WO2015178005A1 - Stacked heat exchanger - Google Patents

Stacked heat exchanger Download PDF

Info

Publication number
WO2015178005A1
WO2015178005A1 PCT/JP2015/002482 JP2015002482W WO2015178005A1 WO 2015178005 A1 WO2015178005 A1 WO 2015178005A1 JP 2015002482 W JP2015002482 W JP 2015002482W WO 2015178005 A1 WO2015178005 A1 WO 2015178005A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
plate
gas
cooling water
members
Prior art date
Application number
PCT/JP2015/002482
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 栄三
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201580026632.8A priority Critical patent/CN106461298B/en
Priority to US15/309,219 priority patent/US20170122669A1/en
Priority to DE112015002434.4T priority patent/DE112015002434T5/en
Publication of WO2015178005A1 publication Critical patent/WO2015178005A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements

Definitions

  • the present disclosure relates to a stacked heat exchanger that exchanges heat between a refrigerant and a heat medium in a refrigeration cycle.
  • Patent Document 1 discloses an integrated cylindrical modulator that separates the gas-liquid refrigerant flowing out of the heat exchanger and stores the refrigerant.
  • the stacked heat exchanger includes a first heat exchange unit that exchanges heat between the refrigerant of the refrigeration cycle and the first heat medium.
  • the first heat exchange unit is provided between the plurality of first plate-like members stacked and joined to each other and the plurality of first plate-like members, and is arranged in the stacking direction of the plurality of first plate-like members.
  • the plurality of first refrigerant flow paths through which the refrigerant flows and the plurality of first plate-like members are arranged in the stacking direction of the plurality of first plate-like members, and the plurality of the first heat medium flows therethrough. First heat medium flow path.
  • the stacked heat exchanger includes a second end plate joined to a first end plate disposed at the outermost side in the stacking direction at one of a plurality of first plate-shaped members, a first end plate, and two ends.
  • the apparatus further includes a gas-liquid separation unit that has a space provided between the plates and separates the gas-liquid of the refrigerant that has flowed into the plate and stores excess refrigerant in the refrigeration cycle.
  • the second end plate was joined to the first end plate so as to form a space with the first end plate, and the gas-liquid separation part was configured by the space.
  • a gas-liquid separation part can be provided only by adding a plate-shaped second end plate to the first heat exchange part. For this reason, it is possible to reduce the size of the stacked heat exchanger and reduce the dead space on mounting.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is sectional drawing which shows a part of heat exchanger which concerns on 1st Embodiment. It is a perspective view which shows the offset fin in 1st Embodiment. It is a side view showing a heat exchanger concerning a 2nd embodiment of this indication. It is a schematic diagram showing a heat exchanger concerning a 3rd embodiment of this indication. It is IX arrow line view of FIG. FIG.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9. It is a schematic diagram showing a heat exchanger concerning a 4th embodiment of this indication. It is the schematic which shows the heat exchanger which concerns on 5th Embodiment of this indication. It is the schematic which shows the flow of the refrigerant
  • the heat exchanger 10 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant and the cooling water of the refrigeration cycle.
  • the cooling water of the present embodiment corresponds to the first heat medium of the present disclosure.
  • cooling water for example, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid can be used.
  • ethylene glycol antifreeze (LLC) is used as the cooling water.
  • the heat exchanger 10 is integrally formed by laminating and joining a large number of first plate members 11 (hereinafter simply referred to as plate members 11).
  • the laminating direction of the plate-like member 11 (vertical direction in the example of FIG. 1) is referred to as the plate laminating direction
  • one end side in the plate laminating direction (the upper end side in the example of FIG. 1) is referred to as one end side of the plate laminating direction.
  • the other end side in the plate stacking direction (the lower end side in the example of FIG. 1) is referred to as the other end side in the plate stacking direction.
  • the plate-like member 11 is an elongated, substantially rectangular plate material.
  • a specific material for example, a clad material in which a brazing material is clad on an aluminum core material is used.
  • an overhanging portion 111 is formed that protrudes in a substantially plate lamination direction (in other words, a direction substantially orthogonal to the plate surface of the plate-like member 11).
  • Many plate-like members 11 are joined to each other by brazing in a state where the plate-like members 11 are laminated with each other.
  • the many plate-like members 11 are arranged so that the protruding tips of the overhanging portions 111 face the same side (substantially downward in the example of FIG. 1).
  • a large number of plate-like members 11 include a first heat exchange section 12 (hereinafter simply referred to as a heat exchange section 12), a first tank space for refrigerant 13, a second tank space for refrigerant 14, and a first tank space for cooling water. 15 and the second tank space 16 for cooling water are formed.
  • the heat exchange unit 12 includes a plurality of first refrigerant flow paths 121 (hereinafter simply referred to as refrigerant flow paths 121) and a plurality of first cooling water flow paths 122 (hereinafter simply referred to as cooling water flow paths 122). ing.
  • the cooling water passage 122 of the present embodiment corresponds to the first heat medium passage of the present disclosure.
  • the plurality of refrigerant channels 121 and the plurality of cooling water channels 122 are formed between a large number of plate-like members 11.
  • the longitudinal directions of the refrigerant flow path 121 and the cooling water flow path 122 coincide with the longitudinal direction of the plate-like member 11.
  • the refrigerant channel 121 and the cooling water channel 122 are alternately stacked one by one in the plate stacking direction (in parallel).
  • the plate-like member 11 serves as a partition wall that partitions the coolant channel 121 and the cooling water channel 122. Heat exchange between the refrigerant flowing through the refrigerant flow path 121 and the cooling water flowing through the cooling water flow path 122 is performed via the plate-like member 11.
  • the first tank space for refrigerant 13 and the first tank space for cooling water 15 are arranged on one side (right side in the example of FIG. 1) of the refrigerant flow path 121 and the cooling water flow path 122 with respect to the heat exchange unit 12.
  • the second tank space for refrigerant 14 and the second tank space for cooling water 16 are arranged on the other side (left side in the example of FIG. 1) of the refrigerant flow path 121 and the cooling water flow path 122 with respect to the heat exchange unit 12.
  • the first tank space for refrigerant 13 and the second tank space for refrigerant 14 distribute and collect the refrigerant with respect to the plurality of refrigerant flow paths 121.
  • the first tank space for cooling water 15 and the second tank space for cooling water 16 distribute and collect the cooling water to the plurality of cooling water flow paths 122.
  • the refrigerant first tank space 13, the refrigerant second tank space 14, the cooling water first tank space 15, and the cooling water second tank space 16 are configured by communication holes formed at the four corners of the plate-like member 11. ing.
  • the first tank space 13 for refrigerant and the second tank space 14 for refrigerant are provided at two corners on the diagonal line among the four corners of the substantially rectangular plate-like member 11, and the remaining A cooling water first tank space 15 and a cooling water second tank space 16 are provided at two corners.
  • the first joint 21 and the first cooling water pipe 22 are attached to the outermost plate-like member 17 located closest to the one end side in the plate stacking direction among the many plate-like members 11 constituting the heat exchange unit 12. .
  • the first joint 21 is a member for joining refrigerant pipes, and forms the refrigerant inlet 101 of the heat exchanger 10.
  • the first cooling water pipe 22 forms the cooling water outlet 102 of the heat exchanger 10.
  • the first joint 21 is provided on one end side in the longitudinal direction of the outermost plate member 17 (right side in the example of FIG. 1).
  • the first cooling water pipe 22 is provided on the other end side in the longitudinal direction of the outermost plate member 17 (left side in the example of FIG. 1).
  • the first ceiling plate 18 located on the other end side in the plate stacking direction, that is, the outermost side in the plate stacking direction, Compared with the plate-like member 11, the length of the overhanging portion 111 in the plate stacking direction is longer.
  • a plate-like second ceiling plate 19 (second end plate) is joined to the first ceiling plate 18 by brazing so as to form a space between the first ceiling plate 18 and the first ceiling plate 18. This space may be used as an example of the gas-liquid separation unit 30 that separates the gas-liquid of the refrigerant flowing into the interior and stores excess refrigerant in the refrigeration cycle.
  • a refrigerant inflow portion 181 for allowing the refrigerant flowing through the refrigerant flow path 121 of the heat exchange unit 12 to flow into the gas-liquid separation unit 30 is provided in the lower portion of the first ceiling plate 18 in the gravity direction. It has been.
  • the refrigerant inflow portion 181 is a through hole provided in the first ceiling plate 18. More specifically, the refrigerant inflow portion 181 is located on the lower side in the gravitational direction than the liquid surface of the liquid-phase refrigerant stored in the gas-liquid separator 30 (see FIG. 2).
  • the refrigerant inflow portion 181 may be provided in the lower half region of the first ceiling plate 18 in the direction of gravity.
  • a first through hole 182 into which a first internal cooling water pipe 41 to be described later is inserted is formed on the upper side in the gravity direction of the first ceiling plate 18. More specifically, the first through hole 182 is disposed on the upper side in the gravitational direction than the liquid level of the liquid refrigerant stored in the gas-liquid separator 30. In the present embodiment, both the refrigerant inflow portion 181 and the first through hole 182 are arranged on one end side in the longitudinal direction of the first ceiling plate 18 (right side in the example of FIG. 2).
  • a refrigerant outflow portion 191 for allowing the liquid-phase refrigerant to flow out from the gas-liquid separation unit 30 to the outside is provided at a lower portion in the gravity direction of the second ceiling plate 19.
  • the refrigerant outflow portion 191 is a through hole provided in the second ceiling plate 19. More specifically, the refrigerant outflow portion 191 is located on the lower side in the gravity direction than the liquid surface of the liquid-phase refrigerant stored in the gas-liquid separation portion 30. Further, the refrigerant outflow portion 191 may be provided in the lower half region of the second ceiling plate 19 in the direction of gravity.
  • a second through hole 192 into which a first internal cooling water pipe 41 to be described later is inserted is formed on the upper side in the gravity direction of the second ceiling plate 19.
  • the inner peripheral surface of the second through hole 192 and the outer surface of the first internal cooling water pipe 41 are joined by brazing.
  • the second through hole 192 is disposed on the upper side in the gravity direction with respect to the liquid level of the liquid-phase refrigerant stored in the gas-liquid separator 30.
  • the second through hole 192 is disposed on one end side in the longitudinal direction of the second ceiling plate 19 (right side in the example of FIG. 3).
  • the refrigerant outflow portion 191 is disposed on the other end side in the longitudinal direction of the second ceiling plate 19 (left side in the example of FIG. 2).
  • a protrusion 193 for absorbing stress applied to the second ceiling plate 19 due to an increase in internal pressure of the gas-liquid separation unit 30 on the lower side in the gravity direction of the second ceiling plate 19. is provided.
  • the projection 193 the rigidity of the gas-liquid separation unit 30 can be improved.
  • a desiccant 31 for removing moisture in the liquid-phase refrigerant is provided below the gas-liquid separator 30 in the gravity direction.
  • a second joint 23 and a second cooling water pipe 24 are attached to the second ceiling plate 19.
  • the second joint 23 is a member for joining refrigerant pipes and forms the refrigerant outlet 103 of the heat exchanger 10.
  • the second cooling water pipe 24 forms the cooling water inlet 104 of the heat exchanger 10.
  • the refrigerant inlet 101 communicates with the first tank space 13 for refrigerant.
  • the refrigerant first tank space 13 communicates with the gas-liquid separation unit 30 via the refrigerant inflow portion 181.
  • the gas-liquid separator 30 communicates with the refrigerant outlet 103 via the refrigerant outlet 191.
  • a first internal cooling water passage 40 is provided in the gas-liquid separation unit 30 to allow the cooling water to flow and to connect the cooling water inlet 104 and the first cooling water tank space 15. It has been. Specifically, a first internal cooling water pipe 41 that connects the second cooling water pipe 24 and the first tank space 15 for cooling water is provided inside the gas-liquid separator 30. The first internal cooling water passage 40 is configured by the first internal cooling water pipe 41.
  • the cooling water inlet 104 communicates with the first tank space 15 for cooling water via the first internal cooling water passage 40.
  • the cooling water outlet 102 communicates with the cooling water second tank space 16.
  • a large number of plate-like members 11 constituting the heat exchanging portion 12 protrude toward one end side or the other end side in the plate stacking direction at the four corners of the plate-like member 11. It has a substantially cylindrical protrusion 11f.
  • a first tank space 13 for refrigerant, a second tank space 14 for refrigerant, a first tank space 15 for cooling water, and a second tank space 16 for cooling water are formed by the protrusion 11f.
  • the central plate-like member 11 ⁇ / b> A located at a substantially central portion in the plate stacking direction closes the protruding portion 11 f constituting the first tank space 13 for refrigerant. It has a blocking part 11g. Thereby, the first tank space 13 for refrigerant is partitioned into two spaces in the plate stacking direction.
  • the closing portion 11g is formed integrally with the protruding portion 11f, that is, the central plate member 11A.
  • the refrigerant that has flowed from the refrigerant inlet 101 moves from the first tank space 13 for refrigerant to the second tank space 14 for refrigerant through the refrigerant flow path 121 on one end side in the plate stacking direction.
  • the refrigerant flows in the refrigerant flow path 121 on the other end side in the plate stacking direction from the refrigerant second tank space 14 toward the refrigerant first tank space 13, and flows from the refrigerant inflow portion 181 into the gas-liquid separation portion 30.
  • the heat exchanger 10 is configured such that the refrigerant flow makes a U-turn once.
  • the refrigerant flowing into the gas-liquid separation unit 30 is gas-liquid separated, and the liquid-phase refrigerant flows out from the refrigerant outlet 103 to the outside.
  • cooling water flowing in from the cooling water inlet 104 flows through the cooling water flow path 122 from the cooling water first tank space 15 toward the cooling water second tank space 16 as shown by a one-dot chain arrow in FIG. And flows out from the cooling water outlet 102 to the outside.
  • offset fins 50 shown in FIG. 6 are arranged between the plate-like members 11.
  • the offset fins 50 are inner fins that are interposed between the plate-like members 11 and promote heat exchange between the refrigerant and the cooling water.
  • the offset fin 50 is a plate-like member in which a cut and raised portion 50a that is partially cut and raised is formed. A large number of the cut-and-raised portions 50a are formed in the direction F1 (that is, the longitudinal direction of the plate-like member 11) parallel to the flow direction of the refrigerant and the cooling water.
  • the cut-and-raised portions 50a adjacent to each other in the direction F1 parallel to the flow direction of the refrigerant and the cooling water are offset from each other.
  • the large number of cut-and-raised portions 50a are staggered in a direction F1 parallel to the flow direction of the refrigerant and the cooling water.
  • the offset fins 50 are joined to both adjacent plate-like members 11 by brazing.
  • the second ceiling plate 19 is joined to the first ceiling plate 18 so as to form a space between the first ceiling plate 18 and the first ceiling plate 18.
  • the gas-liquid separation unit 30 is configured by the space.
  • the gas-liquid separation part 30 can be comprised only by adding the plate-shaped 2nd ceiling board 19 with respect to the 1st heat exchange part 12. FIG. For this reason, it is possible to reduce the size of the heat exchanger 10 in which the gas-liquid separation unit 30 is integrated, and to reduce the dead space on mounting.
  • coolant outflow part 191 of the gas-liquid separation part 30 is arrange
  • the heat exchanger 10 of the present embodiment is mounted so that the longitudinal direction of the plate-like member 11, that is, the longitudinal directions of the first ceiling plate 18 and the second ceiling plate 19 coincide with the direction of gravity. Has been. At this time, the refrigerant inflow portion 181 and the refrigerant outflow portion 191 are disposed on the lower side in the gravitational direction than the liquid level of the liquid-phase refrigerant stored in the gas-liquid separation portion 30 (see FIG. 7).
  • the space below the gravity direction in the gas-liquid separation part 30 communicates with a space communicating with the refrigerant inflow part 181 and the refrigerant outflow part 191.
  • a baffle plate 32 is provided to divide the space into the space.
  • a plurality of through holes are formed in the baffle plate 32, and a space communicating with the refrigerant inflow portion 181 and a space communicating with the refrigerant outflow portion 191 communicate with each other.
  • the baffle plate 32 extends substantially parallel to the gravity direction from the lower end in the gravity direction of the gas-liquid separator 30 toward the upper side.
  • the upper end of the baffle plate 32 in the direction of gravity is disposed below the liquid level of the liquid-phase refrigerant stored in the gas-liquid separator 30.
  • the refrigerant outflow portion 191 of the gas-liquid separation unit 30 is It arrange
  • the liquid-phase refrigerant can reliably flow out from the refrigerant outflow portion 191.
  • the liquid phase refrigerant that has flowed out of the gas-liquid separator 30 and the low-pressure refrigerant in the refrigeration cycle are heat-exchanged to supercool the liquid phase refrigerant.
  • a second heat exchange unit 62 that functions as a cooling unit is connected. Note that the low-pressure refrigerant of the present embodiment corresponds to the second heat medium of the present disclosure.
  • the second heat exchange part 62 is integrally formed by laminating and joining a plurality of second plate-like members 61 to each other.
  • the multiple second plate-like members 61 include a second heat exchange section 62, a liquid tank first tank space 63, a liquid refrigerant second tank space 64, and a low pressure refrigerant first tank space 65.
  • the second tank space 66 for low-pressure refrigerant is formed.
  • the second heat exchanging unit 62 includes a plurality of second refrigerant flow paths 621 through which liquid phase refrigerant flows and a plurality of low pressure refrigerant flow paths 622 through which low-pressure refrigerant flows.
  • the low-pressure refrigerant channel 622 of the present embodiment corresponds to the second heat medium channel of the present disclosure.
  • the plurality of second refrigerant channels 621 and the plurality of low-pressure refrigerant channels 622 are formed between a large number of second plate-like members 61.
  • the longitudinal directions of the second refrigerant channel 621 and the low-pressure refrigerant channel 622 coincide with the longitudinal direction of the second plate member 61.
  • the length in the flow direction of the liquid phase refrigerant in the second plate member 61 is shorter than the length in the flow direction of the refrigerant in the first plate member 11. That is, the length of the second plate member 61 in the longitudinal direction is shorter than the length of the first plate member 11 in the longitudinal direction. Further, the stacking direction of the second plate-like member 61 is parallel to the stacking direction of the first plate-like member 11.
  • the second refrigerant flow path 621 and the low-pressure refrigerant flow path 622 are alternately laminated (parallel arrangement) one by one in the plate lamination direction.
  • the second plate member 61 serves as a partition that partitions the second refrigerant flow path 621 and the low-pressure refrigerant flow path 622. Heat exchange between the refrigerant flowing through the second refrigerant channel 621 and the low-pressure refrigerant flowing through the low-pressure refrigerant channel 622 is performed via the second plate member 61.
  • the first tank space 63 for liquid-phase refrigerant and the first tank space 65 for low-pressure refrigerant are on one side of the second refrigerant flow path 621 and the low-pressure refrigerant flow path 622 with respect to the second heat exchange section 62 (example in FIG. 8). In the right side).
  • the second tank space for liquid phase refrigerant 64 and the second tank space for low pressure refrigerant 66 are on the other side of the second refrigerant flow path 621 and the low pressure refrigerant flow path 622 with respect to the second heat exchange section 62 (example in FIG. 8). In the left side).
  • the first tank space 63 for liquid phase refrigerant and the second tank space 64 for liquid phase refrigerant distribute and collect the liquid phase refrigerant with respect to the plurality of second refrigerant flow paths 621.
  • the first tank space for low-pressure refrigerant 65 and the second tank space for low-pressure refrigerant 66 distribute and collect the low-pressure refrigerant with respect to the plurality of low-pressure refrigerant flow paths 622.
  • the first tank space 63 for liquid phase refrigerant, the second tank space for liquid phase refrigerant 64, the first tank space for low pressure refrigerant 65, and the second tank space for low pressure refrigerant 66 are formed at the four corners of the second plate member 61. It is constituted by a communication hole.
  • a second tank space 64 is provided.
  • a first tank space 65 for low-pressure refrigerant and a second tank space 66 for low-pressure refrigerant are provided.
  • the second outermost member located on the one end side in the plate stacking direction (the upper side in the example of FIG. 8) among the multiple second plate members 61 constituting the second heat exchange unit 62.
  • the end plate member 67 is joined to the second ceiling plate 19 by brazing.
  • the second endmost plate member 67 is formed with a liquid-phase refrigerant inflow hole 671 through which the liquid-phase refrigerant from the gas-liquid separator 30 flows.
  • the liquid-phase refrigerant inflow hole 671 is formed at a portion corresponding to the refrigerant outflow portion 191.
  • the liquid-phase refrigerant in the gas-liquid separation unit 30 is transferred to the second heat exchange unit 62 (specifically, the first tank space 63 for liquid-phase refrigerant) via the refrigerant outflow portion 191 and the liquid-phase refrigerant inflow hole 671. ).
  • the second plate-like member 61 constituting the second heat exchanging part 62 is located on the other end side in the plate stacking direction (the lower side in the example of FIG. 8).
  • a second joint 23, a third joint 71, and a fourth joint 72 are attached to the third outermost plate member 68.
  • the third joint 71 is a member for joining the low-pressure refrigerant pipe, and forms the low-pressure refrigerant inlet 701 of the second heat exchange unit 62.
  • the low-pressure refrigerant inlet 701 may be connected to the low-pressure side of the refrigeration cycle, and the low-pressure refrigerant of the refrigeration cycle may flow into the low-pressure refrigerant inlet 701.
  • the low-pressure refrigerant flowing into the second heat exchange unit 62 has a lower pressure than the refrigerant flowing into the first heat exchange unit 12.
  • the fourth joint 72 is a member for joining the low-pressure refrigerant pipe, and forms a low-pressure refrigerant outlet 702 of the second heat exchange unit 62.
  • the fourth joint 72 is provided on one end side in the longitudinal direction of the third outermost plate member 68 (right side in the example of FIG. 9).
  • the second joint 23 and the third joint 71 are provided on the other end side in the longitudinal direction of the third outermost plate member 68 (left side in the example of FIG. 9). Further, the second joint 23 is provided above the third joint 71 in the gravity direction.
  • Refrigerant flowing from the gas-liquid separator 30 flows through the second refrigerant flow path 621 from the first liquid-phase refrigerant tank space 63 toward the second liquid-phase refrigerant tank space 64, as indicated by solid arrows in FIG. And flows out from the refrigerant outlet 103 to the outside.
  • the low-pressure refrigerant that has flowed in from the low-pressure refrigerant inlet 701 passes through the low-pressure refrigerant flow path 622 from the second tank space 66 for low-pressure refrigerant toward the first tank space 65 for low-pressure refrigerant, as indicated by the broken-line arrows in FIG. It flows out from the low pressure refrigerant outlet 702 to the outside.
  • the second heat exchange unit 62 that functions as a supercooling unit is connected to the second ceiling plate 19 of the heat exchanger 10. Thereby, the rigidity of the gas-liquid separation part 30 can be improved.
  • the length of the second plate member 61 in the flow direction of the liquid phase refrigerant is shorter than the length of the first plate member 11 in the flow direction of the refrigerant.
  • a space is formed on one end side (right side in the example of FIG. 8) of the second heat exchange unit 62 in the refrigerant flow direction. Since this space can be effectively used as the arrangement space for the second cooling water pipe 24, it is possible to reduce the dead space on mounting.
  • a condensing part in a fin-and-tube heat exchanger that cools the refrigerant by exchanging heat between the refrigerant that circulates in the tube and the cooling air that flows outside the tube, a condensing part (this embodiment)
  • a gas-liquid separation unit is provided between the supercooling unit (corresponding to the second heat exchanging unit 62 of the present embodiment).
  • the gas-liquid separation unit since the gas-liquid separation unit is set at a position where the cooling air (running air) always hits, the state of the refrigerant in the gas-liquid separation unit changes depending on the temperature of the cooling air. There is a fear.
  • the heat exchanger 10 of the present embodiment is a water-cooled stacked heat exchanger, traveling air does not hit the gas-liquid separator 30. Therefore, it can suppress that the state of the refrigerant
  • the gas-liquid separation unit is arranged to be rigid between the condensing unit and the supercooling unit in order to arrange the gas-liquid separation unit.
  • the gas-liquid separation unit is arranged to be rigid between the condensing unit and the supercooling unit in order to arrange the gas-liquid separation unit.
  • the heat exchanger 10 of this embodiment since the gas-liquid separation part 30 can be comprised by two plate-shaped members, ie, the 1st ceiling board 18 and the 2nd ceiling board 19, manufacturing cost is reduced. It becomes possible to do.
  • the fourth embodiment is configured such that the second heat exchange unit 62 is a supercooling unit that supercools the liquid phase refrigerant by exchanging heat between the liquid phase refrigerant and the cooling water.
  • the cooling water of the present embodiment corresponds to the second heat medium of the present disclosure.
  • a large number of second plate-like members 61 include a second heat exchange unit 62, a liquid-phase refrigerant first tank space 63, a liquid-phase refrigerant second tank space 64, a cooling unit.
  • a third tank space for water 650 and a fourth tank space for cooling water 660 are formed.
  • the second heat exchange unit 62 includes a plurality of second refrigerant flow paths 621 through which liquid phase refrigerant flows and a plurality of second cooling water flow paths 623 through which cooling water flows.
  • the second cooling water channel 623 of the present embodiment corresponds to the second heat medium channel of the present disclosure.
  • the plurality of second refrigerant passages 621 and the plurality of second cooling water passages 623 are formed between a large number of second plate members 61.
  • the longitudinal directions of the second refrigerant channel 621 and the second cooling water channel 623 coincide with the longitudinal direction of the second plate member 61.
  • the second refrigerant flow path 621 and the second cooling water flow path 623 are alternately stacked one by one in the plate stacking direction (parallel arrangement).
  • the second plate-like member 61 serves as a partition that partitions the second refrigerant channel 621 and the second cooling water channel 623. Heat exchange between the refrigerant flowing through the second refrigerant flow path 621 and the cooling water flowing through the second cooling water flow path 623 is performed via the second plate member 61.
  • the first tank space 63 for liquid phase refrigerant and the third tank space for cooling water 650 are on one side of the second refrigerant flow path 621 and the second cooling water flow path 623 with respect to the second heat exchange section 62 (see FIG. 11). In the example, it is arranged on the right side).
  • the second tank space for liquid phase refrigerant 64 and the fourth tank space for cooling water 660 are on the other side of the second refrigerant flow path 621 and the second cooling water flow path 623 with respect to the second heat exchange section 62 (see FIG. 11). In the example, it is arranged on the left side).
  • the cooling water third tank space 650 and the cooling water fourth tank space 660 distribute and collect the cooling water to the plurality of second cooling water flow paths 623.
  • the first tank space 63 for liquid phase refrigerant, the second tank space for liquid phase refrigerant 64, the third tank space for cooling water 650, and the fourth tank space for cooling water 660 are formed at the four corners of the second plate member 61. It is constituted by a communication hole.
  • the third tank space for cooling water 650 and the fourth tank space for cooling water 660 are provided at two corners on the diagonal line among the four corners of the substantially rectangular second plate-shaped member 61. Yes.
  • the second endmost plate member 67 is formed with a through hole (not shown) into which a second internal cooling water pipe 81 described later is inserted. This through hole is brazed to the outer surface of the second internal cooling water pipe 81. Further, the through hole is provided at an end portion on the opposite side to the liquid-phase refrigerant inflow hole 671 in the longitudinal direction of the second outermost plate member 67.
  • the second joint 23 and the third cooling water pipe 73 are attached to the third outermost plate member 68.
  • the third cooling water pipe 73 forms a cooling water inlet 703 of the second heat exchange unit 62.
  • the third cooling water pipe 73 is provided on one end side in the longitudinal direction of the third outermost plate member 68 (right side in the example of FIG. 11).
  • the second joint 23 is provided on the other end side in the longitudinal direction of the third outermost plate member 68 (left side in the example of FIG. 8).
  • the second internal cooling water passage 80 that allows the cooling water to circulate and communicates the fourth tank space for cooling water 660 and the second tank space for cooling water 16 is provided. .
  • a second internal cooling water pipe 81 that connects the fourth cooling water tank space 660 and the second cooling water tank space 16 is provided inside the gas-liquid separation unit 30.
  • the second internal cooling water pipe 81 constitutes a second internal cooling water passage 80.
  • the plate-shaped member 11 located in the 1st ceiling board 18 side rather than the approximate center part of a plate lamination direction.
  • the 1st tank space 15 for cooling water is divided into two spaces in the board lamination direction.
  • the plate-like member 11 located between the substantially central portion in the plate stacking direction and the outermost plate-like member 17 is cooled.
  • a second closing part (not shown) for closing a protruding part (not shown) constituting the second tank space 16 for water is provided. Thereby, the cooling water second tank space 16 is partitioned into two spaces in the plate stacking direction.
  • the cooling water that has flowed into the cooling water third tank space 650 from the cooling water inlet 703 of the second heat exchanging unit 62 flows through the cooling water flow path 623, It flows into the 4-tank space 660.
  • the cooling water flowing into the fourth cooling water tank space 660 flows through the second internal cooling water passage 80 and flows into the second cooling water tank space 16 of the first heat exchange unit 12.
  • the cooling water flowing into the cooling water first tank space 15 from the cooling water inlet 104 of the heat exchanger 10 via the first internal cooling water passage 40 is the other side in the plate stacking direction (in the example of FIG. Side) first cooling water flow path 122 and flows into the cooling water second tank space 16.
  • the heat exchanger 10 of this embodiment passes the 2nd heat exchange part 62 with the cooling water which flowed in from the cooling water inlet 104 of the heat exchanger 10 in the 2nd tank space 16 for cooling water.
  • the cooling water is configured to merge.
  • the cooling water flowing into the second cooling water tank space 16 flows from the second cooling water tank space 16 toward the first cooling water tank space 15 through the first cooling water flow path 122 at the center side in the plate stacking direction. Thereafter, the coolant flows through the first cooling water flow path 122 on one end side in the plate stacking direction (upper side in the example of FIG. 11) from the first cooling water tank space 15 toward the second cooling water tank space 16, and the cooling water outlet. It flows out from 102. That is, the first heat exchange unit 12 is configured such that the flow of the cooling water makes a U-turn twice.
  • the cooling water that has flowed into the first heat exchange unit 12 from the cooling water inlet 104 of the heat exchanger 10 and the second heat exchange unit 62 are passed through. Both cooling water and water are introduced. That is, the cooling water can be allowed to flow in parallel to the first heat exchange unit 12. For this reason, it is possible to reduce the pressure loss of the cooling water in the first heat exchange unit 12 and to improve the heat exchange efficiency of the first heat exchange unit 12.
  • the fifth embodiment abolishes the cooling water inlet 104 and the first internal cooling water pipe 41 and passes through the second heat exchange unit 62 in the first heat exchange unit 12. The point which heat-exchanges a later cooling water and a refrigerant
  • the central plate-like member 11A among the multiple first plate-like members 11 constituting the first heat exchanging portion 12 is a protruding portion (not shown) constituting the second tank space 16 for cooling water.
  • a closing portion (not shown) that closes the opening).
  • the cooling water that has flowed into the second cooling water tank space 16 cools the first cooling water flow path 122 on the other side in the plate stacking direction (downward in the example of FIG. 12) from the second cooling water tank space 16.
  • the first cooling water flow path 122 on one end side in the plate stacking direction passes through the first cooling water flow path 122 from the first cooling water tank space 15. It flows toward the tank space 16 and flows out from the cooling water outlet 102 to the outside. That is, the first heat exchange unit 12 is configured such that the flow of the cooling water makes a U-turn once.
  • the cooling water after passing through the second heat exchange unit 62 is caused to flow into the first heat exchange unit 12. That is, the entire amount of cooling water that flows into the heat exchanger 10 is circulated through the second heat exchange unit 62. For this reason, the supercooling of the liquid-phase refrigerant separated by the gas-liquid separation unit 30 can be performed preferentially.
  • the condensation mode is a mode for causing the heat exchanger 10 to function as a condenser for condensing the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant and the cooling water of the refrigeration cycle.
  • the evaporation mode is a mode in which the heat exchanger 10 functions as an evaporator that exchanges heat between the low-pressure side refrigerant and the cooling water of the refrigeration cycle to evaporate the low-pressure side refrigerant.
  • the solid arrow indicates the refrigerant flow in the condensation mode
  • the two-dot chain arrow indicates the refrigerant flow in the evaporation mode
  • the one-dot chain arrow indicates the cooling water flow. .
  • the second joint 23 of the present embodiment forms a first refrigerant outlet 103 through which the refrigerant flows out from the second heat exchanging unit 62 during the condensation mode.
  • the second joint 23 is disposed on the uppermost side in the gravity direction of the third endmost plate-like member 68.
  • the third cooling water pipe 73 is also arranged on the upper side in the gravity direction of the third outermost plate member 68.
  • a fifth joint 75 is attached to the end of the second ceiling plate 19 on the side close to the refrigerant inflow portion 181 in the longitudinal direction.
  • the fifth joint 75 is a member for joining the refrigerant pipes, and forms a second refrigerant outlet 705 that allows the refrigerant to flow out from the gas-liquid separator 30 in the evaporation mode.
  • the refrigerant inflow portion 181 and the fifth joint 75 are disposed on the upper side in the gravity direction of the second ceiling plate 19.
  • the refrigerant that has flowed from the refrigerant inflow portion 181 into the gas-liquid separation portion 30 is separated into gas and liquid by the gas-liquid separation portion 30.
  • the liquid-phase refrigerant that has been gas-liquid separated by the gas-liquid separation unit 30 flows into the liquid-phase refrigerant first tank space 63 from the liquid-phase refrigerant inflow hole 671.
  • the refrigerant that has flowed into the first liquid phase refrigerant tank space 63 flows from the first liquid phase refrigerant tank space 63 toward the second liquid phase refrigerant tank space 64 through the second refrigerant flow path 621, and the refrigerant outlet 103. Out to the outside.
  • the refrigerant that has flowed from the refrigerant inflow portion 181 to the gas-liquid separation portion 30 flows out from the second refrigerant outlet 705 to the outside.
  • the gas-liquid separation unit 30 has a refrigerant passage that allows the refrigerant flowing from the first heat exchange unit 12 to flow out to the second heat exchange unit 62 in the condensation mode, and the first heat exchange unit 12 to flow in the evaporation mode. And a refrigerant passage through which the refrigerant flows out.
  • switching of the refrigerant flow path in the heat exchanger 10 can be performed by a valve or the like provided outside the heat exchanger 10 (more specifically, on the refrigerant outlet side).
  • the evaporation mode and the condensation mode can be switched.
  • the heat exchanger 10 of the present embodiment is capable of forming the refrigerant flow in the condensation mode and the refrigerant flow in the evaporation mode inside the heat exchanger 10.
  • the heat exchanger 10 of this embodiment can be used suitably as an outdoor unit of a heat pump cycle.
  • water cooling of the outdoor unit can be achieved, and from this, the refrigerant behavior is stabilized by the heat storage effect of the cooling water, and COP control can be easily performed.
  • the gas-liquid separator 30 of this embodiment is integrally formed by stacking and joining a plurality of third plate-like members 91 to each other.
  • the lamination direction of the third plate member 91 is parallel to the lamination direction (plate lamination direction) of the first plate member 11.
  • the third plate-like member 91 is equal in length to the first plate-like member 11 in the arrangement direction and in the width direction.
  • the multiple third plate-like members 91 are arranged so that the protruding tips of the overhang portions 911 face the same side.
  • the first plate-like member 11 is arranged so that the protruding tip of the overhanging portion 111 faces the side opposite to the gas-liquid separation portion 30 (the upper side in the example of FIG. 19).
  • the second plate-like member 61 and the third plate-like member 91 are such that the protruding tips of the overhang portions 611 and 911 face the opposite side to the first heat exchange portion 12 (the lower side in the example of FIG. 19), respectively. Is arranged.
  • a plurality of gas-liquid separation passages 92 through which the refrigerant flowing from the first refrigerant channel 121 of the first heat exchange unit 12 flows are formed between the plurality of third plate-like members 91. ing.
  • the 3rd plate-shaped member 91 is provided with the 1st through-hole 912, and the gas-liquid separation channel
  • the third plate-like member 91 located closest to one end side in the plate stacking direction is the third ceiling plate 93 (third end plate).
  • the third plate-like member 91 located closest to the other end side in the plate stacking direction is referred to as a fourth ceiling plate 94 (fourth end plate).
  • the third ceiling plate 93 is joined to the surface of the first ceiling plate 18 on the other end side in the plate stacking direction.
  • the second ceiling plate 19 is joined to the surface on the other end side in the plate stacking direction of the overhanging portion 911 of the fourth ceiling plate 94.
  • the third ceiling plate 93 is thicker than the other third plate member 91.
  • the third plate-like member 91 is provided with a second through hole 913 through which the first internal cooling water pipe 41 passes and a third through hole (not shown) through which the second internal cooling water pipe 81 passes.
  • the first internal cooling water pipe 41 is formed integrally with the second cooling water pipe 24.
  • the insertion for inserting the desiccant 95 into the gas-liquid separation unit 30 is performed on the second ceiling plate 19 other than the part where the second heat exchange unit 62 is joined.
  • a mouth 96 is provided.
  • the insertion port 96 is closed by a plug portion 97.
  • the desiccant 95 is one in which granular zeolite for water absorption is stored inside the bag body, and absorbs moisture in the refrigerant. This is to prevent each functional component constituting the refrigeration cycle from being corroded by moisture in the refrigerant, or freezing in the pores of the expansion valve to stagnate the refrigerant flow.
  • the desiccant 95 is disposed inside the gas-liquid separator 30, that is, at a portion corresponding to the insertion port 96 in the gas-liquid separation passage 92. In the present embodiment, the desiccant 95 is disposed in the vicinity of the first through hole 912.
  • the third ceiling plate 93 of the present embodiment is provided with a recess.
  • the recess is formed by denting a part of the third ceiling plate 93 toward the other side in the plate stacking direction.
  • a gap is formed between the first ceiling plate 18 and the third ceiling plate 93, that is, between the first heat exchange unit 12 and the gas-liquid separation unit 30. Can do.
  • the gas-liquid separation space in the gas-liquid separation unit 30 is configured by a large number of third plate members 91. Therefore, since a refrigerant
  • the desiccant 95 is installed in the gas-liquid separator 30. In order to do this, it is necessary to add dedicated parts. For this reason, there exists a problem that manufacturing cost increases.
  • the length of the second plate member 61 in the refrigerant flow direction is shorter than the length of the first plate member 11 in the refrigerant flow direction.
  • an insertion port 96 for inserting the desiccant 95 into the gas-liquid separation unit 30 is provided at a portion of the second ceiling plate 19 other than the portion where the second heat exchange unit 62 is joined. According to this, it is possible to insert the desiccant 95 into the gas-liquid separator 30 without adding a dedicated part for installing the desiccant 95.
  • the offset fin 50 is arrange
  • the third plate-like member 91 is cooled by the liquid phase refrigerant in the gas-liquid separation unit 30, even when bubbles (gas phase refrigerant) are slightly mixed when flowing into the gas-liquid separation unit 30, The bubbles are cooled and condensed by exchanging heat with the third plate-like member 91.
  • the gas-liquid separation property of the gas-liquid separation unit 30 can be improved.
  • a recess is provided in the third ceiling plate 93 so that a gap is formed between the first heat exchange unit 12 and the gas-liquid separation unit 30.
  • cooling water cooled by a radiator (not shown) is caused to flow from the cooling water inlet 104 into the first heat exchange section 12 via the first internal cooling water passage 40 and from the cooling water inlet 703 to the first. 2
  • the heat exchange section 62 is made to flow. Therefore, by controlling the amount of cooling water flowing in from the two cooling water inlets 104 and 703, flow distribution control of the water flow rate to the first heat exchange unit 12 and the water flow rate to the second heat exchange unit 62 is performed. It can be carried out.
  • the condensation performance of the refrigerant can be improved and the condensation capacity can be increased.
  • the water flow rate to the second heat exchange unit 62 it is possible to improve the supercooling performance of the refrigerant and increase the degree of supercooling of the refrigerant.
  • a dedicated radiator for cooling the cooling water heated in the second heat exchange unit 62 may be provided, and the cooling water cooled by the dedicated radiator may flow into the second heat exchange unit 62. According to this, the degree of supercooling of the refrigerant can be further increased.
  • a heat exchanger that cools the refrigerant by air exchange that is, heat exchange between the refrigerant and air, in which the condensing unit and the supercooling unit are arranged on the same heat radiation surface, the heat exchanger
  • the refrigerant pressure increases, so it is difficult to substantially control the degree of supercooling of the refrigerant.
  • the refrigerant is supercooled by performing flow rate distribution control of the water flow rate to the first heat exchange unit 12 and the water flow rate to the second heat exchange unit 62. It is possible to control the degree.
  • the method of switching the refrigerant flow path is not limited to this.
  • the refrigerant flow that causes the refrigerant that has flowed out from the first heat exchange unit 12 to flow to the outside in the gas-liquid separation unit 30 of the heat exchanger 10 and the refrigerant that has flowed out from the first heat exchange unit 12 to the second heat exchange You may provide the valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This stacked heat exchanger is provided with a first heat exchanger unit (12) that exchanges heat between cooling water and a refrigerant. The first heat exchanger unit (12) includes: a plurality of first plate-shaped members (11) that are stacked together and joined; and a plurality of first refrigerant flow paths (121) and a plurality of cooling water flow paths (122) disposed between the plurality of first plate-shaped members (11). The plurality of first refrigerant flow paths (121) and the plurality of cooling water flow paths (122) are aligned in the direction of stacking of the plurality of first plate-shaped members (11). The stacked heat exchanger is further provided with a gas-liquid separation unit (30) that has a first top plate (18) disposed at the outermost side in the direction of stacking of the plurality of first plate-shaped members (11), a second top plate (19) joined to the first top plate (18), and a space between the first top plate (18) and second top plate (19), said gas-liquid separation unit separating the gas and liquid of the refrigerant flowing therewithin and storing the surplus refrigerant in a refrigeration cycle. As a result, the stacked heat exchanger provided with the gas-liquid separation unit that separates the gas and liquid of the refrigerant has greater body compactness and less installation dead space.

Description

積層型熱交換器Laminate heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年5月23日に出願された日本特許出願2014-107117および、2014年10月30日に出願された日本特許出願2014-221497を基にしている。 This application includes Japanese Patent Application No. 2014-107117 filed on May 23, 2014, and Japanese Patent Application No. 2014-2014 filed on October 30, 2014, the disclosures of which are incorporated herein by reference. Based on 221497.
 本開示は、冷凍サイクルの冷媒と熱媒体とを熱交換する積層型熱交換器に関する。 The present disclosure relates to a stacked heat exchanger that exchanges heat between a refrigerant and a heat medium in a refrigeration cycle.
 従来、複数の略平板状の伝熱プレートを間隔をおいて重ね合わせることにより、伝熱プレート間に冷媒流路と熱媒体流路とを交互に形成して、冷媒と熱媒体とを熱交換させる積層型熱交換器が知られている。このような積層型熱交換器において、当該熱交換器から流出する冷媒の気液を分離するとともに冷媒を蓄える円筒状のモジュレータを一体化させたものが、特許文献1に開示されている。 Conventionally, a plurality of substantially flat plate-shaped heat transfer plates are overlapped at an interval to alternately form a refrigerant channel and a heat medium channel between the heat transfer plates to exchange heat between the refrigerant and the heat medium. A laminated heat exchanger is known. In such a stacked heat exchanger, Patent Document 1 discloses an integrated cylindrical modulator that separates the gas-liquid refrigerant flowing out of the heat exchanger and stores the refrigerant.
 しかしながら、特許文献1に記載の積層型熱交換器では、略筐体形状の熱交換器の外側に円筒状のモジュレータを一体化させている。このため、体格が大型化するとともに、搭載時に何も配置されないスペース、いわゆるデットスペースが発生するおそれがある。さらに、このようなモジュレータ一体型の熱交換器に対し、モジュレータから流出した液相冷媒を過冷却する過冷却部を追加する場合、体格がますます大型化する場合がある。 However, in the stacked heat exchanger described in Patent Document 1, a cylindrical modulator is integrated on the outside of a substantially case-shaped heat exchanger. For this reason, the physique increases in size, and a space where nothing is arranged at the time of mounting, that is, a so-called dead space may occur. Furthermore, when a supercooling section for supercooling the liquid-phase refrigerant flowing out of the modulator is added to such a modulator-integrated heat exchanger, the size of the heat exchanger may become larger.
独国特許出願公開第102011078136号明細書German Patent Application Publication No. 102011078136
 本開示は上記点に鑑みて、冷媒の気液を分離する気液分離部を備える積層型熱交換器において、体格の小型化を図るとともに、搭載上のデッドスペースを小さくすることを目的とする。 In view of the above points, it is an object of the present disclosure to reduce the size of the physique and reduce the dead space on the mounting in a stacked heat exchanger including a gas-liquid separator that separates the gas and liquid of the refrigerant. .
 本開示の一態様によれば、積層型熱交換器は、冷凍サイクルの冷媒と第1熱媒体とを熱交換させる第1熱交換部を備える。第1熱交換部は、互いに積層されて接合された複数の第1板状部材と、複数の第1板状部材の間に設けられて、複数の第1板状部材の積層方向に並んでおり、冷媒が流れる複数の第1冷媒流路と、複数の第1板状部材の間に設けられて、複数の第1板状部材の積層方向に並んでおり、第1熱媒体が流れる複数の第1熱媒体流路と、を含む。積層型熱交換器は、複数の第1板状部材のうちの1つで積層方向の最外側に配置される第1端板に接合された第2端板と、第1端板と2端板との間に設けられた空間を有し、内部に流入した冷媒の気液を分離するとともに冷凍サイクル内の余剰冷媒を蓄える気液分離部と、をさらに備えている。 According to one aspect of the present disclosure, the stacked heat exchanger includes a first heat exchange unit that exchanges heat between the refrigerant of the refrigeration cycle and the first heat medium. The first heat exchange unit is provided between the plurality of first plate-like members stacked and joined to each other and the plurality of first plate-like members, and is arranged in the stacking direction of the plurality of first plate-like members. The plurality of first refrigerant flow paths through which the refrigerant flows and the plurality of first plate-like members are arranged in the stacking direction of the plurality of first plate-like members, and the plurality of the first heat medium flows therethrough. First heat medium flow path. The stacked heat exchanger includes a second end plate joined to a first end plate disposed at the outermost side in the stacking direction at one of a plurality of first plate-shaped members, a first end plate, and two ends. The apparatus further includes a gas-liquid separation unit that has a space provided between the plates and separates the gas-liquid of the refrigerant that has flowed into the plate and stores excess refrigerant in the refrigeration cycle.
 これによれば、第1端板に、当該第1端板との間に空間を形成するように第2端板を接合するとともに、その空間により気液分離部を構成した。これにより、第1熱交換部に対して板状の第2端板を追加するだけで、気液分離部を設けることができる。このため、積層型熱交換器の小型化を図るとともに、搭載上のデッドスペースを小さくすることが可能となる。 According to this, the second end plate was joined to the first end plate so as to form a space with the first end plate, and the gas-liquid separation part was configured by the space. Thereby, a gas-liquid separation part can be provided only by adding a plate-shaped second end plate to the first heat exchange part. For this reason, it is possible to reduce the size of the stacked heat exchanger and reduce the dead space on mounting.
本開示の第1実施形態に係る熱交換器を示す概略図である。It is a schematic diagram showing a heat exchanger concerning a 1st embodiment of this indication. 第1実施形態における第1天井板を第2天井板から見た図である。It is the figure which looked at the 1st ceiling board in a 1st embodiment from the 2nd ceiling board. 図1のIII矢視図である。It is a III arrow directional view of FIG. 図3のIV-IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 第1実施形態に係る熱交換器の一部を示す断面図である。It is sectional drawing which shows a part of heat exchanger which concerns on 1st Embodiment. 第1実施形態におけるオフセットフィンを示す斜視図であるIt is a perspective view which shows the offset fin in 1st Embodiment. 本開示の第2実施形態に係る熱交換器を示す側面図である。It is a side view showing a heat exchanger concerning a 2nd embodiment of this indication. 本開示の第3実施形態に係る熱交換器を示す概略図である。It is a schematic diagram showing a heat exchanger concerning a 3rd embodiment of this indication. 図8のIX矢視図である。It is IX arrow line view of FIG. 図9のX-X断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9. 本開示の第4実施形態に係る熱交換器を示す概略図である。It is a schematic diagram showing a heat exchanger concerning a 4th embodiment of this indication. 本開示の第5実施形態に係る熱交換器を示す概略図である。It is the schematic which shows the heat exchanger which concerns on 5th Embodiment of this indication. 本開示の第6実施形態に係る熱交換器の凝縮モードにおける冷媒の流れを示す概略図である。It is the schematic which shows the flow of the refrigerant | coolant in the condensation mode of the heat exchanger which concerns on 6th Embodiment of this indication. 図13のXIV矢視図である。It is a XIV arrow line view of FIG. 図14のXV-XV断面図である。It is XV-XV sectional drawing of FIG. 図14のXVI-XVI断面図である。It is XVI-XVI sectional drawing of FIG. 図14のXVII-XVII断面図である。It is XVII-XVII sectional drawing of FIG. 第6実施形態に係る熱交換器の蒸発モードにおける冷媒の流れを示す概略図である。It is the schematic which shows the flow of the refrigerant | coolant in the evaporation mode of the heat exchanger which concerns on 6th Embodiment. 本開示の第7実施形態に係る熱交換器を示す概略図である。It is a schematic diagram showing a heat exchanger concerning a 7th embodiment of this indication. 図20のXX矢視図である。It is XX arrow line view of FIG. 図20のXXI-XXI断面図である。It is XXI-XXI sectional drawing of FIG.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
 本開示の第1実施形態について図1~図6に基づいて説明する。図1に示す熱交換器10は、車両用空調装置の冷凍サイクルを構成している。熱交換器10は、冷凍サイクルの高圧側冷媒と冷却水とを熱交換して高圧側冷媒を凝縮させる凝縮器である。なお、本実施形態の冷却水が、本開示の第1熱媒体に相当している。
Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. A heat exchanger 10 shown in FIG. 1 constitutes a refrigeration cycle of a vehicle air conditioner. The heat exchanger 10 is a condenser that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant and the cooling water of the refrigeration cycle. Note that the cooling water of the present embodiment corresponds to the first heat medium of the present disclosure.
 冷却水としては、例えば、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体等を用いることができる。本実施形態では、冷却水として、エチレングリコール系の不凍液(LLC)が用いられている。 As the cooling water, for example, a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid can be used. In this embodiment, ethylene glycol antifreeze (LLC) is used as the cooling water.
 熱交換器10は、多数の第1板状部材11(以下、単に板状部材11と略称する)が積層されて接合されることによって一体的に形成されている。以下では、板状部材11の積層方向(図1の例では上下方向)を板積層方向と言い、板積層方向の一端側(図1の例では上端側)を板積層方向一端側と言い、板積層方向の他端側(図1の例では下端側)を板積層方向他端側と言う。 The heat exchanger 10 is integrally formed by laminating and joining a large number of first plate members 11 (hereinafter simply referred to as plate members 11). Hereinafter, the laminating direction of the plate-like member 11 (vertical direction in the example of FIG. 1) is referred to as the plate laminating direction, and one end side in the plate laminating direction (the upper end side in the example of FIG. 1) is referred to as one end side of the plate laminating direction. The other end side in the plate stacking direction (the lower end side in the example of FIG. 1) is referred to as the other end side in the plate stacking direction.
 板状部材11は細長の略矩形状の板材であり、具体的材質としては、例えば、アルミニウム芯材にろう材をクラッドしたクラッド材が用いられる。 The plate-like member 11 is an elongated, substantially rectangular plate material. As a specific material, for example, a clad material in which a brazing material is clad on an aluminum core material is used.
 略矩形状の板状部材11の外周縁部には、略板積層方向(換言すれば、板状部材11の板面と略直交する方向)に突出する張出部111が形成されている。多数の板状部材11は、互いに積層された状態で張出部111同士がろう付けにより接合されている。多数の板状部材11は、張出部111の突出先端が互いに同じ側(図1の例では略下方側)を向くように配置されている。 On the outer peripheral edge of the substantially rectangular plate-like member 11, an overhanging portion 111 is formed that protrudes in a substantially plate lamination direction (in other words, a direction substantially orthogonal to the plate surface of the plate-like member 11). Many plate-like members 11 are joined to each other by brazing in a state where the plate-like members 11 are laminated with each other. The many plate-like members 11 are arranged so that the protruding tips of the overhanging portions 111 face the same side (substantially downward in the example of FIG. 1).
 多数の板状部材11は、第1熱交換部12(以下、単に熱交換部12と略称する)、冷媒用第1タンク空間13、冷媒用第2タンク空間14、冷却水用第1タンク空間15および冷却水用第2タンク空間16を形成している。 A large number of plate-like members 11 include a first heat exchange section 12 (hereinafter simply referred to as a heat exchange section 12), a first tank space for refrigerant 13, a second tank space for refrigerant 14, and a first tank space for cooling water. 15 and the second tank space 16 for cooling water are formed.
 熱交換部12は、複数の第1冷媒流路121(以下、単に冷媒流路121と略称する)および複数の第1冷却水流路122(以下、単に冷却水流路122と略称する)で構成されている。なお、本実施形態の冷却水流路122が、本開示の第1熱媒体流路に相当している。 The heat exchange unit 12 includes a plurality of first refrigerant flow paths 121 (hereinafter simply referred to as refrigerant flow paths 121) and a plurality of first cooling water flow paths 122 (hereinafter simply referred to as cooling water flow paths 122). ing. Note that the cooling water passage 122 of the present embodiment corresponds to the first heat medium passage of the present disclosure.
 複数の冷媒流路121および複数の冷却水流路122は、多数枚の板状部材11同士の間に形成されている。冷媒流路121および冷却水流路122の長手方向は、板状部材11の長手方向と一致している。 The plurality of refrigerant channels 121 and the plurality of cooling water channels 122 are formed between a large number of plate-like members 11. The longitudinal directions of the refrigerant flow path 121 and the cooling water flow path 122 coincide with the longitudinal direction of the plate-like member 11.
 冷媒流路121および冷却水流路122は板積層方向に1本ずつ交互に積層配置(並列配置)されている。板状部材11は、冷媒流路121と冷却水流路122とを仕切る隔壁の役割を果たしている。冷媒流路121を流れる冷媒と、冷却水流路122を流れる冷却水との熱交換は、板状部材11を介して行われる。 The refrigerant channel 121 and the cooling water channel 122 are alternately stacked one by one in the plate stacking direction (in parallel). The plate-like member 11 serves as a partition wall that partitions the coolant channel 121 and the cooling water channel 122. Heat exchange between the refrigerant flowing through the refrigerant flow path 121 and the cooling water flowing through the cooling water flow path 122 is performed via the plate-like member 11.
 冷媒用第1タンク空間13および冷却水用第1タンク空間15は、熱交換部12に対して、冷媒流路121および冷却水流路122の一方側(図1の例では右方側)に配置されている。冷媒用第2タンク空間14および冷却水用第2タンク空間16は、熱交換部12に対して、冷媒流路121および冷却水流路122の他方側(図1の例では左方側)に配置されている。 The first tank space for refrigerant 13 and the first tank space for cooling water 15 are arranged on one side (right side in the example of FIG. 1) of the refrigerant flow path 121 and the cooling water flow path 122 with respect to the heat exchange unit 12. Has been. The second tank space for refrigerant 14 and the second tank space for cooling water 16 are arranged on the other side (left side in the example of FIG. 1) of the refrigerant flow path 121 and the cooling water flow path 122 with respect to the heat exchange unit 12. Has been.
 冷媒用第1タンク空間13および冷媒用第2タンク空間14は、複数の冷媒流路121に対して冷媒の分配および集合を行う。冷却水用第1タンク空間15および冷却水用第2タンク空間16は、複数の冷却水流路122に対して冷却水の分配および集合を行う。 The first tank space for refrigerant 13 and the second tank space for refrigerant 14 distribute and collect the refrigerant with respect to the plurality of refrigerant flow paths 121. The first tank space for cooling water 15 and the second tank space for cooling water 16 distribute and collect the cooling water to the plurality of cooling water flow paths 122.
 冷媒用第1タンク空間13、冷媒用第2タンク空間14、冷却水用第1タンク空間15および冷却水用第2タンク空間16は、板状部材11の四隅に形成された連通孔によって構成されている。本実施形態では、略矩形状の板状部材11の四隅のうち対角線上にある2つの隅部に、冷媒用第1タンク空間13および冷媒用第2タンク空間14が設けられており、残りの2つの隅部に冷却水用第1タンク空間15および冷却水用第2タンク空間16が設けられている。 The refrigerant first tank space 13, the refrigerant second tank space 14, the cooling water first tank space 15, and the cooling water second tank space 16 are configured by communication holes formed at the four corners of the plate-like member 11. ing. In the present embodiment, the first tank space 13 for refrigerant and the second tank space 14 for refrigerant are provided at two corners on the diagonal line among the four corners of the substantially rectangular plate-like member 11, and the remaining A cooling water first tank space 15 and a cooling water second tank space 16 are provided at two corners.
 熱交換部12を構成する多数枚の板状部材11のうち最も板積層方向一端側に位置する最端板状部材17には、第1ジョイント21および第1冷却水パイプ22が取り付けられている。第1ジョイント21は、冷媒配管を接合するための部材であり、熱交換器10の冷媒入口101を形成している。第1冷却水パイプ22は、熱交換器10の冷却水出口102を形成している。 The first joint 21 and the first cooling water pipe 22 are attached to the outermost plate-like member 17 located closest to the one end side in the plate stacking direction among the many plate-like members 11 constituting the heat exchange unit 12. . The first joint 21 is a member for joining refrigerant pipes, and forms the refrigerant inlet 101 of the heat exchanger 10. The first cooling water pipe 22 forms the cooling water outlet 102 of the heat exchanger 10.
 本実施形態では、第1ジョイント21は、最端板状部材17の長手方向における一端側(図1の例では右方側)に設けられている。また、第1冷却水パイプ22は、最端板状部材17の長手方向における他端側(図1の例では左方側)に設けられている。 In the present embodiment, the first joint 21 is provided on one end side in the longitudinal direction of the outermost plate member 17 (right side in the example of FIG. 1). The first cooling water pipe 22 is provided on the other end side in the longitudinal direction of the outermost plate member 17 (left side in the example of FIG. 1).
 熱交換部12を構成する多数枚の板状部材11のうち、最も板積層方向他端側、すなわち板積層方向の最外側に位置する第1天井板18(第1端板)は、他の板状部材11と比較して、張出部111の板積層方向の長さが長くなっている。第1天井板18には、当該第1天井板18との間に空間を形成するように、板状の第2天井板19(第2端板)がろう付けにより接合されている。この空間は、内部に流入した冷媒の気液を分離するとともに冷凍サイクル内の余剰冷媒を蓄える気液分離部30の一例として用いられても良い。 Among the many plate-like members 11 constituting the heat exchange unit 12, the first ceiling plate 18 (first end plate) located on the other end side in the plate stacking direction, that is, the outermost side in the plate stacking direction, Compared with the plate-like member 11, the length of the overhanging portion 111 in the plate stacking direction is longer. A plate-like second ceiling plate 19 (second end plate) is joined to the first ceiling plate 18 by brazing so as to form a space between the first ceiling plate 18 and the first ceiling plate 18. This space may be used as an example of the gas-liquid separation unit 30 that separates the gas-liquid of the refrigerant flowing into the interior and stores excess refrigerant in the refrigeration cycle.
 図2および図4に示すように、第1天井板18における重力方向下方部には、熱交換部12の冷媒流路121を流れる冷媒を気液分離部30に流入させる冷媒流入部181が設けられている。冷媒流入部181は、第1天井板18に設けられた貫通孔である。より詳細には、冷媒流入部181は、気液分離部30に蓄えられている液相冷媒の液面(図2参照)よりも、重力方向下方側に位置している。また、冷媒流入部181は、第1天井板18における重力方向下半分の領域に設けられてもよい。 As shown in FIGS. 2 and 4, a refrigerant inflow portion 181 for allowing the refrigerant flowing through the refrigerant flow path 121 of the heat exchange unit 12 to flow into the gas-liquid separation unit 30 is provided in the lower portion of the first ceiling plate 18 in the gravity direction. It has been. The refrigerant inflow portion 181 is a through hole provided in the first ceiling plate 18. More specifically, the refrigerant inflow portion 181 is located on the lower side in the gravitational direction than the liquid surface of the liquid-phase refrigerant stored in the gas-liquid separator 30 (see FIG. 2). In addition, the refrigerant inflow portion 181 may be provided in the lower half region of the first ceiling plate 18 in the direction of gravity.
 第1天井板18における重力方向上方側には、後述する第1内部冷却水パイプ41が挿入される第1貫通孔182が形成されている。より詳細には、第1貫通孔182は、気液分離部30に蓄えられている液相冷媒の液面よりも、重力方向上方側に配置されている。本実施形態では、冷媒流入部181および第1貫通孔182は、ともに、第1天井板18の長手方向における一端側(図2の例では右方側)に配置されている。 A first through hole 182 into which a first internal cooling water pipe 41 to be described later is inserted is formed on the upper side in the gravity direction of the first ceiling plate 18. More specifically, the first through hole 182 is disposed on the upper side in the gravitational direction than the liquid level of the liquid refrigerant stored in the gas-liquid separator 30. In the present embodiment, both the refrigerant inflow portion 181 and the first through hole 182 are arranged on one end side in the longitudinal direction of the first ceiling plate 18 (right side in the example of FIG. 2).
 図3および図4に示すように、第2天井板19における重力方向下方部には、気液分離部30から液相冷媒を外部へ流出させる冷媒流出部191が設けられている。冷媒流出部191は、第2天井板19に設けられた貫通孔である。より詳細には、冷媒流出部191は、気液分離部30に蓄えられている液相冷媒の液面よりも、重力方向下方側に位置している。また、冷媒流出部191は、第2天井板19における重力方向下半分の領域に設けられてもよい。 As shown in FIGS. 3 and 4, a refrigerant outflow portion 191 for allowing the liquid-phase refrigerant to flow out from the gas-liquid separation unit 30 to the outside is provided at a lower portion in the gravity direction of the second ceiling plate 19. The refrigerant outflow portion 191 is a through hole provided in the second ceiling plate 19. More specifically, the refrigerant outflow portion 191 is located on the lower side in the gravity direction than the liquid surface of the liquid-phase refrigerant stored in the gas-liquid separation portion 30. Further, the refrigerant outflow portion 191 may be provided in the lower half region of the second ceiling plate 19 in the direction of gravity.
 第2天井板19における重力方向上方側には、後述する第1内部冷却水パイプ41が挿入される第2貫通孔192が形成されている。第2貫通孔192の内周面と第1内部冷却水パイプ41の外表面とは、ろう付けにより接合されている。 A second through hole 192 into which a first internal cooling water pipe 41 to be described later is inserted is formed on the upper side in the gravity direction of the second ceiling plate 19. The inner peripheral surface of the second through hole 192 and the outer surface of the first internal cooling water pipe 41 are joined by brazing.
 より詳細には、第2貫通孔192は、気液分離部30に蓄えられている液相冷媒の液面よりも、重力方向上方側に配置されている。本実施形態では、第2貫通孔192は、第2天井板19の長手方向における一端側(図3の例では右方側)に配置されている。一方、冷媒流出部191は、第2天井板19の長手方向における他端側(図2の例では左方側)に配置されている。 More specifically, the second through hole 192 is disposed on the upper side in the gravity direction with respect to the liquid level of the liquid-phase refrigerant stored in the gas-liquid separator 30. In the present embodiment, the second through hole 192 is disposed on one end side in the longitudinal direction of the second ceiling plate 19 (right side in the example of FIG. 3). On the other hand, the refrigerant outflow portion 191 is disposed on the other end side in the longitudinal direction of the second ceiling plate 19 (left side in the example of FIG. 2).
 本実施形態では、図3に示すように、第2天井板19における重力方向下方側には、気液分離部30の内圧の上昇により第2天井板19にかかる応力を吸収するための突起193が設けられている。この突起193を設けることにより、気液分離部30の剛性を向上させることができる。また、気液分離部30の重力方向下方側には、液相冷媒中の水分を除去する乾燥剤31が設けられている。 In the present embodiment, as shown in FIG. 3, a protrusion 193 for absorbing stress applied to the second ceiling plate 19 due to an increase in internal pressure of the gas-liquid separation unit 30 on the lower side in the gravity direction of the second ceiling plate 19. Is provided. By providing the projection 193, the rigidity of the gas-liquid separation unit 30 can be improved. In addition, a desiccant 31 for removing moisture in the liquid-phase refrigerant is provided below the gas-liquid separator 30 in the gravity direction.
 図1および図4に示すように、第2天井板19には、第2ジョイント23および第2冷却水パイプ24が取り付けられている。第2ジョイント23は、冷媒配管を接合するための部材であり、熱交換器10の冷媒出口103を形成している。第2冷却水パイプ24は、熱交換器10の冷却水入口104を形成している。 As shown in FIGS. 1 and 4, a second joint 23 and a second cooling water pipe 24 are attached to the second ceiling plate 19. The second joint 23 is a member for joining refrigerant pipes and forms the refrigerant outlet 103 of the heat exchanger 10. The second cooling water pipe 24 forms the cooling water inlet 104 of the heat exchanger 10.
 冷媒入口101は、冷媒用第1タンク空間13に連通している。冷媒用第1タンク空間13は、冷媒流入部181を介して、気液分離部30に連通している。気液分離部30は、冷媒流出部191を介して、冷媒出口103に連通している。 The refrigerant inlet 101 communicates with the first tank space 13 for refrigerant. The refrigerant first tank space 13 communicates with the gas-liquid separation unit 30 via the refrigerant inflow portion 181. The gas-liquid separator 30 communicates with the refrigerant outlet 103 via the refrigerant outlet 191.
 図4に示すように、気液分離部30の内部には、冷却水が流通するとともに、冷却水入口104と冷却水用第1タンク空間15とを連通させる第1内部冷却水通路40が設けられている。具体的には、気液分離部30の内部には、第2冷却水パイプ24と冷却水用第1タンク空間15とを接続する第1内部冷却水パイプ41が設けられている。この第1内部冷却水パイプ41により、第1内部冷却水通路40が構成されている。 As shown in FIG. 4, a first internal cooling water passage 40 is provided in the gas-liquid separation unit 30 to allow the cooling water to flow and to connect the cooling water inlet 104 and the first cooling water tank space 15. It has been. Specifically, a first internal cooling water pipe 41 that connects the second cooling water pipe 24 and the first tank space 15 for cooling water is provided inside the gas-liquid separator 30. The first internal cooling water passage 40 is configured by the first internal cooling water pipe 41.
 したがって、図1および図4に示すように、冷却水入口104は、第1内部冷却水通路40を介して、冷却水用第1タンク空間15に連通している。また、冷却水出口102は、冷却水用第2タンク空間16に連通している。 Therefore, as shown in FIGS. 1 and 4, the cooling water inlet 104 communicates with the first tank space 15 for cooling water via the first internal cooling water passage 40. The cooling water outlet 102 communicates with the cooling water second tank space 16.
 図5に示すように、本実施形態では、熱交換部12を構成する多数枚の板状部材11は、当該板状部材11の四隅に板積層方向の一端側または他端側に向かって突出する略円筒状の突出部11fを有している。この突出部11fにより、冷媒用第1タンク空間13、冷媒用第2タンク空間14、冷却水用第1タンク空間15および冷却水用第2タンク空間16が、それぞれ形成されている。 As shown in FIG. 5, in the present embodiment, a large number of plate-like members 11 constituting the heat exchanging portion 12 protrude toward one end side or the other end side in the plate stacking direction at the four corners of the plate-like member 11. It has a substantially cylindrical protrusion 11f. A first tank space 13 for refrigerant, a second tank space 14 for refrigerant, a first tank space 15 for cooling water, and a second tank space 16 for cooling water are formed by the protrusion 11f.
 熱交換部12を構成する多数枚の板状部材11のうち、板積層方向の略中央部に位置する中央板状部材11Aは、冷媒用第1タンク空間13を構成する突出部11fを閉塞する閉塞部11gを有している。これにより、冷媒用第1タンク空間13は板積層方向に2つの空間に仕切られている。なお、閉塞部11gは、突出部11f、すなわち中央板状部材11Aと一体に形成されている。 Of the many plate-like members 11 constituting the heat exchanging portion 12, the central plate-like member 11 </ b> A located at a substantially central portion in the plate stacking direction closes the protruding portion 11 f constituting the first tank space 13 for refrigerant. It has a blocking part 11g. Thereby, the first tank space 13 for refrigerant is partitioned into two spaces in the plate stacking direction. The closing portion 11g is formed integrally with the protruding portion 11f, that is, the central plate member 11A.
 したがって、図1の実線矢印に示すように、冷媒入口101から流入した冷媒は、板積層方向一端側の冷媒流路121を冷媒用第1タンク空間13から冷媒用第2タンク空間14へ向かって流れた後、板積層方向他端側の冷媒流路121を冷媒用第2タンク空間14から冷媒用第1タンク空間13へ向かって流れて、冷媒流入部181から気液分離部30へ流入する。すなわち、熱交換器10は、冷媒の流れが1回Uターンするように構成されている。気液分離部30へ流入した冷媒は気液分離され、液相冷媒が冷媒出口103から外部へ流出する。 Therefore, as indicated by the solid line arrow in FIG. 1, the refrigerant that has flowed from the refrigerant inlet 101 moves from the first tank space 13 for refrigerant to the second tank space 14 for refrigerant through the refrigerant flow path 121 on one end side in the plate stacking direction. After flowing, the refrigerant flows in the refrigerant flow path 121 on the other end side in the plate stacking direction from the refrigerant second tank space 14 toward the refrigerant first tank space 13, and flows from the refrigerant inflow portion 181 into the gas-liquid separation portion 30. . That is, the heat exchanger 10 is configured such that the refrigerant flow makes a U-turn once. The refrigerant flowing into the gas-liquid separation unit 30 is gas-liquid separated, and the liquid-phase refrigerant flows out from the refrigerant outlet 103 to the outside.
 また、冷却水入口104からから流入した冷却水は、図1の一点鎖線矢印に示すように、冷却水流路122を冷却水用第1タンク空間15から冷却水用第2タンク空間16へ向かって流れて、冷却水出口102から外部へ流出する。 Further, the cooling water flowing in from the cooling water inlet 104 flows through the cooling water flow path 122 from the cooling water first tank space 15 toward the cooling water second tank space 16 as shown by a one-dot chain arrow in FIG. And flows out from the cooling water outlet 102 to the outside.
 ところで、板状部材11同士の間には、図6に示すオフセットフィン50が配置されている。オフセットフィン50は、板状部材11同士の間に介在し、冷媒と冷却水との間での熱交換を促進させるインナーフィンである。 Incidentally, offset fins 50 shown in FIG. 6 are arranged between the plate-like members 11. The offset fins 50 are inner fins that are interposed between the plate-like members 11 and promote heat exchange between the refrigerant and the cooling water.
 オフセットフィン50は、部分的に切り起こされた切り起こし部50aが形成された板状の部材である。切り起こし部50aは、冷媒および冷却水の流れ方向と平行な方向F1(すなわち、板状部材11の長手方向)に多数個形成されている。 The offset fin 50 is a plate-like member in which a cut and raised portion 50a that is partially cut and raised is formed. A large number of the cut-and-raised portions 50a are formed in the direction F1 (that is, the longitudinal direction of the plate-like member 11) parallel to the flow direction of the refrigerant and the cooling water.
 冷媒および冷却水の流れ方向と平行な方向F1に隣り合う切り起こし部50a同士は、互いにオフセットされている。図6の例では、多数個の切り起こし部50aは、冷媒および冷却水の流れ方向と平行な方向F1に千鳥配置されている。オフセットフィン50は、隣り合う両方の板状部材11にろう付けにより接合されている。 The cut-and-raised portions 50a adjacent to each other in the direction F1 parallel to the flow direction of the refrigerant and the cooling water are offset from each other. In the example of FIG. 6, the large number of cut-and-raised portions 50a are staggered in a direction F1 parallel to the flow direction of the refrigerant and the cooling water. The offset fins 50 are joined to both adjacent plate-like members 11 by brazing.
 以上説明したように、本実施形態の熱交換器10では、第1天井板18に、当該第1天井板18との間に空間を形成するように第2天井板19を接合するとともに、その空間により気液分離部30を構成している。これにより、第1熱交換部12に対して板状の第2天井板19を追加するだけで、気液分離部30を構成することができる。このため、気液分離部30が一体化された熱交換器10の小型化を図るとともに、搭載上のデッドスペースを小さくすることが可能となる。 As described above, in the heat exchanger 10 of the present embodiment, the second ceiling plate 19 is joined to the first ceiling plate 18 so as to form a space between the first ceiling plate 18 and the first ceiling plate 18. The gas-liquid separation unit 30 is configured by the space. Thereby, the gas-liquid separation part 30 can be comprised only by adding the plate-shaped 2nd ceiling board 19 with respect to the 1st heat exchange part 12. FIG. For this reason, it is possible to reduce the size of the heat exchanger 10 in which the gas-liquid separation unit 30 is integrated, and to reduce the dead space on mounting.
 また、本実施形態では、気液分離部30の冷媒流出部191は、気液分離部30に蓄えられている液相冷媒の液面よりも重力方向下方側に配置されている。このため、冷媒流出部191から液相の冷媒を確実に流出させることができる。
(第2実施形態)
 次に、本開示の第2実施形態について図7に基づいて説明する。本第2実施形態は、上記第1実施形態と比較して、熱交換器10の搭載方向が異なるものである。
Moreover, in this embodiment, the refrigerant | coolant outflow part 191 of the gas-liquid separation part 30 is arrange | positioned rather than the liquid level of the liquid-phase refrigerant | coolant stored in the gas-liquid separation part 30 below the gravity direction. For this reason, the liquid-phase refrigerant can be reliably caused to flow out from the refrigerant outflow portion 191.
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described based on FIG. The second embodiment differs from the first embodiment in the mounting direction of the heat exchanger 10.
 図7に示すように、本実施形態の熱交換器10は、板状部材11の長手方向、すなわち第1天井板18および第2天井板19の長手方向が、重力方向と一致するように搭載されている。このとき、冷媒流入部181および冷媒流出部191は、気液分離部30に蓄えられている液相冷媒の液面(図7参照)よりも重力方向下方側に配置されている。 As shown in FIG. 7, the heat exchanger 10 of the present embodiment is mounted so that the longitudinal direction of the plate-like member 11, that is, the longitudinal directions of the first ceiling plate 18 and the second ceiling plate 19 coincide with the direction of gravity. Has been. At this time, the refrigerant inflow portion 181 and the refrigerant outflow portion 191 are disposed on the lower side in the gravitational direction than the liquid level of the liquid-phase refrigerant stored in the gas-liquid separation portion 30 (see FIG. 7).
 気液分離部30における冷媒流入部181および冷媒流出部191との間には、気液分離部30内の重力方向下方側の空間を冷媒流入部181に連通する空間と冷媒流出部191に連通する空間とに区画するバッフル板32が設けられている。バッフル板32には、複数の貫通孔(図示せず)が形成されており、冷媒流入部181に連通する空間と冷媒流出部191に連通する空間とが連通している。 Between the refrigerant inflow part 181 and the refrigerant outflow part 191 in the gas-liquid separation part 30, the space below the gravity direction in the gas-liquid separation part 30 communicates with a space communicating with the refrigerant inflow part 181 and the refrigerant outflow part 191. A baffle plate 32 is provided to divide the space into the space. A plurality of through holes (not shown) are formed in the baffle plate 32, and a space communicating with the refrigerant inflow portion 181 and a space communicating with the refrigerant outflow portion 191 communicate with each other.
 バッフル板32は、気液分離部30の重力方向下方側端部から上方側に向かって、重力方向と略平行に延びている。本実施形態では、バッフル板32の重力方向上方側端部は、気液分離部30に蓄えられている液相冷媒の液面よりも下方側に配置されている。 The baffle plate 32 extends substantially parallel to the gravity direction from the lower end in the gravity direction of the gas-liquid separator 30 toward the upper side. In the present embodiment, the upper end of the baffle plate 32 in the direction of gravity is disposed below the liquid level of the liquid-phase refrigerant stored in the gas-liquid separator 30.
 以上説明したように、本実施形態では、板状部材11の長手方向が重力方向と一致するように熱交換器10を搭載した場合において、気液分離部30の冷媒流出部191を、気液分離部30に蓄えられている液相冷媒の液面よりも重力方向下方側に配置している。これにより、冷媒流出部191から液相の冷媒を確実に流出させることができる。 As described above, in the present embodiment, when the heat exchanger 10 is mounted so that the longitudinal direction of the plate-like member 11 coincides with the direction of gravity, the refrigerant outflow portion 191 of the gas-liquid separation unit 30 is It arrange | positions in the gravity direction lower side rather than the liquid level of the liquid phase refrigerant | coolant stored in the separation part 30. As a result, the liquid-phase refrigerant can reliably flow out from the refrigerant outflow portion 191.
 また、気液分離部30における冷媒流入部181および冷媒流出部191との間にバッフル板32を設けることで、気液分離性を向上させることができる。さらに、バッフル板32により、気液分離部30の剛性を向上させることができる。
(第3実施形態)
 次に、本開示の第3実施形態について図8~図10に基づいて説明する。本第3実施形態は、上記第1実施形態と比較して、熱交換器10に第2熱交換部62を設けた点が異なるものである。
Further, by providing the baffle plate 32 between the refrigerant inflow part 181 and the refrigerant outflow part 191 in the gas-liquid separation part 30, gas-liquid separation can be improved. Furthermore, the baffle plate 32 can improve the rigidity of the gas-liquid separator 30.
(Third embodiment)
Next, a third embodiment of the present disclosure will be described with reference to FIGS. The third embodiment is different from the first embodiment in that the second heat exchange unit 62 is provided in the heat exchanger 10.
 図8に示すように、本実施形態の第2天井板19には、気液分離部30から流出した液相冷媒と冷凍サイクルの低圧冷媒とを熱交換させて液相冷媒を過冷却する過冷却部として機能する第2熱交換部62が接続されている。なお、本実施形態の低圧冷媒が、本開示の第2熱媒体に相当している。 As shown in FIG. 8, in the second ceiling plate 19 of the present embodiment, the liquid phase refrigerant that has flowed out of the gas-liquid separator 30 and the low-pressure refrigerant in the refrigeration cycle are heat-exchanged to supercool the liquid phase refrigerant. A second heat exchange unit 62 that functions as a cooling unit is connected. Note that the low-pressure refrigerant of the present embodiment corresponds to the second heat medium of the present disclosure.
 第2熱交換部62は、複数の第2板状部材61を互いに積層されて接合されることによって一体的に形成されている。具体的には、多数の第2板状部材61は、第2熱交換部62、液相冷媒用第1タンク空間63、液相冷媒用第2タンク空間64、低圧冷媒用第1タンク空間65および低圧冷媒用第2タンク空間66を形成している。 The second heat exchange part 62 is integrally formed by laminating and joining a plurality of second plate-like members 61 to each other. Specifically, the multiple second plate-like members 61 include a second heat exchange section 62, a liquid tank first tank space 63, a liquid refrigerant second tank space 64, and a low pressure refrigerant first tank space 65. The second tank space 66 for low-pressure refrigerant is formed.
 第2熱交換部62は、液相冷媒が流通する複数の第2冷媒流路621、および、低圧冷媒が流通する複数の低圧冷媒流路622で構成されている。なお、本実施形態の低圧冷媒流路622が、本開示の第2熱媒体流路に相当している。 The second heat exchanging unit 62 includes a plurality of second refrigerant flow paths 621 through which liquid phase refrigerant flows and a plurality of low pressure refrigerant flow paths 622 through which low-pressure refrigerant flows. Note that the low-pressure refrigerant channel 622 of the present embodiment corresponds to the second heat medium channel of the present disclosure.
 複数の第2冷媒流路621および複数の低圧冷媒流路622は、多数枚の第2板状部材61同士の間に形成されている。第2冷媒流路621および低圧冷媒流路622の長手方向は、第2板状部材61の長手方向と一致している。 The plurality of second refrigerant channels 621 and the plurality of low-pressure refrigerant channels 622 are formed between a large number of second plate-like members 61. The longitudinal directions of the second refrigerant channel 621 and the low-pressure refrigerant channel 622 coincide with the longitudinal direction of the second plate member 61.
 第2板状部材61における液相冷媒の流れ方向の長さは、第1板状部材11における冷媒の流れ方向の長さよりも短くなっている。すなわち、第2板状部材61の長手方向の長さは、第1板状部材11の長手方向の長さよりも短くなっている。また、第2板状部材61の積層方向は、第1板状部材11の積層方向と平行になっている。 The length in the flow direction of the liquid phase refrigerant in the second plate member 61 is shorter than the length in the flow direction of the refrigerant in the first plate member 11. That is, the length of the second plate member 61 in the longitudinal direction is shorter than the length of the first plate member 11 in the longitudinal direction. Further, the stacking direction of the second plate-like member 61 is parallel to the stacking direction of the first plate-like member 11.
 第2冷媒流路621および低圧冷媒流路622は板積層方向に1本ずつ交互に積層配置(並列配置)されている。第2板状部材61は、第2冷媒流路621と低圧冷媒流路622とを仕切る隔壁の役割を果たしている。第2冷媒流路621を流れる冷媒と、低圧冷媒流路622を流れる低圧冷媒との熱交換は、第2板状部材61を介して行われる。 The second refrigerant flow path 621 and the low-pressure refrigerant flow path 622 are alternately laminated (parallel arrangement) one by one in the plate lamination direction. The second plate member 61 serves as a partition that partitions the second refrigerant flow path 621 and the low-pressure refrigerant flow path 622. Heat exchange between the refrigerant flowing through the second refrigerant channel 621 and the low-pressure refrigerant flowing through the low-pressure refrigerant channel 622 is performed via the second plate member 61.
 液相冷媒用第1タンク空間63および低圧冷媒用第1タンク空間65は、第2熱交換部62に対して、第2冷媒流路621および低圧冷媒流路622の一方側(図8の例では右方側)に配置されている。液相冷媒用第2タンク空間64および低圧冷媒用第2タンク空間66は、第2熱交換部62に対して、第2冷媒流路621および低圧冷媒流路622の他方側(図8の例では左方側)に配置されている。 The first tank space 63 for liquid-phase refrigerant and the first tank space 65 for low-pressure refrigerant are on one side of the second refrigerant flow path 621 and the low-pressure refrigerant flow path 622 with respect to the second heat exchange section 62 (example in FIG. 8). In the right side). The second tank space for liquid phase refrigerant 64 and the second tank space for low pressure refrigerant 66 are on the other side of the second refrigerant flow path 621 and the low pressure refrigerant flow path 622 with respect to the second heat exchange section 62 (example in FIG. 8). In the left side).
 液相冷媒用第1タンク空間63および液相冷媒用第2タンク空間64は、複数の第2冷媒流路621に対して液相冷媒の分配および集合を行う。低圧冷媒用第1タンク空間65および低圧冷媒用第2タンク空間66は、複数の低圧冷媒流路622に対して低圧冷媒の分配および集合を行う。 The first tank space 63 for liquid phase refrigerant and the second tank space 64 for liquid phase refrigerant distribute and collect the liquid phase refrigerant with respect to the plurality of second refrigerant flow paths 621. The first tank space for low-pressure refrigerant 65 and the second tank space for low-pressure refrigerant 66 distribute and collect the low-pressure refrigerant with respect to the plurality of low-pressure refrigerant flow paths 622.
 液相冷媒用第1タンク空間63、液相冷媒用第2タンク空間64、低圧冷媒用第1タンク空間65および低圧冷媒用第2タンク空間66は、第2板状部材61の四隅に形成された連通孔によって構成されている。 The first tank space 63 for liquid phase refrigerant, the second tank space for liquid phase refrigerant 64, the first tank space for low pressure refrigerant 65, and the second tank space for low pressure refrigerant 66 are formed at the four corners of the second plate member 61. It is constituted by a communication hole.
 本実施形態では、図9に示すように、略矩形状の第2板状部材61の四隅のうち対角線上にある2つの隅部に、液相冷媒用第1タンク空間63および液相冷媒用第2タンク空間64が設けられている。そして、第2板状部材61の残りの2つの隅部に、低圧冷媒用第1タンク空間65および低圧冷媒用第2タンク空間66が設けられている。 In the present embodiment, as shown in FIG. 9, the first tank space 63 for liquid phase refrigerant and the liquid phase refrigerant for two corners on the diagonal line among the four corners of the substantially rectangular second plate-like member 61. A second tank space 64 is provided. In the remaining two corners of the second plate-like member 61, a first tank space 65 for low-pressure refrigerant and a second tank space 66 for low-pressure refrigerant are provided.
 図8および図10に示すように、第2熱交換部62を構成する多数枚の第2板状部材61のうち最も板積層方向一端側(図8の例では上側)に位置する第2最端板状部材67は、第2天井板19にろう付けにより接合されている。第2最端板状部材67には、気液分離部30からの液相冷媒を流入させる液相冷媒流入孔671が形成されている。液相冷媒流入孔671は、冷媒流出部191に対応する部位に形成されている。これにより、気液分離部30内の液相冷媒は、冷媒流出部191および液相冷媒流入孔671を介して第2熱交換部62(具体的には、液相冷媒用第1タンク空間63)に流入する。 As shown in FIGS. 8 and 10, the second outermost member located on the one end side in the plate stacking direction (the upper side in the example of FIG. 8) among the multiple second plate members 61 constituting the second heat exchange unit 62. The end plate member 67 is joined to the second ceiling plate 19 by brazing. The second endmost plate member 67 is formed with a liquid-phase refrigerant inflow hole 671 through which the liquid-phase refrigerant from the gas-liquid separator 30 flows. The liquid-phase refrigerant inflow hole 671 is formed at a portion corresponding to the refrigerant outflow portion 191. As a result, the liquid-phase refrigerant in the gas-liquid separation unit 30 is transferred to the second heat exchange unit 62 (specifically, the first tank space 63 for liquid-phase refrigerant) via the refrigerant outflow portion 191 and the liquid-phase refrigerant inflow hole 671. ).
 図8および図9に示すように、第2熱交換部62を構成する多数枚の第2板状部材61のうち最も板積層方向他端側(図8の例では下側)に位置する第3最端板状部材68には、第2ジョイント23、第3ジョイント71および第4ジョイント72が取り付けられている。第3ジョイント71は、低圧冷媒配管を接合するための部材であり、第2熱交換部62の低圧冷媒入口701を形成している。低圧冷媒入口701は、冷凍サイクルの低圧側に接続されてもよく、冷凍サイクルの低圧冷媒が低圧冷媒入口701へ流入してもよい。第2熱交換部62に流入する低圧冷媒は、第1熱交換部12に流入する冷媒よりも圧力が低くなる。第4ジョイント72は、低圧冷媒配管を接合するための部材であり、第2熱交換部62の低圧冷媒出口702を形成している。 As shown in FIGS. 8 and 9, the second plate-like member 61 constituting the second heat exchanging part 62 is located on the other end side in the plate stacking direction (the lower side in the example of FIG. 8). A second joint 23, a third joint 71, and a fourth joint 72 are attached to the third outermost plate member 68. The third joint 71 is a member for joining the low-pressure refrigerant pipe, and forms the low-pressure refrigerant inlet 701 of the second heat exchange unit 62. The low-pressure refrigerant inlet 701 may be connected to the low-pressure side of the refrigeration cycle, and the low-pressure refrigerant of the refrigeration cycle may flow into the low-pressure refrigerant inlet 701. The low-pressure refrigerant flowing into the second heat exchange unit 62 has a lower pressure than the refrigerant flowing into the first heat exchange unit 12. The fourth joint 72 is a member for joining the low-pressure refrigerant pipe, and forms a low-pressure refrigerant outlet 702 of the second heat exchange unit 62.
 本実施形態では、第4ジョイント72は、第3最端板状部材68の長手方向における一端側(図9の例では右方側)に設けられている。第2ジョイント23および第3ジョイント71は、第3最端板状部材68の長手方向における他端側(図9の例では左方側)に設けられている。また、第2ジョイント23は、第3ジョイント71よりも重力方向上方側に設けられている。 In the present embodiment, the fourth joint 72 is provided on one end side in the longitudinal direction of the third outermost plate member 68 (right side in the example of FIG. 9). The second joint 23 and the third joint 71 are provided on the other end side in the longitudinal direction of the third outermost plate member 68 (left side in the example of FIG. 9). Further, the second joint 23 is provided above the third joint 71 in the gravity direction.
 続いて、本実施形態における第2熱交換部62の液相冷媒および低圧冷媒の流れについて説明する。 Subsequently, the flow of the liquid-phase refrigerant and the low-pressure refrigerant in the second heat exchange unit 62 in the present embodiment will be described.
 気液分離部30から流入した冷媒は、図8の実線矢印に示すように、第2冷媒流路621を液相冷媒用第1タンク空間63から液相冷媒用第2タンク空間64へ向かって流れて、冷媒出口103から外部へ流出する。また、低圧冷媒入口701からから流入した低圧冷媒は、図8の破線矢印に示すように、低圧冷媒流路622を低圧冷媒用第2タンク空間66から低圧冷媒用第1タンク空間65へ向かって流れて、低圧冷媒出口702から外部へ流出する。 Refrigerant flowing from the gas-liquid separator 30 flows through the second refrigerant flow path 621 from the first liquid-phase refrigerant tank space 63 toward the second liquid-phase refrigerant tank space 64, as indicated by solid arrows in FIG. And flows out from the refrigerant outlet 103 to the outside. The low-pressure refrigerant that has flowed in from the low-pressure refrigerant inlet 701 passes through the low-pressure refrigerant flow path 622 from the second tank space 66 for low-pressure refrigerant toward the first tank space 65 for low-pressure refrigerant, as indicated by the broken-line arrows in FIG. It flows out from the low pressure refrigerant outlet 702 to the outside.
 以上説明したように、本実施形態では、熱交換器10の第2天井板19に、過冷却部として機能する第2熱交換部62を接続している。これにより、気液分離部30の剛性を向上させることができる。 As described above, in the present embodiment, the second heat exchange unit 62 that functions as a supercooling unit is connected to the second ceiling plate 19 of the heat exchanger 10. Thereby, the rigidity of the gas-liquid separation part 30 can be improved.
 また、本実施形態では、第2板状部材61における液相冷媒の流れ方向の長さを、第1板状部材11における冷媒の流れ方向の長さよりも短くしている。これにより、第2熱交換部62の冷媒流れ方向の一端側(図8の例では右方側)にスペースが形成される。このスペースを、第2冷却水パイプ24を配置スペースとして有効活用することができるので、搭載上のデッドスペースを小さくすることが可能となる。 Further, in the present embodiment, the length of the second plate member 61 in the flow direction of the liquid phase refrigerant is shorter than the length of the first plate member 11 in the flow direction of the refrigerant. Thereby, a space is formed on one end side (right side in the example of FIG. 8) of the second heat exchange unit 62 in the refrigerant flow direction. Since this space can be effectively used as the arrangement space for the second cooling water pipe 24, it is possible to reduce the dead space on mounting.
 ところで、比較例として、チューブ内を流通する冷媒とチューブ外を流通する冷却風とを熱交換させて冷媒を冷却するフィンアンドチューブ型の熱交換器において、放熱コア部の凝縮部(本実施形態の第1熱交換部12に相当)と過冷却部(本実施形態の第2熱交換部62に相当)との間に気液分離部を設けたものがある。この比較例に係る熱交換器では、冷却風(走行風)が常に当たる位置に気液分離部が設定されているため、冷却風の温度により気液分離部内の冷媒の状態が変化してしまうおそれがある。 By the way, as a comparative example, in a fin-and-tube heat exchanger that cools the refrigerant by exchanging heat between the refrigerant that circulates in the tube and the cooling air that flows outside the tube, a condensing part (this embodiment) There is one in which a gas-liquid separation unit is provided between the supercooling unit (corresponding to the second heat exchanging unit 62 of the present embodiment). In the heat exchanger according to this comparative example, since the gas-liquid separation unit is set at a position where the cooling air (running air) always hits, the state of the refrigerant in the gas-liquid separation unit changes depending on the temperature of the cooling air. There is a fear.
 これに対し、本実施形態の熱交換器10は水冷式の積層型熱交換器であるため、気液分離部30に走行風が当たることはない。したがって、気液分離部30の冷媒の状態が変化することを抑制できる。 On the other hand, since the heat exchanger 10 of the present embodiment is a water-cooled stacked heat exchanger, traveling air does not hit the gas-liquid separator 30. Therefore, it can suppress that the state of the refrigerant | coolant of the gas-liquid separation part 30 changes.
 また、比較例に係る熱交換器では、剛性が低いフィンアンドチューブ型の熱交換器において気液分離部を凝縮部と過冷却部との間に配置するために、気液分離部の剛性を向上させる必要がある。このため、押出成形により形成された押出チューブ等で気液分離部構成する必要があり、製造コストが上昇してしまう。 In addition, in the heat exchanger according to the comparative example, in the fin-and-tube heat exchanger having low rigidity, the gas-liquid separation unit is arranged to be rigid between the condensing unit and the supercooling unit in order to arrange the gas-liquid separation unit. There is a need to improve. For this reason, it is necessary to comprise a gas-liquid separation part with the extrusion tube etc. which were formed by extrusion molding, and a manufacturing cost will rise.
 これに対し、本実施形態の熱交換器10では、気液分離部30を2つの板状部材、すなわち第1天井板18および第2天井板19により構成することができるため、製造コストを低減することが可能となる。
(第4実施形態)
 次に、本開示の第4実施形態について図11に基づいて説明する。本第4実施形態は、上記第3実施形態と比較して、第2熱交換部62を、液相冷媒と冷却水とを熱交換させて液相冷媒を過冷却する過冷却部とした点が異なるものである。なお、本実施形態の冷却水が、本開示の第2熱媒体に相当している。
On the other hand, in the heat exchanger 10 of this embodiment, since the gas-liquid separation part 30 can be comprised by two plate-shaped members, ie, the 1st ceiling board 18 and the 2nd ceiling board 19, manufacturing cost is reduced. It becomes possible to do.
(Fourth embodiment)
Next, a fourth embodiment of the present disclosure will be described based on FIG. Compared with the third embodiment, the fourth embodiment is configured such that the second heat exchange unit 62 is a supercooling unit that supercools the liquid phase refrigerant by exchanging heat between the liquid phase refrigerant and the cooling water. Are different. Note that the cooling water of the present embodiment corresponds to the second heat medium of the present disclosure.
 図11に示すように、本実施形態では、多数の第2板状部材61は、第2熱交換部62、液相冷媒用第1タンク空間63、液相冷媒用第2タンク空間64、冷却水用第3タンク空間650および冷却水用第4タンク空間660を形成している。 As shown in FIG. 11, in the present embodiment, a large number of second plate-like members 61 include a second heat exchange unit 62, a liquid-phase refrigerant first tank space 63, a liquid-phase refrigerant second tank space 64, a cooling unit. A third tank space for water 650 and a fourth tank space for cooling water 660 are formed.
 第2熱交換部62は、液相冷媒が流通する複数の第2冷媒流路621、および、冷却水が流通する複数の第2冷却水流路623で構成されている。なお、本実施形態の第2冷却水流路623が、本開示の第2熱媒体流路に相当している。 The second heat exchange unit 62 includes a plurality of second refrigerant flow paths 621 through which liquid phase refrigerant flows and a plurality of second cooling water flow paths 623 through which cooling water flows. Note that the second cooling water channel 623 of the present embodiment corresponds to the second heat medium channel of the present disclosure.
 複数の第2冷媒流路621および複数の第2冷却水流路623は、多数枚の第2板状部材61同士の間に形成されている。第2冷媒流路621および第2冷却水流路623の長手方向は、第2板状部材61の長手方向と一致している。 The plurality of second refrigerant passages 621 and the plurality of second cooling water passages 623 are formed between a large number of second plate members 61. The longitudinal directions of the second refrigerant channel 621 and the second cooling water channel 623 coincide with the longitudinal direction of the second plate member 61.
 第2冷媒流路621および第2冷却水流路623は板積層方向に1本ずつ交互に積層配置(並列配置)されている。第2板状部材61は、第2冷媒流路621と第2冷却水流路623とを仕切る隔壁の役割を果たしている。第2冷媒流路621を流れる冷媒と、第2冷却水流路623を流れる冷却水との熱交換は、第2板状部材61を介して行われる。 The second refrigerant flow path 621 and the second cooling water flow path 623 are alternately stacked one by one in the plate stacking direction (parallel arrangement). The second plate-like member 61 serves as a partition that partitions the second refrigerant channel 621 and the second cooling water channel 623. Heat exchange between the refrigerant flowing through the second refrigerant flow path 621 and the cooling water flowing through the second cooling water flow path 623 is performed via the second plate member 61.
 液相冷媒用第1タンク空間63および冷却水用第3タンク空間650は、第2熱交換部62に対して、第2冷媒流路621および第2冷却水流路623の一方側(図11の例では右方側)に配置されている。液相冷媒用第2タンク空間64および冷却水用第4タンク空間660は、第2熱交換部62に対して、第2冷媒流路621および第2冷却水流路623の他方側(図11の例では左方側)に配置されている。冷却水用第3タンク空間650および冷却水用第4タンク空間660は、複数の第2冷却水流路623に対して冷却水の分配および集合を行う。 The first tank space 63 for liquid phase refrigerant and the third tank space for cooling water 650 are on one side of the second refrigerant flow path 621 and the second cooling water flow path 623 with respect to the second heat exchange section 62 (see FIG. 11). In the example, it is arranged on the right side). The second tank space for liquid phase refrigerant 64 and the fourth tank space for cooling water 660 are on the other side of the second refrigerant flow path 621 and the second cooling water flow path 623 with respect to the second heat exchange section 62 (see FIG. 11). In the example, it is arranged on the left side). The cooling water third tank space 650 and the cooling water fourth tank space 660 distribute and collect the cooling water to the plurality of second cooling water flow paths 623.
 液相冷媒用第1タンク空間63、液相冷媒用第2タンク空間64、冷却水用第3タンク空間650および冷却水用第4タンク空間660は、第2板状部材61の四隅に形成された連通孔によって構成されている。本実施形態では、略矩形状の第2板状部材61の四隅のうち対角線上にある2つの隅部に、冷却水用第3タンク空間650および冷却水用第4タンク空間660が設けられている。 The first tank space 63 for liquid phase refrigerant, the second tank space for liquid phase refrigerant 64, the third tank space for cooling water 650, and the fourth tank space for cooling water 660 are formed at the four corners of the second plate member 61. It is constituted by a communication hole. In the present embodiment, the third tank space for cooling water 650 and the fourth tank space for cooling water 660 are provided at two corners on the diagonal line among the four corners of the substantially rectangular second plate-shaped member 61. Yes.
 第2最端板状部材67には、後述する第2内部冷却水パイプ81が挿入される貫通孔(図示せず)が形成されている。この貫通孔は、第2内部冷却水パイプ81の外表面にろう付け接合されている。また、この貫通孔は、第2最端板状部材67の長手方向における液相冷媒流入孔671と反対側の端部に設けられている。 The second endmost plate member 67 is formed with a through hole (not shown) into which a second internal cooling water pipe 81 described later is inserted. This through hole is brazed to the outer surface of the second internal cooling water pipe 81. Further, the through hole is provided at an end portion on the opposite side to the liquid-phase refrigerant inflow hole 671 in the longitudinal direction of the second outermost plate member 67.
 第3最端板状部材68には、第2ジョイント23および第3冷却水パイプ73が取り付けられている。第3冷却水パイプ73は、第2熱交換部62の冷却水入口703を形成している。 The second joint 23 and the third cooling water pipe 73 are attached to the third outermost plate member 68. The third cooling water pipe 73 forms a cooling water inlet 703 of the second heat exchange unit 62.
 本実施形態では、第3冷却水パイプ73は、第3最端板状部材68の長手方向における一端側(図11の例では右方側)に設けられている。第2ジョイント23は、第3最端板状部材68の長手方向における他端側(図8の例では左方側)に設けられている。 In the present embodiment, the third cooling water pipe 73 is provided on one end side in the longitudinal direction of the third outermost plate member 68 (right side in the example of FIG. 11). The second joint 23 is provided on the other end side in the longitudinal direction of the third outermost plate member 68 (left side in the example of FIG. 8).
 気液分離部30の内部には、冷却水が流通するとともに、冷却水用第4タンク空間660と冷却水用第2タンク空間16とを連通させる第2内部冷却水通路80が設けられている。具体的には、気液分離部30の内部には、冷却水用第4タンク空間660と冷却水用第2タンク空間16とを接続する第2内部冷却水パイプ81が設けられている。この第2内部冷却水パイプ81により、第2内部冷却水通路80が構成されている。 Inside the gas-liquid separation unit 30, the second internal cooling water passage 80 that allows the cooling water to circulate and communicates the fourth tank space for cooling water 660 and the second tank space for cooling water 16 is provided. . Specifically, a second internal cooling water pipe 81 that connects the fourth cooling water tank space 660 and the second cooling water tank space 16 is provided inside the gas-liquid separation unit 30. The second internal cooling water pipe 81 constitutes a second internal cooling water passage 80.
 ところで、本実施形態では、第1熱交換部12を構成する多数枚の第1板状部材11のうち、板積層方向の略中央部よりも第1天井板18側に位置する板状部材11は、冷却水用第1タンク空間15を構成する突出部(図示せず)を閉塞する第1閉塞部(図示せず)を有している。これにより、冷却水用第1タンク空間15は板積層方向に2つの空間に仕切られている。 By the way, in this embodiment, among the many 1st plate-shaped members 11 which comprise the 1st heat exchange part 12, the plate-shaped member 11 located in the 1st ceiling board 18 side rather than the approximate center part of a plate lamination direction. Has a first closing portion (not shown) for closing a protruding portion (not shown) constituting the first tank space 15 for cooling water. Thereby, the 1st tank space 15 for cooling water is divided into two spaces in the board lamination direction.
 また、第1熱交換部12を構成する多数枚の第1板状部材11のうち、板積層方向の略中央部と最端板状部材17との間に位置する板状部材11は、冷却水用第2タンク空間16を構成する突出部(図示せず)を閉塞する第2閉塞部(図示せず)を有している。これにより、冷却水用第2タンク空間16は板積層方向に2つの空間に仕切られている。 Of the many first plate-like members 11 constituting the first heat exchange unit 12, the plate-like member 11 located between the substantially central portion in the plate stacking direction and the outermost plate-like member 17 is cooled. A second closing part (not shown) for closing a protruding part (not shown) constituting the second tank space 16 for water is provided. Thereby, the cooling water second tank space 16 is partitioned into two spaces in the plate stacking direction.
 続いて、本実施形態における熱交換器10の冷却水の流れについて説明する。 Then, the flow of the cooling water of the heat exchanger 10 in this embodiment is demonstrated.
 図11の一点鎖線矢印に示すように、第2熱交換部62の冷却水入口703から冷却水用第3タンク空間650へ流入した冷却水は、冷却水流路623を流れて、冷却水用第4タンク空間660へ流入する。冷却水用第4タンク空間660へ流入した冷却水は、第2内部冷却水通路80を流れて、第1熱交換部12の冷却水用第2タンク空間16へ流入する。 As indicated by a one-dot chain line arrow in FIG. 11, the cooling water that has flowed into the cooling water third tank space 650 from the cooling water inlet 703 of the second heat exchanging unit 62 flows through the cooling water flow path 623, It flows into the 4-tank space 660. The cooling water flowing into the fourth cooling water tank space 660 flows through the second internal cooling water passage 80 and flows into the second cooling water tank space 16 of the first heat exchange unit 12.
 一方、熱交換器10の冷却水入口104から第1内部冷却水通路40を介して冷却水用第1タンク空間15に流入した冷却水は、板積層方向他端側(図11の例では下方側)の第1冷却水流路122を流れて、冷却水用第2タンク空間16へ流入する。このように、本実施形態の熱交換器10は、冷却水用第2タンク空間16において、熱交換器10の冷却水入口104から流入した冷却水と、第2熱交換部62を通過した後の冷却水とが合流するように構成されている。 On the other hand, the cooling water flowing into the cooling water first tank space 15 from the cooling water inlet 104 of the heat exchanger 10 via the first internal cooling water passage 40 is the other side in the plate stacking direction (in the example of FIG. Side) first cooling water flow path 122 and flows into the cooling water second tank space 16. Thus, after the heat exchanger 10 of this embodiment passes the 2nd heat exchange part 62 with the cooling water which flowed in from the cooling water inlet 104 of the heat exchanger 10 in the 2nd tank space 16 for cooling water. The cooling water is configured to merge.
 冷却水用第2タンク空間16へ流入した冷却水は、板積層方向中央側の第1冷却水流路122を冷却水用第2タンク空間16から冷却水用第1タンク空間15へ向かって流れた後、板積層方向一端側(図11の例では上方側)の第1冷却水流路122を冷却水用第1タンク空間15から冷却水用第2タンク空間16へ向かって流れて、冷却水出口102から外部へ流出する。すなわち、第1熱交換部12は、冷却水の流れが2回Uターンするように構成されている。 The cooling water flowing into the second cooling water tank space 16 flows from the second cooling water tank space 16 toward the first cooling water tank space 15 through the first cooling water flow path 122 at the center side in the plate stacking direction. Thereafter, the coolant flows through the first cooling water flow path 122 on one end side in the plate stacking direction (upper side in the example of FIG. 11) from the first cooling water tank space 15 toward the second cooling water tank space 16, and the cooling water outlet. It flows out from 102. That is, the first heat exchange unit 12 is configured such that the flow of the cooling water makes a U-turn twice.
 以上説明したように、本実施形態の熱交換器10では、第1熱交換部12に、熱交換器10の冷却水入口104から流入した冷却水と、第2熱交換部62を通過した後の冷却水との双方を流入させている。すなわち、第1熱交換部12に対して、冷却水を並列に流入させることができる。このため、第1熱交換部12において冷却水の圧力損失を低減でき、第1熱交換部12の熱交換効率を向上させることができる。
(第5実施形態)
 次に、本開示の第5実施形態について図12に基づいて説明する。本第5実施形態は、上記第4実施形態と比較して、冷却水入口104および第1内部冷却水パイプ41を廃止して、第1熱交換部12において第2熱交換部62を通過した後の冷却水と冷媒とを熱交換させる点が異なるものである。
As described above, in the heat exchanger 10 of the present embodiment, the cooling water that has flowed into the first heat exchange unit 12 from the cooling water inlet 104 of the heat exchanger 10 and the second heat exchange unit 62 are passed through. Both cooling water and water are introduced. That is, the cooling water can be allowed to flow in parallel to the first heat exchange unit 12. For this reason, it is possible to reduce the pressure loss of the cooling water in the first heat exchange unit 12 and to improve the heat exchange efficiency of the first heat exchange unit 12.
(Fifth embodiment)
Next, a fifth embodiment of the present disclosure will be described based on FIG. Compared with the fourth embodiment, the fifth embodiment abolishes the cooling water inlet 104 and the first internal cooling water pipe 41 and passes through the second heat exchange unit 62 in the first heat exchange unit 12. The point which heat-exchanges a later cooling water and a refrigerant | coolant differs.
 図12に示すように、第1熱交換部12の冷却水用第2タンク空間16は、第2熱交換部62を通過した後の冷却水のみが流入するようになっている。また、本実施形態では、第1熱交換部12を構成する多数枚の第1板状部材11のうち中央板状部材11Aは、冷却水用第2タンク空間16を構成する突出部(図示せず)を閉塞する閉塞部(図示せず)を有している。これにより、冷却水用第2タンク空間16は板積層方向に2つの空間に仕切られている。 As shown in FIG. 12, only the cooling water after passing through the second heat exchange section 62 flows into the second tank space 16 for cooling water of the first heat exchange section 12. In the present embodiment, the central plate-like member 11A among the multiple first plate-like members 11 constituting the first heat exchanging portion 12 is a protruding portion (not shown) constituting the second tank space 16 for cooling water. A closing portion (not shown) that closes the opening). Thereby, the cooling water second tank space 16 is partitioned into two spaces in the plate stacking direction.
 したがって、冷却水用第2タンク空間16へ流入した冷却水は、板積層方向他案側(図12の例では下方側)の第1冷却水流路122を冷却水用第2タンク空間16から冷却水用第1タンク空間15へ向かって流れた後、板積層方向一端側(図11の例では上方側)の第1冷却水流路122を冷却水用第1タンク空間15から冷却水用第2タンク空間16へ向かって流れて、冷却水出口102から外部へ流出する。すなわち、第1熱交換部12は、冷却水の流れが1回Uターンするように構成されている。 Therefore, the cooling water that has flowed into the second cooling water tank space 16 cools the first cooling water flow path 122 on the other side in the plate stacking direction (downward in the example of FIG. 12) from the second cooling water tank space 16. After flowing toward the first water tank space 15, the first cooling water flow path 122 on one end side in the plate stacking direction (the upper side in the example of FIG. 11) passes through the first cooling water flow path 122 from the first cooling water tank space 15. It flows toward the tank space 16 and flows out from the cooling water outlet 102 to the outside. That is, the first heat exchange unit 12 is configured such that the flow of the cooling water makes a U-turn once.
 以上説明したように、本実施形態の熱交換器10では、第1熱交換部12に、第2熱交換部62を通過した後の冷却水を流入させている。すなわち、第2熱交換部62に、熱交換器10に流入させる冷却水の全量を流通させている。このため、気液分離部30によって気液分離された液相冷媒の過冷却を優先的に行うことができる。 As described above, in the heat exchanger 10 of the present embodiment, the cooling water after passing through the second heat exchange unit 62 is caused to flow into the first heat exchange unit 12. That is, the entire amount of cooling water that flows into the heat exchanger 10 is circulated through the second heat exchange unit 62. For this reason, the supercooling of the liquid-phase refrigerant separated by the gas-liquid separation unit 30 can be performed preferentially.
 このとき、第1熱交換部12では、第2熱交換部62を通過した後の冷却水により冷媒を冷却することになる。しかしながら、液相冷媒の過冷却に必要な冷却能力は小さいので、第1熱交換部12の冷媒凝縮機能が損なわれることを抑制できる。
(第6実施形態)
 次に、本開示の第6実施形態について図13~図18に基づいて説明する。本第5実施形態は、上記第5実施形態と比較して、熱交換器10を、凝縮モードと蒸発モードとを切り替え可能なヒートポンプサイクルの室外器として用いた点が異なるものである。
At this time, in the 1st heat exchange part 12, a refrigerant | coolant is cooled with the cooling water after passing the 2nd heat exchange part 62. FIG. However, since the cooling capacity required for the supercooling of the liquid-phase refrigerant is small, it is possible to suppress the refrigerant condensing function of the first heat exchange unit 12 from being impaired.
(Sixth embodiment)
Next, a sixth embodiment of the present disclosure will be described with reference to FIGS. The fifth embodiment is different from the fifth embodiment in that the heat exchanger 10 is used as an outdoor unit of a heat pump cycle capable of switching between a condensation mode and an evaporation mode.
 凝縮モードは、熱交換器10を、冷凍サイクルの高圧側冷媒と冷却水とを熱交換して高圧側冷媒を凝縮させる凝縮器として機能させるモードである。蒸発モードは、熱交換器10を、冷凍サイクルの低圧側冷媒と冷却水とを熱交換して低圧側冷媒を蒸発させる蒸発器として機能させるモードである。なお、図13~図18において、実線矢印が凝縮モード時の冷媒流れを示しており、二点鎖線矢印が蒸発モード時の冷媒流れを示しており、一点鎖線矢印が冷却水流れを示している。 The condensation mode is a mode for causing the heat exchanger 10 to function as a condenser for condensing the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant and the cooling water of the refrigeration cycle. The evaporation mode is a mode in which the heat exchanger 10 functions as an evaporator that exchanges heat between the low-pressure side refrigerant and the cooling water of the refrigeration cycle to evaporate the low-pressure side refrigerant. In FIGS. 13 to 18, the solid arrow indicates the refrigerant flow in the condensation mode, the two-dot chain arrow indicates the refrigerant flow in the evaporation mode, and the one-dot chain arrow indicates the cooling water flow. .
 図13および図17に示すように、本実施形態の第2ジョイント23は、凝縮モード時に第2熱交換部62から冷媒を外部へ流出させる第1冷媒出口103を形成している。図14および図17に示すように、第2ジョイント23は、第3最端板状部材68における重力方向上方側に配置されている。なお、図16に示すように、本実施形態では、第3冷却水パイプ73も、第3最端板状部材68における重力方向上方側に配置されている。 As shown in FIGS. 13 and 17, the second joint 23 of the present embodiment forms a first refrigerant outlet 103 through which the refrigerant flows out from the second heat exchanging unit 62 during the condensation mode. As shown in FIGS. 14 and 17, the second joint 23 is disposed on the uppermost side in the gravity direction of the third endmost plate-like member 68. As shown in FIG. 16, in the present embodiment, the third cooling water pipe 73 is also arranged on the upper side in the gravity direction of the third outermost plate member 68.
 図14および図15に示すように、第2天井板19の長手方向における冷媒流入部181に近い側の端部に、第5ジョイント75が取り付けられている。第5ジョイント75は、冷媒配管を接合するための部材であり、蒸発モード時に気液分離部30から冷媒を外部へ流出させる第2冷媒出口705を形成している。本実施形態では、冷媒流入部181および第5ジョイント75は、第2天井板19における重力方向上方側に配置されている。 As shown in FIGS. 14 and 15, a fifth joint 75 is attached to the end of the second ceiling plate 19 on the side close to the refrigerant inflow portion 181 in the longitudinal direction. The fifth joint 75 is a member for joining the refrigerant pipes, and forms a second refrigerant outlet 705 that allows the refrigerant to flow out from the gas-liquid separator 30 in the evaporation mode. In the present embodiment, the refrigerant inflow portion 181 and the fifth joint 75 are disposed on the upper side in the gravity direction of the second ceiling plate 19.
 続いて、本実施形態における熱交換器10の冷媒の流れについて説明する。 Subsequently, the flow of the refrigerant in the heat exchanger 10 in the present embodiment will be described.
 凝縮モードにおいては、図13の実線矢印に示すように、冷媒流入部181から気液分離部30へ流入した冷媒は、気液分離部30にて気液分離される。気液分離部30にて気液分離された液相冷媒は、液相冷媒流入孔671から液相冷媒用第1タンク空間63へ流入する。液相冷媒用第1タンク空間63へ流入した冷媒は、第2冷媒流路621を液相冷媒用第1タンク空間63から液相冷媒用第2タンク空間64へ向かって流れて、冷媒出口103から外部へ流出する。 In the condensation mode, as indicated by the solid line arrows in FIG. 13, the refrigerant that has flowed from the refrigerant inflow portion 181 into the gas-liquid separation portion 30 is separated into gas and liquid by the gas-liquid separation portion 30. The liquid-phase refrigerant that has been gas-liquid separated by the gas-liquid separation unit 30 flows into the liquid-phase refrigerant first tank space 63 from the liquid-phase refrigerant inflow hole 671. The refrigerant that has flowed into the first liquid phase refrigerant tank space 63 flows from the first liquid phase refrigerant tank space 63 toward the second liquid phase refrigerant tank space 64 through the second refrigerant flow path 621, and the refrigerant outlet 103. Out to the outside.
 一方、蒸発モードにおいては、図18の二点鎖線矢印に示すように、冷媒流入部181から気液分離部30へ流入した冷媒は、第2冷媒出口705から外部へ流出する。 On the other hand, in the evaporation mode, as indicated by the two-dot chain line arrow in FIG. 18, the refrigerant that has flowed from the refrigerant inflow portion 181 to the gas-liquid separation portion 30 flows out from the second refrigerant outlet 705 to the outside.
 したがって、気液分離部30は内部に、凝縮モード時に第1熱交換部12から流入した冷媒を第2熱交換部62へ流出させる冷媒通路と、蒸発モード時に第1熱交換部12から流入した冷媒を外部へ流出させる冷媒通路と、を有する。 Therefore, the gas-liquid separation unit 30 has a refrigerant passage that allows the refrigerant flowing from the first heat exchange unit 12 to flow out to the second heat exchange unit 62 in the condensation mode, and the first heat exchange unit 12 to flow in the evaporation mode. And a refrigerant passage through which the refrigerant flows out.
 なお、熱交換器10内の冷媒流路の切り替えは、熱交換器10の外部(より詳細には、冷媒出口側)に設けたバルブ等により行うことができる。このように、熱交換器10内の冷媒流路を切り替えることで、蒸発モードと凝縮モードとを切り替えることができる。 Note that switching of the refrigerant flow path in the heat exchanger 10 can be performed by a valve or the like provided outside the heat exchanger 10 (more specifically, on the refrigerant outlet side). Thus, by switching the refrigerant flow path in the heat exchanger 10, the evaporation mode and the condensation mode can be switched.
 以上説明したように、本実施形態の熱交換器10は、当該熱交換器10の内部に、凝縮モードの冷媒流れと蒸発モードの冷媒流れとを形成可能になっている。このため、本実施形態の熱交換器10を、ヒートポンプサイクルの室外器として好適に用いることができる。この場合、室外器の水冷化を図ることができ、これより冷却水の蓄熱効果から冷媒挙動が安定しCOP制御を容易に行うことができる。
(第7実施形態)
 次に、本開示の第7実施形態について図19~図21に基づいて説明する。本第7実施形態は、上記第4実施形態と比較して、気液分離部30の構成が異なるものである。
As described above, the heat exchanger 10 of the present embodiment is capable of forming the refrigerant flow in the condensation mode and the refrigerant flow in the evaporation mode inside the heat exchanger 10. For this reason, the heat exchanger 10 of this embodiment can be used suitably as an outdoor unit of a heat pump cycle. In this case, water cooling of the outdoor unit can be achieved, and from this, the refrigerant behavior is stabilized by the heat storage effect of the cooling water, and COP control can be easily performed.
(Seventh embodiment)
Next, a seventh embodiment of the present disclosure will be described with reference to FIGS. The seventh embodiment is different from the fourth embodiment in the configuration of the gas-liquid separation unit 30.
 図19および図20に示すように、本実施形態の気液分離部30は、複数の第3板状部材91を互いに積層されて接合されることによって一体的に形成されている。第3板状部材91の積層方向は、第1板状部材11の積層方向(板積層方向)と平行になっている。第3板状部材91は、第1板状部材11に対して、配置方向の長さおよび幅方向の長さが等しくなっている。 As shown in FIG. 19 and FIG. 20, the gas-liquid separator 30 of this embodiment is integrally formed by stacking and joining a plurality of third plate-like members 91 to each other. The lamination direction of the third plate member 91 is parallel to the lamination direction (plate lamination direction) of the first plate member 11. The third plate-like member 91 is equal in length to the first plate-like member 11 in the arrangement direction and in the width direction.
 多数の第3板状部材91は、張出部911の突出先端が互いに同じ側を向くように配置されている。なお、本実施形態では、第1板状部材11は、張出部111の突出先端が気液分離部30と反対側(図19の例では上方側)を向くように配置されている。一方、第2板状部材61および第3板状部材91は、それぞれ、張出部611、911の突出先端が第1熱交換部12と反対側(図19の例では下方側)を向くように配置されている。 The multiple third plate-like members 91 are arranged so that the protruding tips of the overhang portions 911 face the same side. In the present embodiment, the first plate-like member 11 is arranged so that the protruding tip of the overhanging portion 111 faces the side opposite to the gas-liquid separation portion 30 (the upper side in the example of FIG. 19). On the other hand, the second plate-like member 61 and the third plate-like member 91 are such that the protruding tips of the overhang portions 611 and 911 face the opposite side to the first heat exchange portion 12 (the lower side in the example of FIG. 19), respectively. Is arranged.
 図21に示すように、複数の第3板状部材91同士の間には、第1熱交換部12の第1冷媒流路121から流入した冷媒が流れる複数の気液分離通路92が形成されている。第3板状部材91には第1貫通穴912が設けられており、これにより隣り合う気液分離通路92同士が互いに連通している。なお、気液分離通路92には、インナーフィンは配置されていない。 As shown in FIG. 21, a plurality of gas-liquid separation passages 92 through which the refrigerant flowing from the first refrigerant channel 121 of the first heat exchange unit 12 flows are formed between the plurality of third plate-like members 91. ing. The 3rd plate-shaped member 91 is provided with the 1st through-hole 912, and the gas-liquid separation channel | path 92 adjacent to each other by this communicates with each other. Note that no inner fin is disposed in the gas-liquid separation passage 92.
 ここで、気液分離部30を構成する多数枚の第3板状部材91のうち、最も板積層方向一端側に位置する第3板状部材91を第3天井板93(第3端板)といい、最も板積層方向他端側に位置する第3板状部材91を第4天井板94(第4端板)という。 Here, among the multiple third plate-like members 91 constituting the gas-liquid separation unit 30, the third plate-like member 91 located closest to one end side in the plate stacking direction is the third ceiling plate 93 (third end plate). The third plate-like member 91 located closest to the other end side in the plate stacking direction is referred to as a fourth ceiling plate 94 (fourth end plate).
 第3天井板93は、第1天井板18の板積層方向他端側の面に接合されている。第4天井板94の張出部911における板積層方向他端側の面には、第2天井板19が接合されている。また、第3天井板93は、他の第3板状部材91と比較して、板厚が厚くなっている。 The third ceiling plate 93 is joined to the surface of the first ceiling plate 18 on the other end side in the plate stacking direction. The second ceiling plate 19 is joined to the surface on the other end side in the plate stacking direction of the overhanging portion 911 of the fourth ceiling plate 94. The third ceiling plate 93 is thicker than the other third plate member 91.
 第3板状部材91には、第1内部冷却水パイプ41が貫通する第2貫通穴913と、第2内部冷却水パイプ81が貫通する第3貫通穴(図示せず)が設けられている。なお、本実施形態では、第1内部冷却水パイプ41は、第2冷却水パイプ24と一体に形成されている。 The third plate-like member 91 is provided with a second through hole 913 through which the first internal cooling water pipe 41 passes and a third through hole (not shown) through which the second internal cooling water pipe 81 passes. . In the present embodiment, the first internal cooling water pipe 41 is formed integrally with the second cooling water pipe 24.
 図20および図21に示すように、第2天井板19における第2熱交換部62が接合されている部位以外の部位には、乾燥剤95を気液分離部30内に挿入するための挿入口96が設けられている。挿入口96は、栓部97によって閉塞されている。 As shown in FIG. 20 and FIG. 21, the insertion for inserting the desiccant 95 into the gas-liquid separation unit 30 is performed on the second ceiling plate 19 other than the part where the second heat exchange unit 62 is joined. A mouth 96 is provided. The insertion port 96 is closed by a plug portion 97.
 乾燥剤95は、袋体の内部に吸水用の粒状ゼオライトが収納されたものであり、冷媒中の水分を吸収するようになっている。これは、冷媒中の水分により冷凍サイクルを構成する各機能部品が腐食したり、膨張弁の細孔で凍結して冷媒流れが滞ったりするのを防止するためのものである。 The desiccant 95 is one in which granular zeolite for water absorption is stored inside the bag body, and absorbs moisture in the refrigerant. This is to prevent each functional component constituting the refrigeration cycle from being corroded by moisture in the refrigerant, or freezing in the pores of the expansion valve to stagnate the refrigerant flow.
 乾燥剤95は、気液分離部30内部、すなわち気液分離通路92における挿入口96に対応する部位に配置されている。本実施形態では、乾燥剤95は、第1貫通穴912の近傍に配置されている。 The desiccant 95 is disposed inside the gas-liquid separator 30, that is, at a portion corresponding to the insertion port 96 in the gas-liquid separation passage 92. In the present embodiment, the desiccant 95 is disposed in the vicinity of the first through hole 912.
 図示は省略しているが、本実施形態の第3天井板93には、凹部が設けられている。凹部は、第3天井板93の一部を板積層方向他側に向かって凹ませることにより形成されている。第3天井板93に凹部を設けることで、第1天井板18と第3天井板93との間、すなわち第1熱交換部12と気液分離部30との間に、隙間を形成することができる。 Although not shown, the third ceiling plate 93 of the present embodiment is provided with a recess. The recess is formed by denting a part of the third ceiling plate 93 toward the other side in the plate stacking direction. By providing a recess in the third ceiling plate 93, a gap is formed between the first ceiling plate 18 and the third ceiling plate 93, that is, between the first heat exchange unit 12 and the gas-liquid separation unit 30. Can do.
 以上説明したように、本実施形態では、気液分離部30内の気液分離空間を多数枚の第3板状部材91により構成している。これにより、気液分離部30内で冷媒液面が分割されるので、冷媒液面の泡立ちを抑制することができる。 As described above, in this embodiment, the gas-liquid separation space in the gas-liquid separation unit 30 is configured by a large number of third plate members 91. Thereby, since a refrigerant | coolant liquid level is divided | segmented within the gas-liquid separation part 30, foaming of a refrigerant | coolant liquid level can be suppressed.
 ところで、第2板状部材61における冷媒流れ方向の長さを、第1板状部材11における前記冷媒の流れ方向の長さと同等とした場合、気液分離部30内に乾燥剤95を設置するためには、専用部品を追加する必要がある。このため、製造コストが増大するという問題がある。 By the way, when the length of the refrigerant flow direction in the second plate member 61 is equal to the length of the refrigerant flow direction in the first plate member 11, the desiccant 95 is installed in the gas-liquid separator 30. In order to do this, it is necessary to add dedicated parts. For this reason, there exists a problem that manufacturing cost increases.
 これに対し、本実施形態では、第2板状部材61における冷媒流れ方向の長さを、第1板状部材11における前記冷媒の流れ方向の長さよりも短くしている。さらに、第2天井板19における第2熱交換部62が接合されている部位以外の部位には、乾燥剤95を気液分離部30内に挿入するための挿入口96を設けている。これによれば、乾燥剤95を設置するための専用部品を追加することなく、気液分離部30内に乾燥剤95を挿入することができる。 In contrast, in the present embodiment, the length of the second plate member 61 in the refrigerant flow direction is shorter than the length of the first plate member 11 in the refrigerant flow direction. Further, an insertion port 96 for inserting the desiccant 95 into the gas-liquid separation unit 30 is provided at a portion of the second ceiling plate 19 other than the portion where the second heat exchange unit 62 is joined. According to this, it is possible to insert the desiccant 95 into the gas-liquid separator 30 without adding a dedicated part for installing the desiccant 95.
 また、本実施形態では、第1冷媒流路121にオフセットフィン50を配置しているので、気液分離部30に冷媒が二相(気相と液相)に分離して流入することを抑制できる。なお、第3板状部材91は気液分離部30内の液相冷媒により冷却されているので、気液分離部30に流入する際に気泡(気相冷媒)がわずかに混入した場合でも、気泡は第3板状部材91と熱交換することで冷却されて凝縮する。 Moreover, in this embodiment, since the offset fin 50 is arrange | positioned in the 1st refrigerant | coolant flow path 121, it suppresses that a refrigerant | coolant isolate | separates into the gas-liquid separation part 30, and flows in into two phases (a gaseous phase and a liquid phase). it can. In addition, since the third plate-like member 91 is cooled by the liquid phase refrigerant in the gas-liquid separation unit 30, even when bubbles (gas phase refrigerant) are slightly mixed when flowing into the gas-liquid separation unit 30, The bubbles are cooled and condensed by exchanging heat with the third plate-like member 91.
 したがって、本実施形態では、気液分離部30の気液分離性を向上させることが可能となる。 Therefore, in this embodiment, the gas-liquid separation property of the gas-liquid separation unit 30 can be improved.
 また、本実施形態では、第3天井板93に凹部を設けて、第1熱交換部12と気液分離部30との間に隙間を形成している。これにより、高温冷媒の有する熱により気液分離部30内の液相冷媒が加熱されることを抑制できる。 In the present embodiment, a recess is provided in the third ceiling plate 93 so that a gap is formed between the first heat exchange unit 12 and the gas-liquid separation unit 30. Thereby, it can suppress that the liquid phase refrigerant | coolant in the gas-liquid separation part 30 is heated with the heat which a high temperature refrigerant | coolant has.
 ところで、本実施形態では、図示しないラジエータにおいて冷却された冷却水を、冷却水入口104から第1内部冷却水通路40を介して第1熱交換部12に流入させるとともに、冷却水入口703から第2熱交換部62に流入させている。このため、2つの冷却水入口104、703から流入する冷却水量を制御することで、第1熱交換部12への通水流量および第2熱交換部62への通水流量の流量分配制御を行うことができる。 By the way, in the present embodiment, cooling water cooled by a radiator (not shown) is caused to flow from the cooling water inlet 104 into the first heat exchange section 12 via the first internal cooling water passage 40 and from the cooling water inlet 703 to the first. 2 The heat exchange section 62 is made to flow. Therefore, by controlling the amount of cooling water flowing in from the two cooling water inlets 104 and 703, flow distribution control of the water flow rate to the first heat exchange unit 12 and the water flow rate to the second heat exchange unit 62 is performed. It can be carried out.
 すなわち、第1熱交換部12への通水流量を増加させることで、冷媒の凝縮性能を向上させ、凝縮能力を増大させることができる。一方、第2熱交換部62への通水流量を増加させることで、冷媒の過冷却性能を向上させ、冷媒の過冷却度を高めることができる。 That is, by increasing the water flow rate to the first heat exchange unit 12, the condensation performance of the refrigerant can be improved and the condensation capacity can be increased. On the other hand, by increasing the water flow rate to the second heat exchange unit 62, it is possible to improve the supercooling performance of the refrigerant and increase the degree of supercooling of the refrigerant.
 なお、第2熱交換部62にて加熱された冷却水を冷却するための専用ラジエータを設け、この専用ラジエータにより冷却された冷却水を第2熱交換部62に流入させてもよい。これによれば、冷媒の過冷却度をより高めることができる。 In addition, a dedicated radiator for cooling the cooling water heated in the second heat exchange unit 62 may be provided, and the cooling water cooled by the dedicated radiator may flow into the second heat exchange unit 62. According to this, the degree of supercooling of the refrigerant can be further increased.
 空冷式、すなわち冷媒と空気との間で熱交換を行うことにより冷媒を冷却する熱交換器であって、凝縮部と過冷却部が同一放熱面上に配置されているものでは、熱交換器に対する空気の流入量を制御できない場合がある。このため、冷媒の過冷却度を高めるためには、凝縮部と過冷却部の放熱面積割合を変更するしか方法がないので、過冷却部の面積を増大させて、凝縮部の面積を縮小させる必要がある。しかしながら、凝縮部の面積が縮小すると、冷媒圧力が上昇するため、実質的に冷媒の過冷却度を制御することが困難であった。 A heat exchanger that cools the refrigerant by air exchange, that is, heat exchange between the refrigerant and air, in which the condensing unit and the supercooling unit are arranged on the same heat radiation surface, the heat exchanger In some cases, it is not possible to control the amount of air inflow. For this reason, in order to increase the degree of supercooling of the refrigerant, there is only a method of changing the heat radiation area ratio of the condensing part and the supercooling part. There is a need. However, when the area of the condensing part is reduced, the refrigerant pressure increases, so it is difficult to substantially control the degree of supercooling of the refrigerant.
 これに対し、本実施形態では、上述したように、第1熱交換部12への通水流量および第2熱交換部62への通水流量の流量分配制御を行うことで、冷媒の過冷却度の制御を行うことが可能となる。 On the other hand, in the present embodiment, as described above, the refrigerant is supercooled by performing flow rate distribution control of the water flow rate to the first heat exchange unit 12 and the water flow rate to the second heat exchange unit 62. It is possible to control the degree.
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made as follows without departing from the spirit of the present disclosure.
 上記第6実施形態では、熱交換器10内の冷媒流路の切り替えを、熱交換器10の外部に設けたバルブ等により行う例について説明したが、冷媒流路の切替方法はこれに限定されない。例えば、熱交換器10の気液分離部30の内部に、第1熱交換部12から流出した冷媒を外部へ流出させる冷媒流れと、第1熱交換部12から流出した冷媒を第2熱交換部62へ流入させる冷媒流れとを切り替え可能なバルブ等を設けてもよい。 In the sixth embodiment, the example in which switching of the refrigerant flow path in the heat exchanger 10 is performed by a valve or the like provided outside the heat exchanger 10 has been described, but the method of switching the refrigerant flow path is not limited to this. . For example, the refrigerant flow that causes the refrigerant that has flowed out from the first heat exchange unit 12 to flow to the outside in the gas-liquid separation unit 30 of the heat exchanger 10, and the refrigerant that has flowed out from the first heat exchange unit 12 to the second heat exchange You may provide the valve | bulb etc. which can switch the refrigerant | coolant flow made to flow in into the part 62. FIG.
 上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。 The means disclosed in each of the above embodiments may be appropriately combined within a practicable range.

Claims (8)

  1.  冷凍サイクルの冷媒と第1熱媒体とを熱交換させる第1熱交換部(12)を備える積層型熱交換器であって、
     前記第1熱交換部(12)は、
      互いに積層されて接合された複数の第1板状部材(11)と、
      前記複数の第1板状部材(11)の間に設けられて、前記複数の第1板状部材(11)の積層方向に並んでおり、前記冷媒が流れる複数の第1冷媒流路(121)と、
      前記複数の第1板状部材(11)の間に設けられて、前記複数の第1板状部材(11)の積層方向に並んでおり、前記第1熱媒体が流れる複数の第1熱媒体流路(122)と、を含み、
     前記複数の第1板状部材(11)のうちの1つで前記積層方向の最外側に配置される第1端板(18)に接合された第2端板(19)と、
     前記第1端板(18)と前記2端板(19)との間に設けられた空間を有し、内部に流入した前記冷媒の気液を分離するとともに前記冷凍サイクル内の余剰冷媒を蓄える気液分離部(30)と、をさらに備えている積層型熱交換器。
    A stacked heat exchanger comprising a first heat exchange section (12) for exchanging heat between a refrigerant of a refrigeration cycle and a first heat medium,
    The first heat exchange unit (12)
    A plurality of first plate-like members (11) laminated and joined to each other;
    A plurality of first refrigerant flow paths (121) provided between the plurality of first plate members (11), arranged in the stacking direction of the plurality of first plate members (11), and through which the refrigerant flows. )When,
    A plurality of first heat media which are provided between the plurality of first plate members (11) and are arranged in the stacking direction of the plurality of first plate members (11) and through which the first heat medium flows. A flow path (122),
    A second end plate (19) joined to a first end plate (18) disposed on the outermost side in the stacking direction in one of the plurality of first plate-like members (11);
    It has a space provided between the first end plate (18) and the second end plate (19), separates the gas-liquid of the refrigerant flowing into the inside, and stores excess refrigerant in the refrigeration cycle. And a gas-liquid separator (30).
  2.  前記第1端板(18)の重力方向下方部は、前記気液分離部(30)に前記冷媒を流入させる冷媒流入部(181)を有し、
     前記第2端板(19)の重力方向下方部は、前記気液分離部(30)から液相の前記冷媒を流出させる冷媒流出部(191)を有している請求項1に記載の積層型熱交換器。
    The gravity direction lower part of the first end plate (18) has a refrigerant inflow part (181) for allowing the refrigerant to flow into the gas-liquid separation part (30),
    The lamination according to claim 1, wherein a lower part in the gravity direction of the second end plate (19) has a refrigerant outflow part (191) for allowing the liquid-phase refrigerant to flow out from the gas-liquid separation part (30). Mold heat exchanger.
  3.  さらに、前記冷媒と第2熱媒体とを熱交換させる第2熱交換部(62)を備え、
     前記第2熱交換部(62)は、
      互いに積層されて接合された複数の第2板状部材(61)と、
      前記複数の第2板状部材(61)の間に設けられた、前記冷媒が流れる複数の第2冷媒流路(621)と、
      前記複数の第2板状部材(61)の間に設けられた、前記第2熱媒体が流れる複数の第2熱媒体流路(622、623)と、を含み、
     前記複数の第2板状部材(61)における前記冷媒の流れ方向の長さは、前記複数の第1板状部材(11)における前記冷媒の流れ方向の長さよりも短くなっており、
     前記第2熱交換部(62)は、前記第2端板(19)に接合されており、
     前記第2冷媒流路(621)は、前記気液分離部(30)と連通している請求項1または2に記載の積層型熱交換器。
    And a second heat exchange part (62) for exchanging heat between the refrigerant and the second heat medium,
    The second heat exchange part (62)
    A plurality of second plate-like members (61) laminated and joined to each other;
    A plurality of second refrigerant flow paths (621) through which the refrigerant flows, provided between the plurality of second plate-like members (61);
    A plurality of second heat medium passages (622, 623) provided between the plurality of second plate-like members (61), through which the second heat medium flows,
    The length in the flow direction of the refrigerant in the plurality of second plate members (61) is shorter than the length in the flow direction of the refrigerant in the plurality of first plate members (11),
    The second heat exchange part (62) is joined to the second end plate (19),
    The stacked heat exchanger according to claim 1 or 2, wherein the second refrigerant channel (621) communicates with the gas-liquid separator (30).
  4.  前記第1熱媒体および前記第2熱媒体は、冷却水であり、
     前記気液分離部(30)の内部に設けられて、前記冷却水が流通するとともに、前記第1熱媒体流路(122)と前記第2熱媒体流路(623)とを連通させる内部冷却水通路(80)をさらに備える請求項3に記載の積層型熱交換器。
    The first heat medium and the second heat medium are cooling water,
    Internal cooling provided inside the gas-liquid separator (30) to allow the cooling water to flow and to communicate the first heat medium flow path (122) and the second heat medium flow path (623). The stacked heat exchanger according to claim 3, further comprising a water passage (80).
  5.  前記第2熱媒体は、前記第1熱交換部(12)に流入する前記冷媒よりも圧力が低い低圧冷媒である請求項3に記載の積層型熱交換器。 The stacked heat exchanger according to claim 3, wherein the second heat medium is a low-pressure refrigerant whose pressure is lower than that of the refrigerant flowing into the first heat exchange section (12).
  6.  前記気液分離部(30)は内部に、前記第1熱交換部(12)から流入した前記冷媒を外部へ流出させる冷媒通路と、前記第1熱交換部(12)から流入した冷媒を前記第2熱交換部(62)へ流出させる冷媒通路と、を有する請求項3に記載の積層型熱交換器。 The gas-liquid separation unit (30) includes a refrigerant passage through which the refrigerant flowing in from the first heat exchange unit (12) flows out to the outside, and a refrigerant flowing in from the first heat exchange unit (12). The laminated heat exchanger according to claim 3, further comprising a refrigerant passage that flows out to the second heat exchange section (62).
  7.  前記気液分離部(30)は、
      前記第1端板(18)と前記第2端板(19)との間の前記空間に配置されて、互いに積層されて接合された複数の第3板状部材(91)と、
     前記複数の第3板状部材(91)間に設けられて、前記冷媒の気液を分離するとともに前記冷凍サイクル内の余剰冷媒を蓄える複数の気液分離通路(92)と、を有し、
     隣り合う前記気液分離通路(92)同士は、互いに連通している請求項1ないし6のいずれか1つに記載の積層型熱交換器。
    The gas-liquid separator (30)
    A plurality of third plate-like members (91) disposed in the space between the first end plate (18) and the second end plate (19) and laminated and joined to each other;
    A plurality of gas-liquid separation passages (92) provided between the plurality of third plate-like members (91) for separating the gas-liquid of the refrigerant and storing surplus refrigerant in the refrigeration cycle,
    The stacked heat exchanger according to any one of claims 1 to 6, wherein the adjacent gas-liquid separation passages (92) communicate with each other.
  8.  さらに、前記冷媒と第2熱媒体とを熱交換させる第2熱交換部(62)を備え、
     前記第2熱交換部(62)は、
      互いに積層されて接合され複数の第2板状部材(61)と、
      前記複数の第2板状部材(61)の間に設けられた、前記冷媒が流れる複数の第2冷媒流路(621)と、
      前記複数の第2板状部材(61)の間に設けられた、前記第2熱媒体が流れる複数の第2熱媒体流路(622、623)と、を含み、
     前記複数の第2板状部材(61)における前記冷媒の流れ方向の長さは、前記複数の第1板状部材(11)における前記冷媒の流れ方向の長さよりも短くなっており、
     前記第2熱交換部(62)は、前記第2端板(19)に接合されており、
     前記第2冷媒流路(621)は、前記気液分離部(30)と連通しており、
     前記第2端板(19)は、前記第2熱交換部(62)が接合されている部位以外の部位に、乾燥剤(95)を前記気液分離部(30)内に挿入するための挿入口(96)を有する請求項1ないし2または4ないし7のいずれか1つに記載の積層型熱交換器。
    And a second heat exchange part (62) for exchanging heat between the refrigerant and the second heat medium,
    The second heat exchange part (62)
    A plurality of second plate-like members (61) laminated and joined to each other;
    A plurality of second refrigerant flow paths (621) through which the refrigerant flows, provided between the plurality of second plate-like members (61);
    A plurality of second heat medium passages (622, 623) provided between the plurality of second plate-like members (61), through which the second heat medium flows,
    The length in the flow direction of the refrigerant in the plurality of second plate members (61) is shorter than the length in the flow direction of the refrigerant in the plurality of first plate members (11),
    The second heat exchange part (62) is joined to the second end plate (19),
    The second refrigerant channel (621) communicates with the gas-liquid separator (30),
    The second end plate (19) is for inserting a desiccant (95) into the gas-liquid separator (30) in a portion other than the portion where the second heat exchanging portion (62) is joined. The stacked heat exchanger according to any one of claims 1 to 2 or 4 to 7, further comprising an insertion port (96).
PCT/JP2015/002482 2014-05-23 2015-05-18 Stacked heat exchanger WO2015178005A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580026632.8A CN106461298B (en) 2014-05-23 2015-05-18 Laminated type heat exchanger
US15/309,219 US20170122669A1 (en) 2014-05-23 2015-05-18 Stacked heat exchanger
DE112015002434.4T DE112015002434T5 (en) 2014-05-23 2015-05-18 Stack heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-107117 2014-05-23
JP2014107117 2014-05-23
JP2014221497A JP6222042B2 (en) 2014-05-23 2014-10-30 Laminate heat exchanger
JP2014-221497 2014-10-30

Publications (1)

Publication Number Publication Date
WO2015178005A1 true WO2015178005A1 (en) 2015-11-26

Family

ID=54553687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002482 WO2015178005A1 (en) 2014-05-23 2015-05-18 Stacked heat exchanger

Country Status (5)

Country Link
US (1) US20170122669A1 (en)
JP (1) JP6222042B2 (en)
CN (1) CN106461298B (en)
DE (1) DE112015002434T5 (en)
WO (1) WO2015178005A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105716440A (en) * 2015-12-18 2016-06-29 广东工业大学 Plate type condenser with gas-liquid separation function
CN105737647A (en) * 2016-03-22 2016-07-06 江苏远卓设备制造有限公司 Plate heat exchanger for steam-water separation
CN106052430A (en) * 2016-07-11 2016-10-26 缪志先 Conjoined box-shaped laminating heat exchanger with gas-liquid separation devices
JP6177459B1 (en) * 2016-02-12 2017-08-09 三菱電機株式会社 Plate heat exchanger and refrigeration cycle equipment

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014204935A1 (en) * 2014-03-17 2015-10-01 Mahle International Gmbh Heizkühlmodul
JP2017172948A (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Heat exchanging unit and vehicle air conditioning device
CN106989543A (en) * 2017-05-02 2017-07-28 安徽江淮松芝空调有限公司 A kind of heat exchanger
US10935288B2 (en) * 2017-08-28 2021-03-02 Hanon Systems Condenser
FR3077379A1 (en) * 2018-01-29 2019-08-02 Valeo Systemes Thermiques PERTURBATION DEVICE FOR PLATE OF A HEAT EXCHANGER
EP3572753B1 (en) 2018-05-24 2020-12-16 Valeo Autosystemy SP. Z.O.O. Heat exchanger
EP3572754B1 (en) 2018-05-24 2020-12-16 Valeo Autosystemy SP. Z.O.O. Heat exchanger
US11813924B2 (en) * 2018-07-24 2023-11-14 Hanon Systems Water-cooling type condenser
JP7188193B2 (en) * 2019-03-07 2022-12-13 株式会社デンソー Heat exchanger
EP3757503A1 (en) * 2019-06-26 2020-12-30 Valeo Autosystemy SP. Z.O.O. Heat exchanger with a connector
JP7400234B2 (en) * 2019-07-16 2023-12-19 株式会社デンソー Heat exchanger
CN114270115B (en) * 2019-08-08 2023-04-21 株式会社电装 Heat exchanger
JP6783369B2 (en) * 2019-11-07 2020-11-11 三菱重工サーマルシステムズ株式会社 Heat exchange system
KR102347839B1 (en) * 2020-09-29 2022-01-06 에스트라오토모티브시스템 주식회사 Heat exchanger for vehicles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179471U (en) * 1982-05-26 1983-12-01 カルソニックカンセイ株式会社 Mounting structure of liquid tank in irregularly shaped tubular capacitor
JPH0628561U (en) * 1992-09-10 1994-04-15 昭和アルミニウム株式会社 Heat exchanger
JPH08219588A (en) * 1994-02-16 1996-08-30 Nippondenso Co Ltd Liquid receiver integration type refrigerant condenser
JP2000205700A (en) * 1999-01-14 2000-07-28 Denso Corp Liquid receiver integrated type refrigerant condenser
WO2009065812A1 (en) * 2007-11-20 2009-05-28 Valeo Systemes Thermiques Condenser for air-conditioning circuit with built-in cylinder
US20120222846A1 (en) * 2011-02-17 2012-09-06 Delphi Technologies, Inc. Unitary heat pump air conditioner having a heat exchanger with an integral receiver and sub-cooler

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2412573A (en) * 1942-04-15 1946-12-17 Westinghouse Electric Corp Heat exchange apparatus
US5546761A (en) * 1994-02-16 1996-08-20 Nippondenso Co., Ltd. Receiver-integrated refrigerant condenser
JP2005321151A (en) * 2004-05-10 2005-11-17 Sanden Corp Heat exchanger
US8434324B2 (en) * 2010-04-05 2013-05-07 Denso Corporation Evaporator unit
JP5421933B2 (en) * 2011-01-12 2014-02-19 サンデン株式会社 Heat exchanger
JP5951381B2 (en) * 2012-07-17 2016-07-13 カルソニックカンセイ株式会社 Evaporator structure
KR101461871B1 (en) * 2012-10-19 2014-11-13 현대자동차 주식회사 Condenser for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179471U (en) * 1982-05-26 1983-12-01 カルソニックカンセイ株式会社 Mounting structure of liquid tank in irregularly shaped tubular capacitor
JPH0628561U (en) * 1992-09-10 1994-04-15 昭和アルミニウム株式会社 Heat exchanger
JPH08219588A (en) * 1994-02-16 1996-08-30 Nippondenso Co Ltd Liquid receiver integration type refrigerant condenser
JP2000205700A (en) * 1999-01-14 2000-07-28 Denso Corp Liquid receiver integrated type refrigerant condenser
WO2009065812A1 (en) * 2007-11-20 2009-05-28 Valeo Systemes Thermiques Condenser for air-conditioning circuit with built-in cylinder
US20120222846A1 (en) * 2011-02-17 2012-09-06 Delphi Technologies, Inc. Unitary heat pump air conditioner having a heat exchanger with an integral receiver and sub-cooler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105716440A (en) * 2015-12-18 2016-06-29 广东工业大学 Plate type condenser with gas-liquid separation function
JP6177459B1 (en) * 2016-02-12 2017-08-09 三菱電機株式会社 Plate heat exchanger and refrigeration cycle equipment
CN105737647A (en) * 2016-03-22 2016-07-06 江苏远卓设备制造有限公司 Plate heat exchanger for steam-water separation
CN106052430A (en) * 2016-07-11 2016-10-26 缪志先 Conjoined box-shaped laminating heat exchanger with gas-liquid separation devices

Also Published As

Publication number Publication date
JP6222042B2 (en) 2017-11-01
CN106461298A (en) 2017-02-22
US20170122669A1 (en) 2017-05-04
CN106461298B (en) 2018-11-16
DE112015002434T5 (en) 2017-03-02
JP2016001099A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
WO2015178005A1 (en) Stacked heat exchanger
JP6497262B2 (en) Laminate heat exchanger
JP2019215154A (en) Capacitor accompanied by refrigerant supply source for air-conditioning circuit
JP6183100B2 (en) Cold storage heat exchanger
US9951996B2 (en) Refrigerant evaporator
KR20170079223A (en) Water cooled condenser of integrated type
JP2008180486A (en) Heat exchanger
JP2006329511A (en) Heat exchanger
JP2009074751A (en) Composite heat exchanger
JP6120978B2 (en) Heat exchanger and air conditioner using the same
US20170050489A1 (en) Condenser
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP6160385B2 (en) Laminate heat exchanger
KR102439432B1 (en) Cooling module for hybrid vehicle
JP7086279B2 (en) Refrigerant distributor, heat exchanger and refrigeration cycle device
JP2010175167A (en) Cold storage heat exchanger
JP2007040605A (en) Heat exchanger for multistage compression type refrigeration cycle device
WO2016067551A1 (en) Stacked heat exchanger
WO2021192903A1 (en) Heat exchanger
JP2010107131A (en) Refrigerant evaporator
JP6477306B2 (en) Refrigerant evaporator
KR102123858B1 (en) Air conditioner system for vehicle
KR102131158B1 (en) Air conditioner system for vehicle
JP2008256234A (en) Evaporator
KR102161475B1 (en) Air conditioner system for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796805

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15309219

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002434

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796805

Country of ref document: EP

Kind code of ref document: A1