WO2015178109A1 - Wafer position detection apparatus, wafer position detection method, and storage medium - Google Patents

Wafer position detection apparatus, wafer position detection method, and storage medium Download PDF

Info

Publication number
WO2015178109A1
WO2015178109A1 PCT/JP2015/060719 JP2015060719W WO2015178109A1 WO 2015178109 A1 WO2015178109 A1 WO 2015178109A1 JP 2015060719 W JP2015060719 W JP 2015060719W WO 2015178109 A1 WO2015178109 A1 WO 2015178109A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
light
mark
luminance
detecting
Prior art date
Application number
PCT/JP2015/060719
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 柏木
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2015178109A1 publication Critical patent/WO2015178109A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Definitions

  • the present invention relates to a technique for detecting the position of a wafer.
  • a semiconductor wafer “hereinafter referred to as (wafer)” is placed on a holding table (mounting table) and rotated once, and an optical sensor is used during the rotation.
  • An alignment device that detects the orientation and center position of the wafer based on the acquired radial relationship data of the peripheral edge of the wafer is used.
  • wafer alignment is necessary is that the notch and orientation flat formed on the wafer in order to identify the crystal orientation of silicon are aligned in a predetermined direction during the process so that the reliability of process result evaluation can be improved. It is possible to increase the sex.
  • the peripheral area of the wafer must be processed, and by providing these notches, a device cannot be formed in that area. Furthermore, the characteristics of the device formed in the peripheral area of the notch may be deteriorated due to the influence of processing when the notch is formed.
  • a wafer having no notch in the peripheral region has been proposed. In such a case, the conventional method cannot detect the orientation of the wafer.
  • JP 2012-69590 A Paragraph 0002
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a wafer position detecting device, a wafer position detecting method, and a method for detecting the position of a wafer in a wafer not having a notch. Is to provide a storage medium storing the.
  • the wafer position detection apparatus of the present invention has a mounting table for mounting a wafer on which a mark for alignment consisting of a plurality of dots is formed on the back surface; A rotation mechanism for rotating the mounting table; Light irradiation for forming a light irradiation region provided with a light projecting unit and irradiated with light projected from the light projecting unit in a region through which the mark of the wafer passes when the mounting table is rotated. And a mechanism for receiving the reflected light of the light irradiated to the light irradiation area by the light irradiation mechanism, and the light receiving area for the reflected light is provided to extend outward from the central portion side of the wafer.
  • Line sensor A data processing unit that detects the orientation of the wafer based on data in which the position in the rotation direction of the wafer is associated with the luminance obtained by the line sensor when the mounting table is rotated at least once. It is characterized by that.
  • the wafer position detection apparatus may have the following configuration.
  • the mark includes a plurality of dots arranged outward from the center of the wafer.
  • the length of the light receiving region of the line sensor is set so that the periphery of the wafer is positioned in the light irradiation region when the mounting table is rotated.
  • the data processing unit is configured to detect the position of the periphery of the wafer for each position in the rotation direction of the wafer based on the luminance distribution obtained by the line sensor.
  • the data processing unit executes a step of detecting the mark based on a luminance of a pixel corresponding to a position close to a central portion of the wafer by a certain position from a peripheral position of the wafer for each position in the rotation direction of the wafer. It is configured to detect the orientation of the wafer.
  • the step of detecting the mark based on the luminance of the pixel is a step of detecting the mark based on a comparison result between the luminance and a preset luminance.
  • the data processing unit is configured to detect the center position of the wafer in addition to the orientation of the wafer based on the luminance distribution.
  • the data processing unit is configured to detect the size of the wafer in addition to the orientation of the wafer based on the luminance distribution.
  • the light reflectance of the dots constituting the mark is smaller than the light reflectance of the back surface of the wafer.
  • the light irradiation areas of the line sensors are arranged along the radial direction of a circle centered on the rotation center of the mounting table.
  • a wafer on which a positioning mark composed of a plurality of dots is formed on the back surface is placed on a mounting table and rotated at least once, and the position in the rotation direction of the wafer and the light irradiated on the back surface of the wafer are Data is obtained by associating the brightness with the brightness obtained by reflection and light reception by the line sensor. Therefore, since the orientation of the wafer can be detected based on this data, the position of the wafer without a notch can be detected.
  • FIG. 1 is a perspective view showing a configuration example of a position detection apparatus 2 for a wafer W according to an embodiment of the present invention.
  • the position detection device 2 includes a wafer holder 20 that rotatably holds a wafer W on which position detection is performed, and a position detection device that irradiates the lower surface of the wafer W held by the wafer holder 20 with position detection light.
  • a light irradiation mechanism 3 and a line sensor 4 in which light receiving elements for detecting light irradiated from the light irradiation mechanism 3 and reflected by the wafer W are arranged in a line to form a light receiving region are provided.
  • the wafer holding unit 20 places a wafer W on which position detection is to be performed on the upper surface side, and supports a vacuum chuck 21 which is a mounting table for attracting and fixing the wafer W and the vacuum chuck 21 from the lower surface side.
  • the rotary shaft 22 extends in the vertical direction, and the rotary motor 23 is provided on the lower end side of the rotary shaft 22 and rotates the vacuum chuck 21 around the vertical axis.
  • An exhaust path (not shown) is formed in the vacuum chuck 21 and the rotary shaft 22, and the wafer W is sucked and held through a suction port 211 opened on the upper surface of the vacuum chuck 21.
  • the rotary motor 23 can adjust the rotation angle around the vertical axis of the rotation shaft 22 by an encoder, and specifies the rotation angle (position in the rotation direction) from the state where it is placed on the vacuum chuck 21 (home position).
  • the wafer W can be rotated while moving.
  • the rotation motor 23 is controlled by the motor control unit 201 shown in the block diagram of FIG. 4 so that the rotation angle and the rotation speed of the rotation shaft 22 are controlled. For example, the rotation angle for one rotation (360 °) is divided by 6000 to obtain 0.06. Can be grasped in ° increments.
  • the rotating shaft 22 and the rotating motor 23 constitute a rotating mechanism for rotating the vacuum chuck 21.
  • the light irradiation mechanism 3 shown in FIGS. 2 and 3 includes an LED (Light Emitting Diode) light 31 that is a light projecting unit that projects light for position detection, and an optical path of light projected from the LED light 31.
  • the lens 32,34,35 and the half mirror 33 which comprise are provided.
  • the LED light 31 emits a red LED (not shown) with electric power supplied from the power supply unit 311 and projects circular red light in the horizontal direction.
  • the power supply from the power supply unit 311 is cut off via the LED control unit 312 shown in FIG.
  • ramp which comprises a light projection part is not limited to the kind which uses LED, You may use EL (ElectroLuminescence) lamp and a discharge lamp.
  • a circular lens 32 is disposed at the light projection destination of the LED light 31, and the diffused light from the LED light 31 is converted into circular parallel light.
  • a half mirror 33 having a flat reflecting surface for converting the traveling direction upward is disposed in the traveling direction of the light passing through the circular lens 32.
  • the half mirror 33 is arranged so that parallel light that has passed through the circular lens 32 is incident at an angle of 45 ° with respect to the reflection surface, and a part of the incident light changes its traveling direction upward.
  • the half mirror 33 is disposed on the lower side of these regions so that the irradiation region of the light whose traveling direction has been changed is positioned in the peripheral region of the wafer W and the outer region thereof (FIGS. 1 and 2). 3).
  • a cylindrical plane convex lens (hereinafter referred to as a first cylindrical plane lens 34) that collects the circular parallel light reflected by the half mirror 33 toward a linear focal point is provided above the half mirror 33. Yes.
  • the first cylindrical planar lens 34 has a linear light irradiation region condensed by the first cylindrical planar lens 34 extending in the radial direction of the wafer W, and an outer region from the peripheral region of the wafer W. Are arranged so as to be irradiated over a distance (from the central portion side of the wafer W toward the outside).
  • the light irradiated to the outer region passes as it is, while the peripheral region of the wafer W is passed.
  • the light applied to the light is reflected.
  • the reflected light passes through the first cylindrical flat lens 34 and is converted into parallel light, and then enters the half mirror 33, and a part thereof is below the half mirror 33. Pass through.
  • a cylindrical planar convex lens (hereinafter referred to as a second cylindrical planar lens 35) that condenses the reflected light that has passed through the half mirror 33 toward a linear focal point is provided below the half mirror 33.
  • the line sensor 4 is disposed below the second cylindrical planar lens 35, and the second cylindrical planar lens 35 condenses the reflected light along the arrangement direction of the light receiving elements of the position detecting device 2. Has been placed.
  • the line sensor 4 includes a light receiving area 40 in which light receiving elements such as a CMOS (Complementary Metal Oxide Semiconductor) and a CCD (Charge Coupled Device) are arranged in a straight line, and the luminance of light incident on each light receiving element in the light receiving area 40. (Intensity) can be detected.
  • the line sensor 4 of this example has a configuration in which 512 CMOSs as light receiving elements are arranged in a line in a light receiving region 40 having a length of 6.4 mm.
  • the light receiving region 40 is placed on the vacuum chuck 21, is disposed above the line sensor 4, and is provided so as to extend outward from the center side of the wafer W.
  • the brightness of the light (pixel) incident on each light receiving element is converted into 256 gradation digital data (luminance data) by the line sensor control unit 401 shown in FIG. It is output toward the later-described control unit 5 side that executes W position detection. Details of the data output from the line sensor control unit 401 and the position detection operation of the wafer W performed by the control unit 5 will be described later.
  • the position detection device 2 having the configuration described above includes a control unit 5.
  • the control unit 5 includes a CPU (Central Processing Unit) 51 and a storage unit (not shown).
  • the storage unit operates the position detection device 2, that is, the wafer W held by the wafer holding unit 20 at least around the vertical axis.
  • a program in which a group of steps (commands) for the operation of irradiating the position detection light from the LED light 31 while rotating it and specifying the position of the wafer W based on the reflected light incident on the line sensor 4 is recorded.
  • This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.
  • FIG. 5 shows a configuration example of the wafer W on which position detection is performed using the position detection apparatus 2 of this example.
  • the conventional wafer W has a notch formed in the peripheral region.
  • a position detection method using a transmitted light method is adopted that detects the orientation and center position of the wafer W from a change in the amount of light obtained by passing light for inspection through this notch and detecting it using an optical sensor. Yes.
  • notches are not formed in the outer peripheral area of the wafer W shown in FIG. 5, and the contour shape is circular.
  • an alignment mark M is formed on the lower surface side of the wafer W. The mark M is formed in place of the above-described notch (orientation flat or notch), and is formed by, for example, shaving the lower surface of the wafer W shallowly by laser marking.
  • the mark M in this example is configured by a dot pattern in which a plurality of dots having a depth of several tens of ⁇ m and a diameter of about 100 ⁇ m are arranged at a pitch of about several hundreds of ⁇ m.
  • a dot row in which four dots are arranged radially from the center of the wafer W toward the outside is formed, and three more dot rows are formed on the wafer W.
  • a rectangular mark M having a size of 0.6 mm ⁇ 0.4 mm is formed by arranging them adjacent to each other in the circumferential direction.
  • the method of forming the mark M by shallowly cutting the back surface of the wafer W is as follows: The stress applied to the wafer W is small and no unique shape is formed. For this reason, it is possible to suppress the deterioration in characteristics that has conventionally occurred in a semiconductor device formed around the notch.
  • the mark M and the dots constituting the mark M are sufficiently small with respect to the curvature of the wafer W.
  • the dot rows of the mark M are substantially equidistant (w [mm]) from the end (periphery position) of the wafer W as shown in FIG. ) Are formed at positions that are separated from each other, and the dot rows are detected as being arranged in parallel to each other.
  • the position detection apparatus 2 of this example detects the orientation of the wafer W by detecting the above-described mark M.
  • FIG. 6A to 6E show the light receiving region 40 and the mark M of the line sensor 4 in which the light receiving elements are arranged in a line when the wafer W is rotated while irradiating the position detecting light from the light irradiation mechanism 3.
  • FIG. The positional change with respect to time is shown.
  • a radial direction of a circle centering on the rotation center of the vacuum chuck 21 from the peripheral region to the outer region of the wafer W (when the rotation center and the center of the wafer W are placed in alignment) Forming a linear light irradiation region extending in the radial direction of the wafer W and detecting the reflected light by the line sensor 4, the region where the reflected light reflected from the lower surface of the wafer W is detected, and the reflection
  • the boundary with the region where no light is detected is specified as the end of the wafer W (the position of the periphery of the wafer W). Further, when the mark M passes through the linear light irradiation region (corresponding to the light receiving region 40 shown in FIGS.
  • the brightness of reflected light decreases due to light scattering, and
  • the brightness detected by the light receiving element corresponding to the position where the mark M has passed decreases. That is, the light reflectance of the dots constituting the mark M is smaller than the light reflectance of the back surface of the wafer W.
  • FIGS. 7A to 7E schematically show the luminance distribution of light incident on the line sensor 4 at each position shown in FIGS. 6A to 6E.
  • the horizontal axis indicates the luminance of light incident on the line sensor 4
  • the vertical axis indicates the address (0 to 511) of the light receiving element provided in the line sensor 4.
  • the light incident on the line sensor 4 includes the peripheral area of the wafer W where the position detection light is reflected and the wafer W where the position detection light passes. The brightness is different from the outer area.
  • an inclined surface called a bevel is formed in the vicinity of the end portion of the wafer W, and reflected light is scattered at the bevel portion.
  • the luminance of the light incident on the line sensor 4 does not show a step-like change at the edge of the wafer W, and the boundary from the position just before the outer edge of the wafer W is the boundary. A luminance distribution in which the luminance gradually increases over the inner position of the wafer W is obtained.
  • the luminance at the edge position of the wafer W when the luminance continuously changes due to the influence of the bevel portion is previously grasped by a preliminary experiment or the like. Then, the position where the luminance of the incident light exceeds the threshold value is detected as the edge portion of the wafer W with the luminance at the edge position as a threshold value.
  • the luminance of the light incident on the line sensor 4 is lowered at the position where the dot is formed as shown in FIGS. 7B to 7D (corresponding FIG. 6). (Refer to (b) to (d)). Further, as compared with the dot passing position in the state where the dot row has entered the irradiation region (that is, the light receiving region 40) (FIGS. 6B and 6D) (FIGS. 7B and 7D). The amount of decrease in luminance is larger in the dot passing position (FIG. 7C) in the state where the two adjacently arranged dot rows enter (FIG. 6C).
  • the luminance detected by the actual line sensor 4 has the luminance change patterns shown in FIGS. 7B to 7D according to the number of light receiving elements arranged (resolution). Smoothed (refer to the luminance data at the mark detection position in FIGS. 13A to 13C described later). Therefore, in the position detection device 2 of the present example, a position where the luminance change of incident light is increased by passing the mark M through the light irradiation region (a position where the sensitivity for detecting the mark M is high) is set in advance as the mark detection position. And an area where the mark M is formed is detected based on the luminance change at the position.
  • the position detection device 2 of this example detects the position of the end portion of the wafer W and the formation position of the mark M on the back surface of the wafer W based on the luminance data detected by the line sensor 4. be able to.
  • the brightness data (gradation data) of all the pixels of 512 pixels acquired at 6000 points during one rotation of the wafer W and detected by the line sensor 4 are output as image data to the control unit 5 for image analysis.
  • the edge of the wafer W and the mark M are detected by the above-described method, it is necessary to process data as large as 3.1 MB (6000 points ⁇ 512 pixels ⁇ 8 bits (256 gradations) ⁇ 3.1 MB).
  • the system configuration becomes complicated and the apparatus cost increases.
  • the position detection apparatus 2 of the present example uses the line sensor control unit 401 to extract only information necessary for the detection of the edge and the mark M by using the feature of the arrangement position of the edge and the mark M of the wafer W. Then, a process of writing in the memory 52 provided in the control unit 5 is executed. From this viewpoint, the control unit 5 and the line sensor control unit 401 constitute a data processing unit of the position detection device 2. Details of processing executed by the line sensor control unit 401 will be described below.
  • the line sensor control unit 401 performs scanning by the line sensor 4 from the radially outer side to the inner side of the wafer W at each sampling point.
  • the acquired luminance data is compared with a preset threshold value.
  • the address data (0 to 511) of the light receiving element at the position where the magnitude of the luminance data exceeds the threshold value (becomes brighter than the threshold value) is written in the memory 52 of the control unit 5 as 9-bit end position data. .
  • the control unit 5 specifies the position of the end of the wafer W based on the address of each light receiving element and the information indicating where the light receiving element is arranged on the line sensor 4. Then, by aligning the end positions for 6000 points in association with the rotation angle of the wafer W, as shown in FIG. 8, the end of the wafer W when the wafer W held on the vacuum chuck 21 is rotated once. The displacement of the part position can be grasped. Then, the diameter of the wafer W is obtained from the median value of the displacement range of the end position, and the eccentricity between the rotation center of the vacuum chuck 21 and the center of the wafer W is obtained from the difference between the median value and the maximum displacement amount. The amount can be determined.
  • the data amount of these wafers W is 6.8 kB (6000 points ⁇ 9 bits ⁇ 6.8 kB).
  • the diameter and the amount of eccentricity can be specified.
  • the displacement direction of the wafer W held by the vacuum chuck 21 cannot be specified only by the displacement of the end position shown in FIG. Therefore, the orientation of the wafer W on the vacuum chuck 21 is detected using the detection result of the mark M.
  • the mark M is marked on the inner region from a position separated by w [mm] from the end. Has become a standard. Accordingly, the mark detection position at which the mark M is detected is also a position that is closer to the center side by a predetermined distance (w ′ [mm]) from the end of the wafer W. For this reason, as shown in FIG. 8, when the end of the wafer W moves in accordance with the rotation of the wafer W held on the vacuum chuck 21, the mark detection position described above also moves (the broken line in FIG. 8). ).
  • the line sensor control unit 401 of this example includes a preset distance (w ′ [mm]) from the edge of the wafer W specified based on the above-described threshold determination among the luminance data acquired from each light receiving element. ),
  • the luminance data (256 gradations, 8 bits) of the pixel obtained from the light receiving element on which the reflected light from the position close to the center side of the wafer W is incident on the memory 52 of the control unit 5 as the luminance data at the mark detection position.
  • the luminance data is not limited to that obtained from one light receiving element, and for example, an average value of luminance data of pixels obtained from a plurality of adjacent light receiving elements may be used.
  • the control unit 5 grasps the luminance change of the reflected light at the mark detection position as shown in FIG. 9 by arranging the luminance data for 6000 points in association with the rotation angle (position in the rotation direction) of the wafer W. Can do. Then, the position (for example, the crystal direction, the center of the wafer W, the mark, and the mark) where the mark M is formed is the position where the decrease in the brightness of the reflected light is detected (the position where the brightness is lower than the preset brightness). The angle formed by the direction connecting the M formation position can be specified. Based on the angle of the wafer W, the eccentric direction of the wafer W placed on the vacuum chuck 21 can be specified, and the x direction component and the y direction component of the eccentric amount can be specified. At this time, by using the luminance data at the mark detection position specified in advance by the line sensor control unit 401, the orientation of the wafer W can be specified with a data amount of 6 kB (6000 points ⁇ 8 bits ⁇ 6 kB).
  • the wafer W is transferred into the housing of the position detection device 2 by an external wafer transfer mechanism, and the wafer W is placed on the vacuum chuck 21 of the wafer holder 20.
  • the center of the wafer W and the center of rotation of the vacuum chuck 21 coincide with each other, and the mark M formed on the back surface of the wafer W is also in advance. It will be in the state of facing the set direction.
  • the position detection of the wafer W is started (start).
  • the LED light 31 is turned on to start light projection onto the wafer W, and the wafer W is rotated.
  • the vacuum chuck 21 changes the preset direction.
  • the detection operation is started at the facing timing (step S101).
  • the counter is reset (step S102)
  • the brightness of reflected light incident on the line sensor 4 at the detection start position is compared with a threshold value, and the position of the edge of the wafer W is specified (step S103).
  • Luminance data is acquired at a mark detection position close to the center side by a preset distance from the end position (step S104).
  • step S105 the edge position data and the luminance data acquired by these operations are stored in the memory 52 in association with the rotation angle of the wafer W.
  • step S106 the counter is incremented (step S106) and compared with the set sampling number (step S107).
  • step S107 the previous detection operation is performed.
  • step S108 the operations of steps S103 to S106 are repeated to sequentially acquire the edge position data at each sampling point and the luminance data at the mark detection position.
  • step S107 When the wafer W has made at least one rotation and data acquisition has been completed at all sampling points (step S107; YES), the LED light 31 is turned off and the rotation of the wafer W is stopped. Based on the acquired edge position data and luminance data at the mark detection position, the diameter and eccentricity of the wafer W are determined based on the displacement of the edge position shown in FIG. 8 and the luminance change at the mark detection position shown in FIG. The amount and the direction of the wafer W are specified (step S109, end).
  • the position detection device 2 has the following effects.
  • the wafer W on which the alignment mark M composed of a plurality of dots is formed on the back surface is placed on the vacuum chuck 21 and rotated at least once, and the position of the wafer W in the rotation direction and the light irradiated on the back surface of the wafer W are irradiated.
  • the brightness obtained by receiving the light with the line sensor 4 is acquired. Therefore, since the orientation of the wafer can be detected based on this data, the position of the wafer W not having a notch can be detected.
  • the position detection apparatus 2 of the present example has described a method of detecting the position of the edge of the wafer W and the mark M formed on the back surface of the wafer W using light reflected from the back surface of the wafer W.
  • the LED light 31 is arranged on one side of the upper and lower surfaces across the wafer W, and the line sensor 4 is arranged on the other side so that the light emitted from the LED light 31 is detected. May employ a transmitted light system that detects the end position based on the position blocked by the wafer W, or may not detect the end itself.
  • the mark detection position is specified by setting a position that is a predetermined distance from the position where the end portion of the wafer W after the correction of the positional deviation is positioned as a mark detection position.
  • Luminance data may be acquired by the method described above.
  • the light receiving area 40 of the line sensor 4 is set so as to cover the area where the arrangement position of the mark M is considered to change according to the change in the diameter of the wafer W.
  • the mark may be detected by obtaining all the luminance data (gradation data) in the area and analyzing the image. Since the light receiving region 40 is narrower than when detecting the edge of the wafer W, an increase in the amount of image data can be suppressed.
  • the configuration example of the light irradiation mechanism 3 is not limited to that illustrated in FIGS. 1 to 3.
  • a rod lens, a ball lens, a FAC (Fast-Axis Collimating Lens) lens, or the like may be employed instead of the cylindrical planar convex lens (the first cylindrical planar lens 34 and the second cylindrical planar lens 35).
  • the shape of the light irradiation region formed by the light irradiation mechanism 3 is not limited to the case where the light irradiation region is formed in a straight line corresponding to the light receiving region 40 of the line sensor 4.
  • the shape of the light irradiation region May be circular or rectangular.
  • the line sensor 4 is also used in the conventional detection method of the transmitted light type wafer W, it is diverted to a system that executes the detection method of the reflected light type only by changing the configuration of the light irradiation mechanism 3. You can also
  • the number of marks M provided on the back surface of the wafer W is not limited to one, and a plurality of marks M are provided at positions separated from each other in the circumferential direction of the wafer W to improve the reliability of mark M detection. May be.
  • the dot arrangement may be changed variously so that the mark M can be handled as character information.
  • the carrier 102 containing the wafer W to be processed is placed on the placing table 101 provided in the carrier block S1 of the coating and developing apparatus, the wafer W is taken out by the delivery arm C.
  • the taken wafer W is transferred to the transfer module CPL2 in the shelf unit U2 provided in the processing block S2, and transferred into the BCT layer B2 by the transfer arm A2, thereby forming an antireflection film.
  • the wafer W is transferred to the transfer module BF2 of the shelf unit U2, and transferred to the COT layer B3 via the transfer module CPL3 and the transfer arm A3, and a resist film is formed by the liquid processing module 103.
  • a peripheral exposure module 104 for exposing the resist film in advance is provided.
  • the wafer holding unit 20 shown in FIG. 1 is accommodated in a housing, and the wafer holding unit 20 has a position where the wafer W is transferred to and from the transfer arm A3 and a position where the peripheral exposure is performed. It is configured to be movable in the horizontal direction.
  • An exposure unit such as an ultraviolet lamp is provided above the peripheral part of the wafer W moved to the position where the peripheral exposure is performed, and peripheral exposure is performed by irradiating the wafer W with ultraviolet rays.
  • the edge exposure module 104 incorporates the position detection device 2 of the present invention. Using this position detection device 2, the diameter of the wafer W and the amount of eccentricity of the wafer W held on the vacuum chuck 21 are correctly detected. Then, the rotation operation of the wafer W held by the vacuum chuck 21 and the lateral movement operation of the wafer holding unit 20 are combined, and the change in the wafer W diameter according to the result detected by the position detection device 2 By moving the exposure position so that the eccentricity of the wafer W is offset, the correct area can be exposed.
  • the wafer W is transferred to the transfer module BF3 of the shelf unit U2 by the transfer arm A3, and then, for example, the transfer module BF3 ⁇ the transfer arm D1 ⁇ the transfer module CPL4 To the transfer arm A4, and an antireflection film is formed on the resist film in the TCT layer B4. Thereafter, the wafer W is transferred to the transfer module TRS4 by the transfer arm A4. In some cases, the antireflection film is not formed on the resist film, or the wafer W is subjected to a hydrophobic treatment instead of forming the antireflection film below the resist film.
  • the wafer W after the formation of the antireflection film transferred to the transfer module TRS4 is further transferred to the transfer module CPL11, and the transfer module of the shelf unit U3 is provided by the shuttle arm E dedicated for transfer provided in the upper part of the DEV layer B1. It is conveyed to CPL12.
  • the wafer W is taken into the interface block S3 and transferred to the exposure apparatus S4 by the interface arm F, where a predetermined exposure process is performed. Thereafter, the wafer W is placed on the delivery module TRS6 of the shelf unit U3 and returned to the processing block S2.
  • the wafer W returned to the processing block S2 is developed in the DEV layer B1, and then transferred to the heating module provided in the processing module group U1, where the solvent remaining in the resist pattern is removed. . Then, for example, it is transported to the cooling module provided in the processing module group U1 by the transport arm A1 and cooled.
  • the wafer W thus developed is inspected for the film thickness of the resist film, the line width (CD) of the recesses forming the resist pattern, and the width (pitch) of a pair of adjacent uneven portions.
  • Each wafer W is added with pass / fail information of these items, and is used as a judgment material for determining whether or not to execute processing in the subsequent apparatus.
  • the position detection device 2 of the present invention is also incorporated in this inspection apparatus, and the accurate inspection position grasped based on the result of detecting the diameter of the wafer W to be inspected, the eccentric amount of the mounting position, and the orientation of the wafer W. Evaluation of the inspection result associated with is performed.
  • the inspection device is disposed in the shelf unit U2, for example.
  • the wafer W that has been inspected is transferred to the transfer table in the access range of the transfer arm C in the shelf unit U2, and returned to the carrier 102 via the transfer arm C.
  • the position detection device 2 of the present invention is incorporated in the coating and developing device has been described above, but the device provided with the position detection device 2 is not limited to this example.
  • the wafer W is mounted on a single-wafer type liquid processing apparatus that supplies various processing liquids to the wafer W held on the spin chuck and performs liquid processing, or a mounting table provided in a vacuum vessel to form a film.
  • the position detection device 2 may be used for alignment of a wafer W mounted on a spin chuck or a mounting table provided in a vacuum processing apparatus that performs processing, etching processing, or ashing processing.
  • the position detection device 2 detects the position and corrects the positional deviation and the like to the wafer conveyance mechanism.
  • a method of delivering W can be considered.
  • Example 5 A detection test of the mark M formed on the wafer W shown in FIG. 5 was performed by the position detection device 2 having the same configuration as that shown in FIGS. A. Experimental conditions The mark M (0.6 mm ⁇ 0.4 mm) having the structure described with reference to FIGS. 5 and 6 is formed at a position 1.0 mm from the end of the wafer W having a diameter of 300 mm, and the length of the light receiving region is Position detection was performed using a line sensor 4 having 6.4 mm and 512 light receiving elements (CMOS) (pixel number pixel). As shown in FIGS.
  • CMOS light receiving elements
  • the line sensor 4 has a diameter of the wafer W across the peripheral area of the inner wafer W and the outer area of the end with the end of the wafer W interposed therebetween. It arrange
  • the value of the luminance data starts to rise from the position on the outer region side of the edge of the wafer W, and the wafer W side
  • the value of the luminance data increases with the same inclination in (A) to (C). Therefore, it can be understood that the position of the end portion of the wafer W can be accurately grasped by setting an appropriate threshold value.
  • the luminance data indicating the amount of reflected light incident on the line sensor 4 is obtained at the position (A) where the position deviated from the mark M is scanned. There is no decline.
  • the value of the luminance data drops at the position where the mark M is formed.
  • an area where the value of the luminance data is lower than that of the position (B) is formed at the position (C) scanned on the second dot row.
  • the reason why the value of the brightness data is lower at the position (C) than at the position (B) is that the amount of reflected light incident on the line sensor 4 is reduced due to the influence of adjacent dots. It is thought that.
  • the mark detection position is set at an appropriate position. As shown in FIG. 9, it was confirmed that the formation position of the mark M can be detected based on the change in the luminance data at the mark detection position.

Abstract

[Problem] Provided is a wafer position detection apparatus or the like for detecting the position of a wafer that is not provided with a notch. [Solution] In a position detection apparatus (2) for a wafer (W), the wafer (W) having an alignment mark (M) formed on the rear surface is placed on a placing table (21), said mark being configured from a plurality of dots, and rotating mechanisms (22, 23) rotate the placing table (21). A light irradiation mechanism (3) forms a light irradiation region in a region where the mark (M) passes when the placing table (21) is rotated, and a line sensor (4) is provided such that a light receiving region extends toward the outer side from the center section side of the wafer (W), said light receiving region receiving reflection light of light radiated to the light irradiation region. When the wafer (W) is rotated once, data processing units (5, 401) detect wafer direction on the basis of data wherein the position in the rotation direction and luminance obtained by means of the line sensor (4) are associated with each other.

Description

ウエハの位置検出装置、ウエハの位置検出方法、及び記憶媒体Wafer position detection apparatus, wafer position detection method, and storage medium
 本発明は、ウエハの位置を検出する技術に関する。 The present invention relates to a technique for detecting the position of a wafer.
 半導体装置の製造プロセスにおいては、特許文献1などに記載されているように、半導体ウエハ「以下(ウエハという)」を保持台(載置台)に載置して1回転させ、その間に光センサーにより取得したウエハの周縁の径方向の関係データに基づいて、ウエハの向き及び中心位置を検出する位置合わせ装置が用いられている。ウエハの位置合わせが必要な理由としては、シリコンの結晶方向を特定するためにウエハに形成されたノッチやオリエンテーションフラットなどを、プロセス時に所定の向きに揃えておくことにより、プロセス結果の評価の信頼性を高めることなどが挙げられる。また、搬送アームに対するウエハの位置がずれていると、搬送されているウエハが装置の構成部材に衝突したり、あるいはプロセス用の載置台からはみ出したりするなどの不具合が生じることからも、ウエハの中心位置合わせが必要である。さらにまた、ウエハに塗布されたレジスト膜の周縁部を除去するEBR(Edge Bead Remover)処理のように、ウエハの周縁を基準に処理を行う場合は、ウエハの周縁位置に関する情報が必要となる。 In the manufacturing process of a semiconductor device, as described in Patent Document 1 or the like, a semiconductor wafer “hereinafter referred to as (wafer)” is placed on a holding table (mounting table) and rotated once, and an optical sensor is used during the rotation. An alignment device that detects the orientation and center position of the wafer based on the acquired radial relationship data of the peripheral edge of the wafer is used. The reason why wafer alignment is necessary is that the notch and orientation flat formed on the wafer in order to identify the crystal orientation of silicon are aligned in a predetermined direction during the process so that the reliability of process result evaluation can be improved. It is possible to increase the sex. In addition, if the position of the wafer with respect to the transfer arm is shifted, problems such as the wafer being transferred colliding with a component of the apparatus or protruding from the mounting table for the process may occur. Center alignment is required. Furthermore, when processing is performed based on the peripheral edge of the wafer, such as EBR (Edge BeadrRemover) processing for removing the peripheral portion of the resist film applied to the wafer, information on the peripheral position of the wafer is required.
 ところでノッチやオリエンテーションフラットは、ウエハの周縁領域を加工しなければならず、またこれらの切り欠きを設けることによりその領域にデバイスを形成できなくなる。さらには切り欠きを形成する際の加工の影響などにより、切り欠きの周辺領域に形成されたデバイスの特性が悪くなってしまう場合もある。 
 これらの課題に対し、周縁領域に切り欠きを設けないウエハが提案されており、このような場合には、従来の手法では、ウエハの向きを検出することができない。
By the way, in the notch and the orientation flat, the peripheral area of the wafer must be processed, and by providing these notches, a device cannot be formed in that area. Furthermore, the characteristics of the device formed in the peripheral area of the notch may be deteriorated due to the influence of processing when the notch is formed.
To solve these problems, a wafer having no notch in the peripheral region has been proposed. In such a case, the conventional method cannot detect the orientation of the wafer.
特開2012-69590号公報:段落0002JP 2012-69590 A: Paragraph 0002
 本発明はこのような事情の下になされたものであり、その目的は、切り欠きを備えないウエハにおいてウエハの位置を検出するためのウエハの位置検出装置、ウエハの位置検出方法、及びこの方法を記憶した記憶媒体を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made under such circumstances, and an object of the present invention is to provide a wafer position detecting device, a wafer position detecting method, and a method for detecting the position of a wafer in a wafer not having a notch. Is to provide a storage medium storing the.
 本発明のウエハの位置検出装置は、裏面に複数のドットからなる位置合わせ用のマークが形成されたウエハを載置するための載置台と、
 前記載置台を回転させるための回転機構と、
 投光部を備え、前記載置台を回転させたときに、前記ウエハのマークが通過する領域に、前記投光部から投光された光が照射される光照射領域を形成するための光照射機構と、前記光照射機構により前記光照射領域に照射された光の反射光を受光するために設けられ、前記反射光の受光領域が、ウエハの中央部側から外側に向かって伸びるように設けられたラインセンサーと、
 前記載置台を少なくとも1回転させたときに、ウエハの回転方向の位置と前記ラインセンサーにより得られた輝度とを対応付けたデータに基づいてウエハの向きを検出するデータ処理部と、を備えたことを特徴とする。
The wafer position detection apparatus of the present invention has a mounting table for mounting a wafer on which a mark for alignment consisting of a plurality of dots is formed on the back surface;
A rotation mechanism for rotating the mounting table;
Light irradiation for forming a light irradiation region provided with a light projecting unit and irradiated with light projected from the light projecting unit in a region through which the mark of the wafer passes when the mounting table is rotated. And a mechanism for receiving the reflected light of the light irradiated to the light irradiation area by the light irradiation mechanism, and the light receiving area for the reflected light is provided to extend outward from the central portion side of the wafer. Line sensor,
A data processing unit that detects the orientation of the wafer based on data in which the position in the rotation direction of the wafer is associated with the luminance obtained by the line sensor when the mounting table is rotated at least once. It is characterized by that.
 前記ウエハの位置検出装置は、以下の構成を備えていてもよい。
(a)前記マークは、ウエハの中央部から外側に向かって配列された複数のドットを含むこと。 
(b)前記ラインセンサーの受光領域の長さは、前記載置台を回転させたときにウエハの周縁がその光照射領域に位置するように設定されていること。このとき、前記データ処理部は、ラインセンサーにより得られた輝度分布に基づいて、ウエハの回転方向の位置ごとのウエハの周縁の位置を検出するように構成されていること。前記データ処理部は、ウエハの回転方向の位置ごとにウエハの周縁の位置から一定位置だけウエハの中央部に寄った位置に対応する画素の輝度に基づいて前記マークを検出するステップを実行してウエハの向きを検出するように構成されていること。前記画素の輝度に基づいて前記マークを検出するステップは、前記輝度と予め設定された輝度との比較結果により前記マークを検出するステップであること。
(c)前記データ処理部は、前記輝度分布に基づいて、ウエハの向きに加えてウエハの中心位置を検出するように構成されていること。
(d)前記データ処理部は、前記輝度分布に基づいて、ウエハの向きに加えてウエハの大きさを検出するように構成されていること。
(e)前記マークを構成するドットの光反射率は、ウエハの裏面の光反射率よりも小さいこと。 
(f)前記ラインセンサーの光照射領域は、載置台の回転中心を中心とする円の径方向に沿って並んでいること。
The wafer position detection apparatus may have the following configuration.
(A) The mark includes a plurality of dots arranged outward from the center of the wafer.
(B) The length of the light receiving region of the line sensor is set so that the periphery of the wafer is positioned in the light irradiation region when the mounting table is rotated. At this time, the data processing unit is configured to detect the position of the periphery of the wafer for each position in the rotation direction of the wafer based on the luminance distribution obtained by the line sensor. The data processing unit executes a step of detecting the mark based on a luminance of a pixel corresponding to a position close to a central portion of the wafer by a certain position from a peripheral position of the wafer for each position in the rotation direction of the wafer. It is configured to detect the orientation of the wafer. The step of detecting the mark based on the luminance of the pixel is a step of detecting the mark based on a comparison result between the luminance and a preset luminance.
(C) The data processing unit is configured to detect the center position of the wafer in addition to the orientation of the wafer based on the luminance distribution.
(D) The data processing unit is configured to detect the size of the wafer in addition to the orientation of the wafer based on the luminance distribution.
(E) The light reflectance of the dots constituting the mark is smaller than the light reflectance of the back surface of the wafer.
(F) The light irradiation areas of the line sensors are arranged along the radial direction of a circle centered on the rotation center of the mounting table.
 本発明は、裏面に複数のドットからなる位置合わせ用のマークが形成されたウエハを載置台に載置して少なくとも1回転させ、ウエハの回転方向の位置と、ウエハの裏面に照射した光を反射させ、ラインセンサーで受光して得られた輝度とを対応付けたデータを取得している。従って、このデータに基づいてウエハの向きを検出することができるので、切り欠きを備えないウエハの位置を検出することができる。 In the present invention, a wafer on which a positioning mark composed of a plurality of dots is formed on the back surface is placed on a mounting table and rotated at least once, and the position in the rotation direction of the wafer and the light irradiated on the back surface of the wafer are Data is obtained by associating the brightness with the brightness obtained by reflection and light reception by the line sensor. Therefore, since the orientation of the wafer can be detected based on this data, the position of the wafer without a notch can be detected.
発明の実施の形態に係る位置検出装置の構成を示す斜視図である。It is a perspective view which shows the structure of the position detection apparatus which concerns on embodiment of invention. 前記位置検出装置の光照射機構の構成を示す第1の説明図である。It is a 1st explanatory view showing the composition of the light irradiation mechanism of the position detecting device. 前記光照射機構の構成を示す第2の説明図である。It is the 2nd explanatory view showing the composition of the light irradiation mechanism. 前記位置検出装置の電気的構成を示すブロック図である。It is a block diagram which shows the electric constitution of the said position detection apparatus. 前記位置検出装置にて位置検出が行われるウエハの裏面の構成例を示す平面図である。It is a top view which shows the structural example of the back surface of the wafer in which position detection is performed by the said position detection apparatus. 前記位置検出装置に設けられたラインセンサーと、ウエハに設けられた位置合わせ用のマークとの位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the line sensor provided in the said position detection apparatus, and the mark for alignment provided in the wafer. 前記位置関係に応じた、前記ラインセンサーから出力される輝度データの分布を示す説明図である。It is explanatory drawing which shows distribution of the luminance data output from the said line sensor according to the said positional relationship. 前記ラインセンサーにて検出されたウエハの端部の変位を示す説明図である。It is explanatory drawing which shows the displacement of the edge part of the wafer detected by the said line sensor. 前記ウエハのマーク検出位置における輝度データの変化を示す説明図である。It is explanatory drawing which shows the change of the luminance data in the mark detection position of the said wafer. 前記位置検出装置によりウエハの位置を検出する動作の流れを示すフロー図である。It is a flowchart which shows the flow of the operation | movement which detects the position of a wafer with the said position detection apparatus. 前記位置検出装置を備える塗布、現像装置の一例を示す平面図である。It is a top view which shows an example of the application | coating and developing apparatus provided with the said position detection apparatus. 前記塗布、現像装置の縦断側面図である。It is a vertical side view of the coating and developing apparatus. 前記マークが設けられたウエハをラインセンサーによりスキャンしたときの輝度データの分布を示す説明図である。It is explanatory drawing which shows distribution of the brightness | luminance data when the wafer provided with the said mark was scanned with the line sensor.
 図1は、本発明の実施の形態に係るウエハWの位置検出装置2の構成例を示す斜視図である。位置検出装置2には、位置検出が行われるウエハWを回転自在に保持するウエハ保持部20と、このウエハ保持部20に保持されたウエハWの下面に位置検出用の光を照射するための光照射機構3と、光照射機構3から照射され、ウエハWにて反射した光を検出するための受光素子がライン状に並べられて受光領域を形成するラインセンサー4とを備えている。 FIG. 1 is a perspective view showing a configuration example of a position detection apparatus 2 for a wafer W according to an embodiment of the present invention. The position detection device 2 includes a wafer holder 20 that rotatably holds a wafer W on which position detection is performed, and a position detection device that irradiates the lower surface of the wafer W held by the wafer holder 20 with position detection light. A light irradiation mechanism 3 and a line sensor 4 in which light receiving elements for detecting light irradiated from the light irradiation mechanism 3 and reflected by the wafer W are arranged in a line to form a light receiving region are provided.
 ウエハ保持部20は、位置検出が行われるウエハWがその上面側に載置されると共に、当該ウエハWを吸着固定する載置台である真空チャック21と、この真空チャック21を下面側から支持し、鉛直方向に伸びる回転軸22と、この回転軸22の下端側に設けられ、当該真空チャック21を鉛直軸回りに回転させる回転モーター23と、を備えている。 
 真空チャック21及び回転軸22内には不図示の排気路が形成され、真空チャック21の上面に開口する吸引口211を介してウエハWを吸着保持する。
The wafer holding unit 20 places a wafer W on which position detection is to be performed on the upper surface side, and supports a vacuum chuck 21 which is a mounting table for attracting and fixing the wafer W and the vacuum chuck 21 from the lower surface side. The rotary shaft 22 extends in the vertical direction, and the rotary motor 23 is provided on the lower end side of the rotary shaft 22 and rotates the vacuum chuck 21 around the vertical axis.
An exhaust path (not shown) is formed in the vacuum chuck 21 and the rotary shaft 22, and the wafer W is sucked and held through a suction port 211 opened on the upper surface of the vacuum chuck 21.
 回転モーター23は回転軸22の鉛直軸周りの回転角度をエンコーダーによって調節することが可能であり、真空チャック21に載置された状態(ホームポジション)からの回転角度(回転方向の位置)を特定しながらウエハWを回転させることができる。回転モーター23は、図4のブロック図に示すモーター制御部201によって回転軸22の回転角度や回転速度が制御され、例えば一回転(360°)分の回転角度を6000分割して、0.06°刻みで把握することができる。 
 回転軸22や回転モーター23は、真空チャック21を回転させるための回転機構を構成している。
The rotary motor 23 can adjust the rotation angle around the vertical axis of the rotation shaft 22 by an encoder, and specifies the rotation angle (position in the rotation direction) from the state where it is placed on the vacuum chuck 21 (home position). The wafer W can be rotated while moving. The rotation motor 23 is controlled by the motor control unit 201 shown in the block diagram of FIG. 4 so that the rotation angle and the rotation speed of the rotation shaft 22 are controlled. For example, the rotation angle for one rotation (360 °) is divided by 6000 to obtain 0.06. Can be grasped in ° increments.
The rotating shaft 22 and the rotating motor 23 constitute a rotating mechanism for rotating the vacuum chuck 21.
 図2、図3に示した光照射機構3は、位置検出用の光を投光する投光部であるLED(Light Emitting Diode)ライト31と、LEDライト31から投光された光の光路を構成するレンズ32、34、35やハーフミラー33とを備える。 
 LEDライト31は、電源部311から供給された電力により不図示の赤色LEDを発光させ、円形の赤色光を横方向に投光する。電源部311からの電力の給断は、図4に示すLED制御部312を介して実行される。なお、投光部を構成するランプはLEDを用いる種類のものに限定されるものではなく、EL(ElectroLuminescence)ランプや放電ランプを用いてもよい。
The light irradiation mechanism 3 shown in FIGS. 2 and 3 includes an LED (Light Emitting Diode) light 31 that is a light projecting unit that projects light for position detection, and an optical path of light projected from the LED light 31. The lens 32,34,35 and the half mirror 33 which comprise are provided.
The LED light 31 emits a red LED (not shown) with electric power supplied from the power supply unit 311 and projects circular red light in the horizontal direction. The power supply from the power supply unit 311 is cut off via the LED control unit 312 shown in FIG. In addition, the lamp | ramp which comprises a light projection part is not limited to the kind which uses LED, You may use EL (ElectroLuminescence) lamp and a discharge lamp.
 図2、図3に示すように、LEDライト31の投光先には円形のレンズ32が配置され、LEDライト31からの拡散光を円形の平行光に変換する。円形のレンズ32を通過した光の進行方向には、その進行方向を上向きに変換するための平坦な反射面を有するハーフミラー33が配置されている。ハーフミラー33は、円形のレンズ32を通過した平行光が、前記反射面に対して45°の角度で入射するように配置され、入射した光の一部は、その進行方向を上向きに変える。ハーフミラー33は、進行方向が変換された光の照射領域を、ウエハWの周縁領域、及びその外方領域に位置させるように、これらの領域の下方側に配置されている(図1、図3)。 As shown in FIGS. 2 and 3, a circular lens 32 is disposed at the light projection destination of the LED light 31, and the diffused light from the LED light 31 is converted into circular parallel light. A half mirror 33 having a flat reflecting surface for converting the traveling direction upward is disposed in the traveling direction of the light passing through the circular lens 32. The half mirror 33 is arranged so that parallel light that has passed through the circular lens 32 is incident at an angle of 45 ° with respect to the reflection surface, and a part of the incident light changes its traveling direction upward. The half mirror 33 is disposed on the lower side of these regions so that the irradiation region of the light whose traveling direction has been changed is positioned in the peripheral region of the wafer W and the outer region thereof (FIGS. 1 and 2). 3).
 ハーフミラー33の上方側には、ハーフミラー33にて反射された円形の平行光を直線状の焦点へ向けて集光する円筒平面凸レンズ(以下、第1円筒平面レンズ34という)が設けられている。第1円筒平面レンズ34は、当該第1円筒平面レンズ34にて集光された直線状の光照射領域がウエハWの径方向に向けて伸び、且つ、ウエハWの周縁領域からその外方領域に亘って照射されるように(ウエハWの中央部側から外側に向かって伸びるように)配置されている。 A cylindrical plane convex lens (hereinafter referred to as a first cylindrical plane lens 34) that collects the circular parallel light reflected by the half mirror 33 toward a linear focal point is provided above the half mirror 33. Yes. The first cylindrical planar lens 34 has a linear light irradiation region condensed by the first cylindrical planar lens 34 extending in the radial direction of the wafer W, and an outer region from the peripheral region of the wafer W. Are arranged so as to be irradiated over a distance (from the central portion side of the wafer W toward the outside).
 図3に示すように、ウエハWの周縁領域からその外方領域に亘って直線状の光が照射されると、前記外方領域に照射された光はそのまま通過する一方、ウエハWの周縁領域に照射された光は反射する。図2、図3に示すように、この反射光は、第1円筒平面レンズ34を通過して平行光に変換された後、ハーフミラー33に入射してその一部はハーフミラー33の下方側へ通過する。 As shown in FIG. 3, when linear light is irradiated from the peripheral region of the wafer W to the outer region, the light irradiated to the outer region passes as it is, while the peripheral region of the wafer W is passed. The light applied to the light is reflected. As shown in FIGS. 2 and 3, the reflected light passes through the first cylindrical flat lens 34 and is converted into parallel light, and then enters the half mirror 33, and a part thereof is below the half mirror 33. Pass through.
 ハーフミラー33の下方側には、ハーフミラー33を通過した反射光を直線状の焦点へ向けて集光する円筒平面凸レンズ(以下、第2円筒平面レンズ35という)が設けられている。第2円筒平面レンズ35の下方側にはラインセンサー4が配置されており、第2円筒平面レンズ35は当該位置検出装置2の受光素子の配置方向に沿って前記反射光を集光するように配置されている。 A cylindrical planar convex lens (hereinafter referred to as a second cylindrical planar lens 35) that condenses the reflected light that has passed through the half mirror 33 toward a linear focal point is provided below the half mirror 33. The line sensor 4 is disposed below the second cylindrical planar lens 35, and the second cylindrical planar lens 35 condenses the reflected light along the arrangement direction of the light receiving elements of the position detecting device 2. Has been placed.
 ラインセンサー4は、CMOS(Complementary Metal-Oxide Semiconductor)やCCD(Charge Coupled Device)などの受光素子を直線状に並べた受光領域40を備え、受光領域40内の各受光素子に入射した光の輝度(強度)を検出することができる。本例のラインセンサー4は、6.4mmの長さの受光領域40に、受光素子として512個のCMOSを1列に並べた構成となっている。この受光領域40は、真空チャック21に載置され、ラインセンサー4の上方に配置されウエハWの中央部側から外側に向かって伸びるように設けられている。 The line sensor 4 includes a light receiving area 40 in which light receiving elements such as a CMOS (Complementary Metal Oxide Semiconductor) and a CCD (Charge Coupled Device) are arranged in a straight line, and the luminance of light incident on each light receiving element in the light receiving area 40. (Intensity) can be detected. The line sensor 4 of this example has a configuration in which 512 CMOSs as light receiving elements are arranged in a line in a light receiving region 40 having a length of 6.4 mm. The light receiving region 40 is placed on the vacuum chuck 21, is disposed above the line sensor 4, and is provided so as to extend outward from the center side of the wafer W.
 各受光素子に入射した光(画素)の輝度は、図4に示すラインセンサー制御部401にて256階調のディジタルデータ(輝度データ)に変換され、所定のデータ加工が行われた後、ウエハWの位置検出を実行する後述の制御部5側へ向けて出力される。ラインセンサー制御部401から出力されるデータの詳細や、制御部5にて行われるウエハWの位置検出動作については後述する。 The brightness of the light (pixel) incident on each light receiving element is converted into 256 gradation digital data (luminance data) by the line sensor control unit 401 shown in FIG. It is output toward the later-described control unit 5 side that executes W position detection. Details of the data output from the line sensor control unit 401 and the position detection operation of the wafer W performed by the control unit 5 will be described later.
 以上に説明した構成を備えた位置検出装置2は、制御部5を備えている。制御部5はCPU(Central Processing Unit)51と不図示の記憶部とを備え、記憶部には位置検出装置2の作用、即ち、ウエハ保持部20に保持されたウエハWを鉛直軸周りに少なくとも1回転させながらLEDライト31から位置検出用の光を照射し、ラインセンサー4に入射した反射光に基づいてウエハWの位置を特定する動作についてのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカードなどの記憶媒体に格納され、そこからコンピュータにインストールされる。 The position detection device 2 having the configuration described above includes a control unit 5. The control unit 5 includes a CPU (Central Processing Unit) 51 and a storage unit (not shown). The storage unit operates the position detection device 2, that is, the wafer W held by the wafer holding unit 20 at least around the vertical axis. A program in which a group of steps (commands) for the operation of irradiating the position detection light from the LED light 31 while rotating it and specifying the position of the wafer W based on the reflected light incident on the line sensor 4 is recorded. Has been. This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.
 次に、上述の位置検出装置2を用いてウエハWの位置を特定する手法について説明する。図5は本例の位置検出装置2を用いて位置検出が行われるウエハWの構成例を示している。 
 背景技術にて説明したように、従来のウエハWには、周縁領域に切り欠きが形成されている。そして、この切り欠きに検査用の光を通過させ、光センサーを用いて検出して得た光量変化から、ウエハWの向きや中心位置の検出を行う透過光方式の位置検出法を採用している。
Next, a method for specifying the position of the wafer W using the above-described position detection apparatus 2 will be described. FIG. 5 shows a configuration example of the wafer W on which position detection is performed using the position detection apparatus 2 of this example.
As described in the background art, the conventional wafer W has a notch formed in the peripheral region. Then, a position detection method using a transmitted light method is adopted that detects the orientation and center position of the wafer W from a change in the amount of light obtained by passing light for inspection through this notch and detecting it using an optical sensor. Yes.
 これに対して図5に示したウエハWの外周領域には、切り欠きが形成されておらず、その輪郭形状は円形となっている。一方でウエハWの下面側には、位置合わせ用のマークMが形成されている。 
 マークMは、既述の切り欠き(オリエンテーションフラットやノッチ)に替えて形成されるものであり、例えばレーザー刻印によりウエハWの下面を浅く削ることによって形成されている。
On the other hand, notches are not formed in the outer peripheral area of the wafer W shown in FIG. 5, and the contour shape is circular. On the other hand, an alignment mark M is formed on the lower surface side of the wafer W.
The mark M is formed in place of the above-described notch (orientation flat or notch), and is formed by, for example, shaving the lower surface of the wafer W shallowly by laser marking.
 図5、図6に示すように、本例のマークMは、深さ数十μm、直径100μm程度のドットを、数百μm程度のピッチで複数個並べて配置したドットパターンによって構成されている。ドットパターンの構成に特段の限定はないが、本例では4つのドットをウエハWの中央部から外側に向かって径方向に配列したドット列を形成し、さらに3本のドット列をウエハWの周方向に向けて互いに隣り合うように並べることにより例えば0.6mm×0.4mmの長方形のマークMを構成している。 As shown in FIGS. 5 and 6, the mark M in this example is configured by a dot pattern in which a plurality of dots having a depth of several tens of μm and a diameter of about 100 μm are arranged at a pitch of about several hundreds of μm. Although there is no particular limitation on the configuration of the dot pattern, in this example, a dot row in which four dots are arranged radially from the center of the wafer W toward the outside is formed, and three more dot rows are formed on the wafer W. For example, a rectangular mark M having a size of 0.6 mm × 0.4 mm is formed by arranging them adjacent to each other in the circumferential direction.
 ウエハWのスライシングを行う前のインゴットの周縁領域を大幅に切削加工して特異な形状の切り欠きを形成する場合と比較して、ウエハWの裏面を浅く削ってマークMを形成する手法は、ウエハWに加わるストレスが小さく、特異形状も形成されない。このため、従来、切り欠きの周辺に形成した半導体装置に発生していた特性の低下を抑えることができる。 Compared with the case where the peripheral region of the ingot before slicing of the wafer W is significantly cut to form a notch with a unique shape, the method of forming the mark M by shallowly cutting the back surface of the wafer W is as follows: The stress applied to the wafer W is small and no unique shape is formed. For this reason, it is possible to suppress the deterioration in characteristics that has conventionally occurred in a semiconductor device formed around the notch.
 ここで例えば直径300mmや450mmのウエハWの場合、マークMや当該マークMを構成するドットはウエハWの曲率に対して十分に小さい。このためラインセンサー4の解像度(512pixel/6.4mm)で見たとき、図6に示すようにマークMのドット列はウエハWの端部(周縁の位置)からほぼ等距離(w[mm])だけ離れた位置から形成が開始され、またドット列同士は互いに平行に配置されているものとして検出される。
 本例の位置検出装置2は、上述のマークMを検出することによりウエハWの向きを検出する。
Here, for example, in the case of a wafer W having a diameter of 300 mm or 450 mm, the mark M and the dots constituting the mark M are sufficiently small with respect to the curvature of the wafer W. For this reason, when viewed at the resolution of the line sensor 4 (512 pixels / 6.4 mm), the dot rows of the mark M are substantially equidistant (w [mm]) from the end (periphery position) of the wafer W as shown in FIG. ) Are formed at positions that are separated from each other, and the dot rows are detected as being arranged in parallel to each other.
The position detection apparatus 2 of this example detects the orientation of the wafer W by detecting the above-described mark M.
 図6(a)~(e)は、光照射機構3から位置検出用の光を照射しながらウエハWを回転させとき、受光素子が一列に配列されたラインセンサー4の受光領域40とマークMとの位置関係の時間変化を示している。ウエハWの周縁領域からその外方領域に亘って、真空チャック21の回転中心を中心とする円の径方向(前記回転中心とウエハWの中心とが一致して載置されている場合には、ウエハWの径方向)に伸びる直線状の光照射領域を形成し、その反射光をラインセンサー4にて検出すると、ウエハWの下面にて反射した反射光が検出される領域と、当該反射光の検出が行われない領域との境がウエハWの端部(ウエハWの周縁の位置)として特定される。また、前記直線状の光の照射領域(図6(a)~(e)に示す受光領域40に対応している)をマークMが通過すると、光の散乱により反射光の輝度が低下し、マークMが通過した位置に対応する受光素子にて検出される輝度が低下する。即ち、マークMを構成するドットの光反射率は、ウエハWの裏面の光反射率よりも小さくなっている。 6A to 6E show the light receiving region 40 and the mark M of the line sensor 4 in which the light receiving elements are arranged in a line when the wafer W is rotated while irradiating the position detecting light from the light irradiation mechanism 3. FIG. The positional change with respect to time is shown. A radial direction of a circle centering on the rotation center of the vacuum chuck 21 from the peripheral region to the outer region of the wafer W (when the rotation center and the center of the wafer W are placed in alignment) Forming a linear light irradiation region extending in the radial direction of the wafer W and detecting the reflected light by the line sensor 4, the region where the reflected light reflected from the lower surface of the wafer W is detected, and the reflection The boundary with the region where no light is detected is specified as the end of the wafer W (the position of the periphery of the wafer W). Further, when the mark M passes through the linear light irradiation region (corresponding to the light receiving region 40 shown in FIGS. 6A to 6E), the brightness of reflected light decreases due to light scattering, and The brightness detected by the light receiving element corresponding to the position where the mark M has passed decreases. That is, the light reflectance of the dots constituting the mark M is smaller than the light reflectance of the back surface of the wafer W.
 図7(a)~(e)は、図6(a)~(e)に示した各位置において、ラインセンサー4に入射する光の輝度分布を模式的に示している。各図の横軸はラインセンサー4に入射した光の輝度を示し、縦軸はラインセンサー4に設けられている受光素子の番地(0~511番)を示している。 
 図7(a)~(e)に示すように、ラインセンサー4に入射する光は、位置検出用の光が反射するウエハWの周縁領域と、位置検出用の光が通過してしまうウエハWの外方領域とで輝度が異なっている。一方で、ウエハWの端部付近には、ベベルと呼ばれる傾斜面が形成されており、ベベル部では反射光が散乱してしまう。このため、ラインセンサー4に入射する光の輝度は、ウエハWの端部を境としたステップ状の変化を見せず、ウエハWの外方の端部手前の位置から、当該端部を境としたウエハWの内側の位置に亘って、徐々に輝度が高くなる輝度分布を呈する。
FIGS. 7A to 7E schematically show the luminance distribution of light incident on the line sensor 4 at each position shown in FIGS. 6A to 6E. In each figure, the horizontal axis indicates the luminance of light incident on the line sensor 4, and the vertical axis indicates the address (0 to 511) of the light receiving element provided in the line sensor 4.
As shown in FIGS. 7A to 7E, the light incident on the line sensor 4 includes the peripheral area of the wafer W where the position detection light is reflected and the wafer W where the position detection light passes. The brightness is different from the outer area. On the other hand, an inclined surface called a bevel is formed in the vicinity of the end portion of the wafer W, and reflected light is scattered at the bevel portion. For this reason, the luminance of the light incident on the line sensor 4 does not show a step-like change at the edge of the wafer W, and the boundary from the position just before the outer edge of the wafer W is the boundary. A luminance distribution in which the luminance gradually increases over the inner position of the wafer W is obtained.
 そこで本例の位置検出装置2は、ベベル部の影響で輝度が連続的に変化する場合におけるウエハWの端部位置での輝度が、予備実験などにより予め把握されている。そして、この端部位置での輝度をしきい値として入射光の輝度がしきい値を上回る位置をウエハWの端部として検出する。 Therefore, in the position detection apparatus 2 of the present example, the luminance at the edge position of the wafer W when the luminance continuously changes due to the influence of the bevel portion is previously grasped by a preliminary experiment or the like. Then, the position where the luminance of the incident light exceeds the threshold value is detected as the edge portion of the wafer W with the luminance at the edge position as a threshold value.
 またマークMの形成されている領域では、図7(b)~(d)に示すようにドットが形成されている位置にてラインセンサー4に入射する光の輝度が低下する(対応する図6(b)~(d)参照)。また、照射領域(即ち受光領域40)内にドット列が1列進入した状態(図6(b)、(d))におけるドットの通過位置に比べて(図7(b)、(d))、隣り合って配置された2列分のドット列が進入した状態(図6(c))におけるドット通過位置(図7(c))の方が輝度の低下量が大きくなる。 In the region where the mark M is formed, the luminance of the light incident on the line sensor 4 is lowered at the position where the dot is formed as shown in FIGS. 7B to 7D (corresponding FIG. 6). (Refer to (b) to (d)). Further, as compared with the dot passing position in the state where the dot row has entered the irradiation region (that is, the light receiving region 40) (FIGS. 6B and 6D) (FIGS. 7B and 7D). The amount of decrease in luminance is larger in the dot passing position (FIG. 7C) in the state where the two adjacently arranged dot rows enter (FIG. 6C).
 一方で、後述する実施例に示すように、実際のラインセンサー4で検出される輝度は、受光素子の配置数(解像度)に応じて図7(b)~(d)に示す輝度変化パターンが平滑化される(後述する図13の(A)~(C)におけるマーク検出位置の輝度データ参照)。 
 そこで、本例の位置検出装置2においては、マークMが光の照射領域を通過することにより、入射光の輝度変化が大きくなる位置(マークMを検出する感度が高い位置)を予めマーク検出位置として設定し、当該位置における輝度変化に基づいてマークMが形成されている領域を検出する。
On the other hand, as shown in the embodiments described later, the luminance detected by the actual line sensor 4 has the luminance change patterns shown in FIGS. 7B to 7D according to the number of light receiving elements arranged (resolution). Smoothed (refer to the luminance data at the mark detection position in FIGS. 13A to 13C described later).
Therefore, in the position detection device 2 of the present example, a position where the luminance change of incident light is increased by passing the mark M through the light irradiation region (a position where the sensitivity for detecting the mark M is high) is set in advance as the mark detection position. And an area where the mark M is formed is detected based on the luminance change at the position.
 上述の手法により、本例の位置検出装置2は、ラインセンサー4にて検出された輝度データに基づき、ウエハWの端部の位置と、ウエハWの裏面におけるマークMの形成位置とを検出することができる。 
 しかしながら、ウエハWを1回転させる間に6000ポイントで取得され、ラインセンサー4にて検出された512pixelの全ての画素の輝度データ(階調データ)を画像データとして制御部5に出力し、画像解析により上述の手法でウエハWの端部やマークMの検出を行うと、3.1MB(6000ポイント×512pixel×8Bit(256階調)≒3.1MB)もの大きなデータを処理する必要が生じる。この結果、システム構成が複雑になり、装置コストの上昇につながってしまう。
With the above-described method, the position detection device 2 of this example detects the position of the end portion of the wafer W and the formation position of the mark M on the back surface of the wafer W based on the luminance data detected by the line sensor 4. be able to.
However, the brightness data (gradation data) of all the pixels of 512 pixels acquired at 6000 points during one rotation of the wafer W and detected by the line sensor 4 are output as image data to the control unit 5 for image analysis. Thus, when the edge of the wafer W and the mark M are detected by the above-described method, it is necessary to process data as large as 3.1 MB (6000 points × 512 pixels × 8 bits (256 gradations) ≈3.1 MB). As a result, the system configuration becomes complicated and the apparatus cost increases.
 そこで本例の位置検出装置2は、ウエハWの端部やマークMの配置位置の特徴を利用して、これら端部やマークMの検出に必要な情報だけをラインセンサー制御部401にて取り出し、制御部5に設けられたメモリ52に書き込む処理を実行する。この観点において、制御部5やラインセンサー制御部401は、位置検出装置2のデータ処理部を構成している。 
 以下、ラインセンサー制御部401にて実行される処理の詳細について説明する。
In view of this, the position detection apparatus 2 of the present example uses the line sensor control unit 401 to extract only information necessary for the detection of the edge and the mark M by using the feature of the arrangement position of the edge and the mark M of the wafer W. Then, a process of writing in the memory 52 provided in the control unit 5 is executed. From this viewpoint, the control unit 5 and the line sensor control unit 401 constitute a data processing unit of the position detection device 2.
Details of processing executed by the line sensor control unit 401 will be described below.
 初めに、ウエハWの端部の位置を特定する手法につき、ラインセンサー制御部401は各サンプリングポイントにてウエハWの径方向外側から内側へ向けてラインセンサー4によるスキャンを行い、各受光素子から取得した輝度データを予め設定しておいたしきい値と比較する。そして、輝度データの大きさがしきい値を超えた(しきい値より明るくなった)位置における受光素子の番地データ(0~511番)を9Bitの端部位置データとして制御部5のメモリ52へ書き込む。 First, for the method of specifying the position of the edge of the wafer W, the line sensor control unit 401 performs scanning by the line sensor 4 from the radially outer side to the inner side of the wafer W at each sampling point. The acquired luminance data is compared with a preset threshold value. Then, the address data (0 to 511) of the light receiving element at the position where the magnitude of the luminance data exceeds the threshold value (becomes brighter than the threshold value) is written in the memory 52 of the control unit 5 as 9-bit end position data. .
 制御部5は、各受光素子の番地と、当該受光素子がラインセンサー4のどの位置に配置されているものであるかを示す情報に基づいてウエハWの端部の位置を特定する。そして、6000ポイント分の端部位置をウエハWの回転角度と対応付けて並べることにより、図8に示すように真空チャック21上に保持されたウエハWを1回転させたときのウエハWの端部位置の変位を把握することができる。そして、この端部位置の変位範囲の中央値から、ウエハWの直径が求められ、前記中央値と最大の変位量との差分から真空チャック21の回転中心とウエハWの中心との間の偏心量を求めることができる。このとき、予めラインセンサー制御部401にてしきい値判定が行われた端部位置データを利用することにより、6.8kB(6000ポイント×9Bit≒6.8kB)のデータ量でこれらウエハWの直径や偏心量を特定することができる。 The control unit 5 specifies the position of the end of the wafer W based on the address of each light receiving element and the information indicating where the light receiving element is arranged on the line sensor 4. Then, by aligning the end positions for 6000 points in association with the rotation angle of the wafer W, as shown in FIG. 8, the end of the wafer W when the wafer W held on the vacuum chuck 21 is rotated once. The displacement of the part position can be grasped. Then, the diameter of the wafer W is obtained from the median value of the displacement range of the end position, and the eccentricity between the rotation center of the vacuum chuck 21 and the center of the wafer W is obtained from the difference between the median value and the maximum displacement amount. The amount can be determined. At this time, by using the edge position data for which the threshold determination has been performed in advance by the line sensor control unit 401, the data amount of these wafers W is 6.8 kB (6000 points × 9 bits≈6.8 kB). The diameter and the amount of eccentricity can be specified.
 しかしながら図8に示す端部位置の変位だけでは、真空チャック21に保持されたウエハWのずれ方向を特定することができない。そこでマークMの検出結果を利用した、真空チャック21上のウエハWの向きの検出を行う。
 ここで図5、図6を用いて説明したように、位置検出装置2にて位置検出が行われるウエハWにおいては、その端部からw[mm]だけ離れた位置から内側の領域にマークMが形成される規格となっている。従って、マークMの検出が行われるマーク検出位置もウエハWの端部から所定の距離(w’[mm])だけ中央部側に寄った位置となる。このため、図8に示すように真空チャック21上に保持されたウエハWの回転に応じてウエハWの端部が移動すると、既述のマーク検出位置も移動することとなる(図8の破線)。
However, the displacement direction of the wafer W held by the vacuum chuck 21 cannot be specified only by the displacement of the end position shown in FIG. Therefore, the orientation of the wafer W on the vacuum chuck 21 is detected using the detection result of the mark M.
Here, as described with reference to FIGS. 5 and 6, in the wafer W whose position is detected by the position detection device 2, the mark M is marked on the inner region from a position separated by w [mm] from the end. Has become a standard. Accordingly, the mark detection position at which the mark M is detected is also a position that is closer to the center side by a predetermined distance (w ′ [mm]) from the end of the wafer W. For this reason, as shown in FIG. 8, when the end of the wafer W moves in accordance with the rotation of the wafer W held on the vacuum chuck 21, the mark detection position described above also moves (the broken line in FIG. 8). ).
 そこで本例のラインセンサー制御部401は、各受光素子から取得した輝度データのうち、既述のしきい値判定に基づいて特定したウエハWの端部から予め設定した距離(w’[mm])だけウエハWの中央部側へ寄った位置からの反射光が入射した受光素子から得た画素の輝度データ(256階調、8Bit)をマーク検出位置における輝度データとして制御部5のメモリ52へ書き込む。なお、この輝度データは、1個の受光素子から得られたものに限定されるものではなく、例えば隣り合う複数個の受光素子から得られた画素の輝度データの平均値を用いてもよい。 Therefore, the line sensor control unit 401 of this example includes a preset distance (w ′ [mm]) from the edge of the wafer W specified based on the above-described threshold determination among the luminance data acquired from each light receiving element. ), The luminance data (256 gradations, 8 bits) of the pixel obtained from the light receiving element on which the reflected light from the position close to the center side of the wafer W is incident on the memory 52 of the control unit 5 as the luminance data at the mark detection position. Write. The luminance data is not limited to that obtained from one light receiving element, and for example, an average value of luminance data of pixels obtained from a plurality of adjacent light receiving elements may be used.
 制御部5は、6000ポイント分の輝度データをウエハWの回転角度(回転方向の位置)と対応付けて並べることにより、図9に示すようにマーク検出位置における反射光の輝度変化を把握することができる。そして反射光の輝度の低下が検出された位置(予め設定された輝度よりも輝度が低くなった位置)をマークMの形成位置としてウエハWの向き(例えば結晶方向と、ウエハWの中心とマークM形成位置とを結ぶ方向とが成す角度)を特定することができる。このウエハWの角度に基づいて、真空チャック21上に載置されたウエハWの偏心方向を特定し、前記偏心量のx方向成分やy方向成分を特定することができる。このとき、予めラインセンサー制御部401にて特定したマーク検出位置における輝度データを利用することにより、6kB(6000ポイント×8Bit≒6kB)のデータ量でウエハWの向きを特定することができる。 The control unit 5 grasps the luminance change of the reflected light at the mark detection position as shown in FIG. 9 by arranging the luminance data for 6000 points in association with the rotation angle (position in the rotation direction) of the wafer W. Can do. Then, the position (for example, the crystal direction, the center of the wafer W, the mark, and the mark) where the mark M is formed is the position where the decrease in the brightness of the reflected light is detected (the position where the brightness is lower than the preset brightness). The angle formed by the direction connecting the M formation position can be specified. Based on the angle of the wafer W, the eccentric direction of the wafer W placed on the vacuum chuck 21 can be specified, and the x direction component and the y direction component of the eccentric amount can be specified. At this time, by using the luminance data at the mark detection position specified in advance by the line sensor control unit 401, the orientation of the wafer W can be specified with a data amount of 6 kB (6000 points × 8 bits≈6 kB).
 マーク検出位置における輝度データのみを選択的に取得することにより、例えばウエハWの裏面にパーティクルなどが付着していても、パーティクルの付着に起因する輝度データの変化までも取り込んでしまう確率が低く、マークMとパーティクルの識別の必要性が少ない。また、複数のドットを規則的に配列してマークMを形成することにより、図9の拡大図中に示すように、特異な輝度変化のパターンを形成させることができる。この結果、パーティクルの付着やデポジット膜などの影響による輝度データの変動の影響を取り除いてマークMからの反射による輝度データの変化を確実に識別することができる。 By selectively acquiring only the luminance data at the mark detection position, for example, even if particles or the like are attached to the back surface of the wafer W, there is a low probability that even changes in luminance data due to the adhesion of particles will be captured, There is little need to distinguish the mark M from the particles. Further, by forming a mark M by regularly arranging a plurality of dots, a unique luminance change pattern can be formed as shown in the enlarged view of FIG. As a result, it is possible to reliably identify the change in the luminance data due to the reflection from the mark M by removing the influence of the fluctuation of the luminance data due to the influence of particle adhesion, deposit film, and the like.
 上述の手法によれば、ウエハWの周縁領域及びその外方領域をスキャンして得た3.1MBの輝度データ(階調データ)と比較して、約0.4%相当のデータ量(端部位置データ(6.8kB)+マーク検出位置の輝度データ(6kB)=12.8kB)にて、真空チャック21上のウエハWの直径、偏心量、ウエハWの向きを特定することが可能となる。
 以上に説明した手法を利用してウエハWの位置検出を行う位置検出装置2の動作について図10のフロー図を参照しながら説明する。 
According to the above-described method, compared with the 3.1 MB luminance data (gradation data) obtained by scanning the peripheral area and the outer area of the wafer W, the data amount (edge) is about 0.4%. It is possible to specify the diameter, the amount of eccentricity, and the orientation of the wafer W on the vacuum chuck 21 by the position position data (6.8 kB) + the luminance data (6 kB) = 12.8 kB of the mark detection position. Become.
The operation of the position detection apparatus 2 that detects the position of the wafer W using the method described above will be described with reference to the flowchart of FIG.
 初めに、外部のウエハ搬送機構によりウエハWが位置検出装置2の筐体内に搬送され、ウエハWがウエハ保持部20の真空チャック21上に載置される。このとき、真空チャック21上の正しい位置にウエハWが載置された場合には、ウエハWの中心と真空チャック21の回転中心とが一致し、ウエハWの裏面に形成されたマークMも予め設定された方向を向いた状態となる。しかる後、ウエハ搬送機構が筐体内から退避したらウエハWの位置検出を開始する(スタート)。 First, the wafer W is transferred into the housing of the position detection device 2 by an external wafer transfer mechanism, and the wafer W is placed on the vacuum chuck 21 of the wafer holder 20. At this time, when the wafer W is placed at the correct position on the vacuum chuck 21, the center of the wafer W and the center of rotation of the vacuum chuck 21 coincide with each other, and the mark M formed on the back surface of the wafer W is also in advance. It will be in the state of facing the set direction. Thereafter, when the wafer transfer mechanism is retracted from the housing, the position detection of the wafer W is started (start).
 次いで、LEDライト31を点灯してウエハWへの投光を開始すると共に、ウエハWを回転させ、回転速度が設定速度に到達して等速となったら、真空チャック21が予め設定した方向を向いたタイミングで検出動作を開始する(ステップS101)。
 はじめにカウンタをリセットし(ステップS102)、検出開始位置にてラインセンサー4に入射する反射光の輝度をしきい値と比較しウエハWの端部の位置を特定し(ステップS103)、特定された端部の位置から予め設定した距離だけ中央部側へ寄ったマーク検出位置における輝度データを取得する(ステップS104)。
Next, the LED light 31 is turned on to start light projection onto the wafer W, and the wafer W is rotated. When the rotation speed reaches the set speed and becomes constant, the vacuum chuck 21 changes the preset direction. The detection operation is started at the facing timing (step S101).
First, the counter is reset (step S102), the brightness of reflected light incident on the line sensor 4 at the detection start position is compared with a threshold value, and the position of the edge of the wafer W is specified (step S103). Luminance data is acquired at a mark detection position close to the center side by a preset distance from the end position (step S104).
 次に、これらの動作で取得した端部位置データ及び輝度データを、各々ウエハWの回転角度と対応付けてメモリ52に記憶する(ステップS105)。  次いでカウンタをインクリメントして(ステップS106)、設定されたサンプリング数との比較を行い(ステップS107)、全測定点の測定が完了していない場合には(ステップS107;NO)、前回の検出動作時から所定時間だけ経過後(ステップS108)、ステップS103~106の動作を繰り返し、各サンプリングポイントにおける端部位置データ及びマーク検出位置における輝度データを順次、取得する。 Next, the edge position data and the luminance data acquired by these operations are stored in the memory 52 in association with the rotation angle of the wafer W (step S105). Next, the counter is incremented (step S106) and compared with the set sampling number (step S107). When measurement of all measurement points is not completed (step S107; NO), the previous detection operation is performed. After a lapse of a predetermined time from the time (step S108), the operations of steps S103 to S106 are repeated to sequentially acquire the edge position data at each sampling point and the luminance data at the mark detection position.
 ウエハWが少なくとも1回転し、全てのサンプリングポイントでデータ取得を終えたら(ステップS107;YES)、LEDライト31を消灯し、ウエハWの回転を停止する。そして、取得した端部位置データ及びマーク検出位置における輝度データに基づき、図8に示した端部位置の変位や、図9に示したマーク検出位置における輝度変化に基づき、ウエハWの直径や偏心量、ウエハWの向きを特定する(ステップS109、エンド)。 When the wafer W has made at least one rotation and data acquisition has been completed at all sampling points (step S107; YES), the LED light 31 is turned off and the rotation of the wafer W is stopped. Based on the acquired edge position data and luminance data at the mark detection position, the diameter and eccentricity of the wafer W are determined based on the displacement of the edge position shown in FIG. 8 and the luminance change at the mark detection position shown in FIG. The amount and the direction of the wafer W are specified (step S109, end).
 本実施の形態に係る位置検出装置2によれば以下の効果がある。裏面に複数のドットからなる位置合わせ用のマークMが形成されたウエハWを真空チャック21に載置して少なくとも1回転させ、ウエハWの回転方向の位置と、ウエハWの裏面に照射した光を反射させ、ラインセンサー4で受光して得られた輝度とを対応付けたデータを取得している。従って、このデータに基づいてウエハの向きを検出することができるので、切り欠きを備えないウエハWの位置を検出することができる。 The position detection device 2 according to the present embodiment has the following effects. The wafer W on which the alignment mark M composed of a plurality of dots is formed on the back surface is placed on the vacuum chuck 21 and rotated at least once, and the position of the wafer W in the rotation direction and the light irradiated on the back surface of the wafer W are irradiated. And the brightness obtained by receiving the light with the line sensor 4 is acquired. Therefore, since the orientation of the wafer can be detected based on this data, the position of the wafer W not having a notch can be detected.
 ここで本例の位置検出装置2は、ウエハWの裏面にて反射した光を利用してウエハWの端部の位置、及びウエハWの裏面に形成されたマークMを検出する手法について説明した。但し、端部位置の検出については従来のように、ウエハWを挟んで上下面の一方側にLEDライト31を配置し、他方側にラインセンサー4を配置して、LEDライト31から照射した光がウエハWにて遮られた位置に基づいて端部位置を検出する透過光方式を採用してもよいし、端部の検出自体を行わなくてもよい。例えば、真空チャック21上に載置されたウエハWを側面から押さえつけて、x方向やy方向への位置ずれを矯正する治具が位置検出装置2内に設けられている場合などには、マークMの検出によるウエハWの向きの特定のみを行えばよい。 Here, the position detection apparatus 2 of the present example has described a method of detecting the position of the edge of the wafer W and the mark M formed on the back surface of the wafer W using light reflected from the back surface of the wafer W. . However, as for detection of the end position, the LED light 31 is arranged on one side of the upper and lower surfaces across the wafer W, and the line sensor 4 is arranged on the other side so that the light emitted from the LED light 31 is detected. May employ a transmitted light system that detects the end position based on the position blocked by the wafer W, or may not detect the end itself. For example, when a jig for pressing the wafer W placed on the vacuum chuck 21 from the side surface and correcting the positional deviation in the x direction or the y direction is provided in the position detection device 2, It is only necessary to specify the orientation of the wafer W by detecting M.
 この場合において、マーク検出位置の特定は、位置ずれの矯正が行われた後のウエハWの端部が位置すると想定される位置から予め設定された距離だけ内側の位置をマーク検出位置として、既述の手法により輝度データを取得してもよい。また、マークMの検出を行うだけの場合には、ウエハWの直径の変化に応じてマークMの配置位置が変化すると考えられる領域をカバーするようにラインセンサー4の受光領域40を設定し、当該領域内の輝度データ(階調データ)を全て取得して画像解析によりマークを検出してもよい。ウエハWの端部を検出する場合に比べて受光領域40が狭いので、画像データのデータ量の増大を抑えることができる。 In this case, the mark detection position is specified by setting a position that is a predetermined distance from the position where the end portion of the wafer W after the correction of the positional deviation is positioned as a mark detection position. Luminance data may be acquired by the method described above. When only the mark M is detected, the light receiving area 40 of the line sensor 4 is set so as to cover the area where the arrangement position of the mark M is considered to change according to the change in the diameter of the wafer W. The mark may be detected by obtaining all the luminance data (gradation data) in the area and analyzing the image. Since the light receiving region 40 is narrower than when detecting the edge of the wafer W, an increase in the amount of image data can be suppressed.
 ここで、光照射機構3の構成例は図1~図3に例示したものに限られない。例えば円筒平面凸レンズ(第1円筒平面レンズ34、第2円筒平面レンズ35)に替えて、ロッドレンズやボールレンズ、FAC(Fast-Axis Collimating Lens)レンズなどを採用してもよい。さらに、光照射機構3により形成される光照射領域の形状は、ラインセンサー4の受光領域40に対応させて直線状とする場合に限定されない。ウエハWの中央部側から外側に向かって直線状に伸びるように配置された受光領域40に向けて、ウエハWからの反射光を反射できるように構成されていれば、例えば光照射領域の形状は円形や矩形であってもよい。
 また、従来の透過光方式のウエハWの検出法においてもラインセンサー4が用いられていることから、光照射機構3の構成を変更するだけで反射光方式の検出法を実行するシステムに転用することもできる。
Here, the configuration example of the light irradiation mechanism 3 is not limited to that illustrated in FIGS. 1 to 3. For example, a rod lens, a ball lens, a FAC (Fast-Axis Collimating Lens) lens, or the like may be employed instead of the cylindrical planar convex lens (the first cylindrical planar lens 34 and the second cylindrical planar lens 35). Furthermore, the shape of the light irradiation region formed by the light irradiation mechanism 3 is not limited to the case where the light irradiation region is formed in a straight line corresponding to the light receiving region 40 of the line sensor 4. If the light reflected from the wafer W can be reflected toward the light receiving region 40 arranged so as to extend linearly outward from the center side of the wafer W, for example, the shape of the light irradiation region May be circular or rectangular.
In addition, since the line sensor 4 is also used in the conventional detection method of the transmitted light type wafer W, it is diverted to a system that executes the detection method of the reflected light type only by changing the configuration of the light irradiation mechanism 3. You can also
 さらに、ウエハWの裏面に設けるマークMの数も1つの場合に限定されるものでなく、ウエハWの周方向に互いに離れた位置に複数個設けてマークM検出の確実性を向上させるようにしてもよい。マークM自体の形状についてもドットの配列を種々変化させて、マークMを文字情報などとして取り扱うことができるようにしてもよい。 Further, the number of marks M provided on the back surface of the wafer W is not limited to one, and a plurality of marks M are provided at positions separated from each other in the circumferential direction of the wafer W to improve the reliability of mark M detection. May be. Regarding the shape of the mark M itself, the dot arrangement may be changed variously so that the mark M can be handled as character information.
 続いて、上述の位置検出装置2を組み込んだ塗布、現像装置の例について図11、図12を参照しながら簡単に説明する。 
 処理対象のウエハWを収容したキャリア102が塗布、現像装置のキャリアブロックS1に設けられた載置台101に載置されると、受け渡しアームCによってウエハWが取り出される。取り出されたウエハWは、処理ブロックS2に設けられた棚ユニットU2内の受け渡しモジュールCPL2に受け渡され、搬送アームA2によってBCT層B2に搬入されて、反射防止膜が形成される。次いで、ウエハWは、棚ユニットU2の受け渡しモジュールBF2に受け渡され、受け渡しモジュールCPL3及び搬送アームA3を介してCOT層B3に搬入され、液処理モジュール103によりレジスト膜が形成される。
Next, an example of a coating and developing apparatus incorporating the above-described position detection device 2 will be briefly described with reference to FIGS.
When the carrier 102 containing the wafer W to be processed is placed on the placing table 101 provided in the carrier block S1 of the coating and developing apparatus, the wafer W is taken out by the delivery arm C. The taken wafer W is transferred to the transfer module CPL2 in the shelf unit U2 provided in the processing block S2, and transferred into the BCT layer B2 by the transfer arm A2, thereby forming an antireflection film. Next, the wafer W is transferred to the transfer module BF2 of the shelf unit U2, and transferred to the COT layer B3 via the transfer module CPL3 and the transfer arm A3, and a resist film is formed by the liquid processing module 103.
 COT層B3内には、レジスト膜を現像した際に、ウエハWのパターン形成領域の外側である周縁部のレジスト膜が残らないようにするため、露光装置に搬入される前に当該周縁部のレジスト膜を予め露光しておく周縁露光モジュール104が設けられる。周縁露光モジュール104は、図1に示したウエハ保持部20が筐体内に収容され、ウエハ保持部20は搬送アームA3との間でウエハWの受け渡しを行う位置と、周縁露光を行う位置との間を横方向に移動自在に構成される。周縁露光が行われる位置まで移動したウエハWの周縁部の上方側には、紫外ランプなどの露光部が設けられ、ウエハWを回転させながら紫外線を照射することにより、周縁露光が行われる。 In the COT layer B3, when the resist film is developed, the peripheral edge resist film outside the pattern formation region of the wafer W is not left, so that the peripheral edge portion is not transferred to the exposure apparatus. A peripheral exposure module 104 for exposing the resist film in advance is provided. In the peripheral exposure module 104, the wafer holding unit 20 shown in FIG. 1 is accommodated in a housing, and the wafer holding unit 20 has a position where the wafer W is transferred to and from the transfer arm A3 and a position where the peripheral exposure is performed. It is configured to be movable in the horizontal direction. An exposure unit such as an ultraviolet lamp is provided above the peripheral part of the wafer W moved to the position where the peripheral exposure is performed, and peripheral exposure is performed by irradiating the wafer W with ultraviolet rays.
 この周縁露光モジュール104においては、パターン形成領域の外側(周縁部)を正確に露光する必要がある。そこで周縁露光モジュール104には本発明の位置検出装置2が組み込まれている。この位置検出装置2を用いて、ウエハWの直径や真空チャック21に保持されたウエハWの偏心量を正しく検出する。そして、真空チャック21に保持されたウエハWの回転動作と、ウエハ保持部20の横方向への移動動作とを組み合わせ、位置検出装置2にて検出された結果に応じてウエハW直径の変化やウエハWの偏心が相殺されるように露光位置を移動させることにより、正しい領域を露光することができる。 In the peripheral edge exposure module 104, it is necessary to accurately expose the outer side (peripheral portion) of the pattern formation region. Therefore, the edge exposure module 104 incorporates the position detection device 2 of the present invention. Using this position detection device 2, the diameter of the wafer W and the amount of eccentricity of the wafer W held on the vacuum chuck 21 are correctly detected. Then, the rotation operation of the wafer W held by the vacuum chuck 21 and the lateral movement operation of the wafer holding unit 20 are combined, and the change in the wafer W diameter according to the result detected by the position detection device 2 By moving the exposure position so that the eccentricity of the wafer W is offset, the correct area can be exposed.
 レジスト膜が形成され、周縁露光が行われた後のウエハWは、搬送アームA3により、棚ユニットU2の受け渡しモジュールBF3に受け渡された後、例えば受け渡しモジュールBF3→受け渡しアームD1→受け渡しモジュールCPL4を介して搬送アームA4に受け渡され、TCT層B4にてレジスト膜の上に反射防止膜が形成される。しかる後、ウエハWは、搬送アームA4により受け渡しモジュールTRS4に受け渡される。なおレジスト膜の上の反射防止膜を形成しない場合や、レジスト膜の下の反射防止膜を形成する代わりに、ウエハWに対して疎水化処理を行う場合もある。 After the resist film is formed and the edge exposure is performed, the wafer W is transferred to the transfer module BF3 of the shelf unit U2 by the transfer arm A3, and then, for example, the transfer module BF3 → the transfer arm D1 → the transfer module CPL4 To the transfer arm A4, and an antireflection film is formed on the resist film in the TCT layer B4. Thereafter, the wafer W is transferred to the transfer module TRS4 by the transfer arm A4. In some cases, the antireflection film is not formed on the resist film, or the wafer W is subjected to a hydrophobic treatment instead of forming the antireflection film below the resist film.
 受け渡しモジュールTRS4に受け渡された反射防止膜形成後のウエハWは、さらに受け渡しモジュールCPL11に受け渡され、DEV層B1内の上部に設けられた搬送専用のシャトルアームEにより棚ユニットU3の受け渡しモジュールCPL12に搬送される。次いで、ウエハWはインターフェイスブロックS3に取り込まれ、インターフェイスアームFにより露光装置S4に搬送され、ここで所定の露光処理が行われる。しかる後、ウエハWは、棚ユニットU3の受け渡しモジュールTRS6に載置されて処理ブロックS2に戻される。 The wafer W after the formation of the antireflection film transferred to the transfer module TRS4 is further transferred to the transfer module CPL11, and the transfer module of the shelf unit U3 is provided by the shuttle arm E dedicated for transfer provided in the upper part of the DEV layer B1. It is conveyed to CPL12. Next, the wafer W is taken into the interface block S3 and transferred to the exposure apparatus S4 by the interface arm F, where a predetermined exposure process is performed. Thereafter, the wafer W is placed on the delivery module TRS6 of the shelf unit U3 and returned to the processing block S2.
 処理ブロックS2に戻されたウエハWは、DEV層B1にて現像処理が行われた後、処理モジュール群U1に設けられた加熱モジュールに搬送され、ここでレジストパターンに残存する溶剤が除去される。この後、例えば搬送アームA1により処理モジュール群U1に設けられた冷却モジュールに搬送されて冷却される。こうして現像処理が行われたウエハWは、レジスト膜の膜厚、レジストパターンをなす凹部の線幅(CD)の大きさ、隣り合う一組の凹凸部の幅(ピッチ)などの検査が行われ、各ウエハWにはこれらの項目の合格、不合格の情報が付加されて、後段の装置における処理を実行するか否かなどの判断材料となる。 The wafer W returned to the processing block S2 is developed in the DEV layer B1, and then transferred to the heating module provided in the processing module group U1, where the solvent remaining in the resist pattern is removed. . Then, for example, it is transported to the cooling module provided in the processing module group U1 by the transport arm A1 and cooled. The wafer W thus developed is inspected for the film thickness of the resist film, the line width (CD) of the recesses forming the resist pattern, and the width (pitch) of a pair of adjacent uneven portions. Each wafer W is added with pass / fail information of these items, and is used as a judgment material for determining whether or not to execute processing in the subsequent apparatus.
 この検査装置においても、ウエハW内のどの領域にて膜厚やCDなどが規格を外れているのか正確に把握することが重要となる。そこで、この検査装置にも本発明の位置検出装置2が組み込まれ、検査対象のウエハWの直径や載置位置の偏心量、ウエハWの向きを検出した結果に基づいて把握した正確な検査位置と対応付けた検査結果の評価などが行われる。検査装置は例えば棚ユニットU2内に配置される。 
 検査を終えたウエハWは、棚ユニットU2における受け渡しアームCのアクセス範囲の受け渡し台に搬送され、受け渡しアームCを介してキャリア102に戻される。
Also in this inspection apparatus, it is important to accurately grasp in which region in the wafer W the film thickness, CD, etc. are out of specification. Therefore, the position detection device 2 of the present invention is also incorporated in this inspection apparatus, and the accurate inspection position grasped based on the result of detecting the diameter of the wafer W to be inspected, the eccentric amount of the mounting position, and the orientation of the wafer W. Evaluation of the inspection result associated with is performed. The inspection device is disposed in the shelf unit U2, for example.
The wafer W that has been inspected is transferred to the transfer table in the access range of the transfer arm C in the shelf unit U2, and returned to the carrier 102 via the transfer arm C.
 以上、本発明の位置検出装置2を塗布、現像装置に組み込んだ例について説明したが、位置検出装置2を設ける装置はこの例に限定されるものではない。例えばスピンチャック上に保持したウエハWに各種の処理液を供給して液処理を行う枚葉式の液処理装置や、真空容器内に設けられた載置台にウエハWを載置し、成膜処理やエッチング処理、アッシング処理を行う真空処理装置などに設けられているスピンチャックや載置台に載置されるウエハWの位置合わせなどに位置検出装置2を利用してもよい。この場合は、スピンチャックや載置台へウエハWを搬送するウエハ搬送機構にウエハWを受け渡す前に、位置検出装置2にて位置検出を行い、位置ずれなどを補正してウエハ搬送機構にウエハWを受け渡す手法などが考えられる。 The example in which the position detection device 2 of the present invention is incorporated in the coating and developing device has been described above, but the device provided with the position detection device 2 is not limited to this example. For example, the wafer W is mounted on a single-wafer type liquid processing apparatus that supplies various processing liquids to the wafer W held on the spin chuck and performs liquid processing, or a mounting table provided in a vacuum vessel to form a film. The position detection device 2 may be used for alignment of a wafer W mounted on a spin chuck or a mounting table provided in a vacuum processing apparatus that performs processing, etching processing, or ashing processing. In this case, before delivering the wafer W to the wafer conveyance mechanism that conveys the wafer W to the spin chuck or the mounting table, the position detection device 2 detects the position and corrects the positional deviation and the like to the wafer conveyance mechanism. A method of delivering W can be considered.
(実施例) 
 図1~図3に示したものと同様の構成の位置検出装置2により、図5に示すウエハWに形成されたマークMの検出試験を行った。
A.実験条件 
 直径が300mmのウエハWの端部から1.0mmの位置に、図5、図6を用いて説明した構成のマークM(0.6mm×0.4mm)を形成し、受光領域の長さが6.4mm、受光素子(CMOS)の数が512個(画素数pixel)のラインセンサー4を用いて位置検出を行った。ラインセンサー4は、図6(a)~(e)に示すようにウエハWの端部を挟んで内側のウエハWの周縁領域、及び端部よりも外方の領域に亘り、ウエハWの径方向に受光領域40が位置するように配置した。ウエハWは、その中心が真空チャック21の回転中心と一致するように(偏心量=0)真空チャック21上に載置し、ラインセンサー4にてマークMをスキャンし、各受光素子から輝度データを取得した。
(Example)
A detection test of the mark M formed on the wafer W shown in FIG. 5 was performed by the position detection device 2 having the same configuration as that shown in FIGS.
A. Experimental conditions
The mark M (0.6 mm × 0.4 mm) having the structure described with reference to FIGS. 5 and 6 is formed at a position 1.0 mm from the end of the wafer W having a diameter of 300 mm, and the length of the light receiving region is Position detection was performed using a line sensor 4 having 6.4 mm and 512 light receiving elements (CMOS) (pixel number pixel). As shown in FIGS. 6A to 6E, the line sensor 4 has a diameter of the wafer W across the peripheral area of the inner wafer W and the outer area of the end with the end of the wafer W interposed therebetween. It arrange | positioned so that the light reception area | region 40 may be located in the direction. The wafer W is placed on the vacuum chuck 21 so that the center thereof coincides with the rotation center of the vacuum chuck 21 (eccentricity = 0), the mark M is scanned by the line sensor 4, and luminance data is received from each light receiving element. Acquired.
B.実験結果 
 図13に併記したマークMの拡大図中の(A)~(C)の位置に、ラインセンサー4の受光領域40の中心が到達したときの各受光素子から取得した輝度データの分布を示す。図中、横軸がラインセンサー4のスキャン位置(受光素子の番地)を示し、縦軸が256階調の輝度データの値を示している。拡大図中の(A)の位置のスキャン結果を実線で示し、(B)、(C)の位置のスキャン結果を、各々一点鎖線、及び破線で示している。なお、これらの線が重なって見にくくなることを避けるため、各線は上下方向に少しずらして示してある。
B. Experimental result
The distribution of luminance data acquired from each light receiving element when the center of the light receiving region 40 of the line sensor 4 reaches the position (A) to (C) in the enlarged view of the mark M shown in FIG. In the figure, the horizontal axis indicates the scanning position (address of the light receiving element) of the line sensor 4, and the vertical axis indicates the luminance data value of 256 gradations. The scan results at the position (A) in the enlarged view are indicated by solid lines, and the scan results at the positions (B) and (C) are respectively indicated by a one-dot chain line and a broken line. In addition, in order to avoid that these lines overlap and it is hard to see, each line is shown in the up-down direction slightly shifted.
 図13に示した結果によれば、(A)~(C)のいずれの場合においても、ウエハWの端部よりも外方領域側の位置から輝度データの値が上昇し始め、ウエハW側に移動するに連れて、(A)~(C)は同じ傾きで輝度データの値が上昇している。従って、適切なしきい値を設定することにより、ウエハWの端部の位置を正確に把握することが可能であることが分かる。 According to the results shown in FIG. 13, in any of the cases (A) to (C), the value of the luminance data starts to rise from the position on the outer region side of the edge of the wafer W, and the wafer W side As the value moves to (A) to (C), the value of the luminance data increases with the same inclination in (A) to (C). Therefore, it can be understood that the position of the end portion of the wafer W can be accurately grasped by setting an appropriate threshold value.
 また、マークMが形成されている領域の輝度データの分布を見ると、マークMから外れた位置をスキャンした(A)の位置では、ラインセンサー4に入射する反射光の光量を示す輝度データに落ち込みはない。次に、1本目のドット列上をスキャンした(B)の位置では、マークMが形成されている位置にて輝度データの値は落ち込んでいる。さらに2本目のドット列上をスキャンした(C)の位置では(B)の位置よりも輝度データの値が低下する領域が形成されている。(B)の位置よりも(C)の位置の方が、輝度データの値が低下するのは、隣り合って並んだドットの影響を受けてラインセンサー4に入射する反射光の光量が低下したためであると考えられる。 When the distribution of the luminance data in the area where the mark M is formed is seen, the luminance data indicating the amount of reflected light incident on the line sensor 4 is obtained at the position (A) where the position deviated from the mark M is scanned. There is no decline. Next, at the position (B) where the first dot row is scanned, the value of the luminance data drops at the position where the mark M is formed. Further, an area where the value of the luminance data is lower than that of the position (B) is formed at the position (C) scanned on the second dot row. The reason why the value of the brightness data is lower at the position (C) than at the position (B) is that the amount of reflected light incident on the line sensor 4 is reduced due to the influence of adjacent dots. It is thought that.
 このように、マークMが形成されたウエハWをスキャンする位置に応じてラインセンサー4にて検出される輝度データが変化することを利用し、適切な位置にマーク検出位置を設定することで、図9に示すようにマーク検出位置における輝度データの変化に基づいてマークMの形成位置を検出できることが確認できた。 In this way, by using the fact that the luminance data detected by the line sensor 4 changes according to the position where the wafer W on which the mark M is formed is scanned, the mark detection position is set at an appropriate position. As shown in FIG. 9, it was confirmed that the formation position of the mark M can be detected based on the change in the luminance data at the mark detection position.
M     マーク
W     ウエハ
2     位置検出装置
20    ウエハ保持部
21    真空チャック
23    回転モーター
3     光照射機構
31    LEDライト
4     ラインセンサー
40    受光領域
401   ラインセンサー制御部
5     制御部
M Mark W Wafer 2 Position detection device 20 Wafer holding unit 21 Vacuum chuck 23 Rotating motor 3 Light irradiation mechanism 31 LED light 4 Line sensor 40 Light receiving area 401 Line sensor control unit 5 Control unit

Claims (19)

  1.  裏面に複数のドットからなる位置合わせ用のマークが形成されたウエハを載置するための載置台と、
     前記載置台を回転させるための回転機構と、
     投光部を備え、前記載置台を回転させたときに、前記ウエハのマークが通過する領域に、前記投光部から投光された光が照射される光照射領域を形成するための光照射機構と、
     前記光照射機構により前記光照射領域に照射された光の反射光を受光するために設けられ、前記反射光の受光領域が、ウエハの中央部側から外側に向かって伸びるように設けられたラインセンサーと、
     前記載置台を少なくとも1回転させたときに、ウエハの回転方向の位置と前記ラインセンサーにより得られた輝度とを対応付けたデータに基づいてウエハの向きを検出するデータ処理部と、を備えたことを特徴とするウエハの位置検出装置。
    A mounting table for mounting a wafer on which a positioning mark composed of a plurality of dots is formed on the back surface;
    A rotation mechanism for rotating the mounting table;
    Light irradiation for forming a light irradiation region provided with a light projecting unit and irradiated with light projected from the light projecting unit in a region through which the mark of the wafer passes when the mounting table is rotated. Mechanism,
    A line provided to receive the reflected light of the light irradiated to the light irradiation region by the light irradiation mechanism, and the light receiving region of the reflected light is provided to extend outward from the central portion side of the wafer. A sensor,
    A data processing unit that detects the orientation of the wafer based on data in which the position in the rotation direction of the wafer is associated with the luminance obtained by the line sensor when the mounting table is rotated at least once. A wafer position detecting device.
  2.  前記マークは、ウエハの中央部から外側に向かって配列された複数のドットを含むことを特徴とする請求項1に記載のウエハの位置検出装置。 2. The wafer position detecting apparatus according to claim 1, wherein the mark includes a plurality of dots arranged from the center of the wafer toward the outside.
  3.  前記ラインセンサーの受光領域の長さは、前記載置台を回転させたときにウエハの周縁がその光照射領域に位置するように設定されていることを特徴とする請求項1に記載のウエハの位置検出装置。 The length of the light receiving region of the line sensor is set so that the periphery of the wafer is positioned in the light irradiation region when the mounting table is rotated. Position detection device.
  4.  前記データ処理部は、ラインセンサーにより得られた輝度分布に基づいて、ウエハの回転方向の位置ごとのウエハの周縁の位置を検出するように構成されていることを特徴とする請求項3に記載のウエハの位置検出装置。 The said data processing part is comprised so that the position of the periphery of a wafer for every position of the rotation direction of a wafer may be detected based on the luminance distribution obtained by the line sensor. Wafer position detection device.
  5.  前記データ処理部は、ウエハの回転方向の位置ごとにウエハの周縁の位置から一定位置だけウエハの中央部に寄った位置に対応する画素の輝度に基づいて前記マークを検出するステップを実行してウエハの向きを検出するように構成されていることを特徴とする請求項4に記載のウエハの位置検出装置。 The data processing unit executes a step of detecting the mark based on a luminance of a pixel corresponding to a position close to a central portion of the wafer by a certain position from a peripheral position of the wafer for each position in the rotation direction of the wafer. 5. The wafer position detection apparatus according to claim 4, wherein the wafer position detection apparatus is configured to detect the orientation of the wafer.
  6.  前記画素の輝度に基づいて前記マークを検出するステップは、前記輝度と予め設定された輝度との比較結果により前記マークを検出するステップであることを特徴とする請求項5に記載のウエハの位置検出装置。 6. The wafer position according to claim 5, wherein the step of detecting the mark based on the luminance of the pixel is a step of detecting the mark based on a comparison result between the luminance and a preset luminance. Detection device.
  7.  前記データ処理部は、前記輝度分布に基づいて、ウエハの向きに加えてウエハの中心位置を検出するように構成されていることを特徴とする請求項1に記載のウエハの位置検出装置。 2. The wafer position detection apparatus according to claim 1, wherein the data processing unit is configured to detect a center position of the wafer in addition to the orientation of the wafer based on the luminance distribution.
  8.  前記データ処理部は、前記輝度分布に基づいて、ウエハの向きに加えてウエハの大きさを検出するように構成されていることを特徴とする請求項1に記載のウエハの位置検出装置。 2. The wafer position detecting apparatus according to claim 1, wherein the data processing unit is configured to detect the size of the wafer in addition to the orientation of the wafer based on the luminance distribution.
  9.  前記マークを構成するドットの光反射率は、ウエハの裏面の光反射率よりも小さいことを特徴とする請求項1に記載のウエハの位置検出装置。 2. The wafer position detecting apparatus according to claim 1, wherein the light reflectance of the dots constituting the mark is smaller than the light reflectance of the back surface of the wafer.
  10.  前記ラインセンサーの光照射領域は、載置台の回転中心を中心とする円の径方向に沿って並んでいることを特徴とする請求項1に記載のウエハの位置検出装置。 2. The wafer position detecting device according to claim 1, wherein the light irradiation areas of the line sensor are arranged along a radial direction of a circle centering on a rotation center of the mounting table.
  11.  裏面に複数のドットからなる位置合わせ用のマークが形成されたウエハを載置台に載置して少なくとも1回転させる工程と、
     前記回転するウエハに形成されているマークが通過する領域に、光が照射される光照射領域を形成する工程と、
     前記光照射領域に照射された光の反射光を受光するために設けられ、前記反射光の受光領域が、ウエハの中央部側から外側に向かって伸びるように設けられたラインセンサーを用い、ウエハの回転方向の位置と前記ラインセンサーにより得られた輝度とを対応付けたデータに基づいてウエハの向きを検出する工程と、を含むことを特徴とするウエハの位置検出方法。
    Placing the wafer on which the alignment mark composed of a plurality of dots is formed on the back surface and placing the wafer on the mounting table at least once;
    Forming a light irradiation region in which light is irradiated in a region through which a mark formed on the rotating wafer passes;
    Using a line sensor provided to receive the reflected light of the light irradiated to the light irradiation region, the light receiving region of the reflected light extending from the center side of the wafer toward the outside, the wafer Detecting the orientation of the wafer based on data in which the position in the rotation direction of the lens and the brightness obtained by the line sensor are associated with each other.
  12.  前記マークは、ウエハの中央部から外側に向かって配列された複数のドットを含むことを特徴とする請求項11に記載のウエハの位置検出方法。 12. The wafer position detecting method according to claim 11, wherein the mark includes a plurality of dots arranged outward from the center of the wafer.
  13.  前記ラインセンサーの受光領域の長さは、前記載置台を回転させたときにウエハの周縁がその光照射領域に位置するように設定されていることを特徴とする請求項11に記載のウエハの位置検出方法。 The length of the light receiving region of the line sensor is set so that the periphery of the wafer is positioned in the light irradiation region when the mounting table is rotated. Position detection method.
  14.  前記ラインセンサーにより得られた輝度分布に基づいて、ウエハの回転方向の位置ごとのウエハの周縁の位置を検出する工程を含むことを特徴とする請求項13に記載のウエハの位置検出方法。 14. The wafer position detecting method according to claim 13, further comprising a step of detecting the position of the peripheral edge of the wafer for each position in the rotation direction of the wafer based on the luminance distribution obtained by the line sensor.
  15.  ウエハの回転方向の位置ごとにウエハの周縁の位置から一定位置だけウエハの中央部に寄った位置に対応する画素の輝度に基づいて前記マークを検出する工程を含むことを特徴とする請求項14に記載のウエハの位置検出方法。 15. The method according to claim 14, further comprising: detecting the mark based on the luminance of a pixel corresponding to a position close to the central portion of the wafer by a certain position from the position of the peripheral edge of the wafer for each position in the rotation direction of the wafer. The wafer position detecting method according to claim 1.
  16.  前記画素の輝度に基づいて前記マークを検出する工程は、前記輝度と予め設定された輝度との比較結果により前記マークを検出する工程であることを特徴とする請求項15に記載のウエハの位置検出方法。 The position of the wafer according to claim 15, wherein the step of detecting the mark based on the luminance of the pixel is a step of detecting the mark based on a comparison result between the luminance and a predetermined luminance. Detection method.
  17.  前記ウエハの周縁の検出結果に基づいて、ウエハの向きに加えてウエハの中心位置を検出する工程を含むことを特徴とする請求項14に記載のウエハの位置検出方法。 15. The wafer position detecting method according to claim 14, further comprising a step of detecting the center position of the wafer in addition to the orientation of the wafer based on the detection result of the peripheral edge of the wafer.
  18.  前記マークを構成するドットの光反射率は、ウエハの裏面の光反射率よりも小さいことを特徴とする請求項11に記載のウエハの位置検出方法。 12. The wafer position detecting method according to claim 11, wherein the light reflectance of the dots constituting the mark is smaller than the light reflectance of the back surface of the wafer.
  19.  ウエハを載置するための載置台と、前記載置台を回転させるための回転機構と、を備えたウエハの位置検出装置に用いられるコンピュータプログラムを記憶する記憶媒体であって、
     前記コンピュータプログラムは、請求項11に記載のウエハの位置検出方法を実行するようにステップ群が組まれていることを特徴とする記憶媒体。
    A storage medium for storing a computer program used in a wafer position detection apparatus comprising: a mounting table for mounting a wafer; and a rotation mechanism for rotating the mounting table.
    12. A storage medium in which the computer program includes a set of steps so as to execute the wafer position detection method according to claim 11.
PCT/JP2015/060719 2014-05-23 2015-04-06 Wafer position detection apparatus, wafer position detection method, and storage medium WO2015178109A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014107414A JP2015222796A (en) 2014-05-23 2014-05-23 Wafer position detecting device, wafer position detecting method and storage medium
JP2014-107414 2014-05-23

Publications (1)

Publication Number Publication Date
WO2015178109A1 true WO2015178109A1 (en) 2015-11-26

Family

ID=54553785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060719 WO2015178109A1 (en) 2014-05-23 2015-04-06 Wafer position detection apparatus, wafer position detection method, and storage medium

Country Status (3)

Country Link
JP (1) JP2015222796A (en)
TW (1) TW201611174A (en)
WO (1) WO2015178109A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941133A (en) * 2021-02-17 2022-08-26 东京毅力科创株式会社 Film thickness measuring apparatus, film forming system, and film thickness measuring method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6882033B2 (en) * 2017-03-29 2021-06-02 株式会社東京精密 Wafer positioning device and chamfering device using it
KR102355191B1 (en) * 2017-06-07 2022-01-26 주식회사 케이씨텍 Substrate processing apparatus and spin module using the same
JP7430455B2 (en) 2020-06-05 2024-02-13 株式会社ディスコ Edge position detection device and edge position detection method
CN114654394B (en) * 2022-03-20 2022-11-01 上海图双精密装备有限公司 Wafer detection moving carrier mechanism
CN114758969B (en) * 2022-04-18 2023-09-12 无锡九霄科技有限公司 Wafer back vision detection structure, detection method and related equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244642A (en) * 1987-03-30 1988-10-12 Mitsubishi Electric Corp Semiconductor device
JPH0231443A (en) * 1988-07-21 1990-02-01 Hitachi Ltd Wafer aligner
JPH0894315A (en) * 1994-09-28 1996-04-12 Canon Inc Alignment method, light projection exposure device by the method, and position deviation measuring instrument
JPH08306763A (en) * 1995-04-27 1996-11-22 Nikon Corp Positioning system
JPH09321125A (en) * 1996-05-29 1997-12-12 Jeol Ltd Wafer alignment
WO2008136423A1 (en) * 2007-04-27 2008-11-13 Shibaura Mechatronics Corporation Semiconductor wafer processing apparatus, reference angular position detecting method and semiconductor wafer
JP2009054737A (en) * 2007-08-24 2009-03-12 Nikon Corp Mark detecting method and equipment, position controlling method and equipment, exposing method and equipment, and device manufacturing method
JP2010171448A (en) * 2005-08-16 2010-08-05 Asml Netherlands Bv Mechanism and method for measuring alignment
JP2010251484A (en) * 2009-04-14 2010-11-04 Canon Inc Exposure apparatus, exposure method, and device manufacturing method
JP2011181721A (en) * 2010-03-02 2011-09-15 Yaskawa Electric Corp Wafer alignment device
JP2013161915A (en) * 2012-02-03 2013-08-19 Tokyo Electron Ltd Substrate transfer device, substrate transfer method, and storage medium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244642A (en) * 1987-03-30 1988-10-12 Mitsubishi Electric Corp Semiconductor device
JPH0231443A (en) * 1988-07-21 1990-02-01 Hitachi Ltd Wafer aligner
JPH0894315A (en) * 1994-09-28 1996-04-12 Canon Inc Alignment method, light projection exposure device by the method, and position deviation measuring instrument
JPH08306763A (en) * 1995-04-27 1996-11-22 Nikon Corp Positioning system
JPH09321125A (en) * 1996-05-29 1997-12-12 Jeol Ltd Wafer alignment
JP2010171448A (en) * 2005-08-16 2010-08-05 Asml Netherlands Bv Mechanism and method for measuring alignment
WO2008136423A1 (en) * 2007-04-27 2008-11-13 Shibaura Mechatronics Corporation Semiconductor wafer processing apparatus, reference angular position detecting method and semiconductor wafer
JP2009054737A (en) * 2007-08-24 2009-03-12 Nikon Corp Mark detecting method and equipment, position controlling method and equipment, exposing method and equipment, and device manufacturing method
JP2010251484A (en) * 2009-04-14 2010-11-04 Canon Inc Exposure apparatus, exposure method, and device manufacturing method
JP2011181721A (en) * 2010-03-02 2011-09-15 Yaskawa Electric Corp Wafer alignment device
JP2013161915A (en) * 2012-02-03 2013-08-19 Tokyo Electron Ltd Substrate transfer device, substrate transfer method, and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941133A (en) * 2021-02-17 2022-08-26 东京毅力科创株式会社 Film thickness measuring apparatus, film forming system, and film thickness measuring method

Also Published As

Publication number Publication date
TW201611174A (en) 2016-03-16
JP2015222796A (en) 2015-12-10

Similar Documents

Publication Publication Date Title
WO2015178109A1 (en) Wafer position detection apparatus, wafer position detection method, and storage medium
US9064922B2 (en) Substrate inspection apparatus and substrate inspection method
US8871605B2 (en) Methods for fabricating and orienting semiconductor wafers
US10545098B2 (en) Foreign substance inspection apparatus, processing apparatus, and method of manufacturing article
JP2007157897A (en) Positioning method of semiconductor wafer and device using the same
JP2009016437A (en) Method of detecting defect position of semiconductor wafer
JP2017517870A (en) Variable field curvature for object inspection
JP6590599B2 (en) Position determining apparatus, position determining method, lithographic apparatus, and article manufacturing method
JP5346759B2 (en) Substrate positioning method
US11609502B2 (en) Substrate inspection apparatus, substrate processing apparatus, substrate inspection method, and computer-readable recording medium
KR20160056466A (en) Surface inspecting apparatus, surface inspecting method and method for manufacturing display apparatus
US20140111797A1 (en) Substrate orienter chamber
TWI467619B (en) Charged particle beam drawing apparatus and method of manufacturing article
JP6520795B2 (en) Film thickness distribution measurement method
US11892282B2 (en) Protective film thickness measuring method
US9841299B2 (en) Position determining device, position determining method, lithographic apparatus, and method for manufacturing object
JP2023045194A (en) Pre-alignment device and method
JP2007165655A (en) Direction sensor of wafer
JP2021085981A (en) Measurement method, measurement device, lithography device, and article manufacturing method
WO2011096239A1 (en) Detection method and detection device
KR102616737B1 (en) Wafer prcessing method
KR20230065279A (en) Peripheral processing device, peripheral processing method and computer readable recording medium
JP2020016586A (en) Inspection device, lithographic device, and manufacturing method of article
CN114624958A (en) Method for detecting and correcting wafer edge exposure and gluing developing machine
JP2021085980A (en) Measurement method, measurement device, lithography device, and article manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796031

Country of ref document: EP

Kind code of ref document: A1