WO2015180136A1 - 调光开关及其调光方法 - Google Patents

调光开关及其调光方法 Download PDF

Info

Publication number
WO2015180136A1
WO2015180136A1 PCT/CN2014/078930 CN2014078930W WO2015180136A1 WO 2015180136 A1 WO2015180136 A1 WO 2015180136A1 CN 2014078930 W CN2014078930 W CN 2014078930W WO 2015180136 A1 WO2015180136 A1 WO 2015180136A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
power supply
circuit
driving circuit
transistor
Prior art date
Application number
PCT/CN2014/078930
Other languages
English (en)
French (fr)
Inventor
王晓元
Original Assignee
王晓元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王晓元 filed Critical 王晓元
Priority to PCT/CN2014/078930 priority Critical patent/WO2015180136A1/zh
Publication of WO2015180136A1 publication Critical patent/WO2015180136A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H23/00Tumbler or rocker switches, i.e. switches characterised by being operated by rocking an operating member in the form of a rocker button

Definitions

  • the invention relates to a switch, in particular to a dimmer switch and a dimming method thereof.
  • Dimming is developed to meet the different needs of people at different times for working parameters such as brightness and color temperature.
  • electronic dimming controls the degree of conduction by controlling and changing the phase angle of the thyristor, that is, the time during which the power source flows through the load, thus changing the voltage and current input to the electric light source to obtain light outputs of different intensities.
  • the dimmer switch can meet the different needs of people at different times, and can directly replace the existing wall switch. Suitable for family rooms, apartments, hotels, hospitals and other public places. With the improvement of living standards, people are inseparable from the light, and they are inseparable from the requirements for the quality of light.
  • the need for dimming can be broadly divided into three categories:
  • the function of the need to adjust the light such as entrance to the entrance, meeting rooms, etc.
  • the comfort of life and the embodiment of life style such as the light and dark combination of the light, the color temperature is warm and cold, can be adjusted according to the needs of the environment, but also can play the role of setting the atmosphere;
  • a variety of electric lamps including various conventional bulbs and LED lamps of different types and different powers, which are widely used, so that different lamps need to be respectively provided with matching driving circuits for driving according to the received dimming Commands that control operating parameters such as brightness and color temperature of the lamp.
  • the current LED driving circuit has been assembled with the LED as a whole, that is, the LED lamp itself has a driving circuit, then the dimming switch on the wall is no longer directly controlling the operating parameters such as the brightness and color temperature of the LED lamp, and It is to provide a dimming command to the driving circuit of the LED lamp.
  • the current dimmer switch is usually an independent control device, which requires separate wiring to communicate with the driving circuit of the LED lamp.
  • the assembly circuit is very complicated and cumbersome.
  • Another type of dimmer switch is connected in series on the live line, using the zero-crossing point of the mains AC (ie, the junction of positive and negative voltages), adding the encoded high-frequency control signal within a limited time of the zero-crossing point, and transmitting through the mains line.
  • the driving circuit of the LED lamp acquires a control signal, and the control signal is decoded by a preset decoding protocol to obtain a dimming command, thereby controlling the working parameters such as brightness and color temperature of the LED lamp.
  • the AC zero-crossing time is usually less than 3ms (milliseconds).
  • the control signal frequency must be very high, and subsequent decoding is easily distorted, resulting in unstable operation.
  • the LED lamp needs to accurately detect/catch the zero-crossing point of the power supply to ensure the stability of the subsequent work.
  • the circuit The zero crossing will drift, and the current technology cannot accurately capture the zero crossing, which leads to poor stability of the dimmer switch.
  • a dimming switch comprising: two connection terminals, a switching device, a power supply driving circuit, a voltage stabilizing filter circuit, a control module and an input device,
  • the control end of the switching device is connected to the power supply driving circuit, and the other ends are respectively connected to the two connection terminals;
  • the voltage stabilizing filter circuit is respectively connected to the power supply driving circuit, the control module and the input device, and the voltage stabilizing filter circuit is used for voltage regulation and filtering current flowing through;
  • the power supply driving circuit is further connected to the two connection terminals for obtaining electric energy from the two connection terminals, and supplying power to the control module and the input device through the voltage stabilization filter circuit;
  • the input device is further connected to the control module, and the input device is configured to send a control signal to the control module in response to a user input;
  • the control module is configured to generate, according to the control signal and the corresponding preset encoding protocol, a dimming signal including a high and a low level, and send the signal to the power supply driving circuit;
  • the power supply driving circuit is configured to switch the switching of the switching device in response to a high level and a low level in the dimming signal
  • the power supply driving circuit turns off a connection path with the voltage stabilization filter circuit at least during a period in which the received dimming signal is at a low level.
  • control module is further configured to send a buck signal to the power supply driving circuit during at least a low level signal in the transmit dimming signal, wherein the power supply driving circuit is configured to respond to the buck signal
  • the connection path with the voltage stabilizing filter circuit is turned off.
  • the power supply driving circuit is configured to turn off a connection path with the voltage stabilization filter circuit in response to a feedback voltage of its own output.
  • the power supply driving circuit is configured to turn off a connection path with the voltage stabilization filter circuit in response to a low level signal in the dimming signal.
  • the power supply driving circuit includes: a switch driving circuit, an open state power supply circuit, and an off state power supply circuit.
  • the switch driving circuit is respectively connected to two connection terminals, a control end of the switching device, and the control module;
  • the on-state power supply circuit is respectively connected to the switch drive circuit and the voltage stabilization filter circuit;
  • the off-state power supply circuit is respectively connected to the switch driving circuit, the voltage stabilizing filter circuit and the control module;
  • the switch driving circuit is configured to convert alternating current between the two connection terminals into direct current, and to switch on and off of the switching device in response to high and low levels in the dimming signal;
  • the on-state power supply circuit is configured to supply power to the voltage stabilization filter circuit by using a direct current output by the switch driving circuit;
  • the off-state power supply circuit is configured to connect the switch driving circuit and the voltage stabilizing filter circuit after power-on, and is further configured to turn off a connection path with the voltage stabilizing filter circuit in response to the buck signal.
  • the off-state power supply circuit includes: a resistor R4, a resistor R7, a resistor R10, a triode Q1, a triode Q2, a triode Q3, and a Zener diode Z1.
  • the two ends of the resistor R4 are respectively connected to the switch driving circuit and the collector of the transistor Q1, and the emitter of the transistor Q1 is connected to the voltage stabilizing filter circuit.
  • the two ends of the resistor R7 are respectively connected to the switch driving circuit and the base of the transistor Q2, the collector of the transistor Q2 is connected to the collector of the transistor Q1, and the emitter of the transistor Q2 is The base connection of the transistor Q1,
  • the cathode of the Zener diode Z1 is connected to the base of the transistor Q2, and the anode is grounded.
  • the collector of the transistor Q3 is connected to the base of the transistor Q2, the emitter of the transistor Q3 is grounded, and the base of the transistor Q3 is connected to the control module via a resistor R10.
  • the switch driving circuit includes: a resistor R1, a resistor R2, a resistor R6, a resistor R8, a resistor R9, a rectifier bridge B1, and a unidirectional thyristor SCR1.
  • the open state power supply circuit comprises: a resistor R3, a resistor R5, a diode D1, a Zener diode Z2, and a unidirectional thyristor SCR2,
  • the two AC input ends of the rectifier bridge B1 are respectively connected to the two connection terminals through the resistor R1 and the resistor R2.
  • Two ends of the resistor R6 are respectively connected to the switching device and an AC input end of the rectifier bridge B1.
  • the positive output end of the rectifier bridge B1 is connected to the off-state power supply circuit
  • An anode of the unidirectional thyristor SCR1 is connected to a positive output end of the rectifier bridge B1, and a cathode of the unidirectional thyristor SCR1 is connected to an anode of the unidirectional thyristor SCR2, the unidirectional The control electrode of the silicon-controlled SCR1 is grounded through the resistor R8, and the control electrode of the unidirectional thyristor SCR1 is further connected to the control module through the resistor R9.
  • a cathode of the unidirectional thyristor SCR2 is connected to a negative input end of the rectifier bridge B1, and a control pole of the unidirectional thyristor SCR2 is connected to a negative input end of the rectifier bridge B1 through the resistor R5.
  • the two ends of the resistor R3 are respectively connected to the anode of the unidirectional thyristor SCR2 and the negative input end of the rectifier bridge B1.
  • the anode of the diode D1 is connected to the anode of the unidirectional thyristor SCR2 and the cathode of the Zener diode Z2, and the cathode of the diode D1 is connected to the voltage stabilization filter circuit.
  • the anode of the Zener diode Z2 is connected to the control pole of the unidirectional thyristor SCR2,
  • the negative output terminal of the rectifier bridge B1 is grounded.
  • the power supply driving circuit includes: a switch driving circuit, an open state power supply circuit, and an off state power supply circuit.
  • the switch driving circuit is respectively connected to two connection terminals, a control end of the switching device, and the control module;
  • the on-state power supply circuit is respectively connected to the switch drive circuit and the voltage stabilization filter circuit;
  • the off-state power supply circuit and the switch drive circuit and the voltage stabilization filter circuit are The off-state power supply circuit and the switch drive circuit and the voltage stabilization filter circuit;
  • the switch driving circuit is configured to convert alternating current between the two connection terminals into direct current, and to switch on and off of the switching device in response to high and low levels in the dimming signal;
  • the on-state power supply circuit is configured to supply power to the voltage stabilization filter circuit by using a direct current output by the switch driving circuit;
  • the off-state power supply circuit is configured to connect the switch driving circuit and the voltage stabilizing filter circuit after power-on, and turn off a connection path with the voltage stabilizing filter circuit based on a voltage feedback of the output end thereof.
  • the off-state power supply circuit includes: a resistor R4, a resistor R7, a resistor R10, a triode Q1, a triode Q2, a triode Q3, a Zener diode Z1, and a Zener diode Z3.
  • the two ends of the resistor R4 are respectively connected to the switch driving circuit and the collector of the transistor Q1, and the emitter of the transistor Q1 is connected to the voltage stabilizing filter circuit.
  • the two ends of the resistor R7 are respectively connected to the switch driving circuit and the base of the transistor Q2, the collector of the transistor Q2 is connected to the collector of the transistor Q1, and the emitter of the transistor Q2 is The base connection of the transistor Q1,
  • the cathode of the Zener diode Z1 is connected to the base of the transistor Q2, and the anode is grounded.
  • the collector of the transistor Q3 is connected to the base of the transistor Q2, and the emitter of the transistor Q3 is grounded.
  • the base of the Zener diode Q3 is connected to the anode of the Zener diode Z3, and the cathode of the Zener diode Z3 is connected to the emitter of the transistor Q1 via a resistor R10.
  • the switch driving circuit includes: a resistor R1, a resistor R2, a resistor R6, a resistor R8, a resistor R9, a rectifier bridge B1, and a unidirectional thyristor SCR1.
  • the open state power supply circuit comprises: a resistor R3, a resistor R5, a diode D1, a Zener diode Z2, and a unidirectional thyristor SCR2,
  • the two AC input ends of the rectifier bridge B1 are respectively connected to the two connection terminals through the resistor R1 and the resistor R2.
  • Two ends of the resistor R6 are respectively connected to the switching device and an AC input end of the rectifier bridge B1.
  • the positive output end of the rectifier bridge B1 is connected to the off-state power supply circuit
  • An anode of the unidirectional thyristor SCR1 is connected to a positive output end of the rectifier bridge B1, and a cathode of the unidirectional thyristor SCR1 is connected to an anode of the unidirectional thyristor SCR2, the unidirectional The control electrode of the silicon-controlled SCR1 is grounded through the resistor R8, and the control electrode of the unidirectional thyristor SCR1 is further connected to the control module through the resistor R9.
  • a cathode of the unidirectional thyristor SCR2 is connected to a negative input end of the rectifier bridge B1, and a control pole of the unidirectional thyristor SCR2 is connected to a negative input end of the rectifier bridge B1 through the resistor R5.
  • the two ends of the resistor R3 are respectively connected to the anode of the unidirectional thyristor SCR2 and the negative input end of the rectifier bridge B1.
  • the anode of the diode D1 is connected to the anode of the unidirectional thyristor SCR2 and the cathode of the Zener diode Z2, and the cathode of the diode D1 is connected to the voltage stabilization filter circuit.
  • the anode of the Zener diode Z2 is connected to the control pole of the unidirectional thyristor SCR2,
  • the negative output terminal of the rectifier bridge B1 is grounded.
  • the power supply driving circuit includes: a switch driving circuit and an open state power supply circuit,
  • the switch driving circuit is respectively connected to two connection terminals, a control end of the switching device, an open state power supply circuit, and the control module;
  • the on-state power supply circuit is respectively connected to the switch drive circuit and the voltage stabilization filter circuit;
  • the switch driving circuit is configured to convert alternating current between the two connection terminals into direct current, and to switch on and off of the switching device in response to high and low levels in the dimming signal;
  • the on-state power supply circuit is configured to supply power to the voltage stabilization filter circuit by using a direct current output by the switch driving circuit;
  • the switch driving circuit is further configured to communicate with the on-state power supply circuit after power-on, and turn off a connection path with the open state power supply circuit in response to a low level signal in the dimming signal.
  • the power supply driving circuit includes: a resistor R1, a resistor R2, a resistor R6, a resistor R8, a resistor R9, a rectifier bridge B1, a unidirectional thyristor SCR1, a resistor R3, a resistor R5, a diode D1, and a voltage regulator.
  • the two AC input ends of the rectifier bridge B1 are respectively connected to the two connection terminals through the resistor R1 and the resistor R2.
  • Two ends of the resistor R6 are respectively connected to the switching device and an AC input end of the rectifier bridge B1.
  • the positive output end of the rectifier bridge B1 is connected to the off-state power supply circuit
  • An anode of the unidirectional thyristor SCR1 is connected to a positive output end of the rectifier bridge B1, and a cathode of the unidirectional thyristor SCR1 is connected to an anode of the unidirectional thyristor SCR2, the unidirectional The gate of the silicon controlled SCR1 is grounded through the resistor R8.
  • the two ends of the resistor R9 are respectively connected to the control pole of the unidirectional thyristor SCR1 and the positive output end of the rectifier bridge B1.
  • the control pole of the unidirectional thyristor SCR1 is also connected to the control module.
  • a cathode of the unidirectional thyristor SCR2 is connected to a negative input end of the rectifier bridge B1, and a control pole of the unidirectional thyristor SCR2 is connected to a negative input end of the rectifier bridge B1 through the resistor R5.
  • the two ends of the resistor R3 are respectively connected to the anode of the unidirectional thyristor SCR2 and the negative input end of the rectifier bridge B1.
  • the anode of the diode D1 is connected to the anode of the unidirectional thyristor SCR2 and the cathode of the Zener diode Z2, and the cathode of the diode D1 is connected to the voltage stabilization filter circuit.
  • the anode of the Zener diode Z2 is connected to the control pole of the unidirectional thyristor SCR2,
  • the negative output terminal of the rectifier bridge B1 is grounded.
  • the voltage stabilizing filter circuit comprises: an electrolytic capacitor C1, a ceramic capacitor C2, and a Zener diode U1.
  • An input end of the voltage regulator transistor U1 is connected to the power supply driving module, and an output end of the voltage regulator transistor U1 is respectively connected to the input device and the control module, and the ground level of the voltage regulator transistor U1 is grounded.
  • the anode of the electrolytic capacitor C1 is connected to the input end of the Zener transistor U1, and the cathode of the electrolytic capacitor C1 is grounded.
  • Both ends of the ceramic capacitor C2 are respectively connected to the input end of the Zener diode U1 and the ground.
  • the low-level time length of the dimming signal sent by the control module is greater than half of the mains waveform period.
  • the low-level time length of the dimming signal sent by the control module is greater than 8.34 milliseconds.
  • the low-level time length of the dimming signal sent by the control module is greater than 10 milliseconds.
  • the dimming signal sent by the control module includes two code bits, a first code bit and a second code bit, and the first code bit is composed of a low level and a high level.
  • the second code bit is high.
  • the dimming signal sent by the control module includes a start code bit, and the start code bit contains a low level.
  • the switching element is a triac.
  • the low-level time length of the dimming signal sent by the control module is less than 280 milliseconds.
  • a dimming method wherein the two connection terminals of the dimmer switch of any one of the above is connected in series in a circuit in which the LED lamp is located, the LED lamp comprises: an LED, a decoding circuit and an LED driving circuit.
  • the current in the loop in which the LED lamp is located generates a corresponding high and low level signal based on the on and off of the switching device.
  • the decoding circuit acquires the high and low level signals from the loop current, and decodes the high and low level signals according to a preset decoding protocol to obtain a dimming command.
  • the LED driving circuit adjusts an operating parameter of the LED lamp according to the dimming command.
  • the dimmer switch and the dimming method thereof are configured to disconnect the power supply driving circuit and the voltage stabilizing filter circuit during the low period of the dimming signal by the re-control module, so as to prevent the voltage regulating filter circuit from rising during the period.
  • the voltage between the connection terminals makes the LED lamp have higher decoding accuracy, that is, the above dimmer switch and its dimming method have higher operational stability.
  • the low level time in the dimming signal is greater than half of the mains waveform period to ensure that the low level crosses the zero crossing point, thereby ensuring that the low level is reflected in the light source loop.
  • the low level time in the dimming signal is less than 280 milliseconds to ensure the power supply of the control module and the input device during the transmission of the dimming signal, and to ensure the power supply of the light source during the transmission of the dimming signal.
  • FIG. 1 is a circuit block diagram of a dimmer switch according to a preferred embodiment of the present invention
  • Figure 2 is a schematic diagram showing changes in the waveform of the alternating current
  • FIG. 3 is a schematic diagram of circuit modules of a dimmer switch according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a circuit module of a dimmer switch according to still another preferred embodiment of the present invention.
  • FIG. 1 is a circuit block diagram of a dimmer switch 10 according to a preferred embodiment of the present invention.
  • the dimmer switch 10 includes two connection terminals 101, a switching device 102, a power supply driving circuit 103, a voltage stabilization filter circuit 104, a control module 105, and an input device 106.
  • the switching device 102 is a three-terminal controllable switch, such as a bidirectional thyristor or a triode, a MOS tube, an IGBT, and the like.
  • the control terminal of the switching device 102 is connected to the power supply driving circuit 103, and the other two terminals are respectively connected to the two connection terminals 101.
  • the voltage stabilizing filter circuit 104 is connected to the power supply driving circuit 103, the control module 105, and the input device 106, respectively.
  • the power supply driving circuit 103 is also respectively connected to the two connection terminals 101 for obtaining electric energy from the two connection terminals 101, and supplies power to the control module 105 and the input device 106 through the voltage stabilization filter circuit 104.
  • the regulated filter circuit 104 is used to regulate and filter the current flowing through, and to store electrical energy through the capacitor, and to supply power to the control module 105 and the input device 106 during the power-supply drive circuit 103 to release power during the power-off.
  • the capacitor is a capacitor, and the capacitor device simultaneously functions as a filter and a power storage.
  • the input device 106 is also coupled to the control module 105. Input device 106 is operative to issue control signals to control module 105 in response to user input.
  • the input device 106 can be a knob type varistor device, a touch device, a photosensor or a remote control device, and the like.
  • the control module 105 is configured to generate a dimming signal including a high and low level according to a control signal sent by the input device 106 and a corresponding preset encoding protocol, and send the signal to the power supply driving circuit 103.
  • control module 105 sends a buck signal to the power supply driving circuit 103 at least during the transmission of the low level signal in the dimming signal.
  • the control module 105 is further configured to continuously output a high level to the power supply driving circuit 103 during a period other than the transmission of the dimming signal.
  • the power supply driving circuit 103 is configured to switch on and off of the switching device 102 in response to the high and low levels in the dimming signal, and turn off the voltage stabilizing filter circuit 104 during at least the received dimming signal is low level. Connection path.
  • the power supply driving circuit 103 is configured to turn off the connection path with the voltage stabilization filter circuit 104 in response to the buck signal.
  • the dimming method of the dimming switch 10 is as follows:
  • the dimmer switch 10 is connected in series on the fire line of the loop where the LED lamp 200 is located, and the installation is convenient and quick without changing the original wiring.
  • the LED lamp 200 includes an LED, a decoding circuit, and an LED driving circuit.
  • the user input is received by the input device 106 to generate the control signal.
  • the control signal is converted by the control module 105 into the multi-coded dimming signal.
  • the dimming signal of the multi-code bit is transmitted to the switching device 102 by the power supply driving circuit.
  • On-off switching is performed by the switching device 102 in response to a high level in the dimming signal.
  • the current in the loop in which the LED lamp 200 is located generates a corresponding high and low level signal based on the on and off of the switching device 102.
  • the decoding circuit acquires the high and low level signals from the loop current, and decodes the high and low level signals according to a preset decoding protocol to obtain a dimming command.
  • the LED driving circuit adjusts an operating parameter of the LED lamp 200 according to the dimming command.
  • the operating parameters of the LED lamp 200 include brightness and color temperature.
  • the high and low level signals generated on the hot line can be generated at any time, and are not affected by the zero crossing point, and the driving circuit of the LED lamp 200 does not need to capture the zero crossing point to acquire the high and low level signals, so that the work is performed. more stable.
  • the power supply driving circuit 103 will turn off the connection path with the voltage stabilization filter circuit 104 at least during this period to improve the LED light.
  • the low level recognition accuracy of 200 that is, makes the dimmer switch 10 work more stably.
  • the power supply driving circuit 103 includes a switch driving circuit 131, an on-state power supply circuit 132, and an off-state power supply circuit 133.
  • the switch driving circuit 131 is respectively connected to the two connection terminals 101, the control end of the switching device 102, and the control module 105.
  • the on-state power supply circuit 132 is connected to the switch drive circuit 131 and the voltage stabilization filter circuit 104, respectively.
  • the off-state power supply circuit 133 is connected to the switch drive circuit 131, the voltage stabilization filter circuit 104, and the control module 105, respectively.
  • the switch driving circuit 131 is configured to convert alternating current between the two connection terminals 101 into direct current, and to switch on and off of the switching device in response to high and low levels in the dimming signal.
  • the on-state power supply circuit 132 is configured to supply power to the voltage stabilization filter circuit 104 by using the DC power output by the switch drive circuit 131.
  • the off-state power supply circuit 133 is configured to connect the switch driving circuit 131 and the voltage stabilizing filter circuit 104 after power-on, and is further configured to turn off the voltage-reducing circuit 104 in response to the buck signal. Connect the path.
  • the switching element 102 is a triac CRIAC1.
  • the off-state power supply circuit 131 includes a resistor R4, a resistor R7, a resistor R10, a transistor Q1, a transistor Q2, a transistor Q3, and a Zener diode Z1.
  • Both ends of the resistor R4 are respectively connected to the collectors of the switch driving circuit 131 and the transistor Q1, and the emitter of the transistor Q1 is connected to the voltage stabilizing filter circuit 104.
  • the two ends of the resistor R7 are respectively connected to the bases of the switch driving circuit 131 and the transistor Q2, the collector of the transistor Q2 is connected to the collector of the transistor Q1, and the emitter of the transistor Q2 is The base of the transistor Q1 is connected.
  • the cathode of the Zener diode Z1 is connected to the base of the transistor Q2, and the anode is grounded.
  • the collector of the transistor Q3 is connected to the base of the transistor Q2, the emitter of the transistor Q3 is grounded, and the base of the transistor Q3 is connected to the control module 105 via a resistor R10.
  • the switch driving circuit 131 includes a resistor R1, a resistor R2, a resistor R6, a resistor R8, a resistor R9, a rectifier bridge B1, and a unidirectional thyristor SCR1.
  • the on-state power supply circuit 132 includes a resistor R3, a resistor R5, a diode D1, a Zener diode Z2, and a unidirectional thyristor SCR2.
  • the two AC input ends of the rectifier bridge B1 are respectively connected to the two connection terminals 101 through the resistor R1 and the resistor R2.
  • the two ends of the resistor R6 are respectively connected to the control end of the triac CRIAC1 and an AC input end of the rectifier bridge B1.
  • the positive output terminal of the rectifier bridge B1 is connected to the resistor R4 of the off-state power supply circuit 133.
  • An anode of the unidirectional thyristor SCR1 is connected to a positive output end of the rectifier bridge B1, and a cathode of the unidirectional thyristor SCR1 is connected to an anode of the unidirectional thyristor SCR2, the unidirectional The control electrode of the silicon-controlled SCR1 is grounded via the resistor R8, and the gate of the unidirectional thyristor SCR1 is also connected to the control module 105 via the resistor R9.
  • the cathode of the unidirectional thyristor SCR2 is connected to the negative input terminal of the rectifier bridge B1, and the control pole of the unidirectional thyristor SCR2 is connected to the negative input terminal of the rectifier bridge B1 through the resistor R5.
  • Both ends of the resistor R3 are respectively connected to the anode of the unidirectional thyristor SCR2 and the negative input terminal of the rectifier bridge B1.
  • the anode of the diode D1 is connected to the anode of the unidirectional thyristor SCR2 and the cathode of the Zener diode Z2, and the cathode of the diode D1 is connected to the resistor R4 of the voltage stabilization filter circuit 104.
  • the positive pole of the Zener diode Z2 is connected to the control pole of the unidirectional thyristor SCR2.
  • the negative output terminal of the rectifier bridge B1 is grounded.
  • the voltage stabilizing filter circuit comprises: electrolytic capacitors C1, C4, ceramic capacitors C2, C3 and a voltage regulator transistor U1.
  • the input end of the Zener diode U1 is connected to the power supply driving module, and the output end of the Zener diode U1 is respectively connected to the input device and the control module, and the ground level of the Zener diode U1 is grounded.
  • the positive electrodes of the electrolytic capacitors C1 and C4 are connected to the input terminal of the Zener diode U1, and the negative electrodes of the electrolytic capacitors C1 and C4 are grounded.
  • the positive electrodes of the electrolytic capacitors C1 and C4 are connected to the input terminal of the Zener diode U1, and the negative electrodes of the electrolytic capacitors C1 and C4 are grounded.
  • Both ends of the ceramic capacitors C2 and C3 are respectively connected to the input end of the Zener diode U1 and the ground.
  • the transistor Q2 is turned on based on the Zener diode Z1.
  • the transistor Q1 is turned on based on the conduction of the transistor Q2, and the voltage regulator circuit 104 is connected to the positive output terminal of the rectifier bridge B1, the electrolytic capacitors C1 and C4 are charged, and the input device 106 and the control module 105 are powered up.
  • control module 105 After the control module 105 is powered on, a high level is sent to the base of the transistor Q3 through a pin, and the transistor Q3 is turned on, so that the base of the transistor Q2 is grounded and turned off. After the transistor Q2 is turned off, the transistor Q1 is turned off, and the connection path with the voltage stabilization filter circuit 104 is turned off.
  • the power supply circuit 132 supplies power to the voltage stabilization filter circuit 104. Specifically, after the control module 105 is powered on, the high level is sent to the unidirectional thyristor SCR1, and the unidirectional thyristor SCR1 is turned on, and the unidirectional thyristor SCR2 is turned on based on the voltage across the resistor R3. The presence of the Zener diode Z2, before the voltage at the positive output of the rectifier bridge B1 does not exceed the regulation value of the Zener diode Z2, the Zener diode Z2 is cut off, and the voltage across the resistor R3 cannot be controlled in one direction.
  • the silicon control SCR2 is turned on, at which time the positive output voltage of the rectifier bridge B1 will be charged to the electrolytic capacitors C1 and C4 through the unidirectional thyristor SCR1 and the diode D1.
  • the unidirectional thyristor SCR2 is turned on, and the power supply to the voltage stabilization filter circuit 104 is stopped, and the input device 106 and the control module 105 will rely on the electrolysis.
  • the electrical energy stored by capacitors C1, C4 remains operational.
  • control module 105 After the control module 105 is powered on, it also sends a high level to the unidirectional thyristor SCR1 through another pin, and the unidirectional thyristor SCR1 is turned on, and then the unidirectional thyristor SCR2 is turned on based on the voltage across the resistor R3. At this time, the positive and negative output ends of the rectifier bridge B1 are connected, and the control terminal of the bidirectional thyristor CRIAC1 is turned from a low level to a high level, so that the two connection terminals 101 are connected, and the LED lamp 200 is powered on and emits light. .
  • the output device 106 is a variable resistance knob, and the user rotates the knob to change the voltage output to the control module 105, that is, the aforementioned control command.
  • the control module 105 After detecting the voltage change, the control module 105 generates a square wave signal according to a preset corresponding encoding protocol, that is, the aforementioned dimming signal including a high level and a low level.
  • the control pole of the unidirectional thyristor SCR1 receives the square wave signal, and the unidirectional thyristor SCR1 is turned on during the high level in the square wave signal, and the bidirectional thyristor CRIAC1 is turned on.
  • the unidirectional thyristor SCR1 is turned off, the loop of the positive and negative output ends of the rectifier bridge B1 is turned off, and the switching element 102 is turned off.
  • the voltage stabilizing filter circuit 106 and the power supply driving module 103 The path is turned off.
  • the loop in which the LED lamp 200 is located generates a low level.
  • the switching element 102 is a bidirectional thyristor CRIAC1
  • the bidirectional thyristor CRIAC1 needs to meet two conditions from being turned on to off.
  • the control is extremely low, and secondly, Zero point. Therefore, in order to ensure that the low level in the dimming signal can be reflected in the loop of the LED lamp 200, in the embodiment, the low level time of the dimming signal sent by the control module 105 is greater than the commercial alternating current of the loop where the LED lamp 200 is located. Half of the waveform period.
  • the waveform period is 20ms, then the low-level time in the dimming signal is greater than 10ms.
  • the dimming signal further includes a start code of a low level, and the start code is also greater than 10 milliseconds.
  • FIG. 2 it is a schematic diagram of changes in the waveform of the alternating current. among them:
  • Curve 201 is a 50 Hz alternating current normal waveform with a waveform period of 20 milliseconds.
  • the curve 202 is the waveform of the dimming signal
  • the start code time of the dimming signal is a low level of 13 milliseconds
  • the other code bit period is 23 milliseconds
  • the low level in the code bit is 13 milliseconds.
  • the first code bit and the second code bit are included.
  • the first code bit is 13 milliseconds low plus 10 milliseconds high level
  • the second code bit is 23 milliseconds high level.
  • Curve 203 is the waveform of the loop in which LED lamp 200 corresponds to curve 202.
  • Curve 204 is the waveform acquired by the decoding circuit of LED lamp 200.
  • the start bit is 13 milliseconds low, so the start bit must cross a zero crossing, so that the decoding circuit can detect the start bit.
  • the start bit is the start point of other code bits, and the cycle It is 23 milliseconds.
  • the 13 millisecond low level must also cross a zero crossing point, thereby enabling the decoding circuit to detect the first code bit composed of high and low levels. , the determination is "0", the second code bit is continuous high level, and the decoding circuit determines that it is "0".
  • the dimming command obtained after decoding the dimming signal in FIG. 2 is: 010101. Different dimming signals will be decoded to obtain different dimming commands, such as: 000001, 011111, 011010, 011011, etc.
  • the LED driving circuit of LED lamp 200 can be adjusted according to different dimming commands and corresponding preset driving parameters. LED brightness.
  • Each of the dimming signals except the start code includes at least a high level, in order to avoid a problem that the power-off time is too long caused by a plurality of low-level continuous.
  • the high level is used to ensure that the control unit 103 provides the working power, and also ensures the normal supply of power of the LED lamp 200 to ensure that the LED lamp 200 does not flicker.
  • the power consumption of the chip of the common control module 105 and the power consumption of the common output device 106 are comprehensively analyzed.
  • the low time in the dimming signal is less than 280 milliseconds.
  • FIG. 3 is a circuit diagram of a dimmer switch 20 of another embodiment.
  • the dimmer switch 20 is different from the dimmer switch 10 shown in FIG. 1 in that the dimming switch 20 further includes a Zener diode Z3.
  • the base of the transistor Q3 is connected to the anode of the Zener diode Z3, and the cathode of the Zener diode Z3 is connected to the emitter of the transistor Q1 via a resistor R10.
  • the power supply driving circuit 103 is configured to turn off the connection path with the voltage stabilization filter circuit 104 in response to a feedback voltage outputted by itself. It can be seen that after power-on, when the transistor Q3 and the voltage stabilizing filter circuit 104 will reach a dynamic balance, the voltage feedback of the emitter of the transistor Q1 finally turns on the transistor Q3, and the transistor Q1 is turned off. In other words, the voltage at the input end of the voltage stabilizing filter circuit 104 turns off the transistor Q1, and the input end of the voltage stabilizing filter circuit 104 is only connected to the base of the transistor Q3 and the negative terminal of the diode D1, when the dimming signal is low.
  • the unidirectional thyristor SCR1 is turned off, and the voltage stabilizing filter circuit 104 is equal to the connection circuit with the entire power supply driving circuit 103 being turned off without affecting/lifting the voltage across the two connection terminals 101, thereby making dimming
  • the operation of the switch 20 is more stable.
  • FIG. 4 is a circuit diagram of a dimmer switch 30 of still another embodiment.
  • the difference between the dimmer switch 30 and the dimmer switch 10 shown in FIG. 1 is that the dimming switch 30 eliminates the off-state power supply in FIG. 1 .
  • the control unit of the unidirectional thyristor SCR1 is connected to the control module 105.
  • the two ends of the resistor R9 are respectively connected to the control pole of the unidirectional thyristor SCR1 and the positive output end of the rectifier bridge B1.
  • the power supply driving circuit 103 of the dimmer switch 30 is configured to turn off the connection path with the voltage stabilization filter circuit 104 in response to the low level signal in the dimming signal.
  • the control pole of the unidirectional thyristor SCR1 is turned on based on the voltage on the resistor R8, and the entire loop is connected.
  • the unidirectional thyristor SCR1 The control electrode voltage is pulled low, the unidirectional thyristor SCR1 is turned off, and the entire circuit of the power supply driving module 103 is turned off.
  • the connection circuit of the voltage stabilizing filter module 104 and the power supply driving module 103 is turned off without affecting/lifting.
  • the voltage across the two connection terminals 101 is high, so that the operation of the dimmer switch 30 is more stable.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种调光开关(10)包括二个连接端子(101)、开关器件(102)、供电驱动电路(103)、稳压滤波电路(104)、控制模块(105)和输入装置(106);供电驱动电路(103)用于通过稳压滤波电路(104)为控制模块(105)和输入装置(106)供电;输入装置(106)用于发出控制信号给控制模块(105);控制模块(105)用于根据控制信号生成包含高低电平的调光信号;供电驱动电路(103)用于响应调光信号中的高低电平切换开关器件(102)的通断;供电驱动电路(103)至少在接收的调光信号为低电平期间关断与稳压滤波电路(104)的连接通路。还提供一种使用上述调光开关(10)的调光方法。上述调光开关(10)是串联在灯源回路使用,安装方便,且在调光信号低电平期间稳压滤波电路(104)与供电驱动电路(103)断开而不影响二个连接端子(101)之间的电压,使得调光开关(10)和方法的工作稳定性更高。

Description

调光开关及其调光方法
【技术领域】
本发明涉及一种开关,特别是涉及一种调光开关及其调光方法。
【背景技术】
调光是为了满足人们在不同的时候对灯光亮度和色温等工作参数的不同需求而发展而成的。通常电子调光是通过控制和改变可控硅的相位角来控制导通程度,即电源流经负载的时间,这样改变了电光源的输入的电压和电流来获得不同强度的光输出。
调光开关能满足人们在不同的时候对灯光亮度的不同需求,能直接替换现有的墙壁开关。适用于家庭居室,公寓,酒店,医院等公共场所。随着生活水平的提高,人们离不开光,更离不开对光的质量的要求。调光的需求可以大体分为三类:
一、功能型调节光线的需要,如进门的玄关、会议室等;
二、家居生活中舒适性和生活格调的体现,比如对灯光的明暗搭配,色温冷暖,既可以根据环境的需要进行调节,也可以起到烘托氛围的作用;
三、环保节能的需要,比如公共场所的节能需求。比如停车场照明、商场照明、道路照明等。
电灯的多种多样,包括各种传统灯泡以及目前运用较为广泛的不同种类和不同功率的LED灯,使得不同的电灯需要分别设置与之匹配的驱动电路,驱动电路用于根据接收到的调光指令,控制电灯的亮度和色温等工作参数。
为此,目前的LED的驱动电路已经与LED组装为一个整体,即LED灯本身就具有了驱动电路,那么墙壁上的调光开关不再是直接控制LED灯的亮度和色温等工作参数,而是给LED灯的驱动电路提供调光指令。
目前的调光开关通常是独立的控制设备,需要单独布线才能与LED灯的驱动电路连通,装配线路非常复杂繁琐。另一种调光开关是串联在火线上,利用市电交流电的过零点(即正负电压交界点),在过零点的有限时间内,加入经过编码的高频控制信号,通过市电线路传送给LED灯的驱动电路,LED灯的驱动电路获取控制信号,通过预设的译码协议将控制信号译码得到调光指令,进而控制LED灯的亮度和色温等工作参数。
然而,交流电过零点时间通常小于3ms(毫秒),如此短暂的时间,使得控制信号频率必须非常高,后续译码容易失真,导致工作不稳定。由于需要依赖电源的过零点,使得LED灯需要准确地检测/扑捉电源的过零点才能保证后续工作的稳定性,但是,随着LED灯的不同以及同一个LED灯不同的工作状态,电路中的过零点会发生漂移,目前的技术尚不能准确的扑捉到过零点,从而到导致调光开关的工作稳定性较差。
【发明内容】
基于此,有必要提供一种安装方便且工作稳定性较好的调光开关及其调光方法。
一种调光开关,包括:二个连接端子、开关器件、供电驱动电路、稳压滤波电路、控制模块和输入装置,
所述开关器件的控制端与所述供电驱动电路连接,另外两端分别与二个所述连接端子连接;
所述稳压滤波电路分别与所述供电驱动电路、所述控制模块和所述输入装置连接,所述稳压滤波电路用于稳压和滤波流经的电流;
所述供电驱动电路还分别与二个所述连接端子连接,用于从二个所述连接端子获得电能,并通过所述稳压滤波电路为所述控制模块和所述输入装置供电;
所述输入装置还与所述控制模块连接,所述输入装置用于响应用户输入发出控制信号给所述控制模块;
所述控制模块用于根据所述控制信号以及对应的预设编码协议,生成包含高低电平的调光信号发送给所述供电驱动电路;
所述供电驱动电路用于响应所述调光信号中的高低电平切换所述开关器件的通断;
所述供电驱动电路至少在接收的所述调光信号为低电平期间关断与所述稳压滤波电路的连接通路。
其中一个实施例中,所述控制模块还用于至少在发送调光信号中的低电平信号期间发送降压信号给所述供电驱动电路,所述供电驱动电路用于响应所述降压信号关断与所述稳压滤波电路的连接通路。
其中一个实施例中,所述供电驱动电路用于响应自身输出的反馈电压关断与所述稳压滤波电路的连接通路。
其中一个实施例中,所述供电驱动电路用于响应所述调光信号中的低电平信号关断与所述稳压滤波电路的连接通路。
其中一个实施例中,所述供电驱动电路包括:开关驱动电路、开态供电电路和关态供电电路,
所述开关驱动电路分别与二个所述连接端子、所述开关器件的控制端以及所述控制模块连接;
所述开态供电电路分别与所述开关驱动电路和所述稳压滤波电路连接;
所述关态供电电路分别与所述开关驱动电路、所述稳压滤波电路和所述控制模块连接;
所述开关驱动电路用于将二个所述连接端子之间的交流电转化为直流电,以及用于响应所述调光信号中的高低电平切换所述开关器件的通断;
所述开态供电电路用于利用所述开关驱动电路输出的直流电为所述稳压滤波电路供电;
所述关态供电电路用于在上电后将所述开关驱动电路和所述稳压滤波电路连通,还用于响应所述降压信号关断与所述稳压滤波电路的连接通路。
其中一个实施例中,所述关态供电电路包括:电阻R4、电阻R7、电阻R10、三极管Q1、三极管Q2、三极管Q3和稳压二级管Z1,
所述电阻R4的两端分别与所述开关驱动电路和所述三极管Q1的集电极连接,所述三极管Q1的发射极与所述稳压滤波电路连接,
所述电阻R7的两端分别与所述开关驱动电路和所述三极管Q2的基极连接,所述三极管Q2的集电极与所述三极管Q1的集电极连接,所述三极管Q2的发射极与所述三极管Q1的基极连接,
所述稳压二级管Z1的负极与所述三极管Q2的基极连接,正极接地。
所述三极管Q3的集电极与所述三极管Q2的基极连接,所述三极管Q3的发射极接地,所述三极管Q3的基极通过电阻R10与所述控制模块连接。
其中一个实施例中,所述开关驱动电路包括:电阻R1、电阻R2、电阻R6、电阻R8、电阻R9、整流桥B1和单向可控硅SCR1,
所述开态供电电路包括:电阻R3、电阻R5、二极管D1、稳压二级管Z2和单向可控硅SCR2,
所述整流桥B1的二个交流输入端分别通过所述电阻R1和所述电阻R2与所述二个连接端子连接,
所述电阻R6的两端分别于所述开关器件以及所述整流桥B1的一个交流输入端连接,
所述整流桥B1的正输出端与所述关态供电电路连接,
所述单向可控硅SCR1的阳极与所述整流桥B1的正输出端连接,所述单向可控硅SCR1的阴极与所述单向可控硅SCR2的阳极连接,所述单向可控硅SCR1的控制极通过所述电阻R8接地,所述单向可控硅SCR1的控制极还通过所述电阻R9与所述控制模块连接,
所述单向可控硅SCR2的阴极与所述整流桥B1的负输入端连接,所述单向可控硅SCR2的控制极通过所述电阻R5与所述整流桥B1的负输入端连接,
所述电阻R3的两端分别连接所述单向可控硅SCR2的阳极和所述整流桥B1的负输入端,
所述二极管D1的正极与所述单向可控硅SCR2的阳极和所述稳压二级管Z2的负极连接,所述二极管D1的负极与所述稳压滤波电路连接,
所述稳压二级管Z2的正极与所述单向可控硅SCR2的控制极连接,
所述整流桥B1的负输出端接地。
其中一个实施例中,所述供电驱动电路包括:开关驱动电路、开态供电电路和关态供电电路,
所述开关驱动电路分别与二个所述连接端子、所述开关器件的控制端以及所述控制模块连接;
所述开态供电电路分别与所述开关驱动电路和所述稳压滤波电路连接;
所述关态供电电路分别与所述开关驱动电路和所述稳压滤波电路;
所述开关驱动电路用于将二个所述连接端子之间的交流电转化为直流电,以及用于响应所述调光信号中的高低电平切换所述开关器件的通断;
所述开态供电电路用于利用所述开关驱动电路输出的直流电为所述稳压滤波电路供电;
所述关态供电电路用于在上电后将所述开关驱动电路和所述稳压滤波电路连通,并基于自身输出端的电压反馈关断与所述稳压滤波电路的连接通路。
其中一个实施例中,所述关态供电电路包括:电阻R4、电阻R7、电阻R10、三极管Q1、三极管Q2、三极管Q3、稳压二级管Z1和稳压二级管Z3,
所述电阻R4的两端分别与所述开关驱动电路和所述三极管Q1的集电极连接,所述三极管Q1的发射极与所述稳压滤波电路连接,
所述电阻R7的两端分别与所述开关驱动电路和所述三极管Q2的基极连接,所述三极管Q2的集电极与所述三极管Q1的集电极连接,所述三极管Q2的发射极与所述三极管Q1的基极连接,
所述稳压二级管Z1的负极与所述三极管Q2的基极连接,正极接地。
所述三极管Q3的集电极与所述三极管Q2的基极连接,所述三极管Q3的发射极接地,
所述三极管Q3的基极与所述稳压二极管Z3的正极连接,所述稳压二极管Z3的负极通过电阻R10与所述三极管Q1的发射极连接。
其中一个实施例中,所述开关驱动电路包括:电阻R1、电阻R2、电阻R6、电阻R8、电阻R9、整流桥B1和单向可控硅SCR1,
所述开态供电电路包括:电阻R3、电阻R5、二极管D1、稳压二级管Z2和单向可控硅SCR2,
所述整流桥B1的二个交流输入端分别通过所述电阻R1和所述电阻R2与所述二个连接端子连接,
所述电阻R6的两端分别于所述开关器件以及所述整流桥B1的一个交流输入端连接,
所述整流桥B1的正输出端与所述关态供电电路连接,
所述单向可控硅SCR1的阳极与所述整流桥B1的正输出端连接,所述单向可控硅SCR1的阴极与所述单向可控硅SCR2的阳极连接,所述单向可控硅SCR1的控制极通过所述电阻R8接地,所述单向可控硅SCR1的控制极还通过所述电阻R9与所述控制模块连接,
所述单向可控硅SCR2的阴极与所述整流桥B1的负输入端连接,所述单向可控硅SCR2的控制极通过所述电阻R5与所述整流桥B1的负输入端连接,
所述电阻R3的两端分别连接所述单向可控硅SCR2的阳极和所述整流桥B1的负输入端,
所述二极管D1的正极与所述单向可控硅SCR2的阳极和所述稳压二级管Z2的负极连接,所述二极管D1的负极与所述稳压滤波电路连接,
所述稳压二级管Z2的正极与所述单向可控硅SCR2的控制极连接,
所述整流桥B1的负输出端接地。
其中一个实施例中,所述供电驱动电路包括:开关驱动电路和开态供电电路,
所述开关驱动电路分别与二个所述连接端子、所述开关器件的控制端、开态供电电路以及所述控制模块连接;
所述开态供电电路分别与所述开关驱动电路和所述稳压滤波电路连接;
所述开关驱动电路用于将二个所述连接端子之间的交流电转化为直流电,以及用于响应所述调光信号中的高低电平切换所述开关器件的通断;
所述开态供电电路用于利用所述开关驱动电路输出的直流电为所述稳压滤波电路供电;
所述开关驱动电路还用于在上电后与所述开态供电电路连通,并响应所述调光信号中的低电平信号关断与所述开态供电电路的连接通路。
其中一个实施例中,所述供电驱动电路包括:电阻R1、电阻R2、电阻R6、电阻R8、电阻R9、整流桥B1、单向可控硅SCR1、电阻R3、电阻R5、二极管D1、稳压二级管Z2和单向可控硅SCR2,
所述整流桥B1的二个交流输入端分别通过所述电阻R1和所述电阻R2与所述二个连接端子连接,
所述电阻R6的两端分别于所述开关器件以及所述整流桥B1的一个交流输入端连接,
所述整流桥B1的正输出端与所述关态供电电路连接,
所述单向可控硅SCR1的阳极与所述整流桥B1的正输出端连接,所述单向可控硅SCR1的阴极与所述单向可控硅SCR2的阳极连接,所述单向可控硅SCR1的控制极通过所述电阻R8接地,
所述电阻R9的两端分别与所述单向可控硅SCR1的控制极和所述整流桥B1的正输出端连接,
所述单向可控硅SCR1的控制极还与所述控制模块连接,
所述单向可控硅SCR2的阴极与所述整流桥B1的负输入端连接,所述单向可控硅SCR2的控制极通过所述电阻R5与所述整流桥B1的负输入端连接,
所述电阻R3的两端分别连接所述单向可控硅SCR2的阳极和所述整流桥B1的负输入端,
所述二极管D1的正极与所述单向可控硅SCR2的阳极和所述稳压二级管Z2的负极连接,所述二极管D1的负极与所述稳压滤波电路连接,
所述稳压二级管Z2的正极与所述单向可控硅SCR2的控制极连接,
所述整流桥B1的负输出端接地。
其中一个实施例中,所述稳压滤波电路包括:电解电容C1、陶瓷电容C2和稳压三极管U1,
稳压三极管U1的输入端与所述供电驱动模块连接,稳压三极管U1的输出端分别连接所述输入装置和所述控制模块,稳压三极管U1的地级接地,
所述电解电容C1的正极与所述稳压三极管U1的输入端连接,所述电解电容C1的负极接地,
所述陶瓷电容C2的两端分别与所述稳压三极管U1的输入端和地连接。
其中一个实施例中,所述控制模块发出的调光信号中低电平时间长度大于市电波形周期的一半。
其中一个实施例中,所述控制模块发出的调光信号中低电平时间长度大于8.34毫秒。
其中一个实施例中,所述控制模块发出的调光信号中低电平时间长度大于10毫秒。
其中一个实施例中,所述控制模块发出的调光信号中包含第一码位和第二码位两种码位,所述第一码位由一个低电平和一个高电平组成,所述第二码位为高电平。
其中一个实施例中,所述控制模块发出的调光信号包含起始码位,所述起始码位含有低电平。
其中一个实施例中,所述开关元件为双向可控硅。
其中一个实施例中,所述控制模块发出的调光信号中低电平时间长度小于280毫秒。
一种调光方法,将上述任一项的调光开关的所述二个连接端子串联在LED灯所在的回路中,所述LED灯包括:LED、译码电路和LED驱动电路,
通过所述输入装置接收用户输入,产生所述控制信号,
通过所述控制模块将所述控制信号转化为多码位的所述调光信号,
通过所述供电驱动电路将多码位的所述调光信号传送给所述开关器件,
通过所述开关器件响应所述调光信号中的高低电平执行通断切换,
所述LED灯所在的回路中的电流基于所述开关器件的通断产生对应的高低电平信号,
所述译码电路从回路电流中的获取所述高低电平信号,并将所述高低电平信号根据预设译码协议译码得到调光指令,
所述LED驱动电路根据所述调光指令调节LED灯的工作参数。
上述调光开关使用时只需串联在被控灯源所在回路中,无需增加和另外布线,安装方便快捷。
上述调光开关及其调光方法通过再控制模块发送调光信号中的低电平期间,断开供电驱动电路与稳压滤波电路之间的通路,以避免此期间稳压滤波电路抬高二个连接端子之间的电压,使得LED灯译码准确性更高,也即是上述调光开关及其调光方法的工作稳定性更高。
上述调光开关及其调光方法中,调光信号中的低电平时间大于市电波形周期的一半可以保证低电平跨越过零点,从而保证低电平在灯源回路中体现。
上述调光开关及其调光方法中,调光信号中的低电平时间小于280毫秒可以保证调光信号发送期间控制模块和输入装置的供电,以及保证调光信号发送期间光源的供电。
【附图说明】
图1为本发明一较佳实施例的调光开关的电路模块图;
图2为其为交流电波形变化示意图;
图3为本发明另一较佳实施例的调光开关的电路模块示意图;
图4为本发明又一较佳实施例的调光开关的电路模块示意图。
【具体实施方式】
如图1所示,其为本发明一较佳实施例的调光开关10的电路模块图。调光开关10包括:二个连接端子101、开关器件102、供电驱动电路103、稳压滤波电路104、控制模块105和输入装置106。
开关器件102为三端可控开关,如双向可控硅或者三极管、MOS管、IGBT等加整流桥。
开关器件102的控制端与供电驱动电路103连接,另外两端分别连接二个连接端子101。
稳压滤波电路104分别与供电驱动电路103、控制模块105和输入装置106连接。
供电驱动电路103还分别与二个连接端子101连接,用于从二个连接端子101获得电能,并通过稳压滤波电路104为控制模块105和输入装置106供电。
稳压滤波电路104用于稳压和滤波流经的电流,并通过电容存储电能,且在供电驱动电路103在断开供电期间释放电能为控制模块105和输入装置106供电。本实施例中,滤波采用电容器件,该电容器件同时起到滤波和储电功能。
输入装置106还与控制模块105连接。输入装置106用于响应用户输入发出控制信号给控制模块105。输入设备106可以是旋钮式变阻设备、触控设备、光敏器件或遥控设备等。
控制模块105用于根据输入装置106发出的控制信号以及对应的预设编码协议,生成包含高低电平的调光信号发送给供电驱动电路103。
本实施例中,控制模块105至少在发送调光信号中的低电平信号期间发送降压信号给所述供电驱动电路103。控制模块105还用于在发送调光信号以外的期间持续输出高电平给供电驱动电路103。
供电驱动电路103用于响应所述调光信号中的高低电平切换开关器件102的通断,且至少在接收的所述调光信号为低电平期间关断与所述稳压滤波电路104的连接通路。
本实施例中,供电驱动电路103用于响应所述降压信号关断与所述稳压滤波电路104的连接通路。
调光开关10的调光方法如下:
将调光开关10串联在LED灯200所在回路的火线上,无需改变原有布线,安装方便快捷。LED灯200包括:LED,译码电路和LED驱动电路。
通过所述输入装置106接收用户输入,产生所述控制信号。
通过所述控制模块105将所述控制信号转化为多码位的所述调光信号。
通过所述供电驱动电路将多码位的所述调光信号传送给所述开关器件102。
通过所述开关器件102响应所述调光信号中的高低电平执行通断切换。
所述LED灯200所在的回路中的电流基于所述开关器件102的通断产生对应的高低电平信号。
所述译码电路从回路电流中获取所述高低电平信号,并将所述高低电平信号根据预设译码协议译码得到调光指令。
所述LED驱动电路根据所述调光指令调节LED灯200的工作参数。LED灯200的工作参数包括亮度和色温等。
调光开关10的调光方法中,火线上产生高低电平信号可以在任意时刻产生,不受过零点的影响,LED灯200的驱动电路也无需捕捉过零点来获取该高低电平信号,使得工作更加稳定。
为了避免开关器件102断开期间稳压滤波电路104抬高二个连接端子101之间的电压,所以供电驱动电路103将至少在此期间关断与稳压滤波电路104的连接通路,以提高LED灯200的低电平识别精度,也即是使得调光开关10工作稳定性更高。
所述供电驱动电路103包括:开关驱动电路131、开态供电电路132和关态供电电路133。
所述开关驱动电路131分别与二个所述连接端子101、所述开关器件102的控制端以及所述控制模块105连接。
所述开态供电电路132分别与所述开关驱动电路131和所述稳压滤波电路104连接。
所述关态供电电路133分别与所述开关驱动电路131、所述稳压滤波电路104和所述控制模块105连接。
所述开关驱动电路131用于将二个所述连接端子101之间的交流电转化为直流电,以及用于响应所述调光信号中的高低电平切换所述开关器件的通断。
所述开态供电电路132用于利用所述开关驱动电路131输出的直流电为所述稳压滤波电路104供电。
所述关态供电电路133用于在上电后将所述开关驱动电路131和所述稳压滤波电路104连通,还用于响应所述降压信号关断与所述稳压滤波电路104的连接通路。
所述开关元件102为双向可控硅CRIAC1。
所述关态供电电路131包括:电阻R4、电阻R7、电阻R10、三极管Q1、三极管Q2、三极管Q3和稳压二级管Z1。
所述电阻R4的两端分别与所述开关驱动电路131和所述三极管Q1的集电极连接,所述三极管Q1的发射极与所述稳压滤波电路104连接。
所述电阻R7的两端分别与所述开关驱动电路131和所述三极管Q2的基极连接,所述三极管Q2的集电极与所述三极管Q1的集电极连接,所述三极管Q2的发射极与所述三极管Q1的基极连接。
所述稳压二级管Z1的负极与所述三极管Q2的基极连接,正极接地。
所述三极管Q3的集电极与所述三极管Q2的基极连接,所述三极管Q3的发射极接地,所述三极管Q3的基极通过电阻R10与所述控制模块105连接。
所述开关驱动电路131包括:电阻R1、电阻R2、电阻R6、电阻R8、电阻R9、整流桥B1和单向可控硅SCR1。
所述开态供电电路132包括:电阻R3、电阻R5、二极管D1、稳压二级管Z2和单向可控硅SCR2。
所述整流桥B1的二个交流输入端分别通过所述电阻R1和所述电阻R2与所述二个连接端子101连接。
所述电阻R6的两端分别于所述双向可控硅CRIAC1的控制端以及所述整流桥B1的一个交流输入端连接。
所述整流桥B1的正输出端与所述关态供电电路133的电阻R4连接。
所述单向可控硅SCR1的阳极与所述整流桥B1的正输出端连接,所述单向可控硅SCR1的阴极与所述单向可控硅SCR2的阳极连接,所述单向可控硅SCR1的控制极通过所述电阻R8接地,所述单向可控硅SCR1的控制极还通过所述电阻R9与所述控制模块105连接。
所述单向可控硅SCR2的阴极与所述整流桥B1的负输入端连接,所述单向可控硅SCR2的控制极通过所述电阻R5与所述整流桥B1的负输入端连接。
所述电阻R3的两端分别连接所述单向可控硅SCR2的阳极和所述整流桥B1的负输入端。
所述二极管D1的正极与所述单向可控硅SCR2的阳极和所述稳压二级管Z2的负极连接,所述二极管D1的负极与所述稳压滤波电路104的电阻R4连接。
所述稳压二级管Z2的正极与所述单向可控硅SCR2的控制极连接。
所述整流桥B1的负输出端接地。
所述稳压滤波电路包括:电解电容C1、C4、陶瓷电容C2、C3和稳压三极管U1。
稳压三极管U1的输入端与所述供电驱动模块连接,稳压三极管U1的输出端分别连接所述输入装置和所述控制模块,稳压三极管U1的地级接地。
所述电解电容C1、C4的正极与所述稳压三极管U1的输入端连接,所述电解电容C1、C4的负极接地。
所述电解电容C1、C4的正极与所述稳压三极管U1的输入端连接,所述电解电容C1、C4的负极接地。
所述陶瓷电容C2、C3的两端分别与所述稳压三极管U1的输入端和地连接。
上述调光开关10的工作原理如下:
二个连接端子101上电前,所有开关元件处于截止状态。
二个连接端子101上电后,三极管Q2基于稳压二极管Z1导通。三极管Q1基于三极管Q2的导通而导通,进而将稳压滤波电路104与整流桥B1的正输出端连通,电解电容C1、C4充电,输入装置106和控制模块105上电工作。
控制模块105上电工作后,通过一个引脚发送高电平给三极管Q3的基极,三极管Q3导通,使得三极管Q2的基极接地而截止。三极管Q2截止后,三极管Q1截止,关断与稳压滤波电路104的连接通路。
关断与稳压滤波电路104的连接通路关断后,由开态供电电路132为稳压滤波电路104供电。具体的,控制模块105上电工作后,发送高电平给单向可控硅SCR1,单向可控硅SCR1导通,而单向可控硅SCR2要基于电阻R3两端电压导通,由于稳压二级管Z2的存在,在整流桥B1的正输出端电压没有超过稳压二级管Z2的稳压值之前,稳压二级管Z2截止,电阻R3两端电压不能控制单向可控硅SCR2导通,这时整流桥B1的正输出端电压将通过单向可控硅SCR1、二极管D1给电解电容C1、C4充电。当整流桥B1的正输出端电压超过稳压二级管Z2的稳压值之后,单向可控硅SCR2导通,停止给稳压滤波电路104供电,输入装置106和控制模块105将依靠电解电容C1、C4储存的电能维持工作。
控制模块105上电工作后,还通过另一个引脚发送高电平给单向可控硅SCR1,单向可控硅SCR1导通,然后单向可控硅SCR2基于电阻R3两端电压导通,此时整流桥B1的正负输出端连通,双向可控硅CRIAC1的控制端由低电平变为高电平而导通,使得二个连接端子101连通,LED灯200上电工作而发光。
本实施例中,输出装置106为变阻旋钮,用户旋转旋钮,改变输出给控制模块105的电压,即前述控制指令。控制模块105检测到电压变化后,根据预设的对应编码协议产生方波信号,即前述包含高低电平的调光信号。
单向可控硅SCR1的控制极接收所述方波信号,在方波信号中高电平期间单向可控硅SCR1导通,进而双向可控硅CRIAC1导通。在方波信号中低电平期间,单向可控硅SCR1截止,整流桥B1的正负输出端的回路断开,开关元件102截止,此时的稳压滤波电路106与供电驱动模块103之间的通路被关断。
开关元件102截止期间,LED灯200所在回路产生低电平。需要说明的是,由于本实施例中,开关元件102为双向可控硅CRIAC1,而双向可控硅CRIAC1由导通变为截止需要满足两个条件,一是控制极为低电平,二是过零点。所以,为了保证调光信号中的低电平能在LED灯200所在回路中体现,本实施例中,控制模块105发出的调光信号中低电平时间大于LED灯200所在回路的市电交流电波形周期的一半。以220V,50Hz交流电为例,波形周期为20毫秒,那么调光信号中低电平时间大于10毫秒。本实施例中,调光信号还包括以一低电平的起始码,起始码也大于10毫秒。其他实施例中,110V,60Hz交流电的波形周期为1000/60=8.33毫秒,那么调光信号中低电平时间大于8.34毫秒。
如图2所示,其为交流电波形变化示意图。其中:
曲线201为50Hz交流电正常波形,波形周期为20毫秒。
曲线202为调光信号的波形,调光信号的起始码时间为13毫秒的低电平,其他码位周期为23毫秒,码位中的低电平为13毫秒。除起始码以外,包括第一码位和第二码位两种码位,第一码位为13毫秒低电平加10毫秒高电平,第二码位为23毫秒高电平。
曲线203为与曲线202对应的LED灯200所在回路的波形。
曲线204为LED灯200的译码电路获取的波形。
起始位为13毫秒低电平,所以起始位必然跨越一个过零点,从而再使得译码电路能够检测到起始位,图2中是以起始位结束作为其他码位的起点,周期为23毫秒。
由于第一码位为13毫秒低电平加10毫秒高电平,所以13毫秒低电平也必然跨越一个过零点,从而再使得译码电路能够检测到由高低电平组成的第一码位,判定为“0”,第二码位为持续高电平,译码电路判定为“0”图2中调光信号译码后得到的调光指令为:010101。不同的调光信号,将译码得到不同的调光指令,如:000001、011111、011010、011011等,LED灯200的LED驱动电路便可根据不同的调光指令和对应的预设驱动参数调节LED亮度。
所述调光信号中除起始码以外的每个码位至少包括高电平,是为了避免多个低电平连续导致的断电时间过长问题。该高电平用于保证控制单元103提供工作电能,同时也保证了LED灯200的正常提供电能,以保证LED灯200不发生闪烁。为此,综合分析常用控制模块105的芯片耗电量和常用输出装置106的耗电量,本实施例中,所述调光信号中的低电平时间小于280毫秒。
请参阅图3,其为另一实施例的调光开关20的电路图,调光开关20与图1所示的调光开关10的区别在于,调光开关20还包括稳压二极管Z3,所述三极管Q3的基极与所述稳压二极管Z3的正极连接,所述稳压二极管Z3的负极通过电阻R10与所述三极管Q1的发射极连接。
如此,所述供电驱动电路103用于响应自身输出的反馈电压关断与所述稳压滤波电路104的连接通路。可以看出,上电后,当三极管Q3将和所述稳压滤波电路104之间会达到一个动态平衡,最终三极管Q1发射极的电压反馈使得三极管Q3导通,进而三极管Q1截止。或句话说,所述稳压滤波电路104输入端的电压使三极管Q1截止,所述稳压滤波电路104的输入端便只连接三极管Q3的基极和二极管D1的负极,当调光信号处于低电平期间,单向可控硅SCR1截止,所述稳压滤波电路104等于与整个供电驱动电路103的连接回路被关断,而不影响/抬高二个连接端子101两端的电压,从而使得调光开关20的工作更加稳定。
请参阅图4,其为又一实施例的调光开关30的电路图,调光开关30与图1所示的调光开关10的区别在于,调光开关30省去图1中的关态供电电路133,单向可控硅SCR1的控制极与控制模块105连接,所述电阻R9的两端分别连接单向可控硅SCR1的控制极和整流桥B1的正输出端。调光开关30的供电驱动电路103用于响应所述调光信号中的低电平信号关断与所述稳压滤波电路104的连接通路。
如此,上电后,单向可控硅SCR1的控制极基于电阻R8上的电压导通,整个回路连通,在控制模块105发出的调光信号中位于低电平期间,单向可控硅SCR1的控制极电压拉低,单向可控硅SCR1的截止,供电驱动模块103的整个回路关断,此时稳压滤波模块104与供电驱动模块103的连接回路被关断,而不影响/抬高二个连接端子101两端的电压,从而使得调光开关30的工作更加稳定。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种调光开关,其特征在于,包括:二个连接端子、开关器件、供电驱动电路、稳压滤波电路、控制模块和输入装置,
    所述开关器件的控制端与所述供电驱动电路连接,另外两端分别与二个所述连接端子连接;
    所述稳压滤波电路分别与所述供电驱动电路、所述控制模块和所述输入装置连接,所述稳压滤波电路用于稳压和滤波流经的电流;
    所述供电驱动电路还分别与二个所述连接端子连接,用于从二个所述连接端子获得电能,并通过所述稳压滤波电路为所述控制模块和所述输入装置供电;
    所述输入装置还与所述控制模块连接,所述输入装置用于响应用户输入发出控制信号给所述控制模块;
    所述控制模块用于根据所述控制信号以及对应的预设编码协议,生成包含高低电平的调光信号发送给所述供电驱动电路;
    所述供电驱动电路用于响应所述调光信号中的高低电平切换所述开关器件的通断;
    所述供电驱动电路至少在接收的所述调光信号为低电平期间关断与所述稳压滤波电路的连接通路。
  2. 根据权利要求1所述的调光开关,其特征在于,所述控制模块还用于至少在发送调光信号中的低电平信号期间发送降压信号给所述供电驱动电路,所述供电驱动电路用于响应所述降压信号关断与所述稳压滤波电路的连接通路。
  3. 根据权利要求1所述的调光开关,其特征在于,所述供电驱动电路用于响应自身输出的反馈电压关断与所述稳压滤波电路的连接通路。
  4. 根据权利要求1所述的调光开关,其特征在于,所述供电驱动电路用于响应所述调光信号中的低电平信号关断与所述稳压滤波电路的连接通路。
  5. 根据权利要求1所述的调光开关,其特征在于,所述供电驱动电路包括:开关驱动电路、开态供电电路和关态供电电路,
    所述开关驱动电路分别与二个所述连接端子、所述开关器件的控制端以及所述控制模块连接;
    所述开态供电电路分别与所述开关驱动电路和所述稳压滤波电路连接;
    所述关态供电电路分别与所述开关驱动电路、所述稳压滤波电路和所述控制模块连接;
    所述开关驱动电路用于将二个所述连接端子之间的交流电转化为直流电,以及用于响应所述调光信号中的高低电平切换所述开关器件的通断;
    所述开态供电电路用于利用所述开关驱动电路输出的直流电为所述稳压滤波电路供电;
    所述关态供电电路用于在上电后将所述开关驱动电路和所述稳压滤波电路连通,还用于响应所述降压信号关断与所述稳压滤波电路的连接通路。
  6. 根据权利要求5所述的调光开关,其特征在于,所述关态供电电路包括:电阻R4、电阻R7、电阻R10、三极管Q1、三极管Q2、三极管Q3和稳压二级管Z1,
    所述电阻R4的两端分别与所述开关驱动电路和所述三极管Q1的集电极连接,所述三极管Q1的发射极与所述稳压滤波电路连接,
    所述电阻R7的两端分别与所述开关驱动电路和所述三极管Q2的基极连接,所述三极管Q2的集电极与所述三极管Q1的集电极连接,所述三极管Q2的发射极与所述三极管Q1的基极连接,
    所述稳压二级管Z1的负极与所述三极管Q2的基极连接,正极接地,
    所述三极管Q3的集电极与所述三极管Q2的基极连接,所述三极管Q3的发射极接地,所述三极管Q3的基极通过电阻R10与所述控制模块连接。
  7. 根据权利要求5所述的调光开关,其特征在于,所述开关驱动电路包括:电阻R1、电阻R2、电阻R6、电阻R8、电阻R9、整流桥B1和单向可控硅SCR1,
    所述开态供电电路包括:电阻R3、电阻R5、二极管D1、稳压二级管Z2和单向可控硅SCR2,
    所述整流桥B1的二个交流输入端分别通过所述电阻R1和所述电阻R2与所述二个连接端子连接,
    所述电阻R6的两端分别于所述开关器件以及所述整流桥B1的一个交流输入端连接,
    所述整流桥B1的正输出端与所述关态供电电路连接,
    所述单向可控硅SCR1的阳极与所述整流桥B1的正输出端连接,所述单向可控硅SCR1的阴极与所述单向可控硅SCR2的阳极连接,所述单向可控硅SCR1的控制极通过所述电阻R8接地,所述单向可控硅SCR1的控制极还通过所述电阻R9与所述控制模块连接,
    所述单向可控硅SCR2的阴极与所述整流桥B1的负输入端连接,所述单向可控硅SCR2的控制极通过所述电阻R5与所述整流桥B1的负输入端连接,
    所述电阻R3的两端分别连接所述单向可控硅SCR2的阳极和所述整流桥B1的负输入端,
    所述二极管D1的正极与所述单向可控硅SCR2的阳极和所述稳压二级管Z2的负极连接,所述二极管D1的负极与所述稳压滤波电路连接,
    所述稳压二级管Z2的正极与所述单向可控硅SCR2的控制极连接,
    所述整流桥B1的负输出端接地。
  8. 根据权利要求1所述的调光开关,其特征在于,所述供电驱动电路包括:开关驱动电路、开态供电电路和关态供电电路,
    所述开关驱动电路分别与二个所述连接端子、所述开关器件的控制端以及所述控制模块连接;
    所述开态供电电路分别与所述开关驱动电路和所述稳压滤波电路连接;
    所述关态供电电路分别与所述开关驱动电路和所述稳压滤波电路;
    所述开关驱动电路用于将二个所述连接端子之间的交流电转化为直流电,以及用于响应所述调光信号中的高低电平切换所述开关器件的通断;
    所述开态供电电路用于利用所述开关驱动电路输出的直流电为所述稳压滤波电路供电;
    所述关态供电电路用于在上电后将所述开关驱动电路和所述稳压滤波电路连通,并基于自身输出端的电压反馈关断与所述稳压滤波电路的连接通路。
  9. 根据权利要求8所述的调光开关,其特征在于,所述关态供电电路包括:电阻R4、电阻R7、电阻R10、三极管Q1、三极管Q2、三极管Q3、稳压二级管Z1和稳压二级管Z3,
    所述电阻R4的两端分别与所述开关驱动电路和所述三极管Q1的集电极连接,所述三极管Q1的发射极与所述稳压滤波电路连接,
    所述电阻R7的两端分别与所述开关驱动电路和所述三极管Q2的基极连接,所述三极管Q2的集电极与所述三极管Q1的集电极连接,所述三极管Q2的发射极与所述三极管Q1的基极连接,
    所述稳压二级管Z1的负极与所述三极管Q2的基极连接,正极接地。
    所述三极管Q3的集电极与所述三极管Q2的基极连接,所述三极管Q3的发射极接地,
    所述三极管Q3的基极与所述稳压二极管Z3的正极连接,所述稳压二极管Z3的负极通过电阻R10与所述三极管Q1的发射极连接。
  10. 根据权利要求8所述的调光开关,其特征在于,所述开关驱动电路包括:电阻R1、电阻R2、电阻R6、电阻R8、电阻R9、整流桥B1和单向可控硅SCR1,
    所述开态供电电路包括:电阻R3、电阻R5、二极管D1、稳压二级管Z2和单向可控硅SCR2,
    所述整流桥B1的二个交流输入端分别通过所述电阻R1和所述电阻R2与所述二个连接端子连接,
    所述电阻R6的两端分别于所述开关器件以及所述整流桥B1的一个交流输入端连接,
    所述整流桥B1的正输出端与所述关态供电电路连接,
    所述单向可控硅SCR1的阳极与所述整流桥B1的正输出端连接,所述单向可控硅SCR1的阴极与所述单向可控硅SCR2的阳极连接,所述单向可控硅SCR1的控制极通过所述电阻R8接地,所述单向可控硅SCR1的控制极还通过所述电阻R9与所述控制模块连接,
    所述单向可控硅SCR2的阴极与所述整流桥B1的负输入端连接,所述单向可控硅SCR2的控制极通过所述电阻R5与所述整流桥B1的负输入端连接,
    所述电阻R3的两端分别连接所述单向可控硅SCR2的阳极和所述整流桥B1的负输入端,
    所述二极管D1的正极与所述单向可控硅SCR2的阳极和所述稳压二级管Z2的负极连接,所述二极管D1的负极与所述稳压滤波电路连接,
    所述稳压二级管Z2的正极与所述单向可控硅SCR2的控制极连接,
    所述整流桥B1的负输出端接地。
  11. 根据权利要求1所述的调光开关,其特征在于,所述供电驱动电路包括:开关驱动电路和开态供电电路,
    所述开关驱动电路分别与二个所述连接端子、所述开关器件的控制端、开态供电电路以及所述控制模块连接;
    所述开态供电电路分别与所述开关驱动电路和所述稳压滤波电路连接;
    所述开关驱动电路用于将二个所述连接端子之间的交流电转化为直流电,以及用于响应所述调光信号中的高低电平切换所述开关器件的通断;
    所述开态供电电路用于利用所述开关驱动电路输出的直流电为所述稳压滤波电路供电;
    所述开关驱动电路还用于在上电后与所述开态供电电路连通,并响应所述调光信号中的低电平信号关断与所述开态供电电路的连接通路。
  12. 根据权利要求11所述的调光开关,其特征在于,所述供电驱动电路包括:电阻R1、电阻R2、电阻R6、电阻R8、电阻R9、整流桥B1、单向可控硅SCR1、电阻R3、电阻R5、二极管D1、稳压二级管Z2和单向可控硅SCR2,
    所述整流桥B1的二个交流输入端分别通过所述电阻R1和所述电阻R2与所述二个连接端子连接,
    所述电阻R6的两端分别于所述开关器件以及所述整流桥B1的一个交流输入端连接,
    所述整流桥B1的正输出端与所述关态供电电路连接,
    所述单向可控硅SCR1的阳极与所述整流桥B1的正输出端连接,所述单向可控硅SCR1的阴极与所述单向可控硅SCR2的阳极连接,所述单向可控硅SCR1的控制极通过所述电阻R8接地,
    所述电阻R9的两端分别与所述单向可控硅SCR1的控制极和所述整流桥B1的正输出端连接,
    所述单向可控硅SCR1的控制极还与所述控制模块连接,
    所述单向可控硅SCR2的阴极与所述整流桥B1的负输入端连接,所述单向可控硅SCR2的控制极通过所述电阻R5与所述整流桥B1的负输入端连接,
    所述电阻R3的两端分别连接所述单向可控硅SCR2的阳极和所述整流桥B1的负输入端,
    所述二极管D1的正极与所述单向可控硅SCR2的阳极和所述稳压二级管Z2的负极连接,所述二极管D1的负极与所述稳压滤波电路连接,
    所述稳压二级管Z2的正极与所述单向可控硅SCR2的控制极连接,
    所述整流桥B1的负输出端接地。
  13. 根据权利要求1所述的调光开关,其特征在于,所述稳压滤波电路包括:电解电容C1、陶瓷电容C2和稳压三极管U1,
    稳压三极管U1的输入端与所述供电驱动模块连接,稳压三极管U1的输出端分别连接所述输入装置和所述控制模块,稳压三极管U1的地级接地,
    所述电解电容C1的正极与所述稳压三极管U1的输入端连接,所述电解电容C1的负极接地,
    所述陶瓷电容C2的两端分别与所述稳压三极管U1的输入端和地连接。
  14. 根据权利要求1所述的调光开关,其特征在于,所述控制模块发出的调光信号中低电平时间长度大于市电波形周期的一半。
  15. 根据权利要求1所述的调光开关,其特征在于,所述控制模块发出的调光信号中低电平时间长度大于8.34毫秒。
  16. 根据权利要求1所述的调光开关,其特征在于,所述控制模块发出的调光信号中低电平时间长度大于10毫秒。
  17. 根据权利要求1所述的调光开关,其特征在于,所述控制模块发出的调光信号中包含第一码位和第二码位两种码位,所述第一码位由一个低电平和一个高电平组成,所述第二码位为高电平。
  18. 根据权利要求1所述的调光开关,其特征在于,所述控制模块发出的调光信号包含起始码位,所述起始码位含有低电平。
  19. 根据权利要求1所述的调光开关,其特征在于,所述开关元件为双向可控硅。
  20. 根据权利要求1所述的调光开关,其特征在于,所述控制模块发出的调光信号中低电平时间长度小于280毫秒。
  21. 一种调光方法,其特征在于,将所述权利要求1~20中任一项的调光开关的所述二个连接端子串联在LED灯所在的回路中,所述LED灯包括:LED、译码电路和LED驱动电路,
    通过所述输入装置接收用户输入,产生所述控制信号,
    通过所述控制模块将所述控制信号转化为多码位的所述调光信号,
    通过所述供电驱动电路将多码位的所述调光信号传送给所述开关器件,
    通过所述开关器件响应所述调光信号中的高低电平执行通断切换,
    所述LED灯所在的回路中的电流基于所述开关器件的通断产生对应的高低电平信号,
    所述译码电路从回路电流中获取所述高低电平信号,并将所述高低电平信号根据预设译码协议译码得到调光指令,
    所述LED驱动电路根据所述调光指令调节LED灯的工作参数。
PCT/CN2014/078930 2014-05-30 2014-05-30 调光开关及其调光方法 WO2015180136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/078930 WO2015180136A1 (zh) 2014-05-30 2014-05-30 调光开关及其调光方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/078930 WO2015180136A1 (zh) 2014-05-30 2014-05-30 调光开关及其调光方法

Publications (1)

Publication Number Publication Date
WO2015180136A1 true WO2015180136A1 (zh) 2015-12-03

Family

ID=54697913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078930 WO2015180136A1 (zh) 2014-05-30 2014-05-30 调光开关及其调光方法

Country Status (1)

Country Link
WO (1) WO2015180136A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107567136A (zh) * 2017-09-08 2018-01-09 深圳市豪恩光电照明股份有限公司 一种led调光调色电路及led调光调色装置
CN108495408A (zh) * 2018-03-28 2018-09-04 Tcl-罗格朗国际电工(惠州)有限公司 调光触发电路以及调光器
CN109168227A (zh) * 2018-10-25 2019-01-08 上海联矽智能科技有限公司 一种隐藏式一体化智能光控***及实现方法
CN109831845A (zh) * 2018-12-27 2019-05-31 中山市夸克光电科技有限公司 一种多功能led感应灯控制器
CN110113842A (zh) * 2019-05-21 2019-08-09 江苏宜美照明科技股份有限公司 环境光感应控制灯具开关电路
CN113300593A (zh) * 2021-04-20 2021-08-24 辽宁长风科技有限责任公司 一种用于随钻仪器的直流稳压电源***
CN113411931A (zh) * 2021-05-06 2021-09-17 上海奥简微电子科技有限公司 Led可控硅调光快速响应电路及led照明装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2495072Y (zh) * 2001-09-04 2002-06-12 罗光伟 有亮度指示的多功能红外遥控调光开关
CN1794393A (zh) * 2004-12-22 2006-06-28 松下电工株式会社 具有光控制功能的开关
CN102655701A (zh) * 2011-03-04 2012-09-05 松下电器产业株式会社 照明***
US20130057169A1 (en) * 2011-09-01 2013-03-07 Jean Claude Harel Flickering suppressor system for a dimmable led light bulb
CN103491690A (zh) * 2013-09-29 2014-01-01 刘付光 无级调光式led灯
CN103781258A (zh) * 2014-02-24 2014-05-07 王晓元 调光电路及使用该调光电路的照明控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2495072Y (zh) * 2001-09-04 2002-06-12 罗光伟 有亮度指示的多功能红外遥控调光开关
CN1794393A (zh) * 2004-12-22 2006-06-28 松下电工株式会社 具有光控制功能的开关
CN102655701A (zh) * 2011-03-04 2012-09-05 松下电器产业株式会社 照明***
US20130057169A1 (en) * 2011-09-01 2013-03-07 Jean Claude Harel Flickering suppressor system for a dimmable led light bulb
CN103491690A (zh) * 2013-09-29 2014-01-01 刘付光 无级调光式led灯
CN103781258A (zh) * 2014-02-24 2014-05-07 王晓元 调光电路及使用该调光电路的照明控制装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107567136A (zh) * 2017-09-08 2018-01-09 深圳市豪恩光电照明股份有限公司 一种led调光调色电路及led调光调色装置
CN108495408A (zh) * 2018-03-28 2018-09-04 Tcl-罗格朗国际电工(惠州)有限公司 调光触发电路以及调光器
CN109168227A (zh) * 2018-10-25 2019-01-08 上海联矽智能科技有限公司 一种隐藏式一体化智能光控***及实现方法
CN109831845A (zh) * 2018-12-27 2019-05-31 中山市夸克光电科技有限公司 一种多功能led感应灯控制器
CN109831845B (zh) * 2018-12-27 2024-04-23 中山市夸克光电科技有限公司 一种多功能led感应灯控制器
CN110113842A (zh) * 2019-05-21 2019-08-09 江苏宜美照明科技股份有限公司 环境光感应控制灯具开关电路
CN110113842B (zh) * 2019-05-21 2024-03-05 江苏宜美照明科技股份有限公司 环境光感应控制灯具开关电路
CN113300593A (zh) * 2021-04-20 2021-08-24 辽宁长风科技有限责任公司 一种用于随钻仪器的直流稳压电源***
CN113411931A (zh) * 2021-05-06 2021-09-17 上海奥简微电子科技有限公司 Led可控硅调光快速响应电路及led照明装置
CN113411931B (zh) * 2021-05-06 2024-01-26 上海奥简微电子科技有限公司 Led可控硅调光快速响应电路及led照明装置

Similar Documents

Publication Publication Date Title
WO2015180136A1 (zh) 调光开关及其调光方法
WO2011013906A2 (ko) 발광 장치를 위한 조광 장치
US4797599A (en) Power control circuit with phase controlled signal input
WO2013162308A1 (ko) Led 디머, 이를 포함하는 led 조명장치 및 led 조명장치의 디밍 제어 방법
WO2014048157A1 (zh) 一种led驱动装置及其驱动方法
US11239742B2 (en) Load control device having an overcurrent protection circuit
WO2009136691A2 (ko) 교류전원 엘이디 조명시스템
WO2014104843A1 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2017156891A1 (zh) 交流驱动混合调光电路和电视机
WO2014133349A2 (ko) 발광 다이오드 조명 장치의 제어 회로
WO2016060465A2 (ko) 플리커 성능이 개선된 led 구동회로 및 이를 포함하는 led 조명장치
WO2017160036A9 (ko) 전력선의 전원변동을 통신신호로 이용하는 전원제어 통신장치
WO2016028043A1 (ko) 동기식 다채널 발광 다이오드 구동 장치
WO2015135168A1 (zh) 一种兼容可控硅调光器的led驱动电路
WO2019078425A1 (ko) 조명 기기의 부품에 전력을 공급하기 위한 회로 및 이를 포함하는 조명 기기
WO2020011056A1 (zh) 智能控制装置及其实现方法、智能电视
WO2016104940A1 (ko) 발광 소자 구동 장치
US5585713A (en) Light dimmer circuit with control pulse stretching
WO2009113784A2 (ko) 엘이디 구동장치
WO2014046469A2 (ko) 적응형 액티브 쿨러 구동회로를 포함하는 교류 엘이디 구동 아이씨, 이를 포함하는 led 조명장치 및 이를 이용한 제어방법
WO2020166928A1 (ko) 트라이액 모듈
WO2019208839A1 (ko) 발광다이오드 조명 장치
WO2019083110A1 (ko) 플리커 방지용 led 조명 장치
WO2013129782A1 (ko) 플리커가 개선된 엘이디 조명장치
WO2017188757A2 (ko) 전해 캐패시터 레스 전원 공급장치를 구비한 디밍형 led 조명장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892886

Country of ref document: EP

Kind code of ref document: A1