WO2015176258A1 - 无线网络扩容方法和设备 - Google Patents

无线网络扩容方法和设备 Download PDF

Info

Publication number
WO2015176258A1
WO2015176258A1 PCT/CN2014/078034 CN2014078034W WO2015176258A1 WO 2015176258 A1 WO2015176258 A1 WO 2015176258A1 CN 2014078034 W CN2014078034 W CN 2014078034W WO 2015176258 A1 WO2015176258 A1 WO 2015176258A1
Authority
WO
WIPO (PCT)
Prior art keywords
grids
base station
network
grid
deploying
Prior art date
Application number
PCT/CN2014/078034
Other languages
English (en)
French (fr)
Inventor
德米特里·什梅利金
庄宏成
易友文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14892639.7A priority Critical patent/EP3148241B1/en
Priority to CN201480078952.3A priority patent/CN106465142B/zh
Priority to PCT/CN2014/078034 priority patent/WO2015176258A1/zh
Publication of WO2015176258A1 publication Critical patent/WO2015176258A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a wireless network expansion method and device. Background technique
  • micro base stations or picocell base stations
  • macro base stations existing macrocell base stations
  • the macro cell network increases the macro base station by way of road test, but this method is not suitable for the deployment of the micro base station, because the number of new micro base stations is much larger than that of the macro base station, and the method of road test is time consuming and laborious.
  • An existing method for deploying a micro base station is to perform rasterization of the target area, and determine a grid for deploying the micro base station with the minimum average path loss of each of the grids to the micro base stations covering the respective grids.
  • the present invention provides a wireless network expansion method and device, which overcomes the shortcomings in the prior art that the network capacity after adding a micro base station is difficult to be secured.
  • a first aspect of the present invention provides a wireless network expansion method, including:
  • the micro base station can maximize the network gain corresponding to the target area, and the N is greater than An integer of 1;
  • determining, by the plurality of grids, the N first grids including:
  • determining the L second grids from the plurality of grids includes:
  • is the network coverage of any base station c in the set S
  • W is the network bandwidth
  • is any grid within the coverage of the base station c
  • the traffic of the cell i is the signal-to-noise ratio of the reference signal corresponding to the grid, which is determined according to the formula (5), where ⁇ is the signal-to-noise ratio threshold of the reference signal, and the reference signal strength of the grid is determined by p cg . chorus is the signal strength threshold of the reference signal,
  • is the transmit power of the base station c
  • P rf is the transmit power of any base station d different from the base station c in the set S
  • ⁇ and ⁇ are the channels of the base station c to the grid i respectively Gain and channel gain from base station d to grid i;
  • a grid is determined to cause the network capacity gain to be greater than zero, and the network coverage gain is greater than zero to form the L second rasters.
  • the N first grids are determined from the L second grids , including:
  • the interference distance threshold is:
  • I ij lU l ⁇ l i , l j ⁇ / (U l (l i ) + U l (l j ))) (6)
  • Z, and ⁇ are any two of the second grids, / y .
  • the network capacity gain of the target network after the base station is a network capacity gain of the target network after deploying one micro base station in the second grid, ⁇ ( ⁇ ) is to deploy a micro base station in the second grid
  • the network capacity of the target network is increased later.
  • the method further includes:
  • the second reference signal strength is greater than the first reference signal strength, determining that the base station corresponding to the to-be-processed grid is a base station to be adjusted, and adjusting parameters of the to-be-adjusted base station.
  • the parameter of the base station to be adjusted is adjusted, including at least one of the following: The length of the base station is adjusted to adjust the transmit power of the base station to be adjusted; or, according to the second preset length, the antenna downtilt angle of the base station to be adjusted is adjusted.
  • a second aspect of the present invention provides a wireless network expansion device, including:
  • a dividing module configured to perform rasterization on a target area covered by the macro cellular network to obtain a plurality of grids
  • a processing module configured to determine N first grids from the plurality of grids, wherein deploying one micro base station in each of the first grids can maximize a network gain corresponding to the target area,
  • the N is an integer greater than one;
  • a first determining module configured to determine, according to the N first grids determined by the processing module, one micro base station in each of the N first grids.
  • the processing module includes: a first processing unit, configured to determine L second rasters from the plurality of grids, where Deploying a micro base station in the second grid can increase a network gain corresponding to the target area, where L is an integer greater than N;
  • the first processing unit includes:
  • a first calculation subunit configured to sequentially target each of the plurality of grids, according to the public Equation (1) calculates a network capacity gain corresponding to the target area after deploying one micro base station separately in each of the grids, and calculates a micro base station after each of the grids is calculated according to formula (2)
  • the network capacity corresponding to any base station c in the set S is the network coverage of any base station c in the set S, where W is the network bandwidth, and ⁇ , is any grid within the coverage of the base station c.
  • the traffic of i is the signal-to-noise ratio of the reference signal corresponding to the grid, which is determined according to formula (5), where ⁇ is the signal-to-noise ratio threshold of the reference signal, and the reference signal strength of the grid is determined by ⁇ , a signal strength threshold of the reference signal,
  • ⁇ P d gf ⁇ P d gf
  • the second processing unit specifically includes:
  • a second determining subunit configured to determine the N third grids as the N basis if a micro base station is deployed in each of the third grids to maximize a network gain corresponding to the target area
  • Determining an inter-grid distance that causes the interference to be less than a predetermined interference threshold is the interference distance threshold.
  • the device further includes: a determining module, configured to respectively determine, by using each of the plurality of grids as a to-be-processed grid, a first to-be-processed grid before deploying one micro-base station in each of the first grids a reference signal strength, and a second reference signal strength of the to-be-processed grid after deploying one micro base station in each of the first grids;
  • the adjusting module is configured to determine, if the second reference signal strength is greater than the first reference signal strength, the base station corresponding to the to-be-processed grid as a base station to be adjusted, and adjust parameters of the to-be-adjusted base station.
  • the adjusting module is specifically configured to:
  • a third aspect of the present invention provides a network device, including:
  • a memory and a processor coupled to the memory wherein the memory is configured to store a set of program codes, the processor is configured to invoke program code stored in the memory, and perform various aspects of the first aspect and the first aspect A method as claimed in any of the preceding modes.
  • the wireless network expansion method and device provided by the present invention rasterizes a target area covered by a macro cellular network to obtain a plurality of grids, and determines N first from the plurality of grids based on network gain a grid, wherein the N first grids need to satisfy that deploying one micro base station in each of the first grids can maximize a network gain corresponding to the target area.
  • the grid position of the deployed micro base station is determined based on the network gain, so that the network capacity is maximized when one micro base station is deployed in each of the determined N first grids.
  • FIG. 1 is a flowchart of a wireless network expansion method according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart of a wireless network expansion method according to Embodiment 2 of the present invention
  • FIG. 3 is a plurality of iterations in Embodiment 2 of FIG. Flow chart of the process;
  • FIG. 4 is a schematic structural diagram of a wireless network expansion device according to Embodiment 3 of the present invention
  • FIG. 5 is a schematic structural diagram of a wireless network expansion device according to Embodiment 4 of the present invention
  • FIG. 6 is a schematic structural diagram of a network device according to Embodiment 5 of the present invention; schematic diagram. detailed description
  • FIG. 1 is a flowchart of a method for expanding a wireless network according to Embodiment 1 of the present invention.
  • the method provided in this embodiment is particularly applicable to expanding a network capacity by adding a micro base station in any wireless communication network. Scenario, especially for mobile cellular networks.
  • the types of micro base stations deployed may be different in different wireless networks.
  • the micro base stations deployed in the mobile cellular network may be small base stations or access points.
  • the method can be performed by a network
  • the device is implemented on the network side, and the device is located in the management platform of the operator, for example, in the Operation and Maintenance Center (OMC).
  • OMC Operation and Maintenance Center
  • Step 101 Perform rasterization on a target area covered by the macro cellular network to obtain multiple grids.
  • Step 102 Determine N first grids from the plurality of grids, wherein deploying one micro base station in each of the first grids can maximize a network gain corresponding to the target area, where Said N is an integer greater than one;
  • Step 103 Determine to deploy one micro base station in each of the N first grids.
  • the target area covered by the macro cellular network is first rasterized to obtain a plurality of grids. It can be understood that, in the target area covered by the macro cellular network, a plurality of macro base stations are included, and each macro base station covers a certain range, that is, each macro base station covers multiple grids.
  • the solution provided in this embodiment needs to determine at least one set of N first grids from multiple rasters obtained by rasterization on the premise of meeting the basic requirements of network coverage of the target area.
  • M is an integer greater than or equal to 1
  • N sets of first grids that is, a total of M groups, each set of N first grids, each grid in the M*N first grids
  • Deploying a micro base station in it will maximize the network capacity of the target area. That is to say, the condition that each set of N first grids in this embodiment needs to be satisfied is: deploying one micro base station in each first grid can maximize the network gain corresponding to the target area.
  • the network gain can include network capacity gain and network coverage gain maximum.
  • the network capacity gain is used to represent the optimization degree of the network capacity of the target area
  • the network coverage gain is used to represent the optimization degree of the network coverage of the target area, that is, the degree of coverage hole caused by the newly added micro base station causing interference to the user, the network The larger the coverage gain, the lower the degree of coverage vulnerability caused by the newly added micro base station causing interference to users.
  • the network gain is maximized to maximize the network capacity gain on the premise of satisfying the network coverage gain.
  • the N first grids satisfying the above conditions are determined from the plurality of grids obtained from the rasterized target area, for example, can be determined as follows: It is assumed that the number of rasters obtained by rasterization is A, each time from this A N randomly selected in the grid, determine if respectively in the N randomly selected grids The network gain that will be generated by deploying a micro base station, that is, the network capacity gain and the network coverage gain, and so on, until all the random selection possibilities are tried, and then the network gain corresponding to each random selection is compared. Determine the N grids corresponding to the random selection of the network gain, and deploy one micro base station in the N grids. Optionally, the foregoing process is repeated multiple times, so that multiple sets of N first grids are finally determined, so that the micro base stations are deployed in the multiple sets of N first grids to achieve network expansion. Alternative implementations are described in the other embodiments below.
  • the target area covered by the macro cellular network is rasterized to obtain a plurality of grids, and the network gains including the network capacity gain and the network coverage gain are used to determine N from the plurality of grids. And a first grid, wherein the N first grids need to meet a deployment of one micro base station in each of the first grids to maximize a network gain corresponding to the target area. Based on the network gain, the grid location of the deployed micro base station is determined, and the network capacity is optimized while meeting the coverage requirements.
  • FIG. 2 is a flowchart of a method for expanding a wireless network according to Embodiment 2 of the present invention. As shown in FIG. 2, the method includes:
  • Step 201 Perform rasterization on a target area covered by the macro cellular network to obtain multiple grids.
  • N first grids are determined from the plurality of grids. Specifically, it can be achieved through the following process:
  • N first grids are determined from the L second grids.
  • L second grids are selected from the plurality of grids obtained by rasterization, and the conditions for the L second grids to be satisfied are: Deploying one micro base station in each of the second grids enables the network gain corresponding to the target area to increase, that is, the network capacity gain and the network coverage gain increase. Specifically, it is achieved by the following steps:
  • Step 202 Calculate according to formula (1) for each of the plurality of grids in sequence a network capacity gain corresponding to the target area after the one micro base station is separately deployed in each of the grids, and corresponding to the target area after the deployment of one micro base station in each of the grids according to formula (2) Network coverage gain:
  • is the network capacity corresponding to any base station c in the set S
  • is the network coverage of any base station c in the set S
  • W is the network bandwidth
  • is any grid within the coverage of the base station c
  • the traffic of cell i ⁇ is the signal-to-noise ratio of the reference signal corresponding to the grid, determined according to formula (5), is the signal-to-noise ratio threshold of the reference signal, and is the reference signal strength of the grid, determined by ⁇ , m Is the signal strength threshold of the reference signal, Where , cupboard.
  • is the noise power
  • is the transmit power of the base station C
  • is the transmit power of any base station d different from the base station c in the set S
  • ⁇ and ⁇ are respectively the base station C to the grid i Channel gain and channel gain from base station d to grid i;
  • Step 203 Determine that the grid capacity gain is greater than 0, and the grid with the network coverage gain greater than 0 constitutes the L second grids.
  • determining the N first grids from the L second grids includes: step 204, traversing the L second grids, and determining each other from the L second grids N third grids whose distances are greater than the interference distance threshold;
  • Step 205 If a micro base station is deployed in each of the third grids to maximize a network gain corresponding to the target area, determining the N third grids as the N first grids.
  • the interference between the micro base stations and between the micro base stations and the macro base stations is not caused, and the assumptions are required to be satisfied in the L numbers.
  • the micro base station is deployed in any two of the second grids, and the interference between any two grids is smaller than the preset interference threshold, and the distance between the grids satisfying the condition is defined as the interference distance threshold, and The interference distance threshold is used as a subsequent selection to determine a parameter of the N first grids.
  • the interference distance threshold value described in this embodiment is determined according to the following manner: According to formula (6), interference between any two of the L second grids is determined:
  • t W is a network capacity gain of the target network after deploying one micro base station simultaneously in the second grid and ⁇ , t/ ⁇ a network capacity gain of the target network after deploying a micro base station in the second grid, (to increase the network capacity of the target network after deploying a micro base station in the second grid)
  • Determining an inter-grid distance that causes the interference to be less than a predetermined interference threshold is the interference distance threshold.
  • the process of determining at least one set of N first grids from the L second grids in the embodiment is a process of multiple iterations, and the result of each iteration generates a set of N first grids.
  • the preset iterative cutoff condition is met, the iteration ends, and finally at least one set of N first grids is obtained to deploy one micro base station in each of the at least one set of N first grids.
  • the iterative deadline condition includes: the number of iterations reaches a preset number of times, or two adjacent groups obtained by iteration The difference between the network gains corresponding to the N first rasters is less than the preset difference.
  • L second grids are randomly sorted, and then, the L second grids are traversed from the Determining, among the L second grids, N third grids whose distances from each other are greater than the interference distance threshold, determining whether a micro base station is deployed in each of the third grids to enable network gain corresponding to the target area
  • the maximum if applicable, determines the N third grids as the N first grids.
  • the first plurality of grids obtained from the original rasterized target area are first determined to be L second grids that can be used as the micro base station deployment candidate grid, and then determined in the L second grids.
  • At least one set of N first grids, as a grid for finally deploying the micro base station not only further reduces the amount of calculation, but also helps to ensure the accuracy of the determination result, thereby facilitating optimization of network capacity and network coverage.
  • the newly added micro base station and the existing asteroid base may be added.
  • the parameters of the station are adjusted.
  • the specific adjustment process is as follows:
  • Step 206 Determine, as the to-be-processed grid, each of the plurality of grids, and determine a first reference of the to-be-processed grid before deploying one micro-base station in each of the first grids Signal strength, and a second reference signal strength of the to-be-processed grid after deploying one micro base station in each of the first grids;
  • Step 207 If the second reference signal strength is greater than the first reference signal strength, determine that the base station corresponding to the to-be-processed grid is a base station to be adjusted, and adjust parameters of the to-be-adjusted base station.
  • each of the plurality of grids obtained after rasterizing the target area is respectively a grid to be processed, and it is assumed that a grid to be processed is associated with a macro base station C before the micro base station is deployed. Covered by a macro base station C, it can be determined that the macro base station C is determined by the first reference signal strength of the to-be-processed grid.
  • the to-be-processed raster may not be associated with the macro base station c, but may be associated with one micro base station c', that is, covered by a micro base station C'. Determining, the second reference signal strength of the micro base station C' in the to-be-processed grid is determined by ⁇ ". Further, if the second reference signal strength is greater than the first reference signal strength, it is considered that the to-be-processed raster is associated with The micro base station C' is a base station to be adjusted, and needs to adjust its parameters. Preferably, when determining whether the second reference signal strength is greater than the first reference signal strength, the second reference signal strength is generally multiplied by a sensitivity coefficient. The first reference signal strength is compared.
  • the adjusted parameters include transmit power and/or antenna downtilt.
  • the transmit power of the base station to be adjusted is adjusted according to the first preset length; or, according to the second preset length, the antenna downtilt of the base station to be adjusted is adjusted.
  • the above adjustment process is performed successively, that is, each time the adjustment is performed by a preset length, and it is necessary to determine whether the adjusted network capacity gain of the target area is greater than 0 after adjustment, and if it is greater than 0, the next time is performed again. Adjusting, and so on, and ending the adjustment of the base station to be adjusted when it is not greater than.
  • each base station to be adjusted is configured with a certain transmit power range, and the first preset length is adjusted in this range, and the adjusted target area is determined after each adjustment. Whether the network capacity gain is improved, if it is increased, the next adjustment is made until the network capacity gain is no longer increased, and the last adjusted transmission power is used as the transmission power of the base station to be adjusted, and the antenna downtilt is adjusted. Reason.
  • step 301 randomly sorting L second grids, and initializing set M and set C are empty; 302, determining whether there is a next second grid p, if yes, performing step 303, otherwise, performing step 313;
  • Step 303 determining whether the grid p is in the set M, if not, executing step 304, otherwise executing step 302;
  • Step 304 Find a grid in M that is less than the interference distance threshold R from the grid p, and put it into C;
  • Step 305 determining whether the set C is empty, if not empty, executing step 306, otherwise executing step 309;
  • Step 306 whether the gain of the set C is smaller than the raster p, and if so, executing step 307, otherwise executing step 302;
  • Step 307 Delete the grid in the set C from the set M;
  • Step 308 the grid p is added to the set M
  • Step 309 determining whether the size of the set M is less than N, and if so, executing step 308, otherwise executing step 310;
  • Step 310 Find a grid q with the smallest gain in the set M;
  • Step 311 determining whether the gain of the grid q is smaller than the grid p, and if so, executing step 312, otherwise executing step 302;
  • Step 312 Delete the grid q from the set M
  • Step 313, k k+l
  • Step 314 Determine whether k is greater than a preset number of times K. If not greater, perform step 301, otherwise perform step 315;
  • the iterative deadline condition may be that the network gain difference between the two sets of N first rasters that are adjacent to the two iterations is less than a preset threshold, except that the number of iterations k reaches a preset number of times.
  • Step 315 Obtain at least one set of N first grids.
  • FIG. 4 is a schematic structural diagram of a wireless network expansion device according to Embodiment 3 of the present invention. As shown in FIG. 4, the device includes:
  • the dividing module 11 is configured to perform rasterization on a target area covered by the macro cellular network, and obtain multiple grids;
  • the processing module 12 is configured to determine N first grids from the plurality of grids, wherein deploying one micro base station in each of the first grids can maximize network gain corresponding to the target area , the N is an integer greater than one;
  • the first determining module 13 is configured to determine, according to the N first grids determined by the processing module, that one micro base station is deployed in each of the N first grids.
  • the device in this embodiment may be used to perform the technical solution of the method embodiment shown in FIG. 1.
  • the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a wireless network expansion device according to Embodiment 4 of the present invention, as shown in FIG. 5
  • the processing module 12 includes:
  • a first processing unit 121 configured to determine L second grids from the plurality of grids, where deploying one micro base station in each of the second grids enables network gain corresponding to the target area Increased, the L is an integer greater than N;
  • the second processing unit 122 is configured to determine the N first grids from the L second grids.
  • the first processing unit 121 includes:
  • a first calculating sub-unit 1211 configured to sequentially calculate, for each of the plurality of grids, corresponding to the target area after separately deploying one micro base station in each of the grids according to formula (1)
  • the network capacity corresponding to any base station c in the set S is the network coverage of any base station c in the set S, where W is the network bandwidth, and ⁇ , is any grid within the coverage of the base station c.
  • the traffic of i is the signal-to-noise ratio of the reference signal corresponding to the grid, according to formula (5) Where is the noise power, ⁇ is the transmit power of the base station c, P d is the transmit power of any base station d different from the base station c in the set S, and ⁇ and ⁇ are the channels of the base station c to the grid i, respectively Gain and channel gain from base station d to grid i;
  • the first determining subunit 1212 is configured to determine that the network capacity gain is greater than 0, and the grid with the network coverage gain greater than 0 constitutes the L second grids.
  • the second processing unit 122 specifically includes:
  • a sub-unit 1221 configured to traverse the L second grids, and determine, from the L second grids, N third grids each having a distance greater than a interference distance threshold;
  • a second determining sub-unit 1222 configured to determine the N third grids as the N if a micro base station is deployed in each of the third grids to maximize a network gain corresponding to the target area First grid.
  • the selecting subunit 1221 is specifically configured to:
  • ⁇ / ⁇ is a network of the target network after deploying one micro base station simultaneously in the second grid and ⁇
  • the capacity gain, t/ ⁇ ) is the network capacity gain of the target network after deploying a micro base station in the second grid, (to increase the network capacity of the target network after deploying a micro base station in the second grid)
  • Determining an inter-grid distance that causes the interference to be less than a predetermined interference threshold is the interference distance threshold.
  • the device further includes:
  • a second determining module 21 configured to use each of the plurality of grids as a to-be-processed grid, and determine a to-be-processed grid before deploying one micro-base station in each of the first grids First reference signal strength, and said to be processed after deploying one micro base station in each of said first grids The second reference signal strength of the grid;
  • the adjusting module 22 is configured to determine, if the second reference signal strength is greater than the first reference signal strength, the base station corresponding to the to-be-processed grid as a base station to be adjusted, and adjust parameters of the to-be-adjusted base station .
  • the adjusting module 22 is specifically configured to:
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 2 and FIG. 3, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of a network device according to Embodiment 5 of the present invention. As shown in FIG. 6, the network device includes:
  • the target area covered by the macro cellular network is rasterized to obtain a plurality of grids; and N first grids are determined from the plurality of grids, wherein each Deploying one micro base station in the first grid can maximize the network gain corresponding to the target area, and the N is an integer greater than 1, determining each first in the N first grids A micro base station is deployed in the grid.
  • the processor 32 is further configured to determine L second grids from the plurality of grids, wherein deploying one micro base station in each of the second grids enables the target area The corresponding network gain is increased, the L is an integer greater than N; and the N first grids are determined from the L second grids.
  • the processor 32 is further configured to sequentially calculate, for each of the plurality of grids, the target after separately deploying one micro base station in each of the grids according to formula (1)
  • is the noise power
  • is the transmit power of the base station c
  • is the transmit power of any base station d different from the base station c in the set S
  • ⁇ and ⁇ are respectively the base station c to the grid i Channel gain and channel gain from base station d to grid i;
  • a grid is determined to cause the network capacity gain to be greater than zero, and the network coverage gain is greater than zero to form the L second rasters.
  • the processor 32 is further configured to traverse the L second grids, and determine, from the L second grids, N third grids whose distances from each other are greater than a interference distance threshold; Determining a micro base station in each of the third grids to maximize a network gain corresponding to the target area, and determining the N third grids as the N first grids.
  • processor 32 is further configured to determine interference between any two of the L second grids according to formula (6):
  • the interference, ⁇ / ⁇ , ⁇ is the network capacity gain of the target network after deploying one micro base station simultaneously in the second grid and t/ ⁇ ) is the network capacity gain of the target network after deploying a micro base station in the second grid, (to increase the network capacity of the target network after deploying a micro base station in the second grid)
  • Determining an inter-grid distance that causes the interference to be less than a predetermined interference threshold is the interference distance threshold.
  • the processor 32 is further configured to determine, by using each of the plurality of grids as a to-be-processed grid, respectively, before determining to deploy one micro-base station in each of the first grids a first reference signal strength of the to-be-processed grid, and a second reference signal strength of the to-be-processed grid after deploying one micro-base station in each of the first grids; if the second reference signal strength is greater than Determining the first reference signal strength, determining that the base station corresponding to the to-be-processed grid is the base station to be adjusted, and adjusting parameters of the to-be-adjusted base station. Further, the processor 32 is further configured to adjust a transmit power of the base station to be adjusted according to a first preset length; or adjust an antenna downtilt of the base station to be adjusted according to a second preset length .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种无线网络扩容方法和设备,该方法包括:对宏蜂窝网络覆盖的目标区域进行栅格化划分,得到多个栅格;从所述多个栅格中确定N个第一栅格,其中,在每个所述第一栅格中部署一个微基站均能够使所述目标区域对应的网络增益最大,从而在N个第一栅格中的每个第一栅格内部署一个微基站,使得所述目标区域的网络容量最大。通过以网络增益为依据,从多个栅格中确定N个第一栅格用于部署微基站,能够使目标区域对应的网络增益最大,在满足覆盖需要的同时,使得网络容量得到优化。

Description

无线网络扩容方法和设备
技术领域
本发明属于无线通信技术领域, 具体是涉及一种无线网络扩容方法和设 备。 背景技术
随着移动业务种类的不断丰富, 促使对业务的传输速率的需求不断 增加, 无线网络需要不断扩容才能满足日益增长的需求。 由于可用频谱 资源有限, 目前最有效的网络扩容手段是在现有宏蜂窝基站(以下称作宏 基站)的基础上增加部署微蜂窝基站或微微蜂窝基站(以下称作微基站), 通过更好的频谱复用来提升网络容量。
如何在现有宏蜂窝网络的基础上部署和配置多个微基站, 以形成由多 个宏基站和微基站组成的异构网络, 是该异构网络组网的重要问题之一。 目前, 宏蜂窝网络通过路测的方式增加宏基站, 但是这个方法不适用于微 基站的部署, 因为新增的微基站的数目要远远大于宏基站, 路测的方法费 时费力。 现有的一种部署微基站的方式是, 将目标区域进行栅格化划分, 以各栅格到分别覆盖各栅格的微基站的平均路径损耗最小为目标来确定 部署微基站的栅格。
但是, 上述以平均路径损耗最小为目标来确定部署微基站的栅格的方 案, 很可能无法很好保证增加微基站后的网络容量。 发明内容
本发明提供了一种无线网络扩容方法和设备, 用以克服现有技术中 增加微基站后的网络容量难以得到保证的缺陷。
本发明第一方面提供了一种无线网络扩容方法, 包括:
对宏蜂窝网络覆盖的目标区域进行栅格化划分, 得到多个栅格; 从所述多个栅格中确定 N个第一栅格,其中,在每个所述第一栅格中部 署一个微基站均能够使所述目标区域对应的网络增益最大, 所述 N为大于 1的整数;
确定在所述 N个第一栅格中的每个第一栅格内部. -水
Figure imgf000004_0001
在第一方面的第一种可能的实现方式中, 从所述多个栅格中确定所 述 N个第一栅格, 包括:
从所述多个栅格中确定 L 个第二栅格, 其中,在每个所述第二栅格中 部署一个微基站能够使所述目标区域对应的网络增益增加, 所述 L为大于 N的整数;
从所述 L个第二栅格中确定所述 N个第一栅格。
根据第一方面的第一种可能的实现方式, 在第一方面的第二种可能的 实现方式中, 从所述多个栅格中确定所述 L个第二栅格, 包括:
依次针对所述多个栅格中的每个栅格, 根据公式 (1) 计算在所述每 个栅格单独部署一个微基站后, 所述目标区域对应的网络容量增益, 并根 据公式 (2) 计算在所述每个栅格部:! -水
Figure imgf000004_0002
的网络覆盖增益:
Ux p) - Capacity S p)- Capacity S) ( 1)
U2(p) - Coverage(S up)— Coverage(S) (2) 其中, 为在所述多个栅格中的任一栅格 p中部署一个微基站后所 述目标区域对应的网络容量增益, t2(w为在所述多个栅格中的任一栅格 p 中部署一个微基站后所述目标区域对应的网络覆盖增益, S为所述目标区 域中包括的宏基站集合, ¾ d ^)为部署微基站前的所述目标区域的网络 容量, 根据公式(3)确定, Oy^d^Sup)为在所述栅格 P中部署一个微基 站后所述目标区域的网络容量,根据 CapacityiS u /?) = 7;确定, Coverage^ 为部署微基站前的所述目标区域的网络覆盖范围, 根据公式 (4) 确定, On ^ Sup)为在所述栅格 p中部署一个微基站后所述目标区域的网络覆 盖范围, 根据 Covemge S up): 确定:
Coverage(S
Figure imgf000004_0003
其中, 为集合 S中任一基站 c对应的网络容量, ^为集合 S中任一 基站 c的网络覆盖范围, W为网络带宽, Γ,·为所述基站 c的覆盖范围内的 任一栅格 i的业务量, 为栅格 对应的参考信号的信噪比,根据公式(5) 确定, ^为所述参考信号的信噪比门限, 为栅格 的参考信号强度, 由 pcg 确定, „为所述参考信号的信号强度门限,
Figure imgf000005_0001
其中, 为噪声功率, ^为所述基站 c的发射功率, Prf为集合 S中 不同于所述基站 c的任一基站 d的发射功率, ^和^分别为基站 c到栅格 i的信道增益和基站 d到栅格 i的信道增益;
确定使所述网络容量增益大于 0, 且所述网络覆盖增益大于 0的栅格 构成所述 L个第二栅格。
根据第一方面的第一种或第二种可能的实现方式, 在第一方面的第三 种可能的实现方式中, 从所述 L个第二栅格中确定所述 N个第一栅格, 包 括:
遍历所述 L个第二栅格, 从所述 L个第二栅格中确定彼此间距离均大 于干扰距离阈值的 N个第三栅格;
若在每个所述第三栅格中部署一个微基站能否使所述目标区域对应 的网络增益最大, 则确定所述 N个第三栅格作为所述 N个第一栅格。
根据第一方面的第三种可能的实现方式, 在第一方面的第四种可能的 实现方式中, 所述干扰距离阈值为:
根据公式 (6) 确定所述 L个第二栅格中的任意两个之间的干扰: Iij =l-Ul{li,lj}/(Ul(li) + Ul(lj)) (6) 其中, Z,和 ^为所述任意两个第二栅格, /y.为所述干扰, ί Ζ,, 为在第 二栅格 Ζ,和 ^中同时分别部署一个微基站后所述目标网络的网络容量增 益, 为在第二栅格 Ζ,中部署一个微基站后所述目标网络的网络容量增 益, ^(Ζ )为在第二栅格 Ζ中部署一个微基站后所述目标网络的网络容量增
、 /- fiff-;
确定使所述干扰小于预设干扰阈值的栅格间距离为所述干扰距离阈 值。 根据第一方面、 第一方面的第一种、 第二种、 第三种或第四种可能的 实现方式, 在第一方面的第五种可能的实现方式中, 确定在所述 N个第一 栅格中的每个第一栅格内部署一个微基站之后, 还包括:
分别以所述多个栅格中的每个栅格为待处理栅格, 确定在每个所述第 一栅格中部署一个微基站前所述待处理栅格的第一参考信号强度, 以及在 每个所述第一栅格中部署一个微基站后所述待处理栅格的第二参考信号 强度;
若所述第二参考信号强度大于所述第一参考信号强度, 则确定所述待 处理栅格对应的基站为待调整基站, 并对所述待调整基站的参数进行调 整。
根据第一方面的第五种可能的实现方式, 在第一方面的第六种可能的 实现方式中,所述对所述待调整基站的参数进行调整,包括如下至少一种: 根据第一预设歩长, 调整所述待调整基站的发射功率; 或, 根据第二 预设歩长, 调整所述待调整基站的天线下倾角。
本发明第二方面提供了一种无线网络扩容设备, 包括:
划分模块, 用于对宏蜂窝网络覆盖的目标区域进行栅格化划分, 得到 多个栅格;
处理模块, 用于从所述多个栅格中确定 N个第一栅格,其中,在每个所 述第一栅格中部署一个微基站均能够使所述目标区域对应的网络增益最 大, 所述 N为大于 1的整数;
第一确定模块, 用于根据所述处理模块确定的所述 N个第一栅格, 确 定在所述 N个第一栅格中的每个第一栅格内部署一个微基站。
在第二方面的第一种可能的实现方式中, 所述处理模块, 包括: 第一处理单元, 用于从所述多个栅格中确定 L 个第二栅格, 其中,在 每个所述第二栅格中部署一个微基站能够使所述目标区域对应的网络增 益增加, 所述 L为大于 N的整数;
第二处理单元, 用于从所述 L个第二栅格中确定所述 N个第一栅格。 根据第二方面的第一种可能的实现方式, 在第二方面的第二种可能的 实现方式中, 所述第一处理单元, 包括:
第一计算子单元, 用于依次针对所述多个栅格中的每个栅格, 根据公 式 (1) 计算在所述每个栅格单独部署一个微基站后, 所述目标区域对应 的网络容量增益, 并根据公式 (2) 计算在所述每个栅格部署一个微基站 后, 所述目标区域对应的网络覆盖增益:
Ux p) - Capacity S up)— Capacity (S) ( 1 )
U2(p) - Coverage(S p)- Coverage(S) (2) 其中, 为在所述多个栅格中的任一栅格 p中部署一个微基站后所 述目标区域对应的网络容量增益, t/2(w为在所述多个栅格中的任一栅格 p 中部署一个微基站后所述目标区域对应的网络覆盖增益, S为所述目标区 域中包括的宏基站集合, ψ )为部署微基站前的所述目标区域的网络 容量, 根据公式(3)确定, ψ υρ)为在所述栅格 ρ中部署一个微基 站后所述目标区域的网络容量,根据 Capadt^S u/?)= 7;确定, Coveragi^) 为部署微基站前的所述目标区域的网络覆盖范围, 根据公式 (4) 确定, O ^ up)为在所述栅格 p中部署一个微基站后所述目标区域的网络覆 盖范围, 根据 Coverage^ u /?) = 确定:
Capacity(S) = "V7 = V― ^ ^~ (3)
CoverageiS) (4)
Figure imgf000007_0001
其中, 为集合 S中任一基站 c对应的网络容量, 为集合 S中任一 基站 c的网络覆盖范围, W为网络带宽, Γ,·为所述基站 c的覆盖范围内的 任一栅格 i的业务量, 为栅格 对应的参考信号的信噪比,根据公式(5) 确定, ^为所述参考信号的信噪比门限, 为栅格 的参考信号强度, 由 ρ 确定, 《 为所述参考信号的信号强度门限,
Figure imgf000007_0002
∑Pdgf 其中, ^为噪声功率, ^为所述基站 c的发射功率, ^为集合 S中 不同于所述基站 c的任一基站 d的发射功率, ^和 ^分别为基站 c到栅格 i的信道增益和基站 d到栅格 i的信道增益;
第一确定子单元, 用于确定使所述网络容量增益大于 0, 且所述网络 覆盖增益大于 0的栅格构成所述 L个第二栅格。 根据第二方面的第一种或第二种可能的实现方式, 在第二方面的第三 种可能的实现方式中, 所述第二处理单元, 具体包括:
选择子单元, 用于遍历所述 L个第二栅格, 从所述 L个第二栅格中确 定彼此间距离均大于干扰距离阈值的 N个第三栅格;
第二确定子单元, 用于若在每个所述第三栅格中部署一个微基站能使 所述目标区域对应的网络增益最大, 则确定所述 N个第三栅格作为所述 N 根据第二方面的第三种可能的实现方式, 在第二方面的第四种可能的 实现方式中, 所述选择子单元, 还用于:
根据公式 (6 ) 确定所述 L个第二栅格中的任意两个之间的干扰: /, = ! -[/,{/,.,/.}/([/,(/,.) + [/,(/.)) ( 6 ) 其中, /,.和 为所述任意两个第二栅格, 为所述干扰, [/^, 为在第 二栅格 和 ^中同时分别部署一个微基站后所述目标网络的网络容量增 益, 为在第二栅格 中部署一个微基站后所述目标网络的网络容量增 益, [^ 为在第二栅格 ^中部署一个微基站后所述目标网络的网络容量增
、 /.
fiff-;
确定使所述干扰小于预设干扰阈值的栅格间距离为所述干扰距离阈 值。
根据第二方面、 第二方面的第一种、 第二种、 第三种或第四种可能的 实现方式, 在第二方面的第五种可能的实现方式中, 所述设备还包括: 第二确定模块, 用于分别以所述多个栅格中的每个栅格为待处理栅 格, 确定在每个所述第一栅格中部署一个微基站前所述待处理栅格的第一 参考信号强度, 以及在每个所述第一栅格中部署一个微基站后所述待处理 栅格的第二参考信号强度;
调整模块, 用于若所述第二参考信号强度大于所述第一参考信号强度, 则确定所述待处理栅格对应的基站为待调整基站, 并对所述待调整基站的 参数进行调整。 根据第二方面的第五种可能的实现方式, 在第二方面的第六种可能的 实现方式中, 所述调整模块, 具体用于:
根据第一预设歩长, 调整所述待调整基站的发射功率; 或, 根据第二 预设歩长, 调整所述待调整基站的天线下倾角。 本发明第三方面提供了一种网络设备, 包括:
存储器以及与所述存储器连接的处理器, 其中, 所述存储器用于存 储一组程序代码, 所述处理器用于调用所述存储器中存储的程序代码, 执行第一方面及第一方面的各种可能实现方式中任一项所述的方法。
本发明提供的无线网络扩容方法和设备, 对宏蜂窝网络覆盖的目标区 域进行栅格化划分得到多个栅格, 并以网络增益为依据, 从所述多个栅格 中确定 N个第一栅格,其中,这 N个第一栅格需满足在每个所述第一栅格中 部署一个微基站能够使所述目标区域对应的网络增益最大。 以网络增益为 依据来确定部署微基站的栅格位置, 使得在确定出的 N个第一栅格中的每 个栅格中部署一个微基站时, 使得网络容量得到最大优化。 附图说明
图 1为本发明实施例一提供的无线网络扩容方法的流程图; 图 2为本发明实施例二提供的无线网络扩容方法的流程图; 图 3为图 2所示实施例二中多次迭代过程的流程图;
图 4为本发明实施例三提供的无线网络扩容设备的结构示意图; 图 5为本发明实施例四提供的无线网络扩容设备的结构示意图; 图 6为本发明实施例五提供的网络设备的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合 本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的 实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
图 1为本发明实施例一提供的无线网络扩容方法的流程图, 如图 1所 示, 本实施例提供的所述方法尤其适用于任何无线通信网络中通过增加 部署微基站来扩展网络容量的场景, 尤其适用于移动蜂窝网络。 在不同的 无线网络中, 部署的微基站的种类可以不同, 比如, 在移动蜂窝网络中部 署的微基站可以是小型基站, 也可以是接入点。 另外, 该方法可以由一网 络侧的设备来执行, 该设备例如位于运营商的管理平台中, 比如位于操作 维护中心(Operation and Maintenance Center, 以下简称 OMC)中, 该方法具 体包括:
歩骤 101、 对宏蜂窝网络覆盖的目标区域进行栅格化划分, 得到多个 栅格;
歩骤 102、 从所述多个栅格中确定 N个第一栅格,其中,在每个所述第 一栅格中部署一个微基站均能够使所述目标区域对应的网络增益最大, 所述 N为大于 1的整数;
歩骤 103、 确定在所述 N个第一栅格中的每个第一栅格内部署一个微 基站。
本实施例中, 首先对由宏蜂窝网络覆盖的目标区域进行栅格化划分, 得到多个栅格。 其中, 可以理解的是, 在宏蜂窝网络覆盖的目标区域中包 含多个宏基站, 每个宏基站都会覆盖一定的范围, 即每个宏基站会覆盖多 个栅格。
为了实现网络扩容的目的, 本实施例中提供的方案需要在满足目标区 域网络覆盖的基本要求的前提下, 从栅格化得到的多个栅格中确定至少一 组 N个第一栅格, 比如 M ( M为大于或等于 1的整数) 组 N个第一栅格, 即总共 M组, 每组 N个第一栅格, 在这 M*N个第一栅格中的每个栅格中部 署一个微基站, 会使得目标区域的网络容量达到最大。 也就是说, 本实施 例中的每组 N个第一栅格需要满足的条件是: 在每个第一栅格中部署一个 微基站均能够使目标区域对应的网络增益最大。 其中, 该网络增益可以包 括网络容量增益和网络覆盖增益最大。 本实施例中, 以网络容量增益表征 目标区域的网络容量的优化程度, 以网络覆盖增益表征目标区域的网络覆 盖的优化程度, 即新增的微基站对用户产生干扰导致覆盖漏洞的程度, 网 络覆盖增益越大, 表明新增的微基站对用户产生干扰导致覆盖漏洞的程度 越低。 本实施例中, 可选的, 网络增益最大为在满足网络覆盖增益的前提 下, 使得网络容量增益最大。
从栅格化目标区域获得的多个栅格中确定满足上述条件的 N个第一栅 格, 比如可以通过如下的方式确定: 假设栅格化获得的栅格数为 A , 每次 从这 A个栅格中随机选择 N个, 确定如果在这 N个随机选择的栅格中分别 部署一个微基站将会带来的网络增益, 即网络容量增益和网络覆盖增益, 以此类推, 直到将所有的随机选择的可能性都尝试完毕, 进而比较每次随 机选择对应的网络增益, 从中确定网络增益最大的那次随机选择对应的 N 个栅格, 并在这 N个栅格中分别部署一个微基站。 可选的, 上述过程重复 进行多次, 从而最终确定出多组 N个第一栅格, 以在这多组 N个第一栅格 中部署微基站, 达到网络扩容的目的。 可选的实现方式将在下面的其他实 施例中介绍。
本实施例中, 对宏蜂窝网络覆盖的目标区域进行栅格化划分得到多个 栅格, 并以包括网络容量增益和网络覆盖增益的网络增益为依据, 从所述 多个栅格中确定 N个第一栅格,其中,这 N个第一栅格需满足在每个所述第 一栅格中部署一个微基站能够使所述目标区域对应的网络增益最大。 以网 络增益为依据来确定部署微基站的栅格位置, 在满足覆盖需要的同时, 使 得网络容量得到优化。
图 2为本发明实施例二提供的无线网络扩容方法的流程图,如图 2所示, 该方法包括:
歩骤 201、 对宏蜂窝网络覆盖的目标区域进行栅格化划分, 得到多个 栅格;
本实施例中, 在对宏蜂窝网络覆盖的目标区域进行栅格化划分, 得到 多个栅格之后, 需从所述多个栅格中确定 N个第一栅格。 具体地, 可以通 过以下过程实现:
从所述多个栅格中确定 L 个第二栅格, 其中,在每个所述第二栅格中 部署一个微基站能够使所述目标区域对应的网络增益增加, 所述 L为大于 N的整数;
从所述 L个第二栅格中确定 N个第一栅格。
本实施例中, 为了降低计算量以及为了结果的准确性, 首先从栅格化 得到的多个栅格中选择出 L个第二栅格, 这 L个第二栅格需要满足的条件 是: 在每个第二栅格中部署一个微基站能够使所述目标区域对应的网络增 益增加, 即网络容量增益和网络覆盖增益增加。 具体地, 通过如下歩骤实 现:
歩骤 202、 依次针对所述多个栅格中的每个栅格, 根据公式 (1 )计算 在所述每个栅格单独部署一个微基站后, 所述目标区域对应的网络容量增 益, 并根据公式 (2) 计算在所述每个栅格部署一个微基站后, 所述目标 区域对应的网络覆盖增益:
Ux{p) - Capacity S p)- Capacity O ( 1 )
U2(p) - Coverage(S p)- Coverage(S) (2) 其中, 为在所述多个栅格中的任一栅格 p中部署一个微基站后所 述目标区域对应的网络容量增益, t2(w为在所述多个栅格中的任一栅格 p 中部署一个微基站后所述目标区域对应的网络容量增益, S为所述目标区 域中包括的宏基站集合, ψ )为部署微基站前的所述目标区域的网络 容量, 根据公式(3)确定, ψ υρ)为在所述栅格 ρ中部署一 A: 站后所述目标区域的网络容量, 根据
Figure imgf000012_0001
确定, 即:
Capacity{S u /?) = Ύτ. = V ― —— , Covemge(S)为部署微基站前的
1θ§2 ) 所述目标区域的网络覆盖范围, 根据公式 (4) 确定, O ra^O up)为在 所述栅格 p 中部署一个微基站后所述目标区域的网络覆盖范围, 根据 Coverage(S p) 确定, 即:
Coverage(S p) 12
Capacity S) (3)
Coverage(S) (4)
Figure imgf000012_0002
其中, 为集合 S中任一基站 c对应的网络容量, ^为集合 S中任一 基站 c的网络覆盖范围, W为网络带宽, Γ,·为所述基站 c的覆盖范围内的 任一栅格 i的业务量, ^为栅格 对应的参考信号的信噪比,根据公式(5) 确定, 为所述参考信号的信噪比门限, 为栅格 的参考信号强度,由 ^ 确定, m为所述参考信号的信号强度门限,
Figure imgf000012_0003
其中, Ρ„。 为噪声功率, ^为所述基站 C的发射功率, ^为集合 S中 不同于所述基站 c的任一基站 d的发射功率, ^和 ^分别为基站 C到栅格 i的信道增益和基站 d到栅格 i的信道增益;
歩骤 203、 确定使所述网络容量增益大于 0, 且所述网络覆盖增益大 于 0的栅格构成所述 L个第二栅格。
进而, 从所述 L个第二栅格中确定所述 N个第一栅格, 包括: 歩骤 204、 遍历所述 L个第二栅格, 从所述 L个第二栅格中确定彼此 间距离均大于干扰距离阈值的 N个第三栅格;
歩骤 205、 若在每个所述第三栅格中部署一个微基站能使所述目标区 域对应的网络增益最大,则确定所述 N个第三栅格作为所述 N个第一栅格; 本实施例中, 为了保证在选择确定的 N个第一栅格中部署微基站时, 不会造成各微基站之间以及微基站与宏基站之间的干扰, 需要满足假设在 L个第二栅格中的任意两个第二栅格中部署微基站, 这任意两个栅格间的 干扰要小于预设干扰阈值, 满足该条件的栅格间的距离定义为干扰距离阈 值, 并以该干扰距离阈值作为后续选择确定 N个第一栅格的一个参数。
本实施例中所述的干扰距离阈值根据如下方式确定: 根据公式 (6 ) 确定所述 L个第二栅格中的任意两个之间的干扰:
Figure imgf000013_0001
其中, 和^为所述任意两个第二栅格, 为所述干扰, t W为在第 二栅格 和 ^中同时分别部署一个微基站后所述目标网络的网络容量增 益, t/^)为在第二栅格 中部署一个微基站后所述目标网络的网络容量增 益, ( 为在第二栅格 ^中部署一个微基站后所述目标网络的网络容量增
、 /.
fiff-;
确定使所述干扰小于预设干扰阈值的栅格间距离为所述干扰距离阈 值。
具体地,本实施例中从 L个第二栅格中确定至少一组 N个第一栅格的 过程为一个多次迭代的过程, 每迭代一次的结果产生一组 N个第一栅格, 当满足预设的迭代截止条件时, 迭代结束, 并最终获得至少一组 N个第一 栅格, 以在这至少一组 N个第一栅格中分别部署一个微基站。 其中, 所述 迭代截止条件包括: 迭代次数达到预设次数, 或者, 迭代获得的相邻两组 N个第一栅格对应的网络增益的差值小于预设差值。
本实施例仅以一次遍历过程为例进行简要说明, 详细的多次迭代过程 将在图 3所示实施例中详加说明。 一次遍历具体地, 包括如下歩骤:
对所述 L个第二栅格进行随机排序;
遍历所述 L个第二栅格,从所述 L个第二栅格中选择彼此间距离均大 于干扰距离阈值的 N个第三栅格;
判断在每个所述第三栅格中部署一个微基站能否使所述目标区域对 应的网络增益最大; 若能, 则执行下一歩骤, 否则结束;
确定所述 N个第三栅格作为一组所述 N个第一栅格。
本实施例中, 为了尽量消除栅格选择顺序对最终确定结果的影响, 在 每次迭代中,首先随机排序 L个第二栅格,进而,遍历所述 L个第二栅格, 从所述 L个第二栅格中选择彼此间距离均大于干扰距离阈值的 N个第三栅 格, 判断在每个所述第三栅格中部署一个微基站能否使所述目标区域对应 的网络增益最大, 若能, 则确定所述 N个第三栅格作为所述 N个第一栅 格。
本实施例中, 从原始栅格化目标区域获得的多个栅格中首先确定出可 以作为微基站部署候选栅格的 L个第二栅格,进而在这 L个第二栅格中确 定出至少一组 N个第一栅格, 作为最终部署微基站的栅格, 不但进一歩降 低了计算量, 而且有利于保证确定结果的准确性, 从而有利于最优化网络 容量和网络覆盖。
本实施例中, 在选择确定出部署微基站的至少一组 N 个第一栅格之 后, 可选的, 为了进一歩优化目标区域的网络增益, 可以对新增的微基站 以及已经存在的宏基站的参数进行调整, 具体的调整过程如下:
歩骤 206、 分别以所述多个栅格中的每个栅格为待处理栅格, 确定在 每个所述第一栅格中部署一个微基站前所述待处理栅格的第一参考信号 强度, 以及在每个所述第一栅格中部署一个微基站后所述待处理栅格的第 二参考信号强度;
歩骤 207、 若所述第二参考信号强度大于所述第一参考信号强度, 则 确定所述待处理栅格对应的基站为待调整基站, 并对所述待调整基站的参 数进行调整。 本实施例中, 分别以栅格化目标区域后获得的多个栅格中的每个栅格 为待处理栅格, 假设在部署微基站前, 某待处理栅格 关联到一个宏基站 C 即被一个宏基站 C覆盖, 可以确定该宏基站 C在该待处理栅格 的第一 参考信号强度 由 确定。 在每个第一栅格中部署微基站后, 该待处理 栅格 有可能不在关联到该宏基站 c, 而可能是关联在一个微基站 c ', 即 被一个微基站 C '覆盖, 此时, 可以确定该微基站 C '在该待处理栅格 的第 二参考信号强度 由 ^「确定。进而, 如果第二参考信号强度大于第一参 考信号强度,则认为此时待处理栅格 关联到的微基站 C '为待调整的基站, 需要对其参数进行调整。 优选地, 在判断第二参考信号强度是否大于第一 参考信号强度时, 一般以第二参考信号强度与乘以一个敏感系数的第一参 考信号强度进行比较。
进一歩地, 在对所述待调整基站的参数进行调整时, 调整的参数包括 发射功率和 /或天线下倾角。 具体地, 根据第一预设歩长, 调整所述待调 整基站的发射功率; 或, 根据第二预设歩长, 调整所述待调整基站的天线 下倾角。 一般的, 上述调整过程为逐次进行的, 即每次以预设歩长进行调 整, 调整后需要判断调整后的所述目标区域的网络容量增益是否大于 0, 若大于 0, 则再进行下一次调整, 以此类推, 并在不大于时结束对所述待 调整基站的调整。 以调整发射功率为例, 每个待调整基站都会配置有一定 的发射功率范围, 在该范围内以第一预设歩长为单元, 逐次调整, 并在每 次调整之后判断调整后的目标区域的网络容量增益是否有所提高, 若提 高, 进行下一次的调整, 直至网络容量增益不再提高为止, 以最后一次调 整后的发射功率作为该待调整基站的发射功率, 天线下倾角的调整同理。
图 3为图 2所示实施例二中多次迭代过程的流程图, 如图 3所示, 歩骤 301、 对 L个第二栅格随机排序, 初始化集合 M和集合 C为空; 歩骤 302、判断是否存在下一个第二栅格 p,若存在,则执行歩骤 303, 否则, 执行歩骤 313 ;
歩骤 303、 判断栅格 p是否在集合 M中, 若不在, 则执行歩骤 304, 否则执行歩骤 302;
歩骤 304、 找出 M中与栅格 p距离小于干扰距离阈值 R的栅格, 放入 C中; 歩骤 305、 判断集合 C是否为空, 若不为空, 则执行歩骤 306, 否则 执行歩骤 309;
歩骤 306、 集合 C的增益是否小于栅格 p的, 若是, 则执行歩骤 307, 否则执行歩骤 302;
歩骤 307、 从集合 M中删除集合 C中的栅格;
歩骤 308、 栅格 p加入集合 M;
歩骤 309、 判断集合 M的大小是否小于 N, 若是, 则执行歩骤 308, 否则执行歩骤 310;
歩骤 310、 找出集合 M中增益最小的栅格 q;
歩骤 311、 判断栅格 q的增益是否小于栅格 p的, 若是, 则执行歩骤 312, 否则执行歩骤 302;
歩骤 312、 从集合 M中删除栅格 q;
歩骤 313、 k=k+l ;
歩骤 314、 判断 k是否大于预设次数 K, 若不大于, 则执行歩骤 301, 否则执行歩骤 315 ;
可选的, 迭代截止条件除迭代次数 k达到预设次数 Κ外, 还可以是相 邻两次迭代结果的两组 N个第一栅格的网络增益差值小于预设阈值。
歩骤 315、 得到至少一组 N个第一栅格。
图 4为本发明实施例三提供的无线网络扩容设备的结构示意图,如图 4 所示, 该设备包括:
划分模块 11, 用于对宏蜂窝网络覆盖的目标区域进行栅格化划分, 得 到多个栅格;
处理模块 12,用于从所述多个栅格中确定 N个第一栅格,其中,在每个 所述第一栅格中部署一个微基站均能够使所述目标区域对应的网络增益 最大, 所述 N为大于 1的整数;
第一确定模块 13, 用于根据所述处理模块确定的所述 N个第一栅格, 确定在所述 N个第一栅格中的每个第一栅格内部署一个微基站。
本实施例的设备可以用于执行图 1所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 5为本发明实施例四提供的无线网络扩容设备的结构示意图, 如图 5 所示, 本实施例中的所述设备在图 4 所示实施例的基础上, 所述处理模块 12, 包括:
第一处理单元 121, 用于从所述多个栅格中确定 L个第二栅格, 其中, 在每个所述第二栅格中部署一个微基站能够使所述目标区域对应的网络 增益增加, 所述 L为大于 N的整数;
第二处理单元 122, 用于从所述 L个第二栅格中确定所述 N个第一栅 格。
进一歩地, 所述第一处理单元 121, 包括:
第一计算子单元 1211, 用于依次针对所述多个栅格中的每个栅格, 根 据公式 (1) 计算在所述每个栅格单独部署一个微基站后, 所述目标区域 对应的网络容量增益, 并根据公式 (2) 计算在所述每个栅格部署一个微 基站后, 所述目标区域对应的网络覆盖增益:
Ux{p) - Capacity S p)- Capacity O ( 1 )
U2(p) - Coverage(S p)- Coverage(S) (2) 其中, 为在所述多个栅格中的任一栅格 p中部署一个微基站后所 述目标区域对应的网络容量增益, t/2(w为在所述多个栅格中的任一栅格 p 中部署一个微基站后所述目标区域对应的网络覆盖增益, S为所述目标区 域中包括的宏基站集合, ψ )为部署微基站前的所述目标区域的网络 容量, 根据公式(3)确定, Oz d ^uW为在所述栅格 ρ中部署一个微基 站后所述目标区域的网络容量,根据 Capadt^S u/?)= 7;确定, Coverage^ 为部署微基站前的所述目标区域的网络覆盖范围, 根据公式 (4) 确定, O ^ up)为在所述栅格 p中部署一个微基站后所述目标区域的网络覆 盖范围, 根据 Coverage^ u /?) = 确定:
Capacity (S) = Yrc =V— (3)
Coverage(S ) 12 (4)
Figure imgf000017_0001
其中, 为集合 S中任一基站 c对应的网络容量, 为集合 S中任一 基站 c的网络覆盖范围, W为网络带宽, Γ,·为所述基站 c的覆盖范围内的 任一栅格 i的业务量, 为栅格 对应的参考信号的信噪比,根据公式(5)
Figure imgf000018_0001
其中, 为噪声功率, ^为所述基站 c的发射功率, Pd为集合 S中 不同于所述基站 c的任一基站 d的发射功率, ^和 ^分别为基站 c到栅格 i的信道增益和基站 d到栅格 i的信道增益;
第一确定子单元 1212, 用于确定使所述网络容量增益大于 0, 且所述 网络覆盖增益大于 0的栅格构成所述 L个第二栅格。
进一歩地, 所述第二处理单元 122, 具体包括:
选择子单元 1221, 用于遍历所述 L个第二栅格, 从所述 L个第二栅格 中确定彼此间距离均大于干扰距离阈值的 N个第三栅格;
第二确定子单元 1222,用于若在每个所述第三栅格中部署一个微基站 能使所述目标区域对应的网络增益最大, 则确定所述 N个第三栅格作为所 述 N个第一栅格。
具体地, 所述选择子单元 1221, 具体用于:
根据公式 (6 ) 确定所述 L 个第二栅格中的任意两个第二栅格之间的 干扰:
Figure imgf000018_0002
其中, /,.和 为所述任意两个第二栅格, 为所述干扰, ί/^,^}为在第 二栅格 和 Ζ 中同时分别部署一个微基站后所述目标网络的网络容量增 益, t/^)为在第二栅格 中部署一个微基站后所述目标网络的网络容量增 益, ( 为在第二栅格 ^中部署一个微基站后所述目标网络的网络容量增
、 /- fiff-;
确定使所述干扰小于预设干扰阈值的栅格间距离为所述干扰距离阈 值。
进一歩地, 所述设备还包括:
第二确定模块 21,用于分别以所述多个栅格中的每个栅格为待处理栅 格, 确定在每个所述第一栅格中部署一个微基站前所述待处理栅格的第一 参考信号强度, 以及在每个所述第一栅格中部署一个微基站后所述待处理 栅格的第二参考信号强度;
调整模块 22,用于若所述第二参考信号强度大于所述第一参考信号强 度, 则确定所述待处理栅格对应的基站为待调整基站, 并对所述待调整基 站的参数进行调整。
具体地, 所述调整模块 22, 具体用于:
根据第一预设歩长, 调整所述待调整基站的发射功率; 或, 根据第二 预设歩长, 调整所述待调整基站的天线下倾角。
本实施例的设备可以用于执行图 2和图 3所示方法实施例的技术方 案, 其实现原理和技术效果类似, 此处不再赘述。
图 6为本发明实施例五提供的网络设备的结构示意图, 如图 6所示, 该网络设备包括:
存储器 31以及与所述存储器 31连接的处理器 32, 其中, 所述存储器 31用于存储一组程序代码, 所述处理器 32用于调用所述存储器 31中存储 的程序代码, 以执行如图 1所示无线网络扩容方法中的: 对宏蜂窝网络覆 盖的目标区域进行栅格化划分, 得到多个栅格; 从所述多个栅格中确定 N 个第一栅格,其中,在每个所述第一栅格中部署一个微基站均能够使所述 目标区域对应的网络增益最大, 所述 N为大于 1的整数, 确定在所述 N个 第一栅格中的每个第一栅格内部署一个微基站。
进一歩地, 所述处理器 32还用于从所述多个栅格中确定 L个第二栅 格, 其中,在每个所述第二栅格中部署一个微基站能够使所述目标区域对 应的网络增益增加, 所述 L为大于 N的整数; 从所述 L个第二栅格中确定 所述 N个第一栅格。
进一歩地, 所述处理器 32还用于依次针对所述多个栅格中的每个栅 格, 根据公式 (1 ) 计算在所述每个栅格单独部署一个微基站后, 所述目 标区域对应的网络容量增益, 并根据公式 (2 ) 计算在所述每个栅格部署 一个微基站后, 所述目标区域对应的网络覆盖增益:
Ux {p) - Capacity S p) - Capacity O ( 1 )
U2 (p) - Coverage(S p) - Coverage(S) ( 2) 其中, 为在所述多个栅格中的任一栅格 p中部署一个微基站后所 述目标区域对应的网络容量增益, t/2(w为在所述多个栅格中的任一栅格 p 中部署一个微基站后所述目标区域对应的网络覆盖增益, S为所述目标区 域中包括的宏基站集合, ¾ d ^)为部署微基站前的所述目标区域的网络 容量, 根据公式(3)确定, Oz d ^uW为在所述栅格 p中部署一个微基 站后所述目标区域的网络容量,根据 Capadt^S u/?)= 7;确定, Coverage^ 为部署微基站前的所述目标区域的网络覆盖范围, 根据公式 (4) 确定, On ^ Sup)为在所述栅格 p中部署一个微基站后所述目标区域的网络覆 盖范围, 根据 Coverage^ u /?) = 确定:
Capacity (S) = "Vr, = V― ^ ^~ (3)
Coverages ) =∑ c =(∑ ^ - +∑ ^ ^) 12 (4) 其中, 为集合 S中任一基站 c对应的网络容量, ^为集合 S中任一 基站 c的网络覆盖范围, W为网络带宽, Γ,·为所述基站 c的覆盖范围内的 任一栅格 i的业务量, 为栅格 对应的参考信号的信噪比,根据公式(5) 确定, 为所述参考信号的信噪比门限, 为栅格 的参考信号强度,由 确定, m为所述参考信号的信号强度门限,
Figure imgf000020_0001
其中, Ρ„。 为噪声功率, ^为所述基站 c的发射功率, ^为集合 S中 不同于所述基站 c的任一基站 d的发射功率, ^和 ^分别为基站 c到栅格 i的信道增益和基站 d到栅格 i的信道增益;
确定使所述网络容量增益大于 0, 且所述网络覆盖增益大于 0的栅格 构成所述 L个第二栅格。
进一歩地, 所述处理器 32还用于遍历所述 L个第二栅格, 从所述 L 个第二栅格中确定彼此间距离均大于干扰距离阈值的 N个第三栅格; 若在 每个所述第三栅格中部署一个微基站能使所述目标区域对应的网络增益 最大, 则确定所述 N个第三栅格作为所述 N个第一栅格。
进一歩地, 所述处理器 32还用于根据公式 (6) 确定所述 L个第二栅 格中的任意两个之间的干扰:
Figure imgf000020_0002
其中, 和^为所述任意两个第二栅格, 为所述干扰, ί/^,^}为在第 二栅格 和 中同时分别部署一个微基站后所述目标网络的网络容量增 益, t/^)为在第二栅格 中部署一个微基站后所述目标网络的网络容量增 益, ( 为在第二栅格 ^中部署一个微基站后所述目标网络的网络容量增
、 /.
fiff-;
确定使所述干扰小于预设干扰阈值的栅格间距离为所述干扰距离阈 值。
进一歩地, 所述处理器 32还用于分别以所述多个栅格中的每个栅格为 待处理栅格, 确定在每个所述第一栅格中部署一个微基站前所述待处理栅 格的第一参考信号强度, 以及在每个所述第一栅格中部署一个微基站后所 述待处理栅格的第二参考信号强度; 若所述第二参考信号强度大于所述第 一参考信号强度, 则确定所述待处理栅格对应的基站为待调整基站, 并对 所述待调整基站的参数进行调整。 进一歩地, 所述处理器 32 还用于根据第一预设歩长, 调整所述待调 整基站的发射功率; 或, 根据第二预设歩长, 调整所述待调整基站的天线 下倾角。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替 换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种无线网络扩容方法, 其特征在于, 包括:
对宏蜂窝网络覆盖的目标区域进行栅格化划分, 得到多个栅格; 从所述多个栅格中确定 N个第一栅格,其中,在每个所述第一栅格中部 署一个微基站均能够使所述目标区域对应的网络增益最大, 所述 N为大于 1的整数;
确定在所述 N个第一栅格中的每个第一栅格内部署一个微基站。
2、 根据权利要求 1 所述的方法, 其特征在于, 从所述多个栅格中确 定所述 N个第一栅格, 包括:
从所述多个栅格中确定 L 个第二栅格, 其中,在每个所述第二栅格中 部署一个微基站能够使所述目标区域对应的网络增益增加, 所述 L为大于 N的整数;
从所述 L个第二栅格中确定所述 N个第一栅格。
3、 根据权利要求 2 所述的方法, 其特征在于, 从所述多个栅格中确 定所述 L个第二栅格, 包括:
依次针对所述多个栅格中的每个栅格, 根据公式 (1 ) 计算在所述每 个栅格单独部署一个微基站后, 所述目标区域对应的网络容量增益, 并根 据公式 (2 ) 计算在所述每个栅格部署一个微基站后, 所述目标区域对应 的网络覆盖增益:
Ux {p) - Capacity {S p) - Capacity (S) ( 1 )
U2 (p) - Coverage(S u p)— Coverage(S) ( 2) 其中, 为在所述多个栅格中的任一栅格 p中部署一个微基站后所 述目标区域对应的网络容量增益, t/2(w为在所述多个栅格中的任一栅格 p 中部署一个微基站后所述目标区域对应的网络覆盖增益, ^为所述目标区 域中包括的宏基站集合, ¾ d ^)为部署微基站前的所述目标区域的网络 容量, 根据公式(3 )确定,
Figure imgf000022_0001
uW为在所述栅格 p中部署一个微基 站后所述目标区域的网络容量,根据 Capac S u /?) = 7;.确定, Coveragi^) 为部署微基站前的所述目标区域的网络覆盖范围, 根据公式 (4 ) 确定, Coverages u 为在所述栅格 ρ中部署一个微基站后所述目标区域的网络覆 盖范围, 根据
Figure imgf000022_0002
确定: Capacity (S) - - ( 3 )
Coverage(S) =∑ ( 4)
Figure imgf000023_0001
其中, 7;为集合 ^中任一基站 c对应的网络容量, A为集合 ^中任一 基站 c的网络覆盖范围, 为网络带宽, 7;为所述基站 c的覆盖范围内的 任一栅格 的业务量, s为栅格 对应的参考信号的信噪比, 根据公式 ( 5 )确定, ^ 为所述参考信号的信噪比门限, 为栅格 的参考信号强 度, 由 确定, min为所述参考信号的信号强度门限,
Figure imgf000023_0002
其中, ^为噪声功率, Λ为所述基站 C的发射功率, A为集合 中 不同于所述基站 c的任一基站 的发射功率, ^和 ^分别为基站 c到栅格 i的信道增益和基站 到栅格 i的信道增益;
确定使所述网络容量增益大于 0, 且所述网络覆盖增益大于 0的栅格 构成所述 L个第二栅格。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 从所述 L个第二 栅格中确定所述 N个第一栅格, 包括:
遍历所述 L个第二栅格, 从所述 L个第二栅格中确定彼此间距离均大 于干扰距离阈值的 N个第三栅格;
若在每个所述第三栅格中部署一个微基站能使所述目标区域对应的 网络增益最大, 则确定所述 N个第三栅格作为所述 N个第一栅格。
5、 根据权利要求 4所述的方法, 其特征在于, 所述干扰距离阈值为: 根据公式 (6 ) 确定所述 L 个第二栅格中的任意两个第二栅格之间的 干扰:
/, = !-[/,{/,.,/.}/([/,(/,.) + [/,(/.)) ( 6 ) 其中, 和^为所述任意两个第二栅格, 为所述干扰, [/^, 为在第 二栅格 和 ^中同时分别部署一个微基站后所述目标网络的网络容量增 益, t/^)为在第二栅格 中部署一个微基站后所述目标网络的网络容量增 益, 为在第二栅格 中部署一个微基站后所述目标网络的网络容量增
、 /- fiff-;
确定使所述干扰小于预设干扰阈值的栅格间距离为所述干扰距离阈 值。
6、 根据权利要求 1~5 中任一项所述的方法, 其特征在于, 确定在所 述 N个第一栅格中的每个第一栅格内部署一个微基站之后, 还包括:
分别以所述多个栅格中的每个栅格为待处理栅格, 确定在每个所述第 一栅格中部署一个微基站前所述待处理栅格的第一参考信号强度, 以及在 每个所述第一栅格中部署一个微基站后所述待处理栅格的第二参考信号 强度;
若所述第二参考信号强度大于所述第一参考信号强度, 则确定所述待 处理栅格对应的基站为待调整基站, 并对所述待调整基站的参数进行调 整。
7、 根据权利要求 6 所述的方法, 其特征在于, 对所述待调整基站的 参数进行调整, 包括如下至少一种:
根据第一预设歩长, 调整所述待调整基站的发射功率; 或,
根据第二预设歩长, 调整所述待调整基站的天线下倾角。
8、 一种无线网络扩容设备, 其特征在于, 包括:
划分模块, 用于对宏蜂窝网络覆盖的目标区域进行栅格化划分, 得到 多个栅格;
处理模块, 用于从所述多个栅格中确定 N个第一栅格,其中,在每个所 述第一栅格中部署一个微基站均能够使所述目标区域对应的网络增益最 大, 所述 N为大于 1的整数;
第一确定模块, 用于根据所述处理模块确定的所述 N个第一栅格, 确 定在所述 N个第一栅格中的每个第一栅格内部署一个微基站。
9、 根据权利要求 8所述的设备, 其特征在于, 所述处理模块, 包括: 第一处理单元, 用于从所述多个栅格中确定 L 个第二栅格, 其中,在 每个所述第二栅格中部署一个微基站能够使所述目标区域对应的网络增 益增加, 所述 L为大于 N的整数;
第二处理单元, 用于从所述 L个第二栅格中确定所述 N个第一栅格。
10、 根据权利要求 9所述的设备, 其特征在于, 所述第一处理单元, 包括:
第一计算子单元, 用于依次针对所述多个栅格中的每个栅格, 根据公 式 (1) 计算在所述每个栅格单独部署一个微基站后, 所述目标区域对应 的网络容量增益, 并根据公式 (2) 计算在所述每个栅格部署一个微基站 后, 所述目标区域对应的网络覆盖增益:
Ux{p) - Capacity S p)- Capacity O ( 1 )
U2(p) - Coverage(S p)- Coverage(S) (2) 其中, 为在所述多个栅格中的任一栅格 p中部署一个微基站后所 述目标区域对应的网络容量增益, t/2(w为在所述多个栅格中的任一栅格 p 中部署一个微基站后所述目标区域对应的网络覆盖增益, S为所述目标区 域中包括的宏基站集合, ψ )为部署微基站前的所述目标区域的网络 容量, 根据公式(3)确定, ψ υρ)为在所述栅格 ρ中部署一个微基 站后所述目标区域的网络容量,根据 Capac S u /?) = 7;确定, Coveragi^) 为部署微基站前的所述目标区域的网络覆盖范围, 根据公式 (4) 确定, O ^ up)为在所述栅格 p中部署一个微基站后所述目标区域的网络 盖范围, 根据 Covemge S up): 确定:
Capacity(S) =
Coverage (S)
Figure imgf000025_0001
其中, 为集合 S中任一基站 c对应的网络容量, ^为集合 S中任一 基站 c的网络覆盖范围, W为网络带宽, Γ,·为所述基站 c的覆盖范围内的 任一栅格 i的业务量, 为栅格 对应的参考信号的信噪比,根据公式(5) 确定, ^„为所述参考信号的信噪比门限, 为栅格 的参考信号强度, 由 ρ 确定, mm为所述参考信号的信号强度门限,
Figure imgf000025_0002
其中, 为噪声功率, ^为所述基站 c的发射功率, ^为集合 S中 不同于所述基站 c的任一基站 d的发射功率, ^和 分别为基站 C到栅格 i的信道增益和基站 d到栅格 i的信道增益;
第一确定子单元, 用于确定使所述网络容量增益大于 0, 且所述网络 覆盖增益大于 0的栅格构成所述 L个第二栅格。
11、 根据权利要求 9或 10所述的设备, 其特征在于, 所述第二处理 单元, 包括:
选择子单元, 用于遍历所述 L个第二栅格, 从所述 L个第二栅格中确 定彼此间距离均大于干扰距离阈值的 N个第三栅格;
第二确定子单元, 用于若在每个所述第三栅格中部署一个微基站能使 所述目标区域对应的网络增益最大, 则确定所述 N个第三栅格作为所述 N
12、 根据权利要求 11 所述的设备, 其特征在于, 所述选择子单元, 还用于:
根据公式 (6 ) 确定所述 L 个第二栅格中的任意两个第二栅格之间的 干扰:
Iij = l - Ul{li , lj } /(Ul (li ) + Ul (lj )) ( 6 ) 其中, /,.和 为所述任意两个第二栅格, 为所述干扰, [/^, 为在第 二栅格 和 Z 中同时分别部署一个微基站后所述目标网络的网络容量增 益, 为在第二栅格 中部署一个微基站后所述目标网络的网络容量增 益, [^ 为在第二栅格 ^中部署一个微基站后所述目标网络的网络容量增
、 /- fiff-;
确定使所述干扰小于预设干扰阈值的栅格间距离为所述干扰距离阈 值。
13、 根据权利要求 8~12中任一项所述的设备, 其特征在于, 还包括: 第二确定模块, 用于分别以所述多个栅格中的每个栅格为待处理栅 格, 确定在每个所述第一栅格中部署一个微基站前所述待处理栅格的第一 参考信号强度, 以及在每个所述第一栅格中部署一个微基站后所述待处理 栅格的第二参考信号强度;
调整模块, 用于若所述第二参考信号强度大于所述第一参考信号强度, 则确定所述待处理栅格对应的基站为待调整基站, 并对所述待调整基站的 参数进行调整。
14、 根据权利要求 13 所述的设备, 其特征在于, 所述调整模块, 具 体用于:
根据第一预设歩长, 调整所述待调整基站的发射功率; 或, 根据第二 预设歩长, 调整所述待调整基站的天线下倾角。
15、 一种网络设备, 其特征在于, 包括:
存储器以及与所述存储器连接的处理器, 其中, 所述存储器用于存 储一组程序代码, 所述处理器用于调用所述存储器中存储的程序代码, 执行权利要求 1~7中任一项所述的方法。
PCT/CN2014/078034 2014-05-21 2014-05-21 无线网络扩容方法和设备 WO2015176258A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14892639.7A EP3148241B1 (en) 2014-05-21 2014-05-21 Capacity expansion method and device for wireless network
CN201480078952.3A CN106465142B (zh) 2014-05-21 2014-05-21 无线网络扩容方法和设备
PCT/CN2014/078034 WO2015176258A1 (zh) 2014-05-21 2014-05-21 无线网络扩容方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/078034 WO2015176258A1 (zh) 2014-05-21 2014-05-21 无线网络扩容方法和设备

Publications (1)

Publication Number Publication Date
WO2015176258A1 true WO2015176258A1 (zh) 2015-11-26

Family

ID=54553213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078034 WO2015176258A1 (zh) 2014-05-21 2014-05-21 无线网络扩容方法和设备

Country Status (3)

Country Link
EP (1) EP3148241B1 (zh)
CN (1) CN106465142B (zh)
WO (1) WO2015176258A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260075A (zh) * 2016-12-27 2018-07-06 ***通信集团浙江有限公司 一种基站部署位置的寻址方法及装置
CN109327841A (zh) * 2018-09-30 2019-02-12 湖南华诺科技有限公司 基于覆盖、价值关联的多维评定及精准建设投资评估方法
CN109661001A (zh) * 2019-01-11 2019-04-19 中国联合网络通信集团有限公司 一种网络优化方法和服务器
CN111225408A (zh) * 2019-12-31 2020-06-02 京信通信***(中国)有限公司 基于SmallCell基站的无线环境监控方法、装置、设备和存储介质
CN114448813A (zh) * 2021-12-28 2022-05-06 天津市邮电设计院有限责任公司 一种网络扩容比例的确定方法、装置、服务器及介质
CN114501477A (zh) * 2022-02-23 2022-05-13 阿里巴巴(中国)有限公司 无线基站的安装点确定方法、装置及终端设备
CN116614826A (zh) * 2023-05-24 2023-08-18 北京天坦智能科技有限责任公司 一种同时传输和反射表面网络的覆盖和容量优化方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107347188B (zh) * 2017-06-19 2020-09-11 国网浙江省电力公司嘉兴供电公司 一种基于td-lte230网络的电网基站初步选址方法
CN107682862B (zh) * 2017-07-13 2020-12-25 国网浙江省电力公司嘉兴供电公司 一种td-lte230电力***通信网络基站的选址方法
CN113965270B (zh) * 2020-07-20 2023-08-22 华为技术有限公司 一种emf强度控制方法及通信装置
JP2022087086A (ja) * 2020-11-30 2022-06-09 ジオ プラットフォームズ リミティド 次世代通信ネットワークの自動計画のためのシステム及び方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494871A (zh) * 2008-01-24 2009-07-29 中兴通讯股份有限公司 微小区建设的规划方法
CN102547752A (zh) * 2010-12-07 2012-07-04 ***通信集团广东有限公司 一种无线网络的覆盖评估方法及装置
CN103476041A (zh) * 2013-08-30 2013-12-25 浙江大学 一种蜂窝移动通信网络多小区联合覆盖优化方法和装置
CN103702337A (zh) * 2014-01-03 2014-04-02 北京邮电大学 一种小型基站部署位置的确定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437765B2 (en) * 2011-08-11 2013-05-07 Verizon Patent And Licensing Inc. Identifying locations for small cells
CN103118369B (zh) * 2011-11-16 2016-04-06 华为技术有限公司 站址的选择方法和设备以及栅格选择方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101494871A (zh) * 2008-01-24 2009-07-29 中兴通讯股份有限公司 微小区建设的规划方法
CN102547752A (zh) * 2010-12-07 2012-07-04 ***通信集团广东有限公司 一种无线网络的覆盖评估方法及装置
CN103476041A (zh) * 2013-08-30 2013-12-25 浙江大学 一种蜂窝移动通信网络多小区联合覆盖优化方法和装置
CN103702337A (zh) * 2014-01-03 2014-04-02 北京邮电大学 一种小型基站部署位置的确定方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260075A (zh) * 2016-12-27 2018-07-06 ***通信集团浙江有限公司 一种基站部署位置的寻址方法及装置
CN109327841A (zh) * 2018-09-30 2019-02-12 湖南华诺科技有限公司 基于覆盖、价值关联的多维评定及精准建设投资评估方法
CN109327841B (zh) * 2018-09-30 2020-11-17 湖南华诺科技有限公司 基于覆盖、价值关联的多维评定及精准建设评估方法
CN109661001A (zh) * 2019-01-11 2019-04-19 中国联合网络通信集团有限公司 一种网络优化方法和服务器
CN111225408A (zh) * 2019-12-31 2020-06-02 京信通信***(中国)有限公司 基于SmallCell基站的无线环境监控方法、装置、设备和存储介质
CN111225408B (zh) * 2019-12-31 2024-01-26 京信网络***股份有限公司 基于SmallCell基站的无线环境监控方法、装置、设备和存储介质
CN114448813A (zh) * 2021-12-28 2022-05-06 天津市邮电设计院有限责任公司 一种网络扩容比例的确定方法、装置、服务器及介质
CN114448813B (zh) * 2021-12-28 2024-03-22 天津市邮电设计院有限责任公司 一种网络扩容比例的确定方法、装置、服务器及介质
CN114501477A (zh) * 2022-02-23 2022-05-13 阿里巴巴(中国)有限公司 无线基站的安装点确定方法、装置及终端设备
CN114501477B (zh) * 2022-02-23 2024-04-02 阿里巴巴(中国)有限公司 无线基站的安装点确定方法、装置及终端设备
CN116614826A (zh) * 2023-05-24 2023-08-18 北京天坦智能科技有限责任公司 一种同时传输和反射表面网络的覆盖和容量优化方法
CN116614826B (zh) * 2023-05-24 2024-01-16 北京天坦智能科技有限责任公司 一种同时传输和反射表面网络的覆盖和容量优化方法

Also Published As

Publication number Publication date
EP3148241A1 (en) 2017-03-29
EP3148241A4 (en) 2017-05-17
CN106465142A (zh) 2017-02-22
CN106465142B (zh) 2019-11-19
EP3148241B1 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
WO2015176258A1 (zh) 无线网络扩容方法和设备
TWI734824B (zh) 用於減少來自鄰無線設備的干擾的系統和方法
WO2015143898A1 (zh) 波束选择方法及基站
US9467873B2 (en) Channel width configuration based on network conditions
WO2011093992A2 (en) System and method for resource allocation of a lte network integrated with femtocells
CN102355290B (zh) 基于智能天线技术的无线多跳网络数据发送、接收方法
CN108848045B (zh) 基于联合干扰对齐和功率优化的d2d通信干扰管理方法
CN114666821A (zh) 端到端网络切片部署方法、装置、设备和存储介质
Chukhno et al. Unsupervised learning for D2D-assisted multicast scheduling in mmWave networks
TW202015435A (zh) 使用者配對方法、無線站台及其無線系統
WO2016015304A1 (zh) 一种接入点部署方法及装置
WO2020179545A1 (ja) 無線基地局設置位置算出方法および無線基地局設置位置算出システム
US9973971B2 (en) Methods, nodes and system for enabling redistribution of cell load
Madabhushi et al. Optimal routing and data transmission for multi-hop D2D communications under stochastic interference constraints
KR102388620B1 (ko) 기지국 안테나의 기울기 각도 최적화 방법 및 장치
KR101866685B1 (ko) 무선 메쉬 네트워크의 토폴로지 제어를 위한 전력 제어와 채널 할당 방법 및 시스템
KR101595698B1 (ko) 셀룰러 네트워크에서 다중 d2d 그룹 통신을 위한 간섭탐지를 활용한 자원공유 방법 및 장치
Ahmed et al. A dual-hop backhaul network architecture for 5G ultra-small cells using millimetre-wave
Razavi et al. Self-configuring switched multi-element antenna system for interference mitigation in femtocell networks
KR102151314B1 (ko) 이종 스몰셀 네트워크에서 랜덤 컨텐츠 저장 최적화 방법 및 시스템
Berggren Power control, transmission rate control and scheduling in cellular radio systems
Rossi et al. Performance tradeoffs by power control in wireless ad-hoc networks
KR20190027023A (ko) 다중 홉 네트워크에서 장치간 캐싱을 이용한 전송 방법 및 장치
Rodd et al. Optimization algorithms for access point deployment in wireless networks
KR101785858B1 (ko) 사물인터넷 통신을 위한 저전력 광역 네트워크 기반 대역폭 결정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892639

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014892639

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892639

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE