WO2015166130A1 - Modular system for analysing beams of light - Google Patents

Modular system for analysing beams of light Download PDF

Info

Publication number
WO2015166130A1
WO2015166130A1 PCT/ES2015/070355 ES2015070355W WO2015166130A1 WO 2015166130 A1 WO2015166130 A1 WO 2015166130A1 ES 2015070355 W ES2015070355 W ES 2015070355W WO 2015166130 A1 WO2015166130 A1 WO 2015166130A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
piece
confinement
photonic
intended
Prior art date
Application number
PCT/ES2015/070355
Other languages
Spanish (es)
French (fr)
Inventor
Andreu LLOBERA ADÁN
Xavier MUÑOZ-BERBEL
Jordi VILA PLANAS
Hans Zappe
Philipp Müller
Daniel Kopp
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Albert-Ludwigs-Universität Freiburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Albert-Ludwigs-Universität Freiburg filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2015166130A1 publication Critical patent/WO2015166130A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Definitions

  • the present invention can be included in the technical field of light beam analysis systems. BACKGROUND OF THE INVENTION
  • the monolithic technique starts from a single substrate (be it glass, silicon, etc.) and all the technological steps are carried out on that substrate, thus forming the final system.
  • the main advantages are that the system obtained is inherently aligned and that the probability of error and defects is very low.
  • the disadvantage of this technique is that the systems that can be obtained are limited to technologies compatible with said substrate.
  • the heterogeneous technique is based on the coupling or combination of technologically incompatible substrates in order to obtain a system that provides the advantages of both.
  • the disadvantages are alignment errors and the increase in system complexity.
  • Fluidic systems with horizontal configurations are also known in which the polydimethylsiloxane polymer is used for passive parts and a hybrid base plate made of silicon / PDMS.
  • Another type of system also known uses simple pieces of PDMS joined by external tubes but this configuration has the disadvantage that entails an excessively high dead volume.
  • An improved system comprises individually manufactured parts by means of stereo lithography but each piece has a high cost, so its replacement is not feasible in a large number of occasions.
  • a modifiable modular system is also known, described in the PK publication. Yuen Lab chip, 8, 1374-1378, 2008, in which eleven pieces are presented, among which there are five pieces with an anchor type, five equal pieces (from the fluidic point of view) but with the reverse anchor, and a reactor.
  • the problem that arises with this technology is that the system leaks due to a decoupling between the elements that can be even greater than 10 microns.
  • micro-optical systems do not require sealing and reduction of dead volumes, but minimization of misalignment between the different parts of the modular as well as high quality of the side walls (for guiding the light inside) and of the front walls (for the coupling piece by piece).
  • Modular micro-optical systems are known, as described in J.A. Mohr, Jour Light. Tech, 21 (3), 643-647, 2003, comprising two modules that are an optical motherboard where the optical elements (such as lenses and mirrors) are fixed and an electro-optical plate where the optically active elements are located .
  • a drawback is that anchoring and alignment in the vertical direction are not allowed.
  • the present invention proposes a modular system of light beam analysis that is optical or optofluidic.
  • the assembly of the pieces that compose it is done by means of identical self-recessing elements that carry all the pieces.
  • the assembly is reversible and easy to use, even for sporadic users.
  • This configuration provides the modular system with extremely high versatility as it allows an almost infinite combination of pieces (repeated or different).
  • With the modular system of the present invention there is no preferential order of positioning of the parts, nor an assembly system involving magnets or irreversible alignment parts (such as glue or photocurable structures).
  • the autoencatrables elements are some outgoing and some incoming that allow to assemble the pieces by tongue and groove. It has a low cost and can be assembled on site according to the specific requirements of each user, each analysis or each situation without the need for additional support or alignment system.
  • Each piece comprises a substrate material, comprises at least one micro-optical or photonic element and may contain at least one microfluidic element (in the case of not containing any fluidic element, the systems are optical, otherwise they are optofluidic).
  • the light beam analysis system is formed by combining pieces of each other from a plurality of pieces described below. Depending on their needs, each user can exchange them with each other, place one or more pieces of each type, etc.
  • optical elements that are part of these systems are operable by means of potentials that allow modifying their configuration to access the desired optical output channel. These configurations are not interchangeable, they have a pre-established order and their price is significant.
  • the system of the present invention is based on monolithic chip integration.
  • a very important advantage of the present invention is that the propagation of light inside the piece can be controlled.
  • the system parts have emitters, filters, waveguides, etc. In all of them the light is confined inside the piece and there are micro-optical or photonic elements to Optimize the light path.
  • Figure 1 a Shows a view of the first photonic piece.
  • Figure 1g. Shows a view of the first optofluidic piece.
  • Figure 1 h. Shows a view of the second optofluidic piece.
  • Figure 1 i. Shows a view of the third optofluidic piece.
  • Figure 1j. Shows a view of the fourth optofluidic piece.
  • Figure 2.- Shows a view of a first example of configuration of the modular system.
  • Figure 3.- Shows a view of a second example of configuration of the modular system.
  • Figure 4a.- A view shows a third example of the configuration of the modular system using only photonic pieces.
  • Figure 4b Shows a view of a fourth example of modular system configuration using optical parts as well.
  • Figure 5. Shows a view of a fourth example of configuration of the modular system.
  • the present invention proposes a modular system of light beam analysis comprising a plurality of parts that are assembled and can be exchanged interchangeably with each other by tongue and groove.
  • Each piece comprises connecting elements (1) that allow its union with other adjacent parts comprising complementary joining elements (1). That is, in one of the pieces there may be a male joint element (1.1) (such as a projection) and in another adjacent piece to which it is attached there is a female union element (1.2) (such as an inlet ) intended to receive the male connecting element (1.1) of the other part.
  • Each piece comprises a substrate material, comprises at least one micro-optical or photonic element and additionally said pieces may contain at least one microfluidic element (in the case of not containing any fluidic element, the systems are optical, otherwise they are optofluidic ).
  • the parts of which the system is composed can be selected from those shown in Figures 1 a-1 n.
  • the parts that make up the system are selected from the following:
  • a second photonic piece (4) comprising at least two light confinement elements (5, 6) and a hollow structure (7) arranged between them and intended to accommodate a liquid, solid or gaseous absorbent substance that absorbs wavelengths specific, and said hollow structure (7) is arranged between the light confinement elements (5, 6) such that the light beam passing through one of the confinement elements (5) interacts with the absorbent substance arranged in the structure hollow (7) and the emerging beam of light is collected in another confinement element (6),
  • a third photonic piece (8) comprising at least one light confinement element (9), a hollow structure (10) intended to accommodate a liquid, solid or gaseous emitting substance, and a plurality of mirrors (1 1) located around it intended to redirect the emission to the light confinement element (9), - a fourth photonic part (12) comprising a channel (13) that allows the self-alignment and fixation of at least one optical fiber, and comprises at least one light confinement element (14),
  • -a fifth photonic piece (15) comprising at least one element of input light confinement (16), at least one beam splitter (17) and at least one output light confinement element (18) with a nxim configuration being n the number of input confinement elements and m the number of output confinement elements,
  • -a sixth photonic piece (19) consisting of at least one light confinement element (20), a plurality of mirrors (21) to redirect the beam of light circulating through the light confinement elements (20), a crossing the confinement elements, forming a certain angle to each other, a second set of mirrors (22) intended to redirect the light beam and at least one confinement element of the exit light (23)
  • a first piece of optofluidics (24) comprising a microfluidic channel (25) intended for the passage of a fluid, and at least one confinement element (26) with a common optical axis intended to optically analyze the fluid circulating inside of the microfluidic channel (25),
  • a second piece of optofluidics which is of the "X" cross-type with a plurality of confinement elements (28) forming a certain angle between them and a microfluidic channel (29), and a plurality of mirrors around the intersection between the confinement elements (28) and the microfluidic channel (29) intended to optically block the microfluidic zone of any other beam of light coming from a point outside the microfluidic zone around the intersection between the optical axes formed by the elements of confinement (28),
  • a third piece of optofluidics (30) comprising a plurality of confinement elements (31) arranged at a certain angle between them and comprises at least one microfluidic system, which includes a central section of particle retention (32), about physical filters (33) intended to allow the passage of particles of a certain size and a microfluidic outer section (34), and a plurality of mirrors intended to optically block the microfluidic zone of any other beam of light from a point outside the microfluidic zone around the intersection between the optical axes formed by the confinement elements,
  • a fourth piece of optofluidics (35) comprising at least one zyzag-shaped microfluidic channel (36), two confinement elements of the optical beam, which are one input and one output, and comprises a plurality of mirrors (39) on both sides of the microfluidic channel (36), - a fifth optofluidic piece (40) comprising at least one confinement element intended for the passage of a beam of light (41) and which is coupled to at least one fluidic channel (42),
  • first fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an external element
  • a second fluidic part comprising a fluidic inlet (50) and a plurality of fluidic outlet channels (49),
  • a third fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an external element and an internal pressure regulation system by trapping compressible fluids (51).
  • the parts of the system are those shown in Figures 1a-1 n and are selected from the following:
  • a second photonic piece (4) comprising two light confinement elements (4, 6) and a hollow structure (7) arranged between them and intended to accommodate a liquid, solid or gaseous absorbent substance that absorbs specific wavelengths, and said hollow structure (7) is disposed between the two light confinement elements (5, 6) such that the light beam passing through one of the confinement elements (5) interacts with the absorbent substance arranged in the hollow structure (7) and the emerging light beam is collected in the other confinement element (6), shown in Figure 1b;
  • a third photonic piece (8) comprising an element of confinement of an optical beam (9), a hollow structure (10) intended to accommodate a liquid, solid or gaseous emitting substance, and a plurality of mirrors (11) located around thereof intended to redirect the emission to the waveguide, shown in Figure 1 c;
  • a fourth photonic part (12) comprising a channel that allows the self-alignment and fixation of at least one optical fiber (12), and comprises a confinement element of an optical beam (13), shown in Figure 1 d ;
  • a fifth photonic piece (15) comprising an element of confinement of the optical beam (13), a beam splitter (17) and two elements of confinement of the optical output beam (18), forming a 1x2 configuration, shown in the figure 1 e;
  • -a sixth photonic piece (19) consisting of two confinement elements of two optical input beams, a first pair of mirrors (21) to redirect the beam of light circulating through the confinement elements (20), a crossing of the confinement elements with a certain angle to each other, a second pair of mirrors (22) intended to redirect the light beam and two confinement elements of two optical output beams shown in Figure 1f;
  • a first piece of optofluidics (24) comprising a microfluidic channel (25) intended for the passage of a fluid, and two confinement elements (26) with a common optical axis intended to optically analyze the fluid circulating inside the channel microfluidic (25), shown in Figure 1g;
  • a third piece of optofluidics (30) comprising four confinement elements (31) arranged at a certain angle between them and comprises a microfluidic system, which includes a central section of particle retention (32), filters (33) physics intended to allow the passage of particles of a certain size, a microfluidic outer section (34) intended to allow interconnection with other adjacent pieces, and mirrors that are arranged radially around the microfluidic system to block the microfluidic zone of any other beam of light from a point outside it, shown in Figure 1 i;
  • -a fourth piece of optofluidics (35) comprising a zyzag-shaped microfluidic channel (36), two elements for confining optical beams (one input and one output), and comprises a plurality of mirrors ( 39) on both sides of the microfluidic channel (36), shown in Figure 1j;
  • a fifth optofluidic piece (40) comprising a confinement element intended for the passage of a beam of light (41) and which is coupled to a fluidic channel (42), shown in Figure 1 k;
  • first fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an outer element, shown in the figure - a second fluidic part (48) comprising a fluidic inlet (50) and a plurality of fluidic outlet channels (49), shown in Figure 1 m,
  • a third fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an external element and an internal pressure regulation system by trapping compressible fluids (51), shown in Figure 1 n.
  • radially located mirrors block the microfluidic zone of any other beam of light from a point outside the microfluidic zone (29).
  • the confinement element of the first photonic piece (2), of the second photonic piece (4), of the third photonic piece (8), of the fifth photonic piece (8), of the sixth photonic piece (19), of the first optofluidic piece (24), and of the fifth optofluidic piece (40) it is formed by waveguides.
  • the confinement element is microlens, and in the second optofluidic part (27), the third optofluidic part (30) and the fourth optofluidic part (35), the confinement elements are a combination of guides wave and lens.
  • the size of the pieces is of the order of 1 or 2 cm.
  • the microlenses have a size of the order of micrometers and the waveguides as well.
  • the microlenses have a diameter of 300 um and the waveguides have dimensions of 300um wide by 250 um high.
  • the light confinement element (6) that collects the emerging light beam of the hollow structure (7) in the second photonic part (4) has a variable geometry intended to increase collection efficiency.
  • the output light confinement element (6) has a funnel shape of constant output angle but this funnel could be, for example, parabolic, or with any other type of geometry that allows reducing losses (this is what has been called variable geometry of the light confinement element (6)).
  • the second piece of optofluidics, the third piece of optofluidics, the fourth piece of optofluidics, the mirrors, shown in Figure 1 c are Fresnel reflection mirrors or they are mirrors of total internal reflection, but it could be another geometry or reflective structure.
  • the confinement element of the optical beam (14) can be microlenses or a waveguide.
  • these may be lenses or mirrors.
  • the elements of confinement and modification of the optical beam of the sixth photonic piece (19) are lenses.
  • the self-sealing channels (47) are intended for the connection of the part with an inlet tube or with a Luer syringe tip, although the geometry could be applied to other types of tips.
  • the system can also include first fluidic parts (46) with internal passive pressure control devices (51) of the fluid circulating through the self-sealing channels (47). This control is performed by creating an air bubble or other compressible material, as shown in Figure 1 or.
  • two constructions are implemented, which are shown in Figures 2 and 3, and in which the first is based on the exclusive use of photonics pieces and the second is based on a combination of photonics pieces. , optofluidic and microfluidic.
  • the system is formed using photonics pieces as shown in Figure 2.
  • a fourth photonic piece (12) is used, which is used as the system input.
  • a third photonic part (8) has been arranged, connected thereto by connecting the waveguide (9) of the third photonic part (8) to the waveguide (3) of a first photonic part.
  • a second photonic piece (4) is attached to the waveguide (9) of the third photonic piece (8) by one of its own light confinement elements (5), to direct the light towards the hollow structure ( 7) in which there is an absorbent substance that interacts with the light beam, this being collected by the other light confinement element (6) of this third photonic piece.
  • the last piece of the system is another fourth photonic piece (12) that has a channel (13) with a lens that receives the emerging beam.
  • the light coupled by an optical fiber positioned in a fourth photonic part (12) serves to excite a transmitter that has been introduced in the third photonic part (8).
  • the emitted light is coupled to a confinement element (3) (waveguide) of a first photonic piece (2).
  • the second photonic piece (4) allows to select, by means of the absorbance filter that has integrated in its hollow structure (7), the wavelengths that reach the optical output fiber, arranged in the channel (13) of the other fourth photonic piece.
  • a combination of parts for optofluidic applications has been assembled.
  • three first fluidic parts (46) are each provided with self-sealing fluidic channels (47) that have been connected to a second fluidic part (48) with three input channels (49) and one output channel ( fifty).
  • the second fluidic part (48) is connected to a first optofluidic part (24) which in turn is connected to a second optofluidic part (27).
  • Said second piece of optofluidics (27) comprises four confinement elements (28) that allow the connection of four pieces (each one corresponds to a confinement element). Two of those pieces are fourth photonic pieces (12) and the others are a first photonic piece (2) and a second photonic piece (4).
  • the second optofluidic part (27) comprises a microfluidic channel (29) whose output is connected in this example with another first fluidic part (26).
  • the second photonic part (4) is additionally connected to a fourth fluidic part (12), and the first photonic part (2) is connected to a third photonic part (8) which is in turn linked to another fourth photonic piece (12).
  • the light coupled by means of an optical fiber positioned in a fourth photonic piece (12) serves to excite the emitter arranged in the hollow structure (10) of the third photonic piece (8) connected to it.
  • the emitted light is coupled to a waveguide (3) of the first photonic piece (2), which transmits the light to the third optofluidic piece (27).
  • absorbance mediations can be carried out by means of the other fourth photonic part (12) coupled to an optical fiber of the second photonic part (4), of spreading by another of the fourth photonic pieces (12) coupled to an optical fiber and / or fluorescence, by means of an absorbance filter (B) and another fourth photonic piece coupled to an optical fiber.
  • FIG. 4a In a third embodiment, shown in Figure 4a, only photonics pieces have been used. It consists of two pieces for alignment with optical fibers and more specifically these are fourth photonic pieces (12) as described above. And it additionally comprises a plurality of first photonic pieces (2), each with a length of 1 cm. Losses without waveguide were measured, ie without first photonic pieces (2), by coupling the fourth photonic pieces (12) with each other, and the losses resulting from including one, two and three first pieces (2) were measured. The results of said characterization are shown in the figure 4b A 632 nm wavelength laser is coupled to a 200um core size multimode optical fiber, which in turn is placed in the channel (13) of one of the fourth photonic pieces (12).
  • the output is obtained in a fourth photonic part (12) identical with another optical fiber coupled in its channel (13).
  • the experimental measurements have been represented by incorporating a number between 0 and 3 first optical pieces (2) (respectively the results shown from left to right), representing the intensity measured at the output as a function of the distance of propagation.
  • FIG. 5a a fourth embodiment, shown in Figure 5a, the viability of this modular system for optofluidic applications has been demonstrated.
  • the central part of the system represented is a fourth optofluidic piece (35) to which two pieces of light input and output are attached.
  • a 405 nm wavelength laser is coupled to the input optical fiber, while the power meter is replaced by a spectrometer at the output.
  • the fluid inlet / outlet parts with direct coupling to the Luer type connector, the first fluidic part (46) with internal pressure self-regulation being the input part while the outlet is a first fluidic piece (46) without pressure regulator.
  • Figure 5b shows a graph showing the response that is obtained, which is a linear response of absorption versus analyte concentration, thus validating the present optofluidic analysis systems.

Abstract

The invention relates to a modular system for analysing beams of light, comprising a plurality of parts that are assembled and can be interchangeably exchanged with one another using a tongue-and-groove system, and each part comprising a substrate material, and comprising at least one micro-optical or photonic element. In addition, the parts can comprise microfluidic elements.

Description

SISTEMA MODULAR DE ANÁLISIS DE HACES DE LUZ  MODULAR LIGHT BEAM ANALYSIS SYSTEM
D E S C R I P C I Ó N OBJETO DE LA INVENCIÓN D E S C R I P C I O N OBJECT OF THE INVENTION
La presente invención se puede incluir en el campo técnico de los sistemas de análisis de haces de luz. ANTECEDENTES DE LA INVENCIÓN The present invention can be included in the technical field of light beam analysis systems. BACKGROUND OF THE INVENTION
En la actualidad existen dos técnicas principales para la obtención de dispositivos y sistemas de análisis de haces de luz de una manera genérica, que son la técnica monolítica y la técnica heterogénea. There are currently two main techniques for obtaining devices and systems of light beam analysis in a generic way, which are the monolithic technique and the heterogeneous technique.
La técnica monolítica parte de un sustrato único (ya sea vidrio, silicio, etc.) y se realizan todos los pasos tecnológicos sobre ese sustrato conformando así el sistema final. Las principales ventajas son que el sistema que se obtiene está inherentemente alineado y que la probabilidad de error y defectos es muy baja. La desventaja de esta técnica está en que los sistemas que se pueden obtener están limitados a tecnologías compatibles con dicho sustrato. The monolithic technique starts from a single substrate (be it glass, silicon, etc.) and all the technological steps are carried out on that substrate, thus forming the final system. The main advantages are that the system obtained is inherently aligned and that the probability of error and defects is very low. The disadvantage of this technique is that the systems that can be obtained are limited to technologies compatible with said substrate.
La técnica heterogénea se basa en el acople o combinación de sustratos tecnológicamente incompatibles a fin de obtener un sistema que proporciona las ventajas de ambos. Las desventajas son los errores de alineamiento y el aumento de la complejidad del sistema. The heterogeneous technique is based on the coupling or combination of technologically incompatible substrates in order to obtain a system that provides the advantages of both. The disadvantages are alignment errors and the increase in system complexity.
En ambos métodos descritos existe el riesgo de fallo, tanto de manera inicial (error de fabricación) como después de un cierto tiempo de uso (error de funcionamiento). Para resolver ese problema se han desarrollado los sistemas modulares. In both methods described there is a risk of failure, both initially (manufacturing error) and after a certain period of use (operating error). To solve this problem, modular systems have been developed.
En el campo de los sistemas fluídicos se conocen sistemas modulares de análisis basados en tecnología de silicio acoplados en vertical y alineados mediante agujeros pasantes y tornillos. También se conocen sistemas que se obtienen mediante una combinación vertical de dos chips comerciales (como por ejemplo un sistema de reacción en cascada de polimerasa con un chip de electroforesis capilar) mediante una junta tórica de hidroxietilcelulosa definida litográficamente. Estos sistemas presentan problemas de alineamiento. In the field of fluidic systems, modular analysis systems based on silicon technology coupled vertically and through holes are known threads and screws. Systems are also known which are obtained by a vertical combination of two commercial chips (such as a polymerase cascade reaction system with a capillary electrophoresis chip) by means of a lithographically defined hydroxyethylcellulose O-ring. These systems present alignment problems.
Asimismo se conocen del estado de la técnica sistemas fluídicos compuestos por unas estructuras almenadas en silicio positivas y negativas que permiten el alineamiento vertical de sistemas microfluídicos, como las descritas en C. González et al. Sens. Act. B, 49, 40-45, 1998. El problema es que no se permite ni su fijación ni su estanqueidad y es necesario emplear juntas tóricas fabricadas en silicona foto- estructurable y una posterior soldadura entre las partes del dispositivo. El problema asociado a esta estrategia es la imposibilidad de reemplazar las posibles piezas dañadas. Para solucionar dicho problema se conoce una tecnología que permite una soldadura reversible y una desoldadura (mediante un baño de diclorometano). Además se conoce el empleo de materiales poliméricos. Also known in the state of the art are fluid systems composed of positive and negative silicon crenellated structures that allow vertical alignment of microfluidic systems, such as those described in C. González et al. Sens. Act. B, 49, 40-45, 1998. The problem is that neither its fixation nor its tightness is allowed and it is necessary to use o-rings made of photo-structured silicone and a subsequent welding between the parts of the device. The problem associated with this strategy is the inability to replace the possible damaged parts. To solve this problem, a technology is known that allows reversible welding and desoldering (using a dichloromethane bath). In addition, the use of polymeric materials is known.
Asimismo se conocen sistemas fluídicos con configuraciones horizontales en los que se emplea el polímero polidimetilsiloxano para las piezas pasivas y una placa de base híbrida realizada en silicio/PDMS. Otro tipo de sistema también conocido emplea piezas simples de PDMS unidas mediante tubos externos pero esta configuración tiene como desventaja que conlleva un volumen muerto excesivamente elevado. Fluidic systems with horizontal configurations are also known in which the polydimethylsiloxane polymer is used for passive parts and a hybrid base plate made of silicon / PDMS. Another type of system also known uses simple pieces of PDMS joined by external tubes but this configuration has the disadvantage that entails an excessively high dead volume.
Un sistema mejorado comprende piezas fabricadas individualmente mediante litografía estéreo pero cada pieza tiene un elevado coste por lo que no es viable su reemplazo en un número elevado de ocasiones. An improved system comprises individually manufactured parts by means of stereo lithography but each piece has a high cost, so its replacement is not feasible in a large number of occasions.
Posteriormente se desarrolló un sistema con tubos de teflón para la microfluídica, y piezas de aluminio para sujetar los elementos necesarios para hacer la lectura óptica desde el exterior del sistema. Los elementos necesarios para la lectura están definidos fuera del sistema. Subsequently a system was developed with Teflon tubes for microfluidics, and aluminum parts to hold the necessary elements to make the optical reading from outside the system. The necessary elements for reading are defined outside the system.
Asimismo se conoce un sistema modular modificable, descrito en la publicación P.K. Yuen Lab chip, 8, 1374-1378, 2008, en el cual se presentan once piezas entre las que hay cinco piezas con un tipo de anclaje, cinco piezas iguales (desde el punto de vista fluídico) pero con el anclaje inverso, y un reactor. El problema que surge con esta tecnología es que el sistema tiene fugas por un desacople entre los elementos que puede ser incluso superior a 10 mieras. A modifiable modular system is also known, described in the PK publication. Yuen Lab chip, 8, 1374-1378, 2008, in which eleven pieces are presented, among which there are five pieces with an anchor type, five equal pieces (from the fluidic point of view) but with the reverse anchor, and a reactor. The problem that arises with this technology is that the system leaks due to a decoupling between the elements that can be even greater than 10 microns.
Por otra parte los sistema micro-ópticos no requieren de estanqueidad y de reducción de volúmenes muertos sino de minimización de desalineamiento entre las diferentes piezas del modular así como de una alta calidad de las paredes laterales (para el guiado de la luz en su interior) y de las paredes frontales (para el acoplo pieza a pieza). On the other hand, the micro-optical systems do not require sealing and reduction of dead volumes, but minimization of misalignment between the different parts of the modular as well as high quality of the side walls (for guiding the light inside) and of the front walls (for the coupling piece by piece).
Se conocen unos sistemas micro-ópticos modulares, como el descrito en J.A. Mohr, Jour Light. Tech, 21(3), 643-647, 2003, que comprenden dos módulos que son una placa base óptica donde se fijan los elementos ópticos (como por ejemplo lentes y espejos) y una placa electro-óptica donde se sitúan los elementos ópticamente activos. Un inconveniente es que no se permiten el anclaje y alineamiento en dirección vertical. Modular micro-optical systems are known, as described in J.A. Mohr, Jour Light. Tech, 21 (3), 643-647, 2003, comprising two modules that are an optical motherboard where the optical elements (such as lenses and mirrors) are fixed and an electro-optical plate where the optically active elements are located . A drawback is that anchoring and alignment in the vertical direction are not allowed.
No se conoce en la actualidad ningún sistema modular óptico u optofluídico de análisis de haces de luz capaz de ser diseñado in situ según los requerimientos específicos del usuario. There is currently no known optical or optofluidic modular beam analysis system capable of being designed on site according to the specific requirements of the user.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención propone un sistema modular de análisis de haces de luz que es óptico u optofluídico. El ensamblaje de las piezas que lo componen se realiza mediante unos elementos autoencastrables idénticos que llevan todas las piezas. El ensamblaje es reversible y de fácil utilización, incluso para usuarios esporádicos. Dicha configuración proporciona al sistema modular una versatilidad extremadamente alta ya que permite una combinación casi infinita de piezas (repetidas o diferentes). Con el sistema modular de la presente invención no existe un orden preferente de posicionamiento de las piezas, ni un sistema de ensamblaje que involucre imanes o piezas de alineamiento irreversible (como podrían ser pegamentos o estructuras fotocurables). Los elementos autoencastrables son unos salientes y unos entrantes que permiten ensamblar las piezas por machihembrado. Tiene un bajo coste y puede ser ensamblado in situ de acuerdo con los requerimientos específicos de cada usuario, de cada análisis o de cada situación sin necesidad de soporte o sistema de alineamiento adicional. The present invention proposes a modular system of light beam analysis that is optical or optofluidic. The assembly of the pieces that compose it is done by means of identical self-recessing elements that carry all the pieces. The assembly is reversible and easy to use, even for sporadic users. This configuration provides the modular system with extremely high versatility as it allows an almost infinite combination of pieces (repeated or different). With the modular system of the present invention there is no preferential order of positioning of the parts, nor an assembly system involving magnets or irreversible alignment parts (such as glue or photocurable structures). The autoencatrables elements are some outgoing and some incoming that allow to assemble the pieces by tongue and groove. It has a low cost and can be assembled on site according to the specific requirements of each user, each analysis or each situation without the need for additional support or alignment system.
Se trata de un sistema que puede ser óptico u optofluídico. Cada pieza comprende un material substrato, comprende al menos un elemento micro-óptico o fotónico y puede contener al menos un elemento microfluídico (en el caso de no contener ningún elemento fluídico, los sistemas son ópticos, en caso contrario, son optofluídicos). El sistema de análisis de haces de luz se conforma combinando piezas entre sí de una pluralidad de piezas que se describen a continuación. En función de sus necesidades cada usuario puede intercambiarlas entre sí, colocar una o varias piezas de cada tipo, etc. It is a system that can be optical or optofluidic. Each piece comprises a substrate material, comprises at least one micro-optical or photonic element and may contain at least one microfluidic element (in the case of not containing any fluidic element, the systems are optical, otherwise they are optofluidic). The light beam analysis system is formed by combining pieces of each other from a plurality of pieces described below. Depending on their needs, each user can exchange them with each other, place one or more pieces of each type, etc.
Como se ha comentado anteriormente, del estado de la técnica se conocen tecnologías para fabricación de piezas de sistemas de análisis de haces de luz que se basan en mecanizado (milling), es decir, en el empleo de una broca para eliminar el material que no interesa del material sustrato y fabricar así los canales y elementos necesarios para el sistema en cada caso. Esta técnica no es válida para la fabricación de elementos fotónicos de calidad, ya que generalmente su rugosidad es superior a la longitud de onda de trabajo. As it has been mentioned previously, from the state of the art there are known technologies for manufacturing parts of light beam analysis systems that are based on machining (milling), that is, on the use of a drill to remove the material that does not interested in the substrate material and thus manufacture the channels and elements necessary for the system in each case. This technique is not valid for the manufacture of quality photonic elements, since its roughness is generally greater than the working wavelength.
Asimismo se conocen sistemas basados en elementos comerciales sobre los que se hacen cambios empleando fibras ópticas para acoplar y desacoplar la luz. Los elementos ópticos que forman parte de estos sistemas son actuables mediante potenciales y que permiten modificar su configuración para acceder al canal óptico de salida deseado. Éstas configuraciones no son intercambiables, tienen un orden preestablecido y su precio es significativo. Also known are systems based on commercial elements on which changes are made using optical fibers to couple and uncouple the light. The optical elements that are part of these systems are operable by means of potentials that allow modifying their configuration to access the desired optical output channel. These configurations are not interchangeable, they have a pre-established order and their price is significant.
Por el contrario el sistema de la presente invención se basa en integración monolítica en chip. Una ventaja muy importante de la presente invención es que sí se puede controlar la propagación de la luz en el interior de la pieza. Además las piezas del sistema tienen emisores, filtros, guías de onda, etc. En todas ellas la luz está confinada en el interior de la pieza y hay elementos micro-ópticos o fotónicos para optimizar el recorrido de la luz. On the contrary, the system of the present invention is based on monolithic chip integration. A very important advantage of the present invention is that the propagation of light inside the piece can be controlled. In addition, the system parts have emitters, filters, waveguides, etc. In all of them the light is confined inside the piece and there are micro-optical or photonic elements to Optimize the light path.
Otra diferencia importante respecto a los sistemas del estado de la técnica es que en el sistema de la presente invención hay elementos de guiado óptico y que la detección del haz de luz se realiza dentro de las piezas. Asimismo las piezas del sistema propuesto son completamente intercambiables, ya que sus elementos de autoencastrado son idénticos entre sí, su fabricación no requiere de sistemas complejos y su utilización puede ser realizada incluso por usuarios esporádicos, ya que la implementación de los sistemas se basa en machihembrado. Another important difference with respect to the prior art systems is that in the system of the present invention there are optical guidance elements and that the detection of the light beam is carried out within the parts. Likewise, the pieces of the proposed system are completely interchangeable, since their self-embedded elements are identical to each other, their manufacture does not require complex systems and their use can be carried out even by sporadic users, since the implementation of the systems is based on tongue and groove .
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where, for illustrative and non-limiting purposes, the following has been represented:
Figura 1 a.- Muestra una vista de la primera pieza fotónica. Figure 1 a.- Shows a view of the first photonic piece.
Figura 1 b.- Muestra una vista de la segunda pieza fotónica. Figura 1 c- Muestra una vista de la tercera pieza fotónica. Figura 1 d.- Muestra una vista de la cuarta pieza fotónica. Figura 1 e.- Muestra una vista de la quinta pieza fotónica. Figura 1f.- Muestra una vista de la sexta pieza fotónica. Figure 1 b.- Shows a view of the second photonic piece. Figure 1 c- Shows a view of the third photonic piece. Figure 1 d.- Shows a view of the fourth photonic piece. Figure 1 e.- Shows a view of the fifth photonic piece. Figure 1f.- Shows a view of the sixth photonic piece.
Figura 1g.- Muestra una vista de la primera pieza optofluídica. Figura 1 h.- Muestra una vista de la segunda pieza optofluídica. Figura 1 i.- Muestra una vista de la tercera pieza optofluídica. Figura 1j.- Muestra una vista de la cuarta pieza optofluídica. Figure 1g.- Shows a view of the first optofluidic piece. Figure 1 h.- Shows a view of the second optofluidic piece. Figure 1 i.- Shows a view of the third optofluidic piece. Figure 1j.- Shows a view of the fourth optofluidic piece.
Figura 1 k.- Muestra una vista de la quinta pieza optofluídica. Figura 11.- Muestra una vista de la primera pieza fluídica. Figura 1 m.- Muestra una vista de la segunda pieza fluídica. Figura 1 n.- Muestra una vista de la tercera pieza fluídica. Figure 1 k.- Shows a view of the fifth optofluidic piece. Figure 11.- Shows a view of the first fluidic part. Figure 1 m.- Shows a view of the second fluidic part. Figure 1 n.- Shows a view of the third fluidic part.
Figura 2.- Muestra una vista de un primer ejemplo de configuración del sistema modular. Figure 2.- Shows a view of a first example of configuration of the modular system.
Figura 3.- Muestra una vista de un segundo ejemplo de configuración del sistema modular. Figure 3.- Shows a view of a second example of configuration of the modular system.
Figura 4a.- Muestra una vista un tercer ejemplo de configuración del sistema modular empleando solo piezas fotónicas. Figure 4a.- A view shows a third example of the configuration of the modular system using only photonic pieces.
Figura 4b.- Muestra una vista de un cuarto ejemplo de configuración del sistema modular empleando también piezas ópticas. Figura 5.- Muestra una vista de un cuarto ejemplo de configuración del sistema modular. Figure 4b.- Shows a view of a fourth example of modular system configuration using optical parts as well. Figure 5.- Shows a view of a fourth example of configuration of the modular system.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
A continuación se presenta, con ayuda de las figuras 1 a 5, unas realizaciones preferentes de la invención. Below, with the help of Figures 1 to 5, preferred embodiments of the invention are presented.
La presente invención propone un sistema modular de análisis de haces de luz que comprende una pluralidad de piezas que se ensamblan y se pueden intercambiar indistintamente entre sí mediante machihembrado. Cada pieza comprende unos elementos de unión (1 ) que permiten su unión con otras piezas adyacentes que comprenden elementos de unión (1 ) complementarios. Es decir, en una de las piezas puede haber un elemento de unión macho (1.1 ) (como por ejemplo un saliente) y en otra pieza adyacente a la que se une hay un elemento de unión hembra (1.2) (como por ejemplo un entrante) destinado a recibir al elemento de unión macho (1.1 ) de la otra pieza. The present invention proposes a modular system of light beam analysis comprising a plurality of parts that are assembled and can be exchanged interchangeably with each other by tongue and groove. Each piece comprises connecting elements (1) that allow its union with other adjacent parts comprising complementary joining elements (1). That is, in one of the pieces there may be a male joint element (1.1) (such as a projection) and in another adjacent piece to which it is attached there is a female union element (1.2) (such as an inlet ) intended to receive the male connecting element (1.1) of the other part.
Se trata de un sistema que puede ser óptico u optofluídico. Cada pieza comprende un material substrato, comprende al menos un elemento micro-óptico o fotónico y adicionalmente dichas piezas pueden contener al menos un elemento microfluídico (en el caso de no contener ningún elemento fluídico, los sistemas son ópticos, en caso contrario, son optofluídicos). Las piezas de las que está compuesto el sistema se pueden seleccionar entre las mostradas en las figuras 1 a-1 n. It is a system that can be optical or optofluidic. Each piece comprises a substrate material, comprises at least one micro-optical or photonic element and additionally said pieces may contain at least one microfluidic element (in the case of not containing any fluidic element, the systems are optical, otherwise they are optofluidic ). The parts of which the system is composed can be selected from those shown in Figures 1 a-1 n.
Las piezas que conforman el sistema se seleccionan entre las siguientes: The parts that make up the system are selected from the following:
- una primera pieza fotónica (2) que comprende un al menos un elemento de confinamiento (3) de luz,  - a first photonic piece (2) comprising at least one confinement element (3) of light,
-una segunda pieza fotónica (4) que comprende al menos dos elementos de confinamiento de luz (5, 6) y una estructura hueca (7) dispuesta entre ellos y destinada a acoger una sustancia absorbente líquida, sólida o gaseosa que absorbe longitudes de onda específicas, y dicha estructura hueca (7) está dispuesta entre los elementos de confinamiento de luz (5, 6) tal que el haz de luz que pasa por uno de los elementos de confinamiento (5) interacciona con la sustancia absorbente dispuesta en la estructura hueca (7) y el haz de luz emergente es recogido en otro elemento de confinamiento (6), - a second photonic piece (4) comprising at least two light confinement elements (5, 6) and a hollow structure (7) arranged between them and intended to accommodate a liquid, solid or gaseous absorbent substance that absorbs wavelengths specific, and said hollow structure (7) is arranged between the light confinement elements (5, 6) such that the light beam passing through one of the confinement elements (5) interacts with the absorbent substance arranged in the structure hollow (7) and the emerging beam of light is collected in another confinement element (6),
-una tercera pieza fotónica (8) que comprende al menos un elemento de confinamiento de luz (9), una estructura hueca (10) destinada a acoger una sustancia emisora líquida, sólida o gaseosa, y una pluralidad de espejos (1 1 ) situados alrededor de la misma destinados a redirigir la emisión hacia el elemento de confinamiento de luz (9), -una cuarta pieza fotónica (12) que comprende un canal (13) que permite el auto- alineamiento y fijación de al menos una fibra óptica, y comprende al menos un elemento de confinamiento de luz (14), - a third photonic piece (8) comprising at least one light confinement element (9), a hollow structure (10) intended to accommodate a liquid, solid or gaseous emitting substance, and a plurality of mirrors (1 1) located around it intended to redirect the emission to the light confinement element (9), - a fourth photonic part (12) comprising a channel (13) that allows the self-alignment and fixation of at least one optical fiber, and comprises at least one light confinement element (14),
-una quinta pieza fotónica (15) que comprende al menos un elemento de confinamiento de luz de entrada (16), al menos un divisor de haz (17) y al menos un elemento de confinamiento de luz de salida (18) con una configuración nxim siendo n el número de elementos de confinamiento de entrada y m el número de elementos de confinamiento de salida, -a fifth photonic piece (15) comprising at least one element of input light confinement (16), at least one beam splitter (17) and at least one output light confinement element (18) with a nxim configuration being n the number of input confinement elements and m the number of output confinement elements,
-una sexta pieza fotónica (19) que consiste en al menos un elemento de confinamiento de luz (20), una pluralidad de espejos (21 ) para redireccionar el haz de luz que circula por los elementos de confinamiento de luz (20), un cruce de los elementos de confinamiento, formando un cierto ángulo entre sí, un segundo conjunto de espejos (22) destinados a encauzar de nuevo el haz de luz y al menos un elemento de confinamiento de luz de salida (23)  -a sixth photonic piece (19) consisting of at least one light confinement element (20), a plurality of mirrors (21) to redirect the beam of light circulating through the light confinement elements (20), a crossing the confinement elements, forming a certain angle to each other, a second set of mirrors (22) intended to redirect the light beam and at least one confinement element of the exit light (23)
-una primera pieza de optofluídica (24) que comprende un canal microfluídico (25) destinado al paso de un fluido, y al menos un elemento de confinamiento (26) con un eje óptico común destinadas a analizar ópticamente el fluido que circula por el interior del canal microfluídico (25),  -a first piece of optofluidics (24) comprising a microfluidic channel (25) intended for the passage of a fluid, and at least one confinement element (26) with a common optical axis intended to optically analyze the fluid circulating inside of the microfluidic channel (25),
-una segunda pieza de optofluídica (27) que es de tipo cruce en "X" con una pluralidad de elementos de confinamiento (28) formando un cierto ángulo entre ellas y un canal microfluídico (29), y una pluralidad de espejos alrededor de la intersección entre los elementos de confinamiento (28) y el canal microfluídico (29) destinados a bloquear ópticamente la zona microfluídica de cualquier otro haz de luz proveniente de un punto exterior a la zona microfluídica alrededor de la intersección entre los ejes ópticos formados por los elementos de confinamiento (28),  -a second piece of optofluidics (27) which is of the "X" cross-type with a plurality of confinement elements (28) forming a certain angle between them and a microfluidic channel (29), and a plurality of mirrors around the intersection between the confinement elements (28) and the microfluidic channel (29) intended to optically block the microfluidic zone of any other beam of light coming from a point outside the microfluidic zone around the intersection between the optical axes formed by the elements of confinement (28),
-una tercera pieza de optofluídica (30) que comprende una pluralidad de elementos de confinamiento (31 ) dispuestas formando un cierto ángulo entre ellos y comprende al menos un sistema microfluídico, el cual incluye una sección central de retención de partículas (32), unos filtros (33) físicos destinados a permitir el paso de partículas de un cierto tamaño y una sección exterior microfluídica (34), y una pluralidad de espejos destinados a bloquear ópticamente la zona microfluídica de cualquier otro haz de luz proveniente de un punto exterior a la zona microfluídica alrededor de la intersección entre los ejes ópticos formados por los elementos de confinamiento,  - a third piece of optofluidics (30) comprising a plurality of confinement elements (31) arranged at a certain angle between them and comprises at least one microfluidic system, which includes a central section of particle retention (32), about physical filters (33) intended to allow the passage of particles of a certain size and a microfluidic outer section (34), and a plurality of mirrors intended to optically block the microfluidic zone of any other beam of light from a point outside the microfluidic zone around the intersection between the optical axes formed by the confinement elements,
-una cuarta pieza de optofluídica (35) que comprende al menos un canal microfluídico (36) en forma de zig-zag, dos elementos de confinamiento del haz óptico, que son uno de entrada y otro de salida, y comprende una pluralidad de espejos (39) a ambos lados del canal microfluídico (36), -una quinta pieza optofluídica (40) que comprende al menos un elemento de confinamiento destinada al paso de un haz de luz (41 ) y que está acoplada a al menos un canal fluídico (42), -a fourth piece of optofluidics (35) comprising at least one zyzag-shaped microfluidic channel (36), two confinement elements of the optical beam, which are one input and one output, and comprises a plurality of mirrors (39) on both sides of the microfluidic channel (36), - a fifth optofluidic piece (40) comprising at least one confinement element intended for the passage of a beam of light (41) and which is coupled to at least one fluidic channel (42),
-una primera pieza fluídica (46) que comprende canales fluídicos autosellables (47) destinados a permitir una conexión con un elemento exterior,  - a first fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an external element,
-una segunda pieza fluídica (48) que comprende una entrada fluídica (50) y una pluralidad de canales fluídicos de salida (49),  - a second fluidic part (48) comprising a fluidic inlet (50) and a plurality of fluidic outlet channels (49),
-una tercera pieza fluídica (46) que comprende canales fluídicos autosellables (47) destinados a permitir una conexión con un elemento exterior y un sistema de regulación de presión interna mediante el atrapamiento de fluidos compresibles (51 ).  - a third fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an external element and an internal pressure regulation system by trapping compressible fluids (51).
En un ejemplo preferente de invención, las piezas del sistema son las que se muestran en las figuras 1a-1 n y están seleccionadas entre las siguientes: In a preferred example of the invention, the parts of the system are those shown in Figures 1a-1 n and are selected from the following:
-una primera pieza fotónica (2) que comprende un elemento de confinamiento (3) de un haz óptico, mostrada en la figura 1 a;  - a first photonic part (2) comprising a confinement element (3) of an optical beam, shown in Figure 1 a;
-una segunda pieza fotónica (4) que comprende dos elementos de confinamiento de luz (4, 6) y una estructura hueca (7) dispuesta entre ellos y destinada a acoger una sustancia absorbente líquida, sólida o gaseosa que absorbe longitudes de onda específicas, y dicha estructura hueca (7) está dispuesta entre los dos elementos de confinamiento de luz (5, 6) tal que el haz de luz que pasa por uno de los elementos de confinamiento (5) interacciona con la sustancia absorbente dispuesta en la estructura hueca (7) y el haz de luz emergente es recogido en el otro elemento de confinamiento (6), mostrada en la figura 1 b;  - a second photonic piece (4) comprising two light confinement elements (4, 6) and a hollow structure (7) arranged between them and intended to accommodate a liquid, solid or gaseous absorbent substance that absorbs specific wavelengths, and said hollow structure (7) is disposed between the two light confinement elements (5, 6) such that the light beam passing through one of the confinement elements (5) interacts with the absorbent substance arranged in the hollow structure (7) and the emerging light beam is collected in the other confinement element (6), shown in Figure 1b;
-una tercera pieza fotónica (8) que comprende un elemento de confinamiento de un haz óptico (9), una estructura hueca (10) destinada a acoger una sustancia emisora líquida, sólida o gaseosa, y una pluralidad de espejos (11 ) situados alrededor de la misma destinados a redirigir la emisión hacia la guía de ondas, mostrada en la figura 1 c;  -a third photonic piece (8) comprising an element of confinement of an optical beam (9), a hollow structure (10) intended to accommodate a liquid, solid or gaseous emitting substance, and a plurality of mirrors (11) located around thereof intended to redirect the emission to the waveguide, shown in Figure 1 c;
-una cuarta pieza fotónica (12) que comprende un canal que permite el auto- alineamiento y fijación de al menos una fibra óptica (12), y comprende un elemento de confinamiento de un haz óptico (13), mostrada en la figura 1 d;  - a fourth photonic part (12) comprising a channel that allows the self-alignment and fixation of at least one optical fiber (12), and comprises a confinement element of an optical beam (13), shown in Figure 1 d ;
-una quinta pieza fotónica (15) que comprende un elemento de confinamiento del haz óptico (13), un divisor de haz (17) y dos elementos de confinamiento del haz óptico de salida (18), formando una configuración 1x2, mostrada en la figura 1 e; -una sexta pieza fotónica (19) que consiste en dos elementos de confinamiento de dos haces ópticos de entrada, un primer par de espejos (21 ) para redireccionar el haz de luz que circula por los elementos de confinamiento (20), un cruce de los elementos de confinamiento con un cierto ángulo entre sí, un segundo par de espejos (22) destinados a encauzar de nuevo el haz de luz y dos elementos de confinamiento de dos haces ópticos de salida mostrada en la figura 1f; - a fifth photonic piece (15) comprising an element of confinement of the optical beam (13), a beam splitter (17) and two elements of confinement of the optical output beam (18), forming a 1x2 configuration, shown in the figure 1 e; -a sixth photonic piece (19) consisting of two confinement elements of two optical input beams, a first pair of mirrors (21) to redirect the beam of light circulating through the confinement elements (20), a crossing of the confinement elements with a certain angle to each other, a second pair of mirrors (22) intended to redirect the light beam and two confinement elements of two optical output beams shown in Figure 1f;
-una primera pieza de optofluídica (24) que comprende un canal microfluídico (25) destinado al paso de un fluido, y dos elementos de confinamiento (26) con un eje óptico común destinados a analizar ópticamente el fluido que circula por el interior del canal microfluídico (25), mostrada en la figura 1g;  -a first piece of optofluidics (24) comprising a microfluidic channel (25) intended for the passage of a fluid, and two confinement elements (26) with a common optical axis intended to optically analyze the fluid circulating inside the channel microfluidic (25), shown in Figure 1g;
-una segunda pieza de optofluídica (27) que es de tipo cruce en "X" con cuatro elementos de confinamiento de luz (28) formando un cierto ángulo entre ellos y un canal microfluídico (29), y unos espejos que están dispuestos radialmente alrededor del sistema microfluídico para bloquear la zona microfluídica de cualquier otro haz de luz proveniente de un punto exterior a ella, mostrada en la figura 1 h;  -a second piece of optofluidics (27) that is of the "X" cross type with four light confinement elements (28) forming a certain angle between them and a microfluidic channel (29), and mirrors that are arranged radially around of the microfluidic system to block the microfluidic zone of any other beam of light from a point outside it, shown in Figure 1 h;
-una tercera pieza de optofluídica (30) que comprende cuatro elementos de confinamiento (31 ) dispuestas formando un cierto ángulo entre ellos y comprende un sistema microfluídico, el cual incluye una sección central de retención de partículas (32), unos filtros (33) físicos destinados a permitir el paso de partículas de un cierto tamaño, una sección exterior microfluídica (34) destinada a permitir la interconexión con otras piezas adyacentes, y unos espejos que están dispuestos radialmente alrededor del sistema microfluídico para bloquear la zona microfluídica de cualquier otro haz de luz proveniente de un punto exterior a ella, mostrada en la figura 1 i;  -a third piece of optofluidics (30) comprising four confinement elements (31) arranged at a certain angle between them and comprises a microfluidic system, which includes a central section of particle retention (32), filters (33) physics intended to allow the passage of particles of a certain size, a microfluidic outer section (34) intended to allow interconnection with other adjacent pieces, and mirrors that are arranged radially around the microfluidic system to block the microfluidic zone of any other beam of light from a point outside it, shown in Figure 1 i;
-una cuarta pieza de optofluídica (35) que comprende un canal microfluídico (36) en forma de zig-zag, dos elementos de confinamiento de haces ópticos (uno de entrada y otro de salida) de entrada, y comprende una pluralidad de espejos (39) a ambos lados del canal microfluídico (36), mostrada en la figura 1j;  -a fourth piece of optofluidics (35) comprising a zyzag-shaped microfluidic channel (36), two elements for confining optical beams (one input and one output), and comprises a plurality of mirrors ( 39) on both sides of the microfluidic channel (36), shown in Figure 1j;
-una quinta pieza optofluídica (40) que comprende un elemento de confinamiento destinada al paso de un haz de luz (41 ) y que está acoplada a un canal fluídico (42), mostrada en la figura 1 k;  - a fifth optofluidic piece (40) comprising a confinement element intended for the passage of a beam of light (41) and which is coupled to a fluidic channel (42), shown in Figure 1 k;
-una primera pieza fluídica (46) que comprende canales fluídicos autosellables (47) destinados a permitir una conexión con un elemento exterior, mostrada en la figura -una segunda pieza fluídica (48) que comprende una entrada fluídica (50) y una pluralidad de canales fluídicos de salida (49), mostrada en la figura 1 m, -a first fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an outer element, shown in the figure - a second fluidic part (48) comprising a fluidic inlet (50) and a plurality of fluidic outlet channels (49), shown in Figure 1 m,
-una tercera pieza fluídica (46) que comprende canales fluídicos autosellables (47) destinados a permitir una conexión con un elemento exterior y un sistema de regulación de presión interna mediante el atrapamiento de fluidos compresibles (51 ), mostrada en la figura 1 n.  - a third fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an external element and an internal pressure regulation system by trapping compressible fluids (51), shown in Figure 1 n.
En la segunda pieza de optofluídica (27) unos espejos situados radialmente bloquean la zona microfluídica de cualquier otro haz de luz proveniente de un punto exterior a la zona microfluídica (29). In the second optofluidic piece (27), radially located mirrors block the microfluidic zone of any other beam of light from a point outside the microfluidic zone (29).
Preferentemente el elemento de confinamiento de la primera pieza fotónica (2), de la segunda pieza fotónica (4), de la tercera pieza fotónica (8), de la quinta pieza fotónica (8), de la sexta pieza fotónica (19), de la primera pieza optofluídica (24), y de la quinta pieza optofluídica (40) está conformado por guías de onda. En la cuarta pieza fotónica (12) el elemento de confinamiento son microlentes, y en la segunda pieza optofluídica (27), la tercera pieza optofluídica (30) y la cuarta pieza optofluídica (35), los elementos de confinamiento son combinación de guías de onda y de lentes. Preferentemente el tamaño de las piezas es del orden de 1 o 2 cm. Respecto a los tamaños de algunos de los elementos de las piezas, las microlentes tienen un tamaño del orden de micrometros y las guías de onda también. En un ejemplo de realización las microlentes tienen un diámetro de 300 um y las guías de onda tienen unas dimensiones de 300um de ancho por 250 um de alto. Preferably the confinement element of the first photonic piece (2), of the second photonic piece (4), of the third photonic piece (8), of the fifth photonic piece (8), of the sixth photonic piece (19), of the first optofluidic piece (24), and of the fifth optofluidic piece (40) it is formed by waveguides. In the fourth photonic piece (12) the confinement element is microlens, and in the second optofluidic part (27), the third optofluidic part (30) and the fourth optofluidic part (35), the confinement elements are a combination of guides wave and lens. Preferably the size of the pieces is of the order of 1 or 2 cm. Regarding the sizes of some of the elements of the pieces, the microlenses have a size of the order of micrometers and the waveguides as well. In one embodiment, the microlenses have a diameter of 300 um and the waveguides have dimensions of 300um wide by 250 um high.
En una realización de la invención el elemento de confinamiento de luz (6) que recoge el haz de luz emergente de la estructura hueca (7) en la segunda pieza fotónica (4) (mostrada en la figura 1 b) tiene una geometría variable destinada a aumentar la eficiencia de la recolección. El elementos de confinamiento de luz (6) de salida tiene forma de embudo de ángulo constante de salida pero este embudo podría ser, por ejemplo, parabólico, o con cualquier otro tipo de geometría que permita reducir las pérdidas (esto es lo que se ha denominado geometría variable del elemento de confinamiento de luz (6)). En otra realización de la invención en la tercera pieza fotónica (8), la segunda pieza de optofluídica, la tercera pieza de optofluídica, la cuarta pieza de optofluídica, los espejos, mostrados en la figura 1 c, son espejos de reflexión de Fresnel o son espejos de reflexión total interna, pero podría ser otra geometría o estructura reflectora. In one embodiment of the invention, the light confinement element (6) that collects the emerging light beam of the hollow structure (7) in the second photonic part (4) (shown in Figure 1b) has a variable geometry intended to increase collection efficiency. The output light confinement element (6) has a funnel shape of constant output angle but this funnel could be, for example, parabolic, or with any other type of geometry that allows reducing losses (this is what has been called variable geometry of the light confinement element (6)). In another embodiment of the invention in the third photonic piece (8), the second piece of optofluidics, the third piece of optofluidics, the fourth piece of optofluidics, the mirrors, shown in Figure 1 c, are Fresnel reflection mirrors or they are mirrors of total internal reflection, but it could be another geometry or reflective structure.
En la cuarta pieza fotónica (12) el elemento de confinamiento del haz óptico (14) pueden ser unas microlentes o una guía de onda. Respecto a los elementos de confinamiento del haz óptico de la quinta pieza fotónica (15), éstos pueden ser lentes o espejos. También los elementos de confinamiento y modificación del haz óptico de la sexta pieza fotónica (19) son lentes. In the fourth photonic part (12) the confinement element of the optical beam (14) can be microlenses or a waveguide. With respect to the confinement elements of the optical beam of the fifth photonic piece (15), these may be lenses or mirrors. Also the elements of confinement and modification of the optical beam of the sixth photonic piece (19) are lenses.
En la primera pieza fluídica (46) los canales autosellables (47) están destinados a la conexión de la pieza con un tubo de entrada o con una punta de jeringuilla tipo Luer, aunque la geometría podría aplicarse para otros tipos de puntas. In the first fluidic part (46) the self-sealing channels (47) are intended for the connection of the part with an inlet tube or with a Luer syringe tip, although the geometry could be applied to other types of tips.
En un ejemplo de realización de la invención el sistema puede incluir también primeras piezas fluídicas (46) con dispositivos pasivos internos de control de la presión (51 ) del fluido que circula por los canales autosellables (47). Este control se realiza mediante la creación de una burbuja de aire u otro material compresible, como se muestra en la figura 1 o. In an exemplary embodiment of the invention, the system can also include first fluidic parts (46) with internal passive pressure control devices (51) of the fluid circulating through the self-sealing channels (47). This control is performed by creating an air bubble or other compressible material, as shown in Figure 1 or.
En un ejemplo de realización de la invención se implementan dos construcciones, que se muestran las figuras 2 y 3, y en las que la primera se basa en la utilización exclusiva de piezas de fotónica y la segunda se basa en una combinación de piezas de fotónica, optofluídica y microfluídica. In an exemplary embodiment of the invention two constructions are implemented, which are shown in Figures 2 and 3, and in which the first is based on the exclusive use of photonics pieces and the second is based on a combination of photonics pieces. , optofluidic and microfluidic.
En el primer ejemplo de realización el sistema se forma empleando piezas de fotónica tal y como se aprecia en la figura 2. En este ejemplo se emplea una cuarta pieza fotónica (12) que se emplea como entrada del sistema. A continuación de ella se ha dispuesto una tercera pieza fotónica (8), unida a ella mediante conexión de la guía de ondas (9) de la tercera pieza fotónica (8) a la guía de ondas (3) de una primera pieza fotónica. Posteriormente se dispone una segunda pieza fotónica (4) unida a la guía de ondas (9) de la tercera pieza fotónica (8) por uno de sus propios elementos de confinamiento de luz (5), para dirigir la luz hacia la estructura hueca (7) en la que hay una sustancia absorbente que interacciona con el haz de luz, siendo éste recogido por el otro elemento de confinamiento de luz (6) de esta tercera pieza fotónica. La última pieza del sistema es otra cuarta pieza fotónica (12) que dispone de un canal (13) con una lente que recibe el haz emergente. La luz acoplada mediante una fibra óptica posicionada en una cuarta pieza fotónica (12) sirve para excitar a un emisor que se ha introducido en la tercera pieza fotónica (8). La luz emitida es acoplada a un elemento de confinamiento (3) (guía de ondas) de una primera pieza fotónica (2). La segunda pieza fotónica (4) permite seleccionar, mediante el filtro de absorbancia que tiene integrado en su estructura hueca (7), las longitudes de onda que llegan a la fibra óptica de salida, dispuesta en el canal (13) de la otra cuarta pieza fotónica. In the first embodiment, the system is formed using photonics pieces as shown in Figure 2. In this example, a fourth photonic piece (12) is used, which is used as the system input. Next, a third photonic part (8) has been arranged, connected thereto by connecting the waveguide (9) of the third photonic part (8) to the waveguide (3) of a first photonic part. Subsequently, a second photonic piece (4) is attached to the waveguide (9) of the third photonic piece (8) by one of its own light confinement elements (5), to direct the light towards the hollow structure ( 7) in which there is an absorbent substance that interacts with the light beam, this being collected by the other light confinement element (6) of this third photonic piece. The last piece of the system is another fourth photonic piece (12) that has a channel (13) with a lens that receives the emerging beam. The light coupled by an optical fiber positioned in a fourth photonic part (12) serves to excite a transmitter that has been introduced in the third photonic part (8). The emitted light is coupled to a confinement element (3) (waveguide) of a first photonic piece (2). The second photonic piece (4) allows to select, by means of the absorbance filter that has integrated in its hollow structure (7), the wavelengths that reach the optical output fiber, arranged in the channel (13) of the other fourth photonic piece.
En un segundo ejemplo de realización del sistema, mostrado en la figura 3, se ha ensamblado una combinación de piezas para aplicaciones de optofluídica. En este ejemplo se han dispuesto tres primeras piezas fluídicas (46) cada una de ellas con canales fluídicos autosellables (47) que se han conectado a una segunda pieza fluídica (48) con tres canales de entrada (49) y un canal de salida (50). La segunda pieza fluídica (48) está conectada a una primera pieza de optofluídica (24) que a su vez está conectada a una segunda pieza de optofluídica (27). Dicha segunda pieza de optofluídica (27) comprende cuatro elementos de confinamiento (28) que permiten la conexión de cuatro piezas (cada una queda en correspondencia con un elemento de confinamiento). Dos de esas piezas son cuartas piezas fotónicas (12) y las otras son una primera pieza fotónica (2) y una segunda pieza fotónica (4). Además la segunda pieza de optofluídica (27) comprende un canal microfluídico (29) cuya salida se conecta en este ejemplo con otra primera pieza fluídica (26). Por otra parte la segunda pieza fotónica (4) está unida adicionalmente a una cuarta pieza fluídica (12), y la primera pieza fotónica (2) está unida a una tercera pieza fotónica (8) que está unida a su vez a otra cuarta pieza fotónica (12). In a second embodiment of the system, shown in Figure 3, a combination of parts for optofluidic applications has been assembled. In this example, three first fluidic parts (46) are each provided with self-sealing fluidic channels (47) that have been connected to a second fluidic part (48) with three input channels (49) and one output channel ( fifty). The second fluidic part (48) is connected to a first optofluidic part (24) which in turn is connected to a second optofluidic part (27). Said second piece of optofluidics (27) comprises four confinement elements (28) that allow the connection of four pieces (each one corresponds to a confinement element). Two of those pieces are fourth photonic pieces (12) and the others are a first photonic piece (2) and a second photonic piece (4). In addition, the second optofluidic part (27) comprises a microfluidic channel (29) whose output is connected in this example with another first fluidic part (26). On the other hand, the second photonic part (4) is additionally connected to a fourth fluidic part (12), and the first photonic part (2) is connected to a third photonic part (8) which is in turn linked to another fourth photonic piece (12).
En este ejemplo tres líquidos son introducidos mediante puntas tipo Luer insertadas en las primera piezas fluídicas (46) (que son piezas autosellables con control interior de presión) conectadas a la segunda pieza fluídica (48) que desemboca en un único microcanal con lectura óptica (primera pieza de optofluídica (24)). En base a la disposición descrita en los párrafos anteriores, desde un punto de vista óptico, la luz acoplada mediante una fibra óptica posicionada en una cuarta pieza fotónica (12) sirve para excitar al emisor dispuesto en la estructura hueca (10) de la tercera pieza fotónica (8) conectada a ella. La luz emitida es acoplada a una guía de ondas (3) de la primera pieza fotónica (2), la cual transmite la luz a la tercera pieza de optofluídica (27). En ella se pueden realizar mediadas de absorbancia mediante la otra cuarta pieza fotónica (12) acoplada a una fibra óptica de la segunda pieza fotónica (4), de esparcimiento mediante otra de las cuartas piezas fotónicas (12) acoplada a una fibra óptica y/o de fluorescencia, mediante un filtro de absorbancia (B) y otra cuarta pieza fotónica acoplada a una fibra óptica. In this example, three liquids are introduced by means of Luer tips inserted in the first fluidic parts (46) (which are self-sealing parts with internal pressure control) connected to the second fluidic part (48) that flows into a single microchannel with optical reading ( first piece of optofluidics (24)). Based on the arrangement described in the preceding paragraphs, from an optical point of view, the light coupled by means of an optical fiber positioned in a fourth photonic piece (12) serves to excite the emitter arranged in the hollow structure (10) of the third photonic piece (8) connected to it. The emitted light is coupled to a waveguide (3) of the first photonic piece (2), which transmits the light to the third optofluidic piece (27). In it, absorbance mediations can be carried out by means of the other fourth photonic part (12) coupled to an optical fiber of the second photonic part (4), of spreading by another of the fourth photonic pieces (12) coupled to an optical fiber and / or fluorescence, by means of an absorbance filter (B) and another fourth photonic piece coupled to an optical fiber.
La base para dicha realización está en los principios que son inherentes a cada uno de los tipos de medidas que se quiere tomar con ella. Los estudios de absorbancia se realizan cuando la entrada y salida están a 180°. Los estudios de fluorescencia se hacen generalmente a 90° para evitar la luz de excitación no absorbida. Los estudios de esparcimiento se hacen a un cierto ángulo (que podría ser también de 90°) para recoger una cierta fracción de la luz reflejada por las partículas (esparcimiento de ángulo largo). The basis for such realization is in the principles that are inherent in each of the types of measures to be taken with it. Absorbance studies are performed when the input and output are at 180 °. Fluorescence studies are generally done at 90 ° to avoid non-absorbed excitation light. Spreading studies are done at a certain angle (which could also be 90 °) to collect a certain fraction of the light reflected by the particles (long angle spreading).
En un tercer ejemplo de realización, mostrado en la figura 4a, se ha empleado solo piezas de fotónica. Consiste en dos piezas para el alineamiento con fibras ópticas y más concretamente se trata de cuartas piezas fotónicas (12) como las descritas anteriormente. Y comprende adicionalmente una pluralidad de primeras piezas fotónicas (2), cada una de ellas con una longitud de 1 cm. Se midieron las pérdidas sin guía de ondas, es decir sin primeras piezas fotónicas (2), acoplando las cuartas piezas fotónicas (12) entre sí, y se midieron las pérdidas resultantes de incluir, una, dos y tres primeras piezas (2). Los resultados de dicha caracterización se muestran en la figura 4b. Un láser de longitud de onda de 632 nm se acopla a una fibra óptica multimodo de tamaño de núcleo de 200um, la cual a su vez se coloca en el canal (13) de una de las cuartas piezas fotónicas (12). La salida se obtiene en una cuarta pieza fotónica (12) idéntica con otra fibra óptica acoplada en su canal (13). En la gráfica de la figura 4b se han representado las medidas experimentales incorporando un número entre 0 y 3 primeras piezas ópticas (2) (respectivamente los resultados representados de izquieda a derecha), representando la intensidad medida a la salida en función de la distancia de propagación. In a third embodiment, shown in Figure 4a, only photonics pieces have been used. It consists of two pieces for alignment with optical fibers and more specifically these are fourth photonic pieces (12) as described above. And it additionally comprises a plurality of first photonic pieces (2), each with a length of 1 cm. Losses without waveguide were measured, ie without first photonic pieces (2), by coupling the fourth photonic pieces (12) with each other, and the losses resulting from including one, two and three first pieces (2) were measured. The results of said characterization are shown in the figure 4b A 632 nm wavelength laser is coupled to a 200um core size multimode optical fiber, which in turn is placed in the channel (13) of one of the fourth photonic pieces (12). The output is obtained in a fourth photonic part (12) identical with another optical fiber coupled in its channel (13). In the graph of figure 4b the experimental measurements have been represented by incorporating a number between 0 and 3 first optical pieces (2) (respectively the results shown from left to right), representing the intensity measured at the output as a function of the distance of propagation.
En un cuarto ejemplo de realización, mostrado en la figura 5a se ha demostrado la viabilidad de este sistema modular para aplicaciones optofluídicas. La parte central del sistema representado es una cuarta pieza optofluídica (35) a la que se le unen dos piezas de entrada y salida de luz. En éste caso a la fibra óptica de entrada se le acopla un láser de longitud de onda de 405 nm, mientras que a la salida se reemplaza el medidor de potencia por un espectrómetro. Se incluyen además las piezas de entrada/salida de fluidos con acople directo a conector tipo Luer, siendo la pieza de entrada del tipo primera pieza fluídica (46) con autoregulación interna de presión mientras que la salida es una primera prieza fluídica (46) sin regulador de presión. In a fourth embodiment, shown in Figure 5a, the viability of this modular system for optofluidic applications has been demonstrated. The central part of the system represented is a fourth optofluidic piece (35) to which two pieces of light input and output are attached. In this case, a 405 nm wavelength laser is coupled to the input optical fiber, while the power meter is replaced by a spectrometer at the output. Also included are the fluid inlet / outlet parts with direct coupling to the Luer type connector, the first fluidic part (46) with internal pressure self-regulation being the input part while the outlet is a first fluidic piece (46) without pressure regulator.
Para realizar la prueba se inyectan siete muestras con una concentración diferente de cristal violeta y se miden para cada una de ellas su absorción a la longitud de onda de trabajo. En la figura 5b se muestra una gráfica en la que se aprecia la respuesta que se obtiene, que es una respuesta lineal de la absorción frente a la concentración de analito, validándose así el presente los sistemas de análisis optofluídicos. To carry out the test, seven samples with a different concentration of violet crystal are injected and their absorption at the working wavelength is measured for each of them. Figure 5b shows a graph showing the response that is obtained, which is a linear response of absorption versus analyte concentration, thus validating the present optofluidic analysis systems.

Claims

R E I V I N D I C A C I O N E S
1.- Sistema modular de análisis de haces de luz que comprende una pluralidad de piezas que se ensamblan y cada pieza comprende un material substrato, comprende al menos un elemento micro-óptico o fotónico y está caracterizado por que todas las piezas se pueden intercambiar indistintamente entre sí, uniéndose mediante machihembrado, y dichas piezas se seleccionan al menos entre: 1.- Modular system of light beam analysis comprising a plurality of pieces that are assembled and each piece comprises a substrate material, comprises at least one micro-optical or photonic element and is characterized in that all parts can be exchanged interchangeably each other, joining by tongue and groove, and said pieces are selected at least among:
- una primera pieza fotónica (2) que comprende un al menos un elemento de confinamiento (3) de luz,  - a first photonic piece (2) comprising at least one confinement element (3) of light,
-una segunda pieza fotónica (4) que comprende al menos dos elementos de confinamiento de luz (5, 6) y una estructura hueca (7) dispuesta entre ellos y destinada a acoger una sustancia absorbente líquida, sólida o gaseosa que absorbe longitudes de onda específicas, y dicha estructura hueca (7) está dispuesta entre los elementos de confinamiento de luz (5, 6) tal que el haz de luz que pasa por uno de los elementos de confinamiento (5) interacciona con la sustancia absorbente dispuesta en la estructura hueca (7) y el haz de luz emergente es recogido en otro elemento de confinamiento (6), - a second photonic piece (4) comprising at least two light confinement elements (5, 6) and a hollow structure (7) arranged between them and intended to accommodate a liquid, solid or gaseous absorbent substance that absorbs wavelengths specific, and said hollow structure (7) is arranged between the light confinement elements (5, 6) such that the light beam passing through one of the confinement elements (5) interacts with the absorbent substance arranged in the structure hollow (7) and the emerging beam of light is collected in another confinement element (6),
-una tercera pieza fotónica (8) que comprende al menos un elemento de confinamiento de luz (9), una estructura hueca (10) destinada a acoger una sustancia emisora líquida, sólida o gaseosa, y una pluralidad de espejos (1 1 ) situados alrededor de la misma destinados a redirigir la emisión hacia el elemento de confinamiento de luz (9), -una cuarta pieza fotónica (12) que comprende un canal (13) que permite el auto- alineamiento y fijación de al menos una fibra óptica, y comprende al menos un elemento de confinamiento de luz (14), - a third photonic piece (8) comprising at least one light confinement element (9), a hollow structure (10) intended to accommodate a liquid, solid or gaseous emitting substance, and a plurality of mirrors (1 1) located around it intended to redirect the emission to the light confinement element (9), - a fourth photonic part (12) comprising a channel (13) that allows the self-alignment and fixation of at least one optical fiber, and comprises at least one light confinement element (14),
-una quinta pieza fotónica (15) que comprende al menos un elemento de confinamiento de luz (16), al menos un divisor de haz (17) y al menos un elemento de confinamiento de luz (18) con una configuración nxim siendo n el número de canales ópticos de entrada y m el número de canales ópticos de salida,  - a fifth photonic piece (15) comprising at least one light confinement element (16), at least one beam splitter (17) and at least one light confinement element (18) with a nxim configuration being n the number of optical input channels and m the number of optical output channels,
-una sexta pieza fotónica (19) que consiste en al menos un elemento de confinamiento de luz (20), una pluralidad de espejos (21 ) para redireccionar el haz de luz que circula por los elementos de confinamiento de luz (20), un cruce de los elementos de confinamiento, formando un cierto ángulo entre sí, un segundo conjunto de espejos (22) destinados a encauzar de nuevo el haz de luz y al menos un elemento de confinamiento de luz de salida (23) -una primera pieza de optofluídica (24) que comprende un canal microfluídico (25) destinado al paso de un fluido, y al menos un elemento de confinamiento (26) con un eje óptico común destinadas a analizar ópticamente el fluido que circula por el interior del canal microfluídico (25), -a sixth photonic piece (19) consisting of at least one light confinement element (20), a plurality of mirrors (21) to redirect the beam of light circulating through the light confinement elements (20), a crossing the confinement elements, forming a certain angle to each other, a second set of mirrors (22) intended to redirect the light beam and at least one confinement element of the exit light (23) -a first piece of optofluidics (24) comprising a microfluidic channel (25) intended for the passage of a fluid, and at least one confinement element (26) with a common optical axis intended to optically analyze the fluid circulating inside of the microfluidic channel (25),
-una segunda pieza de optofluídica (27) que es de tipo cruce en "X" con una pluralidad de elementos de confinamiento (28) formando un cierto ángulo entre ellas y un canal microfluídico (29), y una pluralidad de espejos alrededor de la intersección entre los elementos de confinamiento (28) y el canal microfluídico (29), y una pluralidad de espejos destinados a bloquear ópticamente la zona microfluídica de cualquier otro haz de luz proveniente de un punto exterior a la zona microfluídica alrededor de la intersección entre los ejes ópticos formados por los elementos de confinamiento (28), -una tercera pieza de optofluídica (30) que comprende una pluralidad de elementos de confinamiento (31 ) dispuestas formando un cierto ángulo entre ellos y comprende al menos un sistema microfluídico, el cual incluye una sección central de retención de partículas (32), unos filtros (33) físicos destinados a permitir el paso de partículas de un cierto tamaño y una sección exterior microfluídica (34), y una pluralidad de espejos destinados a bloquear ópticamente la zona microfluídica de cualquier otro haz de luz proveniente de un punto exterior a la zona microfluídica alrededor de la intersección entre los ejes ópticos formados por los elementos de confinamiento,  -a second piece of optofluidics (27) which is of the "X" cross-type with a plurality of confinement elements (28) forming a certain angle between them and a microfluidic channel (29), and a plurality of mirrors around the intersection between the confinement elements (28) and the microfluidic channel (29), and a plurality of mirrors intended to optically block the microfluidic zone of any other beam of light from a point outside the microfluidic zone around the intersection between the optical axes formed by the confinement elements (28), -a third piece of optofluidic (30) comprising a plurality of confinement elements (31) arranged forming a certain angle between them and comprises at least one microfluidic system, which includes a central particle retention section (32), physical filters (33) intended to allow the passage of particles of a certain size and an outer section micr ophthalmic (34), and a plurality of mirrors intended to optically block the microfluidic zone of any other beam of light from a point outside the microfluidic zone around the intersection between the optical axes formed by the confinement elements,
-una cuarta pieza de optofluídica (35) que comprende al menos un canal microfluídico (36) en forma de zig-zag, dos elementos de confinamiento del haz óptico, que son uno de entrada y otro de salida, y comprende una pluralidad de espejos (39) a ambos lados del canal microfluídico (36),  -a fourth piece of optofluidics (35) comprising at least one zyzag-shaped microfluidic channel (36), two confinement elements of the optical beam, which are one input and one output, and comprises a plurality of mirrors (39) on both sides of the microfluidic channel (36),
-una quinta pieza optofluídica (40) que comprende al menos un elemento de confinamiento destinada al paso de un haz de luz (41 ) y que está acoplada a al menos un canal fluídico (42),  - a fifth optofluidic piece (40) comprising at least one confinement element intended for the passage of a beam of light (41) and which is coupled to at least one fluidic channel (42),
-una primera pieza fluídica (46) que comprende canales fluídicos autosellables (47) destinados a permitir una conexión con un elemento exterior,  - a first fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an external element,
-una segunda pieza fluídica (48) que comprende una entrada fluídica (50) y una pluralidad de canales fluídicos de salida,  - a second fluidic part (48) comprising a fluidic inlet (50) and a plurality of fluidic outlet channels,
-una tercera pieza fluídica (46) que comprende canales fluídicos autosellables (47) destinados a permitir una conexión con un elemento exterior y un sistema de regulación de presión interna mediante el atrapamiento de fluidos compresibles (51 ). - a third fluidic part (46) comprising self-sealing fluidic channels (47) intended to allow a connection with an external element and an internal pressure regulation system by trapping compressible fluids (51).
2. - Sistema modular de análisis de haces de luz según la reivindicación 1 caracterizado por que los materiales de los elementos micro-ópticos y fotónicos de las piezas son diferentes al material del sustrato. 2. - Modular light beam analysis system according to claim 1 characterized in that the materials of the micro-optical and photonic elements of the pieces are different from the substrate material.
3. - Sistema modular de análisis de haces de luz según la reivindicación 1 caracterizado por que los elementos de confinamiento de la luz (3, 6, 9, 14, 41 ) pueden ser guías de onda, microlentes o una combinación de ambas. 3. - Modular light beam analysis system according to claim 1 characterized in that the light confinement elements (3, 6, 9, 14, 41) can be waveguides, microlenses or a combination of both.
4.- Sistema modular de análisis de haces de luz según la reivindicación 1 caracterizado por que en la segunda pieza fotónica (4) del elemento de confinamiento de luz (6) que recoge el haz de luz de la estructura hueca (7) tiene una geometría de embudo con ángulo constante de salida. 4. Modular light beam analysis system according to claim 1 characterized in that in the second photonic part (4) of the light confinement element (6) that collects the light beam of the hollow structure (7) has a funnel geometry with constant exit angle.
5.- Sistema modular de análisis de haces de luz según la reivindicación 1 caracterizado por que en la tercera pieza fotónica (8) los espejos son espejos de reflexión de Fresnel, o de reflexión total interna o que permitan la reflexión de un haz de luz. 5. Modular light beam analysis system according to claim 1 characterized in that in the third photonic piece (8) the mirrors are Fresnel reflection mirrors, or internal total reflection mirrors or that allow the reflection of a light beam .
6.- Sistema modular de análisis de haces de luz según la reivindicación 1 caracterizado por que en la cuarta pieza de optofluídica (35) los espejos (39) son espejos de reflexión de Fresnel, o de reflexión total interna. 6. Modular light beam analysis system according to claim 1 characterized in that in the fourth optofluidic piece (35) the mirrors (39) are Fresnel reflection mirrors, or total internal reflection mirrors.
7.- Sistema modular de análisis de haces de luz según la reivindicación 1 caracterizado por que la primera pieza fluídica (46) comprende un dispositivo pasivo interno de control de la presión (51 ) del fluido que circula por los canales autosellables (47). 7. Modular light beam analysis system according to claim 1 characterized in that the first fluidic part (46) comprises an internal passive pressure control device (51) of the fluid circulating through the self-sealing channels (47).
PCT/ES2015/070355 2014-04-29 2015-04-29 Modular system for analysing beams of light WO2015166130A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201430628 2014-04-29
ES201430628A ES2552709B1 (en) 2014-04-29 2014-04-29 MODULAR LIGHT BEAM ANALYSIS SYSTEM

Publications (1)

Publication Number Publication Date
WO2015166130A1 true WO2015166130A1 (en) 2015-11-05

Family

ID=54358214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070355 WO2015166130A1 (en) 2014-04-29 2015-04-29 Modular system for analysing beams of light

Country Status (2)

Country Link
ES (1) ES2552709B1 (en)
WO (1) WO2015166130A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222633A (en) * 2002-01-30 2003-08-08 Nippon Sheet Glass Co Ltd Microchip
WO2004061418A2 (en) * 2002-12-26 2004-07-22 Meso Scale Technologies, Llc. Assay cartridges and methods of using the same
US20050161669A1 (en) * 2002-08-02 2005-07-28 Jovanovich Stevan B. Integrated system with modular microfluidic components
US20130260447A1 (en) * 2006-05-11 2013-10-03 Darren R. Link Systems and methods for handling microfluidic droplets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222633A (en) * 2002-01-30 2003-08-08 Nippon Sheet Glass Co Ltd Microchip
US20050161669A1 (en) * 2002-08-02 2005-07-28 Jovanovich Stevan B. Integrated system with modular microfluidic components
WO2004061418A2 (en) * 2002-12-26 2004-07-22 Meso Scale Technologies, Llc. Assay cartridges and methods of using the same
US20130260447A1 (en) * 2006-05-11 2013-10-03 Darren R. Link Systems and methods for handling microfluidic droplets

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MUÑOZ-BERBEL, X. ET AL.: "Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring", LAB CHIP, vol. 13, 2013, pages 4239 - 4247, XP055234018 *
YUEN, P. K.: "SmartBuild-A truly plug-n-play modular microfluidic system", LAB CHIP, vol. 8, 2008, pages 1374 - 1378, XP055234013 *

Also Published As

Publication number Publication date
ES2552709B1 (en) 2016-10-07
ES2552709A1 (en) 2015-12-01

Similar Documents

Publication Publication Date Title
US7933012B2 (en) Microfluidic chip apparatuses, systems and methods having fluidic and fiber optic interconnections
US10520425B2 (en) Optofluidic device
US7157053B2 (en) Absorbance detection system for lab-on-a-chip
US9594071B2 (en) Device and method for laser analysis and separation (LAS) of particles
US6941041B2 (en) Gradient index rod lens unit and microchemical system having the same
WO2007021812A1 (en) Microfluidic apparatus and method for sample preparation and analysis
WO2007021811A2 (en) Microfluid based apparatus and method for thermal regulation and noise reduction
WO2011075039A1 (en) Miniature flow-through cuvette and spectrophotometer containing the same
JP2006300741A (en) Micro flow passage for optical measurement, and micro fluid chip
WO2020045434A1 (en) Particle separation device and particle separation apparatus
KR20110124076A (en) Particle separating unit and particle separating system using the same
US8021130B2 (en) Apparatus and method for handling fluids at nano-scale rates
US20140104605A1 (en) Flow Cell Assembly for Liquid Sample Analyzer
ES2552709B1 (en) MODULAR LIGHT BEAM ANALYSIS SYSTEM
JP6490817B2 (en) Photodetector
Testa et al. Integrated tunable liquid optical fiber
CN112871750A (en) Particle sorting chip based on cascade micro heat source and particle sorting method thereof
US10919035B2 (en) Microchip, analysis apparatus, and analysis method
JP7123160B2 (en) Channel plate, analysis device and analysis method
JP7448540B2 (en) fluid stirring device
WO2016143278A1 (en) Microchip, analysis apparatus, and analysis method
JP2006090775A (en) Absorbance measuring unit
CN103575632B (en) A kind of sheath stream device and blood analyser
Yang et al. Design and fabrication of an on-chip micro flow cytometer with integrated micro-lens
Etcheverry et al. All silica fibre microflow cytometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786227

Country of ref document: EP

Kind code of ref document: A1