WO2015163450A1 - Gas barrier film and gas barrier laminate - Google Patents

Gas barrier film and gas barrier laminate Download PDF

Info

Publication number
WO2015163450A1
WO2015163450A1 PCT/JP2015/062538 JP2015062538W WO2015163450A1 WO 2015163450 A1 WO2015163450 A1 WO 2015163450A1 JP 2015062538 W JP2015062538 W JP 2015062538W WO 2015163450 A1 WO2015163450 A1 WO 2015163450A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
film
laminate
base film
water
Prior art date
Application number
PCT/JP2015/062538
Other languages
French (fr)
Japanese (ja)
Inventor
沙耶佳 星
神永 純一
悠希 尾村
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2015163450A1 publication Critical patent/WO2015163450A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants

Definitions

  • the present invention relates to a gas barrier film and a gas barrier property used in the packaging field of dried foods, confectionery, bread, delicacy and other foods that dislike moisture and oxygen, and disposable warmers, tablets, powdered medicines, poultices, patches, and patches. It relates to a laminate. More specifically, the present invention relates to a gas barrier film and a gas barrier laminate including a gas barrier coating layer formed from an inorganic layered compound and a resin.
  • Packaging materials used for packaging foods, pharmaceuticals, etc. contain water, oxygen, and other gases that alter the contents in order to prevent the contents from being altered or spoiled and to maintain the functions and properties of the contents.
  • the property of blocking entry is required.
  • these packaging materials have been provided with a gas barrier layer formed from a material having gas barrier properties.
  • the gas barrier layer has been provided on a substrate such as a film or paper by a sputtering method, a vapor deposition method, a wet coating method, a printing method, or the like.
  • a metal foil formed from a metal such as aluminum, a metal vapor-deposited film, a resin film such as polyvinyl alcohol, an ethylene-vinyl alcohol copolymer, or polyvinylidene chloride is used (for example, Patent Documents). 1-7).
  • the metal foil and the metal vapor deposition film are excellent in gas barrier properties, they are opaque, so the contents cannot be confirmed. Moreover, since it is inferior to a stretching property, a crack will arise by several% elongation and gas barrier property will fall. Furthermore, there are a number of problems, such as the need to dispose of them as non-combustible materials when discarded after use.
  • a gas barrier film having a resin film such as polyvinyl alcohol or ethylene-vinyl alcohol copolymer exhibits excellent gas barrier properties under low humidity.
  • the gas barrier property decreases as the humidity increases, and the gas barrier property is lost when the humidity is 70% RH or more, and thus there is a limitation in use.
  • a method has been proposed in which an inorganic layered compound is added to polyvinyl alcohol, ethylene-vinyl alcohol copolymer or the like to reduce the humidity dependency.
  • this method does not lead to a sufficient improvement, has the adverse effect of lowering the adhesion between the base material and the resin film, and it is difficult to obtain sufficient strength as a packaging material.
  • a gas barrier film having a resin film such as polyvinylidene chloride has low humidity dependence and exhibits excellent gas barrier properties.
  • a gas barrier material that does not contain a chlorine-based substance which can be a source of harmful substances during disposal. Accordingly, there has been a strong demand for a gas barrier resin film that is a material that does not contain a chlorine-based substance, has a high gas barrier property even in a high humidity atmosphere, and has good adhesion to a substrate.
  • Japanese Unexamined Patent Publication No. 2002-321301 Japanese Unexamined Patent Publication No. 2001-287294 Japanese Unexamined Patent Publication No. 11-165369 Japanese Unexamined Patent Publication No. 6-93133 Japanese Unexamined Patent Publication No. 9-150484 Japanese Patent No. 3764109 International Publication WO2013 / 129520
  • the present invention has been made in view of the above circumstances, and provides a gas barrier film and a gas barrier laminate that have excellent gas barrier properties in a high-humidity atmosphere and have sufficient laminate strength as a packaging material. With the goal.
  • an aqueous polyurethane resin containing a polyurethane resin having an acid group and a polyamine compound, a water-based coating material having a water-soluble polymer and an inorganic layered mineral as main components, A gas barrier film coated therewith has been proposed (for example, see Patent Document 7).
  • This gas barrier film is excellent in gas barrier properties in a high-humidity atmosphere, and has good adhesion to the substrate and cohesive strength of the film.
  • the initial laminate strength is good, but if it is stored for a long time in a high humidity atmosphere, the time elapses.
  • the laminate strength was lowered and peeling occurred in a part of the laminate (hereinafter referred to as “delamination”).
  • the gas barrier film according to the first aspect of the present invention comprises a base film formed from a plastic material, a polyurethane resin having an acid group provided on at least one surface of the base film, and a polyamine compound.
  • the three-dimensional surface roughness (arithmetic mean) Sa is 50 nm or more.
  • the base film is formed of one plastic material selected from polypropylene, polyethylene terephthalate, and nylon.
  • the gas barrier laminate according to the second aspect of the present invention includes a gas barrier film according to the first aspect, an adhesive layer and a heat sealable resin layer, which are sequentially laminated on at least one surface of the gas barrier film. .
  • a base film made of a plastic material having a three-dimensional surface roughness (arithmetic mean) Sa of 50 nm or more is used, and an acid group is formed on at least one surface of the base film.
  • a gas barrier layer containing, as main components, an aqueous polyurethane resin (A) containing a polyurethane resin and a polyamine compound, a water-soluble polymer (B) and an inorganic layered mineral (C), in a high humidity atmosphere
  • A aqueous polyurethane resin
  • B water-soluble polymer
  • C inorganic layered mineral
  • the gas barrier film according to the first embodiment of the present invention will be described.
  • the present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.
  • the gas barrier film 1 As shown in FIG. 1, the gas barrier film 1 according to the present embodiment has a base film 2 formed of a plastic material and an acid group provided on at least one surface of the base film 2.
  • the surface of the base film 2 on which the gas barrier layer 3 is provided has a three-dimensional surface roughness (arithmetic average) Sa of 50 nm or more.
  • the surface on which the gas barrier layer 3 is provided in the substrate film 2 is one surface when the gas barrier layer 3 is provided only on one surface (first surface) of the substrate film 2, and the gas barrier layer.
  • 3 is provided on one surface and the other surface (second surface) of the base film 2, that is, on both surfaces, it is the one surface and the other surface.
  • the three-dimensional surface roughness (arithmetic mean) Sa of the base film 2 formed from a plastic material is less than 50 nm, the adhesion strength between the base film 2 and the gas barrier layer 3 is reduced, and the gas barrier film 1 Sufficient laminate strength cannot be obtained.
  • a base material formed from any plastic material can be selected as the base material film 2.
  • the three-dimensional surface roughness (arithmetic mean) Sa of the base film 2 is preferably 70 nm or more, and more preferably 80 nm or more.
  • the upper limit value of the three-dimensional surface roughness (arithmetic average) Sa is not particularly provided, but the base film 2 having an extremely large surface roughness is not preferable because it causes a decrease in gas barrier properties.
  • the three-dimensional surface roughness (arithmetic mean) Sa is the two-dimensional roughness described in JIS B0601-2013 “Product Geometric Specification (GPS)-Surface Properties: Contour Curve Method-Terminology, Definitions and Surface Properties Parameters”. This is a value obtained by calculating the center line average roughness (Ra) of the parameter as a three-dimensional surface.
  • the coordinate axes orthogonal to the central surface of the roughness surface are the X and Y axes, the axis orthogonal to the central surface is the Z axis, the roughness surface is f (x, y), and the reference surface sizes Lx and Ly.
  • the three-dimensional surface roughness (arithmetic mean) Sa is calculated from the following formula (1).
  • Examples of the base film 2 formed from a plastic material include olefin-based resins such as polyethylene, polypropylene, and poly C2-10 such as propylene-ethylene copolymer, and polyester-based materials such as polyethylene terephthalate and polybutylene terephthalate.
  • olefin-based resins such as polyethylene, polypropylene, and poly C2-10 such as propylene-ethylene copolymer
  • polyester-based materials such as polyethylene terephthalate and polybutylene terephthalate.
  • polyamide polyamide such as nylon 6 and aliphatic polyamide such as nylon 66, aromatic polyamide such as polymetaxylylene adipamide, polystyrene, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, A vinyl resin such as an ethylene-vinyl alcohol copolymer, an acrylic resin such as a single or copolymer of a (meth) acrylic monomer such as polymethyl methacrylate or polyacrylonitrile, or a cellophane. Lum, and the like. These resins are used alone or in combination of two or more.
  • the base film 2 may be a film using an anti-blocking agent such as silica, talc, diatomaceous earth, or an acrylic polymer, an additive such as an antistatic agent such as a filler, a surfactant, or a metal oxide.
  • an anti-blocking agent such as silica, talc, diatomaceous earth, or an acrylic polymer
  • an additive such as an antistatic agent such as a filler, a surfactant, or a metal oxide.
  • the surface of the base film 2 is made to have fine irregularities, and the three-dimensional surface roughness of the surface (one side or both sides) of the base film 2
  • the (arithmetic average) Sa can be adjusted to an arbitrary value.
  • the base film 2 a single-layer film made of a single resin, a single-layer film using a plurality of resins, a laminated film, or the like is used. Moreover, you may use the laminated base material which laminated
  • a polyolefin resin film especially polypropylene film
  • a polyester resin film especially polyethylene terephthalate resin film
  • a polyamide resin film especially nylon film
  • the base film 2 may be an unstretched film, may be a uniaxial or biaxially oriented film, may be a film that has been surface-treated (such as corona discharge treatment), anchor coat, or undercoat treatment. Good. Furthermore, the base film 2 may be a laminated film in which a plurality of resins or metals are laminated. Moreover, the base film 2 is subjected to corona treatment, low-temperature plasma treatment, etc. on the surface to be coated (the surface on which a film such as the gas barrier layer 3 is formed), thereby providing good wettability to the coating agent and adhesive strength to the film. The film which improved can be used.
  • the thickness of the base film 2 is not particularly limited, and is appropriately selected according to the price and application, taking into consideration the suitability as a packaging material and the suitability of other coatings.
  • the thickness of the base film 2 is practically 3 ⁇ m to 200 ⁇ m, preferably 5 ⁇ m to 120 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m.
  • a gas barrier layer 3 having, as main components, an aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B), and an inorganic layered mineral (C) is known.
  • a coating agent containing as a main component the solvent component is removed by drying.
  • the coating agent can be prepared by, for example, blending the above three components at a predetermined blending ratio and dissolving or dispersing them in water or a water / alcohol mixture.
  • the aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound is rigid by bonding the polyamine compound as a crosslinking agent and the acid group of the polyurethane resin. It forms a simple molecular skeleton and exhibits gas barrier properties.
  • the dry film of the water-based polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound is insoluble in water, like a general polyurethane resin, and therefore has a gas barrier film having a low humidity dependency. Become.
  • the bond between the polyamine compound and the acid group of the polyurethane resin may be an ionic bond (for example, an ionic bond between a tertiary amino group and a carboxyl group) or a covalent bond (for example, an amide bond). Also good. Therefore, as the polyamine compound, various polyamines having two or more basic nitrogen atoms selected from the group consisting of a primary amino group, a secondary amino group, and a tertiary amino group are used.
  • the water-soluble polymer (B) is a polymer that can be completely dissolved or finely dispersed in water at room temperature.
  • the water-soluble polymer (B) is not particularly limited as long as it is a compound that can penetrate and coordinate (intercalate) between unit crystal layers of the inorganic layered mineral (C) described later.
  • polyvinyl alcohol and derivatives thereof cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose, starches such as oxidized starch, etherified starch and dextrin, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid or esters thereof, salts and These copolymers, copolymer polyesters containing polar groups such as sulfoisophthalic acid, vinyl polymers such as polyhydroxyethyl methacrylate and its copolymers, urethane polymers, or carboxyls of these various polymers Examples thereof include functional group-modified polymers such as groups.
  • the water-soluble polymer (B) at least one kind is preferably a polyvinyl alcohol polymer and a derivative thereof, and a polyvinyl alcohol resin having a saponification degree of 95% or more and a polymerization degree of 300 to 2000 is particularly preferable.
  • the higher the degree of saponification and polymerization the lower the hygroscopic swelling property of the polyvinyl alcohol resin.
  • the saponification degree of the polyvinyl alcohol resin is less than 95%, it is difficult to obtain a sufficient gas barrier property.
  • the polymerization degree of the polyvinyl alcohol resin is less than 300, the gas barrier property is lowered.
  • the inorganic layered mineral (C) is an inorganic compound in which ultrathin unit layers overlap to form one layered particle.
  • a mineral that swells and cleaves in water is preferable, and among these, a clay compound having a swelling property in water is particularly preferably used.
  • the inorganic layered mineral (C) is a clay compound having the property of coordinating and absorbing / swelling water between ultrathin unit layers, and generally Si 4+ is less than O 2 ⁇ .
  • This clay compound may be a natural compound or a synthesized compound.
  • Typical types of inorganic layered minerals include hydrous silicates such as phyllosilicate minerals, such as halloysite, kaolinite clay minerals such as kaolinite, enderite, dickite and nacrite, and antigolite.
  • hydrous silicates such as phyllosilicate minerals, such as halloysite, kaolinite clay minerals such as kaolinite, enderite, dickite and nacrite, and antigolite.
  • antigolite clay minerals such as chrysotile, montmorillonite, smectite group clay minerals such as beidelite, nontronite, saponite, hectorite, saconite, and stevensite, vermiculite clay minerals such as vermiculite, muscovite, phlogopite, etc.
  • Mica, mica or mica clay minerals such as margarite, tetrasilic mica, and teniolite.
  • inorganic layered minerals (C) are used alone or in combination of two or more.
  • smectite group clay minerals such as montmorillonite and mica group clay minerals such as water-swellable mica are particularly preferable.
  • the size of the inorganic layered mineral (C) is preferably an average particle size of 10 ⁇ m or less and a thickness of 500 nm or less.
  • at least one is particularly preferably a water-swellable synthetic mica having an average particle diameter of 1 ⁇ m to 10 ⁇ m and a thickness of 10 nm to 100 nm.
  • the water-swellable synthetic mica has high compatibility with the water-based polyurethane resin (A) and the water-soluble polymer (B), so Since there are few impurities compared with it, the gas barrier property and the film cohesion force which originate in an impurity are not caused.
  • the water-swellable synthetic mica since the water-swellable synthetic mica has a fluorine atom in the crystal structure, it contributes to suppressing the humidity dependence of the gas barrier property of the film formed from the aqueous coating agent. Furthermore, since the water-swellable synthetic mica has a higher aspect ratio than other water-swellable inorganic layered minerals, the maze effect works more effectively, and in particular, a gas barrier for a film formed from an aqueous coating agent. It contributes to high expression.
  • the coating agent for forming the gas barrier layer 3 may contain various additives as long as the gas barrier property of the gas barrier film 1 and the strength as a packaging material are not impaired.
  • additives include reactive isocyanates such as polyisocyanates, carbodiimides, epoxy compounds, oxazolidone compounds, and aziridine compounds, antioxidants, weathering agents, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet absorbers, Examples thereof include a plasticizer, an antistatic agent, a colorant, a filler, a surfactant, and a silane coupling agent.
  • the coating agent that forms the gas barrier layer 3 according to the present embodiment mainly contains water, and may contain a solvent that dissolves or uniformly mixes in water.
  • the solvent include alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, cellosolves, carbitols, and nitriles such as acetonitrile.
  • the coating agent for forming the gas barrier layer 3 preferably has a total solid content concentration of 8% by mass or more, a viscosity at 23 ° C. of 10 mPa ⁇ s to 50 mPa ⁇ s, and a total solid content concentration of 10% by mass. More preferably, the viscosity at 23 ° C. is 10 mPa ⁇ s to 40 mPa ⁇ s.
  • the gas barrier layer 3 As a wet coating method for forming the gas barrier layer 3 according to this embodiment, roll coating, gravure coating, reverse coating, die coating, screen printing, spray coating, or the like is used. A known drying method such as hot air drying, hot roll drying, infrared irradiation, etc. is applied after coating the above-mentioned coating agent on one surface, or one surface or the other surface of the base film 2 formed from a plastic material. By using it, a dry film is formed and the gas barrier layer 3 is obtained.
  • a known drying method such as hot air drying, hot roll drying, infrared irradiation, etc.
  • the thickness of the gas barrier layer 3 is set according to the gas barrier properties required for the gas barrier film 1 of the present embodiment, but is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.2 ⁇ m to 2 ⁇ m. preferable. If the thickness of the gas barrier layer 3 is less than 0.1 ⁇ m, it is difficult to obtain sufficient gas barrier properties. On the other hand, if the thickness of the gas barrier layer 3 exceeds 5 ⁇ m, it is not only difficult to provide a uniform coating film surface, but also an increase in drying load and an increase in production cost are undesirable.
  • the gas barrier film 1 may have a protective layer, a printing layer, an anchor coat layer, a light shielding layer, other functional layers, and the like as necessary.
  • the gas barrier film 1 uses a base film 2 formed from a plastic material having a three-dimensional surface roughness (arithmetic mean) Sa of 50 nm or more, and at least one surface of the base film 2
  • the gas barrier layer 3 containing the water-based polyurethane resin (A), the water-soluble polymer (B), and the inorganic layered mineral (C) as main components is provided.
  • the laminated film in which another film is bonded to the surface provided with the gas barrier layer 3 of the gas barrier film 1 according to this embodiment by applying an adhesive the deterioration of the laminate strength is small. Therefore, by using it as a packaging material, it is possible to improve the quality retention of the contents and to utilize it as various packaging materials.
  • Gas barrier laminate The gas barrier laminate according to the second embodiment of the present invention will be described. As shown in FIG. 2, the gas barrier laminate 4 according to the second embodiment of the present invention is laminated in order on the gas barrier film 1 according to the first embodiment described above and at least one surface of the gas barrier film 1. It is the laminated body provided with the adhesive bond layer 5 and the heat-sealable resin layer 6 which were made.
  • the heat-sealable resin layer 6 is laminated on the gas barrier layer 3 of the gas barrier film 1 according to the first embodiment described above via the adhesive layer 5. It is a laminated body formed.
  • polyolefin films such as low density polyethylene, linear low density polyethylene, medium density polyethylene, and polypropylene, polyester copolymer films, polyacrylonitrile films, vinyl acetate copolymers.
  • a film or the like can be used.
  • polyolefin films are particularly preferable because they are excellent in low-temperature heat sealing properties and inexpensive.
  • a laminating method a known dry laminating method, an extrusion laminating method, a non-sol laminating method, or the like can be used.
  • various adhesives can be selected according to various laminating methods. For example, known adhesives such as polyurethane, polyester, polyether, epoxy, polyethyleneimine, and polybutadiene can be used.
  • the heat-sealable resin layer 6 is laminated on the gas barrier layer 3 of the gas barrier film 1 according to the above-described first embodiment via the adhesive layer 5. Therefore, it can be used as a packaging material that can be heat sealed.
  • aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound (hereinafter sometimes referred to as “component (A)”) a polyurethane dispersion “Takelac WPB-341” manufactured by Mitsui Chemicals, Inc.
  • component (A) a polyurethane dispersion “Takelac WPB-363” manufactured by Mitsui Chemicals, Inc.
  • component (B) As a water-soluble polymer (B) (hereinafter sometimes referred to as “component (B)”), a polyvinyl alcohol resin, Khoray PVA-117 (saponification degree: 98 to 99%, polymerization degree: 1700), Alternatively, Poval PVA-105 (saponification degree 98 to 99%, polymerization degree 500) manufactured by Kuraray Co., Ltd. was used.
  • component (C) water-swellable synthetic mica (Somasif MEB-3 manufactured by Corp Chemical Co.), montmorillonite (Kunipia manufactured by Kunimine Industries Co., Ltd.) F) was used.
  • Component (A), component (B), and component (C) were blended at the solid content blending ratio shown in Table 1, heated and mixed at 80 ° C., and then cooled to room temperature. Thereafter, the solution is diluted with ion-exchanged water and isopropanol so that 10% by mass in the solvent is isopropanol and the final solid content concentration is 9%, and the curing agents described in Tables 1 and 2 (Mitsui A water-soluble polysocyanate takenate WD-725 manufactured by Kagaku Co. was added to prepare a coating agent.
  • Each substrate film (polyethylene terephthalate (PET) film, biaxially stretched polypropylene (OPP)) having a difference in the three-dimensional surface roughness (arithmetic mean) Sa shown in Table 1 using a gravure coater is used as the coating agent.
  • PET polyethylene terephthalate
  • OPP biaxially stretched polypropylene
  • Table 1 a gravure coater
  • the surface on which the gas barrier layer is formed is subjected to a dry lamination process with a polyether adhesive (Takelac A-969V manufactured by Mitsui Chemicals, Takenate A-5 manufactured by Mitsui Chemicals) having a thickness of 30 ⁇ m.
  • a polyether adhesive Takelac A-969V manufactured by Mitsui Chemicals, Takenate A-5 manufactured by Mitsui Chemicals
  • An unstretched polypropylene film (CPP GLC manufactured by Mitsui Chemicals, Inc.) was laminated. Thereafter, curing was carried out at 40 ° C. for 48 hours to obtain laminates of Examples 1 to 10 and Comparative Examples 1 to 7 shown in Tables 1 and 2.
  • T-type laminate strength The laminates of Examples 1 to 10 and Comparative Examples 1 to 7 were stored for 2 months in a constant temperature bath at 40 ° C. and 75% humidity. After storage, the laminate is cut into strips with a width of 15 mm, and the laminate is peeled off at a rate of 300 mm / min with a tensile tester Tensilon so that the peel angle between the base film and the sealant film is 90 °. The strength was measured. The results are shown in Tables 1 and 2.
  • Comparative Example 7 in addition to obtaining a sufficient laminate strength, the value of oxygen permeability in an atmosphere of 20 ° C. and humidity 80% RH is 500 cm 3 / (m 2 ⁇ day ⁇ MPa) or more, and good gas barrier properties under high humidity could not be obtained.
  • the evaluation of the laminate strength of the gas barrier laminate was not sufficient only with the T-type laminate strength.
  • a delamination defect (floating) occurs due to repeated load applied to the bent portion of the packaging material due to vibration during transportation. ) May occur.
  • JIS Z 0232 Method A
  • a difference was observed between the example and the comparative example in the number of occurrences of floating.
  • the number of floats in this test tended to be more highly correlated with 180 ° laminate strength than T-type laminate strength.
  • the strength difference between the example and the comparative example could be clarified by measuring the 180 ° laminate strength in addition to the T-type laminate strength of the gas barrier laminate.
  • the gas barrier film and gas barrier laminate of the present invention have both high gas barrier properties in a high humidity atmosphere, sufficient adhesion strength to the substrate and cohesive strength of the film, and are stored for a long time in a high humidity atmosphere.
  • the laminate strength does not deteriorate with the passage of time and no delamination occurs, it can be used in various fields as various packaging materials.

Abstract

This gas barrier film is provided with a base material film which is formed from a plastic material, and a gas barrier layer which is provided on at least one surface of the base material film and which contains, as primary constituent components, the following: an aqueous polyurethane resin (A) that contains an acid group-containing polyurethane resin and a polyamine compound; a water-soluble polymer (B); and an inorganic layered mineral (C). The (arithmetic mean) three-dimensional surface roughness (Sa) of the surface of the base material film on which the gas barrier layer is provided is 50 nm or more.

Description

ガスバリア性フィルムおよびガスバリア性積層体Gas barrier film and gas barrier laminate
 本発明は、乾燥食品・菓子・パン・珍味などの湿気や酸素を嫌う食品、および、使い捨てカイロ、錠剤・粉末薬または湿布・貼付剤などの医薬品の包装分野に用いられるガスバリア性フィルムおよびガスバリア性積層体に関する。さらに、詳しくは、無機層状化合物と樹脂から形成されるガスバリア性コーティング層を含むガスバリア性フィルムおよびガスバリア性積層体に関する。
 本願は、2014年4月25日に日本に出願された特願2014-091987号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a gas barrier film and a gas barrier property used in the packaging field of dried foods, confectionery, bread, delicacy and other foods that dislike moisture and oxygen, and disposable warmers, tablets, powdered medicines, poultices, patches, and patches. It relates to a laminate. More specifically, the present invention relates to a gas barrier film and a gas barrier laminate including a gas barrier coating layer formed from an inorganic layered compound and a resin.
This application claims priority based on Japanese Patent Application No. 2014-091987 for which it applied to Japan on April 25, 2014, and uses the content here.
 食品や医薬品などの包装に用いられる包装材料には、内容物の変質や腐敗などを抑制し、内容物の機能や性質を保持するために、水蒸気、酸素、その他の内容物を変質させる気体の進入を遮断する性質(ガスバリア性)が必要である。 Packaging materials used for packaging foods, pharmaceuticals, etc. contain water, oxygen, and other gases that alter the contents in order to prevent the contents from being altered or spoiled and to maintain the functions and properties of the contents. The property of blocking entry (gas barrier property) is required.
 そのため、従来、これら包装材料には、ガスバリア性を有する材料から形成されるガスバリア層が設けられていた。これまで、ガスバリア層は、フィルムや紙などの基材上に、スパッタリング法や蒸着法、ウェットコーティング法、印刷法などにより設けられていた。また、ガスバリア層としては、アルミニウムなどの金属から形成される金属箔や金属蒸着膜、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリ塩化ビニリデンなどの樹脂膜が用いられている(例えば、特許文献1~7参照)。
 しかしながら、金属箔や金属蒸着膜は、ガスバリア性には優れるものの、不透明であるため、内容物を確認することができない。また、伸縮性に劣るため、数%の伸びでクラックが生じて、ガスバリア性が低下する。さらに、使用後の廃棄時に、不燃物として処理する必要があるなど、数々の問題があった。
Therefore, conventionally, these packaging materials have been provided with a gas barrier layer formed from a material having gas barrier properties. Until now, the gas barrier layer has been provided on a substrate such as a film or paper by a sputtering method, a vapor deposition method, a wet coating method, a printing method, or the like. In addition, as the gas barrier layer, a metal foil formed from a metal such as aluminum, a metal vapor-deposited film, a resin film such as polyvinyl alcohol, an ethylene-vinyl alcohol copolymer, or polyvinylidene chloride is used (for example, Patent Documents). 1-7).
However, although the metal foil and the metal vapor deposition film are excellent in gas barrier properties, they are opaque, so the contents cannot be confirmed. Moreover, since it is inferior to a stretching property, a crack will arise by several% elongation and gas barrier property will fall. Furthermore, there are a number of problems, such as the need to dispose of them as non-combustible materials when discarded after use.
 また、ポリビニルアルコールやエチレン-ビニルアルコール共重合体などの樹脂膜を有するガスバリア性フィルムは、低湿度下では優れたガスバリア性を示す。一方で、湿度の上昇に伴ってガスバリア性が低下していき、湿度70%RH以上ではガスバリア性が失われてしまうため、使用上の制限があった。これを改善するために、ポリビニルアルコールやエチレン-ビニルアルコール共重合体などに、無機層状化合物を添加し、湿度依存性を低下させる方法などが提案されている。しかしながら、この方法では十分な改善には至らず、基材と樹脂膜との密着性が低下する弊害を有し、包装材料としての十分な強度が得られ難かった。 In addition, a gas barrier film having a resin film such as polyvinyl alcohol or ethylene-vinyl alcohol copolymer exhibits excellent gas barrier properties under low humidity. On the other hand, the gas barrier property decreases as the humidity increases, and the gas barrier property is lost when the humidity is 70% RH or more, and thus there is a limitation in use. In order to improve this, a method has been proposed in which an inorganic layered compound is added to polyvinyl alcohol, ethylene-vinyl alcohol copolymer or the like to reduce the humidity dependency. However, this method does not lead to a sufficient improvement, has the adverse effect of lowering the adhesion between the base material and the resin film, and it is difficult to obtain sufficient strength as a packaging material.
 一方、ポリ塩化ビニリデンなどの樹脂膜を有するガスバリア性フィルムは、湿度依存性が低く、優れたガスバリア性を示す。しかしながら、廃棄処理などの際に、有害物質の発生源となる可能性があり、塩素系物質を含有しないガスバリア材料が求められている。
 したがって、塩素系物質を含まない材料で、高湿度雰囲気下でも高いガスバリア性を有し、基材への密着性も良好な、ガスバリア性樹脂膜が強く求められていた。
On the other hand, a gas barrier film having a resin film such as polyvinylidene chloride has low humidity dependence and exhibits excellent gas barrier properties. However, there is a need for a gas barrier material that does not contain a chlorine-based substance, which can be a source of harmful substances during disposal.
Accordingly, there has been a strong demand for a gas barrier resin film that is a material that does not contain a chlorine-based substance, has a high gas barrier property even in a high humidity atmosphere, and has good adhesion to a substrate.
日本国特開2002-321301号公報Japanese Unexamined Patent Publication No. 2002-321301 日本国特開2001-287294号公報Japanese Unexamined Patent Publication No. 2001-287294 日本国特開平11-165369号公報Japanese Unexamined Patent Publication No. 11-165369 日本国特開平6-93133号公報Japanese Unexamined Patent Publication No. 6-93133 日本国特開平9-150484号公報Japanese Unexamined Patent Publication No. 9-150484 日本国特許第3764109号公報Japanese Patent No. 3764109 国際公報WO2013/129520International Publication WO2013 / 129520
 本発明は、上記事情に鑑みてなされたものであって、高湿度雰囲気下におけるガスバリア性に優れ、かつ、包装用材料として十分なラミネート強度を有するガスバリア性フィルムおよびガスバリア性積層体を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a gas barrier film and a gas barrier laminate that have excellent gas barrier properties in a high-humidity atmosphere and have sufficient laminate strength as a packaging material. With the goal.
 本発明者は、上記の事情を踏まえて、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂と、水溶性高分子および無機層状鉱物を主たる構成成分として有する水系のコーティング材料と、それをコーティングしたガスバリア性フィルムと、を提案している(例えば、特許文献7参照)。このガスバリア性フィルムは、高湿度雰囲気下におけるガスバリア性に優れ、皮膜の基材への密着性や凝集力も良好である。しかしながら、このガスバリア性フィルム上に接着剤を介して、ヒートシール性樹脂層をラミネートした積層体において、初期のラミネート強度は良好であるものの、高湿度雰囲気下に長期間保管すると、時間の経過に伴ってラミネート強度が低下し、積層体の一部に剥離が生じる(以下、「デラミネーション」と言う。)不良が発生する場合があった。 Based on the above circumstances, the present inventor, an aqueous polyurethane resin containing a polyurethane resin having an acid group and a polyamine compound, a water-based coating material having a water-soluble polymer and an inorganic layered mineral as main components, A gas barrier film coated therewith has been proposed (for example, see Patent Document 7). This gas barrier film is excellent in gas barrier properties in a high-humidity atmosphere, and has good adhesion to the substrate and cohesive strength of the film. However, in the laminate in which the heat-sealable resin layer is laminated on the gas barrier film via an adhesive, the initial laminate strength is good, but if it is stored for a long time in a high humidity atmosphere, the time elapses. Accompanying this, there was a case in which the laminate strength was lowered and peeling occurred in a part of the laminate (hereinafter referred to as “delamination”).
 本発明の第一態様に係るガスバリア性フィルムは、プラスチック材料から形成される基材フィルムと、前記基材フィルムの少なくとも一方の面に設けられ、酸基を有するポリウレタン樹脂と、ポリアミン化合物と、を含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含むガスバリア層と、を備え、前記基材フィルムにおける前記ガスバリア層が設けられる面の三次元表面粗さ(算術平均)Saが、50nm以上である。 The gas barrier film according to the first aspect of the present invention comprises a base film formed from a plastic material, a polyurethane resin having an acid group provided on at least one surface of the base film, and a polyamine compound. An aqueous polyurethane resin (A) containing, a water-soluble polymer (B), and a gas barrier layer containing the inorganic layered mineral (C) as main constituent components, and a surface of the base film on which the gas barrier layer is provided The three-dimensional surface roughness (arithmetic mean) Sa is 50 nm or more.
 上記第一態様において、前記基材フィルムは、ポリプロピレン、ポリエチレンテレフタレート、およびナイロンから選択される1種のプラスチック材料から形成される。 In the first aspect, the base film is formed of one plastic material selected from polypropylene, polyethylene terephthalate, and nylon.
 本発明の第二態様に係るガスバリア性積層体は、上記第一態様に係るガスバリア性フィルムと、前記ガスバリア性フィルムの少なくとも一方の面に順に積層された、接着剤層およびヒートシール性樹脂層と、を備える。 The gas barrier laminate according to the second aspect of the present invention includes a gas barrier film according to the first aspect, an adhesive layer and a heat sealable resin layer, which are sequentially laminated on at least one surface of the gas barrier film. .
 本発明の上記各態様によれば、三次元表面粗さ(算術平均)Saが、50nm以上であるプラスチック材料からなる基材フィルムを用い、その基材フィルムの少なくとも一方の面に、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分として含むガスバリア層を形成することにより、高湿度雰囲気下におけるガスバリア性に優れ、ガスバリア層の基材フィルムに対する密着性や凝集力も良好なガスバリア性フィルムおよびガスバリア性積層体を提供することができる。また、高湿度雰囲気下で長期間保管されても、時間の経過に伴うラミネート強度の低下が少なく、包装用材料として、様々な包装用資材として活用することが可能なガスバリア性積層体を提供することができる。 According to each aspect of the present invention, a base film made of a plastic material having a three-dimensional surface roughness (arithmetic mean) Sa of 50 nm or more is used, and an acid group is formed on at least one surface of the base film. By forming a gas barrier layer containing, as main components, an aqueous polyurethane resin (A) containing a polyurethane resin and a polyamine compound, a water-soluble polymer (B) and an inorganic layered mineral (C), in a high humidity atmosphere It is possible to provide a gas barrier film and a gas barrier laminate that are excellent in gas barrier properties and also have good adhesion and cohesive strength to the base film of the gas barrier layer. Moreover, even when stored for a long time in a high humidity atmosphere, there is provided a gas barrier laminate that can be used as various packaging materials as a packaging material with little decrease in laminate strength over time. be able to.
本発明の第一実施形態に係るガスバリア性フィルムの一例を示す断面図である。It is sectional drawing which shows an example of the gas barrier film which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係るガスバリア性積層体の一例を示す断面図である。It is sectional drawing which shows an example of the gas-barrier laminated body which concerns on 2nd embodiment of this invention.
 本発明の第一実施形態に係るガスバリア性フィルムについて説明する。
 なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The gas barrier film according to the first embodiment of the present invention will be described.
The present embodiment is specifically described for better understanding of the gist of the invention, and does not limit the invention unless otherwise specified.
「ガスバリア性フィルム1」
 図1に示されるように、本実施形態に係るガスバリア性フィルム1は、プラスチック材料から形成される基材フィルム2と、その基材フィルム2の少なくとも一方の面に設けられた、酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)および無機層状鉱物(C)を主たる構成成分として含むガスバリア層3と、を備える。また、本実施形態に係るガスバリア性フィルム1において、基材フィルム2におけるガスバリア層3が設けられる面の三次元表面粗さ(算術平均)Saが、50nm以上であるフィルムである。
"Gas barrier film 1"
As shown in FIG. 1, the gas barrier film 1 according to the present embodiment has a base film 2 formed of a plastic material and an acid group provided on at least one surface of the base film 2. An aqueous polyurethane resin (A) containing a polyurethane resin and a polyamine compound, a gas barrier layer 3 containing a water-soluble polymer (B) and an inorganic layered mineral (C) as main components. In the gas barrier film 1 according to the present embodiment, the surface of the base film 2 on which the gas barrier layer 3 is provided has a three-dimensional surface roughness (arithmetic average) Sa of 50 nm or more.
 基材フィルム2におけるガスバリア層3が設けられる面とは、ガスバリア層3が基材フィルム2の一方の面(第1の面)のみに設けられる場合、その一方の面のことであり、ガスバリア層3が基材フィルム2の一方の面および他方の面(第2の面)、すなわち、両面に設けられる場合は、その一方の面および他方の面のことである。 The surface on which the gas barrier layer 3 is provided in the substrate film 2 is one surface when the gas barrier layer 3 is provided only on one surface (first surface) of the substrate film 2, and the gas barrier layer. When 3 is provided on one surface and the other surface (second surface) of the base film 2, that is, on both surfaces, it is the one surface and the other surface.
 プラスチック材料から形成される基材フィルム2の三次元表面粗さ(算術平均)Saが、50nm未満であると、基材フィルム2とガスバリア層3との密着強度が低下し、ガスバリア性フィルム1の十分なラミネート強度が得られない。三次元表面粗さ(算術平均)Saが50nm以上であれば、基材フィルム2としては、任意のプラスチック材料から形成される基材を選択できる。基材フィルム2の三次元表面粗さ(算術平均)Saは70nm以上であることが好ましく、80nm以上であることがより好ましい。
 なお、三次元表面粗さ(算術平均)Saの上限値は特に設けられないが、極端に表面粗さの大きい基材フィルム2は、ガスバリア性の低下を招くため、好ましくない。
When the three-dimensional surface roughness (arithmetic mean) Sa of the base film 2 formed from a plastic material is less than 50 nm, the adhesion strength between the base film 2 and the gas barrier layer 3 is reduced, and the gas barrier film 1 Sufficient laminate strength cannot be obtained. If the three-dimensional surface roughness (arithmetic mean) Sa is 50 nm or more, a base material formed from any plastic material can be selected as the base material film 2. The three-dimensional surface roughness (arithmetic mean) Sa of the base film 2 is preferably 70 nm or more, and more preferably 80 nm or more.
The upper limit value of the three-dimensional surface roughness (arithmetic average) Sa is not particularly provided, but the base film 2 having an extremely large surface roughness is not preferable because it causes a decrease in gas barrier properties.
 三次元表面粗さ(算術平均)Saは、JIS B0601-2013「製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語、定義及び表面性状パラメータ」に記載されている2次元粗さパラメータの中心線平均粗さ(Ra)を、3次元に面として計算させて得られる値である。粗さ曲面の中心面上に直交する座標軸をX軸、Y軸とし、中心面に直交する軸をZ軸とし、粗さ曲面をf(x、y)、基準面の大きさLx、Lyとしたとき、三次元表面粗さ(算術平均)Saは、下記式(1)より算出される。 The three-dimensional surface roughness (arithmetic mean) Sa is the two-dimensional roughness described in JIS B0601-2013 “Product Geometric Specification (GPS)-Surface Properties: Contour Curve Method-Terminology, Definitions and Surface Properties Parameters”. This is a value obtained by calculating the center line average roughness (Ra) of the parameter as a three-dimensional surface. The coordinate axes orthogonal to the central surface of the roughness surface are the X and Y axes, the axis orthogonal to the central surface is the Z axis, the roughness surface is f (x, y), and the reference surface sizes Lx and Ly Then, the three-dimensional surface roughness (arithmetic mean) Sa is calculated from the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 プラスチック材料から形成される基材フィルム2としては、例えば、ポリエチレンや、ポリプロピレン、プロピレン-エチレン共重合体などのポリC2-10などのオレフィン系樹脂や、ポリエチレンテレフタレートや、ポリブチレンテレフタレートなどのポリエステル系樹脂、ナイロン6や、ナイロン66などの脂肪族系ポリアミド、ポリメタキシリレンアジパミドなどの芳香族ポリアミドなどのポリアミド系樹脂、ポリスチレン、ポリ酢酸ビニルや、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、エチレン-ビニルアルコール共重合体などのビニル系樹脂、ポリメチルメタクリレートや、ポリアクリロニトリルなどの(メタ)アクリル系単量体の単独または共重合体などのアクリル系樹脂、セロファンなどから形成されるフィルムが挙げられる。これらの樹脂は、1種または2種以上が組み合わせられて用いられる。 Examples of the base film 2 formed from a plastic material include olefin-based resins such as polyethylene, polypropylene, and poly C2-10 such as propylene-ethylene copolymer, and polyester-based materials such as polyethylene terephthalate and polybutylene terephthalate. Resin, polyamide polyamide such as nylon 6 and aliphatic polyamide such as nylon 66, aromatic polyamide such as polymetaxylylene adipamide, polystyrene, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl alcohol, A vinyl resin such as an ethylene-vinyl alcohol copolymer, an acrylic resin such as a single or copolymer of a (meth) acrylic monomer such as polymethyl methacrylate or polyacrylonitrile, or a cellophane. Lum, and the like. These resins are used alone or in combination of two or more.
 基材フィルム2は、シリカ、タルク、珪藻土、アクリルポリマーなどのアンチブロッキング剤、フィラー、界面活性剤、金属酸化物などの静電気防止剤などの添加剤を用いたフィルムであってもよい。
 添加剤の種類や、添加剤の粒経を選択することにより、基材フィルム2の表面に微小な凹凸を発現させて、基材フィルム2の表面(一方の面または両面)の三次元表面粗さ(算術平均)Saを任意の値に調整することができる。
The base film 2 may be a film using an anti-blocking agent such as silica, talc, diatomaceous earth, or an acrylic polymer, an additive such as an antistatic agent such as a filler, a surfactant, or a metal oxide.
By selecting the type of additive and the particle size of the additive, the surface of the base film 2 is made to have fine irregularities, and the three-dimensional surface roughness of the surface (one side or both sides) of the base film 2 The (arithmetic average) Sa can be adjusted to an arbitrary value.
 基材フィルム2としては、単一の樹脂で構成された単層フィルムや、複数の樹脂を用いた単層フィルムまたは積層フィルムなどが用いられる。また、上記の樹脂を他の基材(金属や、木材、紙、セラミックスなど)に積層した積層基材を用いてもよい。
 これらの中でも、基材フィルム2としては、ポリオレフィン系樹脂フィルム(特に、ポリプロピレンフィルムなど)や、ポリエステル系樹脂フィルム(特に、ポリエチレンテレフタレート系樹脂フィルム)、ポリアミド系樹脂フィルム(特に、ナイロンフィルム)などが好適に用いられる。
As the base film 2, a single-layer film made of a single resin, a single-layer film using a plurality of resins, a laminated film, or the like is used. Moreover, you may use the laminated base material which laminated | stacked said resin on the other base material (A metal, wood, paper, ceramics, etc.).
Among these, as the base film 2, a polyolefin resin film (especially polypropylene film), a polyester resin film (especially polyethylene terephthalate resin film), a polyamide resin film (especially nylon film), etc. Preferably used.
 基材フィルム2は、未延伸フィルムであってもよく、一軸または二軸延伸配向フィルムであってもよく、表面処理(コロナ放電処理など)やアンカーコートまたはアンダーコート処理されたフィルムであってもよい。さらに、基材フィルム2は、複数の樹脂や金属などを積層した積層フィルムであってもよい。
 また、基材フィルム2は、コーティングする面(ガスバリア層3などの皮膜を形成する面)に、コロナ処理、低温プラズマ処理などを施すことにより、コーティング剤に対する良好な濡れ性と、皮膜に対する接着強度とを向上したフィルムであってもよい。
The base film 2 may be an unstretched film, may be a uniaxial or biaxially oriented film, may be a film that has been surface-treated (such as corona discharge treatment), anchor coat, or undercoat treatment. Good. Furthermore, the base film 2 may be a laminated film in which a plurality of resins or metals are laminated.
Moreover, the base film 2 is subjected to corona treatment, low-temperature plasma treatment, etc. on the surface to be coated (the surface on which a film such as the gas barrier layer 3 is formed), thereby providing good wettability to the coating agent and adhesive strength to the film. The film which improved can be used.
 基材フィルム2の厚さは、特に限定されるものではなく、包装材料としての適性や他の皮膜の積層適性を考慮しつつ、価格や用途に応じて適宜選択される。基材フィルム2の厚さは、実用的には3μm~200μmであり、好ましくは5μm~120μmであり、より好ましくは10μm~100μmである。 The thickness of the base film 2 is not particularly limited, and is appropriately selected according to the price and application, taking into consideration the suitability as a packaging material and the suitability of other coatings. The thickness of the base film 2 is practically 3 μm to 200 μm, preferably 5 μm to 120 μm, more preferably 10 μm to 100 μm.
 酸基を有するポリウレタン樹脂と、ポリアミン化合物と、を含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として有するガスバリア層3は、公知の湿式コーティング方法により、基材フィルム2上に、少なくとも酸基を有するポリウレタン樹脂と、ポリアミン化合物と、を含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含むコーティング剤を塗工した後、溶媒成分を乾燥除去して形成される。
 コーティング剤は、例えば、上記の3成分を所定の配合比率で配合し、水または水/アルコール混合液に溶解あるいは分散させて調製することができる。
A gas barrier layer 3 having, as main components, an aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound, a water-soluble polymer (B), and an inorganic layered mineral (C) is known. An aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C) containing a polyurethane resin having at least an acid group and a polyamine compound on the base film 2 by a wet coating method. After coating a coating agent containing as a main component, the solvent component is removed by drying.
The coating agent can be prepared by, for example, blending the above three components at a predetermined blending ratio and dissolving or dispersing them in water or a water / alcohol mixture.
 酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)は、一般的なポリウレタン樹脂と異なり、架橋剤としてのポリアミン化合物と、ポリウレタン樹脂の酸基と、を結合させることで剛直な分子骨格を形成し、ガスバリア性が発現する。酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)の乾燥皮膜は、一般的なポリウレタン樹脂と同様に、水に不溶であるため、湿度依存性の低いガスバリア性の皮膜となる。
 ポリアミン化合物とポリウレタン樹脂の酸基との結合は、イオン結合(例えば、第三級アミノ基とカルボキシル基とのイオン結合など)であってもよく、共有結合(例えば、アミド結合など)であってもよい。
 そのため、ポリアミン化合物としては、第1級アミノ基、第2級アミノ基、および第3級アミノ基からなる群から選択される2種以上の塩基性窒素原子を有する種々のポリアミン類が用いられる。
Unlike general polyurethane resins, the aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound is rigid by bonding the polyamine compound as a crosslinking agent and the acid group of the polyurethane resin. It forms a simple molecular skeleton and exhibits gas barrier properties. The dry film of the water-based polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound is insoluble in water, like a general polyurethane resin, and therefore has a gas barrier film having a low humidity dependency. Become.
The bond between the polyamine compound and the acid group of the polyurethane resin may be an ionic bond (for example, an ionic bond between a tertiary amino group and a carboxyl group) or a covalent bond (for example, an amide bond). Also good.
Therefore, as the polyamine compound, various polyamines having two or more basic nitrogen atoms selected from the group consisting of a primary amino group, a secondary amino group, and a tertiary amino group are used.
 水溶性高分子(B)は、常温で水に完全に溶解もしくは微分散可能な高分子のことである。
 水溶性高分子(B)としては、後述する無機層状鉱物(C)の単位結晶層間に侵入、配位(インターカレーション)することが可能な化合物であれば、特に限定されない。例えば、ポリビニルアルコールおよびその誘導体や、カルボキシメチルセルロースや、ヒドロキシエチルセルロースなどのセルロース誘導体、酸化でんぷんや、エーテル化でんぷん、デキストリンなどのでんぷん類、ポリビニルピロリドン、ポリアクリル酸、ポリメタクリル酸またはそのエステル、塩類およびそれらの共重合体、スルホイソフタル酸などの極性基を含有する共重合ポリエステル、ポリヒドロキシエチルメタクリレートおよびその共重合体などのビニル系重合体、ウレタン系高分子、あるいは、これらの各種重合体のカルボキシル基など官能基変性重合体などが挙げられる。
The water-soluble polymer (B) is a polymer that can be completely dissolved or finely dispersed in water at room temperature.
The water-soluble polymer (B) is not particularly limited as long as it is a compound that can penetrate and coordinate (intercalate) between unit crystal layers of the inorganic layered mineral (C) described later. For example, polyvinyl alcohol and derivatives thereof, cellulose derivatives such as carboxymethyl cellulose and hydroxyethyl cellulose, starches such as oxidized starch, etherified starch and dextrin, polyvinylpyrrolidone, polyacrylic acid, polymethacrylic acid or esters thereof, salts and These copolymers, copolymer polyesters containing polar groups such as sulfoisophthalic acid, vinyl polymers such as polyhydroxyethyl methacrylate and its copolymers, urethane polymers, or carboxyls of these various polymers Examples thereof include functional group-modified polymers such as groups.
 水溶性高分子(B)としては、少なくとも1種類がポリビニルアルコール系重合体およびその誘導体が好ましく、鹸化度が95%以上かつ重合度が300~2000のポリビニルアルコール樹脂が特に好ましい。
 ポリビニルアルコール樹脂は、鹸化度や重合度が高い程、吸湿膨潤性が低くなる。
 ポリビニルアルコール樹脂の鹸化度が95%未満では、十分なガスバリア性が得られ難い。
 また、ポリビニルアルコール樹脂の重合度が300未満では、ガスバリア性の低下を招く。一方、ポリビニルアルコール樹脂の重合度が2000を超えると、水系コーティング剤の粘度が上がり、他の成分と均一に混合することが難しく、ガスバリア性や密着性の低下といった不具合を招いたりするため好ましくない。
As the water-soluble polymer (B), at least one kind is preferably a polyvinyl alcohol polymer and a derivative thereof, and a polyvinyl alcohol resin having a saponification degree of 95% or more and a polymerization degree of 300 to 2000 is particularly preferable.
The higher the degree of saponification and polymerization, the lower the hygroscopic swelling property of the polyvinyl alcohol resin.
When the saponification degree of the polyvinyl alcohol resin is less than 95%, it is difficult to obtain a sufficient gas barrier property.
Moreover, when the polymerization degree of the polyvinyl alcohol resin is less than 300, the gas barrier property is lowered. On the other hand, when the polymerization degree of the polyvinyl alcohol resin exceeds 2000, the viscosity of the water-based coating agent is increased, and it is difficult to uniformly mix with other components, which causes problems such as deterioration of gas barrier properties and adhesion, which is not preferable. .
 無機層状鉱物(C)は、極薄の単位層が重なって1つの層状粒子を形成している無機化合物のことである。
 無機層状鉱物(C)としては、水中で膨潤・へき開する鉱物が好ましく、これらの中でも、特に水への膨潤性を有する粘土化合物が好ましく用いられる。より具体的には、無機層状鉱物(C)は、極薄の単位層間に水を配位し、吸収・膨潤する性質を有する粘土化合物であり、一般には、Si4+がO2-に対して配位して四面体構造を構成する層と、Al3+、Mg2+、Fe2+、Fe3+などが、O2-およびOHに対して配位して八面体構造を構成する層とが、1対1あるいは2対1で結合し、積み重なって層状構造を形成する化合物である。この粘土化合物は、天然の化合物であっても、合成された化合物であってもよい。
The inorganic layered mineral (C) is an inorganic compound in which ultrathin unit layers overlap to form one layered particle.
As the inorganic layered mineral (C), a mineral that swells and cleaves in water is preferable, and among these, a clay compound having a swelling property in water is particularly preferably used. More specifically, the inorganic layered mineral (C) is a clay compound having the property of coordinating and absorbing / swelling water between ultrathin unit layers, and generally Si 4+ is less than O 2− . A layer that coordinates to form a tetrahedral structure, and a layer that Al 3+ , Mg 2+ , Fe 2+ , Fe 3+, etc. coordinate to O 2− and OH to form an octahedral structure, It is a compound that binds one-to-one or two-to-one and stacks to form a layered structure. This clay compound may be a natural compound or a synthesized compound.
 無機層状鉱物(C)の代表的な種類としては、フィロケイ酸塩鉱物などの含水ケイ酸塩、例えば、ハロイサイトや、カオリナイト、エンデライト、ディッカイト、ナクライトなどのカオリナイト族粘土鉱物、アンチゴライトや、クリソタイルなどのアンチゴライト族粘土鉱物、モンモリロナイトや、バイデライト、ノントロナイト、サポナイト、ヘクトライト、ソーコナイト、スチブンサイトなどのスメクタイト族粘土鉱物、バーミキュライトなどのバーミキュライト族粘土鉱物、白雲母、金雲母などの雲母や、マーガライト、テトラシリリックマイカ、テニオライトなど雲母またはマイカ族粘土鉱物などが挙げられる。
 これらの無機層状鉱物(C)は、1種または2種以上が組み合わせられて用いられる。
 これらの無機層状鉱物(C)の中でも、モンモリロナイトなどのスメクタイト族粘土鉱物、水膨潤性雲母などのマイカ族粘土鉱物が特に好ましい。
Typical types of inorganic layered minerals (C) include hydrous silicates such as phyllosilicate minerals, such as halloysite, kaolinite clay minerals such as kaolinite, enderite, dickite and nacrite, and antigolite. And antigolite clay minerals such as chrysotile, montmorillonite, smectite group clay minerals such as beidelite, nontronite, saponite, hectorite, saconite, and stevensite, vermiculite clay minerals such as vermiculite, muscovite, phlogopite, etc. Mica, mica or mica clay minerals such as margarite, tetrasilic mica, and teniolite.
These inorganic layered minerals (C) are used alone or in combination of two or more.
Among these inorganic layered minerals (C), smectite group clay minerals such as montmorillonite and mica group clay minerals such as water-swellable mica are particularly preferable.
 無機層状鉱物(C)の大きさは、平均粒径10μm以下、厚さ500nm以下が好ましい。無機層状鉱物(C)の中でも、少なくとも1種類が平均粒径1μm~10μm、厚さ10nm~100nmの水膨潤性合成雲母であることが特に好ましい。
 無機層状鉱物(C)として、水膨潤性合成雲母を用いると、水膨潤性合成雲母は、水性ポリウレタン樹脂(A)および水溶性高分子(B)との相溶性が高く、天然系の雲母に比べて不純物が少ないため、不純物に由来するガスバリア性の低下や膜凝集力の低下を招くことがない。また、水膨潤性合成雲母は、結晶構造内にフッ素原子を有することから、水系コーティング剤から形成される皮膜のガスバリア性の湿度依存性を低く抑えることにも寄与する。さらに、水膨潤性合成雲母は、他の水膨潤性の無機層状鉱物に比べて、高いアスペクト比を有することから、迷路効果がより効果的に働き、特に水系コーティング剤から形成される皮膜のガスバリア性が高く発現するのに寄与する。
The size of the inorganic layered mineral (C) is preferably an average particle size of 10 μm or less and a thickness of 500 nm or less. Of the inorganic layered minerals (C), at least one is particularly preferably a water-swellable synthetic mica having an average particle diameter of 1 μm to 10 μm and a thickness of 10 nm to 100 nm.
When water-swellable synthetic mica is used as the inorganic layered mineral (C), the water-swellable synthetic mica has high compatibility with the water-based polyurethane resin (A) and the water-soluble polymer (B), so Since there are few impurities compared with it, the gas barrier property and the film cohesion force which originate in an impurity are not caused. Further, since the water-swellable synthetic mica has a fluorine atom in the crystal structure, it contributes to suppressing the humidity dependence of the gas barrier property of the film formed from the aqueous coating agent. Furthermore, since the water-swellable synthetic mica has a higher aspect ratio than other water-swellable inorganic layered minerals, the maze effect works more effectively, and in particular, a gas barrier for a film formed from an aqueous coating agent. It contributes to high expression.
 本実施形態に係るガスバリア層3を形成するコーティング剤には、ガスバリア性フィルム1のガスバリア性や包装用材料としての強度を損なわない範囲内であれば、各種の添加剤が含まれていてもよい。
 添加剤としては、例えば、ポリイソシアネートや、カルボジイミド、エポキシ化合物、オキサゾリドン化合物、アジリジン系化合物などの反応性硬化剤、酸化防止剤、耐候剤、熱安定剤、滑剤、結晶核剤、紫外線吸収剤、可塑剤、帯電防止剤、着色剤、フィラー、界面活性剤、シランカップリング剤などが挙げられる。
The coating agent for forming the gas barrier layer 3 according to this embodiment may contain various additives as long as the gas barrier property of the gas barrier film 1 and the strength as a packaging material are not impaired. .
Examples of additives include reactive isocyanates such as polyisocyanates, carbodiimides, epoxy compounds, oxazolidone compounds, and aziridine compounds, antioxidants, weathering agents, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet absorbers, Examples thereof include a plasticizer, an antistatic agent, a colorant, a filler, a surfactant, and a silane coupling agent.
 本実施形態に係るガスバリア層3を形成するコーティング剤は、水を主として含み、水に溶解あるいは均一に混合する溶媒を含んでいてもよい。
 溶媒としては、例えば、メタノールや、エタノール、イソプロパノールなどのアルコール類や、アセトンや、メチルエチルケトンなどのケトン類、テトラヒドロフランなどのエーテル類、セロソルブ類、カルビトール類、アセトニトリルなどのニトリル類などが挙げられる。
The coating agent that forms the gas barrier layer 3 according to the present embodiment mainly contains water, and may contain a solvent that dissolves or uniformly mixes in water.
Examples of the solvent include alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, cellosolves, carbitols, and nitriles such as acetonitrile.
 本実施形態に係るガスバリア層3を形成するコーティング剤は、全固形分濃度が8質量%以上、23℃における粘度が10mPa・s~50mPa・sであることが好ましく、全固形分濃度が10質量%以上、23℃における粘度が10mPa・s~40mPa・sであることがより好ましい。 The coating agent for forming the gas barrier layer 3 according to this embodiment preferably has a total solid content concentration of 8% by mass or more, a viscosity at 23 ° C. of 10 mPa · s to 50 mPa · s, and a total solid content concentration of 10% by mass. More preferably, the viscosity at 23 ° C. is 10 mPa · s to 40 mPa · s.
 本実施形態に係るガスバリア層3を形成するためのウェットコーティング方法としては、ロールコートや、グラビアコート、リバースコート、ダイコート、スクリーン印刷、スプレーコートなどが用いられる。
 プラスチック材料から形成される基材フィルム2の一方の面、または、一方の面もしくは他方の面に、前記のコーティング剤をコーティング後、熱風乾燥、熱ロール乾燥、赤外線照射など、公知の乾燥方法を用いて、乾燥皮膜を形成し、ガスバリア層3が得られる。
As a wet coating method for forming the gas barrier layer 3 according to this embodiment, roll coating, gravure coating, reverse coating, die coating, screen printing, spray coating, or the like is used.
A known drying method such as hot air drying, hot roll drying, infrared irradiation, etc. is applied after coating the above-mentioned coating agent on one surface, or one surface or the other surface of the base film 2 formed from a plastic material. By using it, a dry film is formed and the gas barrier layer 3 is obtained.
 ガスバリア層3の厚さは、本実施形態のガスバリア性フィルム1に求められるガスバリア性に応じて設定されるが、0.1μm~5μmであることが好ましく、0.2μm~2μmであることがより好ましい。
 ガスバリア層3の厚さが0.1μm未満では、十分なガスバリア性が得られ難い。一方、ガスバリア層3の厚さが5μmを超えると、均一な塗膜面を設けることが難しいばかりでなく、乾燥負荷の増大、製造コストの増大につながり好ましくない。
The thickness of the gas barrier layer 3 is set according to the gas barrier properties required for the gas barrier film 1 of the present embodiment, but is preferably 0.1 μm to 5 μm, more preferably 0.2 μm to 2 μm. preferable.
If the thickness of the gas barrier layer 3 is less than 0.1 μm, it is difficult to obtain sufficient gas barrier properties. On the other hand, if the thickness of the gas barrier layer 3 exceeds 5 μm, it is not only difficult to provide a uniform coating film surface, but also an increase in drying load and an increase in production cost are undesirable.
 本実施形態に係るガスバリア性フィルム1は、必要に応じて、保護層や、印刷層、アンカーコート層、遮光層、その他の機能層などを有していてもよい。 The gas barrier film 1 according to the present embodiment may have a protective layer, a printing layer, an anchor coat layer, a light shielding layer, other functional layers, and the like as necessary.
 本実施形態に係るガスバリア性フィルム1は、三次元表面粗さ(算術平均)Saが、50nm以上であるプラスチック材料から形成される基材フィルム2を用い、その基材フィルム2の少なくとも一方の面に、水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含むガスバリア層3を有する。この構成を有することにより、高湿度雰囲気下におけるガスバリア性に優れ、ガスバリア層3の基材フィルム2に対する密着性や凝集力も長期間良好である。また、本実施形態に係るガスバリア性フィルム1のガスバリア層3が設けられた面に接着剤の塗布により他のフィルムを張り合わせた積層フィルムにおいて、ラミネート強度の劣化が小さい。そのため、包装用材料として用いることにより、内容物の品質保持性を高め、様々な包装用資材として活用することができる。 The gas barrier film 1 according to the present embodiment uses a base film 2 formed from a plastic material having a three-dimensional surface roughness (arithmetic mean) Sa of 50 nm or more, and at least one surface of the base film 2 In addition, the gas barrier layer 3 containing the water-based polyurethane resin (A), the water-soluble polymer (B), and the inorganic layered mineral (C) as main components is provided. By having this structure, it is excellent in the gas barrier property in a high-humidity atmosphere, and the adhesiveness and cohesive force with respect to the base film 2 of the gas barrier layer 3 are also favorable for a long period of time. Further, in the laminated film in which another film is bonded to the surface provided with the gas barrier layer 3 of the gas barrier film 1 according to this embodiment by applying an adhesive, the deterioration of the laminate strength is small. Therefore, by using it as a packaging material, it is possible to improve the quality retention of the contents and to utilize it as various packaging materials.
「ガスバリア性積層体」
 本発明の第二実施形態に係るガスバリア性積層体について説明する。図2に示されるように、本発明の第二実施形態に係るガスバリア性積層体4は、上述の第一実施形態に係るガスバリア性フィルム1と、ガスバリア性フィルム1の少なくとも一方の面に順に積層された、接着剤層5およびヒートシール性樹脂層6と、を備えた積層体である。
"Gas barrier laminate"
The gas barrier laminate according to the second embodiment of the present invention will be described. As shown in FIG. 2, the gas barrier laminate 4 according to the second embodiment of the present invention is laminated in order on the gas barrier film 1 according to the first embodiment described above and at least one surface of the gas barrier film 1. It is the laminated body provided with the adhesive bond layer 5 and the heat-sealable resin layer 6 which were made.
 すなわち、本実施形態のガスバリア性積層体4は、上述の第一実施形態に係るガスバリア性フィルム1のガスバリア層3上に、接着剤層5を介して、少なくともヒートシール性樹脂層6がラミネート加工されて形成される積層体である。 That is, in the gas barrier laminate 4 of this embodiment, at least the heat-sealable resin layer 6 is laminated on the gas barrier layer 3 of the gas barrier film 1 according to the first embodiment described above via the adhesive layer 5. It is a laminated body formed.
 ここで、ヒートシール性樹脂層6としては、低密度ポリエチレンや、直鎖低密度ポリエチレン、中密度ポリエチレン、ポリプロピレンなどのポリオレフィンフィルムや、ポリエステル系共重合フィルムや、ポリアクリロニトリルフィルム、酢酸ビニル系共重合フィルムなどを用いることができる。これらのフィルムのなかでも、ポリオレフィンフィルムは低温ヒートシール性に優れ、安価なため特に好ましい。
 ラミネート加工方法としては、公知のドライラミネート法や、エクストルージョンラミネート法、ノンソルラミネート法などを用いることができる。
 接着剤層5に用いられる接着剤としては、各種ラミネート加工方法に応じて、様々な接着剤を選択できる。例えば、ポリウレタン系や、ポリエステル系、ポリエーテル系、エポキシ系、ポリエチレンイミン系、ポリブタジエン系などの公知の接着剤を用いることができる。
Here, as the heat-sealable resin layer 6, polyolefin films such as low density polyethylene, linear low density polyethylene, medium density polyethylene, and polypropylene, polyester copolymer films, polyacrylonitrile films, vinyl acetate copolymers. A film or the like can be used. Among these films, polyolefin films are particularly preferable because they are excellent in low-temperature heat sealing properties and inexpensive.
As a laminating method, a known dry laminating method, an extrusion laminating method, a non-sol laminating method, or the like can be used.
As the adhesive used for the adhesive layer 5, various adhesives can be selected according to various laminating methods. For example, known adhesives such as polyurethane, polyester, polyether, epoxy, polyethyleneimine, and polybutadiene can be used.
 本実施形態に係るガスバリア性積層体4は、上述の第一実施形態に係るガスバリア性フィルム1のガスバリア層3上に、接着剤層5を介して、少なくともヒートシール性樹脂層6をラミネート加工することにより、ヒートシール可能な包装材料として用いることができる。 In the gas barrier laminate 4 according to this embodiment, at least the heat-sealable resin layer 6 is laminated on the gas barrier layer 3 of the gas barrier film 1 according to the above-described first embodiment via the adhesive layer 5. Therefore, it can be used as a packaging material that can be heat sealed.
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1~10、比較例1~7]
 酸基を有するポリウレタン樹脂とポリアミン化合物とを含有する水性ポリウレタン樹脂(A)(以下、「成分(A)」と記すことがある。)として、三井化学社製のポリウレタンディスパージョン「タケラックWPB-341」、または、三井化学社製のポリウレタンディスパージョン「タケラックWPB-363」を用いた。
 水溶性高分子(B)(以下、「成分(B)」と記すことがある。)として、ポリビニルアルコール樹脂であるクラレ社製ポバールPVA-117(鹸化度98~99%、重合度1700)、または、クラレ社製ポバールPVA-105(鹸化度98~99%、重合度500)を用いた。
 無機層状鉱物(C)(以下、「成分(C)」と記すことがある。)として、水膨潤性合成雲母(コープケミカル社製のソマシフMEB-3)、モンモリロナイト(クニミネ工業社製のクニピア-F)を用いた。
 成分(A)、成分(B)、および成分(C)を、表1に示す固形分配合比率で配合して、80℃にて加熱、混合した後、室温まで冷却した。その後、溶媒中の10質量%がイソプロパノール、最終的な固形分濃度が9%となるように、イオン交換水及びイソプロパノールで希釈し、塗工直前に表1および表2に記載の硬化剤(三井化学社製の水溶性ポリソシアネートタケネートWD-725)を添加し、コーティング剤を調製した。
[Examples 1 to 10, Comparative Examples 1 to 7]
As an aqueous polyurethane resin (A) containing a polyurethane resin having an acid group and a polyamine compound (hereinafter sometimes referred to as “component (A)”), a polyurethane dispersion “Takelac WPB-341” manufactured by Mitsui Chemicals, Inc. Alternatively, polyurethane dispersion “Takelac WPB-363” manufactured by Mitsui Chemicals, Inc. was used.
As a water-soluble polymer (B) (hereinafter sometimes referred to as “component (B)”), a polyvinyl alcohol resin, Khoray PVA-117 (saponification degree: 98 to 99%, polymerization degree: 1700), Alternatively, Poval PVA-105 (saponification degree 98 to 99%, polymerization degree 500) manufactured by Kuraray Co., Ltd. was used.
As the inorganic layered mineral (C) (hereinafter sometimes referred to as “component (C)”), water-swellable synthetic mica (Somasif MEB-3 manufactured by Corp Chemical Co.), montmorillonite (Kunipia manufactured by Kunimine Industries Co., Ltd.) F) was used.
Component (A), component (B), and component (C) were blended at the solid content blending ratio shown in Table 1, heated and mixed at 80 ° C., and then cooled to room temperature. Thereafter, the solution is diluted with ion-exchanged water and isopropanol so that 10% by mass in the solvent is isopropanol and the final solid content concentration is 9%, and the curing agents described in Tables 1 and 2 (Mitsui A water-soluble polysocyanate takenate WD-725 manufactured by Kagaku Co. was added to prepare a coating agent.
 上記のコーティング剤を、グラビアコーターを用いて、表1に示す三次元表面粗さ(算術平均)Saに違いのある、各基材フィルム(ポリエチレンテレフタレート(PET)フィルム、二軸延伸ポリプロピレン(OPP)フィルム、または二軸延伸ナイロン(ONY)フィルム)上に塗工した。その後、90℃のオーブンを10秒間通過させて乾燥し、各基材フィルム上に、それぞれ膜厚0.5μmのガスバリア層を形成したガスバリア性フィルムを得た。 Each substrate film (polyethylene terephthalate (PET) film, biaxially stretched polypropylene (OPP)) having a difference in the three-dimensional surface roughness (arithmetic mean) Sa shown in Table 1 using a gravure coater is used as the coating agent. Film or biaxially oriented nylon (ONY) film). Then, it passed through 90 degreeC oven for 10 second, it dried, and the gas barrier film which formed the gas barrier layer with a film thickness of 0.5 micrometer on each base film was obtained.
 さらに、ガスバリア層が形成された面に、ドライラミネーション加工により、ポリエーテル系接着剤(三井化学社製のタケラックA-969V/三井化学社製のタケネートA-5)を介して、厚さ30μmの未延伸ポリプロピレンフィルム(三井化学東セロ社製のCPP GLC)をラミネートした。その後、40℃にて48時間養生し、表1および表2に示す、実施例1~10および比較例1~7の積層体を得た。 Further, the surface on which the gas barrier layer is formed is subjected to a dry lamination process with a polyether adhesive (Takelac A-969V manufactured by Mitsui Chemicals, Takenate A-5 manufactured by Mitsui Chemicals) having a thickness of 30 μm. An unstretched polypropylene film (CPP GLC manufactured by Mitsui Chemicals, Inc.) was laminated. Thereafter, curing was carried out at 40 ° C. for 48 hours to obtain laminates of Examples 1 to 10 and Comparative Examples 1 to 7 shown in Tables 1 and 2.
[評価方法]
(酸素透過度)
 実施例1~10、比較例1~7のガスバリア性フィルムについて、酸素透過度測定装置(MOCON社製のOXTRAN-2/20)を用いて、20℃、湿度80%の雰囲気下、酸素透過度を測定した。結果を表1および表2に示す。
[Evaluation methods]
(Oxygen permeability)
For the gas barrier films of Examples 1 to 10 and Comparative Examples 1 to 7, oxygen permeability was measured using an oxygen permeability measuring device (OXTRAN-2 / 20 manufactured by MOCON) in an atmosphere of 20 ° C. and 80% humidity. Was measured. The results are shown in Tables 1 and 2.
(T型ラミネート強度)
 実施例1~10および比較例1~7の積層体を、40℃、湿度75%の条件下における恒温槽にて2ヶ月間保管した。保管後、積層体を15mm幅の短冊状にカットし、引張試験機テンシロンにより、300mm/分の速度で、基材フィルムとシーラントフィルムとの剥離角度が90°になるように剥離させて、ラミネート強度を測定した。結果を表1および表2に示す。
(T-type laminate strength)
The laminates of Examples 1 to 10 and Comparative Examples 1 to 7 were stored for 2 months in a constant temperature bath at 40 ° C. and 75% humidity. After storage, the laminate is cut into strips with a width of 15 mm, and the laminate is peeled off at a rate of 300 mm / min with a tensile tester Tensilon so that the peel angle between the base film and the sealant film is 90 °. The strength was measured. The results are shown in Tables 1 and 2.
(180°ラミネート強度)
 実施例1~10および比較例1~7の積層体を、40℃、湿度75%の条件下における恒温槽にて2ヶ月間保管した。保管後、積層体を15mm幅の短冊状にカットし、引張試験機テンシロンにより、300mm/分の速度で、基材フィルムの剥離角度が180°、シーラントフィルムの剥離角度が360°になるように剥離させて、ラミネート強度を測定した。結果を表1および表2に示す。
(180 ° laminate strength)
The laminates of Examples 1 to 10 and Comparative Examples 1 to 7 were stored for 2 months in a constant temperature bath at 40 ° C. and 75% humidity. After storage, the laminate is cut into a 15 mm wide strip, and the tensile tester Tensilon is at a speed of 300 mm / min so that the peeling angle of the base film is 180 ° and the peeling angle of the sealant film is 360 °. After peeling, the laminate strength was measured. The results are shown in Tables 1 and 2.
(三次元表面粗さ)
 三次元非接触表面形状計測システムを用いて、以下の条件で各基材フィルムの表面について三次元表面粗さ(算術平均)Sa(nm)を測定した。結果を表1および表2に示す。
 システム:Vertscan R3300h Lite(菱化システム社製)
 測定領域:1408.31μm×1885.82μm
 測定モード:Phase
 バンドパスフィルター:520nm
 中心面補正:4次
 測定回数:3回
 測定環境:温度23℃、湿度47%RH
(3D surface roughness)
Using a three-dimensional non-contact surface shape measurement system, the three-dimensional surface roughness (arithmetic average) Sa (nm) was measured for the surface of each substrate film under the following conditions. The results are shown in Tables 1 and 2.
System: Vertscan R3300h Lite (manufactured by Ryoka System)
Measurement area: 1408.31 μm × 1885.82 μm
Measurement mode: Phase
Band pass filter: 520 nm
Center plane correction: 4th measurement Number of times: 3 Measurement environment: temperature 23 ° C, humidity 47% RH
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1および表2に記載の結果から、実施例1~10では、20℃、湿度80%RHの雰囲気下における酸素透過度の値が50cm/(m・day・MPa)以下と、良好なガスバリア性が得られた。また、T型ラミネート強度、180°ラミネート強度ともに、0.7N/15mm以上の値を維持していた。
 一方、比較例1~6では、ガスバリア性は良好だが、T型ラミネート強度および180°ラミネート強度のいずれか一方、あるいは両方が0.6N/15mm以下であった。これは、包装材料としてデラミネーション不良を発生する可能性が高い強度である。
 また、比較例7では、比較例1~6と同様に、十分なラミネート強度を得られないことに加え、20℃、湿度80%RHの雰囲気下における酸素透過度の値が500cm/(m・day・MPa)以上となり、高湿度下における良好なガスバリア性を得ることができなかった。
From the results described in Table 1 and Table 2, in Examples 1 to 10, the value of oxygen permeability in an atmosphere of 20 ° C. and humidity of 80% RH was 50 cm 3 / (m 2 · day · MPa) or less, good Gas barrier properties were obtained. Further, both the T-type laminate strength and the 180 ° laminate strength maintained values of 0.7 N / 15 mm or more.
On the other hand, in Comparative Examples 1 to 6, the gas barrier property was good, but either one or both of the T-type laminate strength and the 180 ° laminate strength was 0.6 N / 15 mm or less. This is a strength that is highly likely to cause a delamination failure as a packaging material.
Further, in Comparative Example 7, as in Comparative Examples 1 to 6, in addition to obtaining a sufficient laminate strength, the value of oxygen permeability in an atmosphere of 20 ° C. and humidity 80% RH is 500 cm 3 / (m 2 · day · MPa) or more, and good gas barrier properties under high humidity could not be obtained.
 また、従来、T型ラミネート強度のみでは、ガスバリア性積層体のラミネート強度の評価が十分ではなかった。すなわち、ガスバリア性積層体を、立体の内容物を詰めて密封する包装材料として用いた場合に、搬送時の振動等により、包装材料の屈曲部分に繰り返しの負荷がかかることでデラミネーション不良(浮き)が発生する場合がある。例えば、所定の包装形態にて、JIS Z 0232(方法A)に従って振動試験を実施すると、浮きの発生数に実施例と比較例とで差異が認められた。さらに、この試験での浮きの発生数は、T型ラミネート強度よりも、180°ラミネート強度との相関性が高い傾向であった。従って、包装材料としての実用強度を評価する場合、T型ラミネート強度のみでは十分ではなく、実施例と比較例との差異を見出し難かった。そこで、本実施例および比較例では、ガスバリア性積層体のT型ラミネート強度に加えて、180°ラミネート強度を測定することにより、実施例と比較例の強度差を明確にすることができた。 In addition, conventionally, the evaluation of the laminate strength of the gas barrier laminate was not sufficient only with the T-type laminate strength. In other words, when a gas barrier laminate is used as a packaging material that is packed and sealed with three-dimensional contents, a delamination defect (floating) occurs due to repeated load applied to the bent portion of the packaging material due to vibration during transportation. ) May occur. For example, when the vibration test was performed according to JIS Z 0232 (Method A) in a predetermined packaging form, a difference was observed between the example and the comparative example in the number of occurrences of floating. Furthermore, the number of floats in this test tended to be more highly correlated with 180 ° laminate strength than T-type laminate strength. Therefore, when evaluating the practical strength as a packaging material, the T-type laminate strength alone is not sufficient, and it is difficult to find the difference between the example and the comparative example. Therefore, in this example and the comparative example, the strength difference between the example and the comparative example could be clarified by measuring the 180 ° laminate strength in addition to the T-type laminate strength of the gas barrier laminate.
 本発明のガスバリア性フィルムおよびガスバリア性積層体は、高湿度雰囲気下における高いガスバリア性と、基材への十分な密着強度と皮膜の凝集強度を両立し、かつ高湿度雰囲気下で長期間保管されても、時間の経過に伴ってラミネート強度が劣化することがなく、デラミネーション不良を発生しないので、各種包装材料として種々の分野に利用することができる。 The gas barrier film and gas barrier laminate of the present invention have both high gas barrier properties in a high humidity atmosphere, sufficient adhesion strength to the substrate and cohesive strength of the film, and are stored for a long time in a high humidity atmosphere. However, since the laminate strength does not deteriorate with the passage of time and no delamination occurs, it can be used in various fields as various packaging materials.
1 ガスバリア性フィルム
2 基材フィルム
3 ガスバリア層
4 ガスバリア性積層体
5 接着剤層
6 ヒートシール性樹脂層
DESCRIPTION OF SYMBOLS 1 Gas barrier film 2 Base film 3 Gas barrier layer 4 Gas barrier laminated body 5 Adhesive layer 6 Heat sealable resin layer

Claims (3)

  1.  プラスチック材料から形成される基材フィルムと、
     前記基材フィルムの少なくとも一方の面に設けられ、酸基を有するポリウレタン樹脂と、ポリアミン化合物と、を含有する水性ポリウレタン樹脂(A)、水溶性高分子(B)、および無機層状鉱物(C)を主たる構成成分として含むガスバリア層と、を備え、
     前記基材フィルムにおける前記ガスバリア層が設けられる面の三次元表面粗さ(算術平均)Saが、50nm以上であるガスバリア性フィルム。
    A base film formed from a plastic material;
    An aqueous polyurethane resin (A), a water-soluble polymer (B), and an inorganic layered mineral (C) which are provided on at least one surface of the base film and contain an acid group-containing polyurethane resin and a polyamine compound. A gas barrier layer containing as a main component,
    A gas barrier film having a three-dimensional surface roughness (arithmetic mean) Sa of a surface on which the gas barrier layer is provided in the base film is 50 nm or more.
  2.  前記基材フィルムは、ポリプロピレン、ポリエチレンテレフタレート、およびナイロンから選択される1種のプラスチック材料から形成される請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the base film is formed of one kind of plastic material selected from polypropylene, polyethylene terephthalate, and nylon.
  3.  請求項1または2に記載のガスバリア性フィルムと、前記ガスバリア性フィルムの少なくとも一方の面に順に積層された、接着剤層およびヒートシール性樹脂層と、を備えるガスバリア性積層体。 A gas barrier laminate comprising the gas barrier film according to claim 1 and an adhesive layer and a heat sealable resin layer, which are sequentially laminated on at least one surface of the gas barrier film.
PCT/JP2015/062538 2014-04-25 2015-04-24 Gas barrier film and gas barrier laminate WO2015163450A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-091987 2014-04-25
JP2014091987A JP6613549B2 (en) 2014-04-25 2014-04-25 Gas barrier film and gas barrier laminate

Publications (1)

Publication Number Publication Date
WO2015163450A1 true WO2015163450A1 (en) 2015-10-29

Family

ID=54332610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062538 WO2015163450A1 (en) 2014-04-25 2015-04-24 Gas barrier film and gas barrier laminate

Country Status (2)

Country Link
JP (1) JP6613549B2 (en)
WO (1) WO2015163450A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133935A1 (en) 2016-02-03 2017-08-10 Basf Se One-component aqueous coating compositions containing polyurethane and phyllosilicates for oxygen barrier coatings
EP3613679A4 (en) * 2017-04-20 2021-02-24 Toyo Seikan Group Holdings, Ltd. Packaging material
EP3892463A4 (en) * 2018-12-05 2022-01-05 Toppan Printing Co., Ltd. Gas barrier film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806753B2 (en) * 2018-09-28 2021-01-06 住友ベークライト株式会社 Cover tape and packaging for electronic components
JP7314506B2 (en) * 2018-12-18 2023-07-26 凸版印刷株式会社 Gas barrier film and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111017A (en) * 1995-10-23 1997-04-28 Toray Ind Inc Gas barrier film and its production
JPH1044299A (en) * 1996-08-06 1998-02-17 Toray Ind Inc Laminated gas barrier film
JP2002037908A (en) * 2000-07-31 2002-02-06 Toppan Printing Co Ltd Gas barrier coated film having printability
JP2006159801A (en) * 2004-12-10 2006-06-22 Oji Paper Co Ltd Gas barrier laminate
WO2013129520A1 (en) * 2012-02-28 2013-09-06 凸版印刷株式会社 Aqueous coating agent and gas barrier film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111017A (en) * 1995-10-23 1997-04-28 Toray Ind Inc Gas barrier film and its production
JPH1044299A (en) * 1996-08-06 1998-02-17 Toray Ind Inc Laminated gas barrier film
JP2002037908A (en) * 2000-07-31 2002-02-06 Toppan Printing Co Ltd Gas barrier coated film having printability
JP2006159801A (en) * 2004-12-10 2006-06-22 Oji Paper Co Ltd Gas barrier laminate
WO2013129520A1 (en) * 2012-02-28 2013-09-06 凸版印刷株式会社 Aqueous coating agent and gas barrier film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133935A1 (en) 2016-02-03 2017-08-10 Basf Se One-component aqueous coating compositions containing polyurethane and phyllosilicates for oxygen barrier coatings
US11136463B2 (en) 2016-02-03 2021-10-05 Basf Se One-component aqueous coating compositions containing polyurethane and phyllosilicates for oxygen barrier coatings
EP3613679A4 (en) * 2017-04-20 2021-02-24 Toyo Seikan Group Holdings, Ltd. Packaging material
US11365038B2 (en) 2017-04-20 2022-06-21 Toyo Seikan Group Holdings. Ltd. Packaging material
EP3892463A4 (en) * 2018-12-05 2022-01-05 Toppan Printing Co., Ltd. Gas barrier film

Also Published As

Publication number Publication date
JP6613549B2 (en) 2019-12-04
JP2015208923A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP6191221B2 (en) Water-based coating agent and gas barrier film
JP6176239B2 (en) Gas barrier laminate
JP6210145B2 (en) Packaging container
JP6326740B2 (en) Water-based coating agent for gravure printing and gas barrier film
WO2015163450A1 (en) Gas barrier film and gas barrier laminate
WO2015163441A1 (en) Gas barrier film and gas barrier laminate
WO2015064565A1 (en) Film with gas barrier properties
JP7052202B2 (en) Water-based coating agent and gas barrier film using it
JP2015044943A (en) Aqueous coating agent for gravure printing and gas barrier film
US11780978B2 (en) Gas barrier film
JP6524781B2 (en) Coating agent and gas barrier film
JP7400192B2 (en) Conveyance device for base film and method for manufacturing gas barrier film using the base material
WO2019208237A1 (en) Gas barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782365

Country of ref document: EP

Kind code of ref document: A1