WO2015177429A1 - Rotor de turbine pour un moteur a turbine a gaz - Google Patents

Rotor de turbine pour un moteur a turbine a gaz Download PDF

Info

Publication number
WO2015177429A1
WO2015177429A1 PCT/FR2015/051211 FR2015051211W WO2015177429A1 WO 2015177429 A1 WO2015177429 A1 WO 2015177429A1 FR 2015051211 W FR2015051211 W FR 2015051211W WO 2015177429 A1 WO2015177429 A1 WO 2015177429A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
disk
turbine
rotor
ferrule
Prior art date
Application number
PCT/FR2015/051211
Other languages
English (en)
Inventor
Josselin Luc Florent SICARD
Bertrand PELLATON
Hélène Marie BARRET
Benoit Guillaume SILET
Anne-Flore Karine HOULET
Original Assignee
Snecma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma filed Critical Snecma
Priority to RU2016149668A priority Critical patent/RU2676507C2/ru
Priority to BR112016027188-2A priority patent/BR112016027188B1/pt
Priority to CN201580029116.0A priority patent/CN106460521B/zh
Priority to CA2949597A priority patent/CA2949597C/fr
Priority to EP15724345.2A priority patent/EP3146157B1/fr
Priority to US15/312,850 priority patent/US10526893B2/en
Publication of WO2015177429A1 publication Critical patent/WO2015177429A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a turbine rotor for a gas turbine engine, intended to equip aircraft, and more particularly to a low or medium pressure turbine rotor.
  • turbomachines it is common to use air taken in particular on the high pressure compressor to cool the parts located in thermally hot areas downstream of the combustion chamber of the turbomachine.
  • the rotor of the low pressure turbine must be ventilated with "cool" air to cool the links or fasteners of the vanes on the rotor discs by an appropriate air flow at the connection between the foot vanes and rim of the disc.
  • FIG. 1 schematically illustrates a prior art turbine rotor comprising an upstream disk 1, a downstream disk 5, an annular flange b.
  • a first shell 1 1 connects the upstream disk 1 to the annular flange b.
  • a second ferrule 51 connects the downstream disk 5 to the annular flange b.
  • the rotor also comprises a flow-separating device 4, a second portion 41 of which is disposed between the first shell 11 and the second shell 51. These three elements: portion 41, first ferrule 11 and second ferrule 51 are held together by the annular flange b.
  • the flow-separating device is called labyrinth ring, because of its annular shape at 360 ° C and the presence of wipers c.
  • the wipers c of the labyrinth ring 4 make it possible to seal between zones of the turbine under different pressures. They are located vis-à-vis cartridges of abradable material on the stator part. These cartridges prevent the destruction of wipers when they come into contact with the stator.
  • the flow separator device 4 in this rotor has a Y-shape to protect the ferrules of the disks and channel the air flows that cool the disks.
  • Three heat flows f1, f2 and fv coexist within the rotor arrangement: a first flow f 1 for the ventilation of the upstream disk, a second stream f2 for the ventilation of the downstream disk and a stream of vein fv coming from an air stream of the turbine.
  • the first ventilation flow f1 in order to cool the upstream disk, passes (in the direction of the arrow) through the upstream disk by cells formed in the upstream disk 1 and then by at least one hole 45 formed in the flow separating device 4.
  • the second ventilation flow f2 to cool the downstream disk, passes (in the direction of the arrow) through a plurality of lunules (not visible in Figure 1) of the flow separator device 4 and the through the downstream disk by cells made in the downstream disk 5.
  • the device of Figure 1 has as a major drawback the presence of thermal gradients at the annular flange due to the cohabitation between the different air streams having different temperatures.
  • the annular flange together holds the ferrule of the upstream disk 1 1, the ferrule of the downstream disk 51 and the flow separator device 4.
  • the thermal gradients induce mechanical stresses on the annular flange. These mechanical stresses can induce a deterioration or even a rupture of the annular flange.
  • the invention aims to remedy all or part of the disadvantages of the state of the art identified above, and in particular to provide means for reducing the mechanical stresses at the annular flange connecting a turbine disc upstream and downstream turbine disk of a turbine rotor.
  • one aspect of the invention relates to a turbine rotor for a gas turbine engine, said rotor comprising:
  • an airflow separator device comprising:
  • first portion forming a first ring, disposed between the upstream turbine disk and the downstream turbine disk; a second portion, forming a second ring, said second portion having a first portion disposed facing the downstream turbine disk and a second portion disposed between the first ring and the second ring; and a zone of thermal insulation placed between the first part and the second part.
  • the air ventilation flows between the upstream portion and the downstream portion are dissociated.
  • the thermal insulation zone as well as the first part and the second part form a physical boundary between the ventilation flow for the cooling of the upstream disk and the ventilation flow for the cooling of the downstream disk.
  • the rotor according to the invention may have one or more additional characteristics among the following, considered individually or according to the technically possible combinations:
  • the thermal insulation zone is a space filled with air
  • the thermal insulation zone is disposed between a lower portion of the first portion and an upper portion of the second portion and is opposite the second ferrule;
  • the first part of the flow-separating device and the second part of the flow-separating device are in one piece; the first part of the flow-separating device and the second part of the flow-separating device are separate parts;
  • the first part of the flow separator device is a labyrinth seal, said labyrinth seal having at least one wiper;
  • a third portion of the first portion bears against the upstream disk, a fourth portion of the first portion bears against the first portion of the second portion, said first portion being configured to radially maintain the first portion.
  • the first part is thus held in abutment between the upstream disk and the second part, the latter part itself being held in abutment against the downstream disk and the annular flange;
  • the annular flange maintains between them the first ferrule, the second ferrule and the second part of the flux separator device.
  • the invention also relates to a turbomachine comprising a rotor according to one of the embodiments described above.
  • the invention also relates to an aircraft comprising a rotor according to one of the previously described embodiments.
  • Figure 1 is a schematic sectional view of a turbine rotor for a gas turbine engine according to the prior art
  • Figure 2 is a schematic sectional view of a turbine rotor for a gas turbine engine according to one embodiment of the invention.
  • FIG. 2 is schematically illustrated a sectional view of a turbine rotor for a gas turbine engine of an aircraft, and more particularly a rotor of a low pressure turbine.
  • the rotor comprises an upstream turbine disk 1 and a downstream turbine disk 5.
  • the upstream turbine disk 1 is part, for example, of the first stage of the low turbine pressure and the downstream turbine disk 5 is part of the second stage of the low pressure turbine.
  • the rotor also comprises a first ferrule 11 and a second ferrule 51.
  • the first ferrule 11 and the second ferrule 51 are cylindrical ferrules.
  • the first shell 1 1 connects the upstream disk 1 to an annular flange b.
  • the second ferrule 51 connects the downstream disk 1 to an annular flange b.
  • the annular flange b makes it possible to maintain in connection the first ferrule 1 1 and the second ferrule 51.
  • the rotor also comprises an airflow separator device (3, 4).
  • This device has the function of allowing the separation of the air flows circulating in the rotor, namely a first flow f1 (direction of circulation illustrated by an arrow in FIG. 2) which serves for the ventilation of the upstream disk 1 and a second flow f2 (direction of flow illustrated by an arrow in Figure 2) which serves for ventilation of the downstream disk 5.
  • the flux separator device comprises a first part 3 and a second part 4.
  • the first part 3 and the second part 4 are separate parts.
  • the first part 3 forming a first ring 3 is disposed between the upstream turbine disk 1 and the downstream turbine disk 5.
  • the first part in this embodiment is a labyrinth seal and comprises at least one wiper c.
  • the wiper c during operation of the turbine, comes into contact with an abradable material of a cartridge 2 of the stator of the turbine.
  • the second part 4 forming a second ring is disposed between the downstream turbine disc 5 and the first 1 1 and second ferrule 51.
  • the second portion 4 comprises a first portion 42 disposed facing the downstream turbine disk 5.
  • the first portion 42 is here in abutment against the downstream turbine disk 5.
  • the second portion 4 comprises a second portion disposed between the first shell 1 1 and the second ferrule 51 and held in position by the annular flange b.
  • the flux separator device also comprises a thermal insulation zone 6 between the first part 3 and the second part 4.
  • the thermal insulation zone 6 is an air-filled space between the two separate parts. that is the first ring 3 and the second ring 4.
  • the thermal insulation zone 6 is situated between a lower part of the first ring 3 and an upper part of the second ring 4. It is facing at least the second ring 51 which connects the downstream turbine disk 5 to the annular flange b.
  • the thermal insulation zone 6 is a space filled with air insulating the annular flange of the first ventilation flow f1 and the second ventilation flow f2.
  • a third portion 31 of the first portion bears against the upstream turbine disk 1 and a fourth portion 32 of the first portion bears against the first portion 42 of the second part.
  • the first portion 42 of the second portion radially retains the first portion 3.
  • the first portion 42 forms a hook in which is inserted the fourth portion 32 of the first portion.
  • the rotor comprises a first ventilation arrangement comprising a plurality of cells (not visible) of the upstream disk 1 and at least one hole 45 of a wall of the first part of the flow separator device.
  • the first ventilation arrangement allows the circulation of the first ventilation flow f1 for the ventilation of the upstream disk.
  • the first ventilation flow f1 encounters the stream of vein fv coming from an air stream at its exit from the hole 45 made in the wall of the first part of the flow-separating device.
  • the rotor also comprises a second ventilation arrangement comprising a plurality of (non-visible) lunules formed in the second part of the flow-separating device so as to circulate a second ventilation flow f2 between the first ferrule and the second ferrule towards a space between the second portion 4 of the flow-separating device and the second ferrule 51.
  • the second ventilation arrangement also comprises a plurality of cells formed in the downstream disk 5. The second ventilation arrangement allows the circulation of the second ventilation flow f2 for ventilation of the downstream disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention se rapporte à un rotor de turbine pour un moteur à turbine à gaz, ledit rotor comportant : - un disque de turbine amont (1); - un disque de turbine aval (5); - une bride annulaire (b); - une première virole (11) reliant le disque de turbine amont à la bride annulaire; - une deuxième virole (51) reliant le disque de turbine aval à la bride annulaire; - un dispositif séparateur de flux d'air comportant : - une première partie (3), formant un premier anneau, disposée entre le disque de turbine amont et le disque de turbine aval; - une deuxième partie (4), formant un deuxième anneau, ayant une première portion disposée en regard du disque de turbine aval et une deuxième portion disposée entre la première virole et la deuxième virole; et - une zone d'isolation thermique (6) disposée entre la première partie et la deuxième partie.

Description

ROTOR DE TURBINE POUR UN MOTEUR A TURBINE A GAZ DOMAINE TECHNIQUE DE L'INVENTION
[ 0001 ] L'invention se rapporte à un rotor de turbine pour un moteur à turbine à gaz, destiné à équiper des aéronefs, et plus particulièrement à un rotor de turbine basse ou moyenne pression.
ETAT DE LA TECHNIQUE ANTERIEURE
[0002 ] Dans les turbomachines, il est courant d'utiliser de l'air prélevé notamment sur le compresseur à haute pression pour refroidir les pièces situées dans des zones thermiquement chaudes, en aval de la chambre de combustion de la turbomachine. Par exemple, le rotor de la turbine basse pression doit être ventilé par de l'air « frais » afin de refroidir les liaisons ou attaches des aubes sur les disques du rotor par une circulation d'air appropriée au niveau de la liaison entre le pied des aubes et la jante du disque.
[0003 ] La figure 1 illustre de façon schématique un rotor de turbine de l'art antérieur comportant un disque amont 1 , un disque aval 5, une bride annulaire b. Une première virole 1 1 relie le disque amont 1 à la bride annulaire b. Une deuxième virole 51 relie le disque aval 5 à la bride annulaire b. Le rotor comporte également un dispositif séparateur de flux 4 dont une deuxième portion 41 est disposée entre la première virole 1 1 et la deuxième virole 51 . Ces trois éléments : portion 41 , première virole 1 1 et deuxième virole 51 sont maintenus ensemble par la bride annulaire b. Le dispositif séparateur de flux est dit anneau labyrinthe, du fait de sa forme annulaire à 360 ° C et de la présenœ de léchettes c. Les léchettes c de l'anneau labyrinthe 4 permettent d'assurer l'étanchéité entre des zones de la turbine sous des pressions différentes. Elles sont situées en vis-à-vis de cartouches en matériaux abradable sur la partie statorique. Ces cartouches permettent d'éviter la destruction des léchettes lorsqu'elles entrent en contact avec le stator.
[0004 ] Le dispositif séparateur de flux 4 dans ce rotor a une forme en Y afin de protéger les viroles des disques et canaliser les flux d'air qui refroidissent les disques. Trois flux thermiques f1 , f2 et fv cohabitent au sein de l'agencement rotorique : un premier flux f 1 pour la ventilation du disque amont, un deuxième flux f2 pour la ventilation du disque aval et un flux de veine fv provenant d'une veine d'air de la turbine.
[0005] Le premier flux de ventilation f1 , afin de refroidir le disque amont, passe (dans le sens de la flèche) au travers du disque amont par des alvéoles pratiquées dans le disque amont 1 puis par au moins un trou 45 pratiqué dans le dispositif séparateur de flux 4.
[0006] Le deuxième flux de ventilation f2, afin de refroidir le disque aval, passe (dans le sens de la flèche) au travers d'une pluralité de lunules (non visibles sur la figure 1 ) du dispositif séparateur de flux 4 et au travers du disque aval par des alvéoles pratiquées dans le disque aval 5.
[0007 ] Le dispositif de la figure 1 présente comme inconvénient majeur la présence de gradients thermiques au niveau de la bride annulaire du fait de la cohabitation entre les différents flux d'air ayant des températures différentes. La bride annulaire maintient ensemble la virole du disque amont 1 1 , la virole du disque aval 51 et le dispositif séparateur de flux 4. Les gradients thermiques induisent des contraintes mécaniques sur la bride annulaire. Ces contraintes mécaniques peuvent induire une détérioration voire une rupture de la bride annulaire.
EXPOSE DE L'INVENTION
[0008] L'invention vise à remédier à tout ou partie des inconvénients de l'état de la technique identifiés ci-dessus, et notamment à proposer des moyens permettant de diminuer les contraintes mécaniques au niveau de la bride annulaire reliant un disque de turbine amont et un disque de turbine aval d'un rotor de turbine.
[0009] Dans ce dessein, un aspect de l'invention se rapporte à un rotor de turbine pour un moteur à turbine à gaz, ledit rotor comportant :
un disque de turbine amont ;
un disque de turbine aval ;
une bride annulaire ;
- une première virole reliant le disque de turbine amont à la bride annulaire ; une deuxième virole reliant le disque de turbine aval à la bride annulaire ;
un dispositif séparateur de flux d'air comportant :
une première partie, formant un premier anneau, disposée entre le disque de turbine amont et le disque de turbine aval ; une deuxième partie, formant un deuxième anneau, la dite deuxième partie ayant une première portion disposée en regard du disque de turbine aval et une deuxième portion disposée entre la première virole et la deuxième virole ; et - une zone d'isolation thermique disposée entre la première partie et la deuxième partie.
[0010] Du fait de cet agencement, les flux de ventilation d'air entre la partie amont et la partie aval sont dissociés. En effet, la zone d'isolation thermique ainsi que la première partie et la deuxième partie forment une frontière physique entre le flux de ventilation pour le refroidissement du disque amont et le flux de ventilation pour le refroidissement du disque aval. Grâce à la dissociation des flux de ventilation d'air, le gradient thermique au niveau de la bride est diminué voire supprimé et ainsi les contraintes mécaniques au niveau de la bride sont diminuées voire supprimées. La présence de la zone d'isolation thermique permet de ne plus relier directement, c'est-à-dire par de la matière, les zones en contact avec un flux d'air froid et un flux d'air chaud afin de diminuer les contraintes mécaniques dues aux gradients thermiques.
[0011] Outre les caractéristiques principales qui viennent d'être mentionnées dans le paragraphe précédent, le rotor selon l'invention peut présenter une ou plusieurs caractéristiques complémentaires parmi les suivantes, considérées individuellement ou selon les combinaisons techniquement possibles :
la zone d'isolation thermique est un espace rempli d'air ;
la zone d'isolation thermique est disposée entre une partie inférieure de la première partie et une partie supérieure de la deuxième partie et est en regard de la deuxième virole ;
la première partie du dispositif séparateur de flux et la deuxième partie du dispositif séparateur de flux sont d'un seul tenant ; la première partie du dispositif séparateur de flux et la deuxième partie du dispositif séparateur de flux sont des pièces distinctes ;
la première partie du dispositif séparateur de flux est un joint labyrinthe, ledit joint labyrinthe comportant au moins une léchette ;
- une troisième portion de la première partie est en appui contre le disque amont, une quatrième portion de la première partie est en appui contre la première portion de la deuxième partie, ladite première portion étant configurée pour maintenir radialement la première partie. La première partie est ainsi maintenue en appui entre le disque amont et la deuxième partie, cette dernière étant elle-même maintenue en appui contre le disque aval et par la bride annulaire ;
la bride annulaire maintient entre eux la première virole, la deuxième virole et la deuxième partie du dispositif séparateur de flux.
[0012 ] L'invention se rapporte également à une turbomachine comportant un rotor selon l'un des modes de réalisation précédemment décrit.
[0013] L'invention se rapporte également à un aéronef comportant un rotor selon l'un des modes de réalisation précédemment décrit.
BREVE DESCRIPTION DES FIGURES
[0014 ] D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui suit, en référence aux figures annexées, qui illustrent :
la figure 1 , une vue schématique en coupe d'un rotor de turbine pour un moteur à turbine à gaz selon l'art antérieur ;
la figure 2, une vue schématique en coupe d'un rotor de turbine pour un moteur à turbine à gaz selon un mode de réalisation de l'invention.
[0015] Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures.
DESCRIPTION DETAILLEE D'UN MODE DE REALISATION
[0016] A la figure 2 est illustrée de façon schématique une vue en coupe d'un rotor de turbine pour un moteur à turbine à gaz d'un aéronef, et plus particulièrement un rotor d'une turbine basse pression. Le rotor comporte un disque de turbine amont 1 , ainsi qu'un disque de turbine aval 5. Le disque de turbine amont 1 fait partie, par exemple, du premier étage de la turbine basse pression et le disque de turbine aval 5 fait partie du deuxième étage de la turbine basse pression.
[0017] Le rotor comporte également une première virole 1 1 et une deuxième virole 51 . La première virole 1 1 et la deuxième virole 51 sont des viroles cylindriques. La première virole 1 1 relie le disque amont 1 à une bride annulaire b. La deuxième virole 51 relie le disque aval 1 à une bride annulaire b. La bride annulaire b permet de maintenir en liaison la première virole 1 1 et la deuxième virole 51 .
[0018] Le rotor comporte également un dispositif séparateur de flux d'air (3, 4). Ce dispositif a pour fonction de permettre la séparation des flux d'air circulant dans le rotor, à savoir un premier flux f1 (sens de circulation illustré par une flèche sur la figure 2) qui sert à la ventilation du disque amont 1 et un deuxième flux f2 (sens de circulation illustré par une flèche sur la figure 2) qui sert à la ventilation du disque aval 5.
[0019] Le dispositif séparateur de flux comporte une première partie 3 et une deuxième partie 4. Dans cet exemple de réalisation, la première partie 3 et la deuxième partie 4 sont des pièces distinctes. La première partie 3 formant un premier anneau 3 est disposée entre le disque de turbine amont 1 et le disque de turbine aval 5. La première partie, dans cet exemple de réalisation est un joint labyrinthe et comporte au moins une léchette c. La léchette c, lors du fonctionnement de la turbine, entre en contact avec un matériau abradable d'une cartouche 2 du stator de la turbine. La deuxième partie 4, formant un deuxième anneau est disposée entre le disque de turbine aval 5 et les première 1 1 et deuxième virole 51 . La deuxième partie 4 comporte une première portion 42 disposée en regard du disque de turbine aval 5. La première portion 42 est ici en appui contre le disque de turbine aval 5. La deuxième partie 4 comporte une deuxième portion disposée entre la première virole 1 1 et la deuxième virole 51 et maintenue en position par la bride annulaire b. Le dispositif séparateur de flux comporte également une zone d'isolation thermique 6 entre la première partie 3 et la deuxième partie 4. Dans cet exemple de réalisation, la zone d'isolation thermique 6 est un espace rempli d'air entre les deux pièces distinctes que sont le premier anneau 3 et le deuxième anneau 4. La zone d'isolation thermique 6 est située entre une partie inférieure du premier anneau 3 et une partie supérieure du deuxième anneau 4. Elle est en regard au moins de la deuxième virole 51 qui relie le disque de turbine aval 5 à la bride annulaire b. Dans cet exemple de réalisation, elle est en regard à la fois de la deuxième virole 51 et de la première virole 1 1 , la zone d'isolation thermique 6 est un espace rempli d'air isolant la bride annulaire du premier flux de ventilation f1 et du deuxième flux de ventilation f2.
[0020] Pour ce qui est du positionnement de la première partie 3, une troisième portion 31 de la première partie est en appui contre le disque de turbine amont 1 et une quatrième portion 32 de la première partie est en appui contre la première portion 42 de la deuxième partie. La première portion 42 de la deuxième partie maintient radialement la première partie 3. Dans cet exemple de réalisation, la première portion 42 forme un crochet dans lequel vient s'insérer la quatrième portion 32 de la première partie.
[0021] Le rotor comporte un premier agencement de ventilation comportant une pluralité d'alvéoles (non visibles) du disque amont 1 et au moins un trou 45 d'une paroi de la première partie du dispositif séparateur de flux. Le premier agencement de ventilation permet la circulation du premier flux de ventilation f1 pour la ventilation du disque amont. Le premier flux de ventilation f1 rencontre le flux de veine fv en provenance d'une veine d'air à sa sortie du trou 45 pratiqué dans la paroi de la première partie du dispositif séparateur de flux. Le rotor comporte également un deuxième agencement de ventilation comportant une pluralité de lunules (non visibles) pratiquées dans la deuxième partie du dispositif séparateur de flux de façon à faire circuler un deuxième flux de ventilation f2 entre la première virole et la deuxième virole vers un espace compris entre la deuxième partie 4 du dispositif séparateur de flux et la deuxième virole 51 . Le deuxième agencement de ventilation comporte également une pluralité d'alvéoles pratiquées dans le disque aval 5. Le deuxième agencement de ventilation permet la circulation du deuxième flux de ventilation f2 pour la ventilation du disque aval.
[0022] L'invention n'est pas limitée aux modes de réalisation précédemment décrits en référence aux figures et des variantes pourraient être envisagées sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
1 . Rotor de turbine pour un moteur à turbine à gaz, ledit rotor comportant :
un disque de turbine amont (1 ) ;
un disque de turbine aval (5) ;
- une bride annulaire (b) ;
une première virole (1 1 ) reliant le disque de turbine amont à la bride annulaire ;
une deuxième virole (51 ) reliant le disque de turbine aval à la bride annulaire ;
- un dispositif séparateur de flux d'air ;
caractérisé en ce que le dispositif séparateur de flux d'air comporte :
une première partie (3), formant un premier anneau, disposée entre le disque de turbine amont et le disque de turbine aval ;
une deuxième partie (4), formant un deuxième anneau, la dite deuxième partie ayant une première portion disposée en regard du disque de turbine aval et une deuxième portion disposée entre la première virole et la deuxième virole ; et
une zone d'isolation thermique (6) disposée entre la première partie et la deuxième partie.
2. Rotor selon la revendication 1 caractérisé en ce que la zone d'isolation thermique est un espace rempli d'air.
3. Rotor selon l'une quelconque des revendications 1 ou 2 caractérisé en ce que la zone d'isolation thermique est disposée entre une partie inférieure de la première partie et une partie supérieure de la deuxième partie et est en regard de la deuxième virole.
4. Rotor selon l'une quelconque des revendications précédentes caractérisé en ce que la première partie du dispositif séparateur de flux et la deuxième partie du dispositif séparateur de flux sont d'un seul tenant.
5. Rotor selon l'une quelconque des revendications 1 à 4 caractérisé en ce que la première partie du dispositif séparateur de flux et la deuxième partie du dispositif séparateur de flux sont des pièces distinctes.
6. Rotor selon la revendication précédente caractérisé en ce que la première partie du dispositif séparateur de flux est un joint labyrinthe, ledit joint labyrinthe comportant au moins une léchette.
7. Rotor selon l'une quelconque des revendications 6 ou 7 caractérisé en ce qu'une première portion de la première partie est en appui contre le disque amont, une deuxième portion de la première partie est en appui contre la première portion de la deuxième partie, ladite première portion de la deuxième partie étant configurée pour maintenir radialement la première partie.
8. Rotor selon l'une quelconque des revendications précédentes caractérisé en ce que la bride annulaire maintient en liaison la première virole, la deuxième virole et la deuxième partie du dispositif séparateur de flux.
9. Turbomachine caractérisé en ce qu'elle comporte un rotor selon l'une quelconque des revendications précédentes.
10. Aéronef caractérisé en ce qu'il comporte un rotor selon l'une quelconque des revendications 1 à 8.
PCT/FR2015/051211 2014-05-20 2015-05-07 Rotor de turbine pour un moteur a turbine a gaz WO2015177429A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2016149668A RU2676507C2 (ru) 2014-05-20 2015-05-07 Ротор турбины для газотурбинного двигателя
BR112016027188-2A BR112016027188B1 (pt) 2014-05-20 2015-05-07 Rotor de turbina para um motor com turbina a gás
CN201580029116.0A CN106460521B (zh) 2014-05-20 2015-05-07 燃气轮机发动机的涡轮转子
CA2949597A CA2949597C (fr) 2014-05-20 2015-05-07 Rotor de turbine pour un moteur a turbine a gaz
EP15724345.2A EP3146157B1 (fr) 2014-05-20 2015-05-07 Rotor de turbine pour un moteur à turbine à gaz
US15/312,850 US10526893B2 (en) 2014-05-20 2015-05-07 Turbine rotor for a gas turbine engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1454500A FR3021348B1 (fr) 2014-05-20 2014-05-20 Rotor de turbine pour un moteur a turbine a gaz
FR1454500 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015177429A1 true WO2015177429A1 (fr) 2015-11-26

Family

ID=51830395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/051211 WO2015177429A1 (fr) 2014-05-20 2015-05-07 Rotor de turbine pour un moteur a turbine a gaz

Country Status (8)

Country Link
US (1) US10526893B2 (fr)
EP (1) EP3146157B1 (fr)
CN (1) CN106460521B (fr)
BR (1) BR112016027188B1 (fr)
CA (1) CA2949597C (fr)
FR (1) FR3021348B1 (fr)
RU (1) RU2676507C2 (fr)
WO (1) WO2015177429A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306035A1 (fr) * 2016-10-06 2018-04-11 United Technologies Corporation Fentes de refroidissement axial-radial sur joint d'air interne
FR3062414A1 (fr) * 2017-02-02 2018-08-03 Safran Aircraft Engines Optimisation de percage d'anneau mobile
EP3523507B1 (fr) 2016-10-07 2020-06-24 Safran Aircraft Engines Assemblage d'anneau mobile de turbine de turbomachine
US11098604B2 (en) 2016-10-06 2021-08-24 Raytheon Technologies Corporation Radial-axial cooling slots

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017108581A1 (de) * 2017-04-21 2018-10-25 Rolls-Royce Deutschland Ltd & Co Kg Strömungsmaschine mit einer adaptiven Dichteinrichtung
WO2019122691A1 (fr) * 2017-12-18 2019-06-27 Safran Aircraft Engines Dispositif amortisseur
FR3075254B1 (fr) * 2017-12-19 2019-11-22 Safran Aircraft Engines Dispositif amortisseur
US10767485B2 (en) * 2018-01-08 2020-09-08 Raytheon Technologies Corporation Radial cooling system for gas turbine engine compressors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1106557B (de) * 1957-07-18 1961-05-10 Rolls Royce Gasturbine, deren Laeuferschaufeln innere Kuehlkanaele aufweisen
US3575528A (en) * 1968-10-28 1971-04-20 Gen Motors Corp Turbine rotor cooling
EP0169798A1 (fr) * 1984-07-23 1986-01-29 United Technologies Corporation Joint d'étanchéité rotatif pour moteur à turbine à gaz
DE3310529A1 (de) * 1982-03-23 1996-10-31 Snecma Vorrichtung zum Kühlen des Rotors einer Gasturbine
GB2307520A (en) * 1995-11-14 1997-05-28 Rolls Royce Plc Gas turbine engine sealing arrangement
EP1264964A1 (fr) * 2001-06-07 2002-12-11 Snecma Moteurs Agencement de rotor de turbomachine à deux disques aubages séparés par une entretoise
EP1736635A2 (fr) * 2005-05-31 2006-12-27 Rolls-Royce Deutschland Ltd & Co KG Système de transfert d'air entre le compresseur et la turbine d'une turbine à gaz

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1809127A1 (en) * 1977-07-13 1993-04-15 Motornyj Z Gas-turbine engine turbine
US4526508A (en) * 1982-09-29 1985-07-02 United Technologies Corporation Rotor assembly for a gas turbine engine
FR2600377B1 (fr) * 1986-06-18 1988-09-02 Snecma Dispositif de controle des debits d'air de refroidissement d'une turbine de moteur
FR2893359A1 (fr) * 2005-11-15 2007-05-18 Snecma Sa Lechette annulaire destinee a un laryrinthe d'etancheite, et son procede de fabrication
FR2937371B1 (fr) * 2008-10-20 2010-12-10 Snecma Ventilation d'une turbine haute-pression dans une turbomachine
US8382432B2 (en) * 2010-03-08 2013-02-26 General Electric Company Cooled turbine rim seal
IT1403415B1 (it) * 2010-12-21 2013-10-17 Avio Spa Turbina a gas per motori aeronautici
RU2507401C1 (ru) * 2012-11-07 2014-02-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Турбина низкого давления газотурбинного двигателя

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1106557B (de) * 1957-07-18 1961-05-10 Rolls Royce Gasturbine, deren Laeuferschaufeln innere Kuehlkanaele aufweisen
US3575528A (en) * 1968-10-28 1971-04-20 Gen Motors Corp Turbine rotor cooling
DE3310529A1 (de) * 1982-03-23 1996-10-31 Snecma Vorrichtung zum Kühlen des Rotors einer Gasturbine
EP0169798A1 (fr) * 1984-07-23 1986-01-29 United Technologies Corporation Joint d'étanchéité rotatif pour moteur à turbine à gaz
GB2307520A (en) * 1995-11-14 1997-05-28 Rolls Royce Plc Gas turbine engine sealing arrangement
EP1264964A1 (fr) * 2001-06-07 2002-12-11 Snecma Moteurs Agencement de rotor de turbomachine à deux disques aubages séparés par une entretoise
EP1736635A2 (fr) * 2005-05-31 2006-12-27 Rolls-Royce Deutschland Ltd & Co KG Système de transfert d'air entre le compresseur et la turbine d'une turbine à gaz

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3306035A1 (fr) * 2016-10-06 2018-04-11 United Technologies Corporation Fentes de refroidissement axial-radial sur joint d'air interne
US10415410B2 (en) 2016-10-06 2019-09-17 United Technologies Corporation Axial-radial cooling slots on inner air seal
US11041396B2 (en) 2016-10-06 2021-06-22 Raytheon Technologies Corporation Axial-radial cooling slots on inner air seal
US11098604B2 (en) 2016-10-06 2021-08-24 Raytheon Technologies Corporation Radial-axial cooling slots
EP3523507B1 (fr) 2016-10-07 2020-06-24 Safran Aircraft Engines Assemblage d'anneau mobile de turbine de turbomachine
FR3062414A1 (fr) * 2017-02-02 2018-08-03 Safran Aircraft Engines Optimisation de percage d'anneau mobile

Also Published As

Publication number Publication date
CN106460521A (zh) 2017-02-22
RU2016149668A3 (fr) 2018-10-24
US10526893B2 (en) 2020-01-07
FR3021348B1 (fr) 2016-06-10
EP3146157A1 (fr) 2017-03-29
RU2016149668A (ru) 2018-06-20
EP3146157B1 (fr) 2019-07-31
CN106460521B (zh) 2020-04-07
US20170167264A1 (en) 2017-06-15
BR112016027188A2 (fr) 2017-08-15
CA2949597A1 (fr) 2015-11-26
FR3021348A1 (fr) 2015-11-27
BR112016027188B1 (pt) 2022-07-05
RU2676507C2 (ru) 2018-12-29
CA2949597C (fr) 2022-03-15

Similar Documents

Publication Publication Date Title
EP3146157B1 (fr) Rotor de turbine pour un moteur à turbine à gaz
EP3523507B1 (fr) Assemblage d'anneau mobile de turbine de turbomachine
CA2979474C (fr) Ensemble d'anneau de turbine comprenant une pluralite de secteurs d'anneau en materiau composite a matrice ceramique
EP1818615B1 (fr) Chambre de combustion annulaire d'une turbomachine
EP3049636B1 (fr) Ensemble rotatif pour turbomachine
FR2970030A1 (fr) Procede d'etancheite de rebord entre etages d'une turbine
CA2781936A1 (fr) Isolation d'un rebord circonferentiel d'un carter externe de turbomachine vis-a-vis d'un secteur d'anneau correspondant
EP3049637A1 (fr) Ensemble rotatif pour turbomachine
EP3874131B1 (fr) Secteur d'anneau de turbine a languettes d'etancheite refroidies
FR2955152A1 (fr) Turbomachine a circulation de flux d'air de purge amelioree
FR3000985A1 (fr) Dispositif de refroidissement pour un carter de turbine
EP3350417B1 (fr) Dispositif de ventilation d'un carter de turbine d'une turbomachine
CA2941662C (fr) Systeme echangeur de chaleur
WO2024061737A1 (fr) Turbomachine axiale triple-flux avec échangeur de chaleur
WO2024061740A1 (fr) Turbomachine axiale triple-flux avec échangeur de chaleur étanche dans le troisième flux
WO2023062327A1 (fr) Distributeur de turbine comportant un élément annulaire d'étanchéité
FR3140137A1 (fr) Turbomachine triple-flux avec échangeur de chaleur supportant une virole interne
WO2022180330A1 (fr) Anneau d'etancheite de turbine
FR3111964A1 (fr) Assemblage d’une pièce de chambre de combustion par recouvrement par une autre pièce
FR3121469A1 (fr) Ensemble d’anneau de turbine pour une turbomachine
FR3086328A1 (fr) Turbine a aubes retenues axialement, pour turbomachine
FR3093131A1 (fr) Ensemble pour turbomachine
FR3011272A1 (fr) Dispositif de connexion d'une partie fixe de turbomachine et d'un pied de distributeur d'une turbine de turbomachine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15724345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2949597

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15312850

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016027188

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016149668

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015724345

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015724345

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016027188

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161121