WO2015165165A1 - 内嵌式触摸屏及显示装置 - Google Patents

内嵌式触摸屏及显示装置 Download PDF

Info

Publication number
WO2015165165A1
WO2015165165A1 PCT/CN2014/083918 CN2014083918W WO2015165165A1 WO 2015165165 A1 WO2015165165 A1 WO 2015165165A1 CN 2014083918 W CN2014083918 W CN 2014083918W WO 2015165165 A1 WO2015165165 A1 WO 2015165165A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
electrode
electrodes
touch sensing
common
Prior art date
Application number
PCT/CN2014/083918
Other languages
English (en)
French (fr)
Inventor
杨盛际
丁小梁
董学
王海生
刘英明
赵卫杰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/435,972 priority Critical patent/US9606669B2/en
Publication of WO2015165165A1 publication Critical patent/WO2015165165A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections

Definitions

  • Embodiments of the present invention relate to an in-cell touch panel and display device. Background technique
  • the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into an add-on mode touch panel, an on-cell touch panel, and an in-cell touch panel (In-Cell Touch Panel).
  • the external touch screen is produced by separately separating the touch screen from the liquid crystal display (LCD), and then bonding them together to form a liquid crystal display with touch function.
  • the external touch screen has high production cost and low light transmittance.
  • the module is thick and so on.
  • the in-cell touch panel embeds the touch electrodes of the touch screen inside the liquid crystal display, which can reduce the thickness of the whole module, and can greatly reduce the manufacturing cost of the touch screen, and is favored by various panel manufacturers.
  • liquid crystal display technologies capable of achieving wide viewing angles mainly include In-Plane Switch (IPS) technology and Advanced Super Dimension Switch (ADS) technology.
  • the ADS technology forms a multi-dimensional electric field by the electric field generated by the edge of the slit electrode in the same plane and the electric field generated between the slit electrode layer and the plate electrode layer, so that all the aligned liquid crystal molecules between the slit electrodes in the liquid crystal cell and directly above the electrode can be The rotation is generated, thereby improving the liquid crystal working efficiency and increasing the light transmission efficiency.
  • Advanced super-dimensional field conversion technology can improve the picture quality of TFT-LCD products, with high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, push-free water ripple (push Mura), etc. advantage.
  • H-ADS High Aperture Ratio - Advanced Super Dimensional Field Switch
  • the in-cell touch panel structure proposed based on the ADS technology and the H-ADS technology divides the common electrode layer connected to the entire surface of the array substrate to form a touch driving electrode and a common electrode which are insulated from each other but are disposed at the same time.
  • a touch sensing electrode corresponding to a region where the common electrode is located is disposed on the substrate; and the touch driving electrode is time-divisionally driven to implement a touch function and a display function.
  • Summary of the invention At least one embodiment of the present invention provides an in-cell touch panel and a display device for improving the touch sensitivity of the touch screen while ensuring that the touch sensing electrode has a small signal delay.
  • An in-cell touch panel provided by at least one embodiment of the present invention includes: an array substrate having a common electrode layer; and an opposite substrate opposite to the array substrate; the common electrode layer of the array substrate is insulated from each other The plurality of touch driving electrodes and the plurality of common electrodes are disposed, the touch driving electrodes and the common electrodes are disposed in different directions; the opposite substrate has a plurality of touch sensing electrodes having a hollow mesh structure, and each of the An orthographic projection of the touch sensing electrode on the array substrate is opposite to a region where the common electrode is located and coincides with an outer corridor of the common electrode; in a hollow mesh structure of each of the touch sensing electrodes, located in a central region Each cell size is larger than the size of each cell located in the edge region.
  • a display device includes the above touch screen provided by the embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a common electrode layer in an in-cell touch panel according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a touch sensing electrode in an in-cell touch panel projected to a common electrode layer according to an embodiment of the present invention
  • FIG. 3 is a side view of a touch driving electrode, a touch sensing electrode, and a common electrode in an in-cell touch panel according to an embodiment of the invention
  • FIG. 4 is a schematic structural diagram of a touch sensing electrode in an in-cell touch panel after being projected onto a common electrode layer according to another embodiment of the present invention
  • FIG. 4b is a schematic perspective view of the touch sensing electrode and the common electrode in FIG. 4a;
  • FIG. 5a and FIG. 5b are schematic diagrams showing the structure of the touch sensing electrode in the in-cell touch panel according to another embodiment of the present invention;
  • FIG. 6 is a schematic diagram of driving timing of an in-cell touch panel according to an embodiment of the present invention. detailed description
  • the touch sensing electrodes in the current in-cell touch panel are generally prepared by using a metal material having a small resistance; and, in order not to affect the normal display, the touch is generally Controlling the hollowed-out grid structure of the sensing electrode and being obscured by the black matrix pattern in the opposite substrate, the mesh size in the grid is uniform, and the line width of the grid-like structure is limited by the width of the black matrix (regardless of the vertical direction) Still horizontal) can't be too wide.
  • This structural design makes the mutual capacitance between the touch control driving electrode and the touch sensing electrode relatively small, and the amount of change caused by the finger touch is relatively small, thereby affecting the sensitivity of the touch.
  • FIG. 1 is a schematic cross-sectional view of an in-cell touch panel according to at least one embodiment of the present invention.
  • An in-cell touch panel provided by an embodiment of the present invention includes an array substrate 100 having a common electrode layer 110 and a counter substrate 200 disposed opposite the array substrate 100.
  • the common electrode layer 110 of the array substrate 100 includes a plurality of touch driving electrodes 111 and a plurality of common electrodes 112 insulated from each other, and the touch driving electrodes 111 and the common electrodes 112 extend in different directions; During the display time of one frame, each touch driving electrode 111 is used to time-load the common electrode signal and the touch scan signal.
  • the extending directions of the touch driving electrodes 111 and the common electrodes 112 are perpendicular to each other.
  • the common electrode 112 extends in the longitudinal direction of the drawing
  • the touch driving electrode 111 extends in the lateral direction of the drawing.
  • the touch driving electrode 111 shown in FIG. 2 includes three sub driving electrodes, and the three sub driving electrodes are along
  • the linear direction setting shown in FIG. 2, that is, the touch driving electrode direction setting, is not limited to that described in the embodiment.
  • the opposite substrate 200 has a plurality of touch sensing electrodes 210 having a hollow mesh structure, and the orthographic projections of the touch sensing electrodes 210 on the array substrate 100 are opposite to the area where the common electrode 112 is located, and It conforms to the outer contour of the common electrode 112.
  • the size of each mesh located in the central area is larger than the size of each mesh located in the edge area, that is, the mesh located in the edge area is dense and located.
  • the mesh at the center area is relatively sparse.
  • the in-cell touch panel of the at least one embodiment of the present invention has a pattern of the touch sensing electrodes 210 that is consistent with the outer rim of the common electrode 112, and is located in the hollow area of the touch sensing electrodes 210.
  • the size of each mesh is larger than the size of each mesh located in the edge region. As shown in FIG. 3b, the electric field line distribution of the touch sensing electrode near the touch driving electrode is the most dense. Therefore, in order to ensure the electric field projection amount, the touch sensing is performed.
  • the mesh of the electrode 210 located in the edge region is relatively dense, and the projection capacitance between the touch sensing electrode 210 and the touch driving electrode 111 at the edge region is increased, which is beneficial to improving touch sensitivity and improving touch sensitivity;
  • the cell of the touch sensing electrode 210 located at the central area is relatively thin, and the capacitance of the touch sensing electrode 210 as a whole can be reduced, and the touch sensing electrode has a small signal delay.
  • the size of the mesh of the touch sensing electrode 210 may be a gradual form design, as shown in FIG. 3a, in the hollow mesh structure of each touch sensing electrode 210, each mesh
  • the size of the touch sensing electrode 210 can be divided into a sub-region.
  • the touch sensing electrode 210 can be divided into two types. In the two areas of the edge area and the central area, the sizes of the meshes in the central area are the same, the sizes of the meshes in the edge area are the same, and the sizes of the meshes in the central area are set larger than the meshes in the edge area. size.
  • an execution setting may be selected according to actual design requirements, which is not limited herein.
  • the mesh size of the hollow mesh structure of each touch sensing electrode 210 can be determined according to specific needs.
  • the mesh located in the edge area is relatively dense. Therefore, the size of the mesh here can be designed as the size of the sub-pixel unit in one pixel unit; and the mesh located at the center area is relatively sparse, therefore, the mesh here
  • the size can be designed to be the size of a pixel unit.
  • each pixel unit may include a plurality of sub-pixel units, such as three sub-pixel units (RGB) or four sub-pixel units (RGBW) or the like.
  • a black matrix pattern may be disposed on the opposite substrate or the array substrate, and in order to ensure that each touch sensing electrode 210 does not affect the aperture ratio and light transmittance of each pixel unit, generally
  • the hollow mesh structure of each touch sensing electrode 210 is set to be covered by the black matrix pattern. In this way, the black matrix pattern can be used to cover the hollow network of the touch sensing electrode 210.
  • the grid structure does not affect the aperture ratio of the display and does not affect the light transmittance of the display.
  • the material of the touch sensing electrode 210 may be transparent.
  • Conductive oxides such as ITO or IZO may also be metallic materials, including metals or alloys. When the touch sensing electrode is made of metal, the resistance can be effectively reduced.
  • the black matrix pattern has a plurality of open areas arranged in a matrix, for example, extending the touch driving electrodes 111 along the row direction of the opening area; each touch sensing electrode 210 and each common electrode 112 extends along the column direction of the opening area, as shown in FIG. 3a and FIG. 4a, wherein the lower arrow is the transmission direction of the signal in the touch sensing electrode 210, and the arrow on the right side is the signal transmission in the touch driving electrode 111. direction.
  • the touch driving electrodes 111 are arranged to extend along the column direction of the opening region, and the touch sensing electrodes 210 and the common electrodes 112 are disposed along the opening region.
  • the direction of the row is extended, and the signal transmission directions of the corresponding two are changed accordingly, which is not limited herein.
  • each of the touch driving electrodes 111 extends in the row direction of the opening region
  • each of the touch sensing electrodes 210 and the common electrodes 112 extends along the column direction of the opening region as an example.
  • the touch driving electrode 111 and the common electrode 112 are insulated from each other and form the common electrode layer 110 together, when the common electrode layer is specifically designed, as shown in FIG.
  • the common electrode 112 is disposed as a full-surface electrode, that is, each common electrode 112 is not divided into a plurality of sub-electrodes connected in series by wires, and the common electrodes 112 extend along the column direction of the opening region;
  • Each of the touch driving electrodes 111 includes a plurality of touch driving sub-electrodes disposed along an extending direction of the touch driving electrodes 111, and each of the touch driving sub-electrodes is located adjacent to the common electrode 112. For example, FIG.
  • FIG. 2 shows a schematic diagram of the touch driving electrode 111 being composed of three touch driving sub-electrodes. Moreover, since the outer contours of the touch sensing electrode 210 and the common electrode 112 are identical, as shown in FIG. 3a, the touch sensing electrode 210 is also a full-surface electrode.
  • each touch driving electrode 111 may be disposed as a full-surface electrode extending along the row direction of the opening region; the common electrode 112 is disposed along the opening.
  • the column direction of the region extends, and each common electrode 112 is composed of a plurality of common sub-electrodes, and each common sub-electrode is located at a gap between adjacent touch driving sub-electrodes.
  • each common electrode is also provided with a plurality of touch sensing sub-electrodes provided in the same column.
  • the position of the touch sensing electrode 210 corresponds to the position of the common electrode 112
  • the positive facing area between the touch sensing electrode 210 and the touch driving electrode 111 can be avoided.
  • each touch sensing electrode 210 and each common The electrodes 112 will correspond to a plurality of rows of pixel units.
  • the gap between the touch sensing electrodes 210 can be set according to the specific touch precision, that is, only the projection of each touch sensing electrode 210 on the array substrate 100 is located in the area where the common electrode 112 is located.
  • the width of the touch sensing electrode 210 is generally not greater than the width of the common electrode 112. For example, as shown in FIG.
  • the area occupied by a touch sensing electrode 210 may be slightly smaller than the area occupied by the corresponding common electrode 112; as shown in FIG. 4a, the area occupied by a touch sensing electrode 210 The area of the area occupied by the corresponding common electrode 112 is also the same, that is, the touch sensing electrode 210 completely covers the corresponding common electrode 112, which is not limited herein.
  • the touch sensing electrodes 210 may be disposed at least one of the common electrodes 112.
  • the touch sensing electrodes 210 and the common electrodes 112 may be disposed in a one-to-one correspondence, which is not limited herein.
  • the common electrode 112 and the touch sensing electrode 210 when designing the patterns of the common electrode 112 and the touch sensing electrode 210, it may be designed as a strip electrode shape as shown in Fig. 3a.
  • the common electrode 112 and the touch sensing electrode 210 may be arranged in a wing shape.
  • FIG. 4b is a perspective view of the touch sensing electrode 210 and the common electrode 112 shown in FIG. 4a. The arrow in the figure is the electric field line between the touch driving electrode 111 and the touch sensing electrode 210.
  • the touch sensing electrode 210 may include a central sub-electrode 211, and a plurality of branches connected to the central sub-electrode 211 and located on opposite sides of the extending direction thereof. Electrode 212.
  • the branch sub-electrodes 212 in the touch sensing electrodes 210 are symmetrically distributed on both sides of the center sub-electrode 211 as shown in FIGS. 5a and 5b.
  • the size of each mesh located in the central region is larger than the size of each mesh located in the edge region.
  • the size of each mesh located in the central area is larger than the size of each mesh located in the edge area;
  • the size of each mesh in the hollow mesh structure of the sub-electrode 212 is uniform. Setting the mesh size in the branch sub-electrodes to be uniform can ensure the uniformity of the overall pattern of the touch sensing electrodes.
  • the touch sensing electrodes 210 of the wing-shaped patterns in the above two embodiments provided by the embodiments of the present invention are used for data simulation, and the touch sensing electrodes with a uniform mesh size of the wing-shaped patterns are used as a comparative example.
  • the mesh size of the edge region is the same as that of the comparative example, and the height of the mesh is 6 ⁇ m and the width is 3 ⁇ m.
  • the central sub-electrode is the same.
  • the specific structure of the branched sub-electrode in the first embodiment is shown in FIG. 5a, and the specific sub-electrode in the second embodiment is specific.
  • the structure is shown in Figure 5b.
  • the analog parameters are shown in the table below:
  • the capacitance to ground C (Rx and Vcom) is greatly reduced, from 14.887 to 10.465 and 9.221, when the touch variation (A C ) remains basically the same.
  • the mesh area in the central area of the touch sensing electrode does not play a key role in the change of the touch variation, and the key to the change of the touch variation is the touch sensing electrode and the touch.
  • the area of the adjacent area of the driving electrode is controlled, that is, the area of the mesh of the edge area of the touch sensing electrode.
  • the cell density of the touch sensing electrode in the edge region is increased, and the cell density of the center region is reduced, and the ground reduction can be reduced under the premise of ensuring the touch variation. Capacitance, thereby reducing the signal delay of the touch sensing electrode.
  • the touch and display stages are driven by a time-division driving method, and the display driving and the touch driving chip can be integrated into one body to reduce the production cost;
  • the time drive can also reduce mutual interference between display and touch, and improve picture quality and touch accuracy.
  • the touch screen displays each frame (V-sync)
  • the time is divided into a display time period (Display) and a touch time period (Touch).
  • the time of displaying one frame of the touch screen is 16.7 ms, and 5 ms is selected as the touch time period, and the other 11.7.
  • the ms is used as the display time period.
  • the duration of the two chips can be appropriately adjusted according to the processing capability of the IC chip, and is not specifically limited herein.
  • a gate scan signal is sequentially applied to each gate signal line Gate 1, Gate 2, ...
  • the electrode Tx serves as a common electrode, and the IC chip connected to the touch driving electrode supplies a constant common electrode signal thereto to realize a liquid crystal display function.
  • the IC chip connected to the touch driving electrode respectively provides the touch scan signals T1, ⁇ 2, ..., ⁇ , and the touch sensing electrodes respectively detect The touch sensing signals R1, 2...Rn are measured to implement the touch function.
  • the common electrode in the common electrode layer always loads the common electrode signal during the display period and the touch period, or loads the common electrode signal to each common electrode during the display period, and the common electrodes are grounded during the touch period Or floating processing, which means no signal input.
  • At least one embodiment of the present invention further provides a display device, including the above-mentioned in-cell touch panel provided by the embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital device. Any product or part that has touch and display capabilities, such as photo frames, navigators, and more.
  • a display device including the above-mentioned in-cell touch panel provided by the embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital device. Any product or part that has touch and display capabilities, such as photo frames, navigators, and more.
  • the display device reference may be made to the above embodiment of the in-cell touch panel, and the repeated description is omitted.
  • the in-cell touch panel and the display device divide a common electrode layer connected to the entire surface of the array substrate to form a plurality of touch driving electrodes and a plurality of common electrodes that are insulated from each other and have different extending directions;
  • a touch sensing electrode having a hollow mesh structure is disposed on the opposite substrate, and the outer outer corridor of the pole is uniform; the touch driving electrode is time-divisionally driven to implement the touch function and the display function.
  • the image of the touch sensing electrode in the touch screen is consistent with the outer wheel of the common electrode, and in the hollow mesh structure of each touch sensing electrode, the size of each mesh located in the central area is larger than that in the edge area.
  • each cell is such that the touch sensing electrodes are densely located in the edge region, so that the projected capacitance between the touch sensing electrodes and the touch driving electrodes at the edge regions can be increased, which is advantageous for improving the touch.
  • the sensitivity of the touch; and the mesh of the touch sensing electrode at the central area is relatively sparse, which can reduce the capacitance of the touch sensing electrode as a whole, and ensure The touch sensing electrode has a small signal delay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种内嵌式触摸屏及显示装置,将阵列基板(100)中整面连接的公共电极层(110)进行分割,形成多个触控驱动电极(111)和公共电极(112);在公共电极(112)上方设置具有镂空网格结构的触控感应电极(210);对触控驱动电极(111)进行分时驱动,以实现触控功能和显示功能。所述内嵌式触摸屏能够提高触控提高触控的灵敏度,保证触控感应电极具有较小的信号时延。

Description

内嵌式触摸屏及显示装置 技术领域
本发明的实施例涉及一种内嵌式触摸屏及显示装置。 背景技术
随着显示技术的飞速发展, 触摸屏( Touch Screen Panel ) 已经逐渐遍及 人们的生活中。 目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add-on Mode Touch Panel ) 、 覆盖表面式触摸屏 ( On-Cell Touch Panel ) 以及内嵌式 触摸屏( In-Cell Touch Panel )。外挂式触摸屏是将触摸屏与液晶显示屏( Liquid Crystal Display, LCD )分开生产, 然后贴合到一起成为具有触摸功能的液晶 显示屏, 外挂式触摸屏具有制作成本较高、光透过率较低、模组较厚等缺点。 内嵌式触摸屏将触摸屏的触控电极内嵌在液晶显示屏内部, 可以减薄模组整 体的厚度, 又可以大大降低触摸屏的制作成本, 受到各大面板厂家青睐。
目前,能够实现宽视角的液晶显示技术主要有平面内开关(IPS, In-Plane Switch )技术和高级超维场开关 (ADS, Advanced Super Dimension Switch ) 技术。 ADS技术通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层 与板状电极层间产生的电场形成多维电场, 使液晶盒内狭缝电极间、 电极正 上方所有取向液晶分子都能够产生旋转, 从而提高了液晶工作效率并增大了 透光效率。 高级超维场转换技术可以提高 TFT-LCD产品的画面品质, 具有 高分辨率、 高透过率、 低功耗、 宽视角、 高开口率、 低色差、 无挤压水波纹 ( push Mura )等优点。 H-ADS (高开口率 -高级超维场开关)是 ADS技术的 一种重要实现方式。
目前, 基于 ADS技术和 H-ADS技术提出的内嵌式触摸屏结构是将阵列 基板中整面连接的公共电极层进行分割, 形成相互绝缘但交叉设置的触控驱 动电极和公共电极, 并在对向基板上设置与公共电极所在区域对应的触控感 应电极; 对触控驱动电极进行分时驱动, 以实现触控功能和显示功能。 发明内容 本发明至少一实施例提供了一种内嵌式触摸屏及显示装置, 用以在保证 触控感应电极具有较小的信号时延的前提下, 提高触摸屏的触控灵敏度。
本发明至少一实施例提供的一种内嵌式触摸屏, 包括: 具有公共电极层 的阵列基板, 以及与所述阵列基板相对而置的对向基板; 所述阵列基板的公 共电极层由相互绝缘的多个触控驱动电极和多个公共电极组成, 所述触控驱 动电极与公共电极沿不同方向设置; 所述对向基板具有多个具有镂空网格结 构的触控感应电极, 各所述触控感应电极在所述阵列基板上的正投影与所述 公共电极所在区域相对且与所述公共电极的外轮廊一致; 在各所述触控感应 电极的镂空网格结构中, 位于中心区域的各网孔大小大于位于边缘区域的各 网孔大小。
本发明至少一实施例提供的一种显示装置, 包括本发明实施例提供的上 述触摸屏。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明一实施例提供的内嵌式触摸屏的结构示意图;
图 2为本发明一实施例提供的内嵌式触摸屏中的公共电极层的结构示意 图;
图 3a为本发明一实施例提供的内嵌式触摸屏中的触控感应电极投影到 公共电极层后的结构示意图;
图 3b为本发明一实施例提供的内嵌式触摸屏中触控驱动电极、触控感应 电极和公共电极的侧视结构示意图;
图 4a为本发明另一实施例提供的内嵌式触摸屏中的触控感应电极投影 到公共电极层后的结构示意图;
图 4b为图 4a中的触控感应电极和公共电极的立体结构示意图; 图 5a和图 5b为本发明再一实施例提供的内嵌式触摸屏中的触控感应电 极的结构示意图;
图 6为本发明实施例提供的内嵌式触摸屏的驱动时序示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
附图中各层膜层的厚度和形状不反映真实比例, 目的只是示意说明本发 明内容。
发明人注意到, 为了减小信号时延(RC Loading ) , 当前的内嵌式触摸 屏中的触控感应电极一般釆用电阻较小的金属材料制备; 并且, 为了不影响 正常显示, 一般将触控感应电极制作成的镂空网格结构且被对向基板中的黑 矩阵图形所遮挡, 网格中网孔大小一致, 由于受到黑矩阵宽度的限制, 使得 网格状结构的线宽 (无论纵向还是横向)都不能太宽。 这种结构设计会使触 控驱动电极和触控感应电极之间的互电容相对较小, 当手指触控时引起的变 化量也就相对较小, 进而影响了触控的灵敏度。
图 1为本发明至少一实施例提供的内嵌式触摸屏的横向剖面示意图。 本 发明实施例提供的一种内嵌式触摸屏,如图 1所示,包括具有公共电极层 110 的阵列基板 100以及与阵列基板 100相对而置的对向基板 200。
如图 1和图 2所示, 阵列基板 100的公共电极层 110包括相互绝缘的多 条触控驱动电极 111和多条公共电极 112,触控驱动电极 111与公共电极 112 的延伸方向不同; 在一帧画面的显示时间内, 各触控驱动电极 111用于分时 地加载公共电极信号和触控扫描信号。
参照图 1、 图 3a和图 3b所示, 触控驱动电极 111与公共电极 112的延 伸方向彼此垂直。 如图 2所示, 公共电极 112沿图示的纵向延伸, 触控驱动 电极 111沿图示的横向延伸, 如图 2所示的触控驱动电极 111包括三个子驱 动电极, 三个子驱动电极沿图 2所示的直线方向设置, 也就是触控驱动电极 方向设置, 不限于本实施例所述。
对向基板 200具有多个具有镂空网格结构的触控感应电极 210, 各触控 感应电极 210在阵列基板 100上的正投影与公共电极 112所在区域相对, 且 与公共电极 112的外轮廓一致。在至少一个实施例中,在各触控感应电极 210 的镂空网格结构中, 位于中心区域的各网孔大小大于位于边缘区域的各网孔 大小, 即位于边缘区域的网孔比较密, 位于中心区域处的网孔比较疏。
本发明至少一实施例提供的上述内嵌式触摸屏, 由于触控感应电极 210 的图形与公共电极 112的外轮廊一致, 且在各触控感应电极 210的镂空网格 结构中, 位于中心区域的各网孔大小大于位于边缘区域的各网孔大小; 如图 3b所示, 触控感应电极靠近触控驱动电极的位置电场线分布是最密集的, 因 此为保证电场投射量, 将触控感应电极 210位于边缘区域的网孔设置为比较 密, 可以增加位于边缘区域处的触控感应电极 210与触控驱动电极 111之间 的投射电容, 有利于提高触控提高触控的灵敏度; 而将触控感应电极 210位 于中心区域处的网孔设置为比较疏, 可以减小触控感应电极 210整体的对地 电容, 保证触控感应电极具有较小的信号时延。
本发明至少一实施例提供的上述触摸屏中, 触控感应电极 210的网孔大 小可以为渐变形式设计,如图 3a所示,在各触控感应电极 210的镂空网格结 构中, 各网孔大小可以从边缘区域到中心区域逐渐增大; 在本发明至少一实 施例中, 触控感应电极 210的网孔大小也可以釆用分区域的形式设计, 将每 个触控感应电极 210分为边缘区域和中心区域两个区域, 在中心区域内的各 网孔大小一致, 在边缘区域内的各网孔大小一致, 在中心区域内的各网孔大 小设置为大于边缘区域内的各网孔大小。 在具体实施时, 可以根据实际设计 需要选择一种执行设置, 在此不做限定。
如上所述, 各触控感应电极 210的镂空网格结构的网孔大小可以依据具 体需要确定。 例如: 在位于边缘区域的网孔比较密, 因此, 此处网孔的大小 可以设计为一个像素单元中的亚像素单元大小; 而位于中心区域处的网孔比 较疏, 因此, 此处网孔的大小可以设计为一个像素单元的大小。 根据显示面 板的类型, 每个像素单元可以包括多个亚像素单元, 例如三个亚像素单元 ( RGB )或者四个亚像素单元(RGBW )等。
在本发明至少一实施例提供的触摸屏中, 对向基板或阵列基板上可以设 置有黑矩阵图形, 为了保证各触控感应电极 210不会影响各像素单元的开口 率和光透过率, 一般将各触控感应电极 210的镂空网格结构设置为被黑矩阵 图形所覆盖。 这样, 就可以利用黑矩阵图形遮盖触控感应电极 210的镂空网 格结构,而不会对显示器的开口率产生影响,也不会影响显示器的光透过率。 在本发明至少一实施例中, 由于在对向基板 200上设置的网格状电极结 构的触控感应电极 210不会遮挡像素单元的开口区域, 因此, 触控感应电极 210的材料可以为透明导电氧化物例如 ITO或 IZO, 也可以为金属材料, 包 括金属或合金。 当釆用金属制作触控感应电极时可以有效的降低其电阻。
在本发明至少一实施例中,黑矩阵图形具有呈矩阵排列的多个开口区域, 例如, 将各触控驱动电极 111沿着开口区域的行方向延伸; 各触控感应电极 210和各公共电极 112沿着开口区域的列方向延伸, 如图 3a和图 4a所示, 其中, 下方的箭头为触控感应电极 210内信号的传输方向, 右侧的箭头为触 控驱动电极 111内信号的传输方向。 也可以根据应用器件的尺寸, 变更两者 的布线方向, 即将各触控驱动电极 111设置为沿着开口区域的列方向延伸, 各触控感应电极 210和各公共电极 112设置为沿着开口区域的行方向延伸, 相应的两者的信号传输方向相应变更, 在此不做限定。
下面都是以各触控驱动电极 111沿着开口区域的行方向延伸, 各触控感 应电极 210和各公共电极 112沿着开口区域的列方向延伸为例进行说明。
在本发明至少一实施例中, 由于触控驱动电极 111和公共电极 112之间 相互绝缘且共同构成公共电极层 110; 因此, 在具体设计公共电极层时, 如 图 2所示, 可以将各公共电极 112设置为整面状电极, 即每个公共电极 112 不会被分割为多个通过导线串联的子电极, 各公共电极 112沿着开口区域的 列方向延伸; 各触控驱动电极 111沿着开口区域的行方向延伸, 每个触控驱 动电极 111包括沿着触控驱动电极 111的延伸方向设置的多个触控驱动子电 极, 各触控驱动子电极位于相邻的公共电极 112之间, 例如图 2中示出了触 控驱动电极 111由三个触控驱动子电极构成的示意图。 并且, 由于触控感应 电极 210和公共电极 112的外轮廓一致, 因此, 如图 3a所示, 触控感应电极 210也为整面状电极。
在本发明至少一实施例中, 在设计公共电极层时, 也可以将各触控驱动 电极 111设置为沿着开口区域的行方向延伸的整面状电极; 将公共电极 112 设置为沿着开口区域的列方向延伸, 每个公共电极 112由多个公共子电极组 成, 各公共子电极位于相邻的触控驱动子电极之间的间隙处。 这时, 为了保 证触控感应电极 210与触控驱动电极 111之间没有正对面积, 与各公共电极 112对应的触控感应电极 210也将设置由多个同列设置的触控感应子电极组 成。
在本发明至少一实施例中,由于触控感应电极 210的位置与公共电极 112 的位置相对应, 这样能避免触控感应电极 210和触控驱动电极 111之间产生 正对面积。
由于触摸屏的精度通常在毫米级, 而液晶显示屏的精度通常在微米级, 可以看出显示所需的精度远远大于触控所需的精度, 因此每条触控感应电极 210和每条公共电极 112都会对应多行像素单元。 可以根据具体需要的触控 精度, 设置各条触控感应电极 210之间的间隙, 即仅需要保证各触控感应电 极 210在阵列基板 100上的投影位于公共电极 112所在区域内即可, 各触控 感应电极 210的宽度一般不大于公共电极 112的宽度。 例如, 如图 3a所示, 一条触控感应电极 210所占区域的面积可以稍小于对应的公共电极 112所占 区域的面积;如图 4a所示,一条触控感应电极 210所占区域的面积与对应的 公共电极 112所占区域的面积也可以一致, 即触控感应电极 210完全覆盖对 应的公共电极 112, 在此不做限定。 各触控感应电极 210还可以间隔至少一 条公共电极 112设置, 也可以将触控感应电极 210与公共电极 112设置为一 一对应的关系, 在此不做限定。
在本发明至少一实施例中, 在设计公共电极 112和触控感应电极 210的 图形时, 可以将其设计为条状电极的形状, 如图 3a所示。 当然, 为了增大触 控感应电极 210和触控驱动电极 111之间的相对的区域,如图 4a所示,可以 将公共电极 112和触控感应电极 210设置为翅膀状图形。 图 4b为图 4a所示 的触控感应电极 210和公共电极 112的立体示意图, 图中箭头为触控驱动电 极 111与触控感应电极 210之间的电场线。
在本发明至少一实施例中, 如图 5a和图 5b所示, 触控感应电极 210可 以包括一中心子电极 211, 以及与中心子电极 211相连且位于其延伸方向两 侧的多个分支子电极 212。
例如,为了保证在对向基板 200上图形分布相对均匀,触控感应电极 210 中的分支子电极 212—般对称分布于中心子电极 211的两侧, 如图 5a和图 5b所示。
如图 5a所示,在触控感应电极 210具有的翅膀状图形中,在中心子电极 210和分支子电极 212的镂空网格结构中, 位于中心区域的各网孔大小均大 于位于边缘区域的各网孔大小。
如图 5b所示, 触控感应电极 210具有的翅膀状图形中, 在中心子电极 210 的镂空网格结构中, 位于中心区域的各网孔大小大于位于边缘区域的各 网孔大小; 在分支子电极 212的镂空网格结构中各网孔大小一致。 在分支子 电极中各网孔大小设置为一致可以在保证触控感应电极整体图形的均一性。
下面以本发明实施例提供的上述两种实施例中的翅膀状图形的触控感应 电极 210进行数据模拟, 以均匀网孔大小的翅膀状图形的触控感应电极作为 比较例。在第一种实施例中,边缘区域的网孔大小和比较例的网孔大小一致, 均网孔的高度为 6μπι, 宽度为 3μπι。 在第一种实施例和第二种实施例中的中 心子电极相同,第一种实施例中的分支子电极的具体结构参见图 5a所示,第 二种实施例中的分支子电极的具体结构参见图 5b所示。 模拟参数下表所示:
Figure imgf000009_0001
从模拟结果对比情况来看, 在触控变化量( A C )基本保持不变的情况 下,对地电容 C( Rx与 Vcom )有大幅降低,由 14.887降低到 10.465和 9.221。 分析数据可以看出, 在触控感应电极的中心区域的网孔面积对于触控变化量 的改变起不到关键作用, 而对于触控变化量的改变起关键作用的是触控感应 电极与触控驱动电极临近区域的面积, 即触控感应电极的边缘区域的网孔面 积。 因此, 在本发明实施例提供的上述触摸屏中, 增加触控感应电极在边缘 区域的网孔密度, 同时减小中心区域的网孔密度, 可以在保证触控变化量的 前提下, 降低对地电容, 从而降低触控感应电极的信号时延。
在本发明至少一实施例提供的上述触摸屏中, 触控和显示阶段釆用分时 驱动的方式, 一方面可以将显示驱动和触控驱动的芯片整合为一体, 降低生 产成本; 另一方面分时驱动也能够降低显示和触控的相互干扰, 提高画面品 质和触控准确性。
例如: 如图 6所示的驱动时序图中, 将触摸屏显示每一帧 (V-sync ) 的 时间分成显示时间段 ( Display )和触控时间段(Touch ) , 例如图 6所示的 驱动时序图中触摸屏的显示一帧的时间为 16.7ms,选取其中 5ms作为触控时 间段, 其他的 11.7ms作为显示时间段, 当然也可以根据 IC芯片的处理能力 适当的调整两者的时长, 在此不做具体限定。 在显示时间段(Display ) , 对 触摸屏中的每条栅极信号线 Gate 1, Gate 2…… Gate n依次施加栅扫描信号, 对数据信号线 Data施加灰阶信号, 相应地此时触控驱动电极 Tx作为公共电 极,与触控驱动电极连接的 IC芯片向其提供恒定的公共电极信号, 实现液晶 显示功能。 在触控时间段(Touch ) , 与触控驱动电极连接的 IC芯片向各触 控驱动电极分别提供触控扫描信号 Tl、 Τ2... ... Τη, 同时各触控感应电极分 别进行侦测触控感应信号 Rl、 2... ... Rn, 实现触控功能。 在触控时间段, 触摸屏中的每条栅极信号线和数据信号线无信号输入。 并且, 在公共电极层 中的各公共电极在显示时间段和触控时间段始终加载公共电极信号, 或者, 在显示时间段向各公共电极加载公共电极信号, 在触控时间段各公共电极接 地或者悬空处理, 该悬空处理指无信号输入。
本发明至少一实施例还提供了一种显示装置, 包括本发明实施例提供的 上述所述的内嵌式触摸屏, 该显示装置可以为: 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有触摸和显示功能的产品 或部件。 该显示装置的实施可以参见上述内嵌式触摸屏的实施例, 重复之处 不再赘述。
本发明实施例提供的上述内嵌式触摸屏及显示装置, 将阵列基板中整面 连接的公共电极层进行分割, 形成相互绝缘且延伸方向不同的多个触控驱动 电极和多个公共电极;在对向基板上设置具有镂空网格结构的触控感应电极, 极的外轮廊一致; 对触控驱动电极进行分时驱动, 以实现触控功能和显示功 能。 由于本发明实施例提供的触摸屏内触控感应电极的图形与公共电极的外 轮廊一致, 且在各触控感应电极的镂空网格结构中, 位于中心区域的各网孔 大小大于位于边缘区域的各网孔大小; 这样, 触控感应电极位于边缘区域的 网孔比较密, 因此, 可以增加位于边缘区域处的触控感应电极与触控驱动电 极之间的投射电容, 有利于提高触控提高触控的灵敏度; 而触控感应电极位 于中心区域处的网孔比较疏, 可以减小触控感应电极整体的对地电容, 保证 触控感应电极具有较小的信号时延。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。
本申请要求于 2014年 4月 29日递交的中国专利申请第 201410178797.4 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims

权利要求书
1、 一种内嵌式触摸屏, 包括: 具有公共电极层的阵列基板, 以及与所述 阵列基板相对而置的对向基板, 其中:
所述阵列基板的公共电极层包括相互绝缘的多个触控驱动电极和多个公 共电极, 所述触控驱动电极与公共电极的延伸方向不同;
所述对向基板具有多个具有镂空网格结构的触控感应电极, 各所述触控 公共电极的外轮廊一致; 在各所述触控感应电极的镂空网格结构中, 位于中 心区域的各网孔大小大于位于边缘区域的各网孔大小。
2、如权利要求 1所述的触摸屏, 其中, 在各所述触控感应电极的镂空网 格结构中, 各网孔大小从所述边缘区域到所述中心区域逐渐增大。
3、如权利要求 1或 2所述的触摸屏, 其中, 所述阵列基板或所述对向基 板上设置有黑矩阵图形, 所述触控感应电极的镂空网格结构被所述黑矩阵图 形覆盖。
4、如权利要求 3所述的触摸屏, 其中, 所述黑矩阵图形具有呈矩阵排列 的多个开口区 i或;
各所述触控驱动电极沿所述开口区域的行方向延伸; 各触控感应电极和 各所述公共电极沿着所述开口区域的列方向延伸; 或,
各所述触控驱动电极沿所述开口区域的列方向延伸; 各触控感应电极和 各所述公共电极沿着所述开口区域的行方向延伸。
5、如权利要求 1至 4任一项所述的触摸屏, 其中, 各所述公共电极为整 面状电极; 每个所述触控驱动电极包括沿着所述触控驱动电极的延伸方向设 置的多个触控驱动子电极, 各所述触控驱动子电极位于相邻的所述公共电极 之间。
6、如权利要求 5所述的触摸屏, 其中, 所述触控感应电极包括一中心子 电极,以及与所述中心子电极相连且位于其延伸方向两侧的多个分支子电极。
7、如权利要求 6所述的触摸屏, 其中, 所述分支子电极对称分布于所述 中心子电极的延伸方向的两侧。
8、如权利要求 6或 7所述的触摸屏, 其中, 在所述中心子电极的镂空网 格结构中, 位于中心区域的各网孔大小大于位于边缘区域的各网孔大小; 在 分支子电极的镂空网格结构中各网孔大小一致。
9、如权利要求 6或 7所述的触摸屏, 其中, 在所述中心子电极和所述分 支子电极的镂空网格结构中, 位于中心区域的各网孔大小均大于位于边缘区 域的各网孔大小。
10、 如权利要求 1-9任一项所述的触摸屏, 在一帧画面的显示时间内, 各所述触控驱动电极用于分时地加载公共电极信号和触控扫描信号。
11、 一种显示装置, 包括如权利要求 1-10任一项所述的触摸屏。
PCT/CN2014/083918 2014-04-29 2014-08-07 内嵌式触摸屏及显示装置 WO2015165165A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/435,972 US9606669B2 (en) 2014-04-29 2014-08-07 In-cell touch panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410178797.4A CN103970354B (zh) 2014-04-29 2014-04-29 一种内嵌式触摸屏及显示装置
CN201410178797.4 2014-04-29

Publications (1)

Publication Number Publication Date
WO2015165165A1 true WO2015165165A1 (zh) 2015-11-05

Family

ID=51239937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083918 WO2015165165A1 (zh) 2014-04-29 2014-08-07 内嵌式触摸屏及显示装置

Country Status (3)

Country Link
US (1) US9606669B2 (zh)
CN (1) CN103970354B (zh)
WO (1) WO2015165165A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103677412B (zh) * 2013-12-09 2016-08-31 合肥京东方光电科技有限公司 一种内嵌式触摸屏及其驱动方法
CN103970354B (zh) * 2014-04-29 2015-12-16 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN105278739A (zh) * 2014-07-17 2016-01-27 财团法人工业技术研究院 感测结构
CN104331210B (zh) * 2014-11-27 2018-12-18 京东方科技集团股份有限公司 一种内嵌式触摸屏、其触控检测方法及显示装置
CN104503653B (zh) * 2015-01-26 2017-04-19 京东方科技集团股份有限公司 一种自电容触摸屏和显示装置
CN106502478B (zh) * 2015-09-06 2023-11-10 安徽精卓光显技术有限责任公司 触摸显示装置
CN105760033B (zh) * 2016-02-05 2018-10-09 上海天马微电子有限公司 一种触控屏以及触控显示电子设备
CN105739803B (zh) * 2016-02-26 2018-10-12 京东方科技集团股份有限公司 触摸屏及其制作方法、触摸装置
CN106201109B (zh) * 2016-07-29 2019-02-22 厦门天马微电子有限公司 触控显示面板和显示装置
CN106339142A (zh) * 2016-08-29 2017-01-18 贵州乾盛科技有限公司 一种触控电极结构、触控面板及触控显示装置
CN106325644B (zh) * 2016-09-09 2023-10-24 合肥京东方光电科技有限公司 自容式触控结构、触摸屏及显示装置
CN106648210B (zh) * 2016-10-19 2023-11-28 合肥鑫晟光电科技有限公司 显示面板及其制备方法、显示装置
GB2559646A (en) * 2017-02-09 2018-08-15 Solomon Systech Ltd Touch Sensor
CN106909259B (zh) * 2017-03-07 2022-07-15 京东方科技集团股份有限公司 触控基板及其驱动方法、显示面板及显示装置
CN107153484B (zh) * 2017-05-25 2021-04-13 上海中航光电子有限公司 一种显示面板及显示装置
CN208954070U (zh) * 2018-02-27 2019-06-07 深圳市汇顶科技股份有限公司 一种传感器和触摸显示屏
US11126315B2 (en) 2019-09-26 2021-09-21 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch electrode layer and touch display device
CN110737360B (zh) * 2019-09-26 2022-05-17 武汉华星光电半导体显示技术有限公司 触控电极层以及触控显示装置
CN113359340B (zh) * 2021-05-28 2022-11-15 上海易教科技股份有限公司 显示装置及智慧黑板
CN113407067B (zh) * 2021-08-18 2022-01-28 深圳市柔宇科技股份有限公司 电容触控电极、触控面板以及电子设备
CN113655912B (zh) * 2021-08-26 2023-09-19 合肥鑫晟光电科技有限公司 触控面板及其制备方法、触控装置
CN114327153A (zh) * 2022-01-14 2022-04-12 信利(仁寿)高端显示科技有限公司 一种触控显示面板公共电极分块方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090135157A1 (en) * 2007-11-27 2009-05-28 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Capacitive Sensing Input Device with Reduced Sensitivity to Humidity and Condensation
CN102566838A (zh) * 2010-12-21 2012-07-11 上海天马微电子有限公司 电容式触摸感应装置及触摸显示装置
CN102914920A (zh) * 2012-09-11 2013-02-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN102955635A (zh) * 2012-10-15 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN102955637A (zh) * 2012-11-02 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN103472951A (zh) * 2013-09-13 2013-12-25 京东方科技集团股份有限公司 一种触摸屏及其制作方法、显示装置
CN103970354A (zh) * 2014-04-29 2014-08-06 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663607B2 (en) * 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
KR101773613B1 (ko) * 2011-02-25 2017-09-01 엘지디스플레이 주식회사 터치 일체형 표시장치
CN203825590U (zh) * 2014-04-29 2014-09-10 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090135157A1 (en) * 2007-11-27 2009-05-28 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Capacitive Sensing Input Device with Reduced Sensitivity to Humidity and Condensation
CN102566838A (zh) * 2010-12-21 2012-07-11 上海天马微电子有限公司 电容式触摸感应装置及触摸显示装置
CN102914920A (zh) * 2012-09-11 2013-02-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN102955635A (zh) * 2012-10-15 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN102955637A (zh) * 2012-11-02 2013-03-06 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN103472951A (zh) * 2013-09-13 2013-12-25 京东方科技集团股份有限公司 一种触摸屏及其制作方法、显示装置
CN103970354A (zh) * 2014-04-29 2014-08-06 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Also Published As

Publication number Publication date
CN103970354B (zh) 2015-12-16
CN103970354A (zh) 2014-08-06
US20160253036A1 (en) 2016-09-01
US9606669B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
WO2015165165A1 (zh) 内嵌式触摸屏及显示装置
US9645686B2 (en) In-cell touch panel and display device
US9665222B2 (en) In-cell touch panel and display device with self-capacitance electrodes
US9652094B2 (en) In cell touch panel and display device
KR102020901B1 (ko) 인-셀 터치 스크린 패널 및 디스플레이 디바이스
CN103218097B (zh) 一种电容式内嵌触摸屏及显示装置
WO2015180316A1 (zh) 内嵌式触摸屏及显示装置
CN103049157B (zh) 一种电容式内嵌触摸屏及显示装置
WO2015180303A1 (zh) 内嵌式触摸屏及显示装置
WO2015180347A1 (zh) 一种阵列基板及其制备方法、内嵌式触摸屏及显示装置
US20160357337A1 (en) In-Cell Touch Panel and Display Device
EP3270271B1 (en) In-cell touch screen and display device
EP3151089A1 (en) Embedded touchscreen and display device
EP3118727B1 (en) In-cell touchscreen and display device
WO2016119333A1 (zh) 内嵌式触摸屏及其驱动方法以及显示装置
WO2015180322A1 (zh) 内嵌式触摸屏以及显示装置
EP3153953A1 (en) Embedded touchscreen and display apparatus
WO2015117288A1 (zh) 内嵌式触摸屏及显示装置
CN202948433U (zh) 一种电容式内嵌触摸屏及显示装置
US20200174604A1 (en) Touch display panel, display apparatus, and method for driving touch display panel
WO2015135289A1 (zh) 内嵌式触摸屏及显示装置
CN105786263A (zh) 一种内嵌式触摸屏及其驱动方法、显示装置
CN106648213B (zh) 一种显示面板、电子设备以及驱动方法
CN105183253A (zh) 一种触控显示面板及其驱动方法、显示装置
CN203825590U (zh) 一种内嵌式触摸屏及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14435972

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/03/17)

122 Ep: pct application non-entry in european phase

Ref document number: 14890845

Country of ref document: EP

Kind code of ref document: A1