WO2015174018A1 - ネットワークノード及びシグナリング処理方法 - Google Patents

ネットワークノード及びシグナリング処理方法 Download PDF

Info

Publication number
WO2015174018A1
WO2015174018A1 PCT/JP2015/002134 JP2015002134W WO2015174018A1 WO 2015174018 A1 WO2015174018 A1 WO 2015174018A1 JP 2015002134 W JP2015002134 W JP 2015002134W WO 2015174018 A1 WO2015174018 A1 WO 2015174018A1
Authority
WO
WIPO (PCT)
Prior art keywords
codec
atgw
sdp
sdp offer
supported
Prior art date
Application number
PCT/JP2015/002134
Other languages
English (en)
French (fr)
Inventor
貴子 堀
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to EP15792804.5A priority Critical patent/EP3145165B1/en
Priority to JP2016519094A priority patent/JP6420328B2/ja
Publication of WO2015174018A1 publication Critical patent/WO2015174018A1/ja
Priority to US15/285,716 priority patent/US9967782B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1023Media gateways
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/102Gateways
    • H04L65/1023Media gateways
    • H04L65/103Media gateways in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • H04W36/00224Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB]
    • H04W36/00226Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB] wherein the core network technologies comprise IP multimedia system [IMS], e.g. single radio voice call continuity [SRVCC]

Definitions

  • the present disclosure relates to a network node used in a mobile communication scheme and a signaling processing method executed by the network node.
  • VoIP Voice over Long Term Evolution
  • VoLTE call the area where VoLTE service can be received is a limited area. Therefore, when going out of the VoLTE service area during a VoLTE voice call (hereinafter referred to as a VoLTE call), it is necessary to switch to a call using a conventional circuit switching system.
  • SRVCC Single Radio Voice Call Continuity
  • FIG. 1 shows part of a 3GPP mobile communication network configuration.
  • the mobile communication network shown in FIG. 1 is e-UTRAN (evolved Universal Terrestrial Radio Access Network), e-UTRAN base station (e-node B), PS network, CS network, CS network base station subsystem, non-patent document 2, IMS (IP Multimedia Subsystem) described in Non-Patent Document 3.
  • e-UTRAN is a radio access network capable of providing VoLTE service.
  • the PS network provides a VoLTE service, and includes a packet data network gateway (P-GW), a serving gateway (S-GW), and a mobility management entity (MME).
  • the CS network is composed of a mobile switching center (MSC) and a media gate way (MGW).
  • the base station subsystem of the CS network comprises an RNC (Radio Network Controller) and a nodeB.
  • the IMS performs call control and the like, and includes a CSCF (Call Session Control Function) and an SCC AS (Service Centralization and Continuity Application Server).
  • MSC and MGW are represented as one node (MSC / MGW 110) in FIG. 1 and FIG. 2, they may be represented as separate nodes.
  • FIG. 1 it is assumed that UE 100 and UE 102, which are mobile communication terminals (UE: User Equipment), are initially connected to the PS network (however, the radio access network, base station and PS network on UE 102 side are not shown). ).
  • UE 100 and UE 102 start a call, a session setup process is performed. That is, by transmitting / receiving an offer / answer of SDP (Session Description Protocol) by signaling of IMS between the UE 100 and the UE 102, a codec and the like used in a call are negotiated.
  • FIG. 5 shows an example of IMS signaling transmission / reception at the time of session setup. IMS signaling is transmitted and received (not shown in FIG.
  • FIG. 6 shows an example of the SDP offer / answer.
  • AMR and AMR-WB described later are offered, and AMR is selected by an answer.
  • HO Hand Over
  • Path A, Path B, and Path C indicated by solid lines in FIG. 1 indicate paths through which call data passes.
  • reference numerals 200, 202, 204 and 206 indicated by broken lines in FIG. 1 indicate paths through which signaling in SRVCC handover processing passes.
  • FIG. 2 is a sequence chart showing an operation of SRVCC handover processing.
  • the UE 100 and the UE 102 are initially connected to the PS network (e-UTRAN), respectively, and the call data between the UE 100 and the UE 102 is transmitted and received through the Path A.
  • the e-node B detects this and exchanges core network signaling (hereinafter referred to as signaling) with the RNC / node B via the MME, MSC / MGW 110 Signaling 200 shown in Fig. 1. Steps (hereinafter "ST") 200 shown in Fig. 2).
  • signaling core network signaling
  • a data path in the CS network is prepared between node B and MSC / MGW 110, and when the preparation is completed, MME instructs UE 100 to hand over to UTRAN (CS network) via e-node B. Is issued.
  • MSC / MGW 110 exchanges signaling of IMS (hereinafter IMS signaling) with UE 102 via CSCF / SCC AS of the UE 100's own network (signaling 202 shown in FIG. 1; ST 202 shown in FIG. 2).
  • IMS signaling signaling of IMS
  • UE 102 via CSCF / SCC AS of the UE 100's own network
  • an instruction is issued to switch the transmission / reception destination of the call data of the UE 102 from the UE 100 to the MSC / MGW 110, and the Path B is established.
  • the UE 100 exchanges signaling with the MSC / MGW 110 via the RNC / node B (signaling 204 shown in FIG. 1; ST 204 shown in FIG. 2). This establishes Path C.
  • Path C After Path C is established, the MSC / MGW 110 exchanges signaling with the P-GW / S-GW via the MME (signaling 206 shown in FIG. 1; ST 206 shown in FIG. 2). Thus, Path A is deleted.
  • SRVCC enhanced-SRVCC
  • ATCF Access Transfer Control Function
  • FIG. 3 shows part of a 3GPP mobile communication network configuration that enables eSRVCC. Similar to FIG. 1, the mobile communication network shown in FIG. 3 is composed of an e-UTRAN, an e-node B, a PS network, a CS network, a base station subsystem of the CS network, and an IMS.
  • IMS in addition to CSCF and SCC AS, there are ATCF (Access Transfer Control Function) and ATGW (Access Transfer GateWay).
  • FIG. 3 and FIG. 4 show ATCF and ATGW as one node (ATCF / ATGW 320), they may be shown as separate nodes.
  • the UE 100 and the UE 102 are initially connected to the PS network (however, the radio access network on the UE 102 side, the base station and the PS network are not shown). That is, it is assumed that a VoLTE call is being performed between the UE 100 and the UE 102. At this time, it is assumed that the UE 100 performs handover (HO: Hand Over) to the CS network in the middle of a call.
  • HO Hand Over
  • Path A, Path B, Path C, and Path D indicated by solid lines in FIG. 3 indicate paths through which call data passes.
  • 300, 302, 304 and 306, which are indicated by broken lines in FIG. 3, indicate paths through which signaling in the eSR VCC handover process and IMS signaling pass.
  • FIG. 4 is a sequence chart showing an operation of eSRVCC handover.
  • the UE 100 and the UE 102 are initially connected to the PS network (e-UTRAN) respectively.
  • ATCF anchors IMS signaling in ATCF / ATGW 320, and ATGW anchors call data that is, at the start of a call between UE 100 and UE 102, the IMS signaling of the start of the call is relayed by the ATCF of the network (the visited network) to which the UE is connected, and the ATCF needs an anchor for call data at the ATGW. If determined, the ATGW of the UE's visited network is assigned as the anchor point of the call data.
  • call data between the UE 100 and the UE 102 is transmitted and received through the Path A and the Path B.
  • the e-node B When the UE 100 tries to move away from the coverage area of the e-UTRAN, the e-node B detects this and exchanges signaling with the RNC / node B via the MME and the MSC / MGW 110 (signalling 300 shown in FIG. 3). ST300 shown in 4). In ST 300, a data path in the CS network is prepared between node B and MSC / MGW 110, and when preparation is complete, MME instructs UE 100 to hand over to UTRAN (CS network) via e-node B. Is issued.
  • the MSC / MGW 110 sends IMS signaling to the ATCF of the visited network of the UE 100.
  • an instruction of path switching is issued from the ATCF to the ATGW in the area network where the UE 100 is located, and the call data transmission / reception destination of the ATGW is switched from the UE 100 to the MSC / MGW 110 (signaling 302 shown in FIG. 3. ST 302 shown in FIG. 4). That is, Path C is established.
  • the ATCF transmits notification signaling (IMS signaling) to the SCC-AS (signaling 302 shown in FIG. 3; ST 302 shown in FIG. 4).
  • the UE 100 exchanges signaling with the MSC / MGW 110 via the RNC / node B (signaling 304 shown in FIG. 3; ST 304 shown in FIG. 4). Thereby, Path D is established.
  • the MSC / MGW 110 exchanges signaling with the P-GW / S-GW via the MME (signaling 306 shown in FIG. 3; ST 306 shown in FIG. 4). Thereby, Path B is deleted.
  • SRVCC In the configuration of SRVCC in FIG. 1, for example, while UE 100 contracted by a Japanese mobile phone company roams to a mobile phone network in Europe, the CS network is in progress during a call with UE 102 also located in the same country in Europe. Even when the handover is performed, the IMS signaling between the MGW and the UE 102 is transmitted and received via Japan, and there is a problem that the signaling between the MGW and the UE 102 takes time.
  • the MGW and the ATCF are usually provided close to each other in the same country. Furthermore, signaling is only performed between the MGW and the ATCF, and signaling with the UE 102 is not necessary. As a result, the time taken to switch data paths can be shortened.
  • AMR adaptive multi-rate
  • NB narrowband
  • AMR adaptive multi-rate wideband
  • WB wideband
  • Non-Patent Document 4 there is also a codec used in a PS network (VoLTE), such as EVS (Enhanced Voice Service) described in Non-Patent Document 4.
  • VoLTE PS network
  • EVS Enhanced Voice Service
  • the narrow band (NB: Narrowband) codec is a codec that performs encoding and decoding processing of a digital acoustic signal sampled at 8 kHz.
  • a narrow band codec generally has a frequency band of 300 Hz to 3.4 kHz, the frequency band is not limited to this and may be in the range of 0 to 4 kHz.
  • the wideband codec is a codec that performs encoding and decoding processing of a digital acoustic signal sampled at 16 kHz. Note that although a wideband codec generally has a frequency band of 50 Hz to 7 kHz, the frequency band is not limited to this and may be in the range of 0 to 8 kHz.
  • a super wide band (SWB: Super Wideband) codec is a codec that performs encoding and decoding processing of a digital acoustic signal sampled at 32 kHz.
  • the ultra wideband codec generally has a frequency band of 50 Hz to 14 kHz, but the frequency band is not limited thereto and is not limited as long as it is in the range of 0 to 16 kHz.
  • 3GPP TS 23.216 v12.6.0 Single Radio Voice Call Continuity (SRVCC)”
  • 3GPP TS 23.228 v12.0.0 IP Multimedia Subsystem (IMS); Stage 2”
  • 3GPP TS 23.237 v12.6.0 IP Multimedia Subsystem (IMS) Service Continuity”
  • 3GPP TS 22.813 v10.0.0 Student “Study of Use Cases and Requirements for Enhanced Voice Codecs for the Evolved Packet System (EPS)”
  • EPS Evolved Packet System
  • the codec used by the PS network is not supported by the CS network
  • the codec used by the UE 100 is the CS network. Change to a supported codec.
  • the first method is to perform transcoding in MSC / MGW or ATCF / ATGW.
  • the second method is a method of changing the codec used in the UE 102 to the same codec as the UE 100 after the change.
  • the former transcoding method requires that MSC / MGW or ATCF / ATGW support transcoding.
  • the speech quality may be degraded due to transcoding.
  • the latter method of changing the codec requires codec renegotiation by IMS signaling in order to change the codec of the UE 102.
  • IMS signaling for path switching at the time of handover of the UE 100 terminates at ATCF, so IMS signaling for changing the codec of the UE 102 can not be sent.
  • Patent Document 1 even when the eSRVCC scheme is used on the network side, it is detected whether or not the UE has a function of performing handover to CS, that is, whether or not the UE is compatible with SRVCC. Discloses a method in which the communication path is not anchored by the ATGW.
  • Non-Patent Document 4 even in the eSRVCC method (even when IMS signaling is via ATCF), a method of treating it as normal SRVCC, that is, the communication route is not anchored by ATGW, and either A method is described in which, when a UE is handed over to a CS network, IMS signaling is transmitted / received to / from the other UE via the ATCF from the MGW (ATCF without media anchored in ATGW).
  • whether or not IMS signaling is sent to the other UE is determined depending on whether the UE supports SRVCC regardless of the codec used by the UE.
  • Non-Patent Document 4 does not describe in any case whether eSRVCC is treated like normal SRVCC.
  • This disclosure makes it possible to change the codec of another terminal when one of the terminals in communication performs a handover involving a change of codec, and to execute the network node capable of continuing communication and the network node Provide a signaling processing method.
  • the ATCF which anchors IMS signaling, checks the contents of the SDP offer / answer, compares the codec used at the start of the call with the codec used by the CS to which the UE can handover, and transcodes it to the ATGW. If you do not want to transcode at ATGW, or if you do not want to anchor the communication path at ATGW, select a method to treat as normal SRVCC, when handover to CS of UE occurs. Performs codec re-negotiation by transmitting and receiving an SDP offer / answer with IMS signaling again with the other UE.
  • codec re-negotiation is performed by transmitting and receiving an SDP offer / answer with IMS signaling again with the other UE.
  • One aspect of the network node according to the present disclosure is a network node having at least an ATCF function (Access Transfer Control Function) used for enhanced Single Radio Voice Call Continuity (eSRVCC), and is an SDP included in IP Multimedia Subsystem (IMS) signaling.
  • ATCF Access Transfer Control Function
  • IMS IP Multimedia Subsystem
  • a reception unit that receives an offer or an SDP answer, an SDP analysis unit that acquires information on the SDP offer or a codec included in the SDP answer, a data storage unit, and a determination unit.
  • the data storage unit includes information on codecs supported by an Access Transfer Gateway (ATGW) or an MGW (Media Gateway) of a neighbor (Neighboring), information of transcoding supported by the ATGW or the MGW of a neighbor, and a neighbor.
  • ATGW Access Transfer Gateway
  • MGW Media Gateway
  • CS Circuit Switching
  • a network node capable of changing the codec of the other terminal and continuing the communication, and a signaling processing method executed in the network node Can be realized.
  • corresponds to SRVCC and it assumes that ATCF / ATGW has acquired the information.
  • ATCF / ATGW acquires whether UE corresponds to SRVCC the means as disclosed by patent document 1 may be used.
  • FIG. 7 is a block diagram particularly constituting an ATCF portion of ATCF / ATGW 320 according to the present embodiment.
  • the receiver 700 receives IMS signaling and the like.
  • the transmission unit 702 also transmits IMS signaling and the like.
  • the IMS signaling includes not only IMS signaling that the communication terminal UE transmits and receives at the time of session setup, but also IMS signaling transmitted and received with the handover of the UE.
  • the SDP analysis unit 704 analyzes the contents of SDP offers and SDP answers included in IMS signaling. For example, an SDP offer or an SDP answer is analyzed to obtain information of a voice codec used for a call.
  • the data storage unit 706 stores the capability (capability) of the ATCF / ATGW 320 itself and the capability of the neighboring MGW. For example, information on codecs supported by ATCF / ATGW320 or MGW, information on codecs supported by neighboring CS networks, information on transcoding supported by ATCF / ATGW320 or MGW (combination of codecs that can be transcoded) Information etc. are stored.
  • the information on the neighboring MGWs and the neighboring CS network may be acquired using means such as exchanging signaling messages directly by the ATCF / ATGW 320 and MGW via another network node, or manually manually in advance. May be stored.
  • the policy storage unit 708 stores a policy related to service provision. For example, two UEs performing communication may use different codecs, transcoding may be performed by ATCF / ATGW 320 or MGW, or codecs used by two UEs performing communication may be unified and transcoding may not be performed, etc. Policy is stored.
  • the determination unit 710 uses the data stored in the data storage unit 706 as a result of analysis by the SDP analysis unit 704 and the policy stored in the policy storage unit 708 to perform SDP for codec renegotiation from ATCF to the UE. Determine whether to enable the sending of offers. Specifically, it is determined whether to enable or not to change the codec by transmitting and receiving IMS signaling with the UE 102 by anchoring the communication at the ATGW or not at the ATGW.
  • FIG. 8 is a sequence chart showing an example of session setup in the first embodiment of the present disclosure.
  • the SDP offer added Invite message (IMS signaling) sent from the UE 100 is sent to the ATCF / ATGW 320 (exactly ATCF only) via another network node (not shown) (801).
  • IMS signaling IMS signaling
  • ATCF performs ATGW selection and resource allocation (802).
  • the ATCF / ATGW 320 sends an Invite message with an SDP offer to the UE 102 via another network node (not shown) (803). At this time, the ATGW is designated as the communication partner of the UE 102.
  • the UE 102 then sends an SDP answer with the IMS message to the ATCF / ATGW 320 via another network node (not shown) (804).
  • the determination unit 710 of the ATCF / ATGW 320 that has received the SDP answer uses the contents of the SDP answer, the data stored in the data storage unit 706, and the policy stored in the policy storage unit 708 to communicate in the selected ATGW. It is determined whether to anchor (805). An example of the determination method of the determination part 710 is shown in FIG.
  • the determination unit 710 first confirms what codec is selected in the SDP answer (ST 901).
  • the codec selected in the SDP answer is a codec that can be used when the UE is handed over to the CS network (a codec supported by the neighboring CS network).
  • codecs that can be used in the CS network if the conventional criteria for determining whether to anchor communications at ATGW (such as the criteria described in Patent Document 1) are met, the communications are anchored at ATGW and satisfied. If not, select not to anchor communication at ATGW. (Not shown).
  • the codec selected in the SDP answer is not the codec that can be used when the UE is handed over to the CS network, that codec is supported by the ATGW or a neighboring MGW that can be used when the UE is handed over It is confirmed whether it is a codec (ST 902). If not supported, it is impossible to perform processing related to the codec, such as transcoding, so that the communication is not anchored by the ATGW, that is, when the UE is handed over to the CS network and the codec is changed. , Transmit and receive IMS signaling for codec renegotiation with UE 102, and select to be able to unify with codec UE 100 (ST 903).
  • transcoding is not supported, it is selected not to anchor communication at ATGW (ST 903). Also, even if transcoding is supported, the policy is checked whether to allow transcoding (transcoding is used or not) (ST 905), and transcoding is not permitted. To not anchor communication at the ATGW (ST 903). That is, when the UE is handed over to the CS network and the codec is changed, it is selected to transmit / receive IMS signaling for codec re-negotiation with the UE 102 so as to be able to unify with the codec UE 100. Do.
  • the ATGW determines whether all other conditions for anchoring communication are ready at the ATGW (ST 906). For example, if the selected codec is compatible with the codec supported by the neighboring CS, as described in Patent Document 2, without transmitting or receiving IMS signaling to / from the UE 102 (RTP payload format Check if the codec has the switching function to compatible mode (without session renegotiation for switching). If there is no function or there is no policy to use even if it has it, it is selected that the communication is not anchored by the ATGW (ST 903).
  • a codec that has the function of performing operations without transcoding without transmitting / receiving IMS signaling to / from UE 102, and if there is a policy that uses that function, and other for anchoring communications at ATGW.
  • IMS signaling for codec re-negotiation with the UE 102 is transmitted and received, and between the codec UE 100 and the UE 102. It is determined that there is no need to unify them, and ATGW anchors communication (ST 907).
  • IMS signaling is transmitted and received such that the communication destinations of the UE 100 and the UE 102 become the selected ATGW, as described in Non-Patent Document 4.
  • the ATCF / ATGW 320 again transmits an IMS message to the UE 102 as shown in FIG. 8 (806), and the communication destination of the UE 102 is changed to the UE 100 instead of the ATGW.
  • the MGW or MGW or the like may not be compatible with the codec after the change. If the ATGW does not support or permit transcoding, or if there is compatibility, there is no need to transmit or receive IMS signaling with the UE 102 (RTP payload format switching to no session re-negotiation) to compatible mode Even if it does not support or permit the switching of H.264, it is possible to continue communication by transmitting and receiving IMS signaling between the ATCF / ATGW and the UE 102 and performing codec re-negotiation.
  • FIG. 7 is a block diagram of the ATCF / ATGW 320 of the present embodiment, which is the same as that of the first embodiment.
  • FIG. 10 is a sequence chart showing an example of session setup in the second embodiment of the present disclosure.
  • the SDP offer added Invite message (IMS signaling) sent from the UE 100 is sent (1001) to the ATCF / ATGW 320 (exactly ATCF only) via another network node (not shown).
  • the ATCF / ATGW 320 determines whether to determine whether to anchor communication at the ATGW from the SDP offer (1002). For example, in the determination unit 710 of the ATCF / ATGW, it is confirmed and determined whether the policy storage unit 708 has a policy for determining whether to anchor communication by the ATGW based on the contents of the SDP offer. If it is not determined from the contents of the SDP offer whether the ATGW anchors the communication, the determination is made from the SDP answer as in the first embodiment.
  • FIG. 11 shows an example of the determination method of the determination unit 710 of the ATCF / ATGW 320 according to the present embodiment. That is, when judging by the SDP offer (ST 1101), the codec of the SDP offer is analyzed by the SDP analysis unit 704 (ST 1102). If the codecs analyzed at this time include ATCF / ATGW 320 or codecs not supported by the neighboring MGW (ST 1103), delete the codecs from the SDP offer and make them only supported codecs (ST Even when the UE 100 is handed over to the neighboring CS network, it is inquired of the policy storage unit 708 whether or not only the codec can continue communication without re-negotiating the codec with the UE 102 (ST1104).
  • the ATGW When deleting, it is determined that the communication is anchored by the ATGW (ST1105). That is, the ATGW which anchors communication is selected and resources are allocated. Further, an SDP with the corresponding codec deleted is generated by the SDP analysis unit 704 or the like, and the AT GW is notified to the UE 102 by IMS signaling as a communication counterpart. Also, when receiving the SDP answer from the UE 102, the SDP answer is sent to the UE 100 by using the IMS signaling as the communication partner as the ATGW. On the contrary, when the codec is not deleted from the SDP offer, if the codec is selected, it is impossible to perform processing related to the codec such as transcoding, so it is determined that the ATGW does not anchor the communication ( ST 1106).
  • IMS signaling is sent to the UE 102 with the UE 100 as a communication counterpart. Also, upon receiving the SDP answer from the UE 102, the UE transmits IMS signaling to the UE 100 using the UE 102 as a communication partner.
  • the determination criteria (transcoding policy etc.) described in the first embodiment are applied to the ATGW. It may be determined whether to anchor the communication.
  • Embodiment 1 determines whether to anchor communication (ST1107, ST1108, ST1109).
  • the ATGW after receiving an SDP answer as in Embodiment 1, the ATGW determines whether to anchor communication or not, and if not anchored, the procedure for changing the communication partner of UE 102 from ATGW to UE 100 Can be omitted. Therefore, the time required for session setup can be shortened compared to the first embodiment.
  • FIG. 7 is a block diagram showing a configuration of ATCF / ATGW 320 according to the present embodiment, which is similar to that of the first embodiment.
  • FIG. 12 is a sequence chart showing an example of session setup in the third embodiment of the present disclosure and a case where the UE 100 performs handover to a CS network.
  • the SDP offer added Invite message (IMS signaling) transmitted from the UE 100 is transmitted to the ATCF / ATGW 320 (exactly ATCF only) via another network node (not shown) (1201).
  • IMS signaling IMS signaling
  • ATCF performs ATGW selection and resource allocation (1202).
  • the ATCF / ATGW 320 transmits an SDP offer-added Invite message to the UE 102 via another network node (not shown) (1203). At this time, the ATGW is designated as the communication partner of the UE 102.
  • the UE 102 sends an SDP answer together with the IMS message to the ATCF / ATGW 320 via another network node (not shown) (1204).
  • the ATCF / ATGW 320 that has received the SDP answer transmits an SDP answer to the UE 100 via another network node (not shown) as described in Non-Patent Document 4 (1205).
  • the ATGW is designated as the communication partner of the UE 100. That is, the ATCF / ATGW 320 anchors communication at the ATGW without analyzing the SDP offer answer.
  • Non-Patent Document 1 1206
  • the MSC / MGW transmits an Invite message with an SDP offer to the ATCF / ATGW 320 as described in Non-Patent Document 4 (1207).
  • the judging unit 710 of the ATCF / ATGW 320 that has received this message uses the contents of the SDP offer, the data stored in the data storage unit 706, and the policy stored in the policy storage unit 708 to transmit the codec from the ATCF to the UE. It is determined whether to enable transmission of the SDP offer for re-negotiation. Specifically, a determination is made as to whether to send IMS signaling (Invite message with SDP offer) to renegotiate the codec to the UE 102 (1208). An example of the determination method of the determination part 710 is shown in FIG.
  • Determination section 710 first confirms whether the codec used by UE 100 before the handover is included in the codec selected in the SDP offer (ST1301, ST1302). If it is included, IMS signaling (SDP offer) is not sent to the UE 100, and communication is continued according to the method described in Non-Patent Document 4 without changing the codec.
  • IMS signaling is transmitted / received to / from the UE 102 in the same manner as in Embodiment 1, and the SDP is again performed.
  • Determine whether to unify the codec by exchanging offer and answer That is, it is checked whether the codec used by UE 100 before handover is supported by ATGW (ST 1303). If not supported, it is impossible to perform processing related to that codec such as transcoding Therefore, it sends IMS signaling to the UE 102 and selects codec re-negotiation (ST1304).
  • the ATCF / ATGW checks whether transcoding is supported (ST1305).
  • transcoding is not supported, IMS signaling is sent to the UE 102, and codec renegotiation is selected (ST1304). Also, even if transcoding is supported, the policy is checked whether to allow transcoding (ST1306). If the policy does not allow transcoding, IMS signaling is sent to the UE 102, and codec renegotiation is selected (ST1304). Also, even in the case of a policy that allows transcoding, IMS signaling is sent to the UE 102, and it is determined whether a condition that does not require codec re-negotiation is established (ST1307).
  • the IMS signaling is not transmitted to and received from the UE 102 as described in Patent Document 2.
  • the codec after the change is the codec before the change and ATCF / ATGW and UE102 even if they do not support transcoding in MGW or ATGW when they are incompatible, and even if they do not support switching with no session re-negotiation of the RTP payload format or if they are compatible.
  • the communication can be continued by transmitting and receiving IMS signaling between them and re-negotiating the codec.
  • the ATCF / ATGW 320, the MSC / MGW 110, and the SCC AS / CSCF have been described as one node.
  • the present disclosure is not limited thereto, and the ATCF / ATGW 320, the MSC / MGW 110, and the SCC AS / CSCF may be configured of two or more separate nodes connected to each other by an interface. That is, the functions described above may be distributed to a plurality of nodes in each of ATCF and ATGW, MSC and MGW, and SCC AS and CSCF. Conversely, the functions of ATCF / ATGW 320 and MSC / MGW 110 may be implemented in one node.
  • the present disclosure is not limited to this, and can be applied to codecs such as music, sound, and images.
  • FIG. 8 to FIG. 13 show the operation (method) with hardware designed specifically, and install a program for executing the operation (method) of the present disclosure in general-purpose hardware. This also includes the case where it is realized by execution on a processor.
  • Examples of the general-purpose hardware electronic computer include personal computers, various portable information terminals such as smart phones, and mobile phones.
  • hardware specially designed includes not only finished products (consumer electronics) such as mobile phones and fixed phones but also semi-finished products and parts such as system boards and semiconductor devices.
  • the network node of the present disclosure is useful for handling codecs used for music signals and the like and codecs used for image signals, as well as handling voice codecs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

 本開示のネットワークノードは、eSRVCCに用いるATCF機能を有し、受信したSDPオファー/SDPアンサーに含まれるコーデック情報を取得するSDP解析部(704)と、ATGW又は近隣のMGWでサポートされるコーデック情報、ATGW又は近隣のMGWでサポートされるトランスコーディングの情報、及び近隣のCS網がサポートしているコーデック情報の少なくとも一つを保持するデータ格納部(706)と、SDP解析部で取得したコーデック情報、及びデータ格納部から読出した情報を用いてATCFから通信端末へコーデック再折衝のためのSDPオファーの送信を可能にするか否かを判断する判断部(710)と、を有する。

Description

ネットワークノード及びシグナリング処理方法
 本開示は、移動通信方式で用いられるネットワークノード及び当該ネットワークノードで実行するシグナリング処理方法に関する。
 従来、3GPP(Third Generation Partnership Project)の移動通信方式における音声通話は、3GPPの回線交換(CS:Circuit Switching)網を用いて行われていた。近年では、3GPPのパケット交換(PS:Packet Switching)網を用いた音声通話であるVoLTE(Voice over Long Term Evolution)サービスが開始されている。
 しかし、VoLTEサービスが受けられるエリアは限られたエリアである。このため、VoLTEによる音声通話(以下、VoLTE通話という)中にVoLTEサービスエリアの外に出た場合、従来の回線交換方式を用いた通話に切り替える必要がある。この切替を可能にする技術として、非特許文献1に記載のSRVCC(Single Radio Voice Call Continuity)がある。以下、図1及び図2を用いて、SRVCCによるハンドオーバの動作について説明する。
 図1は3GPPの移動通信ネットワーク構成の一部を示す。図1に示す移動通信ネットワークは、e-UTRAN(evolved Universal Terrestrial Radio Access Network)、e-UTRANの基地局(e-nodeB)、PS網、CS網、CS網の基地局サブシステム、非特許文献2、非特許文献3に記載のIMS(IP Multimedia Subsystem)から構成される。
 具体的には、図1において、e-UTRANは、VoLTEサービスを提供可能な無線アクセス網である。PS網は、VoLTEサービスを提供し、P-GW(Packet Data Network Gateway)、S-GW(Serving Gateway)及びMME(Mobility Management Entity)から構成される。CS網は、MSC(Mobile Switching Center)、MGW(Media GateWay)から構成される。CS網の基地局サブシステムは、RNC(Radio Network Controller)及びnodeBから構成される。IMSは、呼制御等を行い、CSCF(Call Session Control Function)及びSCC AS(Service Centralization and Continuity Application Server)から構成される。なお、図1及び図2では、MSCとMGWとを一つのノード(MSC/MGW110)として表しているが、これらは別々のノードとして表してもよい。
 図1において、移動通信端末(UE:User Equipment)であるUE100及びUE102は、最初PS網にそれぞれ接続されているとする(ただし、UE102側の無線アクセス網、基地局及びPS網は図示せず)。ここで、UE100とUE102が通話を開始する場合、セッションセットアップ(Session setup)処理が行われる。すなわちUE100とUE102の間でIMSのシグナリングによるSDP(Session Description Protocol)のオファー/アンサーが送受信される事により、通話の際に使用されるコーデック等が折衝される。図5にセッションセットアップの際のIMSシグナリング送受信の一例を示す。IMSシグナリングは各UEが契約している網(自網)のIMSノード(図1のCSCFやSCC AS)を介して送受信される(図5では不図示)。また図6に、SDPオファー/アンサーの一例を示す。図6の例では、後述のAMRとAMR-WBがオファーされ、AMRがアンサーにより選択される例である。IMSシグナリングの送受信が完了すると、UE100とUE102の間でVoLTE通話が開始される。このとき、通話の途中でUE100がCS網にハンドオーバ(HO:Hand Over)することを仮定する。
 図1の実線で示されたPath A、Path B及びPath Cは、通話データが通る経路を示す。また、図1の破線で示された200、202、204及び206は、SRVCCハンドオーバ処理におけるシグナリングが通る経路を示す。
 図2は、SRVCCハンドオーバ処理の動作を示すシーケンスチャートである。UE100及びUE102は最初PS網(e-UTRAN)にそれぞれ接続されており、UE100とUE102との間の通話データはPath Aを通って送受信されている。UE100がe-UTRANのカバーエリアから遠ざかろうとすると、e-nodeBは、これを検知し、MME、MSC/MGW110経由でRNC/nodeBとの間でコア網のシグナリング(以下、シグナリング)をやり取りする(図1に示すシグナリング200。図2に示すステップ(以下、「ST」という)200)。ST200において、nodeBとMSC/MGW110との間にCS網でのデータ経路が準備され、準備が終わると、MMEからe-nodeB経由で、UE100に対し、UTRAN(CS網)側にハンドオーバするよう命令が出される。
 ST200の処理と同時に、MSC/MGW110は、UE100の自網のCSCF/SCC AS経由でUE102とIMSのシグナリング(以下IMSシグナリング)をやり取りする(図1に示すシグナリング202。図2に示すST202)。これにより、UE102の通話データの送受信先を、UE100からMSC/MGW110に切り替えるよう命令が出され、Path Bが確立される。
 UE100は、UTRANにハンドオーバした後、RNC/nodeB経由でMSC/MGW110とシグナリングをやり取りする(図1に示すシグナリング204。図2に示すST204)。これにより、Path Cが確立される。
 Path C確立後、MSC/MGW110は、MME経由でP-GW/S-GWとシグナリングをやり取りする(図1に示すシグナリング206。図2に示すST206)。これにより、Path Aは削除される。
 以上、SRVCCハンドオーバの動作について説明した。
 上述のように、IMSシグナリングは自網での処理が行われる。このためUEが海外のネットワークなどにローミングしている状態でSRVCCを行った場合、ローミング先でのハンドオーバにも関わらず、自網までIMSシグナリングが送られてしまうため、距離などに起因した遅延が発生することがあった。このSRVCCの課題を改良し、データ経路切替にかかる時間を短縮する方式として、非特許文献4に記載の、ATCF(Access Transfer Control Function)エンハンスメントを用いたSRVCC方式(eSRVCC:enhanced-SRVCC)がある。このeSRVCCの動作の一例について、以下、図3及び図4を用いて説明する。
 図3は、eSRVCCを可能にする、3GPPの移動通信ネットワーク構成の一部を示す。図3に示す移動通信ネットワークは、図1と同様、e-UTRAN、e-nodeB、PS網、CS網、CS網の基地局サブシステム、及びIMSから構成される。ここでIMSには、CSCF及びSCC ASの他、ATCF(Access Transfer Control Function)及びATGW(Access Transfer GateWay)が存在する。なお、図3及び図4では、ATCFとATGWとを一つのノード(ATCF/ATGW320)として表しているが、これらは別々のノードとして表してもよい。
 図3において、UE100及びUE102は、最初にPS網にそれぞれ接続されているとする(ただし、UE102側の無線アクセス網、基地局及びPS網は図示せず)。つまり、UE100とUE102とでVoLTE通話が行われているとする。このとき、通話の途中でUE100がCS網にハンドオーバ(HO:Hand Over)することを仮定する。
 図3の実線で示されたPath A、Path B、Path C及びPath Dは、通話データが通る経路を示す。また、図3の破線で示された300、302、304及び306は、eSRVCCハンドオーバ処理におけるシグナリング及びIMSシグナリングが通る経路を示す。
 図4は、eSRVCCハンドオーバの動作を示すシーケンスチャートである。UE100及びUE102は最初PS網(e-UTRAN)にそれぞれ接続されている。eSRVCCハンドオーバを実現するシステムでは、ATCF/ATGW320において、ATCFはIMSシグナリングをアンカー(anchor)し、ATGWは通話データをアンカーする。つまり、UE100とUE102との間の通話開始時において、通話開始のIMSシグナリングはUEが接続している網(在圏網)のATCFで中継され、ATCFがATGWでの通話データのアンカーが必要と判断した場合、通話データのアンカーポイントとしてUEの在圏網のATGWが割り当てられる。これにより、UE100とUE102との間の通話データは、Path A及びPath Bを通って送受信される。
 UE100がe-UTRANのカバーエリアから遠ざかろうとすると、e-nodeBは、これを検知し、MME、MSC/MGW110経由でRNC/nodeBとの間でシグナリングをやり取りする(図3に示すシグナリング300。図4に示すST300)。ST300において、nodeBとMSC/MGW110との間にCS網でのデータ経路が準備され、準備が終わると、MMEからe-nodeB経由で、UE100に対し、UTRAN(CS網)側にハンドオーバするよう命令が出される。
 ST300の処理と同時に、MSC/MGW110は、UE100の在圏網のATCFにIMSシグナリングを送る。これによりATCFからUE100の在圏網のATGWに経路切替の指示が出され、ATGWの通話データ送受信先がUE100からMSC/MGW110に切り替わる(図3に示すシグナリング302。図4に示すST302)。すなわち、Path Cが確立される。また、ATGWへの経路切替処理が完了すると、ATCFは、SCC-ASに通知シグナリング(IMSシグナリング)を送信する(図3に示すシグナリング302。図4に示すST302)。
 UE100は、UTRANにハンドオーバした後、RNC/nodeB経由でMSC/MGW110とシグナリングをやり取りする(図3に示すシグナリング304。図4に示すST304)。これにより、Path Dが確立される。
 Path D確立後、MSC/MGW110は、MME経由でP-GW/S-GWとシグナリングをやり取りする(図3に示すシグナリング306。図4に示すST306)。これにより、Path Bは削除される。
 図1のSRVCCの構成では、例えば日本の携帯電話会社で回線契約しているUE100がヨーロッパの携帯電話網にローミングした状態で、同じくヨーロッパの同一国に在圏するUE102との通話中にCS網にハンドオーバした場合でも、MGWとUE102とのIMSシグナリングは日本を経由して送受信されるため、MGWとUE102との間のシグナリングに時間がかかるという問題があった。しかし、図3のeSRVCCであれば、MGWとATCFは通常同一国内でしかも近接して設けられている。さらに、シグナリングはMGWとATCF間で行われるだけであり、UE102との間のシグナリングは不要である。その結果、データ経路切替にかかる時間を短縮することができる。
 以上、eSRVCCハンドオーバの動作について説明した。
 CS網で利用される音声コーデックとして、狭帯域(NB:Narrowband)コーデックであるAMR(Adaptive Multi-Rate)コーデックや,広帯域(WB:Wideband)コーデックであるAMR-WB(Adaptive Multi-Rate Wideband)コーデックがある。AMRやAMR-WBは、パケット交換方式で利用可能であるため、PS網(VoLTE)での利用も考えられる。
 また、例えば、非特許文献4に記載のEVS(Enhanced Voice Service)のように、PS網(VoLTE)で利用されるコーデックもある。
 なお、上記先行技術文献において、狭帯域(NB:Narrowband)コーデックとは、8kHzでサンプリングされたデジタル音響信号の符号化及び復号処理を行うコーデックである。なお、狭帯域コーデックでは、一般的に300Hz~3.4kHzの周波数帯域を有するが、周波数帯域はこれに限らず0~4kHzの範囲内であればよい。また、広帯域コーデックとは、16kHzでサンプリングされたデジタル音響信号の符号化及び復号処理を行うコーデックである。なお、広帯域コーデックでは、一般的に50Hz~7kHzの周波数帯域を有するが、周波数帯域はこれに限らず0~8kHzの範囲内であればよい。また、超広帯域(SWB:Super Wideband)コーデックとは、32kHzでサンプリングされたデジタル音響信号の符号化及び復号処理を行うコーデックである。超広帯域コーデックでは、一般的に50Hz~14kHzの周波数帯域を有するが、周波数帯域はこれに限らず0~16kHzの範囲内であればこれに限定されない。
国際公開第2012/017951号 国際公開第2013/080471号
 図1又は図3において、UE100がPS網からCS網にハンドオーバした際、PS網で使用していたコーデックがCS網でサポートされていない場合には、UE100で使用されるコーデックは、CS網でサポートされているコーデックに変更される。UE100のコーデックに変更が生じた場合、UE100とUE102との通話継続を可能にするためには、次の2つの方法が考えられる。1つ目の方法は、MSC/MGW又はATCF/ATGWにおいてトランスコーディングを行う方法である。2つ目の方法は、UE102で使用されるコーデックをUE100の変更後のコーデックと同じものに変更する方法である。
 前者のトランスコーディングを行う方法では、MSC/MGW又はATCF/ATGWがトランスコーディングをサポートしている必要がある。またトランスコーディングによる通話品質の劣化が生じてしまう。
 一方、後者のコーデックを変更する方法では、UE102のコーデックを変更するため、IMSシグナリングによるコーデック再折衝が必要である。しかし、eSRVCCハンドオーバでは、UE100のハンドオーバの際の経路切替のためのIMSシグナリングがATCFで終端するため、UE102のコーデックを変更するためのIMSシグナリングを送ることができない。
 特許文献1には、ネットワーク側でeSRVCC方式が用いられている場合でも、UEがCSにハンドオーバする機能があるか否か、すなわちSRVCCに対応しているか否かを検出し、対応していない場合には通信経路をATGWでアンカーさせない方法が開示されている。また非特許文献4にはeSRVCC方式であっても(IMSシグナリングがATCFを経由する場合であっても)、通常のSRVCCのように扱う方法、即ち通信経路をATGWでアンカーさせず、また一方のUEがCS網にハンドオーバした際には、MGWからATCFを経由して、もう一方のUEとの間でIMSシグナリングが送受信される方法が記述されている(ATCF without media anchored in ATGW)。しかしながら、特許文献1に開示の方法ではUEが使用するコーデックにかかわらずUEがSRVCCをサポートしているか否かにより、IMSシグナリングがもう一方のUEに送られるか否かが決定される。また非特許文献4には、どのような場合にeSRVCCであっても通常のSRVCCのように扱われるかは記載されていない。
 本開示は、通信中の端末の一方がコーデックの変更を伴うハンドオーバを行った場合に、もう一方の端末のコーデックの変更を可能にし、通信を継続することができるネットワークノード及び当該ネットワークノードで実行するシグナリング処理方法を提供する。
 セッションセットアップの際、IMSシグナリングをアンカーするATCFがSDPオファー/アンサーの内容を確認し、通話開始時に使われるコーデック、UEがハンドオーバしうる先のCSで使われるコーデックを比較し、ATGWにトランスコーディング機能が無ければ、又はATGWでのトランスコーディングを希望しないのであれば、通信経路をATGWでアンカーさせずに、通常のSRVCCのように扱う方法を選択し、UEのCSへのハンドオーバが生じた際には、もう片方のUEとの間で再度IMSシグナリングによるSDPオファー/アンサーの送受信により、コーデックの再折衝を行う。
 または、通常のeSRVCCであってATGWでアンカーさせる場合であっても、UEがCSにハンドオーバしコーデックが変更になった場合、ATGWにトランスコーディング機能が無ければ、又はATGWでのトランスコーディングを希望しないのであればもう片方のUEとの間で再度IMSシグナリングによるSDPオファー/アンサーの送受信により、コーデックの再折衝を行う。
 本開示にかかるネットワークノードの一態様は、eSRVCC(enhanced Single Radio Voice Call Continuity)に用いる少なくともATCF機能(Access Transfer Control Function)を有するネットワークノードであって、IMS(IP Multimedia Subsystem)シグナリングに含まれるSDP(Session Description Protocol)オファーまたはSDPアンサーを受信する受信部と、前記SDPオファーまたは前記SDPアンサーに含まれるコーデックの情報を取得するSDP解析部と、データ格納部と、判断部とを有する。データ格納部は、ATGW(Access Transfer Gateway)または近隣(Neighboring)のMGW(Media Gateway)でサポートしているコーデックの情報、前記ATGWまたは近隣の前記MGWでサポートしているトランスコーディングの情報、および近隣のCS(Circuit Switching)網がサポートしているコーデックの情報の少なくとも一つを保持する。判断部は、SDP解析部で取得した前記コーデックの情報、および前記データ格納部から読み出した情報を用いて、前記ATCFから通信端末へのコーデック再折衝のためのSDPオファーの送信を可能にするか否かを判断する。
 通信中の端末の一方がコーデックの変更を伴うハンドオーバを行った場合に、もう一方の端末のコーデックの変更を可能にし、通信を継続することができるネットワークノード及び当該ネットワークノードで実行するシグナリング処理方法を実現することができる。
SRVCCにおける移動通信ネットワークの構成図 SRVCCにおけるハンドオーバ動作の説明図 eSRVCCにおける移動通信ネットワークの構成図 eSRVCCにおけるハンドオーバ動作の説明図 セッションアップ時におけるIMSシグナリング送受信を示す説明図 セッションアップ時に交わされるSDPオファー/アンサーの説明図 本開示のネットワークノードの構成図 本開示の実施形態1におけるセッションセットアップ動作の説明図 本開示の実施形態1におけるネットワークノードの動作を示す説明図 本開示の実施形態2におけるセッションセットアップ動作の説明図 本開示の実施形態2におけるネットワークノードの動作を示す説明図 本開示の実施形態3におけるセッションセットアップ動作およびハンドオーバ動作の説明図 本開示の実施形態3におけるネットワークノードの動作を示す説明図
 本開示の各実施の形態について、図面を参照して詳細に説明する。なお、本開示の各実施の形態において、UEはSRVCCに対応しており、ATCF/ATGWがその情報を取得している事を前提とする。UEがSRVCCに対応しているか否かをATCF/ATGWが取得する方法としては、特許文献1で開示されているような手段が用いられてもよい。
 (実施形態1)
 図7~図9を用いて実施の形態1を説明する。図7は本実施の形態のATCF/ATGW320のうち、特にATCF部分を構成するブロック図である。
 受信部700ではIMSシグナリングなどを受信する。また送信部702はIMSシグナリングなどを送信する。
 ここで、IMSシグナリングは、通信端末であるUEがセッションセットアップの際に送受信するIMSシグナリングのほか、UEのハンドオーバに伴い送受信するIMSシグナリングも含む。
 SDP解析部704は、IMSシグナリングに含まれるSDPオファーやSDPアンサーの中身を解析する。例えばSDPオファーやSDPアンサーを解析し、通話に使用される音声コーデックの情報を取得する。
 データ格納部706は、ATCF/ATGW320自体の能力(Capability)や、近隣MGWの能力が格納されている。例えばATCF/ATGW320やMGWがサポートしているコーデックの情報や、近隣のCS網がサポートしているコーデックの情報、ATCF/ATGW320やMGWがサポートしているトランスコーディングの情報(トランスコードできるコーデックの組み合わせ情報)などが格納されている。
 なお、近隣MGWや近隣CS網の情報はATCF/ATGW320とMGWが直接、又は他のネットワークノードを介してシグナリングメッセージを交換するなどの手段を用いて情報取得しても良いし、あらかじめ手動でデータが格納されていてもよい。
 ポリシー格納部708には、サービス提供に関するポリシーが格納されている。例えば通信を行う2つのUEが異なるコーデックを使用する事を許し、ATCF/ATGW320やMGWでトランスコーディングを行うか、又は通信行う2つのUEが使用するコーデックを統一し、トランスコーディングは行わない、などのポリシーが格納されている。
 判断部710は、SDP解析部704の解析結果、データ格納部706に格納されているデータ、ポリシー格納部708に格納されているポリシーを用いて、ATCFからUEへのコーデック再折衝のためのSDPオファーの送信を可能にするか否かを判断する。具体的には、ATGWで通信をアンカーするか、又はATGWでアンカーせず、UE102との間でIMSシグナリングを送受信する事によるコーデックの変更を可能にするか否かの判断を行う。
 図8は、本開示の実施の形態1におけるセッションセットアップの一例を示すシーケンスチャートである。UE100から送信された、SDPオファー付きInviteメッセージ(IMSシグナリング)は、他のネットワークノード(不図示)を経由してATCF/ATGW320(正確にはATCFのみ)に送信される(801)。
 ATCFでは非特許文献4に記載の通り、ATGWの選択とリソース割り当てを行う(802)。
 次にATCF/ATGW320は他のネットワークノード(不図示)を介してUE102にSDPオファー付きInviteメッセージを送信する(803)。この際、UE102の通信相手としてATGWが指定されている。
 次にUE102はSDPアンサーをIMSメッセージと共に、他のネットワークノード(不図示)を経由し、ATCF/ATGW320に送信する(804)。SDPアンサーを受け取ったATCF/ATGW320の判断部710は、SDPアンサーの中身、データ格納部706に格納されているデータ、ポリシー格納部708に格納されているポリシーを用いて、選択したATGWで通信をアンカーさせるか否かの判断を行う(805)。判断部710の判断方法の一例を図9に示す。
 判断部710はまずSDPアンサーで選択されているコーデックが何であるかを確認する(ST901)。
 次にSDPアンサーで選択されているコーデックが、UEがCS網にハンドオーバした際に使われうるコーデック(近隣のCS網でサポートされているコーデック)か否かを確認する。CS網で使われうるコーデックの場合は、ATGWで通信をアンカーするか否かの従来の判断基準(特許文献1に記載の判断基準等)を満たす場合には、ATGWで通信をアンカーし、満たさない場合はATGWで通信をアンカーしない事を選択する。(不図示)。
 SDPアンサーで選択されているコーデックが、UEがCS網にハンドオーバした際に使われうるコーデックで無い場合、そのコーデックがATGWや、UEがハンドオーバした際に使われうる近隣のMGWでサポートしているコーデックか否かを確認する(ST902)。サポートしていない場合は、トランスコーディング等そのコーデックに関する処理を行う事が不可能であるため、ATGWで通信をアンカーしない事、すなわちUEがCS網にハンドオーバしてコーデックが変更になった場合には、UE102との間でコーデック再折衝のためのIMSシグナリングを送受信し、コーデックUE100との間で統一できるようにする事を選択する(ST903)。またATGWや近隣のMGWでサポートしているコーデックの場合、UEがハンドオーバし得る近隣のCS網でサポートされているコーデックが、選択されたコーデックとの互換性があるか否かを確認し、互換性が無い場合には、トランスコーディングをサポートしているか否かを確認する(ST904)。
 トランスコーディングをサポートしていない場合にはATGWで通信をアンカーしない事を選択する(ST903)。またトランスコーディングをサポートしていた場合でも、トランスコーディングを許すか否か(トランスコーディングを使用するか否か)ポリシーの確認を行い(ST905)、トランスコーディングを許さないポリシーであった場合はトランスコーディングを行わない場合に該当するとして、ATGWで通信をアンカーしない事を選択する(ST903)。すなわちUEがCS網にハンドオーバしてコーデックが変更になった場合には、UE102との間でコーデック再折衝のためのIMSシグナリングを送受信し、コーデックUE100との間で統一できるようにする事を選択する。
 また、トランスコーディングをサポートしており、トランスコーディングを許すポリシーであった場合でも、ATGWで通信をアンカーするための他の条件が全て整っているかを判断する(ST906)。例えば選択されたコーデックが、近隣CSがサポートしているコーデックとの互換性がある場合に、特許文献2に記載のようにIMSシグナリングをUE102との間で送受信する事なしに、(RTPペイロードフォーマット切替のためのセッション再折衝無しで)互換モードへの切替機能を持つコーデックかを確認する。機能を持たない、又は持っていても使用するポリシーが無い場合には、ATGWで通信をアンカーしない事を選択する(ST903)。すなわちUEがCS網にハンドオーバしてコーデックが変更になった場合には、UE102との間でコーデック再折衝のためのIMSシグナリングを送受信し、コーデックUE100との間で統一できるようにする事を選択する。IMSシグナリングをUE102との間で送受信する事なしに、トランスコーディングなしのオペレーションを行う機能を持つコーデックで、かつその機能を使用するポリシーがある場合で、かつ、ATGWで通信をアンカーするための他の条件が全て整っている場合には、UEがCS網にハンドオーバしてコーデックが変更になった場合でも、UE102との間でコーデック再折衝のためのIMSシグナリングを送受信し、コーデックUE100との間で統一する必要は無いと判断し、ATGWで通信をアンカーさせる(ST907)。
 ATGWで通信をアンカーさせる事が判断された場合(ST907)、非特許文献4に記載の通り、UE100、及びUE102の通信先が選択されたATGWとなるようIMSシグナリングが送受信される。
 一方ATGWで通信をアンカーさせない事が判断された場合(ST903)、図8のようにATCF/ATGW320は再びUE102にIMSメッセージを送信し(806)、UE102の通信先はATGWではなく、UE100に変更するよう指示を送る。またUE100へのIMSシグナリングには、選択されたコーデック(SDPアンサー)の他、UE100の通信相手としてUE102が記される(807)。またこの時、ATGWに割り当てたリソースは解放される。
 このように、本実施の形態のセッションセットアップの後、UE100がCS網にハンドオーバし、使用するコーデックが変更になった際、変更後のコーデックが変更前のコーデックと互換性が無い場合でMGWやATGWでトランスコーディングをサポート又は許可していない場合や、また互換性が有る場合でIMSシグナリングをUE102との間で送受信する事なしに(RTPペイロードフォーマットの切替をセッション再折衝無しで)互換モードへの切替をサポート又は許可していない場合でも、ATCF/ATGWとUE102との間でIMSシグナリングを送受信し、コーデックの再折衝を行う事により、通信の継続が可能になる。
 (実施形態2)
 図7及び図10~11を用いて実施の形態2を説明する。図7は本実施の形態のATCF/ATGW320を構成するブロック図であり、実施の形態1と同様である。図10は、本開示の実施の形態2におけるセッションセットアップの一例を示すシーケンスチャートである。
 UE100から送信された、SDPオファー付きInviteメッセージ(IMSシグナリング)は、他のネットワークノード(不図示)を経由してATCF/ATGW320(正確にはATCFのみ)に送信される(1001)。ここで、ATCF/ATGW320は、SDPオファーからATGWで通信をアンカーさせるか否かを判断するか否かを決定する(1002)。例えばATCF/ATGWの判断部710において、SDPオファーの内容からATGWで通信をアンカーさせるか否かを判断するポリシーが、ポリシー格納部708にあるかを確認し、判断する。SDPオファーの内容からATGWで通信をアンカーさせるか否かの判断を行わない場合、実施の形態1のようにSDPアンサーから判断を行う。
 図11は本実施の形態のATCF/ATGW320の判断部710の判断方法の一例である。すなわちSDPオファーで判断する場合(ST1101)、SDPオファーのコーデックをSDP解析部704で解析する(ST1102)。この時解析されたコーデックの中に、ATCF/ATGW320や、近隣のMGWでサポートされないコーデックが含まれていた場合(ST1103)、SDPオファーからそのコーデックを削除しサポートされているコーデックのみにするか(UE100が近隣CS網にハンドオーバした場合にも、UE102とコーデックを再折衝する事なしに通信が継続できるコーデックのみにするか)どうかをポリシー格納部708に問い合わせる(ST1104)。削除する場合にはATGWで通信をアンカーすると判断する(ST1105)。すなわち通信をアンカーするATGWを選択し、リソースを割り当てる。また該当コーデックを削除したSDPをSDP解析部704などで生成し、ATGWを通信相手としてIMSシグナリングによりUE102に通知する。また、UE102からSDPアンサーを受け取ると、UE100に対しIMSシグナリングにより、通信相手をATGWとしてSDPアンサーを送る。反対にSDPオファーから該当コーデックを削除しない場合には、該当コーデックが選択された場合、トランスコーディング等そのコーデックに関する処理を行う事が不可能であるため、ATGWで通信をアンカーしない事と判断する(ST1106)。すなわちATGWの選択やリソース割り当ては行わず、UE100を通信相手としてUE102にIMSシグナリングを送る。またUE102からSDPアンサーを受け取ると、UE102を通信相手としてIMSシグナリングをUE100へ送る。
 また、SDPオファーから該当コーデックを削除する場合であっても、すぐにATGWで通信をアンカーすると判断せず、実施の形態1に記載の判断基準(トランスコーディングのポリシー等)を適応させ、ATGWで通信をアンカーするか否かを判断してもよい。
 また、UE100から送られたSDPオファーの内容から、全てのコーデックがATCF/ATGW320や近隣MGWでサポートされているが、近隣CS網でサポートされていないコーデックが含まれている場合、実施の形態1と同様の方法で、ATGWで通信をアンカーするか否かを判断する(ST1107、ST1108、ST1109)。
 本実施の形態では、実施の形態1のようにSDPアンサーを受けてからATGWで通信をアンカーするか否かを判断し、アンカーしない場合には、UE102の通信相手をATGWからUE100に変更する手続きが省略できる。そのため実施の形態1に比べセッションセットアップにかかる時間を短縮する事ができる。
 (実施形態3)
 本実施の形態では、セッションセットアップ時にATGWで通信をアンカーする場合においても、UE100のCS網へのハンドオーバなどでUE102とのコーデックの再折衝が必要になった場合には、ATCF/ATGW320からUE102にIMSシグナリングを送る機能をATCF/ATGW320に持たせる。
 図7及び図12~13を用いて、本実施の形態を説明する。図7は本実施の形態のATCF/ATGW320の構成を示すブロック図であり、実施の形態1と同様である。
 図12は、本開示の実施の形態3におけるセッションセットアップ及び、UE100がCS網にハンドオーバを行った際の一例を示すシーケンスチャートである。UE100から送信された、SDPオファー付きInviteメッセージ(IMSシグナリング)は、他のネットワークノード(不図示)を経由してATCF/ATGW320(正確にはATCFのみ)に送信される(1201)。ATCFでは非特許文献4に記載の通り、ATGWの選択とリソース割り当てを行う(1202)。
 次にATCF/ATGW320は他のネットワークノード(不図示)を介してUE102にSDPオファー付きInviteメッセージを送信する(1203)。この際、UE102の通信相手としてATGWが指定されている。
 次にUE102はSDPアンサーをIMSメッセージと共に、他のネットワークノード(不図示)を経由し、ATCF/ATGW320に送信する(1204)。SDPアンサーを受け取ったATCF/ATGW320は、非特許文献4に記載の通り、他のネットワークノード(不図示)を介して、UE100にSDPアンサーを送信する(1205)。この際、UE100の通信相手としてATGWが指定されている。即ちATCF/ATGW320はSDPオファー・アンサーを解析する事なく、ATGWで通信をアンカーさせる。
 次に、UE100がCS網へハンドオーバし、非特許文献1に記載の方法で、CS網を通じてMSC/MGWまでの通信経路が確立されたとする(1206)。MSC/MGWは非特許文献4に記載の通り、ATCF/ATGW320にSDPオファー付きInviteメッセージを送信する(1207)。
 このメッセージを受け取ったATCF/ATGW320の判断部710は、SDPオファーの中身、データ格納部706に格納されているデータ、ポリシー格納部708に格納されているポリシーを用いて、ATCFからUEへのコーデック再折衝のためのSDPオファーの送信を可能にするか否かを判断する。具体的には、UE102にコーデックを再折衝するIMSシグナリング(SDPオファー付きInviteメッセージ)を送るか否かの判断を行う(1208)。判断部710の判断方法の一例を図13に示す。
 判断部710はまずSDPオファーで選択されているコーデックの中にUE100がハンドオーバ前に使用していたコーデックが含まれるか否かを確認する(ST1301、ST1302)。含まれていた場合にはUE100にIMSシグナリング(SDPオファー)は送らず、コーデックの変更無しに非特許文献4に記載の方法で通信を継続する。
 SDPオファーで選択されているコーデックの中にUE100がハンドオーバ前に使用していたコーデックが含まれていない場合、実施形態1と同様の方法でUE102との間でIMSシグナリングを送受信して、再度SDPオファー・アンサーをやり取りする事によるコーデックの統一を行なうか否かを判断する。すなわちUE100がハンドオーバ前に使用していたコーデックが、ATGWでサポートしているか否かを確認し(ST1303)、サポートしていない場合は、トランスコーディング等そのコーデックに関する処理を行う事が不可能であるため、UE102にIMSシグナリングを送りコーデックの再折衝を選択する(ST1304)。またUE100がハンドオーバ前に使用していたコーデックをサポートしていた場合、SDPオファーのコーデックの中に、UE100がハンドオーバ前に使用していたコーデックとの互換性があるものが存在するか否かを確認し、互換性が無い場合には、ATCF/ATGWにおいてトランスコーディングをサポートしているか否かを確認する(ST1305)。
 トランスコーディングをサポートしていない場合には、UE102にIMSシグナリングを送り、コーデック再折衝をする事を選択する(ST1304)。またトランスコーディングをサポートしていた場合でも、トランスコーディングを許すか否かポリシーの確認を行う(ST1306)。トランスコーディングを許さないポリシーであった場合は、UE102にIMSシグナリングを送り、コーデック再折衝をする事を選択する(ST1304)。また、トランスコーディングを許すポリシーであった場合でも、UE102にIMSシグナリングを送り、コーデック再折衝をする必要の無い条件が整っているかを判断する(ST1307)。例えば、SDPオファーの中にUE100がハンドオーバ前に使っていたコーデックとの互換性があるものが含まれる場合でも、特許文献2に記載のようにIMSシグナリングをUE102との間で送受信する事なしに、(RTPペイロードフォーマット切替のためのセッション再折衝無しで)互換モードへの切替機能を持つコーデックかを確認する。機能を持たない、又は持っていても使用するポリシーが無い場合には、UE102にIMSシグナリングを送る事を選択する(ST1304)。コーデック再折衝をする必要の無い条件が全て整っている場合、ATCF/ATGW320はUE102にはIMSシグナリングを送らず(ST1308)、SDPオファーの中から適当なコーデックを選び、SDPアンサーをMSC/MGWに返すと共に、ATGWの通信先をUE100からMGWに変更する。
 本実施の形態により、非特許文献4に記載のセッションセットアップ方法を変更する事なく、UE100がCS網にハンドオーバし、使用するコーデックが変更になった際、変更後のコーデックが変更前のコーデックと互換性が無い場合でMGWやATGWでトランスコーディングをサポートしていない場合や、また互換性が有る場合でもRTPペイロードフォーマットのセッション再折衝無しによる切替をサポートしていない場合でも、ATCF/ATGWとUE102との間でIMSシグナリングを送受信し、コーデックの再折衝を行う事により、通信の継続が可能になる。
 以上、本開示の各実施の形態について説明した。
 なお、上記各実施の形態では、ATCF/ATGW320、MSC/MGW110、SCC AS/CSCFをそれぞれ一つのノードとして説明した。しかし、本開示はこれに限られず、ATCF/ATGW320、MSC/MGW110、SCC AS/CSCFが、互いにインタフェースによって接続される2つ以上の別々のノードで構成されてもよい。すなわち、ATCFとATGWとの間、MSCとMGWとの間、及び、SCC ASとCSCFとの間のそれぞれにおいて、上述した機能を複数のノードに分散させてもよい。また逆にATCF/ATGW320、MSC/MGW110の機能は一つのノードの中で実行されてもよい。
 また、上記各実施の形態では、主に音声に関するコーデックを用いて説明した。しかし、本開示はこれに限らず、音楽、音響、画像等のコーデックにも適用することができる。
 なお、図8から図13までの動作説明図は、専用に設計されたハードウェアでの動作(方法)を表すとともに、汎用のハードウェアに本開示の動作(方法)を実行するプログラムをインストールしてプロセッサで実行することにより実現する場合も含む。汎用のハードウェアたる電子計算機として、例えばパーソナルコンピュータ、スマートフォンなどの各種携帯情報端末、および携帯電話などが挙げられる。
 また、専用に設計されたハードウェアは、携帯電話や固定電話などの完成品レベル(コンシューマエレクトロニクス)に限らず、システムボードや半導体素子など、半完成品や部品レベルをも含むものである。
 また、本開示は、上記各実施の形態に限定されず、種々変更して実施することが可能である。
 本開示のネットワークノードは、音声コーデックを扱う場合の他、音楽信号等に用いるコーデックや画像信号に用いるコーデックを扱う場合に有用である。
 320 ATCF/ATGW
 700 受信部
 704 SDP解析部
 706 データ格納部
 710 判断部

Claims (14)

  1.  eSRVCC(enhanced Single Radio Voice Call Continuity)に用いるATCF機能(Access Transfer Control Function)を有するネットワークノードであって、
     IMS(IP Multimedia Subsystem)シグナリングに含まれるSDP(Session Description Protocol)オファーまたはSDPアンサーを受信する受信部と、
     前記SDPオファーまたは前記SDPアンサーに含まれるコーデックの情報を取得するSDP解析部と、
     ATGW(Access Transfer Gateway)または近隣のMGW(Media Gateway)でサポートしているコーデックの情報、前記ATGWまたは近隣の前記MGWでサポートしているトランスコーディングの情報、および近隣のCS(Circuit Switching)網がサポートしているコーデックの情報の少なくとも一つを保持するデータ格納部と、
     前記SDP解析部で取得した前記コーデックの情報、および前記データ格納部から読み出した情報を用いて、前記ATCFから通信端末へコーデックを再折衝するためのSDPオファーの送信を可能にするか否かを判断する判断部と、
     を有するネットワークノード。
  2.  前記判断部における、前記ATCFから前記通信端末へコーデックを再折衝するための前記SDPオファーの送信を可能にするか否かの判断は、
      前記ATGWで通話データをアンカーするか否か、または、
      前記通信端末にコーデックを再折衝するための前記SDPオファーを送信するか否か、
     の判断である、
     請求項1記載のネットワークノード。
  3.  前記受信部でセッションセットアップの際に受信した前記SDPオファーまたは前記SDPアンサーに含まれる前記コーデックが、前記ATGWまたは近隣の前記MGWでサポートしているコーデックと一致しない場合、
     前記判断部は、前記ATGWで通話データをアンカーしないと判断する、
     請求項2記載のネットワークノード。
  4.  前記受信部でセッションセットアップの際に受信した前記SDPオファーに含まれる前記コーデックが、前記ATGWまたは近隣の前記MGWでサポートしている前記コーデックと一致しない場合において、
     前記SDPオファーから前記コーデックを削除して送信する場合には、前記判断部は、前記ATGWで通話データをアンカーすると判断し、
     前記SDPオファーから前記コーデックを削除しないで送信する場合には、前記判断部は、前記ATGWで通話データをアンカーしないと判断する、
     請求項3記載のネットワークノード。
  5.  前記受信部でセッションセットアップの際に受信した前記SDPオファーまたは前記SDPアンサーに含まれる前記コーデックが、近隣の前記CS網がサポートしているコーデックと一致しないまたは互換性がなく、かつ、前記ATGWまたは近隣の前記MGWで前記SDPオファー又は前記SDPアンサーに含まれるコーデックに対しトランスコーディングを行わない場合、
     前記判断部は、前記ATGWで通話データをアンカーしないと判断する、
     請求項2記載のネットワークノード。
  6.  前記受信部で前記通信端末のハンドオーバ時に受信した前記SDPオファーに含まれる前記コーデックが、前記ATGWでサポートしているコーデックと一致しない場合、前記判断部は、前記通信端末にコーデック再折衝のための前記SDPオファーを送信すると判断する、
     請求項2記載のネットワークノード。
  7.  前記受信部で前記通信端末のハンドオーバ時に受信した前記SDPオファーに含まれる前記コーデックが、近隣の前記CS網がサポートしているコーデックと一致しないまたは互換性がなく、かつ、前記ATGWまたは近隣の前記MGWで前記SDPオファー又は前記SDPアンサーに含まれるコーデックに対しトランスコーディングを行わない場合、前記判断部は、前記通信端末にコーデック再折衝のための前記SDPオファーを送信すると判断する、
     請求項2記載のネットワークノード。
  8.  eSRVCC(enhanced Single Radio Voice Call Continuity)に用いるATCF機能(Access Transfer Control Function)を有するネットワークノードにおけるシグナリング処理方法であって、
     IMS(IP Multimedia Subsystem)シグナリングに含まれるSDP(Session Description Protocol)オファーまたはSDPアンサーを受信し、
     前記SDPオファーまたは前記SDPアンサーに含まれるコーデックの情報を取得し、
     ATGW(Access Transfer Gateway)または近隣のMGW(Media Gateway)でサポートしているコーデックの情報、前記ATGWまたは近隣の前記MGWでサポートしているトランスコーディングの情報、および近隣のCS(Circuit Switching)網がサポートしているコーデックの情報の少なくとも一つを取得し、
     前記取得した情報を用いて、前記ATCFから通信端末へコーデックを再折衝するためのSDPオファーの送信を可能にするか否かを判断する、
     シグナリング処理方法。
  9.  前記ATCFから前記通信端末へコーデックを再折衝するための前記SDPオファーの送信を可能にするか否かの判断は、
      前記ATGWで通話データをアンカーするか否か、または、
      前記通信端末にコーデックを再折衝するための前記SDPオファーを送信するか否か、の判断である、
     請求項8記載のシグナリング方法。
  10.  セッションセットアップの際に受信した前記SDPオファーまたは前記SDPアンサーに含まれる前記コーデックが、前記ATGWまたは近隣の前記MGWでサポートしているコーデックと一致しない場合、前記ATGWで通話データをアンカーしないと判断する、
     請求項9記載のシグナリング方法。
  11.  セッションセットアップの際に受信した前記SDPオファーに含まれる前記コーデックが、前記ATGWまたは近隣の前記MGWでサポートしている前記コーデックと一致しない場合において、
     前記SDPオファーから前記コーデックを削除して送信する場合には、前記ATGWで通話データをアンカーすると判断し、
     前記SDPオファーから前記コーデックを削除しないで送信する場合には、前記ATGWで通話データをアンカーしないと判断する、
     請求項10記載のシグナリング方法。
  12.  セッションセットアップの際に受信した前記SDPオファーまたは前記SDPアンサーに含まれる前記コーデックが、近隣の前記CS網がサポートしているコーデックと一致しないまたは互換性がなく、かつ、前記ATGWまたは近隣の前記MGWで前記SDPオファー又は前記SDPアンサーに含まれるコーデックに対しトランスコーディングを行わない場合、前記ATGWで通話データをアンカーしないと判断する、
     請求項9記載のシグナリング方法。
  13.  前記通信端末のハンドオーバ時に受信した前記SDPオファーに含まれる前記コーデックが、前記ATGWでサポートしているコーデックと一致しない場合、前記通信端末にコーデックを再折衝するための前記SDPオファーを送信すると判断する、
     請求項9記載のシグナリング方法。
  14.  前記通信端末のハンドオーバ時に受信した前記SDPオファーに含まれる前記コーデックが、近隣の前記CS網がサポートしているコーデックと一致しないまたは互換性がなく、かつ、前記ATGWまたは近隣の前記MGWで前記SDPオファー又は前記SDPアンサーに含まれるコーデックに対しトランスコーディングを行わない場合、前記通信端末にコーデックを再折衝するための前記SDPオファーを送信すると判断する、
     請求項9記載のシグナリング方法。
PCT/JP2015/002134 2014-05-13 2015-04-20 ネットワークノード及びシグナリング処理方法 WO2015174018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15792804.5A EP3145165B1 (en) 2014-05-13 2015-04-20 Network node and signaling processing method
JP2016519094A JP6420328B2 (ja) 2014-05-13 2015-04-20 ネットワークノード及びシグナリング処理方法
US15/285,716 US9967782B2 (en) 2014-05-13 2016-10-05 Network node and signaling processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461992222P 2014-05-13 2014-05-13
US61/992,222 2014-05-13
JP2014-138668 2014-07-04
JP2014138668 2014-07-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/285,716 Continuation US9967782B2 (en) 2014-05-13 2016-10-05 Network node and signaling processing method

Publications (1)

Publication Number Publication Date
WO2015174018A1 true WO2015174018A1 (ja) 2015-11-19

Family

ID=54479573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002134 WO2015174018A1 (ja) 2014-05-13 2015-04-20 ネットワークノード及びシグナリング処理方法

Country Status (4)

Country Link
US (1) US9967782B2 (ja)
EP (1) EP3145165B1 (ja)
JP (1) JP6420328B2 (ja)
WO (1) WO2015174018A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640390A (zh) * 2018-09-07 2021-04-09 苹果公司 用于在ims多媒体电话会话中发信号通知ran辅助的编解码器自适应能力的设备和方法
JP7523267B2 (ja) 2020-07-10 2024-07-26 株式会社Nttドコモ 通信制御装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11089519B2 (en) * 2016-04-13 2021-08-10 Qualcomm Incorporated Migration of local gateway function in cellular networks
US11082455B2 (en) 2017-05-03 2021-08-03 T-Mobile Usa, Inc. Network gateway transcoder-utilization-aware session control
US11509772B2 (en) * 2018-11-13 2022-11-22 Qualcomm Incorporated Methods for increasing Voice-over-Internet Protocol (VoIP) network coverage
EP3895395A1 (en) 2018-12-10 2021-10-20 Telefonaktiebolaget LM Ericsson (publ) Network node, entity and methods performed therein for handling a communication session in a communication network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054620A (ja) * 2010-08-06 2012-03-15 Ntt Docomo Inc 移動通信方法及び移動通信システム
WO2013072193A2 (en) * 2011-11-14 2013-05-23 Nokia Siemens Networks Oy Method and apparatus for allocating a transfer function
WO2013080471A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 ネットワークノード及び通信方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050586B3 (de) * 2005-10-21 2006-11-02 Siemens Ag Verfahren zum Aufbau einer Videotelefonverbindung und/oder Multimediatelefonverbindung in einem Datennetz
JP2009147692A (ja) * 2007-12-14 2009-07-02 Ntt Docomo Inc 移動通信端末、交換局、蓄積装置、及び、メッセージ蓄積方法
US8204022B2 (en) * 2008-02-20 2012-06-19 Alcatel Lucent Method of providing transcoding during voice-over-internet protocol handoff
JP5140696B2 (ja) * 2010-04-26 2013-02-06 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム及び移動局
JP2012105211A (ja) * 2010-11-12 2012-05-31 Ntt Docomo Inc コアネットワークおよび通信システム
CN104221429B (zh) * 2012-04-17 2019-04-05 瑞典爱立信有限公司 利用活跃编解码器选择在接入网之间的呼叫的srvcc切换

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054620A (ja) * 2010-08-06 2012-03-15 Ntt Docomo Inc 移動通信方法及び移動通信システム
WO2013072193A2 (en) * 2011-11-14 2013-05-23 Nokia Siemens Networks Oy Method and apparatus for allocating a transfer function
WO2013080471A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 ネットワークノード及び通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP SA4-EVS SWG CONFERENCE CALL #26, AHEVS-253, 28 May 2013 (2013-05-28), XP008183131, Retrieved from the Internet <URL:http:// www.3gpp.org/ftp/TSG_SA/WG4_CODEC/Ad-hoc_EVS/ Docs/AHEVS-253.zip> [retrieved on 20150624] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640390A (zh) * 2018-09-07 2021-04-09 苹果公司 用于在ims多媒体电话会话中发信号通知ran辅助的编解码器自适应能力的设备和方法
US11611909B2 (en) 2018-09-07 2023-03-21 Apple Inc. Apparatus and method for signaling ran-assisted codec adaptation capabilities in IMS multimedia telephony sessions
JP7523267B2 (ja) 2020-07-10 2024-07-26 株式会社Nttドコモ 通信制御装置

Also Published As

Publication number Publication date
JPWO2015174018A1 (ja) 2017-04-20
EP3145165A4 (en) 2017-04-26
US20170026878A1 (en) 2017-01-26
EP3145165B1 (en) 2019-10-16
JP6420328B2 (ja) 2018-11-07
EP3145165A1 (en) 2017-03-22
US9967782B2 (en) 2018-05-08

Similar Documents

Publication Publication Date Title
US10362514B2 (en) Network node and communication method
US11647428B2 (en) Communication terminal apparatus and communication method
US8957938B2 (en) Method and apparatus for handing over a video conversation from packet switch domain to circuit switch domain
JP6420328B2 (ja) ネットワークノード及びシグナリング処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792804

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519094

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015792804

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015792804

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE