WO2015178229A1 - Substrate treatment device - Google Patents

Substrate treatment device Download PDF

Info

Publication number
WO2015178229A1
WO2015178229A1 PCT/JP2015/063367 JP2015063367W WO2015178229A1 WO 2015178229 A1 WO2015178229 A1 WO 2015178229A1 JP 2015063367 W JP2015063367 W JP 2015063367W WO 2015178229 A1 WO2015178229 A1 WO 2015178229A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic chuck
spacer
processing apparatus
support base
substrate processing
Prior art date
Application number
PCT/JP2015/063367
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 山岸
裕是 金子
丈治 押切
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2015178229A1 publication Critical patent/WO2015178229A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/15Devices for holding work using magnetic or electric force acting directly on the work

Definitions

  • Various aspects and embodiments of the present invention relate to a substrate processing apparatus.
  • a substrate processing apparatus provided with a plenum filled with a gas.
  • the electrostatic chuck main body is fixed to the heat transfer main body with bolts.
  • the electrostatic chuck body expands not only in the surface direction but also in the thickness direction.
  • the electrostatic chuck main body and the heat transfer main body are fixed with bolts, when the electrostatic chuck main body expands in the thickness direction, the fastening force of the bolts increases and the electrostatic chuck main body There is a risk of damage.
  • One aspect of the present invention includes a mounting table on which a substrate is mounted, and a plasma generation unit that generates plasma in a space on the substrate mounted on the mounting table, and the substrate mounted on the mounting table.
  • a substrate processing apparatus for performing predetermined processing on a surface wherein the mounting table includes a heating unit inside, a first member for heating the substrate placed on the upper surface, and a lower part of the first member A second member for dissipating heat from the first member; and provided between the first member and the second member; the first member and the second member A spacer for providing a space between the first member and a fixing member that surrounds a peripheral portion of the first member and fixes the first member and the spacer to the second member; The spacer is at least partially in contact with the first member and the second member, and is fixed
  • the material has an elastic member, and the first member and the spacer are moved against the second member by an urging force applied from the first member toward the second member by the elastic member. Fix it.
  • a substrate processing apparatus capable of preventing damage to a first member such as an electrostatic chuck due to thermal expansion is realized.
  • FIG. 1 is a longitudinal sectional view illustrating an example of a substrate processing apparatus according to an embodiment.
  • FIG. 2 is an enlarged view of the vicinity of the periphery of the electrostatic chuck.
  • FIG. 3 is a diagram illustrating an example of the relationship between the temperature of the electrostatic chuck and the power of the heater.
  • FIG. 4 is a diagram illustrating an example of the relationship between the temperature of the electrostatic chuck and the power of the heater.
  • FIG. 5 is a diagram illustrating an example of the relationship between the temperature of the electrostatic chuck and the power of the heater.
  • FIG. 6 is a table summarizing whether or not the electrostatic chuck can be controlled to a predetermined temperature for each pressure in the chamber.
  • FIG. 7 is a diagram illustrating another example of the spacer.
  • FIG. 8 is a longitudinal sectional view showing another example of the substrate processing apparatus.
  • the disclosed substrate processing apparatus includes a mounting table on which a substrate is mounted, and a plasma generation unit that generates plasma in a space facing the substrate mounted on the mounting table.
  • a substrate processing apparatus for performing a predetermined process on the surface of a substrate wherein the mounting table includes a heating unit inside, and a first member for heating the substrate mounted on the upper surface, and a first member Provided between the first member and the second member, and between the first member and the second member. The second member dissipates heat from the first member.
  • a fixing member that surrounds the periphery of the first member and fixes the first member and the spacer to the second member, and the spacer is at least partially
  • the fixing member is in contact with the first member and the second member, and the fixing member has an elastic member. The biasing force exerted in the direction of the second member from the first member, securing the first member and the spacer relative to the second member.
  • the elastic member may be a disc spring.
  • the space provided between the first member and the second member by the spacer may be maintained at a negative pressure.
  • the spacer includes a plurality of recesses and a plurality of protrusions on a surface disposed on the first member side and a surface disposed on the second member side. A portion is formed, the convex portion contacts the first member or the second member, and the space is formed between the concave portion and the first member and between the concave portion and the second member. May be.
  • the second member may be made of metal.
  • the second member may be formed with a flow path through which a coolant flows.
  • FIG. 1 is a longitudinal sectional view showing an example of a substrate processing apparatus 1 according to the embodiment.
  • FIG. 2 is an enlarged view of the vicinity of the peripheral edge of the electrostatic chuck 18.
  • the substrate processing apparatus 1 in the present embodiment is configured as a capacitively coupled parallel plate plasma etching apparatus, and has a substantially cylindrical chamber 10 made of aluminum whose surface is anodized, for example. The chamber 10 is grounded for safety.
  • the substrate processing apparatus 1 may be a plasma etching apparatus or a plasma CVD apparatus using surface wave plasma.
  • a columnar support 14 is disposed via an insulating plate 12 made of ceramics or the like.
  • the support base 14 is formed of a metal such as aluminum, for example, and also functions as a lower electrode.
  • a spacer 16 is provided on the support base 14, and an electrostatic chuck 18 is provided on the spacer 16.
  • the electrostatic chuck 18 is fixed to the support base 14 together with the spacer 16 by being pressed in the direction of the support base 14 by an annular fixing member 13 provided around the electrostatic chuck 18.
  • the electrostatic chuck 18 has a structure in which an electrode 20 made of a conductive film is sandwiched between insulating layers such as AlN, and has a substantially disk-shaped outer shape.
  • a power source 22 is electrically connected to the electrode 20.
  • the electrostatic chuck 18 generates an electrostatic force such as a Coulomb force by the voltage supplied from the power supply 22 and attracts and holds the wafer W on the upper surface of the electrostatic chuck 18 by the electrostatic force.
  • a heater 21 is provided in the electrostatic chuck 18, and the heater 21 is connected to a power source 23.
  • the heater 21 generates heat according to the electric power supplied from the power source 23 and heats the electrostatic chuck 18.
  • the heater 21 heats the wafer W arranged on the upper surface of the electrostatic chuck 18.
  • the spacer 16 is provided between the support base 14 and the electrostatic chuck 18, and forms a space between the support base 14 and the electrostatic chuck 18. Specifically, minute irregularities are formed on the upper and lower surfaces of the spacer 16 by embossing or the like, and the upper surface of the spacer 16 forms a space between the irregularities on the surface and the lower surface of the electrostatic chuck 18. The lower surface of the spacer 16 forms a space between the surface irregularities and the upper surface of the support base 14.
  • the space formed between the lower surface of the electrostatic chuck 18 and the upper surface of the spacer 16 is sealed with, for example, a metal sealing material 160 (see FIG. 2). Further, a space formed between the lower surface of the spacer 16 and the upper surface of the support base 14 is sealed with a sealing material 161 such as an O-ring (see FIG. 2).
  • a space formed between the lower surface of the electrostatic chuck 18 and the upper surface of the spacer 16 and between the lower surface of the spacer 16 and the upper surface of the support base 14 is supplied via a gas supply line 32, for example, A gas having high thermal conductivity such as He gas is filled.
  • a predetermined pressure lower than the atmospheric pressure is set in a space formed between the lower surface of the electrostatic chuck 18 and the upper surface of the spacer 16 and between the lower surface of the spacer 16 and the upper surface of the support base 14. Of gas.
  • the pressure of the gas filled in the space formed between the lower surface of the electrostatic chuck 18 and the upper surface of the spacer 16 and between the lower surface of the spacer 16 and the upper surface of the support base 14 is
  • the amount of heat moved from the electrostatic chuck 18 to the support base 14 may be adjusted. For example, in the case where the amount of heat moved from the electrostatic chuck 18 to the support base 14 is increased, the pressure of the gas in the space is adjusted to be high, and the amount of heat moved from the electrostatic chuck 18 to the support base 14 is decreased. Is controlled to adjust the pressure of the gas in the space low.
  • the fixing member 13, the support base 14, the spacer 16, and the electrostatic chuck 18 are examples of a mounting base.
  • a conductive focus ring 24 made of, for example, silicon is disposed around the electrostatic chuck 18 and on the upper surface of the fixing member 13 in order to improve etching uniformity.
  • a cylindrical inner wall member 26 made of, for example, quartz is provided on the side surfaces of the fixing member 13 and the support base 14.
  • the focus ring 24 may be formed of an insulating material. Further, the focus ring 24 may adjust the film formation uniformity.
  • An upper electrode 34 is provided in parallel above the support base 14, which is a lower electrode, so as to face the support base 14. Plasma is generated in a space (plasma generation space) between the upper electrode 34 and the support base (lower electrode) 14.
  • the upper electrode 34 is supported on the upper part of the chamber 10 via the insulating shielding member 42 so that the lower surface faces the support base 14.
  • a number of gas discharge holes 37 are provided on the surface of the upper electrode 34 facing the support base 14.
  • the upper electrode 34 has an electrode support 38 formed of a conductive material such as aluminum and including a cooling structure such as water cooling.
  • a gas diffusion chamber 40 is provided inside the electrode support 38, and a number of gas flow holes 41 communicating with the gas discharge holes 37 extend downward from the gas diffusion chamber 40.
  • a dielectric window is installed instead of the upper electrode 34. High frequency is introduced into the plasma generation space through the dielectric window, and plasma is generated in the plasma generation space. In this case, the processing gas is supplied from a side wall or the like.
  • the electrode support 38 is formed with a gas introduction port 62 that guides the processing gas to the gas diffusion chamber 40.
  • a gas supply pipe 64 is connected to the gas inlet 62, and a gas supply source 66 for supplying a gas necessary for processing is connected to the gas supply pipe 64.
  • a plurality of gas pipes are connected to the gas supply pipe 64, and these gas pipes are provided with a flow rate controller and an open / close valve (both not shown).
  • the gas necessary for the processing is supplied from the gas supply source 66 to the gas diffusion chamber 40 through the gas supply pipe 64 and the gas introduction port 62, and in a shower form through the gas flow hole 41 and the gas discharge hole 37. It is discharged into the plasma generation space. That is, the upper electrode 34 functions as a shower head for supplying the processing gas.
  • the upper electrode 34 is an example of a plasma generation unit.
  • a DC power supply 50 is electrically connected to the upper electrode 34 via a low pass filter (LPF) 51.
  • the DC power supply 50 is connected so that the negative electrode is on the upper electrode 34 side, and applies a negative voltage to the upper electrode 34.
  • Power supply from the DC power supply 50 can be turned on and off by a switch 52.
  • the LPF 51 traps high frequencies from the first and second high frequency power sources described later, and is preferably composed of an LR filter or an LC filter.
  • a waveguide or the like is connected instead of a DC power source, and a high frequency is supplied through the waveguide.
  • a cylindrical ground conductor 10 a is provided on the upper portion of the chamber 10 so as to extend upward from the side wall of the chamber 10 above the height position of the upper electrode 34.
  • a first high frequency power supply 48 is electrically connected to the support base 14, which is a lower electrode, via a first matching unit 46.
  • the first high frequency power supply 48 outputs a high frequency power of 27 to 100 MHz, for example, 40.68 MHz.
  • the first matching unit 46 matches the load impedance with the internal (or output) impedance of the first high-frequency power source 48, and the output of the first high-frequency power source 48 when plasma is generated in the chamber 10. It functions so that the impedance and the load impedance coincide with each other.
  • a second high-frequency power supply 90 is also electrically connected to the support base 14 which is the lower electrode via a second matching unit 88.
  • a high-frequency bias is applied to the wafer W and ions are attracted to the wafer W.
  • the second high frequency power supply 90 outputs a high frequency power having a frequency within a range of 400 kHz to 20 MHz, for example, 13.56 MHz.
  • the second matching unit 88 is for matching the load impedance with the internal (or output) impedance of the second high-frequency power source 90, and when the plasma is generated in the chamber 10, It functions so that the internal impedance and the load impedance including the plasma in the chamber 10 seem to coincide.
  • An exhaust port 80 is provided at the bottom of the chamber 10, and an exhaust device 84 is connected to the exhaust port 80 via an exhaust pipe 82.
  • the exhaust device 84 includes a vacuum pump such as a turbo molecular pump and a drive pump, and can reduce the pressure in the chamber 10 to a desired degree of vacuum.
  • a loading / unloading port 85 for the wafer W is provided on the side wall of the chamber 10, and the loading / unloading port 85 can be opened and closed by a gate valve 86.
  • a deposition shield 11 for preventing the etching by-product (depot) from adhering to the chamber 10 is detachably provided along the inner wall of the chamber 10 on the inner wall of the chamber 10. That is, the deposition shield 11 forms a chamber wall.
  • the deposition shield 11 is also provided on the outer periphery of the inner wall member 26.
  • An exhaust plate 83 is provided between the deposition shield 11 on the chamber wall side at the bottom of the chamber 10 and the deposition shield 11 on the inner wall member 26 side.
  • an aluminum material coated with ceramics such as Y2O3 can be suitably used.
  • a conductive member (GND block) 91 connected to the ground in a direct current manner is provided in a portion of the deposit shield 11 that constitutes the inner wall of the chamber and is substantially the same height as the wafer W.
  • the conductive member 91 prevents abnormal discharge in the chamber 10.
  • the position thereof is not limited to the position shown in FIG. 1, and may be provided on the support base 14 side, for example, around the support base 14. Alternatively, it may be provided in the vicinity of the upper electrode 34 such as provided in a ring shape outside the upper electrode 34.
  • a control unit 100 including a microprocessor (computer) is connected to the substrate processing apparatus 1, and each component in the substrate processing apparatus 1, for example, a power supply system, a gas supply system, a drive system, and the first The high frequency power supply 48, the second high frequency power supply 90, the first matching unit 46, the second matching unit 88, and the like are controlled by the control unit 100.
  • a user interface 101 including a keyboard for an operator to input commands for managing the substrate processing apparatus 1, a display for visualizing and displaying the operating status of the substrate processing apparatus 1, and the like. ing.
  • control unit 100 causes the control unit 100 to execute various processes realized by the substrate processing apparatus 1 and causes each component of the substrate processing apparatus 1 to execute processes according to processing conditions.
  • a storage unit 102 that stores the control program, processing recipe, and the like is connected. Control programs, processing recipes, and the like are stored in a storage medium in the storage unit 102.
  • the storage medium may be a hard disk or a semiconductor memory, or may be portable such as a CDROM, DVD, flash memory or the like.
  • the control program, the processing recipe, and the like may be appropriately transmitted from another apparatus to the substrate processing apparatus 1 through, for example, a communication line.
  • the control unit 100 implements a desired process in the substrate processing apparatus 1 by reading and executing an arbitrary control program, processing recipe, and the like from the storage unit 102 in accordance with an instruction from the user interface 101.
  • control unit 100 supplies a voltage from the power supply 22 to the electrode 20 to generate an electrostatic force on the surface of the electrostatic chuck 18 and attracts and holds the wafer W loaded into the chamber 10 on the electrostatic chuck 18. Let Then, the control unit 100 controls the vacuum pump of the exhaust device 84 to reduce the pressure in the chamber 10 to a predetermined pressure via the exhaust port 80.
  • the electrode 200 supplies a processing gas from the gas supply source 66 into the plasma generation space by controlling a flow rate controller and an open / close valve provided in the gas supply pipe 64.
  • control unit 100 controls the switch 52 to apply a negative DC voltage to the upper electrode 34, controls the first high frequency power supply 48 and the second matching unit 88, and applies a predetermined frequency to the support base 14. Apply high frequency power respectively. Then, the control unit 100 generates plasma by the processing gas in the plasma generation space, and performs predetermined processing on the wafer W on the electrostatic chuck 18 by the plasma.
  • control unit 100 supplies power from the power source 23 to the heater 21 in the electrostatic chuck 18 to cause the heater 21 to generate heat. Then, the control unit 100 follows the change in the amount of heat supplied from the plasma generated in the plasma generation space to the electrostatic chuck 18 so that the temperature of the electrostatic chuck 18 becomes a desired temperature. The electric power supplied to 21 is controlled.
  • the fixing member 13 includes a bolt 130, a ring-shaped member 131, and an elastic member 132, for example, as shown in FIG.
  • the ring-shaped member 131 is a ring-shaped member provided so as to surround the periphery of the electrostatic chuck 18.
  • the ring-shaped member 131 is fixed to the support base 14 with a bolt 130 via an elastic member 132.
  • the elastic member 132 is, for example, a disc spring.
  • a convex portion 180 protruding outward in the radial direction of the electrostatic chuck 18 is formed at the lower portion of the periphery of the electrostatic chuck 18.
  • a convex portion 133 that protrudes inward of the ring-shaped member 131 in the radial direction is formed on the upper portion of the ring-shaped member 131.
  • the upper surface 180a of the convex portion 180 of the electrostatic chuck 18 and the lower surface 133a of the convex portion 133 of the ring-shaped member 131 are brought into contact with each other, and the ring-shaped member 131 is fixed to the support base 14 via the elastic member 132 by the bolt 130.
  • the electrostatic chuck 18 and the spacer 16 are pressed and fixed in the direction of the support base 14 by the urging force of the elastic member 132.
  • the electrostatic chuck 18 when the temperature of the electrostatic chuck 18 rises due to the heat supplied from the plasma generated in the plasma generation space or the heat generated by the heater 21, the electrostatic chuck 18 expands as the temperature rises. If the ring-shaped member 131 is directly fixed to the support base 14 by the bolt 130 without the elastic member 132 interposed therebetween, stress is applied to the convex portions 180 and the convex portions 133 due to the expansion in the thickness direction of the electrostatic chuck 18. The electrostatic chuck 18 may be damaged due to concentration.
  • the ring-shaped member 131 is fixed to the support base 14 with the bolt 130 via the elastic member 132. Therefore, even when the thickness of the electrostatic chuck 18 increases due to thermal expansion of the electrostatic chuck 18, the stress concentrated on the convex portion 180 and the convex portion 133 is relieved by contraction of the elastic member 132. Thereby, damage to the electrostatic chuck 18 due to thermal expansion of the electrostatic chuck 18 can be prevented.
  • a space S is provided between the electrostatic chuck 18 and the ring-shaped member 131 in the radial direction of the electrostatic chuck 18 (see FIG. 2).
  • the electrostatic chuck 18 is mainly dissipated from the electrostatic chuck 18 to the support 14 via the spacer 16 via the spacer 16 and the amount of heat supplied from the plasma generated in the plasma generation space. It becomes the temperature according to the balance with the amount of heat.
  • the amount of heat supplied from the plasma to the electrostatic chuck 18 has a correlation with the pressure in the chamber 10, and the amount of heat supplied from the plasma to the electrostatic chuck 18 increases as the pressure in the chamber 10 decreases.
  • the amount of heat dissipated from the electrostatic chuck 18 to the support base 14 via the spacer 16 depends on the temperature difference between the electrostatic chuck 18 and the support base 14. However, if the temperature of the electrostatic chuck 18 is controlled to be kept substantially constant and the temperature of the support base 14 is substantially constant, the amount of heat dissipated from the electrostatic chuck 18 to the support base 14 via the spacer 16. Is almost constant.
  • FIG. 3 to 5 are diagrams showing an example of the relationship between the temperature of the electrostatic chuck 18 and the power of the heater 21.
  • FIG. For example, when the pressure in the chamber 10 is 950 mT, if the power of the heater 21 is controlled so that the temperature of the electrostatic chuck 18 is maintained at 250 ° C., for example, the change in the power of the heater 21 according to the processing time is, for example, FIG. become that way. In the example of FIG. 3, since the heat input from the plasma is small from the start of processing to around 100 seconds, high electric power is supplied to the heater 21 in order to keep the temperature of the electrostatic chuck 18 at 250 ° C. ing.
  • the power supplied to the heater 21 decreases so as to reduce the heat generation of the heater 21.
  • the temperature of the electrostatic chuck 18 is maintained at 250 ° C. within a range in which the power of the heater 21 can be controlled.
  • the change in the power of the heater 21 according to the processing time is as shown in FIG. Also in the example of FIG. 4, after about 100 seconds have elapsed from the start of the process, as the heat input from the plasma rises, the electrostatic chuck 18 is supplied to the heater 21 in order to keep the temperature at 200 ° C. The power that is being used is decreasing. Then, when about 300 seconds have elapsed from the start of the process, the power of the heater 21 is controlled to be 0 W (that is, the amount of heat from the heater 21 is 0).
  • the change in the power of the heater 21 according to the processing time is as follows: For example, as shown in FIG. In the example of FIG. 5, after about 200 seconds have elapsed from the start of processing, even if the electric power supplied to the heater 21 is controlled to 0 W, the electrostatic chuck 18 The temperature rises and the temperature of the electrostatic chuck 18 cannot be maintained at 200 ° C.
  • FIG. 6 is a table summarizing whether the electrostatic chuck 18 can be controlled to a predetermined temperature for each pressure in the chamber 10. As shown in FIG. 6, when processing is performed at a low pressure, or when processing is performed to keep the temperature of the electrostatic chuck 18 low, even if the power supplied to the heater 21 is controlled, the electrostatic chuck 18 The temperature cannot be maintained at a predetermined value. Therefore, when processing is performed at a low pressure or when processing is performed to keep the temperature of the electrostatic chuck 18 low, it is necessary to increase the amount of heat released from the electrostatic chuck 18. Thereby, by controlling the electric power of the heater 21, the temperature of the electrostatic chuck 18 can be kept constant.
  • the amount of heat Q transferred from one object to the other can be obtained from the following relational expression (1), for example.
  • Amount of heat Q heat transfer coefficient ⁇ contact area ⁇ temperature difference (1)
  • the coolant is circulated through the support base 14 to lower the temperature of the support base 14. It is done.
  • a flow path for flowing the refrigerant is provided in the support table 14, the structure of the support table 14 becomes complicated, the manufacturing cost of the support table 14 increases, and the manufacturing cost of the substrate processing apparatus 1 increases.
  • the heat transfer coefficient is proportional to the contact pressure between the two objects.
  • the contact pressure is obtained by dividing the contact load by the contact area. Therefore, in the above relational expression (1), if the temperature difference is constant, the heat quantity Q is proportional to the contact load. Therefore, if the contact load is increased, the amount of heat Q that moves from one object to the other increases.
  • Other parameters that change the heat transfer coefficient include the roughness of the surface where the two objects are in contact and the pressure in the space formed between the two objects.
  • the amount of heat transferred from the electrostatic chuck 18 to the support base 14 is increased by increasing the load that presses the electrostatic chuck 18 and the spacer 16 against the support base 14. Thereby, even if the temperature of the support base 14 is about room temperature, the amount of heat transferred from the electrostatic chuck 18 to the support base 14 increases. As a result, it is possible to control the temperature of the electrostatic chuck 18 to be constant while suppressing an increase in the cost of the substrate processing apparatus 1.
  • the amount of heat to be moved from the electrostatic chuck 18 to the support base 14 is increased too much, it is necessary to increase the amount of heat supplied from the heater 21 in order to keep the temperature of the electrostatic chuck 18 at a predetermined temperature. If the amount of heat supplied from the heater 21 becomes excessive, the thermal gradient in the electrostatic chuck 18 increases. For this reason, the temperature distribution of the electrostatic chuck 18 becomes non-uniform, and the uniformity of the temperature distribution of the wafer W also deteriorates.
  • the load for pressing the electrostatic chuck 18 toward the support base 14 by the fixing member 13 is preferably within a predetermined range (for example, 1000 kgF to 3000 kgF).
  • the load that presses the electrostatic chuck 18 toward the support base 14 by the fixing member 13 is more preferably, for example, 1000 kgF.
  • the amount of heat that moves from the electrostatic chuck 18 to the support base 14 can be increased by pressing the electrostatic chuck 18 toward the support base 14 with a load within a predetermined range. .
  • the substrate processing apparatus 1 can maintain the temperature of the electrostatic chuck 18 at a predetermined temperature by controlling the power supplied to the heater 21.
  • minute irregularities are formed on the upper and lower surfaces of the spacer 16 by embossing or the like. Therefore, the upper surface of the spacer 16 comes into contact with the electrostatic chuck 18 in a predetermined proportion of the region overlapping the lower surface of the electrostatic chuck 18 in the vertical direction in the thickness direction of the electrostatic chuck 18. Therefore, more heat of the electrostatic chuck 18 can be transmitted to the spacer 16 than when only a space filled with gas is formed between the upper surface of the spacer 16 and the lower surface of the electrostatic chuck 18. it can.
  • the lower surface of the spacer 16 is in contact with the support table 14 at a predetermined ratio in the region that overlaps the upper surface of the support table 14 vertically in the thickness direction of the spacer 16. Therefore, more heat of the spacer 16 can be transmitted to the support table 14 than when only a space filled with gas is formed between the upper surface of the spacer 16 and the upper surface of the support table 14.
  • a part of the heat from the electrostatic chuck 18 is transmitted to the support base 14 via the spacer 16, and a part of the heat is transmitted to the support base 14 via the fixing member 13.
  • a part of the surface of the spacer 16 comes into contact with the electrostatic chuck 18 and the support base 14 due to the unevenness of the surface.
  • the area where the spacer 16 contacts the electrostatic chuck 18 and the support base 14 is larger than the area where the fixing member 13 contacts the electrostatic chuck 18. Therefore, the amount of heat transferred from the electrostatic chuck 18 to the support base 14 via the spacer 16 is greater than the amount of heat transferred from the electrostatic chuck 18 to the support base 14 via the fixing member 13.
  • the contact load between the lower surface 131a of the ring-shaped member 131 and the upper surface 14a of the support base 14 decreases, and the ring The amount of heat transferred from the lower surface 131a of the member 131 to the upper surface 14a of the support base 14 is reduced.
  • the amount of heat transferred from the lower surface 131 a of the ring-shaped member 131 to the upper surface 14 a of the support base 14 is electrostatic. More than the amount of heat transferred to the support table 14 through the space between the chuck 18 and the support table 14. Therefore, when the amount of heat transferred from the lower surface 131a of the ring-shaped member 131 to the upper surface 14a of the support base 14 is reduced, the total amount of heat dissipated from the electrostatic chuck 18 is greatly reduced.
  • the area where the spacer 16 contacts the electrostatic chuck 18 and the support base 14 is larger than the area where the fixing member 13 contacts the electrostatic chuck 18.
  • the amount of heat transferred from the lower surface 131 a of 131 to the upper surface 14 a of the support table 14 is less than the amount of heat transferred to the support table 14 via the spacer 16. Therefore, the reduction in the amount of heat transferred from the lower surface 131a of the ring-shaped member 131 to the upper surface 14a of the support base 14 has little influence on the total amount of heat dissipated from the electrostatic chuck 18.
  • the substrate processing apparatus 1 can suppress fluctuations in the amount of heat dissipated from the electrostatic chuck 18.
  • the electrostatic chuck 18 can be prevented from being damaged by the thermal expansion of the electrostatic chuck 18. Further, according to the substrate processing apparatus 1 of the present embodiment, the electrostatic chuck 18 can be maintained at a predetermined temperature by controlling the power of the heater 21, and the cost of the substrate processing apparatus 1 is increased accordingly. It can be kept low.
  • minute irregularities are formed on the upper and lower surfaces of the spacer 16 by embossing or the like, but the present invention is not limited to this.
  • a plurality of concave portions 162 and convex portions 163 may be formed on the upper surface and the lower surface of the spacer 16.
  • the spacer 16 is in contact with the electrostatic chuck 18 or the support base 14 at the end surfaces of the respective convex portions 163 formed on the upper surface and the lower surface.
  • FIG. 7 is a view showing another example of the spacer 16.
  • the space surrounded by the lower surface of the electrostatic chuck 18 and the respective recesses 162 and the space surrounded by the respective recesses 162 and the upper surface of the support base 14 are filled with a gas such as He gas. .
  • a gas such as He gas.
  • the space surrounded by the lower surface of the electrostatic chuck 18 and the respective concave portions 162 and the space surrounded by the respective concave portions 162 and the upper surface of the support base 14 are formed through holes provided in the spacer 16. You may communicate.
  • FIG. 8 is a longitudinal sectional view showing another example of the substrate processing apparatus 1.
  • the refrigerant chamber 28 is formed, for example, in a circumferential shape in the support base 14.
  • a refrigerant for example, cooling water
  • a refrigerant having a predetermined temperature is circulated and supplied to the refrigerant chamber 28 through a pipe 30a and a pipe 30b from a chiller unit (not shown) provided outside.
  • the temperature difference between the support base 14 and the electrostatic chuck 18 can be controlled, and the amount of heat transferred from the electrostatic chuck 18 to the support base 14 is controlled. be able to.
  • the electrostatic chuck 18 can be maintained at a predetermined temperature in processing under more various conditions. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A substrate treatment device (1) comprises: an electrostatic chuck (18) that has a heater (21) therein and that heats a wafer (W) mounted on a top surface of the electrostatic chuck; a support table (14) that is provided under the electrostatic chuck (18) and that causes heat from the electrostatic chuck (18) to diffuse; a spacer (16) that is provided between the electrostatic chuck (18) and the support table (14) and that forms a space between the electrostatic chuck (18) and the support table (14); and a fixing member (13) that surrounds the peripheral edge of the electrostatic chuck (18) and that fixes the electrostatic chuck (18) and the spacer (16) to the support table (14). At least a portion of the spacer (16) contacts the electrostatic chuck (18) and the support table (14). The fixing member (13) has an elastic member (132), and fixes the electrostatic chuck (18) and the spacer (16) to the support table (14) by a biasing force that is applied by the elastic member (132) in a direction from the electrostatic chuck (18) toward the support table (14).

Description

基板処理装置Substrate processing equipment
 本発明の種々の側面及び実施形態は、基板処理装置に関する。 Various aspects and embodiments of the present invention relate to a substrate processing apparatus.
 基板を載置する静電チャック本体と、静電チャック本体が固定され、静電チャック本体を冷却する熱伝達本体とを有し、静電チャック本体と熱伝達本体との間に熱伝達性のガスで満たされたプレナムが設けられた基板処理装置が知られている。このような基板処理装置では、静電チャック本体が熱伝達本体にボルトで固定されている。 An electrostatic chuck body on which the substrate is placed; and a heat transfer body that fixes the electrostatic chuck body and cools the electrostatic chuck body, and has a heat transfer property between the electrostatic chuck body and the heat transfer body. There is known a substrate processing apparatus provided with a plenum filled with a gas. In such a substrate processing apparatus, the electrostatic chuck main body is fixed to the heat transfer main body with bolts.
特許第4256257号Japanese Patent No. 4256257
 ところで、静電チャック本体の温度が上昇した場合、静電チャック本体は、面方向だけでなく、厚み方向にも膨張する。上記の基板処理装置では、静電チャック本体と熱伝達本体とがボルトで固定されているため、静電チャック本体が厚み方向に膨張した場合、ボルトの締結力が増加し、静電チャック本体が破損する虞がある。 Incidentally, when the temperature of the electrostatic chuck body rises, the electrostatic chuck body expands not only in the surface direction but also in the thickness direction. In the above substrate processing apparatus, since the electrostatic chuck main body and the heat transfer main body are fixed with bolts, when the electrostatic chuck main body expands in the thickness direction, the fastening force of the bolts increases and the electrostatic chuck main body There is a risk of damage.
 本発明の一側面は、基板を載置する載置台と、前記載置台に載置された基板上の空間にプラズマを生成するプラズマ生成部とを備え、前記載置台に載置された基板の表面に所定の処理を施す基板処理装置であって、前記載置台は、内部に加熱部を有し、上面に載置された基板を加熱する第1の部材と、前記第1の部材の下方に設けられ、前記第1の部材からの熱を放散させる第2の部材と、前記第1の部材と前記第2の部材との間に設けられ、前記第1の部材と前記第2の部材との間に空間を設けるためのスペーサと、前記第1の部材の周縁部を囲み、前記第1の部材および前記スペーサを前記第2の部材に対して固定する固定部材と、を有し、前記スペーサは、少なくとも一部が前記第1の部材および前記第2の部材に接触し、前記固定部材は、弾性部材を有し、前記弾性部材により前記第1の部材から前記第2の部材の方向へ加えられる付勢力によって、前記第1の部材および前記スペーサを前記第2の部材に対して固定する。 One aspect of the present invention includes a mounting table on which a substrate is mounted, and a plasma generation unit that generates plasma in a space on the substrate mounted on the mounting table, and the substrate mounted on the mounting table. A substrate processing apparatus for performing predetermined processing on a surface, wherein the mounting table includes a heating unit inside, a first member for heating the substrate placed on the upper surface, and a lower part of the first member A second member for dissipating heat from the first member; and provided between the first member and the second member; the first member and the second member A spacer for providing a space between the first member and a fixing member that surrounds a peripheral portion of the first member and fixes the first member and the spacer to the second member; The spacer is at least partially in contact with the first member and the second member, and is fixed The material has an elastic member, and the first member and the spacer are moved against the second member by an urging force applied from the first member toward the second member by the elastic member. Fix it.
 本発明の種々の側面および実施形態によれば、熱膨張による静電チャック等の第1の部材の破損を防止することができる基板処理装置が実現される。 According to various aspects and embodiments of the present invention, a substrate processing apparatus capable of preventing damage to a first member such as an electrostatic chuck due to thermal expansion is realized.
図1は、実施形態に係る基板処理装置の一例を示す縦断面図である。FIG. 1 is a longitudinal sectional view illustrating an example of a substrate processing apparatus according to an embodiment. 図2は、静電チャックの周縁部付近の拡大図である。FIG. 2 is an enlarged view of the vicinity of the periphery of the electrostatic chuck. 図3は、静電チャックの温度とヒータの電力との関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of the relationship between the temperature of the electrostatic chuck and the power of the heater. 図4は、静電チャックの温度とヒータの電力との関係の一例を示す図である。FIG. 4 is a diagram illustrating an example of the relationship between the temperature of the electrostatic chuck and the power of the heater. 図5は、静電チャックの温度とヒータの電力との関係の一例を示す図である。FIG. 5 is a diagram illustrating an example of the relationship between the temperature of the electrostatic chuck and the power of the heater. 図6は、チャンバ内の圧力毎に、静電チャックを所定の温度に制御可能か否かをまとめた図である。FIG. 6 is a table summarizing whether or not the electrostatic chuck can be controlled to a predetermined temperature for each pressure in the chamber. 図7は、スペーサの他の例を示す図である。FIG. 7 is a diagram illustrating another example of the spacer. 図8は、基板処理装置の他の例を示す縦断面図である。FIG. 8 is a longitudinal sectional view showing another example of the substrate processing apparatus.
 開示する基板処理装置は、1つの実施形態において、基板を載置する載置台と、載置台に載置された基板を臨む空間にプラズマを生成するプラズマ生成部とを備え、載置台に載置された基板の表面に所定の処理を施す基板処理装置であって、載置台は、内部に加熱部を有し、上面に載置された基板を加熱する第1の部材と、第1の部材の下方に設けられ、第1の部材からの熱を放散させる第2の部材と、第1の部材と第2の部材との間に設けられ、第1の部材と第2の部材との間に空間を設けるためのスペーサと、第1の部材の周縁部を囲み、第1の部材およびスペーサを第2の部材に対して固定する固定部材と、を有し、スペーサは、少なくとも一部が第1の部材および第2の部材に接触し、固定部材は、弾性部材を有し、弾性部材により第1の部材から第2の部材の方向へ加えられる付勢力によって、第1の部材およびスペーサを第2の部材に対して固定する。 In one embodiment, the disclosed substrate processing apparatus includes a mounting table on which a substrate is mounted, and a plasma generation unit that generates plasma in a space facing the substrate mounted on the mounting table. A substrate processing apparatus for performing a predetermined process on the surface of a substrate, wherein the mounting table includes a heating unit inside, and a first member for heating the substrate mounted on the upper surface, and a first member Provided between the first member and the second member, and between the first member and the second member. The second member dissipates heat from the first member. And a fixing member that surrounds the periphery of the first member and fixes the first member and the spacer to the second member, and the spacer is at least partially The fixing member is in contact with the first member and the second member, and the fixing member has an elastic member. The biasing force exerted in the direction of the second member from the first member, securing the first member and the spacer relative to the second member.
 また、開示する基板処理装置の1つの実施形態において、上記弾性部材は皿バネであってもよい。 In one embodiment of the disclosed substrate processing apparatus, the elastic member may be a disc spring.
 また、開示する基板処理装置の1つの実施形態において、スペーサにより第1の部材と第2の部材との間に設けられた上記空間内は負圧に保たれていてもよい。 Further, in one embodiment of the disclosed substrate processing apparatus, the space provided between the first member and the second member by the spacer may be maintained at a negative pressure.
 また、開示する基板処理装置の1つの実施形態において、上記スペーサは、第1の部材側に配置される面、および、第2の部材側に配置される面に、複数の凹部および複数の凸部が形成され、凸部によって、第1の部材または第2の部材に接触し、凹部と第1の部材との間、および、凹部と第2の部材との間において、上記空間を形成してもよい。 In one embodiment of the disclosed substrate processing apparatus, the spacer includes a plurality of recesses and a plurality of protrusions on a surface disposed on the first member side and a surface disposed on the second member side. A portion is formed, the convex portion contacts the first member or the second member, and the space is formed between the concave portion and the first member and between the concave portion and the second member. May be.
 また、開示する基板処理装置の1つの実施形態において、上記第2の部材は、金属製であってもよい。 In one embodiment of the disclosed substrate processing apparatus, the second member may be made of metal.
 また、開示する基板処理装置の1つの実施形態において、上記第2の部材には、冷媒が流れる流路が形成されていてもよい。 Further, in one embodiment of the disclosed substrate processing apparatus, the second member may be formed with a flow path through which a coolant flows.
 以下に、開示する基板処理装置の実施形態について、図面に基づいて詳細に説明する。なお、本実施形態により開示される発明が限定されるものではない。また、各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Hereinafter, embodiments of the disclosed substrate processing apparatus will be described in detail based on the drawings. In addition, the invention disclosed by this embodiment is not limited. In addition, the embodiments can be appropriately combined within a range that does not contradict processing contents.
[基板処理装置1の構成]
 図1は、実施形態に係る基板処理装置1の一例を示す縦断面図である。図2は、静電チャック18の周縁部付近の拡大図である。本実施形態における基板処理装置1は、容量結合型平行平板プラズマエッチング装置として構成されており、例えば表面が陽極酸化処理されたアルミニウムからなる略円筒状のチャンバ10を有する。このチャンバ10は保安接地されている。なお、基板処理装置1は、表面波プラズマを利用したプラズマエッチング装置やプラズマCVD装置等であってもよい。
[Configuration of Substrate Processing Apparatus 1]
FIG. 1 is a longitudinal sectional view showing an example of a substrate processing apparatus 1 according to the embodiment. FIG. 2 is an enlarged view of the vicinity of the peripheral edge of the electrostatic chuck 18. The substrate processing apparatus 1 in the present embodiment is configured as a capacitively coupled parallel plate plasma etching apparatus, and has a substantially cylindrical chamber 10 made of aluminum whose surface is anodized, for example. The chamber 10 is grounded for safety. The substrate processing apparatus 1 may be a plasma etching apparatus or a plasma CVD apparatus using surface wave plasma.
 チャンバ10の底部には、セラミックス等からなる絶縁板12を介して円柱状の支持台14が配置される。支持台14は、例えばアルミニウム等の金属で形成され、下部電極としても機能する。支持台14の上にはスペーサ16が設けられ、スペーサ16の上には静電チャック18が設けられる。静電チャック18は、静電チャック18の周囲に設けられた環状の固定部材13によって、支持台14の方向に押圧されることにより、スペーサ16と共に支持台14に対して固定される。 At the bottom of the chamber 10, a columnar support 14 is disposed via an insulating plate 12 made of ceramics or the like. The support base 14 is formed of a metal such as aluminum, for example, and also functions as a lower electrode. A spacer 16 is provided on the support base 14, and an electrostatic chuck 18 is provided on the spacer 16. The electrostatic chuck 18 is fixed to the support base 14 together with the spacer 16 by being pressed in the direction of the support base 14 by an annular fixing member 13 provided around the electrostatic chuck 18.
 静電チャック18は、導電膜からなる電極20をAlN等の絶縁層で挟んだ構造を有し、略円盤状の外形を有する。電極20には電源22が電気的に接続されている。静電チャック18は、電源22から供給された電圧によりクーロン力等の静電力を発生させ、静電力によりウエハWを静電チャック18の上面に吸着保持する。 The electrostatic chuck 18 has a structure in which an electrode 20 made of a conductive film is sandwiched between insulating layers such as AlN, and has a substantially disk-shaped outer shape. A power source 22 is electrically connected to the electrode 20. The electrostatic chuck 18 generates an electrostatic force such as a Coulomb force by the voltage supplied from the power supply 22 and attracts and holds the wafer W on the upper surface of the electrostatic chuck 18 by the electrostatic force.
 また、静電チャック18内にはヒータ21が設けられており、ヒータ21は電源23に接続されている。ヒータ21は、電源23から供給された電力に応じて発熱し、静電チャック18を加熱する。そして、ヒータ21は、静電チャック18の上面に配置されたウエハWを加熱する。 Further, a heater 21 is provided in the electrostatic chuck 18, and the heater 21 is connected to a power source 23. The heater 21 generates heat according to the electric power supplied from the power source 23 and heats the electrostatic chuck 18. The heater 21 heats the wafer W arranged on the upper surface of the electrostatic chuck 18.
 スペーサ16は、支持台14と静電チャック18との間に設けられ、支持台14と静電チャック18との間に空間を形成する。具体的には、スペーサ16の上面および下面には、エンボス加工等により微小な凹凸が形成されており、スペーサ16の上面は、表面の凹凸と静電チャック18の下面との間で空間を形成し、スペーサ16の下面は、表面の凹凸と支持台14の上面との間で空間を形成する。 The spacer 16 is provided between the support base 14 and the electrostatic chuck 18, and forms a space between the support base 14 and the electrostatic chuck 18. Specifically, minute irregularities are formed on the upper and lower surfaces of the spacer 16 by embossing or the like, and the upper surface of the spacer 16 forms a space between the irregularities on the surface and the lower surface of the electrostatic chuck 18. The lower surface of the spacer 16 forms a space between the surface irregularities and the upper surface of the support base 14.
 静電チャック18の下面とスペーサ16の上面との間に形成された空間は、例えば金属製のシール材160でシールされる(図2参照)。また、スペーサ16の下面と支持台14の上面との間に形成された空間は、例えばOリング等のシール材161でシールされる(図2参照)。静電チャック18の下面とスペーサ16の上面との間、および、スペーサ16の下面と支持台14の上面との間に形成された空間には、ガス供給ライン32を介して供給された、例えばHeガス等の熱伝導率の高いガスが充填される。 The space formed between the lower surface of the electrostatic chuck 18 and the upper surface of the spacer 16 is sealed with, for example, a metal sealing material 160 (see FIG. 2). Further, a space formed between the lower surface of the spacer 16 and the upper surface of the support base 14 is sealed with a sealing material 161 such as an O-ring (see FIG. 2). A space formed between the lower surface of the electrostatic chuck 18 and the upper surface of the spacer 16 and between the lower surface of the spacer 16 and the upper surface of the support base 14 is supplied via a gas supply line 32, for example, A gas having high thermal conductivity such as He gas is filled.
 本実施形態において、静電チャック18の下面とスペーサ16の上面との間、および、スペーサ16の下面と支持台14の上面との間に形成された空間には、大気圧よりも低い所定圧力のガスが充填される。 In the present embodiment, a predetermined pressure lower than the atmospheric pressure is set in a space formed between the lower surface of the electrostatic chuck 18 and the upper surface of the spacer 16 and between the lower surface of the spacer 16 and the upper surface of the support base 14. Of gas.
 なお、他の形態として、静電チャック18の下面とスペーサ16の上面との間、および、スペーサ16の下面と支持台14の上面との間に形成された空間に充填されるガスの圧力は、静電チャック18から支持台14へ移動させる熱量に応じて調整されてもよい。例えば、静電チャック18から支持台14へ移動させる熱量を多くする場合には、上記空間内のガスの圧力を高く調整し、静電チャック18から支持台14へ移動させる熱量を少なくさせる場合には、上記空間内のガスの圧力を低く調整するように制御される。固定部材13、支持台14、スペーサ16、および静電チャック18は、載置台の一例である。 As another form, the pressure of the gas filled in the space formed between the lower surface of the electrostatic chuck 18 and the upper surface of the spacer 16 and between the lower surface of the spacer 16 and the upper surface of the support base 14 is The amount of heat moved from the electrostatic chuck 18 to the support base 14 may be adjusted. For example, in the case where the amount of heat moved from the electrostatic chuck 18 to the support base 14 is increased, the pressure of the gas in the space is adjusted to be high, and the amount of heat moved from the electrostatic chuck 18 to the support base 14 is decreased. Is controlled to adjust the pressure of the gas in the space low. The fixing member 13, the support base 14, the spacer 16, and the electrostatic chuck 18 are examples of a mounting base.
 静電チャック18の周囲であって、固定部材13の上面には、エッチングの均一性を向上させるための、例えばシリコンからなる導電性のフォーカスリング24が配置されている。固定部材13および支持台14の側面には、例えば石英からなる円筒状の内壁部材26が設けられている。フォーカスリング24は、絶縁性の材料で形成されてもよい。また、フォーカスリング24は、成膜均一性を調整するものであってもよい。 A conductive focus ring 24 made of, for example, silicon is disposed around the electrostatic chuck 18 and on the upper surface of the fixing member 13 in order to improve etching uniformity. A cylindrical inner wall member 26 made of, for example, quartz is provided on the side surfaces of the fixing member 13 and the support base 14. The focus ring 24 may be formed of an insulating material. Further, the focus ring 24 may adjust the film formation uniformity.
 下部電極である支持台14の上方には、支持台14と対向するように平行に上部電極34が設けられている。そして、上部電極34と支持台(下部電極)14と間の空間(プラズマ生成空間)にはプラズマが生成される。 An upper electrode 34 is provided in parallel above the support base 14, which is a lower electrode, so as to face the support base 14. Plasma is generated in a space (plasma generation space) between the upper electrode 34 and the support base (lower electrode) 14.
 上部電極34は、下面が支持台14に対向するように、絶縁性遮蔽部材42を介して、チャンバ10の上部に支持されている。また、支持台14と対向する上部電極34の面には、多数のガス吐出孔37が設けられる。また、上部電極34は、例えばアルミニウム等の導電性材料によって形成され、水冷等の冷却構造を含む電極支持体38を有する。電極支持体38の内部には、ガス拡散室40が設けられ、このガス拡散室40からはガス吐出孔37に連通する多数のガス通流孔41が下方に延びている。表面波プラズマを利用したプラズマ処理装置の場合には、上部電極34に代えて誘電体窓が設置される。高周波が誘電体窓を介してプラズマ生成空間内に導入され、プラズマ生成空間内においてプラズマが生成される。この場合、処理ガスは、側壁などから供給される。 The upper electrode 34 is supported on the upper part of the chamber 10 via the insulating shielding member 42 so that the lower surface faces the support base 14. A number of gas discharge holes 37 are provided on the surface of the upper electrode 34 facing the support base 14. The upper electrode 34 has an electrode support 38 formed of a conductive material such as aluminum and including a cooling structure such as water cooling. A gas diffusion chamber 40 is provided inside the electrode support 38, and a number of gas flow holes 41 communicating with the gas discharge holes 37 extend downward from the gas diffusion chamber 40. In the case of a plasma processing apparatus using surface wave plasma, a dielectric window is installed instead of the upper electrode 34. High frequency is introduced into the plasma generation space through the dielectric window, and plasma is generated in the plasma generation space. In this case, the processing gas is supplied from a side wall or the like.
 電極支持体38にはガス拡散室40へ処理ガスを導くガス導入口62が形成されている。ガス導入口62にはガス供給管64が接続され、ガス供給管64には処理に必要なガスを供給するガス供給源66が接続されている。ガス供給管64には、複数のガス配管が接続されており、これらガス配管には流量制御器および開閉バルブ(いずれも図示せず)が設けられている。そして、処理に必要なガスは、ガス供給源66からガス供給管64およびガス導入口62を介してガス拡散室40に供給され、ガス通流孔41およびガス吐出孔37を介してシャワー状にプラズマ生成空間内に吐出される。すなわち、上部電極34は処理ガスを供給するためのシャワーヘッドとして機能する。上部電極34は、プラズマ生成部の一例である。 The electrode support 38 is formed with a gas introduction port 62 that guides the processing gas to the gas diffusion chamber 40. A gas supply pipe 64 is connected to the gas inlet 62, and a gas supply source 66 for supplying a gas necessary for processing is connected to the gas supply pipe 64. A plurality of gas pipes are connected to the gas supply pipe 64, and these gas pipes are provided with a flow rate controller and an open / close valve (both not shown). The gas necessary for the processing is supplied from the gas supply source 66 to the gas diffusion chamber 40 through the gas supply pipe 64 and the gas introduction port 62, and in a shower form through the gas flow hole 41 and the gas discharge hole 37. It is discharged into the plasma generation space. That is, the upper electrode 34 functions as a shower head for supplying the processing gas. The upper electrode 34 is an example of a plasma generation unit.
 上部電極34には、ローパスフィルタ(LPF)51を介して直流電源50が電気的に接続されている。直流電源50は、負極が上部電極34側となるように接続され、上部電極34にマイナスの電圧を印加する。直流電源50からの給電はスイッチ52によりオンおよびオフが可能となっている。LPF51は後述する第1および第2の高周波電源からの高周波をトラップするものであり、好適にはLRフィルタまたはLCフィルタで構成される。表面波プラズマを利用したプラズマ処理装置の場合には、直流電源の代わりに導波管などが接続されており、導波管を介して高周波が供給される仕組みとなっている。 A DC power supply 50 is electrically connected to the upper electrode 34 via a low pass filter (LPF) 51. The DC power supply 50 is connected so that the negative electrode is on the upper electrode 34 side, and applies a negative voltage to the upper electrode 34. Power supply from the DC power supply 50 can be turned on and off by a switch 52. The LPF 51 traps high frequencies from the first and second high frequency power sources described later, and is preferably composed of an LR filter or an LC filter. In the case of a plasma processing apparatus using surface wave plasma, a waveguide or the like is connected instead of a DC power source, and a high frequency is supplied through the waveguide.
 チャンバ10の上部には、チャンバ10の側壁から上部電極34の高さ位置よりも上方に延びるように円筒状の接地導体10aが設けられている。 A cylindrical ground conductor 10 a is provided on the upper portion of the chamber 10 so as to extend upward from the side wall of the chamber 10 above the height position of the upper electrode 34.
 下部電極である支持台14には、第1の整合器46を介して、第1の高周波電源48が電気的に接続されている。第1の高周波電源48は、27~100MHzの周波数、例えば40.68MHzの高周波電力を出力する。第1の整合器46は、第1の高周波電源48の内部(または出力)インピーダンスに負荷インピーダンスを整合させるものであり、チャンバ10内にプラズマが生成されている時に第1の高周波電源48の出力インピーダンスと負荷インピーダンスが見かけ上一致するように機能する。 A first high frequency power supply 48 is electrically connected to the support base 14, which is a lower electrode, via a first matching unit 46. The first high frequency power supply 48 outputs a high frequency power of 27 to 100 MHz, for example, 40.68 MHz. The first matching unit 46 matches the load impedance with the internal (or output) impedance of the first high-frequency power source 48, and the output of the first high-frequency power source 48 when plasma is generated in the chamber 10. It functions so that the impedance and the load impedance coincide with each other.
 また、下部電極である支持台14には、第2の整合器88を介して第2の高周波電源90も電気的に接続されている。この第2の高周波電源90から下部電極である支持台14に高周波電力が供給されることにより、ウエハWに高周波バイアスが印加されウエハWにイオンが引き込まれる。第2の高周波電源90は、400kHz~20MHzの範囲内の周波数、例えば13.56MHzの高周波電力を出力する。第2の整合器88は第2の高周波電源90の内部(または出力)インピーダンスに負荷インピーダンスを整合させるためのものであり、チャンバ10内にプラズマが生成されている時に第2の高周波電源90の内部インピーダンスとチャンバ10内のプラズマを含めた負荷インピーダンスが見かけ上一致するように機能する。 Further, a second high-frequency power supply 90 is also electrically connected to the support base 14 which is the lower electrode via a second matching unit 88. By supplying high-frequency power from the second high-frequency power supply 90 to the support base 14 which is the lower electrode, a high-frequency bias is applied to the wafer W and ions are attracted to the wafer W. The second high frequency power supply 90 outputs a high frequency power having a frequency within a range of 400 kHz to 20 MHz, for example, 13.56 MHz. The second matching unit 88 is for matching the load impedance with the internal (or output) impedance of the second high-frequency power source 90, and when the plasma is generated in the chamber 10, It functions so that the internal impedance and the load impedance including the plasma in the chamber 10 seem to coincide.
 チャンバ10の底部には排気口80が設けられ、この排気口80には排気管82を介して排気装置84が接続されている。排気装置84は、ターボ分子ポンプおよびドライブポンプなどの真空ポンプを有しており、チャンバ10内を所望の真空度まで減圧可能となっている。また、チャンバ10の側壁にはウエハWの搬入出口85が設けられており、この搬入出口85はゲートバルブ86により開閉可能となっている。 An exhaust port 80 is provided at the bottom of the chamber 10, and an exhaust device 84 is connected to the exhaust port 80 via an exhaust pipe 82. The exhaust device 84 includes a vacuum pump such as a turbo molecular pump and a drive pump, and can reduce the pressure in the chamber 10 to a desired degree of vacuum. A loading / unloading port 85 for the wafer W is provided on the side wall of the chamber 10, and the loading / unloading port 85 can be opened and closed by a gate valve 86.
 また、チャンバ10の内壁には、チャンバ10にエッチング副生成物(デポ)が付着することを防止するためのデポシールド11が、チャンバ10の内壁に沿って着脱自在に設けられている。すなわち、デポシールド11がチャンバ壁を構成している。また、デポシールド11は、内壁部材26の外周にも設けられている。チャンバ10の底部のチャンバ壁側のデポシールド11と内壁部材26側のデポシールド11との間には排気プレート83が設けられている。デポシールド11および排気プレート83としては、アルミニウム材にY2O3等のセラミックスを被覆したものを好適に用いることができる。 Further, a deposition shield 11 for preventing the etching by-product (depot) from adhering to the chamber 10 is detachably provided along the inner wall of the chamber 10 on the inner wall of the chamber 10. That is, the deposition shield 11 forms a chamber wall. The deposition shield 11 is also provided on the outer periphery of the inner wall member 26. An exhaust plate 83 is provided between the deposition shield 11 on the chamber wall side at the bottom of the chamber 10 and the deposition shield 11 on the inner wall member 26 side. As the deposition shield 11 and the exhaust plate 83, an aluminum material coated with ceramics such as Y2O3 can be suitably used.
 デポシールド11のチャンバ内壁を構成する部分のウエハWとほぼ同じ高さの部分には、グランドに直流的に接続された導電性部材(GNDブロック)91が設けられている。導電性部材91により、チャンバ10内の異常放電が防止される。なお、この導電性部材91は、プラズマ生成空間内に設けられていれば、その位置は図1の位置に限定されず、例えば支持台14の周囲等、支持台14側に設けられてもよく、また上部電極34の外側にリング状に設けられる等、上部電極34近傍に設けられてもよい。 A conductive member (GND block) 91 connected to the ground in a direct current manner is provided in a portion of the deposit shield 11 that constitutes the inner wall of the chamber and is substantially the same height as the wafer W. The conductive member 91 prevents abnormal discharge in the chamber 10. As long as the conductive member 91 is provided in the plasma generation space, the position thereof is not limited to the position shown in FIG. 1, and may be provided on the support base 14 side, for example, around the support base 14. Alternatively, it may be provided in the vicinity of the upper electrode 34 such as provided in a ring shape outside the upper electrode 34.
 基板処理装置1には、マイクロプロセッサ(コンピュータ)を含む制御部100が接続されており、基板処理装置1内の各構成部、例えば電源系やガス供給系、駆動系、更には、第1の高周波電源48、第2の高周波電源90、第1の整合器46、第2の整合器88等は、制御部100によって制御される。制御部100には、オペレータが基板処理装置1を管理するためにコマンドの入力操作等を行うキーボードや、基板処理装置1の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェース101が接続されている。 A control unit 100 including a microprocessor (computer) is connected to the substrate processing apparatus 1, and each component in the substrate processing apparatus 1, for example, a power supply system, a gas supply system, a drive system, and the first The high frequency power supply 48, the second high frequency power supply 90, the first matching unit 46, the second matching unit 88, and the like are controlled by the control unit 100. Connected to the control unit 100 is a user interface 101 including a keyboard for an operator to input commands for managing the substrate processing apparatus 1, a display for visualizing and displaying the operating status of the substrate processing apparatus 1, and the like. ing.
 更に、制御部100には、基板処理装置1で実現される各種処理を制御部100に実行させるための制御プログラムや、処理条件に応じて基板処理装置1の各構成部に処理を実行させるための制御プログラムや処理レシピ等が格納された記憶部102が接続されている。制御プログラムや処理レシピ等は記憶部102の中の記憶媒体に記憶されている。記憶媒体は、ハードディスクや半導体メモリであってもよく、CDROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、制御プログラムや処理レシピ等は、他の装置から、例えば通信回線を介して基板処理装置1に適宜伝送させるようにしてもよい。 Further, the control unit 100 causes the control unit 100 to execute various processes realized by the substrate processing apparatus 1 and causes each component of the substrate processing apparatus 1 to execute processes according to processing conditions. A storage unit 102 that stores the control program, processing recipe, and the like is connected. Control programs, processing recipes, and the like are stored in a storage medium in the storage unit 102. The storage medium may be a hard disk or a semiconductor memory, or may be portable such as a CDROM, DVD, flash memory or the like. Further, the control program, the processing recipe, and the like may be appropriately transmitted from another apparatus to the substrate processing apparatus 1 through, for example, a communication line.
 制御部100は、ユーザーインターフェース101からの指示に応じて、任意の制御プログラムや処理レシピ等を記憶部102から読み出して実行することで、基板処理装置1において所望の処理を実現する。 The control unit 100 implements a desired process in the substrate processing apparatus 1 by reading and executing an arbitrary control program, processing recipe, and the like from the storage unit 102 in accordance with an instruction from the user interface 101.
 例えば、制御部100は、電極20に電源22からの電圧を供給して静電チャック18の表面に静電力を発生させ、チャンバ10内に搬入されたウエハWを静電チャック18上に吸着保持させる。そして、制御部100は、排気装置84の真空ポンプを制御することにより排気口80を介してチャンバ10内を所定の圧力まで減圧させる。そして、電極200は、ガス供給管64に設けられた流量制御器および開閉バルブを制御して、ガス供給源66からプラズマ生成空間内に処理ガスを供給する。 For example, the control unit 100 supplies a voltage from the power supply 22 to the electrode 20 to generate an electrostatic force on the surface of the electrostatic chuck 18 and attracts and holds the wafer W loaded into the chamber 10 on the electrostatic chuck 18. Let Then, the control unit 100 controls the vacuum pump of the exhaust device 84 to reduce the pressure in the chamber 10 to a predetermined pressure via the exhaust port 80. The electrode 200 supplies a processing gas from the gas supply source 66 into the plasma generation space by controlling a flow rate controller and an open / close valve provided in the gas supply pipe 64.
 そして、制御部100は、スイッチ52を制御して上部電極34にマイナスの直流電圧を印加し、第1の高周波電源48および第2の整合器88を制御して、支持台14に所定周波数の高周波電力をそれぞれ印加する。そして、制御部100は、処理ガスによるプラズマをプラズマ生成空間内に発生させ、プラズマにより、静電チャック18上のウエハWに所定の処理を施す。 Then, the control unit 100 controls the switch 52 to apply a negative DC voltage to the upper electrode 34, controls the first high frequency power supply 48 and the second matching unit 88, and applies a predetermined frequency to the support base 14. Apply high frequency power respectively. Then, the control unit 100 generates plasma by the processing gas in the plasma generation space, and performs predetermined processing on the wafer W on the electrostatic chuck 18 by the plasma.
 このとき、制御部100は、静電チャック18内のヒータ21に電源23からの電力を供給してヒータ21を発熱させる。そして、制御部100は、プラズマ生成空間において生成したプラズマから静電チャック18に供給される熱量の変化に追従して、静電チャック18の温度が所望の温度となるように、電源23からヒータ21に供給される電力を制御する。 At this time, the control unit 100 supplies power from the power source 23 to the heater 21 in the electrostatic chuck 18 to cause the heater 21 to generate heat. Then, the control unit 100 follows the change in the amount of heat supplied from the plasma generated in the plasma generation space to the electrostatic chuck 18 so that the temperature of the electrostatic chuck 18 becomes a desired temperature. The electric power supplied to 21 is controlled.
 固定部材13は、例えば図2に示すように、ボルト130、リング状部材131、および弾性部材132を有する。リング状部材131は、静電チャック18の周囲を囲むように設けられたリング状の部材である。リング状部材131は、弾性部材132を介してボルト130によって支持台14に固定される。これにより、リング状部材131は、弾性部材132の付勢力により、支持台14の方向へ押圧される。本実施形態において、弾性部材132は、例えば皿バネである。 The fixing member 13 includes a bolt 130, a ring-shaped member 131, and an elastic member 132, for example, as shown in FIG. The ring-shaped member 131 is a ring-shaped member provided so as to surround the periphery of the electrostatic chuck 18. The ring-shaped member 131 is fixed to the support base 14 with a bolt 130 via an elastic member 132. As a result, the ring-shaped member 131 is pressed toward the support base 14 by the biasing force of the elastic member 132. In the present embodiment, the elastic member 132 is, for example, a disc spring.
 静電チャック18の周縁の下部には、静電チャック18の径方向において外側に突出した凸部180が形成されている。また、リング状部材131の上部には、径方向においてリング状部材131の内側に突出した凸部133が形成されている。静電チャック18の凸部180の上面180aと、リング状部材131の凸部133の下面133aとを接触させて、ボルト130によってリング状部材131を弾性部材132を介して支持台14に固定することにより、静電チャック18およびスペーサ16が、弾性部材132の付勢力により、支持台14の方向に押圧されて固定される。 A convex portion 180 protruding outward in the radial direction of the electrostatic chuck 18 is formed at the lower portion of the periphery of the electrostatic chuck 18. In addition, a convex portion 133 that protrudes inward of the ring-shaped member 131 in the radial direction is formed on the upper portion of the ring-shaped member 131. The upper surface 180a of the convex portion 180 of the electrostatic chuck 18 and the lower surface 133a of the convex portion 133 of the ring-shaped member 131 are brought into contact with each other, and the ring-shaped member 131 is fixed to the support base 14 via the elastic member 132 by the bolt 130. Thus, the electrostatic chuck 18 and the spacer 16 are pressed and fixed in the direction of the support base 14 by the urging force of the elastic member 132.
 ここで、プラズマ生成空間において生成されたプラズマから供給された熱や、ヒータ21が発した熱によって静電チャック18の温度が上昇した場合、静電チャック18は、温度上昇に伴って膨張する。リング状部材131が、弾性部材132を介さずに、ボルト130によって支持台14に直接固定されているとすれば、静電チャック18の厚み方向の膨張によって凸部180および凸部133に応力が集中し、静電チャック18が破損する場合がある。 Here, when the temperature of the electrostatic chuck 18 rises due to the heat supplied from the plasma generated in the plasma generation space or the heat generated by the heater 21, the electrostatic chuck 18 expands as the temperature rises. If the ring-shaped member 131 is directly fixed to the support base 14 by the bolt 130 without the elastic member 132 interposed therebetween, stress is applied to the convex portions 180 and the convex portions 133 due to the expansion in the thickness direction of the electrostatic chuck 18. The electrostatic chuck 18 may be damaged due to concentration.
 これに対し、本実施形態における固定部材13では、リング状部材131を、弾性部材132を介してボルト130により支持台14に固定する。そのため、静電チャック18の熱膨張により静電チャック18の厚みが増加した場合であっても、凸部180および凸部133に集中する応力が、弾性部材132の収縮により緩和される。これにより、静電チャック18の熱膨張による静電チャック18の破損を防止することができる。 On the other hand, in the fixing member 13 in the present embodiment, the ring-shaped member 131 is fixed to the support base 14 with the bolt 130 via the elastic member 132. Therefore, even when the thickness of the electrostatic chuck 18 increases due to thermal expansion of the electrostatic chuck 18, the stress concentrated on the convex portion 180 and the convex portion 133 is relieved by contraction of the elastic member 132. Thereby, damage to the electrostatic chuck 18 due to thermal expansion of the electrostatic chuck 18 can be prevented.
 また、本実施形態において、静電チャック18の径方向において、静電チャック18とリング状部材131との間には、空間Sが設けられている(図2参照)。これにより、静電チャック18の熱膨張により、静電チャック18の体積が径方向に増加した場合であっても、静電チャック18と固定部材13との接触面やボルト130に応力が集中することを回避することができる。これにより、静電チャック18の熱膨張による静電チャック18やボルト130の破損を防止することができる。 In this embodiment, a space S is provided between the electrostatic chuck 18 and the ring-shaped member 131 in the radial direction of the electrostatic chuck 18 (see FIG. 2). Thereby, even when the volume of the electrostatic chuck 18 increases in the radial direction due to thermal expansion of the electrostatic chuck 18, stress concentrates on the contact surface between the electrostatic chuck 18 and the fixing member 13 and the bolt 130. You can avoid that. Thereby, damage to the electrostatic chuck 18 and the bolt 130 due to thermal expansion of the electrostatic chuck 18 can be prevented.
 また、静電チャック18は、主として、プラズマ生成空間に生成されたプラズマから供給された熱量と、ヒータ21から供給された熱量と、スペーサ16を介して静電チャック18から支持台14へ放散された熱量とのバランスに応じた温度となる。 The electrostatic chuck 18 is mainly dissipated from the electrostatic chuck 18 to the support 14 via the spacer 16 via the spacer 16 and the amount of heat supplied from the plasma generated in the plasma generation space. It becomes the temperature according to the balance with the amount of heat.
 ここで、プラズマから静電チャック18に供給される熱量は、チャンバ10内の圧力との相関があり、チャンバ10内の圧力が低いほどプラズマから静電チャック18に供給される熱量が増加する。また、スペーサ16を介して静電チャック18から支持台14へ放散される熱量は、静電チャック18と支持台14との温度差に依存する。ただし、静電チャック18の温度がほぼ一定に保たれるように制御され、支持台14の温度がほぼ一定であれば、スペーサ16を介して静電チャック18から支持台14へ放散される熱量はほぼ一定となる。 Here, the amount of heat supplied from the plasma to the electrostatic chuck 18 has a correlation with the pressure in the chamber 10, and the amount of heat supplied from the plasma to the electrostatic chuck 18 increases as the pressure in the chamber 10 decreases. The amount of heat dissipated from the electrostatic chuck 18 to the support base 14 via the spacer 16 depends on the temperature difference between the electrostatic chuck 18 and the support base 14. However, if the temperature of the electrostatic chuck 18 is controlled to be kept substantially constant and the temperature of the support base 14 is substantially constant, the amount of heat dissipated from the electrostatic chuck 18 to the support base 14 via the spacer 16. Is almost constant.
 図3~図5は、静電チャック18の温度とヒータ21の電力との関係の一例を示す図である。例えば、チャンバ10内の圧力が950mTの場合、静電チャック18の温度を例えば250℃に保つようにヒータ21の電力を制御すると、処理時間に応じたヒータ21の電力の変化は、例えば図3のようになる。図3の例では、処理の開始時点から100秒付近までの間は、プラズマからの入熱が少ないので、静電チャック18の温度を250℃に保つために、ヒータ21に高い電力が供給されている。その後、プラズマからの入熱の上昇に伴い、ヒータ21の発熱を減らすようにヒータ21に供給される電力が低下している。図3の例では、ヒータ21の電力の制御が可能な範囲で、静電チャック18の温度が250℃に維持されている。 3 to 5 are diagrams showing an example of the relationship between the temperature of the electrostatic chuck 18 and the power of the heater 21. FIG. For example, when the pressure in the chamber 10 is 950 mT, if the power of the heater 21 is controlled so that the temperature of the electrostatic chuck 18 is maintained at 250 ° C., for example, the change in the power of the heater 21 according to the processing time is, for example, FIG. become that way. In the example of FIG. 3, since the heat input from the plasma is small from the start of processing to around 100 seconds, high electric power is supplied to the heater 21 in order to keep the temperature of the electrostatic chuck 18 at 250 ° C. ing. Thereafter, as the heat input from the plasma increases, the power supplied to the heater 21 decreases so as to reduce the heat generation of the heater 21. In the example of FIG. 3, the temperature of the electrostatic chuck 18 is maintained at 250 ° C. within a range in which the power of the heater 21 can be controlled.
 ここで、例えば、静電チャック18の温度を例えば200℃に下げると、処理時間に応じたヒータ21の電力の変化は、例えば図4のようになる。図4の例においても、処理の開始時点から約100秒が経過した後は、プラズマからの入熱の上昇に伴い、静電チャック18の温度を200℃に保つために、ヒータ21に供給される電力が減少している。そして、処理の開始時点から約300秒が経過した時点では、ヒータ21の電力が0W(即ち、ヒータ21からの熱量が0)となるように制御されている。 Here, for example, when the temperature of the electrostatic chuck 18 is lowered to 200 ° C., for example, the change in the power of the heater 21 according to the processing time is as shown in FIG. Also in the example of FIG. 4, after about 100 seconds have elapsed from the start of the process, as the heat input from the plasma rises, the electrostatic chuck 18 is supplied to the heater 21 in order to keep the temperature at 200 ° C. The power that is being used is decreasing. Then, when about 300 seconds have elapsed from the start of the process, the power of the heater 21 is controlled to be 0 W (that is, the amount of heat from the heater 21 is 0).
 図4の例では、ヒータ21の電力を0Wまで低下させることで、静電チャック18の温度が200℃に維持されているように見えるが、チャンバ内の圧力が変動するなどによりプラズマからの入熱が変動した場合には、静電チャック18の温度を200℃に維持することができなくなる。 In the example of FIG. 4, it seems that the temperature of the electrostatic chuck 18 is maintained at 200 ° C. by reducing the power of the heater 21 to 0 W. However, since the pressure in the chamber fluctuates, When the heat fluctuates, the temperature of the electrostatic chuck 18 cannot be maintained at 200 ° C.
 チャンバ10内の圧力を例えば350mTとした場合に、静電チャック18の温度を200℃に保つようにヒータ21の電力の制御を試みた場合、処理時間に応じたヒータ21の電力の変化は、例えば図5のようになる。図5の例では、処理の開始時点から約200秒が経過した後は、ヒータ21に供給される電力を0Wに制御しても、プラズマからの入熱の上昇に伴って静電チャック18の温度が上昇してしまい、静電チャック18の温度を200℃に維持することができない。 When the pressure in the chamber 10 is set to 350 mT, for example, and the power of the heater 21 is controlled so as to keep the temperature of the electrostatic chuck 18 at 200 ° C., the change in the power of the heater 21 according to the processing time is as follows: For example, as shown in FIG. In the example of FIG. 5, after about 200 seconds have elapsed from the start of processing, even if the electric power supplied to the heater 21 is controlled to 0 W, the electrostatic chuck 18 The temperature rises and the temperature of the electrostatic chuck 18 cannot be maintained at 200 ° C.
 図6は、チャンバ10内の圧力毎に、静電チャック18を所定の温度に制御可能か否かをまとめた図である。図6に示すように、低い圧力で処理を行う場合や、静電チャック18の温度を低く保つ処理を行う場合には、ヒータ21に供給される電力を制御しても、静電チャック18の温度を所定の値に保つことができない。そのため、低い圧力で処理を行う場合や、静電チャック18の温度を低く保つ処理を行う場合には、静電チャック18からの放熱量を増加させる必要がある。これにより、ヒータ21の電力を制御することで、静電チャック18の温度を一定に維持することが可能となる。 FIG. 6 is a table summarizing whether the electrostatic chuck 18 can be controlled to a predetermined temperature for each pressure in the chamber 10. As shown in FIG. 6, when processing is performed at a low pressure, or when processing is performed to keep the temperature of the electrostatic chuck 18 low, even if the power supplied to the heater 21 is controlled, the electrostatic chuck 18 The temperature cannot be maintained at a predetermined value. Therefore, when processing is performed at a low pressure or when processing is performed to keep the temperature of the electrostatic chuck 18 low, it is necessary to increase the amount of heat released from the electrostatic chuck 18. Thereby, by controlling the electric power of the heater 21, the temperature of the electrostatic chuck 18 can be kept constant.
 ここで、2つの物体が接触している場合に、一方の物体から他方の物体に移動する熱量Qは、例えば以下の関係式(1)から求めることができる。
 熱量Q=伝熱係数×接触面積×温度差   ・・・(1)
Here, when two objects are in contact with each other, the amount of heat Q transferred from one object to the other can be obtained from the following relational expression (1), for example.
Amount of heat Q = heat transfer coefficient × contact area × temperature difference (1)
 上記の関係式(1)から明らかなように、2つの物体間の温度差を増加させれば、一方の物体から他方の物体に移動する熱量Qを増加させることができる。そのため、例えば、静電チャック18とスペーサ16との温度差およびスペーサ16と支持台14との温度差を増加させれば、静電チャック18から支持台14へ移動する熱量を増加させることができる。 As is clear from the above relational expression (1), if the temperature difference between the two objects is increased, the amount of heat Q transferred from one object to the other can be increased. Therefore, for example, if the temperature difference between the electrostatic chuck 18 and the spacer 16 and the temperature difference between the spacer 16 and the support base 14 are increased, the amount of heat transferred from the electrostatic chuck 18 to the support base 14 can be increased. .
 静電チャック18とスペーサ16との温度差およびスペーサ16と支持台14との温度差を増加させる方法としては、例えば、支持台14に冷媒を流通させ、支持台14の温度を下げることが考えられる。しかし、支持台14内に冷媒を流す流路を設けると、支持台14の構造が複雑化し、支持台14の製造コストが増加し、基板処理装置1の製造コストが増加してしまう。 As a method of increasing the temperature difference between the electrostatic chuck 18 and the spacer 16 and the temperature difference between the spacer 16 and the support base 14, for example, it is considered that the coolant is circulated through the support base 14 to lower the temperature of the support base 14. It is done. However, if a flow path for flowing the refrigerant is provided in the support table 14, the structure of the support table 14 becomes complicated, the manufacturing cost of the support table 14 increases, and the manufacturing cost of the substrate processing apparatus 1 increases.
 ここで、上記の関係式(1)において、伝熱係数は、2つの物体同士の接触圧力に比例する。接触圧力は、接触荷重を接触面積で割ることで求められる。そのため、上記の関係式(1)において、温度差が一定であれば、熱量Qは、接触荷重に比例する。従って、接触荷重を増加させれば、一方の物体から他方の物体に移動する熱量Qは増加する。そのほかにも伝熱係数を変化させるパラメータは、2つの物体が接する面の粗さや、2つの物体の間に形成された空間内の圧力が考えられる。 Here, in the relational expression (1), the heat transfer coefficient is proportional to the contact pressure between the two objects. The contact pressure is obtained by dividing the contact load by the contact area. Therefore, in the above relational expression (1), if the temperature difference is constant, the heat quantity Q is proportional to the contact load. Therefore, if the contact load is increased, the amount of heat Q that moves from one object to the other increases. Other parameters that change the heat transfer coefficient include the roughness of the surface where the two objects are in contact and the pressure in the space formed between the two objects.
 そこで、本実施形態の基板処理装置1では、静電チャック18およびスペーサ16を支持台14に押圧する荷重を増やすことにより、静電チャック18から支持台14への熱の移動量を増加させる。これにより、支持台14の温度が室温程度であっても、静電チャック18から支持台14へ移動する熱量が増加する。これにより、基板処理装置1のコストの増加を抑えつつ、静電チャック18の温度を一定に制御することが可能となる。 Therefore, in the substrate processing apparatus 1 of the present embodiment, the amount of heat transferred from the electrostatic chuck 18 to the support base 14 is increased by increasing the load that presses the electrostatic chuck 18 and the spacer 16 against the support base 14. Thereby, even if the temperature of the support base 14 is about room temperature, the amount of heat transferred from the electrostatic chuck 18 to the support base 14 increases. As a result, it is possible to control the temperature of the electrostatic chuck 18 to be constant while suppressing an increase in the cost of the substrate processing apparatus 1.
 ただし、静電チャック18から支持台14へ移動させる熱量を増やしすぎると、静電チャック18の温度を所定の温度に保つためには、ヒータ21から供給する熱量を増やす必要がある。ヒータ21から供給される熱量が多くなりすぎると、静電チャック18内において熱勾配が大きくなる。そのため、静電チャック18の温度分布が不均一になり、ウエハWの温度分布の均一性も悪化する。 However, if the amount of heat to be moved from the electrostatic chuck 18 to the support base 14 is increased too much, it is necessary to increase the amount of heat supplied from the heater 21 in order to keep the temperature of the electrostatic chuck 18 at a predetermined temperature. If the amount of heat supplied from the heater 21 becomes excessive, the thermal gradient in the electrostatic chuck 18 increases. For this reason, the temperature distribution of the electrostatic chuck 18 becomes non-uniform, and the uniformity of the temperature distribution of the wafer W also deteriorates.
 また、静電チャック18とスペーサ16およびスペーサ16と支持台14との接触荷重を増加させすぎると、静電チャック18、スペーサ16、および破損する場合がある。そのため、固定部材13によって静電チャック18を支持台14の方向へ押圧する荷重は、所定の範囲(例えば1000kgF~3000kgF)であることが好ましい。固定部材13によって静電チャック18を支持台14の方向へ押圧する荷重は、例えば1000kgFであることがより好ましい。 Further, if the contact load between the electrostatic chuck 18 and the spacer 16 and the spacer 16 and the support 14 is excessively increased, the electrostatic chuck 18 and the spacer 16 may be damaged. Therefore, the load for pressing the electrostatic chuck 18 toward the support base 14 by the fixing member 13 is preferably within a predetermined range (for example, 1000 kgF to 3000 kgF). The load that presses the electrostatic chuck 18 toward the support base 14 by the fixing member 13 is more preferably, for example, 1000 kgF.
 このように、固定部材13が、所定範囲内の荷重で、静電チャック18を支持台14の方向へ押圧することにより、静電チャック18から支持台14へ移動する熱量を増加させることができる。これにより、基板処理装置1は、ヒータ21に供給する電力を制御することで、静電チャック18の温度を所定の温度に維持することができる。 In this manner, the amount of heat that moves from the electrostatic chuck 18 to the support base 14 can be increased by pressing the electrostatic chuck 18 toward the support base 14 with a load within a predetermined range. . Thereby, the substrate processing apparatus 1 can maintain the temperature of the electrostatic chuck 18 at a predetermined temperature by controlling the power supplied to the heater 21.
 また、スペーサ16の上面および下面には、エンボス加工等により微小な凹凸が形成されている。そのため、スペーサ16の上面は、静電チャック18の厚み方向において上下に静電チャック18の下面と重なる領域の中で、所定割合の領域において静電チャック18に接触する。そのため、スペーサ16の上面と静電チャック18の下面との間に、ガスが充填される空間のみが形成される場合に比べて、静電チャック18の熱をより多くスペーサ16へ伝達させることができる。 Further, minute irregularities are formed on the upper and lower surfaces of the spacer 16 by embossing or the like. Therefore, the upper surface of the spacer 16 comes into contact with the electrostatic chuck 18 in a predetermined proportion of the region overlapping the lower surface of the electrostatic chuck 18 in the vertical direction in the thickness direction of the electrostatic chuck 18. Therefore, more heat of the electrostatic chuck 18 can be transmitted to the spacer 16 than when only a space filled with gas is formed between the upper surface of the spacer 16 and the lower surface of the electrostatic chuck 18. it can.
 スペーサ16の下面についても同様に、スペーサ16の下面は、スペーサ16の厚み方向において上下に支持台14の上面と重なる領域の中で、所定割合の領域で支持台14に接触する。そのため、スペーサ16の上面と支持台14の上面との間に、ガスが充填される空間のみが形成される場合に比べて、スペーサ16の熱をより多く支持台14へ伝達させることができる。 Similarly, the lower surface of the spacer 16 is in contact with the support table 14 at a predetermined ratio in the region that overlaps the upper surface of the support table 14 vertically in the thickness direction of the spacer 16. Therefore, more heat of the spacer 16 can be transmitted to the support table 14 than when only a space filled with gas is formed between the upper surface of the spacer 16 and the upper surface of the support table 14.
 また、静電チャック18からの熱は、一部がスペーサ16を介して支持台14へ伝達され、一部が固定部材13を介して支持台14へ伝達される。ここで、スペーサ16は、表面の凹凸により、表面の一部が静電チャック18および支持台14に接触する。そして、スペーサ16が静電チャック18および支持台14と接触する面積は、固定部材13が静電チャック18と接触する面積よりも広い。そのため、静電チャック18から固定部材13を介して支持台14へ伝達される熱量よりも、静電チャック18からスペーサ16を介して支持台14へ伝達される熱量の方が多い。 Further, a part of the heat from the electrostatic chuck 18 is transmitted to the support base 14 via the spacer 16, and a part of the heat is transmitted to the support base 14 via the fixing member 13. Here, a part of the surface of the spacer 16 comes into contact with the electrostatic chuck 18 and the support base 14 due to the unevenness of the surface. The area where the spacer 16 contacts the electrostatic chuck 18 and the support base 14 is larger than the area where the fixing member 13 contacts the electrostatic chuck 18. Therefore, the amount of heat transferred from the electrostatic chuck 18 to the support base 14 via the spacer 16 is greater than the amount of heat transferred from the electrostatic chuck 18 to the support base 14 via the fixing member 13.
 ここで、熱膨張により静電チャック18の厚みが増加し、リング状部材131が上方に持ち上げられると、リング状部材131の下面131aと支持台14の上面14aとの接触荷重が減少し、リング状部材131の下面131aから支持台14の上面14aへ伝達される熱量が減少する。 Here, when the thickness of the electrostatic chuck 18 increases due to thermal expansion and the ring-shaped member 131 is lifted upward, the contact load between the lower surface 131a of the ring-shaped member 131 and the upper surface 14a of the support base 14 decreases, and the ring The amount of heat transferred from the lower surface 131a of the member 131 to the upper surface 14a of the support base 14 is reduced.
 仮に、静電チャック18と支持台14との間にガスが充填される空間のみが存在するとすれば、リング状部材131の下面131aから支持台14の上面14aへ伝達される熱量は、静電チャック18と支持台14との間の空間を介して支持台14へ伝達される熱量よりも多い。そのため、リング状部材131の下面131aから支持台14の上面14aへ伝達される熱量が減少した場合、静電チャック18から放散される全体の熱量が大幅に減少することになる。 If there is only a space filled with gas between the electrostatic chuck 18 and the support base 14, the amount of heat transferred from the lower surface 131 a of the ring-shaped member 131 to the upper surface 14 a of the support base 14 is electrostatic. More than the amount of heat transferred to the support table 14 through the space between the chuck 18 and the support table 14. Therefore, when the amount of heat transferred from the lower surface 131a of the ring-shaped member 131 to the upper surface 14a of the support base 14 is reduced, the total amount of heat dissipated from the electrostatic chuck 18 is greatly reduced.
 これに対し本実施形態の基板処理装置1において、スペーサ16が静電チャック18および支持台14と接触する面積は、固定部材13が静電チャック18と接触する面積よりも広いため、リング状部材131の下面131aから支持台14の上面14aへ伝達される熱量は、スペーサ16を介して支持台14へ伝達される熱量よりも少ない。そのため、リング状部材131の下面131aから支持台14の上面14aへ伝達される熱量の減少が静電チャック18から放散される全体の熱量に与える影響は少ない。 On the other hand, in the substrate processing apparatus 1 of the present embodiment, the area where the spacer 16 contacts the electrostatic chuck 18 and the support base 14 is larger than the area where the fixing member 13 contacts the electrostatic chuck 18. The amount of heat transferred from the lower surface 131 a of 131 to the upper surface 14 a of the support table 14 is less than the amount of heat transferred to the support table 14 via the spacer 16. Therefore, the reduction in the amount of heat transferred from the lower surface 131a of the ring-shaped member 131 to the upper surface 14a of the support base 14 has little influence on the total amount of heat dissipated from the electrostatic chuck 18.
 さらに、リング状部材131が上方に持ち上げられることにより、弾性部材132によって静電チャック18に加えられる付勢力が増加する。これにより、静電チャック18とスペーサ16との接触荷重およびスペーサ16と支持台14との接触荷重が増加する。これにより、静電チャック18からスペーサ16を介して支持台14へ移動する熱量が増加する。 Furthermore, when the ring-shaped member 131 is lifted upward, the urging force applied to the electrostatic chuck 18 by the elastic member 132 increases. As a result, the contact load between the electrostatic chuck 18 and the spacer 16 and the contact load between the spacer 16 and the support base 14 increase. As a result, the amount of heat that moves from the electrostatic chuck 18 to the support base 14 via the spacer 16 increases.
 そのため、リング状部材131の下面131aから支持台14の上面14aへ伝達される熱量の減少が静電チャック18から放散される全体の熱量に与える影響はさらに少なくなる。従って、本実施形態の基板処理装置1は、静電チャック18から放散される熱量の変動を低く抑えることができる。 Therefore, the influence of the decrease in the amount of heat transmitted from the lower surface 131a of the ring-shaped member 131 to the upper surface 14a of the support base 14 on the total amount of heat dissipated from the electrostatic chuck 18 is further reduced. Therefore, the substrate processing apparatus 1 according to the present embodiment can suppress fluctuations in the amount of heat dissipated from the electrostatic chuck 18.
 以上、一実施形態について説明した。 The embodiment has been described above.
 本実施形態の基板処理装置1によれば、静電チャック18の熱膨張による静電チャック18の破損を防止することができる。また、本実施形態の基板処理装置1によれば、ヒータ21の電力を制御することで、静電チャック18を所定の温度に保つことができると共に、それに伴う基板処理装置1のコストの増加を低く抑えることができる。 According to the substrate processing apparatus 1 of the present embodiment, the electrostatic chuck 18 can be prevented from being damaged by the thermal expansion of the electrostatic chuck 18. Further, according to the substrate processing apparatus 1 of the present embodiment, the electrostatic chuck 18 can be maintained at a predetermined temperature by controlling the power of the heater 21, and the cost of the substrate processing apparatus 1 is increased accordingly. It can be kept low.
 なお、本発明は、上記した実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist.
 例えば、上記した実施形態では、スペーサ16の上面および下面には、エンボス加工等により微小な凹凸が形成されているが、本発明はこれに限られない。例えば図7に示すように、スペーサ16の上面および下面には、複数の凹部162および凸部163が形成されていてもよい。スペーサ16は、上面および下面に形成されたそれぞれの凸部163の端面において、静電チャック18または支持台14と接触する。図7は、スペーサ16の他の例を示す図である。 For example, in the above-described embodiment, minute irregularities are formed on the upper and lower surfaces of the spacer 16 by embossing or the like, but the present invention is not limited to this. For example, as shown in FIG. 7, a plurality of concave portions 162 and convex portions 163 may be formed on the upper surface and the lower surface of the spacer 16. The spacer 16 is in contact with the electrostatic chuck 18 or the support base 14 at the end surfaces of the respective convex portions 163 formed on the upper surface and the lower surface. FIG. 7 is a view showing another example of the spacer 16.
 また、静電チャック18の下面とそれぞれの凹部162とで囲まれた空間、および、それぞれの凹部162と支持台14の上面とで囲まれた空間には、Heガス等のガスが充填される。なお、静電チャック18の下面とそれぞれの凹部162とで囲まれた空間と、それぞれの凹部162と支持台14の上面とで囲まれた空間とは、スペーサ16内に設けられた孔を介して連通していてもよい。 Further, the space surrounded by the lower surface of the electrostatic chuck 18 and the respective recesses 162 and the space surrounded by the respective recesses 162 and the upper surface of the support base 14 are filled with a gas such as He gas. . Note that the space surrounded by the lower surface of the electrostatic chuck 18 and the respective concave portions 162 and the space surrounded by the respective concave portions 162 and the upper surface of the support base 14 are formed through holes provided in the spacer 16. You may communicate.
 また、他の形態として、例えば図8に示すように、支持台14の内部に冷媒室28が設けられていてもよい。図8は、基板処理装置1の他の例を示す縦断面図である。冷媒室28は、支持台14内に例えば円周状に形成される。冷媒室28には、外部に設けられた図示しないチラーユニットから配管30aおよび配管30bを介して所定温度の冷媒(例えば冷却水)が循環供給される。 As another form, for example, as shown in FIG. 8, a refrigerant chamber 28 may be provided inside the support base 14. FIG. 8 is a longitudinal sectional view showing another example of the substrate processing apparatus 1. The refrigerant chamber 28 is formed, for example, in a circumferential shape in the support base 14. A refrigerant (for example, cooling water) having a predetermined temperature is circulated and supplied to the refrigerant chamber 28 through a pipe 30a and a pipe 30b from a chiller unit (not shown) provided outside.
 冷媒室28内を循環する冷媒の温度を制御することにより、支持台14と静電チャック18との温度差を制御することができ、静電チャック18から支持台14へ移動する熱量を制御することができる。これにより、チャンバ10内の圧力条件および静電チャック18の温度条件について、ヒータ21に供給する電力を制御することで、より多様な条件での処理において静電チャック18を所定温度に維持することが可能となる。 By controlling the temperature of the refrigerant circulating in the refrigerant chamber 28, the temperature difference between the support base 14 and the electrostatic chuck 18 can be controlled, and the amount of heat transferred from the electrostatic chuck 18 to the support base 14 is controlled. be able to. Thus, by controlling the power supplied to the heater 21 with respect to the pressure condition in the chamber 10 and the temperature condition of the electrostatic chuck 18, the electrostatic chuck 18 can be maintained at a predetermined temperature in processing under more various conditions. Is possible.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に多様な変更または改良を加えることが可能であることが当業者には明らかである。また、そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be made to the above-described embodiment. In addition, it is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
W ウエハ
1 基板処理装置
13 固定部材
132 弾性部材
14 支持台
16 スペーサ
18 静電チャック
21 ヒータ
W wafer 1 substrate processing apparatus 13 fixing member 132 elastic member 14 support base 16 spacer 18 electrostatic chuck 21 heater

Claims (6)

  1.  基板を載置する載置台と、前記載置台に載置された基板上の空間にプラズマを生成するプラズマ生成部とを備え、前記載置台に載置された基板の表面に所定の処理を施す基板処理装置であって、
     前記載置台は、
     内部に加熱部を有し、上面に載置された基板を加熱する第1の部材と、
     前記第1の部材の下方に設けられ、前記第1の部材からの熱を放散させる第2の部材と、
     前記第1の部材と前記第2の部材との間に設けられ、前記第1の部材と前記第2の部材との間に空間を設けるためのスペーサと、
     前記第1の部材の周縁部を囲み、前記第1の部材および前記スペーサを前記第2の部材に対して固定する固定部材と、
    を有し、
     前記スペーサは、
     少なくとも一部が前記第1の部材および前記第2の部材に接触し、
     前記固定部材は、
     弾性部材を有し、前記弾性部材により前記第1の部材から前記第2の部材の方向へ加えられる付勢力によって、前記第1の部材および前記スペーサを前記第2の部材に対して固定することを特徴とする基板処理装置。
    A mounting table for mounting the substrate; and a plasma generation unit for generating plasma in a space on the substrate mounted on the mounting table, and performing a predetermined process on the surface of the substrate mounted on the mounting table A substrate processing apparatus,
    The table above is
    A first member that has a heating unit therein and heats the substrate placed on the upper surface;
    A second member provided below the first member and dissipating heat from the first member;
    A spacer provided between the first member and the second member, and a spacer for providing a space between the first member and the second member;
    A fixing member that surrounds a peripheral portion of the first member, and fixes the first member and the spacer to the second member;
    Have
    The spacer is
    At least a portion is in contact with the first member and the second member;
    The fixing member is
    An elastic member is provided, and the first member and the spacer are fixed to the second member by an urging force applied in the direction from the first member to the second member by the elastic member. A substrate processing apparatus.
  2.  前記弾性部材は皿バネであることを特徴とする請求項1に記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein the elastic member is a disc spring.
  3.  前記スペーサにより前記第1の部材と前記第2の部材との間に設けられた前記空間内は負圧に保たれることを特徴とする請求項1に記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein the space provided between the first member and the second member is maintained at a negative pressure by the spacer.
  4.  前記スペーサは、
     前記第1の部材側に配置される面、および、前記第2の部材側に配置される面に、複数の凹部および複数の凸部が形成され、
     前記凸部によって、前記第1の部材または第2の部材に接触し、
     前記凹部と前記第1の部材との間、および、前記凹部と前記第2の部材との間において、前記空間を形成することを特徴とする請求項1に記載の基板処理装置。
    The spacer is
    A plurality of concave portions and a plurality of convex portions are formed on the surface disposed on the first member side and the surface disposed on the second member side,
    The convex portion is in contact with the first member or the second member,
    The substrate processing apparatus according to claim 1, wherein the space is formed between the concave portion and the first member and between the concave portion and the second member.
  5.  前記第2の部材は、金属製であることを特徴とする請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the second member is made of metal.
  6.  前記第2の部材の内部には、冷媒が流れる流路が形成されることを特徴とする請求項5に記載の基板処理装置。 6. The substrate processing apparatus according to claim 5, wherein a flow path through which a coolant flows is formed inside the second member.
PCT/JP2015/063367 2014-05-20 2015-05-08 Substrate treatment device WO2015178229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014104690A JP2015220413A (en) 2014-05-20 2014-05-20 Substrate processing apparatus
JP2014-104690 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015178229A1 true WO2015178229A1 (en) 2015-11-26

Family

ID=54553902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063367 WO2015178229A1 (en) 2014-05-20 2015-05-08 Substrate treatment device

Country Status (3)

Country Link
JP (1) JP2015220413A (en)
TW (1) TW201613026A (en)
WO (1) WO2015178229A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035840A (en) * 2018-08-29 2020-03-05 住友大阪セメント株式会社 Electrostatic chuck device
CN111801787A (en) * 2018-09-13 2020-10-20 日本碍子株式会社 Wafer carrying device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961025B2 (en) * 2016-06-24 2021-11-05 東京エレクトロン株式会社 Board processing system
JP6948822B2 (en) * 2017-04-25 2021-10-13 東京エレクトロン株式会社 Board processing device and board removal method
JP2021012928A (en) * 2019-07-04 2021-02-04 住友大阪セメント株式会社 Electrostatic chuck device
KR20220026624A (en) * 2020-08-25 2022-03-07 주식회사 제우스 Wafer processing apparatus and controlling method thereof
KR102363312B1 (en) * 2020-10-05 2022-02-16 (주)원세미콘 Plasma focus ring of semiconductor etching apparatus
KR102363304B1 (en) * 2020-10-05 2022-02-16 (주)원세미콘 Plasma focus ring connection structure of semiconductor etching apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223621A (en) * 1997-02-05 1998-08-21 Tokyo Electron Ltd Vacuum treating apparatus
JPH1116996A (en) * 1997-06-26 1999-01-22 Shibaura Eng Works Co Ltd Electrostatic chuck equipment and mounting stand
JP2010021510A (en) * 2008-06-13 2010-01-28 Canon Anelva Corp Substrate support device and plasma processing apparatus
JP2013232642A (en) * 2012-04-27 2013-11-14 Ngk Insulators Ltd Member for semiconductor manufacturing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223621A (en) * 1997-02-05 1998-08-21 Tokyo Electron Ltd Vacuum treating apparatus
JPH1116996A (en) * 1997-06-26 1999-01-22 Shibaura Eng Works Co Ltd Electrostatic chuck equipment and mounting stand
JP2010021510A (en) * 2008-06-13 2010-01-28 Canon Anelva Corp Substrate support device and plasma processing apparatus
JP2013232642A (en) * 2012-04-27 2013-11-14 Ngk Insulators Ltd Member for semiconductor manufacturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035840A (en) * 2018-08-29 2020-03-05 住友大阪セメント株式会社 Electrostatic chuck device
JP7110828B2 (en) 2018-08-29 2022-08-02 住友大阪セメント株式会社 Electrostatic chuck device
CN111801787A (en) * 2018-09-13 2020-10-20 日本碍子株式会社 Wafer carrying device
CN111801787B (en) * 2018-09-13 2023-10-03 日本碍子株式会社 Wafer carrying device

Also Published As

Publication number Publication date
JP2015220413A (en) 2015-12-07
TW201613026A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
WO2015178229A1 (en) Substrate treatment device
JP6812224B2 (en) Board processing equipment and mounting table
TWI651798B (en) Mounting table and plasma processing device
KR102069773B1 (en) Processing apparatus for target object and mounting table for target object
JP6556046B2 (en) Plasma processing method and plasma processing apparatus
JP6345030B2 (en) Plasma processing apparatus and focus ring
JP4869610B2 (en) Substrate holding member and substrate processing apparatus
US20130014895A1 (en) Substrate processing apparatus
JP5982206B2 (en) Lower electrode and plasma processing apparatus
JP2019176030A (en) Plasma processing apparatus
KR101898079B1 (en) Plasma processing apparatus
JP2018186263A (en) Plasma processing apparatus
KR20200051494A (en) Placing table, positioning method of edge ring and substrate processing apparatus
KR20140108141A (en) Mounting table and plasma processing apparatus
JP2017126727A (en) Structure of mounting table and semiconductor processing device
US10923333B2 (en) Substrate processing apparatus and substrate processing control method
KR20200051505A (en) Placing table and substrate processing apparatus
US20210305077A1 (en) Device for supporting substrate having thermal expansion coefficient
JP7341043B2 (en) Substrate processing method and substrate processing apparatus
KR102203551B1 (en) Substrate mounting structure and plasma processing apparatus
TWI835847B (en) Placing table and substrate processing device
US20200035465A1 (en) Substrate processing apparatus and plasma sheath height control method
JP2014075281A (en) Plasma processing apparatus and temperature control method
TW202226739A (en) Electrostatic chuck, lower electrode element and plasma processing apparatus in which the electrostatic chuck includes a plurality of zones and a first ventilation hole provided in a protrusion part of one of the zones
JP2022120810A (en) Substrate support and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796601

Country of ref document: EP

Kind code of ref document: A1