WO2015177905A1 - 受電器、無線電力伝送システムおよびkQ値算出方法 - Google Patents

受電器、無線電力伝送システムおよびkQ値算出方法 Download PDF

Info

Publication number
WO2015177905A1
WO2015177905A1 PCT/JP2014/063583 JP2014063583W WO2015177905A1 WO 2015177905 A1 WO2015177905 A1 WO 2015177905A1 JP 2014063583 W JP2014063583 W JP 2014063583W WO 2015177905 A1 WO2015177905 A1 WO 2015177905A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
value
receiver
coil
transmitter
Prior art date
Application number
PCT/JP2014/063583
Other languages
English (en)
French (fr)
Inventor
聡 下川
昭嘉 内田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2016520876A priority Critical patent/JP6315088B2/ja
Priority to EP14892515.9A priority patent/EP3151375A4/en
Priority to PCT/JP2014/063583 priority patent/WO2015177905A1/ja
Priority to CN201480078942.XA priority patent/CN106464022A/zh
Priority to KR1020167031880A priority patent/KR101869636B1/ko
Publication of WO2015177905A1 publication Critical patent/WO2015177905A1/ja
Priority to US15/350,243 priority patent/US10305333B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Definitions

  • the embodiment referred to in this application relates to a power receiver, a wireless power transmission system, and a kQ value calculation method.
  • the transmitter on the side that sends power and the power receiver on the side that receives the power sent from the transmitter are products of different manufacturers. However, it is preferable to perform standardization so that it can be used without any problem.
  • wireless power transmission technology using magnetic field resonance (magnetic field resonance) or electric field resonance (electric field resonance) is known as wireless power transmission using resonance of this strong coupling system.
  • wireless power transmission technology for transmitting power wirelessly for power supply and charging has been attracting attention.
  • a wireless power transmission system to which this wireless power transmission technology is applied normally transmits power to a plurality of power receivers.
  • the power requested by each power receiver or the positional relationship of each power receiver with respect to the power transmitter, etc. There is a need for power transmission control based on this.
  • the kQ value (kQ) is the product of the k value (k) indicating the degree of coupling of the electromagnetic field (magnetic field or electric field) and the Q value (Q) indicating the degree of electromagnetic field loss.
  • the k value indicates that the greater the value, the greater the degree of coupling, and the Q value indicates that the greater the value, the smaller the degree of loss.
  • a power receiver that wirelessly receives power from at least one power transmitter using magnetic field resonance or electric field resonance, the power receiving coil, an internal circuit, a power detection resistor, a switch And a power receiving control unit and a communication circuit unit.
  • the power receiving coil wirelessly receives power from the power transmitter, the internal circuit uses power from the power receiving coil, and the power detection resistor detects power from the power receiving coil.
  • the switch applies a voltage received by the power receiving coil by switching to the power detection resistor
  • the power reception control unit controls the power detection resistor and the switch
  • the communication circuit unit includes the power transmitter. Communication including received power detection information and power supply timing information.
  • the disclosed power receiver, wireless power transmission system, and kQ value calculation method have the effect of improving the calculation accuracy of the kQ value in each power receiver.
  • FIG. 1A is a diagram schematically illustrating an example of a wired power transmission system.
  • FIG. 1B is a diagram schematically illustrating an example of a wireless power transmission system.
  • FIG. 2A is a diagram schematically illustrating an example of a two-dimensional wireless power transmission system.
  • FIG. 2B is a diagram schematically illustrating an example of a three-dimensional wireless power transmission system.
  • FIG. 3 is a block diagram schematically illustrating an example of a wireless power transmission system.
  • FIG. 4A is a diagram (No. 1) for describing a modification of the transmission coil in the wireless power transmission system of FIG. 3.
  • FIG. 4B is a diagram (No. 2) for describing the modification of the transmission coil in the wireless power transmission system of FIG. 3.
  • FIG. 4C is a diagram (No.
  • FIG. 5A is a circuit diagram (part 1) illustrating an example of an independent resonant coil.
  • FIG. 5B is a circuit diagram (part 2) illustrating an example of an independent resonant coil.
  • FIG. 5C is a circuit diagram (part 3) illustrating an example of an independent resonant coil.
  • FIG. 5D is a circuit diagram (part 4) illustrating an example of an independent resonant coil.
  • FIG. 6A is a circuit diagram (part 1) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6B is a circuit diagram (part 2) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6A is a circuit diagram (part 1) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6B is a circuit diagram (part 2) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6C is a circuit diagram (part 3) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 6D is a circuit diagram (part 4) illustrating an example of a resonance coil connected to a load or a power source.
  • FIG. 7A is a diagram (No. 1) for explaining an example of magnetic field control by a plurality of power transmitters.
  • FIG. 7B is a diagram (No. 2) for describing an example of magnetic field control by a plurality of power transmitters.
  • FIG. 7C is a diagram (No. 3) for explaining an example of magnetic field control by a plurality of power transmitters.
  • FIG. 8A is a diagram (part 1) for describing wireless power transmission with respect to a plurality of power receivers.
  • FIG. 8A is a diagram (part 1) for describing wireless power transmission with respect to a plurality of power receivers.
  • FIG. 8B is a diagram (No. 2) for describing wireless power transmission to a plurality of power receivers.
  • FIG. 8C is a diagram (No. 3) for explaining wireless power transmission to a plurality of power receivers.
  • FIG. 9A is a diagram (part 1) illustrating an example of a two-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 9B is a diagram (No. 2) for describing an example of a two-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 9C is a diagram (No. 3) for describing an example of a two-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 9A is a diagram (part 1) illustrating an example of a two-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 9B is a diagram (No. 2) for describing an example of a two-dimensional wireless power transmission control method for a plurality of power receivers
  • FIG. 10 is a diagram for explaining an example of a wireless power transmission system to which the kQ value is applied.
  • FIG. 11 is a block diagram illustrating an example of a wireless power transmission system.
  • FIG. 12A is a diagram (part 1) for explaining a kQ value applied to the present embodiment.
  • FIG. 12B is a diagram (part 2) for explaining the kQ value applied to the present embodiment.
  • FIG. 12C is a diagram (No. 3) for explaining the kQ value applied to the present embodiment.
  • FIG. 13 is a block diagram for explaining the wireless power transmission system according to the first embodiment.
  • FIG. 14 is a block diagram for explaining a power receiver in the wireless power transmission system according to the second embodiment.
  • FIG. 15 is a block diagram for explaining a power receiver in the wireless power transmission system according to the third embodiment.
  • FIG. 16 is a flowchart for explaining an example of processing in the kQ value calculation method of this embodiment.
  • FIG. 1A is a diagram schematically illustrating an example of a wired power transmission (wire connection power feeding) system
  • FIG. 1B is a diagram schematically illustrating an example of a wireless power transmission (wireless power feeding) system.
  • reference numerals 2A1 to 2C1 denote power receivers.
  • the power receiver 2A1 indicates, for example, a tablet computer (tablet) having a required power of 10 W
  • the power receiver 2B1 indicates, for example, a notebook computer having a required power of 50 W
  • the power receiver 2C1 has a required power of, for example, A 2.5 W smartphone is shown.
  • the requested power corresponds to, for example, power for charging the rechargeable battery (secondary battery) in each of the power receivers 2A1 to 2C1.
  • power is generally supplied from the USB terminal 3A or the power supply device 3B by wire connection using the power cables 4A to 4C (wired). Power transmission).
  • each of the power cables 4A to 4C is connected to the power receivers 2A1 to 2C1 via the connectors, so that by detecting the power receiver (connecting device) connected to the tip of the connector for each connector, The number of units can be detected, and the power supply can be fixed by the connector shape. Furthermore, by connecting the power cable according to the required power, the user recognizes the required power and at the same time appropriately supplies power to each connected device.
  • wireless power feeding wireless power transmission
  • FIG. 1B it is considered to transmit wireless power from the power transmitter 1A1 to the tablet 2A1, the notebook computer 2B1, and the smartphone 2C1.
  • FIG. 2A is a diagram schematically illustrating an example of a two-dimensional wireless power transmission (two-dimensional wireless power feeding) system.
  • wireless power transmission is performed by electromagnetic induction. Show.
  • the wireless power transmission system shown in FIG. 2A is a two-dimensional wireless power feeding system that allows free placement on the power receiving table 1A2.
  • FIG. 2B is a diagram schematically illustrating an example of a three-dimensional wireless power transmission (three-dimensional wireless power feeding) system, and illustrates, for example, how wireless power transmission is performed using magnetic field resonance or electric field resonance.
  • a plurality of power receivers existing within a predetermined range from the power transmitter 1A2 (inside the broken line in FIG. 2B) Can be supplied.
  • wireless power can be transmitted from the power transmitter 1A3 to the tablets 2A2, 2A3, notebook computers 2B2, 2B3, and the smartphone 2C2 within a predetermined range.
  • FIG. 2B only one power transmitter 1A3 is illustrated, but wireless power transmission is performed by using a plurality of power transmitters to a plurality of power receivers at various angles and positions using magnetic field resonance or electric field resonance. Is supposed to do.
  • the wireless power transmission system shown in FIG. 2B is, for example, a three-dimensional system that can obtain high power transmission efficiency even in a distant space as compared with the one using electromagnetic induction by using magnetic field resonance. It is a wireless power supply system.
  • FIG. 3 is a block diagram schematically showing an example of a wireless power transmission (three-dimensional wireless power feeding) system.
  • reference numeral 1 indicates a primary side (power transmission side: power transmitter), and 2 indicates a secondary side (power reception side: power receiver).
  • the power transmitter 1 includes a wireless power transmission unit 11, a high frequency power supply unit 12, a power transmission control unit 13, and a communication circuit unit (first communication circuit unit) 14.
  • the power receiver 2 includes a wireless power reception unit 21, a power reception circuit unit (rectification unit) 22, a power reception control unit 23, and a communication circuit unit (second communication circuit unit) 24.
  • the wireless power transmission unit 11 includes a first coil (power supply coil) 11b and a second coil (power transmission resonance coil: power transmission coil) 11a
  • the wireless power reception unit 21 includes a third coil (power reception resonance coil: power reception coil). 21a and a fourth coil (power extraction coil) 21b.
  • the power transmitter 1 and the power receiver 2 transfer energy (electric power) from the power transmitter 1 to the power receiver 2 by magnetic field resonance (electric field resonance) between the power transmission resonance coil 11a and the power reception resonance coil 21a. Perform transmission.
  • power transmission from the power transmission resonance coil 11a to the power reception resonance coil 21a can be performed not only by magnetic field resonance but also by electric field resonance.
  • magnetic field resonance will be mainly described as an example.
  • the power transmitter 1 and the power receiver 2 perform communication (short-distance communication) by the communication circuit unit 14 and the communication circuit unit 24.
  • the power transmission distance (power transmission range) by the power transmission resonance coil 11 a of the power transmitter 1 and the power reception resonance coil 21 a of the power receiver 2 is determined by the communication circuit unit 14 of the power transmitter 1 and the communication circuit unit 24 of the power receiver 2. It is set shorter than the communication distance (communication range).
  • the power transmission by the power transmission resonance coils 11a and 21a is a method (Out-band communication) independent of the communication by the communication circuit units 14 and 24.
  • the power transmission by the power transmission resonance coils 11a and 21a uses a frequency band of 6.78 MHz
  • the communication by the communication circuit units 14 and 24 uses a frequency band of 2.4 GHz, for example.
  • a DSSS wireless LAN or Bluetooth (Bluetooth (registered trademark)) conforming to IEEE 802.11b can be used.
  • the power transmission resonance coil 11a of the power transmitter 1 and the power reception resonance coil of the power receiver 2 for example, in the near field having a distance of about 1/6 of the wavelength of the frequency to be used. Electric power is transmitted using magnetic field resonance or electric field resonance by 21a. Therefore, the power transmission range (power transmission area) changes according to the frequency used for power transmission.
  • the high frequency power supply unit 12 supplies power to the power supply coil (first coil) 11b, and the power supply coil 11b performs electromagnetic induction with respect to the power transmission resonance coil 11a disposed in the vicinity of the power supply coil 11b. Use to supply power.
  • the power transmission resonance coil 11a transmits power to the power reception resonance coil 21a (power receiver 2) at a power transmission frequency that causes magnetic field resonance with the power reception resonance coil 21a.
  • the power receiving resonance coil 21a supplies power to the power extraction coil (fourth coil) 21b disposed in the vicinity of the power receiving resonance coil 21a by using electromagnetic induction.
  • a power receiving circuit unit 22 is connected to the power extraction coil 21b to extract predetermined power. Note that the power from the power receiving circuit unit 22 is used, for example, for charging a battery in the battery unit (load) 25 or as a power output for the circuit of the power receiver 2.
  • the high frequency power supply unit 12 of the power transmitter 1 is controlled by the power transmission control unit 13, and the power reception circuit unit 22 of the power receiver 2 is controlled by the power reception control unit 23.
  • the power transmission control unit 13 and the power reception control unit 23 are connected via the communication circuit units 14 and 24, and various controls are performed so that power transmission from the power transmitter 1 to the power receiver 2 can be performed in a preferable state. Is supposed to do.
  • FIGS. 4A to 4C are diagrams for explaining modifications of the transmission coil in the wireless power transmission system of FIG.
  • FIGS. 4A and 4B show an example of a three-coil configuration
  • FIG. 4C shows an example of a two-coil configuration.
  • the wireless power transmission unit 11 includes the first coil 11b and the second coil 11a
  • the wireless power reception unit 21 includes the third coil 21a and the fourth coil.
  • the wireless power receiving unit 21 is one coil (power receiving resonance coil: LC resonator) 21a
  • the wireless power transmitting unit 11 is one coil (power transmission resonance coil: LC resonator) 11a.
  • the wireless power receiving unit 21 is set to one power receiving resonance coil 21a
  • the wireless power transmission unit 11 is set to one power transmission resonance coil 11a.
  • 4A to 4C are merely examples, and it goes without saying that various modifications can be made.
  • FIGS. 5A to 5D are circuit diagrams showing examples of the independent resonance coil (power receiving resonance coil 21a), and FIGS. 6A to 6D are examples of the resonance coil (power receiving resonance coil 21a) connected to a load or a power source.
  • FIG. 5A to 5D are circuit diagrams showing examples of the independent resonance coil (power receiving resonance coil 21a)
  • FIGS. 6A to 6D are examples of the resonance coil (power receiving resonance coil 21a) connected to a load or a power source.
  • FIGS. 5A to 5D correspond to the power receiving resonance coil 21a in FIGS. 3 and 4B
  • FIGS. 6A to 6D correspond to the power receiving resonance coil 21a in FIGS. 4A and 4C.
  • the power receiving resonance coil 21a is a coil (L) 211, a capacitor (C) 212 and a switch 213 connected in series, and the switch 213 is normally turned off.
  • the power receiving resonance coil 21a is a series-connected coil (L) 211 and capacitor (C) 212, and a switch 213 connected in parallel to the capacitor 212. Keeps switch 213 on.
  • FIGS. 5C and 6C The example shown in FIGS. 5C and 6C is such that a switch 213 and a resistor (R) 214 connected in series are provided in parallel with the capacitor 212 in the power receiving resonance coil 21a of FIGS. 5B and 6B. 213 is turned on.
  • FIGS. 5D and 6D The example shown in FIGS. 5D and 6D is obtained by providing a switch 213 and another capacitor (C ′) 215 connected in series in parallel with the capacitor 212 in the power receiving resonance coil 21a of FIGS. 5B and 6B. At that time, the switch 213 is turned on.
  • the switch 213 is set to OFF or ON so that the power receiving resonance coil 21a does not operate during normal operation. This is to avoid, for example, generation of heat or the like by transmitting power to the unused power receiver 2 or a faulty power receiver 2.
  • the power transmission resonance coil 11a of the power transmitter 1 can be the same as that shown in FIGS. 5A to 5D and FIGS. 6A to 6D.
  • the power transmission resonance coil 11a of the power transmitter 1 is configured to operate during normal operation.
  • the on / off control may be performed by the output of the high frequency power supply unit 12.
  • the power transmission resonance coil 11a is obtained by short-circuiting the switch 213 in FIGS. 5A and 6A.
  • the selected power receiver when there are a plurality of power receivers 2, by selecting only the power receiving resonance coil 21 a of the predetermined power receiver 2 that transmits power from the power transmitter 1 and making it operable, the selected power receiver is selected. 2 can be transmitted (time division power transmission).
  • 7A to 7C are diagrams for explaining an example of magnetic field control by a plurality of power transmitters.
  • reference numerals 1A and 1B denote power transmitters
  • 2 denotes a power receiver.
  • the power transmission resonance coil 11aA for power transmission used for the magnetic field resonance of the power transmitter 1A and the power transmission resonance coil 11aB for power transmission used for the magnetic field resonance of the power transmitter 1B are, for example, arranged so as to be orthogonal to each other. It is installed.
  • the power receiving resonance coil 21a used for magnetic field resonance of the power receiver 2 is disposed at different angles (angles that are not parallel) at the portions surrounded by the power transmission resonance coils 11aA and 11aB.
  • the power transmission resonance coils (LC resonators) 11aA and 11aB can be provided in one power transmission device. That is, one power transmitter 1 may include a plurality of wireless power transmission units 11.
  • FIG. 7B shows a state where the power transmission resonance coils 11aA and 11aB output a magnetic field having the same phase
  • FIG. 7C shows a state where the power transmission resonance coils 11aA and 11aB output a magnetic field having an opposite phase.
  • each power receiver 2 (power reception resonance coil 21a) Transmit power according to the direction.
  • the wireless power transmission system described above includes a plurality of power transmitters and at least one power receiver, and depends on the position (X, Y, Z) and posture ( ⁇ X , ⁇ Y , ⁇ Z ) of the power receiver, Adjust the output (intensity and phase) between the transmitters.
  • the direction can be adjusted in any direction on the three-dimensional space. It will be appreciated that the orientation of the magnetic field (electric field) can be adjusted.
  • 8A to 8C are diagrams for explaining wireless power transmission to a plurality of power receivers.
  • 8A to 8C only one power transmitter 1A and two power receivers (cell phones) 2A and 2A ′ are shown for the sake of simplicity, but the number of power transmitters and the number of power receivers are shown. Needless to say, the type and the like can vary. That is, as shown in FIG. 8A, it is assumed that wireless power feeding is performed for two power receivers 2A and 2A 'by one power transmitter 1A.
  • the time division power transmission always selects one power receiver to be supplied, so that one power receiver always corresponds to the power transmitter at a certain moment.
  • the control at this time can be the same as the case where the power transmitter and the power receiver are one-to-one, for example.
  • the time required for power supply is as long as the number of power receivers. Therefore, if there are two power receivers, it will take twice as long as one. .
  • FIG. 9A to 9C are diagrams for explaining an example of a two-dimensional wireless power transmission control method for a plurality of power receivers.
  • FIG. 9A shows a state in which, for example, magnetic power resonance is used to wirelessly feed two power receivers 2A and 2B having different desired powers by one power transmitter 1A.
  • FIG. 9B shows a state where wireless power feeding is performed from the power transmitter 1A (power transmission resonance coil 11a) to the power receiver 2A (power reception resonance coil 21aA) and the power receiver 2B (power reception resonance coil 21aB).
  • FIG. 9C is a diagram for explaining a method of controlling the power distribution ratio by shifting (detuning) the resonance point of the power receiver 2B.
  • the power receiver 2A indicates, for example, a mobile phone having a required power of 5 W
  • the power receiver 2B indicates, for example, a notebook computer having a required power of 50 W.
  • the LC resonator (wireless power receiving unit) of the mobile phone 2A and the LC resonator of the notebook computer 2B are assumed to have the same specifications.
  • reference symbol LL0 indicates the overall power transmission efficiency
  • LLA indicates the received power of the mobile phone 2A
  • LLB indicates the received power of the notebook computer 2B.
  • the power is equally distributed when the power receiving coils having the same specifications are mounted.
  • the inductance in the power receiving resonance coil of the mobile phone 2A is L A and the capacitance is C A
  • the inductance in the power receiving resonance coil of the notebook computer 2B is L B
  • the capacitance is C B.
  • the mobile phone 2A and the notebook computer 2B both receive 27.5 W of power.
  • control is performed so as to lower the power receiving efficiency ( ⁇ ip) by shifting the resonance point by the power receiving resonance coil of the mobile phone 2A. .
  • the capacitance C A of the capacitor in the power receiving resonance coil 21aA phone 2A in order to shift from the resonance point of the power receiving resonance coil receiving efficiency is maximized, small (or, To be larger).
  • intentionally shifting the resonance condition (shifting the capacitance C A) to lower the Q value by, received power LLA phone 2A is a resonance point (P0) 27.
  • the power gradually decreases from 5 W, and can be set to, for example, 5 W of desired power.
  • the received power of the notebook computer 2B most of the power that the mobile phone 2A no longer receives is the received power of the notebook computer 2B. That is, it can be seen that the received power LLB of the notebook personal computer 2B increases as the received power LLA of the mobile phone 2A decreases, and the overall power transmission efficiency LL0 in the wireless power transmission system hardly decreases.
  • the coupling is adjusted by changing the capacitance value (capacitance C A ) of the resonance capacitor (capacitance) 212 of the power receiver 2A. It becomes possible to control the electric power to a desired distribution ratio.
  • the power transmission / reception efficiency of the entire system is substantially constant, and the power that has reached the power receiver 2A is reduced. Accordingly, the power to the power receiver 2B increases.
  • the received power can be distributed (distributed) to a desired ratio while transmitting to the whole (both the power receivers 2A and 2B) with substantially the same efficiency as compared with the case of single power feeding of only one of the power receivers 2A and 2B. I understand.
  • the kQ value (kQ) is the product of the k value (k) indicating the degree of coupling of the electromagnetic field (magnetic field or electric field) and the Q value (Q) indicating the degree of electromagnetic field loss.
  • the k value indicates that the greater the value, the greater the degree of coupling, and the Q value indicates that the greater the value, the smaller the degree of loss.
  • kQ is expressed by the following equation (1).
  • Q 1 indicates the Q value of the power transmitter
  • Q 2 indicates the Q value of the power receiver.
  • K is expressed by the following equation (2).
  • M 12 represents the mutual inductance between the power transmitter and the power receiver
  • L 1 represents the self-inductance of the power transmitter
  • L 2 represents the self-inductance of the power receiver.
  • represents the angular frequency
  • R 1 represents the loss of the resonance coil of the power transmitter
  • R 2 represents the loss of the resonance coil of the power receiver.
  • FIG. 10 is a diagram for explaining an example of a wireless power transmission system to which the kQ value is applied, and illustrates an example in which grouping is performed according to the large kQ value.
  • FIG. 10 one power transmitter 1A and six power receivers 2A to 2F are shown. However, this is merely an example, and it goes without saying that various cases may occur.
  • the wireless power transmission system includes six power receivers 2A to 2F
  • the kQ values (evaluation indices) of the respective power receivers 2A to 2F are evaluated and grouped according to the kQ values. I do. First, all the power receivers 2A to 2F are individually evaluated.
  • the power receiver 2A when evaluating the power receiver 2A, only the power receiver 2A is turned on, and the other power receivers 2B to 2F are turned off (for example, the switch 213 in the power receiving resonance coil 21a in FIG. 5A is turned off).
  • the power receiver 2B having the maximum kQ value (kQ max1 ) is used as a reference, and the kQ value (kQ other ) of the other power receivers is the same group if kQ other / kQ max1 is a certain value or more.
  • the power receiver 2F having a kQ value of kQ 1-1 and the power receiver 2C having a kQ value of kQ 1-2 are set as the first group GP1.
  • the power receiver 2A having the maximum kQ value (kQ max2 ) is used as a reference.
  • grouping is performed. Specifically, in FIG. 10, the power receivers 2A, 2D, and 2E are in the second group GP2.
  • simultaneous power feeding is performed in the same group with the divided groups GP1 and GP2 as a unit.
  • time-sharing power supply is performed for power receivers in groups that are equal to or less than the threshold value.
  • power distribution can be adjusted (detuned) for simultaneous power feeding when power is supplied within the same group, and for power receivers across different groups. It is preferable to perform split power feeding.
  • the allowable efficiency is defined according to the transmission power.
  • the notebook personal computer group (note personal computer) requires, for example, power supply of 30 W (requested power is 30 W), and the allowable minimum efficiency is 80% because of the magnitude of the power.
  • the power receiving coil can be enlarged, and the kQ value can be increased.
  • the smartphone group (smartphone) requests, for example, 5 W power supply (the requested power is 5 W), and the allowable efficiency is 40%.
  • the smartphone since the smartphone is small in size and more free in position, the kQ value is kept small.
  • the Q value can be lowered to balance the power, but in that case, the overall efficiency is lowered, and the power supply efficiency including the notebook computer is lowered. May be 80% or less.
  • simultaneous power feeding to groups with different kQ values is not preferable. That is, when there are three or more power receivers whose kQ value (evaluation index) is equal to or greater than the set value, grouping is performed based on the magnitude of the kQ value. It is preferable to perform grouping so that
  • time-division power feeding is performed for the power receivers of the group that are equal to or lower than the threshold value.
  • power can be fed simultaneously by adjusting power distribution for power supply within the same group, and time-division power supply can be performed for power receivers across different groups. It is preferred to do so.
  • the threshold for dividing a plurality of power receivers into a plurality of groups based on kQ values can be variously changed according to the assumed size and specifications of the wireless power transmission system, and accordingly, the number of groups and each group This also changes the number of power receivers included in.
  • FIG. 11 is a block diagram illustrating an example of a wireless power transmission system, and illustrates an example including two power transmitters 1A and 1B and two power receivers 2A and 2B.
  • the power transmitters 1A and 1B have the same configuration, and include wireless power transmission units 11A and 11B, high frequency power supply units 12A and 12B, power transmission control units 13A and 13B, and communication circuit units 14A and 14B, respectively. Including.
  • the high frequency power supply units 12A and 12B generate high frequency power, and correspond to, for example, the high frequency power supply unit 12 in FIG. 3 described above and have a specific power supply impedance.
  • a specific power supply impedance For example, a constant voltage power source whose output impedance is matched to 50 ⁇ or a high output impedance Hi-Z ⁇ power source (constant current power source).
  • the power transmission control units 13A and 13B control the power transmission units 11A and 11B, and the communication circuit units 14A and 14B enable communication between the power transmitters and the power receiver.
  • the communication circuit units 14A and 14B comply with IEEE 802.11b.
  • a DSSS wireless LAN or Bluetooth (registered trademark) can be used.
  • the high frequency power supply units 12A and 12B receive power supply from the external power supplies 10A and 10B, respectively, and signals from the detection units SA and SB are input to the power transmission control units 13A and 13B.
  • the power transmitter 1A and the power transmitter 1B may be, for example, two power transmission units (11) provided in one power transmitter 1.
  • Wireless power transmission units 11A and 11B correspond to coils in the case of magnetic field resonance, and convert high frequency power supplied from high frequency power supply units 12A and 12B into a magnetic field.
  • the detection units SA and SB detect the relative positional relationship between the power transmitters 1A and 1B and the relative positional relationship between the power receivers 2A and 2B.
  • the positional relationship between the power transmitters 1A and 1B is fixed (the power transmission resonance coils 11a1 and 11a2 are fixed in a specific L-shaped block shape), and the power transmission control units 13A and 13B grasp the information, and the power receiver 2A , 2B have a detection function, the detection units SA and SB can be omitted.
  • the power receivers 2A and 2B have the same configuration, and include wireless power receiving units 21A and 21B, rectifying units (power receiving circuit units) 22A and 22B, power receiving control units 23A and 23B, communication circuit units 24A and 24B, and a device body (battery). Part) 25A, 25B are included.
  • the power reception control units 23A and 23B control the power receivers 2A and 2B, and the communication circuit units 24A and 24B enable communication between the power transmitters and the power receivers.
  • Wireless LAN or Bluetooth registered trademark
  • Wireless power receiving units 21A and 21B correspond to coils in the case of magnetic field resonance, and convert the wirelessly transmitted power into a current.
  • the rectifying units 22A and 22B convert the alternating current obtained from the wireless power receiving units 21A and 21B into a direct current so that it can be used in battery charging or the device body.
  • the power transmitters 1A and 1B and the power receivers 2A and 2B communicate via the respective communication circuit units 14A, 14B, 24A, and 24B.
  • the power transmitter 1A can be a master (overall controller), and the master (power transmitter) 1A can control the other power transmitter 1B and the power receivers 2A and 2B as slaves.
  • the Q value in each of the power receivers 2A and 2B is controlled via the communication circuit unit 14A of the power transmitter 1A and the communication circuit units 24A and 24B of the power receivers 2A and 2B. It communicates to a master (for example, power transmitter 1A) by communication.
  • a master for example, power transmitter 1A
  • the capacitance (C A ) of the capacitance in the power receiving resonance coil of the power receiver 2B from the resonance point via the communication circuit section 14A of the power transmitter 1A and the communication circuit section 24B of the power receiver 2B. Shift and adjust the power distribution ratio. Specifically, the power distribution ratio of the power receivers 2A and 2B is adjusted by controlling the capacitance value of the capacitor 212 in the power receiving resonance coil 21a shown in FIG. 5A.
  • the power receiver that performs wireless power supply is switched via the communication circuit unit 14A of the power transmitter 1A and the communication circuit units 24A and 24B of the power receivers 2A and 2B.
  • the switch 213 in the power receiving resonance coil 21a shown in FIG. 5A described above is controlled so that only the switch 213 of the power receiver that performs wireless power feeding is sequentially turned on.
  • the switch 213 in the power receiving resonance coil 21a illustrated in FIG. 5B described above is controlled so that only the switch 213 of the power receiver that performs wireless power feeding is sequentially turned off.
  • the power transmission between the wireless power transmission units 11A and 11B and the wireless power reception unit 21A or 21B is not limited to power transmission using magnetic field resonance.
  • electric field resonance or electromagnetic induction or electric field induction is used.
  • a power transmission method can also be applied.
  • the present embodiment can be applied to a wireless power transmission system including at least one power transmitter and at least one power receiver.
  • the power transmitter 1A power transmission control unit 13A
  • the wireless power receiver 21A of the power receiver 2A is in an operating state. Then, the wireless power receiving unit 21B of the power receiver 2B is stopped.
  • the switch 213 of the power receiving resonance coil 21a in the power receiver 2A is turned on.
  • the switch 213 is turned off.
  • the wireless power transmission system includes a plurality of power transmitters
  • the kQ value with each power receiver is obtained, for example, when the Q value indicating the degree of magnetic field (electric field) loss in each power receiver (power receiving resonance coil) is known, the magnetic field (electric field) ) Can be calculated, and various controls can be performed using the k value.
  • FIG. 12A to 12C are diagrams for explaining the kQ value applied to the present embodiment.
  • FIG. 12A is a diagram conceptually showing the power transmitter 1 (power transmission resonance coil 11a) and the power receiver 2 (power reception resonance coil 21a), and corresponds to, for example, the example of the transmission coil shown in FIG. 4C described above. .
  • FIG. 12B is a diagram illustrating an equalization circuit of the power transmitter 1 and the power receiver 2 in FIG. 12A
  • FIG. 12C is a diagram illustrating a relationship between the efficiency ( ⁇ ) and the kQ value due to R L / R 2 .
  • the transmission coils are not limited to those shown in FIG. 4C, and may be configured as shown in FIGS. 3, 4A, 4B, and the like.
  • Power transmission by a magnetic field (electric field) between one power transmitter 1 (power transmission resonance coil 11a) and one power receiver 2 (power reception resonance coil 21a) can be considered as shown in FIG. 12A. It is represented by an equalization circuit.
  • reference numerals R 1 and L 1 indicate the loss (resistance value) and self-inductance of the power transmission resonance coil 11a (coil), and R 2 and L 2 indicate the power reception resonance coil 21a (coil 211). Shows resistance and self-inductance.
  • Reference symbol RL indicates the load resistance of the power supply target (battery unit 25), and M indicates the mutual inductance between the power transmission resonance coil 11a and the power reception resonance coil 21a.
  • C 1 indicates the capacitance of the power transmission resonance coil 11 a (capacitance)
  • C 2 indicates the capacitance of the power reception resonance coil 21 a (capacitance 212)
  • I 1 and I 2 indicate the power transmission resonance coil 11 a and the power reception resonance coil.
  • the current flowing through 21a is shown, and E is the power supply circuit (12).
  • the kQ value, the k value, and the Q values (Q 1 , Q 2 ) of the power transmitter and the power receiver are expressed by the following equations (1) to (3).
  • the efficiency of the power receiving resonance coil 21a is not only the resistance value R 2 of the coil 211 varies with the load resistor R L to be the power supply target.
  • the power receiving device, the resistance value R 2 of the coil 211 in the power receiving resonance coil 21a is designed with the aim of minimizing the load resistor R L, for example, varies with charging rate, etc. of the secondary battery.
  • the efficiency ⁇ is expressed by the following equation (4).
  • FIG. 13 is a block diagram for explaining the wireless power transmission system of the first embodiment.
  • the wireless power transmission system of this embodiment includes a plurality of power transmitters and a plurality of power receivers. May be included.
  • a plurality of power receivers are included in the system, for example, only one power receiver is turned on in order and the kQ value with each power receiver is obtained. If the system includes multiple power transmitters, calculate the kQ value for each power receiver with respect to the plurality of power transmitters, or turn on only one power transmitter in turn, and The kQ value of each power receiver with respect to the electric device is obtained.
  • the power transmitter 1 includes a power transmission resonance coil 11 a (wireless power transmission unit 11), a power transmission control unit (including a memory) 13, a communication circuit unit 14, an amplifier 15, and a matching circuit 16.
  • the power transmission control unit 13 receives, for example, the voltage / current input waveform Fc of the power transmission resonance coil 11a, controls the output of the amplifier 15 by the amplifier control signal Sa, and drives the power transmission resonance coil 11a via the matching circuit 16.
  • the power transmission control unit 13 is adapted to detect the transmission power P 1 receives the voltage and current input waveforms Fc of the power transmitting resonance coil 11a. Further, the power transmission control unit 13 is provided with a memory, and for example, the loss Q 1 in the coil of the power transmission resonance coil 11a is stored in advance.
  • the power receiver 2 includes a power reception resonance coil 21a (wireless power reception unit 21: power reception coil), a rectifier circuit 22a, a DC / DC converter 22b, a power reception control unit (including a memory) 23, a communication circuit unit 24, a secondary battery 25, a switch. 26 and a power detection resistor 27.
  • the DC / DC converter 22b and the secondary battery 25 correspond to an internal circuit that uses power from the power receiving coils (21, 21a).
  • the switch 26 converts the DC received voltage Vr extracted via the power receiving resonance coil 21a and the rectifier circuit 22a into a power detection resistor (load resistance) 27 and a DC / DC converter in accordance with the switching control signal Ss from the power receiving control unit 23. It is applied as switchable to 22b.
  • the load resistor 27 is a variable resistor whose resistance value is controlled by a resistance value control signal Sr from the power reception control unit 23.
  • the power reception control unit 23 receives the power reception voltage Vr from the rectifier circuit 22a, for example, controls the switch 26 by the switch control signal Ss to apply the power reception voltage Vr to the load resistor 27, and the resistance value R L of the load resistor 27 The received power P 2 is detected.
  • the switch 26 and the load resistor 27 are provided at the subsequent stage of the rectifier circuit 22a, and the received power P 2 is obtained from the rectified DC received voltage Vr and the resistance value R L of the load resistor 27. However, it can also be provided before the rectifier circuit 22a.
  • the received power P 2 can be detected from the AC received voltage Vr ′ by the power receiving resonance coil 21 a and the resistance value R L of the load resistor 27 as in a third embodiment of FIG.
  • the power reception control unit 23 can obtain the resistance ratio R L / R 2 between the resistance value R L of the load resistor 27 and the resistance value R 2 of the power receiving resonance coil 21a (coil 211), and the received power P 2.
  • the received power detection information is transmitted to the power transmission control unit 13 by communication.
  • the power reception control unit 23 is provided with a memory, and for example, a loss Q 2 in the coil 211 of the power reception resonance coil 21a is stored in advance.
  • the detection information of the received power from the power receiver 2 (power reception control unit 23) to the power transmitter 1 (power transmission control unit 13) for example, the power reception voltage Vr, the resistance ratio R L / R 2 and the loss Q 2 are used as they are. It may be transmitted to the power transmission control unit 13 and the power transmission control unit 13 may calculate the received power P 2 or the like.
  • the power receiver 2 receives information such as the transmission power P 1 and the loss Q 1 of the power transmission resonance coil 11a from the power transmission device 1 (power transmission control unit 13) via communication, and kQ It is also possible to calculate a value (k value).
  • the control of the resistance value R L of the load resistor 27 by the resistance value control signal Sr from the power reception control unit 23 has a small R L / R 2 as is apparent from each characteristic curve of FIG. It is preferable to control so that the resistance value R L of the load resistor 27 changes from a small value to a large value in order to ensure detection accuracy at low efficiency.
  • the power reception control unit 23 receives, for example, power transmission conditions (power supply timing information) from the power transmission control unit 13 via communication (the communication circuit unit 24 on the power receiver side and the communication circuit unit 14 on the power transmitter side), and the power transmission control unit against 13 transmits the reception power P 2 and loss Q 2 for a given R L / R 2.
  • the power transmission control unit 13 that controls the whole as a master of the wireless power transmission system has a coil loss Q 1 of the power transmission resonance coil 11a, a transmission power P 1 , and a coil loss Q 2 and R of the power reception resonance coil 21a.
  • the value of L / R 2 can be recognized.
  • the power transmission control unit 13 recognizes the transmission power P 1 of the power transmitter 1 , the value of R L / R 2 in the power receiver 2, and the power received P 2 of the power receiver 2, so that the resistance ratio R L /
  • the kQ value of the power receiver 2 can be estimated from R 2 and the measurement efficiency (P 2 / P 1 ) based on the equation (4).
  • the obtained measurement efficiency (P 2 / P 1 ) is applied as the efficiency ⁇ to the equation (4) described with reference to FIGS. 12A to 12C, and the obtained resistance ratio R L / R 2 Is applied as R L / R 2 , and the reciprocal thereof is applied as R 2 / R L , whereby the kQ value can be calculated (estimated). That is, according to the first embodiment, it is possible to improve the calculation accuracy of the kQ value in the power receiver. Improving the calculation accuracy of this kQ value can be obtained as a similar effect in the following second and third embodiments.
  • the Q value can be obtained from Q 1 stored in the memory of the power transmission control unit 13 and Q 2 stored in the memory of the power reception control unit 23, the k value can be calculated if the kQ value can be calculated. It becomes possible.
  • a table capable of referring to the values can be provided in advance on the power transmitter side.
  • the above processing is performed, for example, in test power transmission in which small power is transmitted from the power transmitter 1 before the main power transmission for charging the secondary battery 25 in the power receiver 2 with the power transmitted from the power transmitter 1. can do.
  • FIG. 14 is a block diagram for explaining a power receiver in the wireless power transmission system according to the second embodiment. As is apparent from the comparison between FIG. 14 and FIG. 13 described above, the power receiver in the second embodiment is different from the power receiver in the first embodiment in the configuration of the switch 26 ′ and the load resistor 27 ′.
  • the load resistor 27 is a variable resistor whose resistance value is controlled by the resistance value control signal Sr from the power reception control unit 23, whereas in the second embodiment, the load resistor 27 27 ′ includes a plurality (three in FIG. 14) of resistive elements R L 1 to R L 3.
  • the load resistor 27 is a variable resistor whose resistance value is controlled by the resistance value control signal Sr from the power reception control unit 23.
  • the load resistor 27 ′ includes a plurality of resistance elements R L 1 to R L 3, and one of the resistance elements is the switch control signal Ss from the power reception control unit 23. It is selected by a switch 26 that operates according to '.
  • the switch 26 ′ changes the received voltage Vr according to the switch control signal Ss ′ from the power reception control unit 23 to any one of the resistance elements R L 1 to R L 3 in the load resistor 27 ′ or the DC / DC converter 22b. Apply as switchable.
  • the resistance values of the resistance elements R L 1 to R L 3 are set so that the value of the resistance ratio R L / R 2 is about 1, 10, 100, for example, as shown in FIG. 12C. can do.
  • the number of resistance elements provided in the load resistor 27 ′, the set value of each resistance element, and the like can be variously set.
  • FIG. 15 is a block diagram for explaining a power receiver in the wireless power transmission system according to the third embodiment.
  • the wireless power receiving unit 21 includes a power receiving resonance coil 21 a and a power extraction coil 21 b. That is, the power reception resonance coil 21a and the power extraction coil 21b correspond to a power reception coil (wireless power reception unit 21).
  • the power receiving resonance coil 21a is provided with a switch 26 and a load resistor 27.
  • the switch 26 is switched to apply the AC power receiving voltage Vr ′ by the power receiving resonance coil 21a to the load resistor 27.
  • switching control signal Ss from the power reception control unit 23 that controls the switch 26 and the resistance value control signal Sr that controls the resistance value R L of the load resistor 27 are the same as those described with reference to FIG. is there.
  • the power reception control unit 23 detects the received power P 2 from the AC received voltage Vr ′ from the power receiving resonance coil 21 a and the resistance value R L of the load resistor 27.
  • the rectifier circuit 22a is connected to the power extraction coil 21b, and the DC received voltage Vr extracted via the rectifier circuit 22a is applied to the DC / DC converter 22b via the switch 26 ". ing.
  • the switches 26 and 26 ′′ are controlled by the switching control signals Ss and Ss ′′ from the power reception control unit 23 so that the switching timing is synchronized. That is, when the AC received voltage Vr ′ by the power receiving resonance coil 21a is applied to the load resistor 27 by the switch 26, the DC received voltage Vr by the rectifier circuit 22a is not applied to the DC / DC converter 22b by the switch 26 ′′. It is like that.
  • the power reception control unit 23 controls the resistance value R L of the switch 26 and the load resistor 27 so that the AC power reception voltage Vr ′ and the resistance value R L (resistance ratio R L / R The received power P 2 is calculated from 2 ).
  • the power reception control unit 23 controls the switch 26 ′′ to control the input of the DC / DC converter 22b to be in a high impedance state. With this test power transmission, the power reception control unit 23 receives the received power P 2. And the calculated received power P 2 is transmitted to the power transmission control unit 13 of the power transmitter 1 together with information such as R L / R 2 through communication.
  • the power reception control unit 23 controls the switch 26 to disconnect the load resistor 27 from the power reception resonance coil 21a, and controls the switch 26 ′′ so that the power reception voltage Vr from the rectifier circuit 22a is DC / DC. The voltage is applied to the DC converter 22b.
  • the switch 26 and the load resistor 27 include, for example, a switch 26 ′ having the same configuration as that of the second embodiment described with reference to FIG. 14 and a plurality of resistance elements R L 1 to R L 3. It can also be a load resistor 27 '.
  • FIG. 16 is a flowchart for explaining an example of the kQ value calculation processing of the present embodiment.
  • the process on the power transmitter side is indicated by steps ST11 to ST19
  • the process on the power receiver side is indicated by steps ST21 to ST27.
  • test power transmission is set in step ST11, the process proceeds to step ST12, the test power transmission is notified, and the process proceeds to step ST13.
  • Start test transmission In the test power transmission, a relatively small power is transmitted from the power transmitter 1 for the test.
  • the power transmitting device 1 in step ST14, detects the transmission power P 1. That is, in the power transmitting device 1, the power transmission control unit 13, and is capable of detecting the transmitted power P 1 receives the voltage and current input waveforms Fc of the power transmitting resonance coil 11a.
  • step ST15 determines whether or not there is a notification from the power receiver 2, that is, wait until there is a notification from the power receiver 2, and determine that there is a notification from the power receiver 2. Proceed to step ST16.
  • the power receiver (2) receives the test power transmission notification in step ST12 of the power transmitter 1, and sets the test power transmission in step ST21. That is, in the power receiver 2, the switch 26 receives a load resistance (power) from the DC / DC converter 22b, for example, by communication by the communication circuit units 14 and 24 or by receiving power for test transmission from the power transmitter 1. The connection to the detection resistor 27 is switched.
  • a load resistance power
  • the power reception voltage Vr extracted through the power reception resonance coil 21 a and the rectifier circuit 22 a is applied to the load resistor 27 by switching the switch 26 according to the switch control signal Ss from the power reception control unit 23.
  • the resistance value (R L ) of the load resistor 27 is variably controlled by the resistance control signal Sr from the power reception control unit 23 so as to change from a small value to a large value, for example.
  • step ST22 determines whether it detects a receiving voltage Vr, it is determined that it has detected a receiving voltage Vr, the process proceeds to step ST23, the reception power P 2 and the resistance ratio (R L / R 2) Is transmitted to the power transmitter 1 by communication (communication circuit units 24 and 13). That is, since the power reception control unit 23 recognizes the resistance value (R L ) of the load resistance 27 that is variably controlled, the power reception control unit 23 calculates the value of R L / R 2 and the received power P 2 , and communicates with the power transmitter 1. The power transmission control unit 13 can be notified.
  • the power transmitter 1 Upon receiving the notification from the power receiver 2, the power transmitter 1 calculates the kQ value in step ST16. That is, since the power transmission control unit 13 of the power transmitter 1 knows the transmitted power P 1 of the power transmitter 1 , the value of R L / R 2 in the power receiver 2, and the received power P 2 of the power receiver 2, the resistance ratio R The kQ value of the power receiver 2 can be calculated from L / R 2 and the measurement efficiency (P 2 / P 1 ).
  • the obtained measurement efficiency (P 2 / P 1 ) is applied as the efficiency ⁇ to the equation (4) described with reference to FIGS. 12A to 12C, and the obtained resistance ratio R L / the R 2 as R L / R 2, also, by applying the inverse as R 2 / R L, can be calculated kQ value.
  • the Q value is known from Q 1 stored in the memory of the power transmission control unit 13 and Q 2 stored in the memory of the power reception control unit 23. Therefore, the k value is calculated.
  • the kQ value or the k value can be calculated using a logical expression. For example, it is also possible to prepare a table in advance and obtain the value using the table.
  • step ST17 determines whether or not the detection accuracy is within the allowable range, and determines that the detection accuracy is not within the allowable range (detection accuracy NG: No Good), returns to step ST14 to perform the same. The process is repeated and further notified to the power receiver 2.
  • step ST24 determines in step ST24 that it is not a notification of the main power transmission, and proceeds to step ST25.
  • step ST25 it is determined that the detection accuracy is NG, and the process proceeds to step ST26, where the resistance value R L of the load resistor 27 is switched to a larger value, for example, or variably controlled, and the process returns to step ST22. Repeat the process.
  • step ST17 of the power transmitter 1 determines whether the detection accuracy is within the allowable range (detection accuracy OK). If it is determined in step ST17 of the power transmitter 1 that the detection accuracy is within the allowable range (detection accuracy OK), the process proceeds to step ST19, where the transmission is set / notified / started, and the process is terminated. That is, the power transmitter 1 actually starts the main power transmission for charging the secondary battery 25 of the power receiver 2, and notifies the power receiver 2 of the notification of the main power transmission via communication, for example.
  • the power receiver 2 determines in step 24 that there has been a real power transmission notification, proceeds to step ST27, and performs settings for the main power transmission. That is, in the power receiver 2, for example, by communication or receiving the power for main power transmission from the power transmitter 1, the switch 26 switches the connection from the load resistor 27 to the DC / DC converter 22b.
  • the switch 26 by switching the switch 26 according to the switch control signal Ss from the power reception control unit 23, the power reception voltage Vr extracted through the power reception resonance coil 21a and the rectifier circuit 22a is applied to the DC / DC converter 22b. .
  • the wireless power transmission system includes a plurality of power receivers
  • only one power receiver is turned on in order to perform test power transmission, and a kQ value with each power receiver is obtained. It will be.
  • the Q 1 value and the Q 2 value are known in advance, the Q value can be obtained and the k value can be calculated.
  • the calculated kQ value or k value with a plurality of power receivers can be used for various controls including selection of a power feeding method and grouping of a plurality of power receivers. .
  • the present invention should not be construed as being limited to the above-described examples and conditions specifically described, and the configurations of the examples in the present specification regarding the superiority and inferiority of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 少なくとも1つの送電器からの電力を、磁界共鳴または電界共鳴を利用して無線により受け取る受電器のkQ値を、前記送電器と前記受電器の間における、磁界または電界の結合の程度を示すk値と、磁界または電界の損失の程度を示すQ値の積として求めるにあたり、前記受電器は、前記送電器からの電力を無線により受け取る受電コイルと、前記受電コイルによる電力を使用する内部回路と、前記受電コイルによる電力を検出する電力検出用抵抗と、を有し、前記電力検出用抵抗の抵抗値を制御し、前記受電コイルの抵抗値と前記電力検出用抵抗の抵抗値の抵抗比、並びに、前記受電コイルによる受電電圧から、受電電力を算出し、前記送電器から出力する送電電力と前記受電電力から測定効率を算出し、前記抵抗比および前記測定効率から、前記受電器のkQ値を算出する。

Description

受電器、無線電力伝送システムおよびkQ値算出方法
 この出願で言及する実施例は、受電器、無線電力伝送システムおよびkQ値算出方法に関する。
 近年、電源供給や充電を行うために、無線で電力を伝送する技術が注目されている。例えば、携帯端末やノートパソコンを始めとした様々な電子機器や家電機器、或いは、電力インフラ機器に対して、無線で電力伝送を行う無線電力伝送システムが研究・開発されている。
 ところで、無線電力伝送(ワイヤレス電力伝送:Wireless Power Transfer)を利用する場合、電力を送る側の送電器と、送電器から送られた電力を受け取る側の受電器がそれぞれ異なるメーカの製品であっても支障なく使用するために標準化を行うのが好ましい。
 従来、無線による電力伝送技術としては、一般的に、電磁誘導を利用した技術や電波を利用した技術が知られている。
 そして、近年、送電器と受電器の距離をある程度離しつつ、複数の受電器に対する電力伝送および受電器の三次元的な様々な姿勢に対する電力伝送が可能なものとして、強結合系の共振を用いたワイヤレス送電技術が注目されている。
 この強結合系の共振を用いたワイヤレス送電としては、例えば、磁界共鳴(磁界共振)や電界共鳴(電界共振)を利用した無線電力伝送技術が知られている。
 従来、無線電力伝送技術としては、様々な提案がなされている。
国際公開第2009/014125号パンフレット 特開2013-198327号公報
 前述したように、従来、電源供給や充電を行うために無線で電力を伝送する無線電力伝送技術が注目されている。この無線電力伝送技術を適用した無線電力伝送システムは、通常、複数の受電器に対して電力を伝送するが、各受電器が要望する電力、或いは、送電器に対する各受電器の位置関係等に基づいた電力伝送制御が求められている。
 ところで、近年、送電器(送電コイル)と受電器におけるkQ値を利用して給電制御を行うことが研究開発されている。具体的に、例えば、kQ値の大きさに基づいて、複数の受電器に対して順番に電力を伝送する時分割電力伝送モードと、複数の受電器に対して同時に電力を伝送する同時電力伝送モードを切り替えて無線電力伝送を行う研究がなされている。
 また、kQ値の大きさに基づいて、複数の受電器をグループ分けし、或いは、受電器(受電共振コイル)の共振点をずらしてデチューンすることも研究されている。さらに、今後、無線電力伝送システムにおいて、kQ値を利用した様々な提案がなされるものと期待されている。
 ここで、kQ値(kQ)は、電磁界(磁界または電界)の結合の程度を示すk値(k)と、電磁界の損失の程度を示すQ値(Q)の積である。また、k値は、その値が大きいほど、結合の程度が大きいことを示し、また、Q値は、その値が大きいほど、損失の程度が小さいことを示す。
 しかしながら、無線電力伝送システムにおいて、各受電器とのk値、従って、kQ値を精度よく算出する(求める)ことは困難であり、有効な提案がなされていないのが実情である。
 一実施形態によれば、少なくとも1つの送電器からの電力を、磁界共鳴または電界共鳴を利用して無線により受け取る受電器であって、受電コイルと、内部回路と、電力検出用抵抗と、スイッチと、受電制御部と、通信回路部と、を有する受電器が提供される。
 前記受電コイルは、前記送電器からの電力を無線により受け取り、前記内部回路は、前記受電コイルによる電力を使用し、前記電力検出用抵抗は、前記受電コイルによる電力を検出する。
 前記スイッチは、前記受電コイルによる受電電圧を、前記電力検出用抵抗に切り替えて印加し、前記受電制御部は、前記電力検出用抵抗および前記スイッチを制御し、前記通信回路部は、前記送電器との間で、受電電力の検出情報および給電タイミング情報を含む通信を行う。
 開示の受電器、無線電力伝送システムおよびkQ値算出方法は、各受電器におけるkQ値の算出精度を向上することができるという効果を奏する。
図1Aは、有線電力伝送システムの一例を模式的に示す図である。 図1Bは、無線電力伝送システムの一例を模式的に示す図である。 図2Aは、二次元無線電力伝送システムの一例を模式的に示す図である。 図2Bは、三次元無線電力伝送システムの一例を模式的に示す図である。 図3は、無線電力伝送システムの一例を概略的に示すブロック図である。 図4Aは、図3の無線電力伝送システムにおける伝送コイルの変形例を説明するための図(その1)である。 図4Bは、図3の無線電力伝送システムにおける伝送コイルの変形例を説明するための図(その2)である。 図4Cは、図3の無線電力伝送システムにおける伝送コイルの変形例を説明するための図(その3)である。 図5Aは、独立共振コイルの例を示す回路図(その1)である。 図5Bは、独立共振コイルの例を示す回路図(その2)である。 図5Cは、独立共振コイルの例を示す回路図(その3)である。 図5Dは、独立共振コイルの例を示す回路図(その4)である。 図6Aは、負荷または電源に接続された共振コイルの例を示す回路図(その1)である。 図6Bは、負荷または電源に接続された共振コイルの例を示す回路図(その2)である。 図6Cは、負荷または電源に接続された共振コイルの例を示す回路図(その3)である。 図6Dは、負荷または電源に接続された共振コイルの例を示す回路図(その4)である。 図7Aは、複数の送電器による磁界の制御例を説明するための図(その1)である。 図7Bは、複数の送電器による磁界の制御例を説明するための図(その2)である。 図7Cは、複数の送電器による磁界の制御例を説明するための図(その3)である。 図8Aは、複数の受電器に対する無線電力伝送を説明するための図(その1)である。 図8Bは、複数の受電器に対する無線電力伝送を説明するための図(その2)である。 図8Cは、複数の受電器に対する無線電力伝送を説明するための図(その3)である。 図9Aは、複数の受電器に対する二次元の無線電力伝送制御方法の一例を説明するための図(その1)である。 図9Bは、複数の受電器に対する二次元の無線電力伝送制御方法の一例を説明するための図(その2)である。 図9Cは、複数の受電器に対する二次元の無線電力伝送制御方法の一例を説明するための図(その3)である。 図10は、kQ値が適用される無線電力伝送システムの一例を説明するための図である。 図11は、無線電力伝送システムの一例を示すブロック図である。 図12Aは、本実施例に適用されるkQ値を説明するための図(その1)である。 図12Bは、本実施例に適用されるkQ値を説明するための図(その2)である。 図12Cは、本実施例に適用されるkQ値を説明するための図(その3)である。 図13は、第1実施例の無線電力伝送システムを説明するためのブロック図である。 図14は、第2実施例の無線電力伝送システムにおける受電器を説明するためのブロック図である。 図15は、第3実施例の無線電力伝送システムにおける受電器を説明するためのブロック図である。 図16は、本実施例のkQ値算出方法における処理の一例を説明するためのフローチャートである。
 まず、受電器、無線電力伝送システムおよびkQ値算出方法の実施例を詳述する前に、電力伝送システムの例、並びに、複数の送電器および受電器を含む関連技術の無線電力伝送システムを、図1~図12Cを参照して説明する。
 図1Aは、有線電力伝送(ワイヤー接続給電)システムの一例を模式的に示す図であり、図1Bは、無線電力伝送(ワイヤレス給電)システムの一例を模式的に示す図である。図1Aおよび図1Bにおいて、参照符号2A1~2C1は、それぞれ受電器を示す。
 ここで、受電器2A1は、例えば、要望電力が10Wのタブレットコンピュータ(タブレット)を示し、受電器2B1は、例えば、要望電力が50Wのノートパソコンを示し、受電器2C1は、例えば、要望電力が2.5Wのスマートフォンを示す。なお、要望電力は、例えば、それぞれの受電器2A1~2C1における充電池(二次電池)を充電するための電力に相当する。
 図1Aに示されるように、通常、タブレット2A1やスマートフォン2C1の二次電池を充電する場合、例えば、パソコン(Personal Computer)のUSB(Universal Serial Bus)端子(または、専用電源等)3Aに対して電源ケーブル4A,4Cを介して接続する。また、ノートパソコン2B1の二次電池を充電する場合、例えば、専用の電源装置(AC-DC Converter)3Bに対して電源ケーブル4Bを介して接続する。
 すなわち、図1Aに示されるように、携帯可能な受電器2A1~2C1であっても、一般的に、電源ケーブル4A~4Cを使用してUSB端子3Aや電源装置3Bからワイヤー接続により給電(有線電力伝送)を行っている。
 この場合、例えば、各電源ケーブル4A~4Cは、コネクタを介して受電器2A1~2C1に接続されるため、コネクタの先に接続された受電器(接続機器)をコネクタごとに検知することで、台数を検知し、コネクタ形状により給電電力を固定することができる。さらに、要望電力に応じた電源ケーブルの接続をユーザが行うことで、要望電力を認識すると同時に、それぞれの接続機器へ適切な給電を行うようになっている。
 ところで、近年、電磁誘導に代表される非接触給電技術の進歩により、例えば、シェーバーや電動歯ブラシ等でワイヤレス給電(無線電力伝送)が実用化されている。そこで、図1Bに示されるように、例えば、送電器1A1から、タブレット2A1,ノートパソコン2B1およびスマートフォン2C1に対して無線電力伝送することが考えられている。
 図2Aは、二次元無線電力伝送(二次元ワイヤレス給電)システムの一例を模式的に示す図であり、例えば、上述したシェーバーや電動歯ブラシ等と同様に、電磁誘導により無線電力伝送を行う様子を示している。
 図2Aに示されるように、電磁誘導を利用して無線電力伝送を行う場合には、非接触給電であっても送電距離が短いために、送電器1A2にほぼ接触している受電器だけが給電可能である。
 すなわち、送電器(受電台)1A2上に置かれた受電器(ノートパソコン)2B2に対しては給電することができても、受電台1A2から離れたノートパソコン2B3に対しては給電することは困難である。このように、図2Aに示す無線電力伝送システムは、受電台1A2上の自由な配置を可能とする二次元的なワイヤレス給電システムである。
 図2Bは、三次元無線電力伝送(三次元ワイヤレス給電)システムの一例を模式的に示す図であり、例えば、磁界共鳴または電界共鳴を利用して無線電力伝送を行う様子を示している。図2Bに示されるように、磁界共鳴または電界共鳴を利用して無線電力伝送を行う場合には、送電器1A2から所定範囲内(図2Bにおける破線の内側)に存在する複数の受電器に対して給電することが可能である。
 すなわち、送電器1A3から所定範囲内のタブレット2A2,2A3、ノートパソコン2B2,2B3およびスマートフォン2C2に対して無線電力伝送することが可能である。なお、図2Bでは、1つの送電器1A3のみ描かれているが、複数の送電器により、様々な角度および位置の複数の受電器に対して、磁界共鳴または電界共鳴を利用して無線電力伝送を行うようになっている。
 このように、図2Bに示す無線電力伝送システムは、例えば、磁界共鳴を利用することにより、電磁誘導を利用したものに比べて遠方の空間においても高い送電効率を得ることができる三次元的なワイヤレス給電システムである。
 図3は、無線電力伝送(三次元ワイヤレス給電)システムの一例を概略的に示すブロック図である。図3において、参照符号1は一次側(送電側:送電器)を示し、2は二次側(受電側:受電器)を示す。
 図3に示されるように、送電器1は、ワイヤレス送電部11、高周波電源部12、送電制御部13および通信回路部(第1通信回路部)14を含む。また、受電器2は、ワイヤレス受電部21、受電回路部(整流部)22、受電制御部23および通信回路部(第2通信回路部)24を含む。
 ワイヤレス送電部11は、第1コイル(電力供給コイル)11bおよび第2コイル(送電共振コイル:送電コイル)11aを含み、また、ワイヤレス受電部21は、第3コイル(受電共振コイル:受電コイル)21aおよび第4コイル(電力取出コイル)21bを含む。
 図3に示されるように、送電器1と受電器2は、送電共振コイル11aと受電共振コイル21aの間の磁界共鳴(電界共鳴)により、送電器1から受電器2へエネルギー(電力)の伝送を行う。なお、送電共振コイル11aから受電共振コイル21aへの電力伝送は、磁界共鳴だけでなく電界共鳴等も可能であるが、以下の説明では、主として磁界共鳴を例として説明する。
 送電器1と受電器2は、通信回路部14と通信回路部24により、通信(近距離通信)を行う。ここで、送電器1の送電共振コイル11aと受電器2の受電共振コイル21aによる電力の伝送距離(電力伝送範囲)は、送電器1の通信回路部14と受電器2の通信回路部24による通信距離(通信範囲)よりも短く設定される。
 また、送電共振コイル11aおよび21aによる電力伝送は、通信回路部14および24による通信とは独立した方式(Out-band通信)になっている。具体的に、送電共振コイル11aおよび21aによる電力伝送は、例えば、6.78MHzの周波数帯域を使用し、通信回路部14および24による通信は、例えば、2.4GHzの周波数帯域を使用する。
 この通信回路部14および24による通信としては、例えば、IEEE 802.11bに準拠するDSSS方式の無線LANやブルートゥース(Bluetooth(登録商標))を利用することができる。
 なお、上述した無線電力伝送システムは、例えば、使用する周波数の波長の1/6程度の距離の近傍界(near field)において、送電器1の送電共振コイル11aと、受電器2の受電共振コイル21aによる磁界共鳴または電界共鳴を利用して電力の伝送を行う。従って、電力伝送範囲(送電圏)は、電力伝送に使用する周波数に従って変化する。
 高周波電源部12は、電力供給コイル(第1コイル)11bに対して電力を供給し、電力供給コイル11bは、その電力供給コイル11bの至近に配設された送電共振コイル11aに対して電磁誘導を利用して電力を供給する。送電共振コイル11aは、受電共振コイル21aとの間に磁場共鳴を生じさせる送電周波数により、受電共振コイル21a(受電器2)に電力を伝送する。
 受電共振コイル21aは、その受電共振コイル21aの至近に配設された電力取出コイル(第4コイル)21bに対して電磁誘導を利用して電力を供給する。電力取出コイル21bには受電回路部22が接続され、所定の電力が取り出される。なお、受電回路部22からの電力は、例えば、バッテリ部(負荷)25におけるバッテリの充電、或いは、受電器2の回路に対する電源出力等として利用される。
 ここで、送電器1の高周波電源部12は、送電制御部13により制御され、また、受電器2の受電回路部22は、受電制御部23により制御される。そして、送電制御部13および受電制御部23は、通信回路部14および24を介して接続され、送電器1から受電器2への電力伝送を好ましい状態で行うことができるように、様々な制御を行うようになっている。
 図4A~図4Cは、図3の無線電力伝送システムにおける伝送コイルの変形例を説明するための図である。ここで、図4Aおよび図4Bは、3コイル構成の例を示し、図4Cは、2コイル構成の例を示す。
 すなわち、図3に示す無線電力伝送システムでは、ワイヤレス送電部11が第1コイル11bおよび第2コイル11aを含み、ワイヤレス受電部21が第3コイル21aおよび第4コイルを含んでいる。
 これに対して、図4Aの例では、ワイヤレス受電部21を1つのコイル(受電共振コイル:LC共振器)21aとし、図4Bの例では、ワイヤレス送電部11を1つのコイル(送電共振コイル:LC共振器)11aとしている。
 さらに、図4Cの例では、ワイヤレス受電部21を1つの受電共振コイル21aに設定すると共に、ワイヤレス送電部11を1つの送電共振コイル11aとしている。なお、図4A~図4Cは、単なる例であり、様々に変形することができるのはいうまでもない。
 図5A~図5Dは、独立共振コイル(受電共振コイル21a)の例を示す回路図であり、図6A~図6Dは、負荷または電源に接続された共振コイル(受電共振コイル21a)の例を示す回路図である。
 ここで、図5A~図5Dは、図3および図4Bにおける受電共振コイル21aに対応し、図6A~図6Dは、図4Aおよび図4Cにおける受電共振コイル21aに対応する。
 図5Aおよび図6Aに示す例は、受電共振コイル21aを、直列接続されたコイル(L)211,容量(C)212およびスイッチ213としたもので、通常時はスイッチ213をオフしておく。図5Bおよび図6Bに示す例は、受電共振コイル21aを、直列接続されたコイル(L)211および容量(C)212と、容量212に並列に接続されたスイッチ213としたもので、通常時はスイッチ213をオンしておく。
 図5Cおよび図6Cに示す例は、図5Bおよび図6Bの受電共振コイル21aにおいて、容量212と並列に、直列接続されたスイッチ213および抵抗(R)214を設けたもので、通常時はスイッチ213をオンしておく。
 図5Dおよび図6Dに示す例は、図5Bおよび図6Bの受電共振コイル21aにおいて、容量212と並列に、直列接続されたスイッチ213および他の容量(C')215を設けたもので、通常時はスイッチ213をオンしておく。
 上述した各受電共振コイル21aにおいて、通常時に受電共振コイル21aが動作しないように、スイッチ213をオフまたはオンに設定するようになっている。これは、例えば、不使用の受電器2や故障した受電器2に対して電力が伝送されて発熱等が生じるのを避けるためである。
 以上において、送電器1の送電共振コイル11aも図5A~図5Dおよび図6A~図6Dと同様にすることもできるが、送電器1の送電共振コイル11aとしては、通常時に動作するようにして、高周波電源部12の出力でオン/オフ制御してもよい。この場合、送電共振コイル11aは、図5Aおよび図6Aにおいて、スイッチ213を短絡したものになる。
 以上により、複数の受電器2が存在する場合、送電器1から送電を行う所定の受電器2の受電共振コイル21aのみを選択して動作可能な状態とすることにより、その選択された受電器2に対する電力の伝送(時分割電力伝送)を行うことが可能になる。
 図7A~図7Cは、複数の送電器による磁界の制御例を説明するための図である。図7A~図7Cにおいて、参照符号1Aおよび1Bは送電器を示し、2は受電器を示す。
 図7Aに示されるように、送電器1Aの磁界共鳴に使用する送電用の送電共振コイル11aAと送電器1Bの磁界共鳴に使用する送電用の送電共振コイル11aBは、例えば、直交するように配設されている。
 また、受電器2の磁界共鳴に使用する受電用の受電共振コイル21aは、送電共振コイル11aAおよび11aBにより囲まれた個所で異なる角度(平行にならない角度)に配置されている。
 ここで、送電共振コイル(LC共振器)11aAおよび11aBは、1つの送電器に設けることも可能である。すなわち、1つの送電器1が複数のワイヤレス送電部11を含んでいてもよい。
 図7Bは、送電共振コイル11aAおよび11aBが同じ位相の磁界を出力している様子を示し、図7Cは、送電共振コイル11aAおよび11aBが逆の位相の磁界を出力している様子を示す。
 例えば、2個の直交する送電共振コイル11aAおよび11aBが同相出力の場合と逆相出力の場合を比較すると、合成磁界は90°回転した関係となり、それぞれの受電器2(受電共振コイル21a)の向きに合わせた送電を行う。
 このように、複数の送電器1A,1Bにより、任意の位置および姿勢(角度)の受電器2に対して電力を伝送する場合、送電器1A,1Bの送電共振コイル11aA,11aBに発生させる磁界は様々に変化することが分かる。
 上述した無線電力伝送システムは、複数の送電器と、少なくとも1つの受電器とを含み、受電器の位置(X,Y,Z)および姿勢(θXYZ)に応じて、その複数の送電器間の出力(強度および位相)を調整する。
 なお、三次元空間に関しても、例えば、実際の三次元空間における3個以上の送電器を用いて、それぞれの出力位相差および出力強度比を調整することで、三次元空間上の任意の方向に磁界(電界)の向きを調整することが可能になることが理解されるであろう。
 図8A~図8Cは、複数の受電器に対する無線電力伝送を説明するための図である。なお、図8A~図8Cでは、説明を簡略化するために、1つの送電器1Aおよび2つの受電器(携帯電話)2A,2A’のみ示しているが、送電器の数および受電器の数や種類等は様々に変化し得るのはいうまでもない。すなわち、図8Aに示されるように、1つの送電器1Aにより、2つの受電器2A,2A’に対するワイヤレス給電を行う場合を想定する。
 まず、時分割電力伝送によりワイヤレス給電を行うときは、図8Bの左側図に示されるように、一方の受電器2Aだけに給電した後、図8Bの右側図に示されるように、他方の受電器2Aだけに給電する。なお、受電器の数がさらに多い場合も同様であり、時分割的に給電する受電器を順番に切り替えてワイヤレス給電を行う。
 すなわち、時分割電力伝送は、複数の受電器がある場合、給電する対象となる受電器を順次選択することにより、ある瞬間には常に送電器に対して1つの受電器が対応することになる。このときの制御は、例えば、送電器と受電器が1対1の場合と同様とすることができる。ただし、時分割した結果、給電(満充電)に要する時間は、受電器の数だけの時間となるため、受電器が2台であれば1台のときの2倍の時間を要することになる。
 次に、同時電力伝送によりワイヤレス給電を行うときは、図8Cに示されるように、1つの送電器1Aにより、2つの受電器2A,2A’の両方に給電する。なお、受電器の数がさらに多い場合も同様であり、それら複数の受電器に対して同時にワイヤレス給電を行う。
 この同時電力伝送は、例えば、2台の受電器がある場合にはその2台の受電器を同時に給電するため、給電に要する時間は、同時給電される受電器の数に関わらず、1台分でよいため、ユーザメリットを考えると望ましい給電方法(無線電力伝送制御方法)と言える。
 ただし、複数の受電器を同時給電(同時電力伝送)するには、受電器が1台のときとは異なる制御を行うことになる。また、複数の受電器に対して同時電力伝送を行う場合、送電上限や効率等の問題があるため、常に選択可能であるわけではない。なお、受電器の数が多数の場合、一部の複数の受電器に対して同時電力伝送を行い、他の受電器に対して時分割電力伝送を行うことも考えられる。
 図9A~図9Cは、複数の受電器に対する二次元の無線電力伝送制御方法の一例を説明するための図である。ここで、図9Aは、例えば、磁界共鳴を利用して、1つの送電器1Aにより、要望電力が異なる2つの受電器2A,2Bにワイヤレス給電する様子を示す。
 また、図9Bは、送電器1A(送電共振コイル11a)から、受電器2A(受電共振コイル21aA)および受電器2B(受電共振コイル21aB)にワイヤレス給電する様子を示す。図9Cは、受電器2Bの共振点をずらして(デチューンして)、電力配分比を制御する手法を説明するためのものである。
 なお、受電器2Aは、例えば、要望電力が5Wの携帯電話を示し、受電器2Bは、例えば、要望電力が50Wのノートパソコンを示す。また、説明を簡略化するために、携帯電話2AのLC共振器(ワイヤレス受電部)およびノートパソコン2BのLC共振器は、同じ仕様のものとする。さらに、図9Cにおいて、参照符号LL0は全体送電効率を示し、LLAは携帯電話2Aの受電電力を示し、LLBはノートパソコン2Bの受電電力を示す。
 ところで、複数の受電器への同時ワイヤレス給電を行う場合それぞれの受電器における受電電力量が異なるケースが多発すると考えられる。例えば、図9Aに示されるように、要望電力が5Wの携帯電話と要望電力が50Wのノートパソコン、或いは、同じ種類の受電器であっても、バッテリ残量によっては、要望電力が異なるケースも考えられる。
 例えば、受電器2A,2Bの位置や向き大きな差がない場合、同じ仕様の受電コイルが搭載されているとき、電力は等しく分配される。具体的に、携帯電話2Aの受電共振コイルにおけるインダクタンスをLA,キャパシタンスをCAとし、ノートパソコン2Bの受電共振コイルにおけるインダクタンスをLB,キャパシタンスをCBとする。
 このとき、図9Cにおける参照符号PP0で示されるように、そのままの状態(共振点ずらさない状態)では、L00=LAA=LBBが成立する。すなわち、図9Bにおけるそれぞれの共振周波数は、f0=fA=fBの関係が成立する。
 そのため、例えば、送電器1Aからの送電電力が68.75Wで送電効率が80%だと仮定すると、携帯電話2Aおよびノートパソコン2Bは、両方とも27.5Wの電力を受け取ることになる。
 すなわち、図9Aに示されるように、要望電力が10倍異なる受電器2Aと2Bであっても、例えば、55Wの要望電力に相当する出力を送電器1Aから出力した場合、受電器2A,2B側では、それぞれ27.5Wずつの電力を受電する結果となる。
 このとき、携帯電話2Aの要望電力は5Wで、ノートパソコン2Bの要望電力は50Wであるため、携帯電話2Aの受電共振コイルによる共振点をずらして受電効率(ηip)を低下させるように制御する。
 例えば、図9Cの矢印MAに示されるように、携帯電話2Aの受電共振コイル21aAにおける容量のキャパシタンスCAを、受電効率が最大となる受電共振コイルの共振点からずらすために、小さく(または、大きく)なるように制御する。
 すなわち、図9Cの矢印MAのように、共振条件を意図的にずらす(キャパシタンスCAをずらす)ことでQ値を低下させ、携帯電話2Aの受電電力LLAは、共振点(P0)の27.5Wから次第に減少して、例えば、要望電力の5Wに設定することができる。
 このとき、携帯電話2Aが受電しなくなった電力は、そのほとんどがノートパソコン2Bの受電電力となる。すなわち、ノートパソコン2Bの受電電力LLBは、携帯電話2Aの受電電力LLAの低下に応じて上昇し、無線電力伝送システムにおける全体送電効率LL0は、ほとんど低下しないことが分かる。
 このように、共振条件を変えることで、具体的には、受電器2Aの共振用コンデンサ(容量)212の容量値(キャパシタンスCA)を変化させることで、結合が調整され、結果として、受電電力を所望の配分比に制御することが可能となる。
 ここで、重要なこととして、共振条件を可変した受電器2Aの効率は低下していても、システム全体の送受電効率はほぼ一定を保っており、受電器2Aに到達していた電力を減らした分、受電器2Bへの電力が増加する。その結果、受電器2A,2Bの一方だけの単体給電時と比べても、ほぼ同じ効率で全体(両方の受電器2A,2B)に送電しつつ受電電力を所望の比に分配(配分)できることがわかる。
 ところで、近年、複数の送電器(送電コイル)および複数の受電器を含む無線電力伝送システムにおいて、kQ値を利用して給電制御を行うことが注目されている。具体的に、例えば、kQ値の大きさに基づいて、複数の受電器に対して順番に電力を伝送する時分割電力伝送モードと、複数の受電器に対して同時に電力を伝送する同時電力伝送モードと、を切り替えて無線電力伝送を行う研究がなされている。
 また、kQ値の大きさに基づいて、複数の受電器をグループ分けし、或いは、受電器(受電共振コイル)の共振点をずらしてデチューンすることも研究されている。さらに、無線電力伝送システムにおいて、kQ値を利用した様々な提案がなされるものと期待されている。
 ここで、kQ値(kQ)は、電磁界(磁界または電界)の結合の程度を示すk値(k)と、電磁界の損失の程度を示すQ値(Q)の積である。なお、k値は、その値が大きいほど、結合の程度が大きいことを示し、また、Q値は、その値が大きいほど、損失の程度が小さいことを示す。
 すなわち、kQは、次の式(1)により表される。ここで、Q1は、送電器のQ値を示し、Q2は、受電器のQ値を示す。
Figure JPOXMLDOC01-appb-M000001
 また、kは、次の式(2)により表される。ここで、M12は、送電器と受電器の間の相互インダクタンスを示し、L1は、送電器の自己インダクタンス、そして、L2は、受電器の自己インダクタンスを示す。
Figure JPOXMLDOC01-appb-M000002
 さらに、Qは、次の式(3)により表される。ここで、ωは、角振動数を示し、R1は、送電器の共振コイルの損失、そして、R2は、受電器の共振コイルの損失を示す。
Figure JPOXMLDOC01-appb-M000003
 図10は、kQ値が適用される無線電力伝送システムの一例を説明するための図であり、kQ値のおおきさによりグループ分けを行う例を示すものである。なお、図10では、1つの送電器1Aおよび6個の受電器2A~2Fを示しているが、これは単なる例であり、様々な場合があり得るのはいうまでもない。
 図10に示されるように、例えば、無線電力伝送システムに6個の受電器2A~2Fが含まれる場合、各受電器2A~2FのkQ値(評価指標)を評価し、kQ値によりグループ分けを行う。まず、全ての受電器2A~2Fを、それぞれ単体評価する。
 例えば、受電器2Aを評価するとき、受電器2Aのみオンして、他の受電器2B~2Fをオフ(例えば、図5Aの受電共振コイル21aにおけるスイッチ213をオフ)する。そして、例えば、kQ値が最大(kQmax1)となる受電器2Bを基準とし、他の受電器のkQ値(kQother)に関して、kQother/kQmax1が一定値以上ならば、同一グループとする。具体的に、図10では、kQ値がkQ1-1の受電器2FおよびkQ値がkQ1-2の受電器2Cが、第1グループGP1とされている。
 次に、kQ値が最大(kQmax1)となる受電器2Bを含む第1グループGP1以外の受電器2A,2D,2Eにおいて、kQ値が最大(kQmax2)となる受電器2Aを基準として、同様にグループ分けを行う。具体的に、図10では、受電器2A,2D,2Eが、第2グループGP2とされている。
 そして、分割されたグループGP1,GP2を単位として、同一グループ内では、例えば、同時給電を行う。また、kQ値によりグループ分けされた受電器に関して、例えば、閾値以下となるグループの受電器に対しては、時分割給電を行う。さらに、閾値以上となるグループの受電器に対して、同一グループ内の給電では、電力分配を調整(デチューン)して同時給電を行うことができ、異なるグループにまたがる受電器に対しては、時分割給電を行うのが好ましい。
 ところで、一般的に、ワイヤレス送電可能なシステムの要件として、電力と効率は、比例する関係が好ましい。つまり、大電力を送電するシステムでは、高効率が望まれ、また、小電力を送電するシステムでは、低効率であっても許容することができる。これは、特に、ロスが結果として発熱になるため、放熱の問題を考えれば容易に理解することができる。
 すなわち、大電力系において効率が低い場合には、放熱すべき電力が大きくなるため、システムを構築することが難しくなるためである。言い換えれば、送電電力に応じて、許容効率が規定されていると考えることもできる。
 そのような状況で、kQ値が異なる複数の受電器に対した、同時給電すべきか、或いは、時分割給電すべきかを検討すると、送電完了時間を優先すれば、同時給電が常に望ましいと考えられるが、上述したように、許容できる効率は各系に応じて異なっている。
 そこで、許容効率を確保しつつ、同時給電を行うことのできる方法を考えるのが現実的であり、本実施例では、kQ値の近いものをグループ化し、そのグループ内では同時給電を優先し、グループ外では時分割給電を優先するようになっている。
 これは、kQ値が同じ(近い)ものの同時給電であれば、Q値を少し可変することで電力のバランスを調整することが容易である一方で、kQ値が大きく異なっているものの同時給電では、バランス調整のために、Q値を大きく低下させることになる。これは、結果として、全体の効率低下を招くことになる。
 一例として、ノートパソコン群とスマートフォン群への給電を考える。ここで、ノートパソコン群(ノートパソコン)は、例えば、30Wの給電を要求し(要望電力が30Wであり)、その電力の大きさゆえに許容最低効率は80%とする。また、ノートパソコンは、サイズが大きいために受電コイルを大きくすることができ、kQ値を大きくすることが可能である。
 一方、スマートフォン群(スマートフォン)は、例えば、5Wの給電を要求し(要望電力が5Wであり)、許容効率は40%とする。また、スマートフォンは、サイズが小さく、位置がより自由であるため、kQ値は小さく抑えられてしまう。
 このような2つの郡への同時給電を行うと、kQ値が異なるグループへの同時給電となるが、ノートパソコン群への給電ばかりが実行され、スマートフォン群へ電力が届かないことになる。
 このとき、例えば、Q値を低下させて電力のバランスを取ることもできるが、その場合には、全体の効率が低下してしまい、ノートパソコンを含む給電の効率が低くなり、例えば、許容効率が80%以下となってしまうこともあり得る。
 そのため、kQ値が異なるグループへの同時給電は好ましくないことが分かる。すなわち、kQ値(評価指標)が設定値以上となる受電器が3つ以上存在するとき、そのkQ値の大きさに基づいてグループ分けを行うが、近いkQ値を持つ受電器が同じグループとなるようにグループ分けを行うのが好ましい。
 ここで、kQ値によりグループ分けされた受電器に関して、例えば、閾値以下となるグループの受電器に対しては、時分割給電を行うことになる。また、閾値以上となるグループの受電器に対して、同一グループ内の給電では、電力分配を調整して同時給電を行うことができ、異なるグループにまたがる受電器に対しては、時分割給電を行うのが好ましい。
 なお、複数の受電器をkQ値により複数のグループに分けるための閾値としては、想定される無線電力伝送システムの規模や仕様により様々に変化させることができ、それに従って、グループの数や各グループに含まれる受電器の数も変化することになる。
 図11は、無線電力伝送システムの一例を示すブロック図であり、2つの送電器1A,1B、および、2つの受電器2A,2Bを含む例を示すものである。図11に示されるように、送電器1A,1Bは同様の構成を有し、それぞれワイヤレス送電部11A,11B、高周波電源部12A,12B、送電制御部13A,13Bおよび通信回路部14A,14Bを含む。
 高周波電源部12A,12Bは、高周波の電力を発生するもので、例えば、前述した図3における高周波電源部12に相当し、固有の電源インピーダンスを有する。例えば、出力インピーダンスが50Ωに整合された定電圧電源や、高い出力インピーダンスのHi-ZΩ電源(定電流電源)などである。
 送電制御部13A,13Bは、送電部11A,11Bを制御し、通信回路部14A,14Bは、各送電器および受電器間の通信を可能とするものであり、例えば、IEEE 802.11bに準拠するDSSS方式の無線LANやブルートゥース(Bluetooth(登録商標))を利用することができる。
 なお、高周波電源部12A,12Bは、それぞれ外部電源10A,10Bから電力の供給を受け取り、送電制御部13A,13Bには、検出部SA,SBからの信号が入力されている。なお、送電器1Aおよび送電器1Bは、例えば、1つの送電器1に設けた2つの送電部(11)としてもよいのはいうまでもない。
 ワイヤレス送電部11A,11Bは、磁界共鳴であればコイルに相当し、高周波電源部12A,12Bから供給される高周波電力を磁界に変換する。検出部SA,SBは、送電器1A,1Bの相対位置関係や受電器2A,2Bの相対位置関係を検出する。
 なお、例えば、送電器1A,1Bの位置関係が固定され(送電共振コイル11a1,11a2が特定のL字ブロック状に固定され)、その情報を送電制御部13A,13Bが把握し、受電器2A,2Bが検出機能を有する場合、検出部SA,SBは省略可能である。
 受電器2A,2Bも同様の構成を有し、それぞれワイヤレス受電部21A,21B、整流部(受電回路部)22A,22B、受電制御部23A,23B、通信回路部24A,24Bおよび機器本体(バッテリ部)25A,25Bを含む。
 受電制御部23A,23Bは、受電器2A,2Bを制御するものであり、通信回路部24A,24Bは、各送電器および受電器間の通信を可能とするもので、前述したように、例えば、無線LANやブルートゥース(Bluetooth(登録商標))を利用する。
 ワイヤレス受電部21A,21Bは、磁界共鳴であればコイルに相当し、無線で伝達された電力を電流に変換する。整流部22A,22Bは、ワイヤレス受電部21A,21Bから得られた交流電流をバッテリ充電や機器本体で使用可能なように直流電流に変換する。
 上述したように、送電器1A,1Bおよび受電器2A,2Bは、それぞれの通信回路部14A,14B,24A,24Bを介して通信を行う。このとき、例えば、送電器1Aをマスタ(全体制御器)とし、このマスタ(送電器)1Aが、他の送電器1Bおよび受電器2A,2Bをスレーブとして制御することもできる。
 ここで、送電器1A,1Bの通信回路部14A,14B、並びに、受電器2A,2Bの通信回路部24A,24Bを介した通信により、同時送電と時分割送電の切り替え、並びに、同時送電における電力配分比調整等の制御を行う。
 具体的に、例えば、送電器1Aの通信回路部14Aおよび受電器2A,2Bの通信回路部24A,24Bを介して、それぞれの受電器2A,2BにおけるQ値を、無線電力伝送の制御を行うマスタ(例えば、送電器1A)に通信で伝える。
 また、同時給電を行う場合、例えば、送電器1Aの通信回路部14Aおよび受電器2Bの通信回路部24Bを介して、受電器2Bの受電共振コイルにおける容量のキャパシタンス(CA)を共振点からずらし、電力配分比の調整を行う。具体的に、前述した図5Aに示す受電共振コイル21aにおける容量212のキャパシタンスの値を制御して、受電器2A,2Bの電力配分比を調整する。
 さらに、時分割給電を行う場合、例えば、送電器1Aの通信回路部14Aおよび受電器2A,2Bの通信回路部24A,24Bを介して、ワイヤレス給電を行う受電器の切り替えを行う。
 具体的に、例えば、前述した図5Aに示す受電共振コイル21aにおけるスイッチ213を制御して、ワイヤレス給電を行う受電器のスイッチ213だけを順にオンするように制御する。或いは、例えば、前述した図5Bに示す受電共振コイル21aにおけるスイッチ213を制御して、ワイヤレス給電を行う受電器のスイッチ213だけを順にオフするように制御する。
 なお、ワイヤレス送電部11Aおよび11Bと、ワイヤレス受電部21Aまたは21Bの間は、磁界共鳴を利用した電力伝送に限定されるものではなく、例えば、電界共鳴、或いは、電磁誘導や電界誘導を利用した電力伝送方式を適用することもできる。
 前述したように、複数の送電器(送電コイル)および複数の受電器を含む無線電力伝送システムにおいて、kQ値を利用して給電制御を行うことが注目され、様々な研究がなされている。
 しかしながら、無線電力伝送システムにおいて、各受電器とのk値、従って、kQ値を精度よく算出する有効な提案がなされていないのが実情である。すなわち、無線電力伝送システムにおける各受電器とのkQ値を精度よく算出するのは難しい。
 以下、受電器、無線電力伝送システムおよびkQ値算出方法の実施例を、添付図面を参照して詳述する。ここで、本実施例は、少なくとも1つの送電器および少なくとも1つの受電器を含む無線電力伝送システムに適用することができる。
 なお、以下の説明では、1つの受電器とのkQ値を求める例を示すが、無線電力伝送システムが複数の受電器を含む場合には、1つの受電器のみを順番にオンしてそれぞれの受電器とのkQ値を求めることになる。
 例えば、図11の例において、送電器1A(送電制御部13A)がマスタとしてシステム全体を制御する場合、受電器2AのkQ値を算出するには、受電器2Aのワイヤレス受電部21Aを動作状態とし、受電器2Bのワイヤレス受電部21Bを停止する。
 例えば、受電器2A,2Bのワイヤレス受電部21A,21Bが共に、前述した図5Aに示す受電共振コイル21aを有する場合、受電器2Aにおける受電共振コイル21aのスイッチ213をオンし、受電器2Bにおけるスイッチ213をオフすることになる。
 また、無線電力伝送システムが複数の送電器を含む場合には、複数の送電器に対するそれぞれの受電器とのkQ値を算出することもできるが、1つの送電器のみを順番にオンし、それぞれの送電器に対するそれぞれの受電器とのkQ値を求めることもできる。これらは、得られたkQ値の適用、或いは、kQ値に基づいた様々な制御に従って適宜行われる。
 さらに、それぞれの受電器とのkQ値が得られたとき、例えば、それぞれの受電器(受電共振コイル)における磁界(電界)の損失の程度を示すQ値が既知の場合には、磁界(電界)の結合の程度を示すk値を算出し、そのk値を使用して様々な制御を行うこともできる。
 図12A~図12Cは、本実施例に適用されるkQ値を説明するための図である。ここで、図12Aは、送電器1(送電共振コイル11a)および受電器2(受電共振コイル21a)を概念的に示す図であり、例えば、前述した図4Cに示す伝送コイルの例に相当する。
 また、図12Bは、図12Aにおける送電器1および受電器2の等化回路を示す図であり、図12Cは、RL/R2による効率(η)とkQ値の関係を示す図である。なお、伝送コイル(ワイヤレス送電部およびワイヤレス受電部)は、図4Cのものに限定されず、図3,図4Aおよび図4B等の構成であってもよいのはいうまでもない。
 1つの送電器1(送電共振コイル11a)と1つの受電器2(受電共振コイル21a)間の磁界(電界)による電力伝送は、図12Aのように考えることができ、これは、図12Bの等化回路により表される。
 なお、図12Bにおいて、参照符号R1およびL1は、送電共振コイル11a(コイル)の損失(抵抗値)および自己インダクタンスを示し、R2およびL2は、受電共振コイル21a(コイル211)の抵抗値および自己インダクタンスを示す。また、参照符号RLは、給電対象(バッテリ部25)の負荷抵抗を示し、Mは、送電共振コイル11aと受電共振コイル21a間の相互インダクタンスを示す。
 参照符号C1は、送電共振コイル11a(容量)のキャパシタンスを示し、C2は、受電共振コイル21a(容量212)のキャパシタンスを示し、I1およびI2は、送電共振コイル11aおよび受電共振コイル21aを流れる電流を示し、Eは電源回路(12)を示す。
 前述したように、kQ値、k値、並びに、送電器および受電器のQ値(Q1,Q2)は、次の式(1)~式(3)により表される。
Figure JPOXMLDOC01-appb-M000004
 ここで、受電共振コイル21a(受電器2)の効率は、コイル211の抵抗値R2だけでなく、給電対象となる負荷抵抗RLにより変化する。例えば、受電器において、受電共振コイル21aにおけるコイル211の抵抗値R2は最小化を目指して設計されるが、負荷抵抗RLは、例えば、二次電池の充電率等によって変化する。なお、図12Cにおいて、効率ηは、次の式(4)により表される。
Figure JPOXMLDOC01-appb-M000005
 次に、kQ値と効率(η)の関係が、負荷抵抗RLにより大きく変化することを、図12Cを参照して説明する。図12Cにおいて、曲線LLhは、コイル211の抵抗値R2と負荷抵抗RLの比率が常に最適な場合(理想効率,最大効率)の特性を示し、また、LLiは、RL/R2=1のとき、LLjは、RL/R2=10のとき、LLkは、RL/R2=100のときの特性を示す。
 図12Cから明らかなように、RL/R2の値により、kQ値と効率の関係が大きく変化するのが分かる。ここで、エネルギー損失の程度を示すQ値に関して、例えば、送電共振コイル11aにおけるωおよびL1、並びに、受電共振コイル21aにおけるωおよびL2は、通常、不変とみなすことができる。
 図13は、第1実施例の無線電力伝送システムを説明するためのブロック図である。ここで、図13では、1つの送電器1および1つの受電器2のみが描かれているが、前述したように、本実施例の無線電力伝送システムは、複数の送電器および複数の受電器を含んでもよい。
 なお、システムに複数の受電器が含まれている場合には、例えば、1つの受電器のみを順番にオンしてそれぞれの受電器とのkQ値を求める。また、システムに複数の送電器が含まれている場合には、複数の送電器に対するそれぞれの受電器とのkQ値を算出し、或いは、1つの送電器のみを順番にオンし、それぞれの送電器に対するそれぞれの受電器とのkQ値を求める。
 図13に示されるように、送電器1は、送電共振コイル11a(ワイヤレス送電部11)、送電制御部(メモリを含む)13、通信回路部14、アンプ15および整合回路16を含む。
 送電制御部13は、例えば、送電共振コイル11aの電圧電流入力波形Fcを受け取って、アンプ制御信号Saによりアンプ15の出力を制御し、整合回路16を介して送電共振コイル11aを駆動する。
 ここで、送電制御部13は、送電共振コイル11aの電圧電流入力波形Fcを受け取って送電電力P1を検出するようになっている。また、送電制御部13にはメモリが設けられていて、例えば、送電共振コイル11aのコイルにおける損失Q1を予め記憶しておくようになっている。
 受電器2は、受電共振コイル21a(ワイヤレス受電部21:受電コイル)、整流回路22a、DC/DCコンバータ22b、受電制御部(メモリを含む)23、通信回路部24、二次電池25、スイッチ26、および、電力検出用抵抗27を含む。ここで、DC/DCコンバータ22bおよび二次電池25は、受電コイル(21,21a)からの電力を使用する内部回路に相当する。
 スイッチ26は、受電制御部23からの切り替え制御信号Ssに従って、受電共振コイル21aおよび整流回路22aを介して取り出した直流の受電電圧Vrを、電力検出用抵抗(負荷抵抗)27とDC/DCコンバータ22bに切り替え可能として印加する。また、負荷抵抗27は、受電制御部23からの抵抗値制御信号Srにより抵抗値が制御される可変抵抗とされている。
 受電制御部23は、整流回路22aからの受電電圧Vrを受け取り、例えば、スイッチ制御信号Ssによりスイッチ26を制御して受電電圧Vrを負荷抵抗27に印加し、その負荷抵抗27の抵抗値RLによる受電電力P2を検出する。
 なお、図13(および図14)において、スイッチ26および負荷抵抗27は、整流回路22aの後段に設けられ、整流された直流の受電電圧Vrおよび負荷抵抗27の抵抗値RLから受電電力P2を検出しているが、整流回路22aの前段に設けることもできる。
 すなわち、後述する図15の第3実施例のように、受電共振コイル21aによる交流の受電電圧Vr'および負荷抵抗27の抵抗値RLから受電電力P2を検出することも可能である。
 これにより、受電制御部23は、負荷抵抗27の抵抗値RLと受電共振コイル21a(コイル211)の抵抗値R2の抵抗比RL/R2、および、受電電力P2を得ることができ、この受電電力の検出情報を、通信により送電制御部13に伝達する。また、受電制御部23にはメモリが設けられていて、例えば、受電共振コイル21aのコイル211における損失Q2を予め記憶しておくようになっている。
 なお、受電器2(受電制御部23)から送電器1(送電制御部13)への受電電力の検出情報として、例えば、受電電圧Vr,抵抗比RL/R2および損失Q2を、そのまま送電制御部13に伝達し、送電制御部13で受電電力P2等の算出を行ってもよい。
 或いは、受電器2(受電制御部23)が、通信を介して、送電器1(送電制御部13)から、送電電力P1および送電共振コイル11aの損失Q1等の情報を受け取って、kQ値(k値)を算出することも可能である。
 ここで、受電制御部23からの抵抗値制御信号Srによる、負荷抵抗27の抵抗値RLの制御は、図12Cの各特性曲線から明らかなように、RL/R2が小さい、すなわち、負荷抵抗27の抵抗値RLが小さい値から大きな値に変化するように制御するのが低効率時における検出精度を確保する上で好ましい。
 受電制御部23は、通信(受電器側の通信回路部24および送電器側の通信回路部14)を介して、例えば、送電制御部13から送電条件(給電タイミング情報)を受け取り、送電制御部13に対して、所定のRL/R2に対する受電電力P2および損失Q2を伝達する。
 これにより、例えば、無線電力伝送システムのマスタとして全体を制御する送電制御部13は、送電共振コイル11aのコイルの損失Q1、送電電力P1、受電共振コイル21aのコイルの損失Q2およびRL/R2の値を認識することができる。
 従って、送電制御部13は、送電器1の送電電力P1,受電器2におけるRL/R2の値、および、受電器2の受電電力P2を認識することで、抵抗比RL/R2と測定効率(P2/P1)から受電器2とのkQ値を式(4)に基づいて推定することが可能となる。
 すなわち、図12A~図12Cを参照して説明した式(4)に対して、求めた測定効率(P2/P1)を効率ηとして適用し、さらに、求めた抵抗比RL/R2をRL/R2として、また、その逆数をR2/RLとして適用することで、kQ値を算出(推定)することができる。すなわち、第1実施例によれば、受電器におけるkQ値の算出精度を向上することが可能になる。このkQ値の算出精度を向上することは、以下の第2および第3実施例でも同様の効果として得られる。
 なお、送電制御部13のメモリに記憶されたQ1および受電制御部23のメモリに記憶されたQ2からQ値を求めることができるので、kQ値を算出できれば、k値を算出することも可能となる。
 また、受電共振コイル21aのコイルの損失Q2の値は、受電制御部23から通信を介して送電制御部13に伝達せずに、例えば、受電器の種類や型番を示す情報からQ2の値を参照できるテーブルを、予め、送電器側に設けておくこともできる。
 以上の処理は、例えば、送電器1から送電される電力により、受電器2における二次電池25の充電を行う本送電の前に、送電器1から小電力を送電して行うテスト送電において実施することができる。
 図14は、第2実施例の無線電力伝送システムにおける受電器を説明するためのブロック図である。図14と上述した図13の比較から明らかなように、第2実施例における受電器は、第1実施例における受電器と、スイッチ26'および負荷抵抗27'の構成が異なっている。
 すなわち、第1実施例では、負荷抵抗27が、受電制御部23からの抵抗値制御信号Srにより抵抗値が制御される可変抵抗とされているのに対して、第2実施例では、負荷抵抗27'が、複数(図14では、3個)の抵抗素子RL1~RL3を含んでいる。
 すなわち、第1実施例の受電器では、負荷抵抗27が、受電制御部23からの抵抗値制御信号Srにより抵抗値が制御される可変抵抗とされている。これに対して、第2実施例の受電器では、負荷抵抗27'が複数の抵抗素子RL1~RL3を含み、その抵抗素子の1つが、受電制御部23からのスイッチ制御信号Ss'に従って動作するスイッチ26'により選択されるようになっている。
 すなわち、スイッチ26'は、受電制御部23からのスイッチ制御信号Ss'に従って、受電電圧Vrを、負荷抵抗27'におけるいずれかの抵抗素子RL1~RL3、或いは、DC/DCコンバータ22bに切り替え可能として印加する。
 ここで、各抵抗素子RL1~RL3の抵抗値としては、例えば、図12Cに示されるように、抵抗比RL/R2の値が1,10,100程度となるように設定することができる。なお、負荷抵抗27'に設ける抵抗素子の数および各抵抗素子の設定値等は、様々に設定することができるのはいうまでもない。
 図15は、第3実施例の無線電力伝送システムにおける受電器を説明するためのブロック図である。図15に示されるように、第3実施例における受電器は、ワイヤレス受電部21が受電共振コイル21aおよび電力取出コイル21bを含む。すなわち、受電共振コイル21aおよび電力取出コイル21bは、受電コイル(ワイヤレス受電部21)に相当する。
 これは、例えば、前述した図3および図4Bに示す受電器のワイヤレス受電部21と同様であり、受電共振コイル21aは、その受電共振コイル21aの至近に配設された電力取出コイル21bに対して電磁誘導を利用して電力を供給する。
 受電共振コイル21aには、スイッチ26および負荷抵抗27が設けられ、例えば、テスト送電時に、スイッチ26を切り替えて、受電共振コイル21aによる交流の受電電圧Vr'を負荷抵抗27に印加する。
 なお、スイッチ26を制御する受電制御部23からの切り替え制御信号Ss、並びに、負荷抵抗27の抵抗値RLを制御する抵抗値制御信号Srは、図13を参照して説明したものと同様である。
 ただし、第3実施例の受電器において、受電制御部23は、受電共振コイル21aからの交流の受電電圧Vr'および負荷抵抗27の抵抗値RLから受電電力P2を検出することになる。
 そして、電力取出コイル21bには、整流回路22aが接続され、整流回路22aを介して取り出された直流の受電電圧Vrは、スイッチ26"を介してDC/DCコンバータ22bに印加されるようになっている。
 ここで、スイッチ26および26"は、受電制御部23からの切り替え制御信号SsおよびSs"により、スイッチングのタイミングが同期するように制御されている。すなわち、スイッチ26により、受電共振コイル21aによる交流の受電電圧Vr'が負荷抵抗27に印加されるとき、スイッチ26"により、整流回路22aによる直流の受電電圧VrがDC/DCコンバータ22bに印加されないようになっている。
 換言すると、例えば、テスト送電時において、受電制御部23は、スイッチ26および負荷抵抗27の抵抗値RLを制御して、交流の受電電圧Vr'および抵抗値RL(抵抗比RL/R2)から受電電力P2を算出する。
 このとき、受電制御部23は、スイッチ26"を制御して、DC/DCコンバータ22bの入力が高インピーダンス状態となるように制御する。このテスト送電により、受電制御部23は、受電電力P2を算出し、その算出された受電電力P2を、通信を介してRL/R2等の情報と共に送電器1の送電制御部13に伝達する。
 そして、本送電を行う場合、受電制御部23は、スイッチ26を制御して負荷抵抗27を受電共振コイル21aから切り離すと共に、スイッチ26"を制御して整流回路22aからの受電電圧VrがDC/DCコンバータ22bに印加されるようにする。
 第3実施例において、スイッチ26および負荷抵抗27は、例えば、図14を参照して説明した第2実施例と同じ構成を有するスイッチ26'および複数の抵抗素子RL1~RL3を含む負荷抵抗27'とすることもできる。
 図16は、本実施例のkQ値算出処理の一例を説明するためのフローチャートである。図16において、送電器側の処理をステップST11~ST19で示し、受電器側の処理をステップST21~ST27で示す。
 図16に示されるように、kQ値算出処理が開始すると、送電器(1)において、ステップST11でテスト送電を設定し、ステップST12に進んで、テスト送電を通知し、ステップST13に進んで、テスト送電を開始する。ここで、テスト送電は、送電器1からテストのための比較的小電力の送電を行うことになる。
 さらに、送電器1では、ステップST14において、送電電力P1を検出する。すなわち、送電器1において、送電制御部13は、送電共振コイル11aの電圧電流入力波形Fcを受け取って送電電力P1を検出できるようになっている。
 そして、ステップST15に進んで、受電器2からの通知が有ったかどうかを判定、すなわち、受電器2からの通知が有るまで待って、受電器2からの通知が有ったと判定すれば、ステップST16に進む。
 一方、受電器(2)では、送電器1のステップST12におけるテスト送電通知を受けて、ステップST21において、テスト送電を設定する。すなわち、受電器2において、例えば、通信回路部14および24による通信により、或いは、送電器1からのテスト送電用の電力を受信して、スイッチ26は、DC/DCコンバータ22bから負荷抵抗(電力検出用抵抗)27への接続切り替えを行う。
 具体的に、受電制御部23からのスイッチ制御信号Ssに従ったスイッチ26の切り替えにより、受電共振コイル21aおよび整流回路22aを介して取り出した受電電圧Vrは、負荷抵抗27に印加される。このとき、負荷抵抗27の抵抗値(RL)は、受電制御部23からの抵抗制御信号Srにより、例えば、小さい値から大きな値に変化するように可変制御される。
 さらに、ステップST22に進んで、受電電圧Vrを検出したかどうかを判定し、受電電圧Vrを検出したと判定すると、ステップST23に進んで、受電電力P2および抵抗比(RL/R2)を通信(通信回路部24,13)により、送電器1へ伝える。すなわち、受電制御部23は、可変制御した負荷抵抗27の抵抗値(RL)を認識しているので、RL/R2の値および受電電力P2を算出し、通信により、送電器1の送電制御部13に通知することができる。
 送電器1では、この受電器2からの通知を受け取ると、ステップST16において、kQ値の演算を行う。すなわち、送電器1の送電制御部13は、送電器1の送電電力P1,受電器2におけるRL/R2の値、および、受電器2の受電電力P2が分かるため、抵抗比RL/R2と測定効率(P2/P1)から受電器2のkQ値の演算を行うことができる。
 具体的に、図12A~図12Cを参照して説明した式(4)に対して、求めた測定効率(P2/P1)を効率ηとして適用し、さらに、求めた抵抗比RL/R2をRL/R2として、また、その逆数をR2/RLとして適用することで、kQ値を算出することができる。
 なお、受電器2とのkQ値が求められると、送電制御部13のメモリに記憶されたQ1および受電制御部23のメモリに記憶されたQ2からQ値が分かるため、k値を演算することもできる。ここで、kQ値またはk値は、論理式を用いて算出することもできるが、例えば、予めテーブルを準備しておき、そのテーブルを利用して求めることも可能である。
 さらに、送電器1では、ステップST17に進んで、検出精度が許容範囲かどうかを判定し、検出精度が許容範囲ではない(検出精度NG:No Good)と判定すると、ステップST14に戻って同様の処理を繰り返し、さらに、受電器2へ通知する。
 すなわち、受電器2では、ステップST24において、本送電の通知ではないと判定し、ステップST25に進む。テップST25では、検出精度NGの通知であると判定し、ステップST26に進み、負荷抵抗27の抵抗値RLを、例えば、より大きな値に切り替え、或いは、可変制御し、ステップST22に戻って同様の処理を繰り返す。
 一方、送電器1のステップST17において、検出精度が許容範囲内である(検出精度OK)と判定すると、ステップST19に進んで、本送電の設定/通知/開始を行って処理を終了する。すなわち、送電器1は、実際に、受電器2の二次電池25を充電するための本送電を開始し、その本送電の通知を、例えば、通信を介して受電器2伝える。
 これを受けて、受電器2では、ステップ24において、本送電通知が有ったと判定し、ステップST27に進んで、本送電用の設定を行う。すなわち、受電器2において、例えば、通信により、或いは、送電器1からの本送電用の電力を受信して、スイッチ26は、負荷抵抗27からDC/DCコンバータ22bへの接続切り替えを行う。
 具体的に、受電制御部23からのスイッチ制御信号Ssに従ったスイッチ26の切り替えにより、受電共振コイル21aおよび整流回路22aを介して取り出した受電電圧Vrは、DC/DCコンバータ22bに印加される。
 なお、前述したように、例えば、無線電力伝送システムが複数の受電器を含む場合には、1つの受電器のみを順番にオンしてテスト送電を行い、それぞれの受電器とのkQ値を求めることになる。また、例えば、予めQ1値およびQ2値が分かっていれば、Q値を求めることができ、k値を算出することが可能である。そして、算出された複数の受電器とのkQ値またはk値は、給電方式の選択や複数の受電器のグループ化を始めとして、様々な制御に利用することができるのは前述した通りである。
 ここに記載されている全ての例および条件的な用語は、読者が、本発明と技術の進展のために発明者により与えられる概念とを理解する際の助けとなるように、教育的な目的を意図したものである。
 また、具体的に記載されている上記の例および条件、並びに、本発明の優位性および劣等性を示すことに関する本明細書における例の構成に限定されることなく、解釈されるべきものである。
 さらに、本発明の実施例は詳細に説明されているが、本発明の精神および範囲から外れることなく、様々な変更、置換および修正をこれに加えることが可能であると解すべきである。
 1  送電器(一次側:送電側)
 1A~1D,1A1~1A3  送電器
 2  受電器(二次側:受電側)
 2A~2F,2A1~2A3,2B1~2B3,2C1,2C2  受電器
 10A,10B  外部電源
 11,11A,11B  ワイヤレス送電部
 11a,11aA,11aB、11a1,11a2  送電共振コイル(第2コイル:LC共振器)
 11b  電力供給コイル(第1コイル)
 12,12A,12B  高周波電源部
 13,13A,13B  送電制御部
 14,14A,14B  通信回路部(第1通信回路部)
 21,21A,21B  ワイヤレス受電部
 21a  受電共振コイル(第3コイル:LC共振器)
 21b  電力取出コイル(第4コイル)
 22,22A,22B  受電回路部(整流部)
 23,23A,23B  受電制御部
 24  通信回路部(第2通信回路部)
 25,25A,25B  バッテリ部(機器本体,負荷)
 26,26',26"  スイッチ
 27,27'  電力検出用抵抗(負荷抵抗)

Claims (15)

  1.  少なくとも1つの送電器からの電力を、磁界共鳴または電界共鳴を利用して無線により受け取る受電器であって、
     前記送電器からの電力を無線により受け取る受電コイルと、
     前記受電コイルによる電力を使用する内部回路と、
     前記受電コイルによる電力を検出する電力検出用抵抗と、
     前記受電コイルによる受電電圧を、前記電力検出用抵抗に切り替えて印加するスイッチと、
     前記電力検出用抵抗および前記スイッチを制御する受電制御部と、
     前記送電器との間で、受電電力の検出情報および給電タイミング情報を含む通信を行う通信回路部と、を有する、
     ことを特徴とする受電器。
  2.  前記受電制御部は、
      前記電力検出用抵抗の抵抗値を制御し、前記受電コイルの抵抗値と前記電力検出用抵抗の抵抗値の抵抗比、並びに、前記受電コイルによる受電電圧から、前記受電電力を算出し、
      算出された前記受電電力の検出情報を、前記通信回路部を介して前記送信回路に伝達する、
     ことを特徴とする請求項1に記載の受電器。
  3.  前記スイッチは、前記受電コイルによる受電電圧を、前記電力検出用抵抗および前記内部回路に切り替えて印加する、
     ことを特徴とする請求項1または請求項2に記載の受電器。
  4.  前記電力検出用抵抗は、前記受電制御部により抵抗値が可変制御される可変抵抗であり、
     前記スイッチは、受電コイルを、前記電力検出用抵抗と前記内部回路に切り替えて接続する、
     ことを特徴とする請求項3に記載の受電器。
  5.  前記電力検出用抵抗は、複数の抵抗素子を含み、
     前記スイッチは、複数の前記抵抗素子のいずれかと、前記内部回路を切り替えて接続する、
     ことを特徴とする請求項3に記載の受電器。
  6.  前記受電コイルは、
      前記送電器からの電力を無線により受け取る受電共振コイルと、
      前記受電共振コイルからの電力を、電磁誘導を利用して受け取る電力取出コイルと、を含み、
     前記スイッチは、
      前記受電共振コイルによる第1受電電圧を、前記電力検出用抵抗に切り替えて印加する第1スイッチと、
      前記電力取出コイルによる第2受電電圧を、前記内部回路に切り替えて印加する第2スイッチと、を含む、
     ことを特徴とする請求項1または請求項2に記載の受電器。
  7.  前記受電制御部は、
      前記受電コイルの損失を記憶するメモリを含む、
     ことを特徴とする請求項1乃至請求項6のいずれか1項に記載の受電器。
  8.  前記内部回路は、二次電池を含み、
     前記受電コイルによる電力を使用して前記二次電池を充電する、
     ことを特徴とする請求項1乃至請求項7のいずれか1項に記載の受電器。
  9.  少なくとも1つの送電器、および、前記送電器からの電力を、磁界共鳴または電界共鳴を利用して無線により受け取る少なくとも1つの受電器を含む無線電力伝送システムであって、
     前記受電器は、
      前記送電器からの電力を無線により受け取る受電コイルと、
      前記受電コイルによる電力を使用する内部回路と、
      前記受電コイルによる電力を検出する電力検出用抵抗と、
      前記受電コイルによる受電電圧を、前記電力検出用抵抗に切り替えて印加するスイッチと、
      前記電力検出用抵抗および前記スイッチを制御する受電制御部と、
      前記送電器との間で、受電電力の検出情報および給電タイミング情報を含む通信を行う第1通信回路部と、を有し、
     前記送電器は、
      前記受電器に対して、電力を無線により伝送する送電コイルと、
      前記受電器に対する送電電力および前記受電器からの前記検出情報に基づいて、kQ値を算出する送電制御部と、
      前記受電器との間で、前記検出情報および前記給電タイミング情報を含む通信を行う第2通信回路部と、を有する、
     ことを特徴とする無線電力伝送システム。
  10.  前記受電器は、請求項2乃至請求項8のいずれか1項に記載の受電器である、
     ことを特徴とする請求項8に記載の無線電力伝送システム。
  11.  前記送電制御部は、
      前記送電コイルの損失を記憶するメモリを含む、
     ことを特徴とする請求項9または請求項10に記載の無線電力伝送システム。
  12.  少なくとも1つの送電器からの電力を、磁界共鳴または電界共鳴を利用して無線により受け取る受電器のkQ値を、前記送電器と前記受電器の間における、磁界または電界の結合の程度を示すk値と、磁界または電界の損失の程度を示すQ値の積として求めるkQ値算出方法であって、
     前記受電器は、
      前記送電器からの電力を無線により受け取る受電コイルと、
      前記受電コイルによる電力を使用する内部回路と、
      前記受電コイルによる電力を検出する電力検出用抵抗と、を有し、
     前記電力検出用抵抗の抵抗値を制御し、前記受電コイルの抵抗値と前記電力検出用抵抗の抵抗値の抵抗比、並びに、前記受電コイルによる受電電圧から、受電電力を算出し、
     前記送電器から出力する送電電力と前記受電電力から測定効率を算出し、
     前記抵抗比および前記測定効率から、前記受電器のkQ値を算出する、
     ことを特徴とするkQ値算出方法。
  13.  さらに、
      前記受電器における前記受電コイルの損失、および、前記送電器における送電コイルの損失から前記Q値を算出し、
      算出された前記kQ値からk値を算出する、
     ことを特徴とする請求項12に記載のkQ値算出方法。
  14.  前記kQ値の算出は、前記送電器から小電力を送電して行うテスト送電において行われる、
     ことを特徴とする請求項12または請求項13に記載のkQ値算出方法。
  15.  前記kQ値の算出は、前記送電器において行われる、
     ことを特徴とする請求項12乃至請求項14のいずれか1項に記載のkQ値算出方法。
PCT/JP2014/063583 2014-05-22 2014-05-22 受電器、無線電力伝送システムおよびkQ値算出方法 WO2015177905A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016520876A JP6315088B2 (ja) 2014-05-22 2014-05-22 受電器、無線電力伝送システムおよびkQ値算出方法
EP14892515.9A EP3151375A4 (en) 2014-05-22 2014-05-22 POWER RECEIVER, WIRELESS POWER TRANSMISSION SYSTEM, AND kQ-VALUE CALCULATION METHOD
PCT/JP2014/063583 WO2015177905A1 (ja) 2014-05-22 2014-05-22 受電器、無線電力伝送システムおよびkQ値算出方法
CN201480078942.XA CN106464022A (zh) 2014-05-22 2014-05-22 受电器、无线电力传输***以及kQ值计算方法
KR1020167031880A KR101869636B1 (ko) 2014-05-22 2014-05-22 수전기, 무선 전력 전송 시스템 및 kQ값 산출 방법
US15/350,243 US10305333B2 (en) 2014-05-22 2016-11-14 Power receiver, wireless power transfer system, and kQ-value calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063583 WO2015177905A1 (ja) 2014-05-22 2014-05-22 受電器、無線電力伝送システムおよびkQ値算出方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/350,243 Continuation US10305333B2 (en) 2014-05-22 2016-11-14 Power receiver, wireless power transfer system, and kQ-value calculation method

Publications (1)

Publication Number Publication Date
WO2015177905A1 true WO2015177905A1 (ja) 2015-11-26

Family

ID=54553600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063583 WO2015177905A1 (ja) 2014-05-22 2014-05-22 受電器、無線電力伝送システムおよびkQ値算出方法

Country Status (6)

Country Link
US (1) US10305333B2 (ja)
EP (1) EP3151375A4 (ja)
JP (1) JP6315088B2 (ja)
KR (1) KR101869636B1 (ja)
CN (1) CN106464022A (ja)
WO (1) WO2015177905A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184083A1 (en) * 2016-04-22 2017-10-26 Agency For Science, Technology And Research Synchronized time-division wireless power transfer for multiple voltage applications
WO2019064339A1 (ja) * 2017-09-26 2019-04-04 富士通株式会社 電力伝送システム、受電器、及び、受電器の制御方法
JP2022034225A (ja) * 2020-08-18 2022-03-03 株式会社Space Power Technologies 送電装置、受電装置、送電制御方法、送電制御プログラム、受電制御方法、および受電制御プログラム
KR20220093139A (ko) * 2020-12-22 2022-07-05 엘렉트디스 에이비 복수의 무선 전력 송신기가 있는 전력 무선 전력 전송 장비를 테스트하기 위한 시스템, 마스터 테스트 장치, 슬레이브 테스트 장치 및 방법
EP3935712A4 (en) * 2019-03-07 2022-12-14 Hubbell Incorporated INDUCTIVE POWER TRANSMISSION

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9924527B2 (en) * 2015-05-21 2018-03-20 Sr Technologies, Inc. Multiple physical layer wi-fi radio system
WO2018111424A2 (en) * 2016-12-16 2018-06-21 General Electric Company Calibration device and method for determining an optimal operating frequency of a power transfer system
KR102427840B1 (ko) 2017-07-24 2022-08-01 삼성전자주식회사 무선 전력 수신 장치 및 무선 전력 수신 방법
US10826325B2 (en) * 2018-02-21 2020-11-03 X2 Power Technologies Limited Hybrid control apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211854A (ja) * 2010-03-30 2011-10-20 Nippon Soken Inc 電圧検出器、異常検出装置、非接触送電装置、非接触受電装置、非接触給電システムおよび車両
JP2012010586A (ja) * 2010-06-24 2012-01-12 Advantest Corp ワイヤレス受電装置およびワイヤレス給電システム
JP2012049434A (ja) * 2010-08-30 2012-03-08 Sony Corp 電子部品、給電装置、受電装置、およびワイヤレス給電システム
JP2013027255A (ja) * 2011-07-25 2013-02-04 Sony Corp 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法
JP2013059236A (ja) * 2011-09-09 2013-03-28 Sony Corp 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法
JP2013090483A (ja) * 2011-10-19 2013-05-13 Toshiba Tec Corp 電力伝送装置、送電装置、受電装置及び電力伝送方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014125A1 (ja) 2007-07-23 2009-01-29 Universal Device Technology Co., Ltd. 充電池ユニットとそのための電力伝送システム及び電力伝送方法
FI20100427L (fi) * 2010-12-21 2012-06-23 Harri Heikki Tapani Elo Menetelmä ja laite samanaikaista tasasuuntausta, säätöä ja tehokertoimen korjausta varten
CN103370849B (zh) * 2011-02-15 2017-03-22 丰田自动车株式会社 非接触受电装置及搭载有该装置的车辆、非接触供电设备、非接触受电装置的控制方法以及非接触供电设备的控制方法
JP2012253746A (ja) * 2011-05-09 2012-12-20 Panasonic Corp 無線電力データ伝送システム、送電装置、および受電装置
WO2013112526A1 (en) * 2012-01-24 2013-08-01 Access Business Group International Llc Wireless power control system
JP5649603B2 (ja) 2012-03-21 2015-01-07 株式会社東芝 送電装置および送電方法
CN104205566B (zh) * 2012-03-28 2018-03-16 富士通株式会社 无线电力传输***以及无线电力传输方法
US10581272B2 (en) * 2012-07-28 2020-03-03 WIPQTUS Inc. Input power appraisal based wireless power system
US20140084688A1 (en) * 2012-09-21 2014-03-27 Samsung Electronics Co. Ltd Method and apparatus for wireless power transmission
CN103414261B (zh) * 2013-09-06 2015-06-24 中国矿业大学(北京) 变耦合系数磁共振无线电能传输***及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211854A (ja) * 2010-03-30 2011-10-20 Nippon Soken Inc 電圧検出器、異常検出装置、非接触送電装置、非接触受電装置、非接触給電システムおよび車両
JP2012010586A (ja) * 2010-06-24 2012-01-12 Advantest Corp ワイヤレス受電装置およびワイヤレス給電システム
JP2012049434A (ja) * 2010-08-30 2012-03-08 Sony Corp 電子部品、給電装置、受電装置、およびワイヤレス給電システム
JP2013027255A (ja) * 2011-07-25 2013-02-04 Sony Corp 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法
JP2013059236A (ja) * 2011-09-09 2013-03-28 Sony Corp 検知装置、受電装置、送電装置、非接触電力伝送システム及び検知方法
JP2013090483A (ja) * 2011-10-19 2013-05-13 Toshiba Tec Corp 電力伝送装置、送電装置、受電装置及び電力伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3151375A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184083A1 (en) * 2016-04-22 2017-10-26 Agency For Science, Technology And Research Synchronized time-division wireless power transfer for multiple voltage applications
US10873218B2 (en) 2016-04-22 2020-12-22 Agency For Science, Technology And Research Synchronized time-division wireless power transfer for multiple voltage applications
WO2019064339A1 (ja) * 2017-09-26 2019-04-04 富士通株式会社 電力伝送システム、受電器、及び、受電器の制御方法
JPWO2019064339A1 (ja) * 2017-09-26 2020-10-15 富士通株式会社 電力伝送システム、受電器、及び、受電器の制御方法
EP3935712A4 (en) * 2019-03-07 2022-12-14 Hubbell Incorporated INDUCTIVE POWER TRANSMISSION
JP2022034225A (ja) * 2020-08-18 2022-03-03 株式会社Space Power Technologies 送電装置、受電装置、送電制御方法、送電制御プログラム、受電制御方法、および受電制御プログラム
US11936210B2 (en) 2020-08-18 2024-03-19 Space Power Technologies Inc. Power transmission apparatus, power reception apparatus, and power transmission control method
KR20220093139A (ko) * 2020-12-22 2022-07-05 엘렉트디스 에이비 복수의 무선 전력 송신기가 있는 전력 무선 전력 전송 장비를 테스트하기 위한 시스템, 마스터 테스트 장치, 슬레이브 테스트 장치 및 방법
JP2023502847A (ja) * 2020-12-22 2023-01-26 エレクトディス アクティエボラーグ 複数のワイヤレスワイヤレス送電機を有するワイヤレス給電装置のテストのためのシステム、マスタテスト装置、スレーブテスト装置及び方法
JP7318121B2 (ja) 2020-12-22 2023-07-31 エレクトディス アクティエボラーグ 複数のワイヤレスワイヤレス送電機を有するワイヤレス給電装置のテストのためのシステム、マスタテスト装置、スレーブテスト装置及び方法
KR102617844B1 (ko) 2020-12-22 2023-12-27 엘렉트디스 에이비 복수의 무선 전력 송신기가 있는 전력 무선 전력 전송 장비를 테스트하기 위한 시스템, 마스터 테스트 장치, 슬레이브 테스트 장치 및 방법

Also Published As

Publication number Publication date
JP6315088B2 (ja) 2018-04-25
US20170063166A1 (en) 2017-03-02
KR20160145150A (ko) 2016-12-19
CN106464022A (zh) 2017-02-22
KR101869636B1 (ko) 2018-06-20
US10305333B2 (en) 2019-05-28
EP3151375A1 (en) 2017-04-05
EP3151375A4 (en) 2018-01-10
JPWO2015177905A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6315088B2 (ja) 受電器、無線電力伝送システムおよびkQ値算出方法
JP6319432B2 (ja) 無線電力伝送制御方法および無線電力伝送システム
US9130389B2 (en) Apparatus for wireless power transmission using multi antenna and method for controlling the same
WO2015177860A1 (ja) 無線電力伝送制御方法および無線電力伝送システム
US9979239B2 (en) Systems and methods for wireless power transferring
US9515704B2 (en) Wireless energy receiving apparatus and method, and wireless energy transmitting apparatus
US20150333537A1 (en) Power source, wireless power transfer system and wireless power transfer method
JP6376278B2 (ja) 無線給電システム、送電器、及び、送電方法
US10027175B2 (en) Wireless power transfer system and wireless power transfer method
US20230369895A1 (en) Systems and methods for wireless power transferring
WO2014007352A1 (ja) 送電機器及び非接触電力伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520876

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014892515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892515

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167031880

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE