以设置在所述触摸显示面板的边缘。
所述开关管可以为三极管或薄膜晶体管。
在另一方面, 本公开提供一种显示装置, 其包括上述的触摸显示 面板。
在又一方面, 本公开提供一种触摸显示面板的驱动方法, 所述触 摸显示面板包括多个间隔排列的条状电极, 所述条状电极由一行或多 行像素中的公共电极相互连接而成, 所述驱动方法包括: 在显示阶段, 使所述条状电极位于同一侧的一端相互导通, 并且使位于另一侧的一 端也相互导通, 然后在所述条状电极上加载公共电压; 在触控检测阶 述条状电极上逐行加载触摸驱动信号以完、成触摸信号的扫描。 ;口
在再一方面, 本公开提供另一种触摸显示面板的驱动方法, 所述 触摸显示面板上, 相邻条状电极位于同一侧的一端通过开关管相互导 通, 且位于另一侧的一端也通过开关管相互导通; 所述开关管具有第 一极、 第二极和控制端, 所述开关管的第一极和第二极分别连接至相 邻两个所述条状电极位于同一侧的一端, 控制端连接至控制信号线。 该方法采用分时驱动的方式共用所述条状电极。 具体地该方法包括: 在显示阶段, 利用控制信号线输出高电平以开启开关管, 使得条状电 极位于同一侧的一端相互导通, 且位于另一侧的一端也相互导通, 然 后将公共电压信号线上的信号加载到所述条状电极上; 在触控检测阶 段, 利用所述控制信号线输出低电平以关断所述开关管, 使得所述条 状电极相互断开成为彼此不连通的独立电极, 然后在所述条状电极上 逐行加载触摸驱动信号以完成触摸信号的扫描。
本公开提供一种触摸显示面板及其驱动方法、 显示装置。 在显示 阶段使分割设计的条状电极位于同一侧的一端相互导通, 且位于另一 侧的一端也相互导通, 即条状电极相当于通过并联形成一整片, 这样 加载公共电压起公共电极作用时, 可以减少阻抗, 避免公共电压信号 的延迟以及由此导致的串扰等不良, 改善显示效果。 在触控检测阶段, 各条状电极相互断开, 条状电极成为彼此不连通的独立电极, 起触摸 驱动电极作用, 不影响触摸信号的扫描。 附图说明
为了更清楚地说明本公开中的技术方案, 下面将对实施例中所需 要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本公开的一些实施例。 本公开的范围并不限于所描述的具体实施例。 此外, 附图仅仅用于以示意性的方式来图示本公开, 其不一定按比例 绘制也并非是对本公开的限制。
图 1为现有技术中仅具备显示功能的液晶面板中公共电极的示意 图;
图 2为现有技术中嵌入式液晶面板中公共电极分割设计的示意图; 图 3为现有技术中显示阶段加载公共电压的示意图;
图 4为本公开提供的触摸显示面板的结构示意图一; 以及
图 5为本公开提供的触摸显示面板的结构示意图二。 附图标记
10-公共电极, 11-独立电极, 12-条状电极, 13-开关管, 14、 EM- 控制信号线, 15、 Vcom-公共电压信号线, 16-引线。 具体实施方式
下面将结合附图和实施例, 对本公开的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例仅仅是本公开的一部分实施例, 而不 是全部的实施例。 基于本公开的实施例, 本领域普通技术人员在没有 做出创造性劳动前提下所获得的所有其它实施例, 都属于本公开保护 的范围。 实施例
本公开提供一种触摸显示面板, 包括: 多个间隔排列的条状电极, 所述条状电极由一行或多行像素中的公共电极相互连接而成; 在显示 阶段, 这些条状电极的位于同一侧的一端相互导通, 且位于另一侧的 一端也相互导通, 此阶段这些条状电极用于加载公共电压, 起公共电 极作用; 在触控检测阶段, 这些条状电极相互断开, 条状电极成为彼 此不连通的独立电极, 该阶段这些条状电极用于加载触摸驱动电压, 起触摸驱动电极作用。
条状电极可以是由一行像素中的公共电极相互连接而形成的, 也 可以是一条条状电极对应多行像素 , 即条状电极是由多行像素中的公 共电极相互连接而形成。 在触控检测阶段, 每一条条状电极即为一条 触摸驱动电极 (或者触控驱动线) 。
本公开中的条状电极, 对原有公共电极进行分割设计而成, 并且 采用分时驱动的方式达到触摸驱动电极 Tx与公共电极共用的目的。 制 备时, 先沉积一整层的透明导电层, 然后再经光刻形成多个间隔排列 的条状电极 (条状电极的具体图形存在多种, 但这与本公开无关, 此 处不再详述) , 具体可参照图 2所示。 这些条状电极在显示阶段分别在 两端相互导通, 从而连成一整片, 相当于一整层透明导电层, 这样加 载公共电压时, 可以减少阻抗, 避免公共电压信号 Vcom的延迟以及由 此导致的串扰等不良, 改善显示效果; 在触控检测阶段, 这些条状电 极相互断开成为彼此不连通的独立电极, 用于加载触摸驱动电压, 不 影响触摸信号的扫描, 这些条状电极此时充当触摸驱动电极。
上述触摸显示面板的驱动方法具体如下: 在显示阶段, 这些条状 电极位于同一侧的一端相互导通, 且位于另一侧的一端也相互导通, 相当于条状电极连成了一整片, 然后在所述条状电极上加载公共电压, 实现显示功能; 在触控检测阶段, 所述条状电极相互断开, 条状电极 成为彼此不连通的独立电极, 然后逐行加载触摸驱动电压, 完成触摸 信号的扫描, 实现触控检测功能。 其在显示阶段加载公共电压的示意图。 现有技术中, 面板边缘设置有 与条状电极相同数目的引线 16 , 信号加载时这些引线 16共用, 触摸驱 这些引线 16均加载同样的公共电压, 而在触控检测阶段, 这些引线 16 逐行加载触摸驱动电压以完成触摸信号的扫描。
上述技术方案中条状电极如何具体在显示阶段实现相互导通, 在 触控检测阶段实现相互断开, 这并不影响本公开的实施效果, 因此本 员所熟知的任意实现方式。 下面通过具体的实施例对本公开提供的技 术方案进行详细说明, 显而易见地, 下面描述中的具体实施例仅仅是 作为本公开的一些示范性实施方式, 并不用于限定。
图 4所示为本实施例的第一种具体实施方式。 触摸显示面板上设置 有多个间隔排列的条状电极 12 , 任意条状电极 12至少在两端分别通过 开关管 13与相邻的另一条条状电极 12相连, 即相邻条状电极 12位于同 一侧的一端通过开关管 13相互导通, 且位于另一侧的一端也通过开关 管 13相互导通。 具体而言, 这些开关管 13具有第一极、 第二极和控制 端。 开关管 13的第一极和第二极分别连接至相邻两个条状电极 12的位 于同一侧的一端, 且控制端均连接至控制信号线 14(图 4中的信号线 EM)。
在显示阶段, 开关管 13开启, 条状电极 12并联形成一整片, 效果 上与图 1所示一整层透明导电层作为公共电极相同, 从而解决由于现有 技术中由于公共电极分割设计造成的显示阶段阻抗过大的问题, 避免 串扰等不良, 改善显示效果。 需要说明的是, 该具体实施方式中公共 电压信号和触摸驱动信号的加载与现有技术完全相同, 具体可参照图 3 所示及相关的描述, 此处不再赘述。
图 5所示为本实施例的第二种具体实施方式, 其与第一种具体实施 方式的区别之处在于, 位于触摸显示面板边缘的条状电极 12 (图 5中为 最靠近下边缘的条状电极 12 ) 在两端还分别通过开关管 13与公共电压 信号线 15 (图 5中信号线 Vcom)相连。 具体而言, 开关管 13的第一极连 接至公共电压信号线 15 , 第二极连接至最后一条条状电极 12的左端或 者位于另一侧的右端, 且控制端连接至控制信号线 14(图 5中的信号线 EM)。 当然, 该条状电极 12也可以只在两端中的一端通过开关管 13与公 共电压信号线 15相连。
在显示阶段, 开关管 13开启, 公共电压信号通过开关管 13加载到 面板边缘的条状电极 12 (图 5中为最靠近面板下边缘的条状电极 12 ) , 公共电压信号从相连的条状电极 12开始传输到整个屏幕。 因此, 在图 5 所示的具体实施方式中, 原来通过共用同一信号线加载触摸驱动信号 和公共电压, 现在也可以仅仅用来加载触摸驱动信号。 当然, 也可以 原有公共电压信号加载方式与图 5中通过开关管 13加载相并行的方式, 即在显示阶段, 采用公共电压信号通过开关管 13加载到面板边缘的条 状电极 12 , 同时通过原来共用同一信号线的方式加载公共电压信号。
上述开关管可以设置在触摸显示面板的边缘, 便于将公共电压信 号线 15和控制信号线 14在面板边缘布线, 不需要在显示区域引入布线。
所述触摸显示面板还可以包括: 公共电压输出端, 公共电压输出 端一般设计在显示驱动 IC(integrated circuit , 集成电路)或者 FPC(Flexible Printed Circuit, 柔性印刷电路)中, 公共电压输出端位于 触摸显示面板某一侧的边缘, 如位于图 5中的下边缘, 最靠近该公共电 压输出端所在一侧的条状电极 12 (即图 5中位于面板下边缘的最后一条 条状电极 12 ) , 通过开关管 13与公共电压信号线 15相连。 这时控制信 号线 14选择在左右边缘分别走线, 开关管 13设置在控制信号线 14的内 侧, 条形电极 12的外侧, 布线简便、 合理, 更易于实现窄边框。
本实施方式中, 通过在相邻条状电极 12之间设置开关管 13 , 并通 过控制信号线 14控制开关管 13的开启和关断, 从而实现条状电极 12在 显示阶段实现条状电极 12并联, 在触控阶段相互断开。 可以看出: 图 5 中示出的结构中, 任意相邻条状电极 12之间每设置一个开关管 13 , 相 邻条状电极 12之间在显示阶段即有一个导通点。 本实施例中要求至少 在条状电极 12的两端各设置一个开关管 13 , 这样在显示阶段开关管 13 开启时, 相邻条状电极 12在两端相互导通, 相邻条状电极才能形成并 联关系, 从而减小显示阶段公共电极的阻抗。
但实际上, 除两端的开关管 13外, 相邻条状电极 12之间还可以存 在其他区域设置开关管 13。 例如, 还可以在中间显示区域内多设置几 个开关管 13连接相邻的条状电极 12 , 增加导通点, 进一步降低显示阶 段公共电极的阻抗。 但是, 这样会在显示区域引入新的布线, 降低透 过率。 因此, 有利地如图 4所示在任意相邻条状电极 12的两端通过设置 开关管 13进行导通。
上述实施方式中, 在相邻条状电极 12的两端设置开关管 13进行连 接, 并通过控制信号线 14控制开关管 13的开启和关断, 从而实现条状 电极 12在显示阶段相互导通, 在触控检测阶段相互断开。 该电路的具 体驱动方法简述如下: 在显示阶段, 控制信号线 14输出高电平控制所 有的开关管 13开启, 条状电极 12的位于同一侧的一端相互导通, 且位 于另一侧的一端也相互导通, 然后公共电压信号线 15上的信号通过加 载到各条状电极 12上; 在触控检测阶段, 控制信号线 14输出低电平控 的独立电极, 且公共电压信号线 15与条状电极 12之间的连接也断开, 然后逐行加载触摸驱动电压, 完成触摸信号的扫描。 其中, 控制信号 线 14上的信号用于控制开关管 13在显示阶段开启, 在触控检测阶段关 断, 可以通过电路产生新的符合该要求的信号, 也可以利用现有信号, 如现有的显示 /触控切换的控制信号或者 EM信号, 本实施例图 4和图 5 中以 EM信号为例进行说明。
本实施方式中, 在显示阶段, 相邻条状电极 12在两端相互导通, 相当于所有条状电极 12并联形成整片的公共电极, 从而解决由于公共 电极分割设计造成的显示阶段阻抗过大的问题, 避免串扰等不良, 改 善显示效果。
在图 3的现有技术中, 如果设条状电极的数目为 N, 每一条状电极 的阻抗为 R, 则显示阶段总阻抗为 NR然而在本公开中, 显示阶段所有 条状电极 12并联, 总阻抗为 R/N。 因此, 与现有技术中彼此断开的 N个 公共电压信号 Vcom的传输相比, 本公开中的阻抗变成了原来的 N分之 一, 其中 N为条状电极 12的数目。
上述的开关管可以为三极管或者薄膜晶体管, 其中, 薄膜晶体管 可以为耗尽型开关管或增强型开关管。
本实施例中的触摸显示面板及其驱动方法, 能够解决由于公共电 极分割设计造成的显示阶段阻抗过大的问题, 避免串扰等不良, 改善 显示效果。
本公开还提供一种显示装置, 其包括上述的触摸显示面板。 所述 显示装置显示阶段阻抗小, 节能省电, 可以获得更高的显示品质。 所 述显示装置可以为: 液晶面板、 电子纸、 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显示功能的产品 或部件。
为了便于清楚说明, 在本公开中采用了第一、 第二等字样对相似 项进行类别区分, 该第一、 第二字样并不在数量上对本公开进行限制, 只是对一种优选的方式的举例说明, 本领域技术人员根据本公开的内 容, 想到的显而易见的相似变形或相关扩展均属于本公开的保护范围 内。 、' 、 、 j ;'、 ' - 、 、 ^ . . j 、 ' 、 间相同相似的部分互相参见即可, 每个实施例重点说明的都是与其他 实施例的不同之处。 尤其, 对于设备实施例而言, 由于其基本相似于 方法实施例, 所以描述得比较简单, 相关之处参见方法实施例的部分 说明即可。
以上所述, 仅为本公开的具体实施方式, 但本公开的保护范围并 围内, 可轻易想到的变化或替换, 都应涵盖在本公开的保护范围之内。 因此, 本公开的保护范围应该以权利要求的保护范围为准。

Claims

权 利 要 求
1. 一种触摸显示面板, 包括: 多个间隔排列的条状电极, 所述条 状电极由一行或多行像素中的公共电极相互连接而成, 其中在显示阶 段, 所述条状电极用于加载公共电压起公共电极作用, 并且在触控检 测阶段, 所述条状电极用于加载触摸驱动电压起触摸驱动电极作用, 其中在显示阶段, 所述条状电极位于同一侧的一端相互导通, 且位于 另一侧的一端也相互导通, 并且在触控检测阶段, 所述条状电极相互 断开而成为彼此不连通的独立电极。
2. 根据权利要求 1所述的触摸显示面板,其中相邻条状电极位于同 一侧的一端通过开关管相互导通, 且位于另一侧的一端也通过开关管 相互导通。
3. 根据权利要求 2所述的触摸显示面板,其中所述开关管具有第一 极、 第二极和控制端, 其中第一极和第二极分别连接至相邻两个所述 条状电极位于同一侧的一端, 并且控制端连接至控制信号线。
4. 根据权利要求 3所述的触摸显示面板,其中条状电极位于所述触 摸显示面板边缘, 所述条状电极两端中的至少一端通过开关管与公共 电压信号线相连接, 所述开关管的第一极连接至所述公共电压信号线, 第二极连接至条状电极的一端, 并且控制端连接至所述控制信号线。
5. 根据权利要求 4所述的触摸显示面板,其中该触摸显示面板还包 括: 公共电压输出端, 其设置在所述触摸显示面板的边缘, 其中所述 触摸显示面板上最靠近所述公共电压输出端所在一侧的条状电极通过 所述开关管与所述公共电压信号线相连接。
6. 根据权利要求 2所述的触摸显示面板, 其中,
所述开关管设置在所述触摸显示面板的边缘。
7. 根据权利要求 2所述的触摸显示面板, 其中,
所述开关管为三极管或薄膜晶体管。
8. 一种显示装置, 其包括权利要求 1所述的触摸显示面板。
9. 一种触摸显示面板的驱动方法, 所述触摸显示面板包括多个间 隔排列的条状电极, 所述条状电极由一行或多行像素中的公共电极相 互连接而成, 其中所述驱动方法包括:
在显示阶段, 使所述条状电极位于同一侧的一端相互导通, 并且 使位于另一侧的一端也相互导通, 然后在所述条状电极上加载公共电 压; 以及 立电极, 然后在所述条状电极上逐行加载触摸驱动信号以完成触摸信 号的扫描。
10. 一种用于驱动如权利要求 2所述的触摸显示面板的方法, 该方 法采用分时驱动的方式共用所述条状电极, 其中该方法包括:
在显示阶段, 利用控制信号线输出高电平以开启开关管, 使得条 状电极位于同一侧的一端相互导通, 且位于另一侧的一端也相互导通, 然后将公共电压信号线上的信号加载到所述条状电极上; 以及
在触控检 'J阶段,利用所述控制信号线输出低电平以关断所述开关 所述条状电极上逐行加载触摸驱动信号以完成触摸信号的扫描。 ;口
PCT/CN2014/085098 2014-05-29 2014-08-25 触摸显示面板及其驱动方法、显示装置 WO2015180270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410234414.0A CN104020881B (zh) 2014-05-29 2014-05-29 触摸显示面板及其驱动方法、显示装置
CN201410234414.0 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015180270A1 true WO2015180270A1 (zh) 2015-12-03

Family

ID=51437671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085098 WO2015180270A1 (zh) 2014-05-29 2014-08-25 触摸显示面板及其驱动方法、显示装置

Country Status (2)

Country Link
CN (1) CN104020881B (zh)
WO (1) WO2015180270A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714695A (zh) 2015-03-31 2015-06-17 京东方科技集团股份有限公司 显示基板及其驱动方法、显示装置
CN104699347B (zh) * 2015-04-01 2017-05-31 上海中航光电子有限公司 一种阵列基板、显示面板及电子设备
CN105070268B (zh) * 2015-09-23 2017-10-24 深圳市华星光电技术有限公司 降低内嵌式触摸液晶面板的漏电流的方法及设备
CN106020556B (zh) * 2016-06-17 2019-04-05 京东方科技集团股份有限公司 一种基板、显示面板、显示装置及其驱动方法
CN107894858B (zh) * 2016-10-04 2021-02-19 禾瑞亚科技股份有限公司 用于判断对应关系的电子***、主机与其判断方法
CN106502456B (zh) 2016-10-31 2019-07-16 厦门天马微电子有限公司 显示面板及其驱动方法、显示装置
CN107229163B (zh) * 2017-06-28 2019-12-20 昆山龙腾光电有限公司 宽窄视角可切换的液晶显示装置及驱动方法
EP3877808A4 (en) 2018-11-09 2022-07-27 E Ink Corporation ELECTRO-OPTICAL DISPLAYS
CN110162213B (zh) * 2019-04-25 2022-11-15 昆山龙腾光电股份有限公司 触控显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043535A (zh) * 2009-10-23 2011-05-04 三星电子株式会社 触摸基板和具有该触摸基板的显示器件
CN102968231A (zh) * 2012-11-08 2013-03-13 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN103257770A (zh) * 2013-04-16 2013-08-21 北京京东方光电科技有限公司 一种电容式触摸阵列基板、触摸显示屏及其驱动方法
CN203149548U (zh) * 2013-04-16 2013-08-21 北京京东方光电科技有限公司 一种电容式触摸阵列基板及触摸显示屏
KR20140058113A (ko) * 2012-11-06 2014-05-14 (주)인터플렉스 무베젤 단일층 터치 센서 패널

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043535A (zh) * 2009-10-23 2011-05-04 三星电子株式会社 触摸基板和具有该触摸基板的显示器件
KR20140058113A (ko) * 2012-11-06 2014-05-14 (주)인터플렉스 무베젤 단일층 터치 센서 패널
CN102968231A (zh) * 2012-11-08 2013-03-13 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN103257770A (zh) * 2013-04-16 2013-08-21 北京京东方光电科技有限公司 一种电容式触摸阵列基板、触摸显示屏及其驱动方法
CN203149548U (zh) * 2013-04-16 2013-08-21 北京京东方光电科技有限公司 一种电容式触摸阵列基板及触摸显示屏

Also Published As

Publication number Publication date
CN104020881A (zh) 2014-09-03
CN104020881B (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
WO2015180270A1 (zh) 触摸显示面板及其驱动方法、显示装置
US10126868B2 (en) Array substrate, method for driving the array substrate, display panel and display device
US10268304B2 (en) Touch display panel, manufacturing method for the same, driving method for the same, and display device
US9508751B2 (en) Array substrate, method for manufacturing the same and display device
US10019104B2 (en) Array substrate, display pannel, and display device with pressure sensing electrode block embedded therein
US20160364072A1 (en) In-cell touch panel
US20170299930A1 (en) Display panel and manufacturing method thereof, and display device
US10317739B2 (en) Array substrate, manufacturing method thereof, display panel and display apparatus
WO2017031934A1 (zh) 触控显示面板及其驱动方法和触控显示装置
US20180074378A1 (en) Liquid Crystal Display Panel and Array Substrate Thereof
TW200949345A (en) Flat-panel display device having test architecture
US9965085B2 (en) Display substrate, driving method thereof and display device for connecting touch electrodes with a common voltage
WO2015188418A1 (zh) 液晶面板及显示装置
US10181422B2 (en) Array substrate, method for manufacturing the same, and display apparatus
TW200406613A (en) Display device
US20160335975A1 (en) Array Substrate and Driving Method Thereof, Display Panel, and Display Apparatus
US20200176480A1 (en) Display panel and display device
WO2017124605A1 (zh) 触摸面板以及其制造方法
CN109313371A (zh) 显示装置及其制造方法
CN108279804B (zh) 显示面板和显示装置
JP2005024680A (ja) 透過・反射両用液晶表示装置
WO2017059752A1 (zh) 阵列基板和显示装置
WO2014173150A1 (zh) 一种阵列基板、显示装置及驱动方法
WO2014187124A1 (zh) 电极的电压控制方法及装置
WO2016169163A1 (zh) 一种阵列基板、显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/17)

122 Ep: pct application non-entry in european phase

Ref document number: 14893529

Country of ref document: EP

Kind code of ref document: A1