WO2015178732A1 - Multi-component host material and an organic electroluminescence device comprising the same - Google Patents

Multi-component host material and an organic electroluminescence device comprising the same Download PDF

Info

Publication number
WO2015178732A1
WO2015178732A1 PCT/KR2015/005194 KR2015005194W WO2015178732A1 WO 2015178732 A1 WO2015178732 A1 WO 2015178732A1 KR 2015005194 W KR2015005194 W KR 2015005194W WO 2015178732 A1 WO2015178732 A1 WO 2015178732A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
host
organic electroluminescent
aryl
Prior art date
Application number
PCT/KR2015/005194
Other languages
French (fr)
Inventor
Chi-Sik Kim
Seon-Woo Lee
Su-Hyun Lee
Young-Kwang Kim
Hee-Choon Ahn
Jae-Hoon Shim
Kyoung-Jin Park
Nam-Kyun Kim
Kyung-Hoon Choi
Young-Jun Cho
Original Assignee
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150070761A external-priority patent/KR20150135123A/en
Application filed by Rohm And Haas Electronic Materials Korea Ltd. filed Critical Rohm And Haas Electronic Materials Korea Ltd.
Priority to US15/311,537 priority Critical patent/US20170098784A1/en
Priority to CN202210131332.8A priority patent/CN114497425A/en
Priority to CN201580026086.8A priority patent/CN106414662A/en
Publication of WO2015178732A1 publication Critical patent/WO2015178732A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/1062Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/1066Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the present invention relates to a multi-component host material and an organic electroluminescence device comprising the same.
  • An electroluminescence device is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time.
  • the first organic EL device was developed by Eastman Kodak, by using small aromatic diamine molecules, and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
  • An organic EL device is a device changing electronic energy to light by applying electricity to an organic electroluminescent material, and generally has a structure comprising an anode, a cathode, and an organic layer between the anode and the cathode.
  • the organic layer of an organic EL device may be comprised of a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer (which comprises host and dopant materials), an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc., and the materials used for the organic layer are categorized by their functions in hole injection material, hole transport material, electron blocking material, light-emitting material, electron buffer material, hole blocking material, electron transport material, electron injection material, etc.
  • the organic EL device due to an application of a voltage, holes are injected from the anode to the light-emitting layer, electrons are injected from the cathode to the light-emitting layer, and excitons of high energies are formed by a recombination of the holes and the electrons.
  • excitons of high energies are formed by a recombination of the holes and the electrons.
  • luminescent organic compounds reach an excited state, and light emission occurs by emitting light from energy due to the excited state of the luminescent organic compounds returning to a ground state.
  • a light-emitting material must have high quantum efficiency, high electron and hole mobility, and the formed light-emitting material layer must be uniform and stable.
  • Light-emitting materials are categorized into blue, green, and red light-emitting materials dependent on the color of the light emission, additionally yellow or orange light-emitting materials.
  • light-emitting materials can also be categorized into host and dopant materials according to their functions.
  • the host material which acts as a solvent in a solid state and transfers energy needs to have high purity and a molecular weight appropriate for vacuum deposition. Furthermore, the host material needs to have high glass transition temperature and high thermal degradation temperature to achieve thermal stability, high electro-chemical stability to achieve long lifespan, ease of forming amorphous thin film, good adhesion to materials of adjacent layers, and non-migration to other layers.
  • a light-emitting material can be used as a combination of a host and a dopant to improve color purity, luminous efficiency, and stability.
  • an EL device having excellent characteristics has a structure comprising a light-emitting layer formed by doping a dopant to a host. Since host materials greatly influence the efficiency and lifespan of the EL device when using a dopant/host material system as a light emitting material, their selection is important.
  • Korean Patent Appln. Laying-Open No.10-2008-0080306 discloses an organic electroluminescent device using a compound wherein two carbazoles are linked via an arylene as a host material
  • International Publication No. WO 2013/112557 A1 discloses an organic electroluminescent device using a compound wherein a biscarbazole is linked to a carbazole via an arylene as a host material.
  • references fail to disclose an organic electroluminescent device using a compound wherein a biscarbazole comprising an aryl is linked to a dibenzothiophene or dibenzofuran directly or via an arylene, and a compound wherein a carbazole is linked to a heteroaryl directly or via an arylene as a multi-component host.
  • the objective of the present invention is to provide an organic electroluminescent device having improved lifespan characteristics.
  • an organic electroluminescent device comprising at least one light-emitting layer between an anode and a cathode, wherein the light-emitting layer comprises a host and a phosphorescent dopant, the host consists of multi-component host compounds, at least a first host compound of the multi-component host compounds is represented by the following formula 1, and a second host compound is represented by the following formula 2:
  • Ar 1 represents a substituted or unsubstituted (C6-C30)aryl
  • L 1 and L 2 each independently represent a single bond, or a substituted or unsubstituted (C6-C30)arylene;
  • X represents O or S
  • R 1 to R 32 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubsti
  • Ar 2 represents a substituted or unsubstituted 3- to 30-membered heteroaryl
  • the heteroaryl contains at least one hetero atom selected from B, N, O, S, Si, and P.
  • an organic electroluminescent device having high efficiency and long lifespan is provided, and it is possible to manufacture a display device or a lighting device using the organic electroluminescent device.
  • organic electroluminescent device comprising the organic electroluminescent compounds of formulae 1 and 2 will be described in detail.
  • the compound represented by formula 1 can be represented by formula 3, 4, 5, or 6:
  • Ar 1 , L 1 , X, and R 1 to R 24 are as defined in formula 1.
  • L 1 represents a single bond, or a substituted or unsubstituted (C6-C30)arylene, preferably represents a single bond, or a substituted or unsubstituted (C6-C15)arylene, and more preferably represents a single bond, or an unsubstituted (C6-C15)arylene.
  • X represents O or S.
  • Ar 1 represents a substituted or unsubstituted (C6-C30)aryl, preferably represents a substituted or unsubstituted (C6-C20)aryl, and more preferably represents a (C6-C20)aryl unsubstituted or substituted with a (C6-C20)aryl.
  • R 1 to R 24 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubsti
  • L 2 represents a single bond, or a substituted or unsubstituted (C6-C30)arylene, preferably represents a single bond, or a substituted or unsubstituted (C6-C15)arylene, and more preferably represents a single bond, or a (C6-C15)arylene unsubstituted or substituted with a tri(C6-C15)arylsilyl.
  • Ar 2 represents a substituted or unsubstituted 3- to 30-membered heteroaryl, preferably represents a substituted or unsubstituted 5- to 11-membered nitrogen-containing heteroaryl, and more preferably represents a 6- to 10-membered nitrogen-containing heteroaryl unsubstituted or substituted with an unsubstituted (C6-C18)aryl, a (C6-C12)aryl substituted with a cyano, a (C6-C12)aryl substituted with a (C1-C6)alkyl, a (C6-C12)aryl substituted with a tri(C6-C12)arylsilyl, or a 6- to 15-membered heteroaryl.
  • Ar 2 may represent a monocyclic heteroaryl selected from the group consisting of pyrrolyl, imidazolyl, pyrazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, or a fused heteroaryl selected from the group consisting of benzoimidazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, carbazolyl, and phenanthrydinyl, and preferably may represent triazinyl, pyrimidinyl, quinolyl, isoquinolyl, quinazolinyl, naphthyridinyl, or quiridine
  • R 25 to R 32 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubsti
  • L 1 and L 2 each independently can be represented by one of the following formulae 7 to 19:
  • Xi to Xp each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or un
  • (C1-C30)alkyl is meant to be a linear or branched alkyl having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.;
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e. a substituent.
  • the triarylsilyl is preferably a triphenylsilyl.
  • the first host compound represented by formula 1 includes the following compounds, but is not limited thereto:
  • the second host compound represented by formula 2 includes the following compounds, but is not limited thereto:
  • the organic electroluminescent device comprises an anode; a cathode; and at least one organic layer between the anode and the cathode.
  • the organic layer comprises a light-emitting layer, and the light-emitting layer comprises a host and a phosphorescent dopant.
  • the host consists of multi-component host compounds, at least a first host compound of the multi-component host compounds is represented by formula 1, and a second host compound is represented by formula 2.
  • the light-emitting layer is a layer from which light is emitted, and can be a single layer or a multi layer of which two or more layers are stacked. In the light-emitting layer, it is preferable that the doping concentration of the dopant compound based on the host compound is less than 20 wt%.
  • the organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
  • the dopant is preferably at least one phosphorescent dopant.
  • the dopant materials applied to the organic electroluminescent device according to the present invention are not limited, but may be preferably selected from metallated complex compounds of iridium, osmium, copper, and platinum, more preferably selected from ortho-metallated complex compounds of iridium, osmium, copper and platinum, and even more preferably ortho-metallated iridium complex compounds.
  • the phosphorescent dopant is preferably selected from compounds represented by the following formulae 101 to 103.
  • L is selected from the following structures:
  • R 100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl;
  • R 101 to R 109 , and R 111 to R 123 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; adjacent substituents of R 106 to R 109 may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, 3- to 30-membered alicyclic or (hetero)aromatic ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubsti
  • R 124 to R 127 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R 124 to R 127 may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, 3- to 30-membered alicyclic or (hetero)aromatic ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
  • R 201 to R 211 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R 208 to R 211 may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, 3- to 30-membered alicyclic or (hetero)aromatic ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
  • f and g each independently represent an integer of 1 to 3; where f or g is an integer of 2 or more, each of R 100 may be the same or different; and
  • n an integer of 1 to 3.
  • the phosphorescent dopant materials include the following:
  • the organic electroluminescent device according to the present invention may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds in the organic layer.
  • the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4 th period, transition metals of the 5 th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
  • a surface layer is preferably placed on an inner surface(s) of one or both electrode(s); selected from a chalcogenide layer, a metal halide layer and a metal oxide layer.
  • a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer
  • a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer.
  • said chalcogenide includes SiO X (1 ⁇ X ⁇ 2), AlO X (1 ⁇ X ⁇ 1.5), SiON, SiAlON, etc.; said metal halide includes LiF, MgF 2 , CaF 2 , a rare earth metal fluoride, etc.; and said metal oxide includes Cs 2 O, Li 2 O, MgO, SrO, BaO, CaO, etc.
  • a layer selected from a hole injection layer, a hole transport layer, or an electron blocking layer, or formed by a combination thereof can be used.
  • Multi layers can be used for the hole injection layer in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer. Two compounds can be simultaneously used in each layer.
  • the hole transport layer and the electron blocking layer can also be formed of multi layers.
  • a layer selected from an electron buffer layer, a hole blocking layer, an electron transport layer, or an electron injection layer, or formed by a combination thereof can be used.
  • Multi layers can be used for the electron buffer layer in order to control the injection of the electrons and enhance the interfacial characteristics between the light-emitting layer and the electron injection layer.
  • Two compounds can be simultaneously used in each layer.
  • the hole blocking layer and the electron transport layer can also be formed of multi layers, and each layer can comprise two or more compounds.
  • a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant is preferably placed on at least one surface of a pair of electrodes.
  • the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium.
  • the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium.
  • the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof.
  • a reductive dopant layer may be employed as a charge generating layer to prepare an electroluminescent device having two or more electroluminescent layers and emitting white light.
  • each layer of the organic electroluminescent device of the present invention dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as spin coating, dip coating, and flow coating methods can be used.
  • dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as spin coating, dip coating, and flow coating methods can be used.
  • the first and second host compounds of the present invention may be co-evaporated or mixture-evaporated.
  • a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
  • the first and second host compounds of the present invention can be used to form a film by a co-evaporation of mixture-evaporation process.
  • a display system or a lighting system can be produced.
  • An OLED device was produced using the organic electroluminescent compound according to the present invention.
  • a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an organic light-emitting diode (OLED) device (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and then was stored in isopropanol.
  • the ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus.
  • N 4 ,N 4' -diphenyl-N 4 ,N 4’ -bis(9-phenyl-9H-carbazol-3-yl)-[1,1'-biphenyl]-4,4'-diamine (compound HI-1) was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10 -6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate.
  • 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (compound HI-2) was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer.
  • N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluorene-2-amine (compound HT-1) was then introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 70 nm on the second hole injection layer.
  • a first host compound and a second host compound were introduced into two cells of the vacuum vapor depositing apparatus, respectively.
  • a dopant compound D-96 was introduced into another cell.
  • the two host materials were evaporated at 1:1 rate, while the dopant was evaporated at a different rate from the host materials, so that the dopant was deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the hole transport layer.
  • An OLED device was produced in the same manner as in Device Example 1-1, except for evaporating the first hole transport layer (compound HT-1) of 10 nm thickness, introducing N,N-di([1,1'-biphenyl]-4-yl)-4'-(9H-carbazol-9-yl)-[1,1'-biphenyl]-4-amine (compound HT-2) into another cell of said vacuum vapor depositing apparatus, evaporating by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer, and using the first and second host compounds listed in Table 1 as a host.
  • Comparative Example 1-1 Preparation of an OLED device using only the
  • An OLED device was produced in the same manner as in Device Example 1-1, except for using only the first host compound listed in Table 1 as a host of the light-emitting layer.
  • OLED device was produced in the same manner as in Device Examples 2-1 to 2-3, except for using only the second host compound listed in Table 1 as a host of the light-emitting layer.
  • the driving voltage at 1,000 nit, luminous efficiency, CIE color coordinate, and the time taken for the luminance at 5,000 nit to be reduced from 100% to 90% at a constant current of the OLEDs produced as above were measured.
  • Table 1 below shows the luminous characteristics of the organic electroluminescent devices produced as in Device Example 1-1, Comparative Example 1-1, Device Examples 2-1 to 2-3, and Comparative Examples 2-1 to 2-3.
  • An OLED device was produced in the same manner as in Device Example 1-1, except for evaporating the second hole injection layer of 3 nm thickness, evaporating the first hole transport layer of 40 nm thickness, not evaporating the second hole transport layer, using compound D-1 or D-25 for the dopant of the light-emitting layer, evaporating the electron transport layer of 35 nm thickness at a rate of 4:6, and using the first and second host compounds combination listed in Table 2 as a host of the light-emitting layer.
  • An OLED device was produced in the same manner as in Device Examples 3-1 to 3-13, except for evaporating the first hole transport layer of 10 nm thickness, evaporating the second hole transport layer of 30 nm thickness by using compound HT-3, using compound D-136 for the dopant of the light-emitting layer, and using the first and second host compounds combination listed in Table 2 as a host of the light-emitting layer.
  • An OLED device was produced in the same manner as in Device Examples 3-1 to 3-13, except for using only the first host compound listed in Table 2 as a host of the light-emitting layer.
  • An OLED device was produced in the same manner as in Device Examples 3-1 to 3-13, except for using only the second host compound listed in Table 2 as a host of the light-emitting layer.
  • Comparative Example 5-1 Preparation of an OLED device using only the
  • An OLED device was produced in the same manner as in Device Example 4-1, except for using only the second host compound listed in Table 2 as a host of the light-emitting layer.
  • the driving voltage at 1,000 nit, luminous efficiency, CIE color coordinate, and the time taken for the luminance at 15,000 nit to be reduced from 100% to 90% at a constant current of the OLEDs produced as above were measured.
  • Table 2 below shows the luminous characteristics of the organic electroluminescent devices produced as in Device Examples 3-1 to 3-13, Device Example 4-1, Comparative Example 3-1, Comparative Examples 4-1 to 4-12, and Comparative Example 5-1.
  • the organic electroluminescent device of the present invention comprises a light-emitting layer comprising a host and a phosphorus dopant, and the host consists of a specific combination of multi-component host compounds.
  • the device of the present invention provides superior lifespan characteristics to conventional devices.

Abstract

The present invention relates to a multi-component host material and an organic electroluminescent device comprising the same. By comprising a specific combination of the multi-component host compounds, the organic electroluminescent device according to the present invention can provide high luminous efficiency and excellent lifespan characteristics.

Description

MULTI-COMPONENT HOST MATERIAL AND AN ORGANIC ELECTROLUMINESCENCE DEVICE COMPRISING THE SAME
The present invention relates to a multi-component host material and an organic electroluminescence device comprising the same.
An electroluminescence device (EL device) is a self-light-emitting device which has advantages in that it provides a wider viewing angle, a greater contrast ratio, and a faster response time. The first organic EL device was developed by Eastman Kodak, by using small aromatic diamine molecules, and aluminum complexes as materials for forming a light-emitting layer [Appl. Phys. Lett. 51, 913, 1987].
An organic EL device (OLED) is a device changing electronic energy to light by applying electricity to an organic electroluminescent material, and generally has a structure comprising an anode, a cathode, and an organic layer between the anode and the cathode. The organic layer of an organic EL device may be comprised of a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer (which comprises host and dopant materials), an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc., and the materials used for the organic layer are categorized by their functions in hole injection material, hole transport material, electron blocking material, light-emitting material, electron buffer material, hole blocking material, electron transport material, electron injection material, etc. In the organic EL device, due to an application of a voltage, holes are injected from the anode to the light-emitting layer, electrons are injected from the cathode to the light-emitting layer, and excitons of high energies are formed by a recombination of the holes and the electrons. By this energy, luminescent organic compounds reach an excited state, and light emission occurs by emitting light from energy due to the excited state of the luminescent organic compounds returning to a ground state.
The most important factor determining luminous efficiency in an organic EL device is light-emitting materials. A light-emitting material must have high quantum efficiency, high electron and hole mobility, and the formed light-emitting material layer must be uniform and stable. Light-emitting materials are categorized into blue, green, and red light-emitting materials dependent on the color of the light emission, additionally yellow or orange light-emitting materials. In addition, light-emitting materials can also be categorized into host and dopant materials according to their functions. Recently, the development of an organic EL device providing high efficiency and long lifespan is an urgent issue. In particular, considering EL characteristic requirements for a middle or large-sized panel of OLED, materials showing better characteristics than conventional ones must be urgently developed. The host material which acts as a solvent in a solid state and transfers energy needs to have high purity and a molecular weight appropriate for vacuum deposition. Furthermore, the host material needs to have high glass transition temperature and high thermal degradation temperature to achieve thermal stability, high electro-chemical stability to achieve long lifespan, ease of forming amorphous thin film, good adhesion to materials of adjacent layers, and non-migration to other layers.
A light-emitting material can be used as a combination of a host and a dopant to improve color purity, luminous efficiency, and stability. Generally, an EL device having excellent characteristics has a structure comprising a light-emitting layer formed by doping a dopant to a host. Since host materials greatly influence the efficiency and lifespan of the EL device when using a dopant/host material system as a light emitting material, their selection is important.
Korean Patent Appln. Laying-Open No.10-2008-0080306 discloses an organic electroluminescent device using a compound wherein two carbazoles are linked via an arylene as a host material, and International Publication No. WO 2013/112557 A1 discloses an organic electroluminescent device using a compound wherein a biscarbazole is linked to a carbazole via an arylene as a host material. However, the references fail to disclose an organic electroluminescent device using a compound wherein a biscarbazole comprising an aryl is linked to a dibenzothiophene or dibenzofuran directly or via an arylene, and a compound wherein a carbazole is linked to a heteroaryl directly or via an arylene as a multi-component host.
The objective of the present invention is to provide an organic electroluminescent device having improved lifespan characteristics.
The present inventors found that the above objective can be achieved by an organic electroluminescent device comprising at least one light-emitting layer between an anode and a cathode, wherein the light-emitting layer comprises a host and a phosphorescent dopant, the host consists of multi-component host compounds, at least a first host compound of the multi-component host compounds is represented by the following formula 1, and a second host compound is represented by the following formula 2:
Figure PCTKR2015005194-appb-I000001
Figure PCTKR2015005194-appb-I000002
wherein
Ar1 represents a substituted or unsubstituted (C6-C30)aryl;
L1 and L2 each independently represent a single bond, or a substituted or unsubstituted (C6-C30)arylene;
X represents O or S;
R1 to R32 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di- (C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur;
Ar2 represents a substituted or unsubstituted 3- to 30-membered heteroaryl; and
the heteroaryl contains at least one hetero atom selected from B, N, O, S, Si, and P.
According to the present invention, an organic electroluminescent device having high efficiency and long lifespan is provided, and it is possible to manufacture a display device or a lighting device using the organic electroluminescent device.
Hereinafter, the present invention will be described in detail. However, the following description is intended to explain the invention, and is not meant in any way to restrict the scope of the invention.
Hereinafter, the organic electroluminescent device comprising the organic electroluminescent compounds of formulae 1 and 2 will be described in detail.
The compound represented by formula 1 can be represented by formula 3, 4, 5, or 6:
Figure PCTKR2015005194-appb-I000003
Figure PCTKR2015005194-appb-I000004
Figure PCTKR2015005194-appb-I000005
Figure PCTKR2015005194-appb-I000006
wherein
Ar1, L1, X, and R1 to R24 are as defined in formula 1.
In formula 1 above, L1 represents a single bond, or a substituted or unsubstituted (C6-C30)arylene, preferably represents a single bond, or a substituted or unsubstituted (C6-C15)arylene, and more preferably represents a single bond, or an unsubstituted (C6-C15)arylene.
In formula 1 above, X represents O or S.
In formula 1 above, Ar1 represents a substituted or unsubstituted (C6-C30)aryl, preferably represents a substituted or unsubstituted (C6-C20)aryl, and more preferably represents a (C6-C20)aryl unsubstituted or substituted with a (C6-C20)aryl.
In formula 1 above, R1 to R24 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di- (C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur, and preferably, each independently represent hydrogen.
In formula 2 above, L2 represents a single bond, or a substituted or unsubstituted (C6-C30)arylene, preferably represents a single bond, or a substituted or unsubstituted (C6-C15)arylene, and more preferably represents a single bond, or a (C6-C15)arylene unsubstituted or substituted with a tri(C6-C15)arylsilyl.
In formula 2 above, Ar2 represents a substituted or unsubstituted 3- to 30-membered heteroaryl, preferably represents a substituted or unsubstituted 5- to 11-membered nitrogen-containing heteroaryl, and more preferably represents a 6- to 10-membered nitrogen-containing heteroaryl unsubstituted or substituted with an unsubstituted (C6-C18)aryl, a (C6-C12)aryl substituted with a cyano, a (C6-C12)aryl substituted with a (C1-C6)alkyl, a (C6-C12)aryl substituted with a tri(C6-C12)arylsilyl, or a 6- to 15-membered heteroaryl.
In addition, Ar2 may represent a monocyclic heteroaryl selected from the group consisting of pyrrolyl, imidazolyl, pyrazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, or a fused heteroaryl selected from the group consisting of benzoimidazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, carbazolyl, and phenanthrydinyl, and preferably may represent triazinyl, pyrimidinyl, quinolyl, isoquinolyl, quinazolinyl, naphthyridinyl, or quinoxalinyl.
In formula 2 above, R25 to R32 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di- (C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur, and preferably, each independently represent hydrogen, a cyano, a substituted or unsubstituted (C6-C15)aryl, a substituted or unsubstituted 10- to 20-membered heteroaryl, or a substituted or unsubstituted tri(C6-C10)arylsilyl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C6-C20) aromatic ring, and more preferably, each independently represent hydrogen, a cyano, a (C6-C15)aryl unsubstituted or substituted with a tri(C6-C10)arylsilyl, a 10- to 20-membered heteroaryl unsubstituted or substituted with a (C6-C12)aryl, or an unsubstituted tri(C6-C10)arylsilyl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted benzene, a substituted or unsubstituted indole, a substituted or unsubstituted benzoindole, a substituted or unsubstituted indene, a substituted or unsubstituted benzofuran, or a substituted or unsubstituted benzothiophene.
In addition, L1 and L2 each independently can be represented by one of the following formulae 7 to 19:
Figure PCTKR2015005194-appb-I000007
Figure PCTKR2015005194-appb-I000008
Figure PCTKR2015005194-appb-I000009
Figure PCTKR2015005194-appb-I000010
Figure PCTKR2015005194-appb-I000011
Figure PCTKR2015005194-appb-I000012
wherein
Xi to Xp each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di- (C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur.
Herein, “(C1-C30)alkyl” is meant to be a linear or branched alkyl having 1 to 30 carbon atoms, in which the number of carbon atoms is preferably 1 to 20, more preferably 1 to 10, and includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc.; “(C2-C30)alkenyl” is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.; “(C2-C30)alkynyl” is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms, in which the number of carbon atoms is preferably 2 to 20, more preferably 2 to 10, and includes ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.; “(C3-C30)cycloalkyl” is a mono- or polycyclic hydrocarbon having 3 to 30 carbon atoms, in which the number of carbon atoms is preferably 3 to 20, more preferably 3 to 7, and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.; “3- to 7- membered heterocycloalkyl” is a cycloalkyl having 3 to 7 ring backbone atoms, preferably 5 to 7, including at least one heteroatom selected from B, N, O, S, Si, and P, preferably O, S, and N, and includes tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc.; “(C6-C30)aryl(ene)” is a monocyclic or fused ring derived from an aromatic hydrocarbon having 6 to 30 carbon atoms, in which the number of carbon atoms is preferably 6 to 20, more preferably 6 to 15, and includes phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, etc.; “3- to 30-membered heteroaryl” is an aryl having 3 to 30 ring backbone atoms, including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl including benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzoimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, benzoindolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenoxazinyl, phenanthridinyl, benzodioxolyl, etc.; “nitrogen-containing 5- to 30-membered heteroaryl” is an aryl having 5 to 30 ring backbone atoms, preferably 5 to 20, and more preferably 5 to 15, including at least one heteroatom, N; is a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and includes a monocyclic ring-type heteroaryl including pyrrolyl, imidazolyl, pyrazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, etc., and a fused ring-type heteroaryl including benzoimidazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, quinoxalinyl, carbazolyl, phenanthridinyl, etc. Further, “halogen” includes F, Cl, Br, and I.
Herein, “substituted” in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or group, i.e. a substituent. The substituents of the substituted alkyl, the substituted alkenyl, the substituted alkynyl, the substituted cycloalkyl, the substituted aryl(ene), the substituted heteroaryl, the substituted trialkylsilyl, the substituted triarylsilyl, the substituted dialkylarylsilyl, the substituted mono- or di- arylamino, and the substituted mono- or polycyclic, alicyclic or aromatic ring in Ar1, Ar2, L1, L2, and R1 to R32 in formulae 1 and 2 each independently are at least one selected from the group consisting of deuterium, a halogen, a cyano, a carboxyl, a nitro, a hydroxyl, a (C1-C30)alkyl, a halo(C1-C30)alkyl, a (C2-C30)alkenyl, a (C2-C30)alkynyl, a (C1-C30)alkoxy, a (C1-C30)alkylthio, a (C3-C30)cycloalkyl, a (C3-C30)cycloalkenyl, a 3- to 7-membered heterocycloalkyl, a (C6-C30)aryloxy, a (C6-C30)arylthio, a 3- to 30-membered heteroaryl unsubstituted or substituted with a (C6-C30)aryl, a (C6-C30)aryl unsubstituted or substituted with a cyano, a 3- to 30-membered heteroaryl, or a tri(C6-C30)arylsilyl, a tri(C1-C30)alkylsilyl, a tri(C6-C30)arylsilyl, a di(C1-C30)alkyl(C6-C30)arylsilyl, a (C1-C30)alkyldi(C6-C30)arylsilyl, an amino, a mono- or di- (C1-C30)alkylamino, a mono- or di- (C6-C30)arylamino, a (C1-C30)alkyl(C6-C30)arylamino, a (C1-C30)alkylcarbonyl, a (C1-C30)alkoxycarbonyl, a (C6-C30)arylcarbonyl, a di(C6-C30)arylboronyl, a di(C1-C30)alkylboronyl, a (C1-C30)alkyl(C6-C30)arylboronyl, a (C6-C30)aryl(C1-C30)alkyl, and a (C1-C30)alkyl(C6-C30)aryl, and preferably are at least one selected from the group consisting of a cyano, a (C1-C6)alkyl, a 5- to 15-membered heteroaryl, a (C6-C18)aryl, a (C6-C18)aryl substituted with a cyano, a (C6-C18)aryl substituted with a tri(C6-C12)arylsilyl, a tri(C6-C12)arylsilyl, and a (C1-C6)alkyl(C6-C18)aryl.
In formulae 1 and 2, the triarylsilyl is preferably a triphenylsilyl.
The first host compound represented by formula 1 includes the following compounds, but is not limited thereto:
Figure PCTKR2015005194-appb-I000013
Figure PCTKR2015005194-appb-I000014
Figure PCTKR2015005194-appb-I000015
Figure PCTKR2015005194-appb-I000016
Figure PCTKR2015005194-appb-I000017
Figure PCTKR2015005194-appb-I000018
Figure PCTKR2015005194-appb-I000019
Figure PCTKR2015005194-appb-I000020
Figure PCTKR2015005194-appb-I000021
Figure PCTKR2015005194-appb-I000022
Figure PCTKR2015005194-appb-I000023
Figure PCTKR2015005194-appb-I000024
Figure PCTKR2015005194-appb-I000025
Figure PCTKR2015005194-appb-I000026
Figure PCTKR2015005194-appb-I000027
Figure PCTKR2015005194-appb-I000028
Figure PCTKR2015005194-appb-I000029
Figure PCTKR2015005194-appb-I000030
Figure PCTKR2015005194-appb-I000031
Figure PCTKR2015005194-appb-I000032
Figure PCTKR2015005194-appb-I000033
Figure PCTKR2015005194-appb-I000034
Figure PCTKR2015005194-appb-I000035
Figure PCTKR2015005194-appb-I000036
Figure PCTKR2015005194-appb-I000037
Figure PCTKR2015005194-appb-I000038
Figure PCTKR2015005194-appb-I000039
Figure PCTKR2015005194-appb-I000040
Figure PCTKR2015005194-appb-I000041
Figure PCTKR2015005194-appb-I000042
Figure PCTKR2015005194-appb-I000043
Figure PCTKR2015005194-appb-I000044
Figure PCTKR2015005194-appb-I000045
Figure PCTKR2015005194-appb-I000046
Figure PCTKR2015005194-appb-I000047
Figure PCTKR2015005194-appb-I000048
Figure PCTKR2015005194-appb-I000049
Figure PCTKR2015005194-appb-I000050
Figure PCTKR2015005194-appb-I000051
The second host compound represented by formula 2 includes the following compounds, but is not limited thereto:
Figure PCTKR2015005194-appb-I000052
Figure PCTKR2015005194-appb-I000053
Figure PCTKR2015005194-appb-I000054
Figure PCTKR2015005194-appb-I000055
Figure PCTKR2015005194-appb-I000056
Figure PCTKR2015005194-appb-I000057
Figure PCTKR2015005194-appb-I000058
Figure PCTKR2015005194-appb-I000059
Figure PCTKR2015005194-appb-I000060
Figure PCTKR2015005194-appb-I000061
Figure PCTKR2015005194-appb-I000062
Figure PCTKR2015005194-appb-I000063
Figure PCTKR2015005194-appb-I000064
Figure PCTKR2015005194-appb-I000065
Figure PCTKR2015005194-appb-I000066
Figure PCTKR2015005194-appb-I000067
Figure PCTKR2015005194-appb-I000068
Figure PCTKR2015005194-appb-I000069
Figure PCTKR2015005194-appb-I000070
Figure PCTKR2015005194-appb-I000071
Figure PCTKR2015005194-appb-I000072
Figure PCTKR2015005194-appb-I000073
Figure PCTKR2015005194-appb-I000074
Figure PCTKR2015005194-appb-I000075
Figure PCTKR2015005194-appb-I000076
Figure PCTKR2015005194-appb-I000077
Figure PCTKR2015005194-appb-I000078
Figure PCTKR2015005194-appb-I000079
Figure PCTKR2015005194-appb-I000080
Figure PCTKR2015005194-appb-I000081
Figure PCTKR2015005194-appb-I000082
Figure PCTKR2015005194-appb-I000083
Figure PCTKR2015005194-appb-I000084
Figure PCTKR2015005194-appb-I000085
Figure PCTKR2015005194-appb-I000086
Figure PCTKR2015005194-appb-I000087
Figure PCTKR2015005194-appb-I000088
Figure PCTKR2015005194-appb-I000089
Figure PCTKR2015005194-appb-I000090
Figure PCTKR2015005194-appb-I000091
Figure PCTKR2015005194-appb-I000092
Figure PCTKR2015005194-appb-I000093
Figure PCTKR2015005194-appb-I000094
Figure PCTKR2015005194-appb-I000095
Figure PCTKR2015005194-appb-I000096
Figure PCTKR2015005194-appb-I000097
Figure PCTKR2015005194-appb-I000098
Figure PCTKR2015005194-appb-I000099
Figure PCTKR2015005194-appb-I000100
Figure PCTKR2015005194-appb-I000101
Figure PCTKR2015005194-appb-I000102
Figure PCTKR2015005194-appb-I000103
Figure PCTKR2015005194-appb-I000104
Figure PCTKR2015005194-appb-I000105
Figure PCTKR2015005194-appb-I000106
Figure PCTKR2015005194-appb-I000107
Figure PCTKR2015005194-appb-I000108
Figure PCTKR2015005194-appb-I000109
Figure PCTKR2015005194-appb-I000110
Figure PCTKR2015005194-appb-I000111
The organic electroluminescent device according to the present invention comprises an anode; a cathode; and at least one organic layer between the anode and the cathode. The organic layer comprises a light-emitting layer, and the light-emitting layer comprises a host and a phosphorescent dopant. The host consists of multi-component host compounds, at least a first host compound of the multi-component host compounds is represented by formula 1, and a second host compound is represented by formula 2.
The light-emitting layer is a layer from which light is emitted, and can be a single layer or a multi layer of which two or more layers are stacked. In the light-emitting layer, it is preferable that the doping concentration of the dopant compound based on the host compound is less than 20 wt%.
The organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from the group consisting of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
According to the organic electroluminescent device of the present invention, the weight ratio of the first host material to the second host material is in the range of 1:99 to 99:1.
The dopant is preferably at least one phosphorescent dopant. The dopant materials applied to the organic electroluminescent device according to the present invention are not limited, but may be preferably selected from metallated complex compounds of iridium, osmium, copper, and platinum, more preferably selected from ortho-metallated complex compounds of iridium, osmium, copper and platinum, and even more preferably ortho-metallated iridium complex compounds.
The phosphorescent dopant is preferably selected from compounds represented by the following formulae 101 to 103.
Figure PCTKR2015005194-appb-I000112
Figure PCTKR2015005194-appb-I000113
Figure PCTKR2015005194-appb-I000114
wherein L is selected from the following structures:
Figure PCTKR2015005194-appb-I000115
R100 represents hydrogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C3-C30)cycloalkyl;
R101 to R109, and R111 to R123 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; adjacent substituents of R106 to R109 may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, 3- to 30-membered alicyclic or (hetero)aromatic ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl; and adjacent substituents of R120 to R123 may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, 3- to 30-membered alicyclic or (hetero)aromatic ring, e.g., quinoline unsubstituted or substituted with halogen, alkyl, or aryl;
R124 to R127 each independently represent hydrogen, deuterium, a halogen, a substituted or unsubstituted (C1-C30)alkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R124 to R127 may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, 3- to 30-membered alicyclic or (hetero)aromatic ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
R201 to R211 each independently represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with deuterium or a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; and adjacent substituents of R208 to R211 may be linked to each other to form a substituted or unsubstituted, mono- or polycyclic, 3- to 30-membered alicyclic or (hetero)aromatic ring, e.g., fluorene unsubstituted or substituted with alkyl, dibenzothiophene unsubstituted or substituted with alkyl, or dibenzofuran unsubstituted or substituted with alkyl;
f and g each independently represent an integer of 1 to 3; where f or g is an integer of 2 or more, each of R100 may be the same or different; and
n represents an integer of 1 to 3.
Specifically, the phosphorescent dopant materials include the following:
Figure PCTKR2015005194-appb-I000116
Figure PCTKR2015005194-appb-I000117
Figure PCTKR2015005194-appb-I000118
Figure PCTKR2015005194-appb-I000119
Figure PCTKR2015005194-appb-I000120
Figure PCTKR2015005194-appb-I000121
Figure PCTKR2015005194-appb-I000122
Figure PCTKR2015005194-appb-I000123
Figure PCTKR2015005194-appb-I000124
Figure PCTKR2015005194-appb-I000125
Figure PCTKR2015005194-appb-I000126
Figure PCTKR2015005194-appb-I000127
Figure PCTKR2015005194-appb-I000128
Figure PCTKR2015005194-appb-I000129
Figure PCTKR2015005194-appb-I000130
Figure PCTKR2015005194-appb-I000131
Figure PCTKR2015005194-appb-I000132
Figure PCTKR2015005194-appb-I000133
Figure PCTKR2015005194-appb-I000134
Figure PCTKR2015005194-appb-I000135
Figure PCTKR2015005194-appb-I000136
Figure PCTKR2015005194-appb-I000137
Figure PCTKR2015005194-appb-I000138
Figure PCTKR2015005194-appb-I000139
Figure PCTKR2015005194-appb-I000140
Figure PCTKR2015005194-appb-I000141
Figure PCTKR2015005194-appb-I000142
The organic electroluminescent device according to the present invention may further comprise at least one compound selected from the group consisting of arylamine-based compounds and styrylarylamine-based compounds in the organic layer.
In addition, in the organic electroluminescent device according to the present invention, the organic layer may further comprise at least one metal selected from the group consisting of metals of Group 1, metals of Group 2, transition metals of the 4th period, transition metals of the 5th period, lanthanides and organic metals of d-transition elements of the Periodic Table, or at least one complex compound comprising said metal.
According to the present invention, at least one layer (hereinafter, "a surface layer”) is preferably placed on an inner surface(s) of one or both electrode(s); selected from a chalcogenide layer, a metal halide layer and a metal oxide layer. Specifically, a chalcogenide (including oxides) layer of silicon or aluminum is preferably placed on an anode surface of an electroluminescent medium layer, and a metal halide layer or a metal oxide layer is preferably placed on a cathode surface of an electroluminescent medium layer. Such a surface layer provides operation stability for the organic electroluminescent device. Preferably, said chalcogenide includes SiOX(1≤X≤2), AlOX(1≤X≤1.5), SiON, SiAlON, etc.; said metal halide includes LiF, MgF2, CaF2, a rare earth metal fluoride, etc.; and said metal oxide includes Cs2O, Li2O, MgO, SrO, BaO, CaO, etc.
Between the anode and the light-emitting layer, a layer selected from a hole injection layer, a hole transport layer, or an electron blocking layer, or formed by a combination thereof can be used. Multi layers can be used for the hole injection layer in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer. Two compounds can be simultaneously used in each layer. The hole transport layer and the electron blocking layer can also be formed of multi layers.
Between the light-emitting layer and the cathode, a layer selected from an electron buffer layer, a hole blocking layer, an electron transport layer, or an electron injection layer, or formed by a combination thereof can be used. Multi layers can be used for the electron buffer layer in order to control the injection of the electrons and enhance the interfacial characteristics between the light-emitting layer and the electron injection layer. Two compounds can be simultaneously used in each layer. The hole blocking layer and the electron transport layer can also be formed of multi layers, and each layer can comprise two or more compounds.
In the organic electroluminescent device according to the present invention, a mixed region of an electron transport compound and a reductive dopant, or a mixed region of a hole transport compound and an oxidative dopant is preferably placed on at least one surface of a pair of electrodes. In this case, the electron transport compound is reduced to an anion, and thus it becomes easier to inject and transport electrons from the mixed region to an electroluminescent medium. Further, the hole transport compound is oxidized to a cation, and thus it becomes easier to inject and transport holes from the mixed region to the electroluminescent medium. Preferably, the oxidative dopant includes various Lewis acids and acceptor compounds; and the reductive dopant includes alkali metals, alkali metal compounds, alkaline earth metals, rare-earth metals, and mixtures thereof. A reductive dopant layer may be employed as a charge generating layer to prepare an electroluminescent device having two or more electroluminescent layers and emitting white light.
In order to form each layer of the organic electroluminescent device of the present invention, dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as spin coating, dip coating, and flow coating methods can be used. The first and second host compounds of the present invention may be co-evaporated or mixture-evaporated.
When using a wet film-forming method, a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc. The solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
The first and second host compounds of the present invention can be used to form a film by a co-evaporation of mixture-evaporation process.
By using the organic electroluminescent device of the present invention, a display system or a lighting system can be produced.
Hereinafter, the luminescent properties of the device comprising the host compound of the present invention will be explained in detail with reference to the following examples.
Device Example 1-1: Preparation of an OLED device by co-evaporating the
first host compound and the second host compound of the present invention
An OLED device was produced using the organic electroluminescent compound according to the present invention. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an organic light-emitting diode (OLED) device (Geomatec) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and then was stored in isopropanol. The ITO substrate was then mounted on a substrate holder of a vacuum vapor depositing apparatus. N4,N4'-diphenyl-N4,N4’-bis(9-phenyl-9H-carbazol-3-yl)-[1,1'-biphenyl]-4,4'-diamine (compound HI-1) was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the above introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate. Next, 1,4,5,8,9,12-hexaazatriphenylene-hexacarbonitrile (compound HI-2) was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. N-([1,1'-biphenyl]-4-yl)-9,9-dimethyl-N-(4-(9-phenyl-9H-carbazol-3-yl)phenyl)-9H-fluorene-2-amine (compound HT-1) was then introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 70 nm on the second hole injection layer. As a host material, a first host compound and a second host compound were introduced into two cells of the vacuum vapor depositing apparatus, respectively. A dopant compound D-96 was introduced into another cell. The two host materials were evaporated at 1:1 rate, while the dopant was evaporated at a different rate from the host materials, so that the dopant was deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the hole transport layer. 2,4-bis(9,9-dimethyl-9H-fluoren-2-yl)-6-(naphthalen-2-yl)-1,3,5-triazine (compound ET-1) and lithium quinolate (compound EI-1) were then introduced into two cells of the vacuum vapor depositing apparatus, respectively, and evaporated at 1:1 rate to form an electron transport layer having a thickness of 30 nm on the light-emitting layer. After depositing lithium quinolate (compound EI-1) as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 80 nm was deposited by another vacuum vapor deposition apparatus. Thus, an OLED device was produced.
Figure PCTKR2015005194-appb-I000143
Device Examples 2-1 to 2-3: Preparation of an OLED device by
co-evaporating the first host compound and the second host compound of the present invention
An OLED device was produced in the same manner as in Device Example 1-1, except for evaporating the first hole transport layer (compound HT-1) of 10 nm thickness, introducing N,N-di([1,1'-biphenyl]-4-yl)-4'-(9H-carbazol-9-yl)-[1,1'-biphenyl]-4-amine (compound HT-2) into another cell of said vacuum vapor depositing apparatus, evaporating by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer, and using the first and second host compounds listed in Table 1 as a host.
Comparative Example 1-1: Preparation of an OLED device using only the
first host compound as a host
An OLED device was produced in the same manner as in Device Example 1-1, except for using only the first host compound listed in Table 1 as a host of the light-emitting layer.
Comparative Examples 2-1 to 2-3: Preparation of an OLED device using
only the second host compound as a host
An OLED device was produced in the same manner as in Device Examples 2-1 to 2-3, except for using only the second host compound listed in Table 1 as a host of the light-emitting layer.
The driving voltage at 1,000 nit, luminous efficiency, CIE color coordinate, and the time taken for the luminance at 5,000 nit to be reduced from 100% to 90% at a constant current of the OLEDs produced as above were measured.
Table 1 below shows the luminous characteristics of the organic electroluminescent devices produced as in Device Example 1-1, Comparative Example 1-1, Device Examples 2-1 to 2-3, and Comparative Examples 2-1 to 2-3.
Figure PCTKR2015005194-appb-I000144
Device Examples 3-1 to 3-13: Preparation of an OLED device by
co-evaporating the first host compound and the second host compound of the present invention
An OLED device was produced in the same manner as in Device Example 1-1, except for evaporating the second hole injection layer of 3 nm thickness, evaporating the first hole transport layer of 40 nm thickness, not evaporating the second hole transport layer, using compound D-1 or D-25 for the dopant of the light-emitting layer, evaporating the electron transport layer of 35 nm thickness at a rate of 4:6, and using the first and second host compounds combination listed in Table 2 as a host of the light-emitting layer.
Device Example 4-1: Preparation of an OLED device by co-evaporating the
first host compound and the second host compound of the present invention
An OLED device was produced in the same manner as in Device Examples 3-1 to 3-13, except for evaporating the first hole transport layer of 10 nm thickness, evaporating the second hole transport layer of 30 nm thickness by using compound HT-3, using compound D-136 for the dopant of the light-emitting layer, and using the first and second host compounds combination listed in Table 2 as a host of the light-emitting layer.
Comparative Example 3-1: Preparation of an OLED device using only the
first host compound as a host
An OLED device was produced in the same manner as in Device Examples 3-1 to 3-13, except for using only the first host compound listed in Table 2 as a host of the light-emitting layer.
Comparative Examples 4-1 to 4-12: Preparation of an OLED device using
only the second host compound as a host
An OLED device was produced in the same manner as in Device Examples 3-1 to 3-13, except for using only the second host compound listed in Table 2 as a host of the light-emitting layer.
Comparative Example 5-1: Preparation of an OLED device using only the
second host compound as a host
An OLED device was produced in the same manner as in Device Example 4-1, except for using only the second host compound listed in Table 2 as a host of the light-emitting layer.
The driving voltage at 1,000 nit, luminous efficiency, CIE color coordinate, and the time taken for the luminance at 15,000 nit to be reduced from 100% to 90% at a constant current of the OLEDs produced as above were measured.
Table 2 below shows the luminous characteristics of the organic electroluminescent devices produced as in Device Examples 3-1 to 3-13, Device Example 4-1, Comparative Example 3-1, Comparative Examples 4-1 to 4-12, and Comparative Example 5-1.
Figure PCTKR2015005194-appb-I000145
Figure PCTKR2015005194-appb-I000146
The organic electroluminescent device of the present invention comprises a light-emitting layer comprising a host and a phosphorus dopant, and the host consists of a specific combination of multi-component host compounds. The device of the present invention provides superior lifespan characteristics to conventional devices.

Claims (7)

  1. An organic electroluminescent device comprising at least one light-emitting layer between an anode and a cathode, wherein the light-emitting layer comprises a host and a phosphorescent dopant, the host consists of multi-component host compounds, at least a first host compound of the multi-component host compounds is represented by the following formula 1, and a second host compound is represented by the following formula 2.
    Figure PCTKR2015005194-appb-I000147
    Figure PCTKR2015005194-appb-I000148
    wherein
    Ar1 represents a substituted or unsubstituted (C6-C30)aryl;
    L1 and L2 each independently represent a single bond, or a substituted or unsubstituted (C6-C30)arylene;
    X represents O or S;
    R1 to R32 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di- (C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur;
    Ar2 represents a substituted or unsubstituted 3- to 30-membered heteroaryl; and
    the heteroaryl contains at least one hetero atom selected from B, N, O, S, Si, and P.
  2. The organic electroluminescent device according to claim 1, wherein formula 1 is represented by one of the following formulae 3 to 6:
    Figure PCTKR2015005194-appb-I000149
    Figure PCTKR2015005194-appb-I000150
    Figure PCTKR2015005194-appb-I000151
    Figure PCTKR2015005194-appb-I000152
    wherein
    Ar1, L1, X, and R1 to R24 are as defined in claim 1.
  3. The organic electroluminescent device according to claim 1, wherein in formulae 1 and 2,
    L1 and L2 each independently are represented by one of the following formulae 7 to 19:
    Figure PCTKR2015005194-appb-I000153
    Figure PCTKR2015005194-appb-I000154
    Figure PCTKR2015005194-appb-I000155
    Figure PCTKR2015005194-appb-I000156
    Figure PCTKR2015005194-appb-I000157
    Figure PCTKR2015005194-appb-I000158
    wherein
    Xi to Xp each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C2-C30)alkenyl, a substituted or unsubstituted (C2-C30)alkynyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C60)aryl, a substituted or unsubstituted 3- to 30-membered heteroaryl, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, or a substituted or unsubstituted mono- or di- (C6-C30)arylamino; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted, mono- or polycyclic, (C3-C30) alicyclic or aromatic ring, whose carbon atom(s) may be replaced with at least one hetero atom selected from nitrogen, oxygen, and sulfur.
  4. The organic electroluminescent device according to claim 1, wherein in formula 2,
    Ar2 represents a monocyclic heteroaryl selected from the group consisting of pyrrolyl, imidazolyl, pyrazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, or a fused heteroaryl selected from the group consisting of benzoimidazolyl, isoindolyl, indolyl, indazolyl, benzothiadiazolyl, quinolyl, isoquinolyl, cinnolinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, carbazolyl, and phenanthrydinyl.
  5. The organic electroluminescent device according to claim 1, wherein in formula 2,
    R25 to R32 each independently represent hydrogen, a cyano, a (C6-C15)aryl unsubstituted or substituted with a tri(C6-C10)arylsilyl, a 10- to 20-membered heteroaryl unsubstituted or substituted with a (C6-C12)aryl, or an unsubstituted tri(C6-C10)arylsilyl; or are linked to an adjacent substituent(s) to form a substituted or unsubstituted benzene, a substituted or unsubstituted indole, a substituted or unsubstituted benzoindole, a substituted or unsubstituted indene, a substituted or unsubstituted benzofuran, or a substituted or unsubstituted benzothiophene.
  6. The organic electroluminescent device according to claim 1, wherein the compound represented by formula 1 is selected from the group consisting of:
    Figure PCTKR2015005194-appb-I000159
    Figure PCTKR2015005194-appb-I000160
    Figure PCTKR2015005194-appb-I000161
    Figure PCTKR2015005194-appb-I000162
    Figure PCTKR2015005194-appb-I000163
    Figure PCTKR2015005194-appb-I000164
    Figure PCTKR2015005194-appb-I000165
    Figure PCTKR2015005194-appb-I000166
    Figure PCTKR2015005194-appb-I000167
    Figure PCTKR2015005194-appb-I000168
    Figure PCTKR2015005194-appb-I000169
    Figure PCTKR2015005194-appb-I000170
    Figure PCTKR2015005194-appb-I000171
    Figure PCTKR2015005194-appb-I000172
    Figure PCTKR2015005194-appb-I000173
    Figure PCTKR2015005194-appb-I000174
    Figure PCTKR2015005194-appb-I000175
    Figure PCTKR2015005194-appb-I000176
    Figure PCTKR2015005194-appb-I000177
    Figure PCTKR2015005194-appb-I000178
    Figure PCTKR2015005194-appb-I000179
    Figure PCTKR2015005194-appb-I000180
    Figure PCTKR2015005194-appb-I000181
    Figure PCTKR2015005194-appb-I000182
    Figure PCTKR2015005194-appb-I000183
    Figure PCTKR2015005194-appb-I000184
    Figure PCTKR2015005194-appb-I000185
    Figure PCTKR2015005194-appb-I000186
    Figure PCTKR2015005194-appb-I000187
    Figure PCTKR2015005194-appb-I000188
    Figure PCTKR2015005194-appb-I000189
    Figure PCTKR2015005194-appb-I000190
    Figure PCTKR2015005194-appb-I000191
    Figure PCTKR2015005194-appb-I000192
    Figure PCTKR2015005194-appb-I000193
    Figure PCTKR2015005194-appb-I000194
    Figure PCTKR2015005194-appb-I000195
    Figure PCTKR2015005194-appb-I000196
    Figure PCTKR2015005194-appb-I000197
  7. The organic electroluminescent device according to claim 1, wherein the compound represented by formula 2 is selected from the group consisting of:
    Figure PCTKR2015005194-appb-I000198
    Figure PCTKR2015005194-appb-I000199
    Figure PCTKR2015005194-appb-I000200
    Figure PCTKR2015005194-appb-I000201
    Figure PCTKR2015005194-appb-I000202
    Figure PCTKR2015005194-appb-I000203
    Figure PCTKR2015005194-appb-I000204
    Figure PCTKR2015005194-appb-I000205
    Figure PCTKR2015005194-appb-I000206
    Figure PCTKR2015005194-appb-I000207
    Figure PCTKR2015005194-appb-I000208
    Figure PCTKR2015005194-appb-I000209
    Figure PCTKR2015005194-appb-I000210
    Figure PCTKR2015005194-appb-I000211
    Figure PCTKR2015005194-appb-I000212
    Figure PCTKR2015005194-appb-I000213
    Figure PCTKR2015005194-appb-I000214
    Figure PCTKR2015005194-appb-I000215
    Figure PCTKR2015005194-appb-I000216
    Figure PCTKR2015005194-appb-I000217
    Figure PCTKR2015005194-appb-I000218
    Figure PCTKR2015005194-appb-I000219
    Figure PCTKR2015005194-appb-I000220
    Figure PCTKR2015005194-appb-I000221
    Figure PCTKR2015005194-appb-I000222
    Figure PCTKR2015005194-appb-I000223
    Figure PCTKR2015005194-appb-I000224
    Figure PCTKR2015005194-appb-I000225
    Figure PCTKR2015005194-appb-I000226
    Figure PCTKR2015005194-appb-I000227
    Figure PCTKR2015005194-appb-I000228
    Figure PCTKR2015005194-appb-I000229
    Figure PCTKR2015005194-appb-I000230
    Figure PCTKR2015005194-appb-I000231
    Figure PCTKR2015005194-appb-I000232
    Figure PCTKR2015005194-appb-I000233
    Figure PCTKR2015005194-appb-I000234
    Figure PCTKR2015005194-appb-I000235
    Figure PCTKR2015005194-appb-I000236
    Figure PCTKR2015005194-appb-I000237
    Figure PCTKR2015005194-appb-I000238
    Figure PCTKR2015005194-appb-I000239
    Figure PCTKR2015005194-appb-I000240
    Figure PCTKR2015005194-appb-I000241
    Figure PCTKR2015005194-appb-I000242
    Figure PCTKR2015005194-appb-I000243
    Figure PCTKR2015005194-appb-I000244
    Figure PCTKR2015005194-appb-I000245
    Figure PCTKR2015005194-appb-I000246
    Figure PCTKR2015005194-appb-I000247
    Figure PCTKR2015005194-appb-I000248
    Figure PCTKR2015005194-appb-I000249
    Figure PCTKR2015005194-appb-I000250
    Figure PCTKR2015005194-appb-I000251
    Figure PCTKR2015005194-appb-I000252
    Figure PCTKR2015005194-appb-I000253
    Figure PCTKR2015005194-appb-I000254
    Figure PCTKR2015005194-appb-I000255
    Figure PCTKR2015005194-appb-I000256
    Figure PCTKR2015005194-appb-I000257
PCT/KR2015/005194 2014-05-23 2015-05-22 Multi-component host material and an organic electroluminescence device comprising the same WO2015178732A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/311,537 US20170098784A1 (en) 2014-05-23 2015-05-22 Multi-component host material and an organic electroluminescence device comprising the same
CN202210131332.8A CN114497425A (en) 2014-05-23 2015-05-22 Multi-component host material and organic electroluminescent device comprising same
CN201580026086.8A CN106414662A (en) 2014-05-23 2015-05-22 Multi-component host material and an organic electroluminescence device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0062376 2014-05-23
KR20140062376 2014-05-23
KR1020150070761A KR20150135123A (en) 2014-05-23 2015-05-21 Multi-Component Host Material and an Organic Electroluminescence Device Comprising the Same
KR10-2015-0070761 2015-05-21

Publications (1)

Publication Number Publication Date
WO2015178732A1 true WO2015178732A1 (en) 2015-11-26

Family

ID=54554318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005194 WO2015178732A1 (en) 2014-05-23 2015-05-22 Multi-component host material and an organic electroluminescence device comprising the same

Country Status (3)

Country Link
KR (1) KR20230028739A (en)
CN (1) CN114497425A (en)
WO (1) WO2015178732A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106800552A (en) * 2016-12-07 2017-06-06 烟台九目化学制品有限公司 A kind of 3,3 ' join carbazole analog derivative electroluminescent organic material and its application
CN106986835A (en) * 2016-01-21 2017-07-28 德山新勒克斯有限公司 Organic electric element compound, organic electric element and its electronic installation using it
WO2017200210A1 (en) * 2016-05-17 2017-11-23 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same
JP2018024634A (en) * 2016-07-28 2018-02-15 東ソー株式会社 Novel carbazole compound and use therefor
CN107857772A (en) * 2016-09-21 2018-03-30 三星Sdi株式会社 Compound for organic photoelectric device, the composition for organic photoelectric device and organic photoelectric device and display device
CN107880045A (en) * 2016-09-29 2018-04-06 三星Sdi株式会社 Compound for organic photoelectric device, the composition for organic photoelectric device and organic photoelectric device and display device
CN108779120A (en) * 2016-03-24 2018-11-09 德山新勒克斯有限公司 Organic electronic element compound, organic electronic element and its electronic device using the compound
CN109071553A (en) * 2016-05-17 2018-12-21 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds, electroluminescent organic material and the Organnic electroluminescent device comprising it
WO2019039428A1 (en) * 2017-08-21 2019-02-28 出光興産株式会社 Organic electroluminescence element, electronic device, composition, material for organic electroluminescence element, and composition film
JP2019514203A (en) * 2016-04-18 2019-05-30 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Multiple host materials and organic electroluminescent devices comprising the same
EP3525253A1 (en) * 2018-02-13 2019-08-14 Samsung Display Co., Ltd Organic light-emitting device and display apparatus including organic light-emitting device
CN110662744A (en) * 2017-05-23 2020-01-07 株式会社斗山 Organic compound and organic electroluminescent element comprising same
EP3643761A1 (en) * 2018-10-25 2020-04-29 Idemitsu Kosan Co., Ltd. Composition, organic electroluminescence device material, composition film, organic electroluminescence device, and electronic device
JP2020516064A (en) * 2017-04-03 2020-05-28 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent device
US10840458B2 (en) 2016-05-25 2020-11-17 Universal Display Corporation Organic electroluminescent materials and devices
US20220069229A1 (en) * 2018-12-21 2022-03-03 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
JP2023099504A (en) * 2021-12-31 2023-07-13 エルジー ディスプレイ カンパニー リミテッド Light-emitting element and light-emitting display device using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023177217A1 (en) 2022-03-18 2023-09-21 에스에프씨 주식회사 Novel heterocyclic compound and organic light-emitting diode comprising same
WO2023182775A1 (en) 2022-03-23 2023-09-28 에스에프씨 주식회사 Novel heterocyclic compound and organic light-emitting diode including same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062075A1 (en) * 2011-10-26 2013-05-02 出光興産株式会社 Organic electroluminescence element, and material for organic electroluminescence element
US20130234119A1 (en) * 2011-12-05 2013-09-12 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
WO2013172835A1 (en) * 2012-05-17 2013-11-21 Universal Display Corporation Biscarbazole derivative host materials for oled emissive region
US20140001446A1 (en) * 2011-12-05 2014-01-02 Yumiko Mizuki Material for organic electroluminescence device and organic electroluminescence device
WO2014129869A1 (en) * 2013-02-25 2014-08-28 주식회사 두산 Organic field effect light-emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5290581B2 (en) 2005-12-15 2013-09-18 出光興産株式会社 Material for organic electroluminescence device and organic electroluminescence device using the same
US9705099B2 (en) 2012-01-26 2017-07-11 Universal Display Corporation Phosphorescent organic light emitting devices having a hole transporting cohost material in the emissive region

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062075A1 (en) * 2011-10-26 2013-05-02 出光興産株式会社 Organic electroluminescence element, and material for organic electroluminescence element
US20130234119A1 (en) * 2011-12-05 2013-09-12 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
US20140001446A1 (en) * 2011-12-05 2014-01-02 Yumiko Mizuki Material for organic electroluminescence device and organic electroluminescence device
WO2013172835A1 (en) * 2012-05-17 2013-11-21 Universal Display Corporation Biscarbazole derivative host materials for oled emissive region
WO2014129869A1 (en) * 2013-02-25 2014-08-28 주식회사 두산 Organic field effect light-emitting device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106986835A (en) * 2016-01-21 2017-07-28 德山新勒克斯有限公司 Organic electric element compound, organic electric element and its electronic installation using it
US11339132B2 (en) 2016-01-21 2022-05-24 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element comprising the same, and electronic device thereof
CN106986835B (en) * 2016-01-21 2021-02-02 德山新勒克斯有限公司 Compound for organic electric element, organic electric element using same, and electronic device using same
CN113410407A (en) * 2016-03-24 2021-09-17 德山新勒克斯有限公司 Compound for organic electronic element, organic electronic element using the same, and electronic device thereof
US10995069B2 (en) 2016-03-24 2021-05-04 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element using same, and electronic device comprising same
CN108779120A (en) * 2016-03-24 2018-11-09 德山新勒克斯有限公司 Organic electronic element compound, organic electronic element and its electronic device using the compound
JP2019514203A (en) * 2016-04-18 2019-05-30 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Multiple host materials and organic electroluminescent devices comprising the same
CN109071553A (en) * 2016-05-17 2018-12-21 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds, electroluminescent organic material and the Organnic electroluminescent device comprising it
CN109071553B (en) * 2016-05-17 2022-05-27 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same
JP2019519096A (en) * 2016-05-17 2019-07-04 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent compound, organic electroluminescent material, and organic electroluminescent device comprising the same
WO2017200210A1 (en) * 2016-05-17 2017-11-23 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound, organic electroluminescent material and organic electroluminescent device comprising the same
US10840458B2 (en) 2016-05-25 2020-11-17 Universal Display Corporation Organic electroluminescent materials and devices
JP2018024634A (en) * 2016-07-28 2018-02-15 東ソー株式会社 Novel carbazole compound and use therefor
CN107857772A (en) * 2016-09-21 2018-03-30 三星Sdi株式会社 Compound for organic photoelectric device, the composition for organic photoelectric device and organic photoelectric device and display device
CN107880045B (en) * 2016-09-29 2021-10-29 三星Sdi株式会社 Compound for organic photoelectric device, composition for organic photoelectric device, and display device
CN107880045A (en) * 2016-09-29 2018-04-06 三星Sdi株式会社 Compound for organic photoelectric device, the composition for organic photoelectric device and organic photoelectric device and display device
CN106800552B (en) * 2016-12-07 2019-10-18 烟台九目化学制品有限公司 One kind 3,3 ' joins carbazole analog derivative electroluminescent organic material and its application
CN106800552A (en) * 2016-12-07 2017-06-06 烟台九目化学制品有限公司 A kind of 3,3 ' join carbazole analog derivative electroluminescent organic material and its application
JP2020516064A (en) * 2017-04-03 2020-05-28 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent device
CN110662744A (en) * 2017-05-23 2020-01-07 株式会社斗山 Organic compound and organic electroluminescent element comprising same
JP2020520973A (en) * 2017-05-23 2020-07-16 トゥサン ソーラス カンパニー リミテッドDoosan Solus Co., Ltd. Organic compound and organic electroluminescent device containing the same
JP7071404B2 (en) 2017-05-23 2022-05-18 ソリュース先端素材株式会社 Organic compounds and organic electroluminescent devices containing them
CN110662744B (en) * 2017-05-23 2023-12-01 斗山索如始株式会社 Organic compound and organic electroluminescent element comprising same
WO2019039428A1 (en) * 2017-08-21 2019-02-28 出光興産株式会社 Organic electroluminescence element, electronic device, composition, material for organic electroluminescence element, and composition film
US11631817B2 (en) 2017-08-21 2023-04-18 Idemitsu Kosan Co., Ltd. Organic electroluminescence element, electronic device, composition, material for organic electroluminescence element, and composition film
CN110165087A (en) * 2018-02-13 2019-08-23 三星显示有限公司 Organic luminescent device and display equipment including organic luminescent device
EP3525253A1 (en) * 2018-02-13 2019-08-14 Samsung Display Co., Ltd Organic light-emitting device and display apparatus including organic light-emitting device
US11355712B2 (en) 2018-02-13 2022-06-07 Samsung Display Co., Ltd. Organic light-emitting device and display apparatus including organic light-emitting device
EP3643761A1 (en) * 2018-10-25 2020-04-29 Idemitsu Kosan Co., Ltd. Composition, organic electroluminescence device material, composition film, organic electroluminescence device, and electronic device
US20220069229A1 (en) * 2018-12-21 2022-03-03 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, composition for organic optoelectronic device and organic optoelectronic device and display device
JP2023099504A (en) * 2021-12-31 2023-07-13 エルジー ディスプレイ カンパニー リミテッド Light-emitting element and light-emitting display device using the same

Also Published As

Publication number Publication date
KR20230028739A (en) 2023-03-02
CN114497425A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
EP3131879A1 (en) Multi-component host material and an organic electroluminescence device comprising the same
WO2016080791A1 (en) A plurality of host materials and an organic electroluminescent device comprising the same
WO2016013867A1 (en) Organic electroluminescent device
WO2015178732A1 (en) Multi-component host material and an organic electroluminescence device comprising the same
EP3172780A1 (en) Organic electroluminescent device
EP3170206A1 (en) Organic electroluminescent device
WO2015167259A1 (en) Multi-component host material and organic electroluminescent device comprising the same
EP3446345A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2016013875A1 (en) Organic electroluminescent device
EP3551623A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3183234A1 (en) A plurality of host materials and an organic electroluminescence device comprising the same
WO2016036171A1 (en) A plurality of host materials and organic electroluminescent devices comprising the same
EP3140367A1 (en) Multi-component host material and organic electroluminescent device comprising the same
EP3129446A1 (en) Multi-component host material and organic electroluminescent device comprising the same
WO2015156587A1 (en) Multi-component host material and organic electroluminescent device comprising the same
EP3494117A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2016076629A1 (en) A plurality of host materials and an organic electroluminescence device comprising the same
WO2016148390A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
EP3268449A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2016060516A1 (en) A plurality of host materials and an organic electroluminescence device comprising the same
WO2018021841A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3313958A1 (en) Multi-component host material and organic electroluminescent device comprising the same
WO2015174738A1 (en) Multi-component host material and organic electroluminescent device comprising the same
WO2015170882A1 (en) Multi-component host material and organic electroluminescent device comprising the same
WO2017183859A1 (en) A plurality of host materials and organic electroluminescent device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15311537

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795645

Country of ref document: EP

Kind code of ref document: A1