WO2015159620A1 - Specimen inspection automation system, check module, and sample check method - Google Patents

Specimen inspection automation system, check module, and sample check method Download PDF

Info

Publication number
WO2015159620A1
WO2015159620A1 PCT/JP2015/057573 JP2015057573W WO2015159620A1 WO 2015159620 A1 WO2015159620 A1 WO 2015159620A1 JP 2015057573 W JP2015057573 W JP 2015057573W WO 2015159620 A1 WO2015159620 A1 WO 2015159620A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
sample
unit
automation system
test automation
Prior art date
Application number
PCT/JP2015/057573
Other languages
French (fr)
Japanese (ja)
Inventor
孝浩 佐々木
巌 鈴木
元 末成
樹生 中川
佳奈子 江崎
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to JP2016513672A priority Critical patent/JP6516727B2/en
Publication of WO2015159620A1 publication Critical patent/WO2015159620A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00742Type of codes
    • G01N2035/00752Type of codes bar codes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0474Details of actuating means for conveyors or pipettes
    • G01N2035/0491Position sensing, encoding; closed-loop control
    • G01N2035/0493Locating samples; identifying different tube sizes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance

Definitions

  • the present invention relates to a specimen test automation system and a check module for automatically checking the state of a biological sample such as blood collected in a container and a reagent used for the analysis, and a sample checking method.
  • Patent Document 1 in order to detect whether or not the tip of a probe that sucks or discharges liquid has reached the liquid level, the level of serum is detected based on the amount of change in capacitance.
  • an automatic analyzer provided with a liquid level detection device that detects a true liquid level with reference to a liquid level detection based on a change in pressure in the probe during dispensing is disclosed.
  • pretreatment Technology that automatically performs the necessary processing (centrifuge processing, plugging processing, dispensing processing, etc., hereinafter referred to as pretreatment) before putting the biological sample into the automatic analyzer, and automatic transport to the automatic analyzer
  • pretreatment A technique for performing the above is provided as a pretreatment system.
  • the dispensing process is a subdivision process for creating a child sample to be transported to the automatic analyzer.
  • the number of child samples and the amount dispensed have been determined according to the requested items. Therefore, if the amount of collected biological sample is small and less than the amount required for the measurement of the requested item, the dispensing process is not completed and the process is not completed. There were times when it ended. This led to wasteful consumption of the child sample container and the barcode attached thereto.
  • a barcode label containing important information such as patient ID, personal information, and parameters necessary for device operation is attached to the surface of the container, and in some cases, the blood collection tube depends on the type of blood collection tube and the size of the label.
  • the entire tube wall is covered, or is overlaid with multiple labels. For this reason, the contents may become invisible from the outside. This has been an obstacle to capacity measurement in the field.
  • Patent Document 1 As a technique that can provide a useful result for this purpose even under such conditions, there is a technique as described in Patent Document 1, for example.
  • the detection method using the capacitance and the pressure in the probe as described in Patent Document 1 needs to contact the liquid surface with a dispensing probe, and wants to measure the volume of a biological sample before dispensing. It does not meet the request.
  • the liquid level can be detected in advance, there is an advantage in that the dispensing probe can be prevented from colliding with the separating agent during dispensing.
  • the object of providing information for controlling a workflow for quickly and accurately grasping the state cannot be achieved.
  • the shape of a container may be prepared for each test object such as for serum testing or urine testing, or may be prepared depending on test items such as for hematology testing or biochemical testing.
  • Each container is developed, manufactured and put on the market based on the shape of each manufacturer's original design concept.
  • the pretreatment system is introduced into a relatively large facility, and a wide variety of containers are used in the operation of the system in such a facility, and the charging order is irregular. Therefore, it is necessary to construct a technique that can withstand the practicality of the inspection apparatus system.
  • the present invention relates to a specimen that can achieve an improvement in processing capacity in a specimen test automation system for performing a pretreatment of a specimen or the like to be put into an automatic analyzer that performs qualitative / quantitative analysis of the component concentration of a biological sample, for example.
  • An inspection automation system, a check module, and a sample checking method are provided.
  • the present invention includes a plurality of means for solving the above-mentioned problems.
  • a sample test automation system for checking a sample contained in a container, which is input into the sample test automation system.
  • the specified part for specifying the type of the container, the stopper type of the container, and the upper surface of the sample in the container in a non-contact manner according to the type of the container specified by the specifying part and the stopper type of the container An irregularly shaped container corresponding measuring unit that is detected by the electrostatic capacity method, a vertically moving unit that moves the irregularly shaped container corresponding measuring unit up and down relative to the container, and information on the plug type specified by the specifying unit And a control unit that controls to detect the upper surface of the sample in the container while moving the measurement unit corresponding to the irregularly shaped container up and down with respect to the container by the vertical movement unit. Characterized in that was.
  • the conventional visual confirmation work can be reduced, and thus the sample in the container contributes to the reduction of manual work and the optimization of a complicated processing flow composed of a plurality of analysis items. Therefore, it is possible to improve the detection accuracy for obtaining information on the information, and to improve the processing capability.
  • FIG. 1 is a configuration diagram showing an overall configuration of a sample test automation system according to a first embodiment of the present invention and a positional relationship with an automatic analyzer. It is a figure which shows an example of the outline of the sample container checked with the sample test automation system in the 1st Embodiment of this invention. It is a figure which shows an example of the outline of the sample container checked with the sample test automation system in the 1st Embodiment of this invention. It is a figure which shows an example of the outline of the sample container checked with the sample test automation system in the 1st Embodiment of this invention.
  • FIG. 1 is a block diagram showing a positional relationship between an overall configuration of a sample test automation system and an automatic analyzer according to an embodiment of the present invention.
  • a biological sample (blood) collected from a patient is preprocessed and automatically analyzed.
  • the structure analyzed with an apparatus is shown.
  • the specimen test automation system for checking a biological sample contained in a container 101 includes a transport line 2, a loading module 201, a centrifuge module 202, a biological sample check module 203 a, a capping module 204, a labeler 205, a minute
  • the sample pretreatment system 200 includes a plurality of modules including a note module 206, a capping module 207, a classification module 208, and a storage module 209 as basic elements, and a control personal computer 210 that controls the entire sample pretreatment system 200.
  • Connected to the tip of the sample pretreatment system 200 is an automatic analyzer 211 that performs qualitative and quantitative analysis of the component concentration of the biological sample.
  • the loading module 201 is a module for loading the container 101 containing the sample into the sample pretreatment system 200, and includes a camera (container information acquisition unit) 221.
  • the centrifuge module 202 is a module that centrifuges the input specimen.
  • the opening module 204 is a module for opening the stopper 102 of the container 101 containing the centrifuged specimen.
  • the dispensing module 206 is used to analyze the sample in the centrifuged container 101 based on information on the sample volume calculated in the volume calculation unit 19d2 described later, or to analyze the uncentrifuged sample with the automatic analyzer 211 or the like. It is a module to subdivide.
  • the labeler 205 is a module that attaches a barcode to a container that accommodates a sample to be subdivided by the dispensing module 206.
  • the closing module 207 is a module for closing the stoppers on the subdivided containers and the dispensing source container 101.
  • the classification module 208 is a module that classifies the dispensed containers.
  • the storage module 209 is a module that stores a closed container.
  • the control personal computer 210 controls the operation of each module in the sample pretreatment system 200 and each mechanism in each module.
  • the conveyance line 2 is a line for conveying the charged container 1 to each module.
  • blood is taken as an example of the biological sample that is the contents of the container 101.
  • a container 101 having a separating agent 112 is used. From the top, the blood is separated into three layers of serum 111, separating agent 112, and blood clot 113 by centrifugation after blood collection.
  • the container 101 is provided with a stopper 102 and a barcode 103.
  • the barcode is attached in a state where the size of the barcode 103 as shown in FIG. 2 is smaller than the diameter of the container 101 and attached only on one side, that is, the state 104 where the contents can be seen from the gap,
  • the measurement object includes a container 101 that has not been centrifuged after blood collection.
  • the state 106 is a two-layer structure 106 of whole blood 117 and the separating agent 112 that has sunk down.
  • the present invention can uniformly cope with any state. This will be described below with reference to the example of the three-layer structure shown in FIGS.
  • FIG. 5 is a schematic diagram of a module having a function of measuring the volume of a biological sample in the sample test automation system according to an embodiment of the present invention.
  • the biological sample volume measuring device 1 is installed in the biological sample check module 203a of the specimen pretreatment system 200 as shown in FIG.
  • the transport line 2 relating to the biological sample check module 203a includes a main line 2d that transports the container 101 that stops at the biological sample check module 203a, an overtaking line 2c that transports the passing container 101 without stopping at the biological sample check module 203a, and a waiting for measurement. Consists of four lines: a buffer line 2b that allows the container 101 to temporarily stand by and stop for measurement, and a carry-out line 2a that performs measurement and returns the container 101 after measurement to the main line 2d. Has been. Arrows 3a, 3b, 3c indicate the moving direction of the line 2.
  • the device 1 is installed on the carry-out line 2 a shown in FIG. 5, and the position of the device 1 becomes the measurement position 7. Below the measurement position 7, a sensor (for example, RFID) that detects the arrival of the holder 4 holding the container 101 and a stopper that stops the holder 4 at the measurement position 7 are provided.
  • a sensor for example, RFID
  • FIG. 6 is a configuration diagram (side view) of a mechanism for measuring the volume of a biological sample according to an embodiment of the present invention, and shows a state immediately before the start of measuring the volume as a representative example.
  • the biological sample volume measuring device 1 includes, as one of main components, a detection mechanism 12, a rotating rod 17 for moving the detection mechanism 12 up and down, and a motor 11 that rotates the rotating rod 17. have.
  • the rotating rod 17 has a screw, and the detection mechanism 12 connected to the rotating rod 17 operates in the direction of the arrow 13a.
  • the detection mechanism 12 has a capacitance sensor 31 at its left and right center positions, and an irradiation section 21 and a light receiving section 22 at positions that are symmetrical with respect to the center line.
  • the capacitance sensor 31 provided in the device 1 is a sensor that detects the upper surface of the sample in the container 101 from the outside of the container 101 by a non-contact capacitance method, and is excellent in liquid detection.
  • the non-contact capacitance method will be briefly described below.
  • a positive voltage is applied to a certain conductor (hereinafter referred to as an electrode) with respect to the ground, a positive charge is generated in the electrode, and an electric field is generated between the electrode and the ground.
  • an oscillation circuit is used for the detection circuit, and the capacitance C of a terminal (electrode) of the oscillation circuit is used.
  • the oscillation circuit is configured so that becomes an element of the oscillation condition, and an object approaching the electrode is detected by starting or stopping oscillation according to the change in C of the electrode.
  • the change in the capacitance of the electrode is related to the size, thickness, and relative permittivity ⁇ s in the case of a dielectric, and the capacitance change is larger as ⁇ s is larger, thicker, and larger ⁇ s.
  • This relative dielectric constant ⁇ s indicates the degree to which the charge in the object is polarized due to electrostatic induction. If it is 1 on the basis of the vacuum, the liquid is relatively large including about 80 of water, and 10 for the solid. There are many of the following. From this, by detecting the change in capacitance of the electrode when an object approaches the detection electrode and detecting the difference in capacitance, the liquid phase and other layers (gas phase, solid layer) Detect boundaries.
  • the capacitance sensor 31 is used to detect the upper surface 114 of the serum 111 (the boundary between the serum 111 and the air layer).
  • the irradiation unit 21 irradiates the side surface of the container 101 with light.
  • the light receiving unit 22 measures the amount of transmitted light irradiated from the irradiation unit 21 and passed through the container 101. That is, the light detection system including the irradiation unit 21 and the light receiving unit 22 detects a boundary between layers based on a difference in transmitted light amount, and is excellent in detecting a boundary between an optically thick layer and a layer that is not. .
  • a fiber sensor that is resistant to noise is suitable for the light receiving unit 22.
  • a photodiode, CCD, CMOS or the like may be used.
  • an irradiation unit 21 that has a strong light quantity.
  • an LED light source is used.
  • the irradiation unit 21 may of course be a laser light source or a halogen lamp.
  • infrared light about 940 nm
  • the wavelength band is not particularly limited as long as the transmittance is high.
  • LED infrared light as irradiation light easily passes through relatively optically thin layers such as serum 111 and separating agent 112.
  • This feature is an invariable principle even when the barcode 103 is pasted as described above.
  • an optically thick layer such as the clot 113 is difficult to transmit.
  • this feature is used to detect the interface 116 between the optically thick clot 113 and the optically relatively thin separation agent 112.
  • a threshold value for distinguishing the transmitted light amount of the LED light with respect to the serum 111 and the separating agent 112 and the transmitted light amount of the LED light with respect to the blood clot 113 is installed in the signal amount acquisition unit 19b in advance.
  • the transmitted light amount of LED light with respect to the blood clot 113 is extremely smaller than the transmitted light amount of LED light with respect to the serum 111 or the separating agent 112, so that it can be detected without variation largely without depending on the threshold value.
  • the electrostatic capacitance sensor 31 and the light detection system can stably detect the upper surface 114 and the boundary surface 116.
  • the upper surface 114 and the boundary surface 116 are detected by moving the detection mechanism 12 including the capacitance sensor 31 and the light detection system from the upper side to the lower side of the container 101.
  • a method of fixing the detection mechanism 12 with a sensor and moving the container 101 up and down is common.
  • the serum 111 is shaken, which causes a measurement error. Therefore, in this embodiment, measurement is performed by moving the detection mechanism 12 up and down without moving the container 101.
  • the distance between the center of the capacitance sensor 31 and the center of the irradiation unit 21 is set to an interval h0 corresponding to the width of the biological sample accommodated in the container 101.
  • This interval h0 is determined as follows.
  • the irradiation unit 21 shifts to detection of the boundary surface 116 between the separating agent 112 and the clot 113.
  • the detection mechanism 12 is controlled. Therefore, the boundary surface 116 is detected as soon as the detection by the capacitance sensor 31 is completed, that is, the shorter the scanning time by the irradiation unit 21, the better the processing capability.
  • the electrostatic capacitance sensor 31 reaches the upper surface 114 of the serum 111, it is desirable that the irradiation unit 21 be in the vicinity of the boundary surface 116.
  • the container 101 blood collection tube
  • the average amount of blood generally collected in the laboratory can be defined with a certain degree of accuracy. From this general amount, the average value of the serum 111 height can be determined to some extent.
  • the average value of the height of the serum 111 and the value obtained by adding the height of the separating agent 112 are the distance between the serum upper surface 114 and the boundary surface 116. This distance is set as the interval h0 described above.
  • the biological sample volume measuring apparatus 1 further includes a configuration for accommodating containers 101 having different shapes as main components.
  • the horizontal movement unit for moving the capacitance sensor 31 in the horizontal direction (the direction of the arrow 13b in FIG. 6) according to the shape, particularly the diameter, of the container 101 to be measured.
  • the motor 24 for rotating the rotating rod 25 is provided as the horizontal movement unit for moving the capacitance sensor 31 in the horizontal direction (the direction of the arrow 13b in FIG. 6) according to the shape, particularly the diameter, of the container 101 to be measured.
  • the motor 24 for rotating the rotating rod 25 is provided.
  • the rotating rod 25 has a screw, and the detection mechanism 12 connected to the rotating rod 25 operates in the direction of the arrow 13b.
  • the biological sample volume measuring device 1 includes a control unit 19a, a signal amount acquisition unit 19b, a data storage unit 19c, an analysis calculation unit 19d, and a communication line 18 for exchanging control signals and sensor signals as main components. ing.
  • the control unit 19a controls the operation of each element in the device 1 described above.
  • the control unit 19a recognizes that the container 101 containing the sample is loaded in the loading module 201
  • the control unit 19a controls the camera 221 to perform imaging of the loaded container 101.
  • the motor 24 is controlled so as to move the capacitance sensor 31 in the horizontal direction with respect to the container 101, and specified by the container information specifying unit 19d1 while moving the capacitance sensor 31 in the vertical direction with respect to the container 101.
  • the motor 11, the capacitance sensor 31, and the irradiation unit 21 so as to detect the upper surface 114 of the sample in the container 101 and the boundary surface 116 between the separating agent 112 and the blood clot 113 according to the information on the type of the stopper 102 that has been provided. And controls the light receiving unit 22.
  • the control unit 19a determines the distance between the container 101 and the capacitance sensor 31 based on the shape of the container 101 specified by the container information specifying unit 19d1, particularly information on the diameter of the container 101.
  • the horizontal movement distance of the capacitance sensor 31 is calculated so as to be an optimum distance for the detection, and the calculation result is output to the motor 24 as a signal.
  • the motor 24 is rotated by this movement distance signal, and the rotating rod 25 is rotated by this rotational movement, whereby the detection mechanism 12 is operated in the direction of the arrow 13b.
  • the detection mechanism 12 moves (moves to the position 12a or 12b)
  • the position of the capacitance sensor 31 also moves (moves to the position 31a or 31b).
  • the “optimum distance” is determined in advance for each type of container 101 and is stored in advance in the data storage unit 19c so that it can be referred to when necessary.
  • the sensitivity of the electrostatic capacity sensor 31 increases as it approaches the wall surface of the container 101. However, if the electrostatic capacity sensor 31 is too close, it reacts easily with objects other than the liquid surface and false detection increases. On the other hand, if the capacitance sensor 31 is moved away from the wall surface of the container 101, the sensitivity is deteriorated, and the error in detecting the liquid level is increased. Due to the balance of both effects, there is an optimum interval for each container.
  • the detection mechanism 12 is moved so that the capacitance sensor 31 approaches the container 101 (for example, the position of 12b (dotted line)), and in the case of a 16 mm diameter container, the capacitance sensor 31. Is moved away from the container 101 (for example, the position of 12a).
  • the distance between the wall surface of the container 101 and the capacitance sensor 31 is optimally about 1 cm for a 13 mm diameter container, and about 1.5 cm is optimal for a 16 mm diameter container.
  • FIG. 7 is an example of experimental data indicating the sensitivity of the capacitance sensor.
  • the horizontal axis is the height position of the container, the unit is mm, and the one closer to the origin corresponds to the upper part of the container.
  • the vertical axis is a voltage value obtained by converting the capacitance value, and the unit is V.
  • the output of the capacitance sensor 31 during detection of the upper surface of the sample is only ON and OFF, but in this figure, analog data is shown as an output on the vertical axis in order to explain the sensitivity of the sensor.
  • Solid line 311 indicates capacitance data for a 13 mm diameter container (the distance between the sensor and the container is equal to the distance for the 16 mm container), and thick line 312 indicates capacitance data for the 13 mm diameter container (the distance between the sensor and the container for the 16 mm container).
  • the broken line 314 is the capacitance data for a 16 mm diameter container shown as a reference value.
  • the difference in capacitance before and after the liquid level 313 is large and sharp.
  • a large difference in capacitance indicates that the liquid level 313 can be easily detected, and a sharp difference indicates that an accurate position can be detected.
  • the detection sensitivity for the 16 mm container is high.
  • the waveform is slightly smooth and before and after the liquid level as shown by the solid line 311 in FIG.
  • the sensitivity is small compared to the result of the 16 mm container.
  • the distance between the capacitance sensor 31 and the container 101 is reduced, the waveform before and after the liquid level 313 becomes sharp and the difference increases as indicated by the thick line 312 in FIG.
  • the sensitivity of the capacitance sensor can be improved by adjusting the distance of the sensor.
  • FIG. 8 is an explanatory diagram showing sensor control and output for measuring the volume of a biological sample according to an embodiment of the present invention.
  • the capacitance sensor 31 is stationary at the position above the stopper 102. In this state, the power supply 64 is OFF.
  • the control unit 19a moves the detection mechanism 12 downward and turns the sensor power supply 64 from OFF to ON at the timing when the capacitance sensor 31 reaches the bottom of the plug 102 (62a).
  • the reason for such control is that if the power supply 64 of the capacitance sensor 31 is always turned on, the output 65 may be turned on due to the presence of the plug 102, and thus the position of the plug can be determined. Misrecognized as the upper surface of serum. Therefore, for the purpose of preventing this erroneous recognition, a control method is adopted in which the power source 64 is initially turned off and the power source 64 is turned on only after the capacitance sensor 31 passes through the plug 102. The position of the bottom of the stopper 102 is determined depending on the container 101, and the information is specified by the container information specifying unit 19d1 described later.
  • the capacitance sensor 31 is normally set to be OFF and ON for the detection of the serum 111. Therefore, when the capacitance sensor 31 reaches the serum upper surface 114, the sensor output 65 is switched from OFF to ON (62b). The serum upper surface 114 is detected by this output switching.
  • the control unit 19a turns off the power source 64 of the capacitance sensor 31 (63a) and simultaneously turns on the power source 66 of the irradiation unit 21 from OFF (62c).
  • the output 65 returns to OFF (63b), and the irradiation unit 21 is at the position of the serum 111, so that the output of the light receiving unit 22 is turned on (62d).
  • the output 67 of the light receiving unit 22 is the amount of light transmitted through the container 101.
  • a threshold value for distinguishing the transmitted light amount of the LED light with respect to the serum 111 and the separating agent 112 and the transmitted light amount of the LED light with respect to the blood clot 113 is installed in the data storage unit 19c in advance.
  • the LED light 23 is blocked by the blood clot 113, and the amount of transmitted light continues.
  • the output 67 is turned OFF (63d). By this output switching, the boundary surface 116 between the separating agent 112 and the blood clot 113 is detected.
  • control unit 19a turns off the power of the irradiation unit 21 (63c).
  • control unit 19a When the electrostatic capacitance sensor 31 and the irradiation unit 21 are both in the OFF state, the control unit 19a returns the detection mechanism 12 to the upper position of the stopper 102, which is the original position, in preparation for the next specimen measurement.
  • the signal amount acquisition unit 19b acquires the signal amounts of the capacitance sensor 31 and the light receiving unit 22 (both are collectively referred to as sensor signals).
  • the data storage unit 19c stores the signal amount of the capacitance sensor 31 and the light receiving unit 22 acquired by the signal amount acquisition unit 19b, and information processed by each unit of the analysis calculation unit 19d described later.
  • the analysis calculation unit 19d includes a container information specifying unit 19d1 and a capacity calculation unit 19d2.
  • the container information specifying unit 19d1 specifies the type of the container 101 put into the charging module 201 and the type of the stopper 102 of the container 101. Specifically, the container information specifying unit 19d1 recognizes the type of the container 101 by performing image processing on the captured image of the container 101 that has been imaged by the camera 221 and that has been input to the input module 201. As a recognition method, for example, there is a method of providing a database in which a container to be used in advance is photographed and performing matching with a captured image. Further, the container information specifying unit 19d1 acquires information on the position of the bottom of the stopper 102 attached to the container 101 and the diameter of the container 101 from the type of the container 101. The obtained information is transmitted to the control personal computer 210.
  • This information is also transmitted to the analysis calculation unit 19d of the biological sample volume measuring device 1 via the biological sample check module 203a, the stage 15b, and the communication line 18.
  • the position of the bottom of the stopper 102 of the container 101 is used as information for determining a position where the power source 64 of the capacitance sensor 31 is turned on in the control unit 19a.
  • the diameter information of the container 101 is calculated together with the height information of the serum 111 and the whole blood 117 obtained by the measurement of the biological sample volume measuring device 1, and the volume of the serum 111 and the whole blood 117 is calculated in the volume calculation unit 19d2. Used when doing.
  • the capacity calculation unit 19d2 specifies the diameter of the container 101 and the presence or absence of the separating agent 112 from the type of the container 101 specified by the container information specifying unit 19d1, and obtains the boundary surface 116 between the clot 113 and the separating agent 112. Then, the capacity of the sample in the container 101 is calculated from this identification result, information on the boundary surface 116, and information on the upper surface 114 of the sample in the container 101 detected by the capacitance sensor 31. Specifically, the capacitance calculation unit 19d2 first determines the high level of the detection mechanism 12 from the signal amount of the capacitance sensor 31 (the state of whether the capacitance sensor 31 is OFF or ON) acquired by the signal amount acquisition unit 19b. Information h1 is obtained.
  • This height (h1) is calculated by subtracting the movement distance corresponding to the rotation speed of the motor 11 from the initial position. Further, the height information h2 of the detection mechanism 12 is obtained from the signal amount of the light receiving unit 22 (the value at which the value of the transmitted light detected by the light receiving unit 22 rapidly decreases), and based on the amount of transmitted light measured by the light receiving unit 22, the container A boundary surface 116 between the clot 113 and the separating agent 112 in 101 is obtained. This height (h2) is calculated by subtracting the moving distance corresponding to the rotation speed of the motor 11 from the initial position. Thereafter, the height hs of the h1-h2-separating agent 112 is calculated to calculate the serum 111 height.
  • the amount of the separating agent 112 is known to be a substantially constant value depending on the type of the container 101, and therefore is stored in advance in the analysis calculation unit 19d as a fixed value. Therefore, the height hs of the separating agent 112 is obtained from the container information specified by the container information specifying unit 19d1 by calculating from the diameter information of the container 101 and the amount information of the separating agent 112. Thereafter, the volume of the serum 111 is calculated as a specific volume value by using information regarding the diameter of the container 101.
  • the device 1 also includes a stage 15b for physically communicating with other modules of the sample pretreatment system 200 and the control personal computer 210.
  • the user inputs the container 101 containing blood into the input module 201.
  • the camera 221 recognizes the type of the container 101.
  • the container 101 containing the blood is installed on the dedicated holder 4, moves on the transport line 2, and is transported to the centrifuge module 202 as necessary. For example, if it corresponds to an item such as a blood cell counter, the centrifuge module 202 is skipped and allowed to pass through without being centrifuged.
  • the container that has been subjected to the centrifugal separation process is transported to the biological sample check module 203a to measure the capacity. The measured capacity is transmitted by the control personal computer 210.
  • control personal computer 210 starts a process for determining a subdivision plan (number of subdivisions, subdivision amount, etc.).
  • the subdivision schedule is basically determined by the requested measurement item, but in this embodiment, capacity is further taken into account. For example, when all the analysis is possible or not possible with the measured capacity among the requested items, an appropriate subdivision is made using as parameters the number of items that can be analyzed.
  • the container 101 for which the volume measurement has been completed in the biological sample check module 203a is carried to the opening module 204 and an opening process is performed.
  • the preparation of the subdividing container based on the above-described schedule is performed by the labeler 205, and then the actual subdividing is performed by the dispensing module 206. After that, depending on the application, after being transported to the automatic analyzer 211 and subjected to a closing process by the closing module 207, classification by the classification module 208 or storage in the storage module 209 is performed.
  • the container 101 transported to the biological sample check module 203a is transported to the measurement position 7 through the buffer line 2b.
  • the sensor detects the holder 4 and transmits the information to the control personal computer 210, and the control personal computer 210 transmits a processing start instruction signal to the control unit 19 a of the device 1.
  • the stopper is operated, and the container 101 is stopped at the measurement position 7 during measurement.
  • the container 101 stops at the center position (measurement position 7) of the detection mechanism 12 while being placed on the holder 4.
  • the control unit 19 a calculates the rotation amount of the motor 24 based on the information on the container 101 specified by the container information specifying unit 19 d 1, particularly information on the diameter of the container 101, and outputs it to the motor 24.
  • the motor 24 is rotated, and the rotating rod 25 is rotated by this rotational movement so that the detection mechanism 12 (capacitance sensor 31) approaches the container 101 (positions 12b and 31b), or It moves away (positions 12a and 31a), and when it reaches the detection execution position, the motor 24 stops and the rotating rod 25 and the detection mechanism 12 also stop.
  • step S41 measurement on the container 101 is started (step S41).
  • the height of the detection mechanism 12 from the stage is a fixed position (hereinafter referred to as an initial position) that is taught in advance in the manufacturing stage.
  • step S42 When the motor 11 is operated by the controller 19a, the rotating rod 17 rotates in the direction of the arrow 16 and the detection mechanism 12 descends in the direction of the arrow 13a (step S42).
  • the power supply of the capacitance sensor 31 is switched on. This position depends on the type of the stopper 102 of the container 101, and is known in advance by the container information specifying unit 19d1. Thereafter, the signal is continuously lowered while being transmitted to the signal amount acquiring unit 19b through the communication line 18, and it is continuously determined whether the output information of the capacitance sensor 31 is ON or OFF (step S43). The descent continues until it is turned ON.
  • the control unit 19a gives a stop signal to the motor 11 through the communication line 18 and instantaneously stops the detection mechanism 12 (step S46).
  • the motor 11 that has received this signal stops, and the rotating rod 17 and the detection mechanism 12 stop in conjunction with this.
  • the data storage unit 19c records the height information (h1) of the detection mechanism 12 (step S47).
  • the control unit 19a After the height h1 is recorded, the control unit 19a then sends a light emission signal to the irradiation unit 21 through the communication line 18 to detect the boundary surface 116 between the separating agent 112 and the clot 113, and electrostatically A signal for turning off the power of the capacitance sensor 31 is output.
  • the electrostatic capacity sensor 31 that has received this signal is turned off, and the irradiating unit 21 is turned on to start LED emission (step S48).
  • the control unit 19a again gives an operation signal to the motor 11 through the communication line 18, and the motor 11 that has received this signal starts to rotate, and the detection mechanism 12 resumes descent in conjunction with this (step S49). ).
  • the light receiving unit 22 on the light receiving side measures the value of the transmitted light and constantly transmits this information to the signal amount acquiring unit 19b via the communication line 18, and is below a predetermined threshold value. Is monitored (step S50). When it is larger than the predetermined threshold value, the detection mechanism 12 continues to descend (in the case of No in step S50).
  • the control unit 19a gives a stop signal to the motor 11 through the communication line 18, and the motor 11 that has received this signal stops, and in conjunction with this, the rotating rod 17 and the detection mechanism 12 stop (step S53). .
  • the data storage unit 19c records the height information (h2) of the detection mechanism 12 (step S54).
  • the control unit 19 a After the height h ⁇ b> 2 is recorded, the control unit 19 a sends a stop signal to the irradiation unit 21 through the communication line 18 to stop the LED emission by the irradiation unit 21. This is a measure for not shortening the life of the LED light source.
  • control unit 19a controls the detection mechanism 12 to return to the initial position in preparation for the next measurement of the container 101 (step S55). Specifically, the operation signal is again given to the motor 11 through the communication line 18. Receiving this signal, the motor 11 starts rotating, and the detection mechanism 12 starts to rise in conjunction with the rotation. In addition, when raising the detection mechanism 12, it is good to operate the motor 11 in the reverse direction to the case of a fall.
  • the capacitance calculation unit 19d2 of the analysis calculation unit 19d receives the height information (h1) of the detection mechanism 12 based on the information on the state (OFF or ON) of the capacitance sensor 31 recorded in step S47. Then, the height of the serum 111 is calculated using the information with the height information (h2) of the detection mechanism 12 recorded in step S54. Next, the volume calculation unit 19d2 uses the information regarding the diameter of the container 101 specified by the container information specifying unit 19d1 and the information about the height of the serum 111 obtained previously, so that the volume of the serum is obtained as a specific volume value. Is calculated.
  • the container 101 is imaged by the camera 221, and the type of the container 101 and the type of the stopper 102 of the container 101 are specified by the container information specifying unit 19d1. Then, the detection mechanism 12 is moved in the horizontal direction so that the detection accuracy by the capacitance sensor 31 is increased. Thereafter, the capacitance sensor 31 is moved downward, and the timing at which the capacitance sensor 31 reaches the bottom of the plug 102 is specified from the information on the type of the specified plug 102. At this timing, the sensor power supply 64 is turned off. The upper surface 114 of the serum 111 is detected by the capacitance sensor 31.
  • the blood clot 113 is detected by the transmitted light amount acquired by the light receiving unit 22 using a light detection system including the irradiation unit 21 and the light receiving unit 22. And the boundary surface 116 between the separation agent 112 and the separation agent 112 are detected. Then, the height and volume of the serum 111 are calculated from the upper surface 114 and the boundary surface 116.
  • the container 101 has a different shape and diameter, or the inside of the container 101 is in a state in which the inside is not visible with a barcode label. Even if the shape and state of the blood vessel are not constant, the upper surface 114 of the serum 111 and the boundary surface 116 between the separating agent 112 and the blood clot 113 in the specimen in the container 101 can be obtained even if the user puts the container 101 without consciousness in advance. It is possible to detect with high accuracy, and the height of the measurement object, and thus the capacity, can be calculated by only one scanning, and information on the capacity can be acquired more quickly than in the past.
  • the conventional visual confirmation work can be reduced, the manual work of the user can be reduced, and information on the volume of the biological sample can be obtained, so that prioritization of measurement items can be performed,
  • the processing order can be optimized. Therefore, a specimen test automation system and a sample check method capable of reducing the burden on the patient and preventing the delay in reporting the processing result are provided. Furthermore, since instructions for blood collection can be promptly issued as necessary, it contributes to reducing the burden on patients and preventing delays in reporting processing results. Accompanying this, it is possible to reduce the possibility of infection accompanying the contact of the worker.
  • the capacitance sensor 31, the irradiation unit 21, and the light receiving unit 22 are arranged at intervals according to the width of the biological sample accommodated in the container 101, so that the detection by the capacitance sensor 31 is completed. After that, the boundary surface 116 is immediately detected, and the scanning time by the irradiating unit 21 can be shortened, thereby improving the processing capability.
  • the holder 4 When measurement in the biological sample check module 203a is not required, such as when a retest is requested or when a user's judgment is prioritized, the holder 4 is transported to the overtaking line 2c according to an instruction from the control personal computer 210 or the like. Can be processed without measurement.
  • the control unit 19a does not move the detection mechanism 12 in the waterside direction without operating the motor 24, but the shape of the container 101 (for example, an inverted cone) Depending on the shape and the like, it is possible to control the detection of the upper surface 114 by the capacitance sensor 31 while operating the motor 24 so as to keep the distance between the capacitance sensor 31 and the container 101 appropriate.
  • the irradiation direction of the LED light in the irradiation unit 21 may be opposite to the above-described direction.
  • FIG. 10 is a diagram showing an outline of a configuration for measuring the volume of a biological sample in the sample test automation system according to the second embodiment of the present invention.
  • the biological sample volume measuring device 1 As shown in FIG. 10, in the biological sample volume measuring device 1 according to the present embodiment, as a configuration for dealing with containers 101 having different shapes, instead of the horizontal direction moving unit of the capacitance sensor 31, for long distance use.
  • the long-distance capacitance sensor 33 is relatively larger in size than the short-distance capacitance sensor 34.
  • the control unit 19a selects either the long-distance capacitance sensor 33 or the short-distance capacitance sensor 34 according to the diameter of the container 101 specified by the container information specifying unit 19d1. Select whether to use the sensor. For example, if the container has a diameter of 13 mm, the long-distance electrostatic capacity sensor 33 is selected to be used, and if the container has a diameter of 16 mm, the short-distance electrostatic capacity sensor 34 is selected. The liquid level is controlled to be detected. At this time, the stop position (measurement position 7) of the container 101 is also adjusted and fixed so that the container 101 is directly below the selected capacitance sensor.
  • the senor is used depending on the container 101, so that the sample test automation system and the sample check method described above can be compared with the first embodiment. In substantially the same manner, even when the shape and state of the container 101 are not constant, an effect that the measurement accuracy can be ensured can be obtained.
  • the types of capacitance sensors provided are not limited to two types, and three or more types can be used so that the containers 101 having different shapes can be finely accommodated.
  • FIG. 11 is a diagram showing an outline of a configuration for measuring the volume of a biological sample in a sample test automation system according to the third embodiment of the present invention.
  • the biological sample volume measuring device 1 includes a detection mechanism 35 instead of the detection mechanism 12 as a configuration for dealing with containers 101 having different shapes.
  • the detection mechanism 35 has a box shape when the device 1 is viewed from above, and the two capacitance sensors 38 and 39 are arranged inside each other so as to face each other.
  • two circles 101a and 101b drawn inside the detection mechanism 35 represent measurement positions of the 16 mm diameter container 101a and the 13 mm diameter container 101b, respectively.
  • the 13 mm diameter container 101b is measured by the electrostatic capacity sensor 38 disposed on the lower side of FIG. 11, and the 16 mm diameter container 101a is measured by the electrostatic capacity sensor 39 disposed on the upper side. Has been.
  • control unit 19a appropriately adjusts the arrangement of the capacitance sensors 38 and 39 according to the diameter of the container 101 specified by the container information specifying unit 19d1, thereby adjusting the diameter of the container 101. Therefore, it is possible to measure at the same measurement position 7. This will be specifically described below with reference to FIG.
  • L be the distance between the two capacitance sensors 38 and 39.
  • the distances (hereinafter, detectable distances) for obtaining an effective measurement result are D1 and D2, respectively.
  • the radius of the outer edge of the 13 mm diameter container 101b is r1
  • the radius of the outer edge of the 16 mm diameter container 101a is r2.
  • a coordinate y with the detection surface of the capacitance sensor 38 as the origin is set, and the center point of the 13 mm diameter container 101b and the center point of the 16 mm diameter container 101a are set as y1 and y2, respectively.
  • y2 is L ⁇ (r2 + D2) ⁇ y2 ⁇ L ⁇ r2 (Condition 3) It is necessary to satisfy.
  • both D1 and D2 are 2.0, it means that a long-distance sensor that can be measured even at a distance of 2.0 mm is used for both capacitance sensors 38 and 39.
  • the center points y1 and y2 of the container which means that both the 13 mm container 101b and the 16 mm container 101a can be measured at the same measurement position.
  • the middle point (see the center line 36) of both the capacitance sensors 38 and 39 is the point of the coordinate 8.5, whereas the center line 37 passing through the center of the container 101 is the coordinate. It is the point of 8.25.
  • both the capacitance sensors 38 and 39 are non-targeted with respect to the container 101.
  • the distance d1 between the outer edge of the 13 mm diameter container 101b and the lower sensor 38 is 1.75
  • the distance d2 between the outer edge of the 16 mm diameter container 101a and the upper sensor 39 is 0.75. Within possible distance. It can also be seen that none of the containers physically interfere with the capacitance sensors 38 and 39.
  • the distance d1 between the outer edge of the 13 mm diameter container 101b and the capacitance sensor 38 is 1.55, and the distance d2 between the outer edge of the 16 mm diameter container 101a and the upper sensor 34 is 0.75. It can be seen that it is within the detectable distance. It can also be seen that none of the containers physically interfere with the sensors 38, 39.
  • the third embodiment of the specimen test automation system and the sample check method of the present invention also includes the first and second embodiments of the specimen test automation system and the sample check method described above.
  • the measurement accuracy is ensured at the common measurement position without changing the measurement position for each diameter of the container 101 by appropriately arranging the capacitance sensor. The effect that it can measure in a state is acquired.
  • FIG. 12 is a diagram showing an outline of a module having a function of measuring the volume of a biological sample in the specimen test automation system according to the fourth embodiment of the present invention.
  • the biological sample check module (check module) 203b is provided with a camera 221b, not the input module 201.
  • this recognition method includes, for example, a method in which a database in which a container to be used is captured is provided and matching is performed with the captured image.
  • the container information specifying unit 19d1 recognizes the type of the container 101, thereby specifying the diameter of the container 101, the type of the stopper 102, and the position of the bottom of the stopper 102. These pieces of information are used as information for calculating the position at which the power supply 64 of the capacitance sensor 31 is turned on and the capacity of the serum 111. Subsequent operations are substantially the same as those in the first embodiment.
  • the check module alone can grasp the state of the sample in the blood collection tube, and can be a module suitable for addition to an existing specimen pretreatment system.
  • the check module as in the present embodiment can also be applied to the measurement of the remaining amount of reagent in the reagent container stored in the reagent cooler of the automatic analyzer 211. Since the reagent stored in the reagent cooler is usually operated in a colored container for light shielding purposes, the remaining amount cannot be visually confirmed. However, since the check module as in this embodiment is provided in the reagent cooler of the automatic analyzer 211 or in the vicinity thereof, the remaining amount of the reagent in the reagent container can be checked even in a situation where the reagent capacity cannot be visually confirmed. Is possible.
  • FIG. 13 is a diagram showing an outline of a module having a function of measuring the volume of a biological sample in a sample test automation system according to the fifth embodiment of the present invention.
  • a lifting mechanism 71 is provided for volume measurement by the biological sample volume measuring device 1. Control of each operation of the lifting mechanism 71 is performed by the control unit 19a. Specifically, after grasping the container 101 by the lifting mechanism 71, the lifting mechanism 71 is raised in the direction of the arrow 73 until the bottom side of the container 101 becomes higher than the rack 72 and stopped. Thereafter, in the stopped state, the volume measurement by the biological sample volume measuring device 1 is performed as in the first embodiment.
  • the sample test automation system, the check module, and the sample checking method of the present embodiment are also applied to uncentrifuged blood. Is applicable.
  • FIG. 4 described above a two-layer structure of the whole blood 117 and the separating agent 112 that has sunk down is formed, and the blood clot 113 does not exist.
  • the amount of transmitted light does not decrease and h2 is not detected, or the blood clot 113 is continuously searched and scanned, and the LED light 23 descends to the height of the holder 4, and this back blocks the transmission.
  • h2min a threshold value for h2 (for example, h2min) is provided in advance, and if h2 ⁇ h2min, or if h2 is not found, the control unit uniformly considers the sample as uncentrifuged.
  • 19a, signal amount acquisition unit 19b and analysis calculation unit 19d are set in advance.
  • the height of h1-separating agent is the height of the whole blood 117.
  • capacitance of the whole blood 117 is calculated as a concrete volume value by using the information regarding the diameter of the container 101 specified in the container information specific
  • specimen test automation system the check module, and the sample check method of the present embodiment can be applied even when containers without a separating agent coexist. This will be described below.
  • Some types of containers 101 have no separation agent, and are transported to the specimen pretreatment system 200 in a state where a container with a separation agent and a container without a separation agent are mixed.
  • the specimen In a container without a separating agent, the specimen has a two-layer structure of plasma and blood clot when centrifuged, or one layer of whole blood when not centrifuged.
  • the upper surface of the plasma is detected by the capacitance sensor 31 to obtain h1, and the boundary between the plasma and the clot is detected by the light detection system to obtain h2.
  • the upper surface of whole blood is detected by the capacitance sensor 31 and is set to h1, but since there is no boundary surface, boundary surface detection by the light detection system is impossible.
  • the type of the charged container 101 can be specified by the camera 221 such as the input module 201 or the container information specifying unit 19d1. Moreover, since the presence or absence of the separating agent is determined by the type of the container, the presence or absence of the separating agent can be known if the type can be specified.
  • control part 19a the signal amount acquisition part 19b, the data memory
  • the boundary surface 116 is detected using a light detection system, and the height and capacity of the serum 111 are calculated from the upper surface 114 and the boundary surface 116.
  • the volume of the serum 111 may be obtained from the information on the upper surface 114.
  • the container information specifying unit 19d1 can specify information regarding the presence or absence of the separating agent 112 in the container 101 and the diameter of the container 101.
  • the blood volume collected in the container 101 is not substantially different for each container 101 and is almost the same, and the solid layer (for example, the amount and height of the blood clot 113) in the blood volume is grasped to some extent. Can do. Therefore, by detecting the upper surface 114 by the capacitance sensor 31, the amount of liquid in the container 101 (for example, the volume of the serum 111) can be grasped with a certain degree of accuracy based on these pieces of information.
  • the irregularly shaped container corresponding measurement unit configured to accommodate differently shaped containers 101 includes a horizontal movement mechanism as in the first embodiment, and a plurality of static electricity as in the second and third embodiments. Not only the capacitance sensor but also a corresponding method by controlling the current value (gain) of the capacitance sensor 31 by the signal amount acquisition unit 19b or the analysis calculation unit 19d is also effective.
  • 1 biological sample volume measuring unit, 2 ... Conveying line, 2a ... Unloading line, 2b ... buffer line, 2c ... Overtaking line, 2d ... Main line, 3 ... transport direction, 4 ... Holder, 5 ... Camera, 6 ... Shading plate, 7 ... Measurement position, 11 ... motor, 12 ... detection mechanism, 12a, 12b ... the position of the detection mechanism, 13a, 13b ... arrows (arrows indicating the operating direction of the detection mechanism), 14 ... backboard, 15a ... stage, 15b ... stage, 17 ... rotating rod, 18 ... communication line, 19a ... control unit, 19b ... Signal amount acquisition unit, 19c: Data storage unit, 19d ... analysis operation part, 21 ...

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

The present invention enhances the processing capacity of, for example, a specimen inspection automation system for carrying out preprocessing on a specimen, or the like, inserted into an automatic analysis device for qualitative and quantitative analysis of a component concentration of a biological sample. A camera (221) photographs a container (101), and a container information specification unit (19d1) specifies the container (101) type and the container (101) stopper (102) type. A detection mechanism (12) is moved in the horizontal direction so as to enhance the detection accuracy of a capacitance sensor (31). The detection mechanism (12) is subsequently moved downward. On the basis of the specified stopper (102) type information, a power supply (64) is turned on when a capacitance sensor (31) reaches the bottom of the stopper (102), and the upper surface (114) of serum (111) is detected. An optical detection system is used to detect the interface (116) of a clot (113) and a separating agent (112) on the basis of transmittance amounts acquired by a light receiving unit (22). The height and quantity of the serum (111) are calculated from the upper surface (114) and interface (116).

Description

検体検査自動化システムおよびチェックモジュールならびに試料のチェック方法Specimen automation system, check module, and sample check method
 本発明は、容器の中に採取した血液などの生体試料やその分析に用いる試薬等の状態を自動でチェックするための検体検査自動化システムおよびチェックモジュールならびに試料のチェック方法に関するものである。 The present invention relates to a specimen test automation system and a check module for automatically checking the state of a biological sample such as blood collected in a container and a reagent used for the analysis, and a sample checking method.
 特許文献1には、液体の吸引または吐出を行うプローブの先端部が液体の液面に到達したか否かを検知するために、静電容量の変化量に基づいて血清の液面を検知するとともに分注時のプローブ内の圧力の変化による液面検知を参照して真の液面を検知する液面検知装置を備えた自動分析装置が開示されている。 In Patent Document 1, in order to detect whether or not the tip of a probe that sucks or discharges liquid has reached the liquid level, the level of serum is detected based on the amount of change in capacitance. In addition, an automatic analyzer provided with a liquid level detection device that detects a true liquid level with reference to a liquid level detection based on a change in pressure in the probe during dispensing is disclosed.
特許4898270号公報Japanese Patent No. 4898270
 生体試料の成分の濃度を自動で分析する自動分析装置の技術が進歩し、分析項目が増加した。また、個別の分析項目に対する測定時間の短縮が実現したことにより、各検査室における一日あたりの処理すべき生体試料数、すなわち処理能力が従来と比べ圧倒的に増加している。 The technology of automatic analyzers that automatically analyze the concentration of components in biological samples has advanced, and the number of analysis items has increased. In addition, since the measurement time for individual analysis items has been shortened, the number of biological samples to be processed per day in each laboratory, that is, the processing capacity, is overwhelmingly increased compared to the conventional case.
 生体試料を自動分析装置に投入する前に必要な処理(遠心処理、開栓処理、分注処理等を意味し、以下前処理と言う)を自動で行う技術や、自動分析装置への自動搬送を行う技術が、前処理システムとして提供されている。 Technology that automatically performs the necessary processing (centrifuge processing, plugging processing, dispensing processing, etc., hereinafter referred to as pretreatment) before putting the biological sample into the automatic analyzer, and automatic transport to the automatic analyzer A technique for performing the above is provided as a pretreatment system.
 このうち、分注処理は、自動分析装置に搬送する子検体を作成する小分け処理である。従来は、依頼項目に応じて、子検体の本数と分注量を決めていた。そのため、採取した生体試料の量が少なく依頼項目の測定に必要な量に満たない場合、指示された本数分の子検体容器を準備したにも関わらず、分注処理が完了せずに途中で終了するということがあった。このことが、子検体容器およびそれに貼付するバーコードの無駄な消費に繋がっていた。 Among these, the dispensing process is a subdivision process for creating a child sample to be transported to the automatic analyzer. Conventionally, the number of child samples and the amount dispensed have been determined according to the requested items. Therefore, if the amount of collected biological sample is small and less than the amount required for the measurement of the requested item, the dispensing process is not completed and the process is not completed. There were times when it ended. This led to wasteful consumption of the child sample container and the barcode attached thereto.
 近年、これを避けるために、分注処理の前に生体試料の容量または残量を計測し、分注が可能な本数のみ子検体容器を用意する制御方法が必要とされるようになった。また、容量不足で作成されなかった子検体を搬送する予定だった自動分析装置に関わる項目が一律に測定されないことを避けるため、測定項目の優先度に応じて、自動分析装置による測定に必要な量と実際の生体試料の容量を照らし合わせ、最適な本数と量を分注する制御方法が求められるようになった。さらに、自動分析装置の測定項目数の増加と処理する検体数の増加に伴い、容量の計測を自動化することが市場要求となってきた。 In recent years, in order to avoid this, there has been a need for a control method in which the volume or remaining amount of a biological sample is measured before the dispensing process, and as many child sample containers as possible are prepared. Also, in order to avoid that the items related to the automatic analyzer that was scheduled to transport the child sample that was not created due to insufficient capacity are not measured uniformly, it is necessary for the measurement by the automatic analyzer according to the priority of the measurement item. There is now a need for a control method that compares the volume with the volume of the actual biological sample and dispenses the optimal number and volume. Furthermore, with the increase in the number of measurement items of the automatic analyzer and the number of samples to be processed, it has become a market requirement to automate the volume measurement.
 これを受け、前処理段階で生体試料の容量を自動で測定する機能に関する技術の開発がなされてきた。 In response to this, a technology related to a function of automatically measuring the volume of a biological sample in a pretreatment stage has been developed.
 しかし、一般に、容器の表面に患者ID・個人情報・装置運用に必要なパラメータなどの重要情報が記載されたバーコードラベルが貼付され、場合によっては、採血管種とラベルの大きさにより採血管の管壁の全体が被覆されている、あるいは幾重にも重ねてラベルを貼付されている。このため、内容物が外側から不可視になることがある。このことが当分野における容量測定の障害となっていた。 In general, however, a barcode label containing important information such as patient ID, personal information, and parameters necessary for device operation is attached to the surface of the container, and in some cases, the blood collection tube depends on the type of blood collection tube and the size of the label. The entire tube wall is covered, or is overlaid with multiple labels. For this reason, the contents may become invisible from the outside. This has been an obstacle to capacity measurement in the field.
 このような条件下であっても、当目的に有用な結果を提供できる技術として、例えば上述した特許文献1に記載のような技術がある。 As a technique that can provide a useful result for this purpose even under such conditions, there is a technique as described in Patent Document 1, for example.
 しかし、特許文献1に記載のような静電容量とプローブ内圧力を用いる検出方法は、分注プローブにて液面と接触することが必要であり、分注前に生体試料の容量を計測したいという要望には沿わない。 However, the detection method using the capacitance and the pressure in the probe as described in Patent Document 1 needs to contact the liquid surface with a dispensing probe, and wants to measure the volume of a biological sample before dispensing. It does not meet the request.
 また、液面を事前に検知できることによって、分注の際に分注用プローブが分離剤へ衝突することを防止できる点で利点はある。しかし、迅速かつ正確に状態を把握するためのワークフローを制御するための情報を提供するという目的は達成できない。 Also, since the liquid level can be detected in advance, there is an advantage in that the dispensing probe can be prevented from colliding with the separating agent during dispensing. However, the object of providing information for controlling a workflow for quickly and accurately grasping the state cannot be achieved.
 さらに、液面を検知するためには採血管の蓋を開封する必要があり、検体の汚染の問題、プローブの洗浄、更には開栓および閉栓の手間が余計にかかるなど、多くの問題を有している。 Furthermore, in order to detect the liquid level, it is necessary to open the lid of the blood collection tube, which has many problems such as sample contamination, probe cleaning, and extra time for opening and closing. is doing.
 ところで、生体試料の容量測定を行う際に生じる別の課題に、多種多様に存在する容器の形状に対応しなければならないことが挙げられる。通常、容器には血清検査用や尿検査用等、検査対象ごとに形状が用意される場合や、血液学検査用や生化学検査用等、検査項目により形状が用意される場合がある。また、それぞれの容器は、製造各者の独自の設計思想による形状に基づき開発、製造され、市場投入されているのが現状である。 By the way, another problem that arises when measuring the volume of a biological sample is that it is necessary to cope with a wide variety of container shapes. Usually, the shape of a container may be prepared for each test object such as for serum testing or urine testing, or may be prepared depending on test items such as for hematology testing or biochemical testing. Each container is developed, manufactured and put on the market based on the shape of each manufacturer's original design concept.
 また、前処理システムが導入されるのは相対的に規模の大きな施設であり、そのような施設におけるシステムの運用では多種多様の容器が用いられ、投入順序も不規則である。そのため、検査装置のシステムとしての実用性に耐えうる技術を構築する必要があった。 Also, the pretreatment system is introduced into a relatively large facility, and a wide variety of containers are used in the operation of the system in such a facility, and the charging order is irregular. Therefore, it is necessary to construct a technique that can withstand the practicality of the inspection apparatus system.
 本発明は、例えば生体試料の成分濃度の定性・定量分析を行う自動分析装置に投入する検体等の前処理を実施するための検体検査自動化システムにおいて、処理能力の向上を達成することができる検体検査自動化システムおよびチェックモジュールならびに試料のチェック方法を提供する。 The present invention relates to a specimen that can achieve an improvement in processing capacity in a specimen test automation system for performing a pretreatment of a specimen or the like to be put into an automatic analyzer that performs qualitative / quantitative analysis of the component concentration of a biological sample, for example. An inspection automation system, a check module, and a sample checking method are provided.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、容器に収容された試料のチェックを行う検体検査自動化システムであって、この検体検査自動化システム内に投入された前記容器の種類、前記容器の栓種類を特定する特定部と、この特定部によって特定された前記容器の種類および前記容器の栓種類に応じて、前記容器内の試料の上面を非接触の静電容量方式によって検出する異形状容器対応計測部と、この異形状容器対応計測部を前記容器に対して上下動させる上下方向移動部と、前記特定部によって特定された前記栓種類に関する情報に応じて、前記上下方向移動部によって前記異形状容器対応計測部を前記容器に対して上下動させながら前記容器内の試料の上面を検出するよう制御する制御部とを備えたことを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-mentioned problems. For example, a sample test automation system for checking a sample contained in a container, which is input into the sample test automation system. The specified part for specifying the type of the container, the stopper type of the container, and the upper surface of the sample in the container in a non-contact manner according to the type of the container specified by the specifying part and the stopper type of the container An irregularly shaped container corresponding measuring unit that is detected by the electrostatic capacity method, a vertically moving unit that moves the irregularly shaped container corresponding measuring unit up and down relative to the container, and information on the plug type specified by the specifying unit And a control unit that controls to detect the upper surface of the sample in the container while moving the measurement unit corresponding to the irregularly shaped container up and down with respect to the container by the vertical movement unit. Characterized in that was.
 本発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。
  すなわち、本発明によれば、従来の目視確認の作業を低減することができ、よって、マニュアル作業の低減と、複数の分析項目数からなる複雑な処理フローの最適化に貢献する容器内の試料についての情報を得るための検出精度の向上を図ることが可能となり、処理能力を向上させることができる。
The effects obtained by typical ones of the present invention will be briefly described as follows.
That is, according to the present invention, the conventional visual confirmation work can be reduced, and thus the sample in the container contributes to the reduction of manual work and the optimization of a complicated processing flow composed of a plurality of analysis items. Therefore, it is possible to improve the detection accuracy for obtaining information on the information, and to improve the processing capability.
本発明の第1の実施形態に係る検体検査自動化システムの全体構成および自動分析装置との位置関係を示す構成図である。1 is a configuration diagram showing an overall configuration of a sample test automation system according to a first embodiment of the present invention and a positional relationship with an automatic analyzer. 本発明の第1の実施形態における検体検査自動化システムでチェックする検体容器の概略の一例を示す図である。It is a figure which shows an example of the outline of the sample container checked with the sample test automation system in the 1st Embodiment of this invention. 本発明の第1の実施形態における検体検査自動化システムでチェックする検体容器の概略の一例を示す図である。It is a figure which shows an example of the outline of the sample container checked with the sample test automation system in the 1st Embodiment of this invention. 本発明の第1の実施形態における検体検査自動化システムでチェックする検体容器の概略の一例を示す図である。It is a figure which shows an example of the outline of the sample container checked with the sample test automation system in the 1st Embodiment of this invention. 本発明の第1の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。It is a figure which shows the outline of the module provided with the function to measure the capacity | capacitance of the biological sample in the sample test automation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う構成の側面の概略を示す図である。It is a figure which shows the outline of the side surface of the structure which measures the capacity | capacitance of the biological sample in the sample test automation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定結果の一例を示す図である。It is a figure which shows an example of the measurement result of the capacity | capacitance of the biological sample in the sample test automation system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る検体検査自動化システムにおける検体容器中の生体試料の容量の測定のセンサの制御と出力の関係を説明する図である。It is a figure explaining the relationship between the control and output of the sensor for measuring the volume of the biological sample in the sample container in the sample test automation system according to the first embodiment of the present invention. 本発明の第1の実施形態に係る検体検査自動化システム検体容器中の生体試料の容量の測定のフローチャート図である。It is a flowchart figure of the measurement of the capacity | capacitance of the biological sample in the sample test automation system sample container which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う構成の概略を示す図である。It is a figure which shows the outline of the structure which measures the capacity | capacitance of the biological sample in the sample test automation system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う構成の概略を示す図である。It is a figure which shows the outline of a structure which measures the capacity | capacitance of the biological sample in the sample test automation system which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。It is a figure which shows the outline of the module provided with the function to measure the capacity | capacitance of the biological sample in the sample test automation system which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。It is a figure which shows the outline of the module provided with the function to measure the capacity | capacitance of the biological sample in the sample test automation system which concerns on the 5th Embodiment of this invention.
 以下に本発明の検体検査自動化システムおよびチェックモジュールならびに試料のチェック方法の実施形態を、図面を用いて説明する。なお、以下の実施形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。 Embodiments of a specimen test automation system, a check module, and a sample check method according to the present invention will be described below with reference to the drawings. In all the drawings for explaining the following embodiments, the same members are denoted by the same reference symbols in principle, and the repeated description thereof is omitted.
 <第1の実施形態> 
 本発明の検体検査自動化システムおよび試料のチェック方法の第1の実施形態を、図1乃至図9を用いて説明する。
  図1は本発明の一実施形態に係る検体検査自動化システムの全体構成と自動分析装置との位置関係を示す構成図であり、患者から採取した生体試料(血液)を前処理して、自動分析装置で分析する構成を示している。
<First Embodiment>
A first embodiment of the specimen test automation system and sample check method of the present invention will be described with reference to FIGS.
FIG. 1 is a block diagram showing a positional relationship between an overall configuration of a sample test automation system and an automatic analyzer according to an embodiment of the present invention. A biological sample (blood) collected from a patient is preprocessed and automatically analyzed. The structure analyzed with an apparatus is shown.
 図1において、容器101に収容された生体試料のチェックを行う検体検査自動化システムは、搬送ライン2、投入モジュール201、遠心分離モジュール202、生体試料チェックモジュール203a、開栓モジュール204、ラベラ205、分注モジュール206、閉栓モジュール207、分類モジュール208、収納モジュール209を基本要素とする複数のモジュールを備える検体前処理システム200と、この検体前処理システム200全体を制御する制御用パソコン210とから構成されている。
  検体前処理システム200の先には、生体試料の成分濃度の定性・定量分析を行う自動分析装置211が接続されている。
In FIG. 1, the specimen test automation system for checking a biological sample contained in a container 101 includes a transport line 2, a loading module 201, a centrifuge module 202, a biological sample check module 203 a, a capping module 204, a labeler 205, a minute The sample pretreatment system 200 includes a plurality of modules including a note module 206, a capping module 207, a classification module 208, and a storage module 209 as basic elements, and a control personal computer 210 that controls the entire sample pretreatment system 200. ing.
Connected to the tip of the sample pretreatment system 200 is an automatic analyzer 211 that performs qualitative and quantitative analysis of the component concentration of the biological sample.
 投入モジュール201は、検体を収容した容器101を検体前処理システム200内に投入するモジュールであり、カメラ(容器情報取得部)221を備えている。遠心分離モジュール202は、投入された検体に対して遠心分離を行うモジュールである。開栓モジュール204は、遠心分離された検体を収容した容器101の栓102を開栓するモジュールである。分注モジュール206は、遠心分離された容器101内の検体を後述する容量演算部19d2において演算された検体の容量に関する情報に基づいて、または未遠心検体を自動分析装置211などで分析するために小分けするモジュールである。ラベラ205は、分注モジュール206で小分けされる予定の試料を収容する容器にバーコードを貼り付けるモジュールである。閉栓モジュール207は、小分けされた容器や分注元の容器101に栓を閉栓するモジュールである。分類モジュール208は、分注された容器の分類を行うモジュールである。収納モジュール209は、閉栓された容器を収納するモジュールである。
  制御用パソコン210は、検体前処理システム200内の各モジュールや各モジュール内の各機構の動作を制御する。
  搬送ライン2は、投入された容器1を各モジュールに対して搬送するためのラインである。
The loading module 201 is a module for loading the container 101 containing the sample into the sample pretreatment system 200, and includes a camera (container information acquisition unit) 221. The centrifuge module 202 is a module that centrifuges the input specimen. The opening module 204 is a module for opening the stopper 102 of the container 101 containing the centrifuged specimen. The dispensing module 206 is used to analyze the sample in the centrifuged container 101 based on information on the sample volume calculated in the volume calculation unit 19d2 described later, or to analyze the uncentrifuged sample with the automatic analyzer 211 or the like. It is a module to subdivide. The labeler 205 is a module that attaches a barcode to a container that accommodates a sample to be subdivided by the dispensing module 206. The closing module 207 is a module for closing the stoppers on the subdivided containers and the dispensing source container 101. The classification module 208 is a module that classifies the dispensed containers. The storage module 209 is a module that stores a closed container.
The control personal computer 210 controls the operation of each module in the sample pretreatment system 200 and each mechanism in each module.
The conveyance line 2 is a line for conveying the charged container 1 to each module.
 次に、測定対象について説明する。
  容器101の内容物である生体試料について、ここでは血液を例に挙げる。
Next, the measurement object will be described.
Here, blood is taken as an example of the biological sample that is the contents of the container 101.
 容器101には分離剤112を有するものを用いる。採血後の遠心分離処理により、上から、血清111、分離剤112、血餅113の3層に分離されている。種類は問わないが、容器101には栓102およびバーコード103が付いている。なお、バーコードの貼付状態には、図2に示すようなバーコード103のサイズが容器101の径より小さくかつ片面にのみに貼られた状態、すなわち隙間から内容物が見える状態104と、図3に示すようなバーコード103が容器101を覆い隠すように側面全体に貼られる、あるいはバーコードのシールが2重3重に貼られることにより、内容物が見えない状況になっている状態105とがある。
  また、測定対象には、採血後に遠心分離処理が行われなかった容器101も存在する。この場合、図4に示すように、全血117と下に沈んだ分離剤112の2層構造の状態106となる。
  本発明はいずれの状態にも一様に対応することが可能である。以下図2および図3の三層構造の例を参照して説明する。
A container 101 having a separating agent 112 is used. From the top, the blood is separated into three layers of serum 111, separating agent 112, and blood clot 113 by centrifugation after blood collection. There is no limitation on the type, but the container 101 is provided with a stopper 102 and a barcode 103. The barcode is attached in a state where the size of the barcode 103 as shown in FIG. 2 is smaller than the diameter of the container 101 and attached only on one side, that is, the state 104 where the contents can be seen from the gap, The bar code 103 as shown in FIG. 3 is affixed to the entire side surface so as to cover the container 101, or the bar code seals are affixed in double and triple states, so that the contents cannot be seen 105 There is.
Further, the measurement object includes a container 101 that has not been centrifuged after blood collection. In this case, as shown in FIG. 4, the state 106 is a two-layer structure 106 of whole blood 117 and the separating agent 112 that has sunk down.
The present invention can uniformly cope with any state. This will be described below with reference to the example of the three-layer structure shown in FIGS.
 まず、図5を参照して、生体試料の容量の測定を行う機構の構成について説明する。図5は、本発明の一実施形態に係る検体検査自動化システムで生体試料の容量の測定を行う機能を備えたモジュールの概略図である。 First, the configuration of a mechanism for measuring the volume of a biological sample will be described with reference to FIG. FIG. 5 is a schematic diagram of a module having a function of measuring the volume of a biological sample in the sample test automation system according to an embodiment of the present invention.
 生体試料容量測定機器1は、図1に示すような検体前処理システム200の生体試料チェックモジュール203aに設置されている。 The biological sample volume measuring device 1 is installed in the biological sample check module 203a of the specimen pretreatment system 200 as shown in FIG.
 生体試料チェックモジュール203aに関する搬送ライン2は、生体試料チェックモジュール203aに立ち寄る容器101を搬送する主要ライン2d、生体試料チェックモジュール203aに立ち寄らず、通過する容器101を搬送する追い越しライン2c、測定待ちの容器101を一時的に待機させるとともに、測定のために停止させることが可能なバッファライン2b、および測定を実行し、測定後の容器101を主要ライン2dに戻す搬出ライン2aの4つのラインにより構成されている。
  矢印3a,3b,3cはライン2の移動方向を示している。
  機器1は、図5に示す搬出ライン2a上に設置されており、この機器1の位置が測定ポジション7となる。この測定ポジション7の下方には、容器101を保持したホルダ4の到着を検知するセンサ(例えばRFID)と、ホルダ4を測定ポジション7に停止させるストッパが設けられている。
The transport line 2 relating to the biological sample check module 203a includes a main line 2d that transports the container 101 that stops at the biological sample check module 203a, an overtaking line 2c that transports the passing container 101 without stopping at the biological sample check module 203a, and a waiting for measurement. Consists of four lines: a buffer line 2b that allows the container 101 to temporarily stand by and stop for measurement, and a carry-out line 2a that performs measurement and returns the container 101 after measurement to the main line 2d. Has been.
Arrows 3a, 3b, 3c indicate the moving direction of the line 2.
The device 1 is installed on the carry-out line 2 a shown in FIG. 5, and the position of the device 1 becomes the measurement position 7. Below the measurement position 7, a sensor (for example, RFID) that detects the arrival of the holder 4 holding the container 101 and a stopper that stops the holder 4 at the measurement position 7 are provided.
 次に、本発明の一実施形態に係る生体試料の容量の測定を行う機構の構成について図6を用いて説明する。図6は、本発明の一実施形態に係る生体試料の容量の測定を行う機構の構成図(側面図)であり、代表例として、容量を測定する開始直前の様子を示している。 Next, the configuration of a mechanism for measuring the volume of a biological sample according to an embodiment of the present invention will be described with reference to FIG. FIG. 6 is a configuration diagram (side view) of a mechanism for measuring the volume of a biological sample according to an embodiment of the present invention, and shows a state immediately before the start of measuring the volume as a representative example.
 図6に示すように、生体試料容量測定機器1は、主要構成要素の1つとして、検知機構12、この検知機構12を上下稼働させるための回転棒17、この回転棒17を回転させるモータ11を有している。回転棒17にはネジがついており、回転棒17に接続した検知機構12が矢印13aの方向に稼働する仕組みとなっている。 As shown in FIG. 6, the biological sample volume measuring device 1 includes, as one of main components, a detection mechanism 12, a rotating rod 17 for moving the detection mechanism 12 up and down, and a motor 11 that rotates the rotating rod 17. have. The rotating rod 17 has a screw, and the detection mechanism 12 connected to the rotating rod 17 operates in the direction of the arrow 13a.
 検知機構12は、図6に示すように、静電容量センサ31をその左右の中心位置に、照射部21および受光部22とをその中心線からみて左右対称の位置にそれぞれ有している。 As shown in FIG. 6, the detection mechanism 12 has a capacitance sensor 31 at its left and right center positions, and an irradiation section 21 and a light receiving section 22 at positions that are symmetrical with respect to the center line.
 ここで、本実施形態における測定系統である検知機構12の詳細について図6を用いて以下説明する。 Here, details of the detection mechanism 12 which is a measurement system in the present embodiment will be described below with reference to FIG.
 機器1に設けられた静電容量センサ31は、非接触の静電容量方式によって容器101内の試料の上面を容器101の外側から検出するセンサであり、液体の検出に優れている。 The capacitance sensor 31 provided in the device 1 is a sensor that detects the upper surface of the sample in the container 101 from the outside of the container 101 by a non-contact capacitance method, and is excellent in liquid detection.
 非接触の静電容量方式について以下簡単に説明する。
  ある導体(以下電極と称する)に大地に対してプラスの電圧を加えると、電極にはプラスの電荷が生じ、電極と大地間に電界ができる。この電界中に物体が存在すれば静電誘導を受けて、電極に近い側に電極と異種のマイナスの電荷が現われ、反対側にはプラス電荷が現われる。この現象を分極という。物体が電極から遠く離れていれば電界は弱いので分極も小さいが、電極に接近するにしたがって電界は強くなって分極も大きくなる。そうすると、物体に生じたマイナス電荷の誘導を受けて電極側のプラス電荷は増加する。したがってC=Q/Vの関係から電荷Qが増加することは、電極の静電容量Cが増加することになる。
The non-contact capacitance method will be briefly described below.
When a positive voltage is applied to a certain conductor (hereinafter referred to as an electrode) with respect to the ground, a positive charge is generated in the electrode, and an electric field is generated between the electrode and the ground. If an object is present in this electric field, it receives electrostatic induction, negative charges different from the electrodes appear on the side close to the electrodes, and positive charges appear on the opposite side. This phenomenon is called polarization. If the object is far from the electrode, the electric field is weak and the polarization is small. However, as the object approaches the electrode, the electric field becomes strong and the polarization increases. Then, the positive charge on the electrode side increases due to the induction of the negative charge generated in the object. Therefore, when the charge Q increases from the relationship of C = Q / V, the capacitance C of the electrode increases.
 ここで、非接触の静電容量方式において、ある物体の接近を検出するためのスイッチを考えると、検出回路に発振回路を利用しており、発振回路のある端子(電極)の静電容量Cが発振条件の一要素となるように発振回路を構成し、この電極のCの変化にしたがって発振を開始、あるいは停止するようにして電極に接近する物体の検出を行う。 Here, in the non-contact capacitance method, considering a switch for detecting the approach of a certain object, an oscillation circuit is used for the detection circuit, and the capacitance C of a terminal (electrode) of the oscillation circuit is used. The oscillation circuit is configured so that becomes an element of the oscillation condition, and an object approaching the electrode is detected by starting or stopping oscillation according to the change in C of the electrode.
 ところで、電極の静電容量の変化は、物体の大きさ、厚さ、誘電体の場合には比誘電率εsなどに関係があり、大きいほど、厚いほど、εsが大きいほど静電容量変化は大きくなり、動作距離も大きくなる。この比誘電率εsは、静電誘導を受けて物体中の電荷が分極する度合を示し、真空の場合を基準にして1とすると、水の約80をはじめ液体は比較的大きく、固体では10以下のものが多い。このことから、検出電極に物体が接近した時の電極の静電容量変化を検出して、静電容量の差異を検出することで、液相と他の層(気相,固層)との境界を検出する。 By the way, the change in the capacitance of the electrode is related to the size, thickness, and relative permittivity εs in the case of a dielectric, and the capacitance change is larger as εs is larger, thicker, and larger εs. The operating distance increases. This relative dielectric constant εs indicates the degree to which the charge in the object is polarized due to electrostatic induction. If it is 1 on the basis of the vacuum, the liquid is relatively large including about 80 of water, and 10 for the solid. There are many of the following. From this, by detecting the change in capacitance of the electrode when an object approaches the detection electrode and detecting the difference in capacitance, the liquid phase and other layers (gas phase, solid layer) Detect boundaries.
 ここでは、静電容量センサ31は、血清111の上面114(血清111と空気層との境界)の検出に利用する。 Here, the capacitance sensor 31 is used to detect the upper surface 114 of the serum 111 (the boundary between the serum 111 and the air layer).
 照射部21は容器101の側面に対して光を照射する。受光部22は、この照射部21から照射されて容器101を通過した透過光の量を測定する。すなわち、照射部21と受光部22とからなる光検出系は、透過光量の差異から層の境界を検出するものであり、光学的に厚い層とそうでない層との境界の検出に優れている。 The irradiation unit 21 irradiates the side surface of the container 101 with light. The light receiving unit 22 measures the amount of transmitted light irradiated from the irradiation unit 21 and passed through the container 101. That is, the light detection system including the irradiation unit 21 and the light receiving unit 22 detects a boundary between layers based on a difference in transmitted light amount, and is excellent in detecting a boundary between an optically thick layer and a layer that is not. .
 受光部22は、具体的にはノイズに強いファイバセンサなどが適している。もちろんフォトダイオード、CCD、CMOSなどでもよい。また、照射部21には、光量の強いものを採用することが望ましい。本実施形態ではLED光源を用いる。照射部21は、もちろんレーザ光源やハロゲンランプでもよい。また、本実施形態のLED光源では、赤外光(約940nm)を用いるが、透過率の高いものであれば波長帯は特に限定されない。 Specifically, a fiber sensor that is resistant to noise is suitable for the light receiving unit 22. Of course, a photodiode, CCD, CMOS or the like may be used. In addition, it is desirable to employ an irradiation unit 21 that has a strong light quantity. In this embodiment, an LED light source is used. The irradiation unit 21 may of course be a laser light source or a halogen lamp. In the LED light source of the present embodiment, infrared light (about 940 nm) is used, but the wavelength band is not particularly limited as long as the transmittance is high.
 照射光であるLED赤外光は、血清111、分離剤112のような比較的に光学的に薄い層を容易に透過する。この特徴は、先述のように、バーコード103が貼られていた状態でも不変的な原理である。一方で、血餅113のように光学的に厚い層は透過しにくい。ここでは、この特徴を利用して、光学的に厚い血餅113と光学的に相対的に薄い分離剤112との境界面116の検出に利用する。 LED infrared light as irradiation light easily passes through relatively optically thin layers such as serum 111 and separating agent 112. This feature is an invariable principle even when the barcode 103 is pasted as described above. On the other hand, an optically thick layer such as the clot 113 is difficult to transmit. Here, this feature is used to detect the interface 116 between the optically thick clot 113 and the optically relatively thin separation agent 112.
 そのために、血清111や分離剤112に対するLED光の透過光量と、血餅113に対するLED光の透過光量を区別するためのしきい値を予め信号量取得部19bにインストールしておく。血餅113に対するLED光の透過光量は、血清111または分離剤112に対するLED光の透過光量と比して極めて小さいため、しきい値に大きく依存せずにバラツキなく検出することができる。 Therefore, a threshold value for distinguishing the transmitted light amount of the LED light with respect to the serum 111 and the separating agent 112 and the transmitted light amount of the LED light with respect to the blood clot 113 is installed in the signal amount acquisition unit 19b in advance. The transmitted light amount of LED light with respect to the blood clot 113 is extremely smaller than the transmitted light amount of LED light with respect to the serum 111 or the separating agent 112, so that it can be detected without variation largely without depending on the threshold value.
 バーコード103で上面114や境界面116が見えない状態にあっても、静電容量センサ31および光検出系は安定して上面114や境界面116を検出可能である。 Even when the upper surface 114 and the boundary surface 116 are not visible on the barcode 103, the electrostatic capacitance sensor 31 and the light detection system can stably detect the upper surface 114 and the boundary surface 116.
 本実施形態では、上面114および境界面116の検出は、静電容量センサ31や光検出系を備えた検知機構12を容器101の上側から下側に移動させて行う。
  通常、センサのついた検知機構12を固定し、容器101を上下させる方法が一般的である。しかし、容器101を上下移動させる場合、血清111に揺れが生じそれが測定誤差を生む要因となる。そこで、本実施形態では、容器101を動かさずに、検知機構12を上下動させて測定する。
In the present embodiment, the upper surface 114 and the boundary surface 116 are detected by moving the detection mechanism 12 including the capacitance sensor 31 and the light detection system from the upper side to the lower side of the container 101.
Usually, a method of fixing the detection mechanism 12 with a sensor and moving the container 101 up and down is common. However, when the container 101 is moved up and down, the serum 111 is shaken, which causes a measurement error. Therefore, in this embodiment, measurement is performed by moving the detection mechanism 12 up and down without moving the container 101.
 更に、本実施形態においては、静電容量のセンサ31の中心と、照射部21の中心との距離を、容器101内に収容された生体試料の幅に応じた間隔h0に設定している。この間隔h0は、以下のように決定する。
  本実施形態では、詳しくは後述するが、静電容量センサ31にて血清111の上面114を検出したのちに、照射部21による分離剤112と血餅113の境界面116検出に移行するように検知機構12を制御する。
  従って、静電容量センサ31による検出が終了したらすぐに境界面116が検出される、つまり照射部21による走査時間が短ければ短いほど処理能力は向上する。このため、静電容量のセンサ31が血清111の上面114に到達したときに、照射部21が境界面116の付近にあることが望まれる。
  この点、容器101(採血管)には、採血管の製造者による推奨採血量があることから、検査室で一般的に採血される血液の平均的な量はある程度の精度で定義できる。この一般的な量から、血清111の高さの平均的な値はある程度決定することが可能である。この血清111の高さの平均的な値と、分離剤112の高さを足した値が血清上面114と境界面116の間の距離となる。この距離を上述した間隔h0とする。
Furthermore, in the present embodiment, the distance between the center of the capacitance sensor 31 and the center of the irradiation unit 21 is set to an interval h0 corresponding to the width of the biological sample accommodated in the container 101. This interval h0 is determined as follows.
In the present embodiment, as will be described in detail later, after the upper surface 114 of the serum 111 is detected by the capacitance sensor 31, the irradiation unit 21 shifts to detection of the boundary surface 116 between the separating agent 112 and the clot 113. The detection mechanism 12 is controlled.
Therefore, the boundary surface 116 is detected as soon as the detection by the capacitance sensor 31 is completed, that is, the shorter the scanning time by the irradiation unit 21, the better the processing capability. For this reason, when the electrostatic capacitance sensor 31 reaches the upper surface 114 of the serum 111, it is desirable that the irradiation unit 21 be in the vicinity of the boundary surface 116.
In this regard, since the container 101 (blood collection tube) has a blood collection amount recommended by the blood collection tube manufacturer, the average amount of blood generally collected in the laboratory can be defined with a certain degree of accuracy. From this general amount, the average value of the serum 111 height can be determined to some extent. The average value of the height of the serum 111 and the value obtained by adding the height of the separating agent 112 are the distance between the serum upper surface 114 and the boundary surface 116. This distance is set as the interval h0 described above.
 図6に戻って、生体試料容量測定機器1は、主要構成要素として、更に、異なる形状の容器101に対応するための構成を備えている。具体的には、測定対象の容器101の形状、特に直径に応じて静電容量センサ31を水平方向(図6における矢印13bの方向)に移動させるための水平方向移動部として、回転棒25と、この回転棒25を回転させるモータ24を有している。回転棒25にはネジがついており、回転棒25に接続した検知機構12が矢印13b方向に稼働する仕組みとなっている。 Returning to FIG. 6, the biological sample volume measuring apparatus 1 further includes a configuration for accommodating containers 101 having different shapes as main components. Specifically, as the horizontal movement unit for moving the capacitance sensor 31 in the horizontal direction (the direction of the arrow 13b in FIG. 6) according to the shape, particularly the diameter, of the container 101 to be measured, The motor 24 for rotating the rotating rod 25 is provided. The rotating rod 25 has a screw, and the detection mechanism 12 connected to the rotating rod 25 operates in the direction of the arrow 13b.
 更に、生体試料容量測定機器1は、主要構成要素として、制御部19a、信号量取得部19b、データ記憶部19c、解析演算部19d、制御信号とセンサ信号を授受するための通信線18を備えている。 Furthermore, the biological sample volume measuring device 1 includes a control unit 19a, a signal amount acquisition unit 19b, a data storage unit 19c, an analysis calculation unit 19d, and a communication line 18 for exchanging control signals and sensor signals as main components. ing.
 制御部19aは、上述した機器1内の各要素の動作を制御する。また、制御部19aは、投入モジュール201に検体を収容した容器101が投入されたことを認識すると、投入された容器101の撮像を行うようカメラ221を制御する。更に、静電容量センサ31を容器101に対して水平方向に移動させるようモータ24を制御するとともに、静電容量センサ31を容器101に対して上下方向に移動させながら容器情報特定部19d1によって特定された栓102の種類に関する情報に応じて容器101内の試料の上面114や分離剤112と血餅113との境界面116を検出するように、モータ11,静電容量センサ31,照射部21および受光部22を制御する。 The control unit 19a controls the operation of each element in the device 1 described above. In addition, when the control unit 19a recognizes that the container 101 containing the sample is loaded in the loading module 201, the control unit 19a controls the camera 221 to perform imaging of the loaded container 101. Further, the motor 24 is controlled so as to move the capacitance sensor 31 in the horizontal direction with respect to the container 101, and specified by the container information specifying unit 19d1 while moving the capacitance sensor 31 in the vertical direction with respect to the container 101. The motor 11, the capacitance sensor 31, and the irradiation unit 21 so as to detect the upper surface 114 of the sample in the container 101 and the boundary surface 116 between the separating agent 112 and the blood clot 113 according to the information on the type of the stopper 102 that has been provided. And controls the light receiving unit 22.
 本実施形態における制御部19aによる検知機構12の水平方向の動作の制御の詳細について以下説明する。 Details of the control of the horizontal operation of the detection mechanism 12 by the control unit 19a in the present embodiment will be described below.
 制御部19aは、容器情報特定部19d1において特定した容器101の形状、特に容器101の径に関する情報を基にして、容器101と静電容量センサ31との距離が静電容量センサ31による上面114の検出に最適な距離となるよう、静電容量センサ31の水平方向移動距離を演算し、演算結果をモータ24に対して信号として出力する。モータ24は、この移動距離信号によって回転し、この回転運動により回転棒25が回転することで検知機構12が矢印13bの方向に稼働する。この検知機構12の移動(12aまたは12bの位置への移動)に伴い、静電容量センサ31の位置も移動する(31aまたは31bの位置に移動する)。 The control unit 19a determines the distance between the container 101 and the capacitance sensor 31 based on the shape of the container 101 specified by the container information specifying unit 19d1, particularly information on the diameter of the container 101. The horizontal movement distance of the capacitance sensor 31 is calculated so as to be an optimum distance for the detection, and the calculation result is output to the motor 24 as a signal. The motor 24 is rotated by this movement distance signal, and the rotating rod 25 is rotated by this rotational movement, whereby the detection mechanism 12 is operated in the direction of the arrow 13b. As the detection mechanism 12 moves (moves to the position 12a or 12b), the position of the capacitance sensor 31 also moves (moves to the position 31a or 31b).
 ここで、「最適な距離」とは、容器101の種類ごとに予め決まっており、あらかじめデータ記憶部19cに記憶されており、必要時に参照できるようになっている。 Here, the “optimum distance” is determined in advance for each type of container 101 and is stored in advance in the data storage unit 19c so that it can be referred to when necessary.
 例えば、使用頻度の高い、13mm径の容器と16mm径の容器を例に挙げて具体例を説明する。
  静電容量センサ31は容器101の壁面に近づけるほど感度はよくなるが、近づけすぎると液面以外の物にも反応しやすくなり誤検知が多くなる。一方、静電容量センサ31を容器101の壁面から遠ざけると感度が悪くなり、液面の検知の誤差が大きくなる。両作用のバランスから、容器毎に目的に最適な間隔が存在する。
  そこで、13mm径の容器の場合は、静電容量センサ31を容器101に近づけるように検知機構12を移動させ(例えば12b(点線)の位置)、16mm径の容器の場合は静電容量センサ31を容器101から遠ざけるように検知機構12を移動させる(例えば12aの位置)。この場合、容器101の壁面と静電容量センサ31との間隔は、13mm径の容器の場合は約1cm程度が最適であり、16mm径の容器の場合は約1.5cm程度が最適である。
For example, specific examples will be described by taking a 13 mm diameter container and a 16 mm diameter container, which are frequently used, as examples.
The sensitivity of the electrostatic capacity sensor 31 increases as it approaches the wall surface of the container 101. However, if the electrostatic capacity sensor 31 is too close, it reacts easily with objects other than the liquid surface and false detection increases. On the other hand, if the capacitance sensor 31 is moved away from the wall surface of the container 101, the sensitivity is deteriorated, and the error in detecting the liquid level is increased. Due to the balance of both effects, there is an optimum interval for each container.
Therefore, in the case of a 13 mm diameter container, the detection mechanism 12 is moved so that the capacitance sensor 31 approaches the container 101 (for example, the position of 12b (dotted line)), and in the case of a 16 mm diameter container, the capacitance sensor 31. Is moved away from the container 101 (for example, the position of 12a). In this case, the distance between the wall surface of the container 101 and the capacitance sensor 31 is optimally about 1 cm for a 13 mm diameter container, and about 1.5 cm is optimal for a 16 mm diameter container.
 容器101と静電容量センサ31との距離を調整することにより実際に感度が向上する様子について、図7を用いて説明する。図7は、静電容量センサの感度を示す実験データの一例である。横軸は容器の高さ位置で、単位はmmとし、原点に近いほうを容器の上部に相当するものとする。縦軸は静電容量の値を換算した電圧の値で、単位はVとする。 The manner in which the sensitivity is actually improved by adjusting the distance between the container 101 and the capacitance sensor 31 will be described with reference to FIG. FIG. 7 is an example of experimental data indicating the sensitivity of the capacitance sensor. The horizontal axis is the height position of the container, the unit is mm, and the one closer to the origin corresponds to the upper part of the container. The vertical axis is a voltage value obtained by converting the capacitance value, and the unit is V.
 詳しくは後述するが、試料上面の検出中の静電容量センサ31の出力はONとOFFのみであるが、この図ではセンサの感度を説明するためにアナログのデータを出力として縦軸に示している。横軸の約25mm(容器の上から25mmの位置に相当)のあたりに液面313がある。実線311は径13mm容器に対する静電容量のデータ(センサと容器の距離は16mm容器に対する距離と同等)、太線312は径13mm容器に対する静電容量のデータ(センサと容器の距離を16mm容器に対する距離より2.5mm近付けたときのデータ)、破線314は参考値として示した径16mm容器に対する静電容量のデータである。 As will be described in detail later, the output of the capacitance sensor 31 during detection of the upper surface of the sample is only ON and OFF, but in this figure, analog data is shown as an output on the vertical axis in order to explain the sensitivity of the sensor. Yes. There is a liquid surface 313 about 25 mm on the horizontal axis (corresponding to a position 25 mm above the container). Solid line 311 indicates capacitance data for a 13 mm diameter container (the distance between the sensor and the container is equal to the distance for the 16 mm container), and thick line 312 indicates capacitance data for the 13 mm diameter container (the distance between the sensor and the container for the 16 mm container). The data when the distance is closer to 2.5 mm), and the broken line 314 is the capacitance data for a 16 mm diameter container shown as a reference value.
 図7に示すように、径16mm容器(破線314)では、液面313の前後で静電容量の差が大きく鋭い。静電容量の差が大きいことは液面313の検出が容易であることを示し、また、鋭く差が出ることは正確な位置を検出できることを示している。この点で、16mm容器(破線314)に対する検出感度は高いことが分かる。 As shown in FIG. 7, in the 16 mm diameter container (broken line 314), the difference in capacitance before and after the liquid level 313 is large and sharp. A large difference in capacitance indicates that the liquid level 313 can be easily detected, and a sharp difference indicates that an accurate position can be detected. In this respect, it can be seen that the detection sensitivity for the 16 mm container (broken line 314) is high.
 一方で、計16mm容器測定時と同じ距離のままで径13mm容器の液面313の検出を行うと、図7の実線311に示すように、波形がやや滑らかであり、かつ液面の前後での静電容量の差が小さい結果となり、16mm容器の結果と比較して感度が小さいことが判る。しかし、静電容量センサ31と容器101の距離を縮めると、図7の太線312に示すように、液面313前後の波形が鋭く、かつ差が大きくなる。このように、センサの距離を調整することで、静電容量センサの感度を向上させることができる。 On the other hand, when the liquid level 313 of the 13 mm diameter container is detected while maintaining the same distance as when measuring the total 16 mm container, the waveform is slightly smooth and before and after the liquid level as shown by the solid line 311 in FIG. As a result, it can be seen that the sensitivity is small compared to the result of the 16 mm container. However, when the distance between the capacitance sensor 31 and the container 101 is reduced, the waveform before and after the liquid level 313 becomes sharp and the difference increases as indicated by the thick line 312 in FIG. Thus, the sensitivity of the capacitance sensor can be improved by adjusting the distance of the sensor.
 次に、本実施形態における制御部19aによる検知機構12の上下方向の動作の制御の詳細について図8を用いて以下説明する。図8は、本発明の一実施形態に係る生体試料の容量の測定のセンサの制御と出力を示す説明図である。 Next, details of the control of the vertical operation of the detection mechanism 12 by the control unit 19a in the present embodiment will be described below with reference to FIG. FIG. 8 is an explanatory diagram showing sensor control and output for measuring the volume of a biological sample according to an embodiment of the present invention.
 図8の矢印61は位置を表す軸で、栓の底の位置68を基点として、検体容器101の底方向に向かって引いている。 8 is an axis representing the position, and is drawn toward the bottom of the specimen container 101 with the position 68 at the bottom of the stopper as a base point.
 測定開始前の状態として、静電容量センサ31が栓102の上部の位置で静止している。この状態で電源64はOFFである。 As a state before the start of measurement, the capacitance sensor 31 is stationary at the position above the stopper 102. In this state, the power supply 64 is OFF.
 制御部19aは、検知機構12を下に移動させ、静電容量センサ31が栓102の底に差し掛かったタイミングで、センサの電源64をOFFからONにする(62a)。このような制御をする理由は、もし静電容量センサ31の電源64を常時ONにするような運用をすると、栓102の存在により出力65がONになることがあり、これにより栓の位置を血清の上面と誤認識してしまう。このため、この誤認識を防ぐ目的で、電源64は初めOFFとし、静電容量センサ31が栓102を通過した後に初めて電源64をONにするという制御方式を採用する。なお、栓102の底の位置は、容器101に依存して決まるものであり、その情報については、後述する容器情報特定部19d1において特定する。 The control unit 19a moves the detection mechanism 12 downward and turns the sensor power supply 64 from OFF to ON at the timing when the capacitance sensor 31 reaches the bottom of the plug 102 (62a). The reason for such control is that if the power supply 64 of the capacitance sensor 31 is always turned on, the output 65 may be turned on due to the presence of the plug 102, and thus the position of the plug can be determined. Misrecognized as the upper surface of serum. Therefore, for the purpose of preventing this erroneous recognition, a control method is adopted in which the power source 64 is initially turned off and the power source 64 is turned on only after the capacitance sensor 31 passes through the plug 102. The position of the bottom of the stopper 102 is determined depending on the container 101, and the information is specified by the container information specifying unit 19d1 described later.
 次いで、検知機構12をさらに下に移動させる。静電容量センサ31は、通常はOFF、血清111の検出に対してONとなるように設定されている。そのため、静電容量センサ31が血清上面114に到達すると、センサの出力65がOFFからONに切り替わる(62b)。この出力の切り替わりによって、血清上面114を検出する。 Next, the detection mechanism 12 is moved further downward. The capacitance sensor 31 is normally set to be OFF and ON for the detection of the serum 111. Therefore, when the capacitance sensor 31 reaches the serum upper surface 114, the sensor output 65 is switched from OFF to ON (62b). The serum upper surface 114 is detected by this output switching.
 血清上面114が認識された後、制御部19aは、静電容量センサ31の電源64をOFFにし(63a)、同時に照射部21の電源66をOFFからONにする(62c)。静電容量センサ31の電源64をOFFにしたことにより、出力65はOFFに戻る(63b)とともに、照射部21は血清111の位置にあるため、受光部22の出力はONとなる(62d)。 After the serum upper surface 114 is recognized, the control unit 19a turns off the power source 64 of the capacitance sensor 31 (63a) and simultaneously turns on the power source 66 of the irradiation unit 21 from OFF (62c). By turning off the power supply 64 of the capacitance sensor 31, the output 65 returns to OFF (63b), and the irradiation unit 21 is at the position of the serum 111, so that the output of the light receiving unit 22 is turned on (62d). .
 ここで、受光部22の出力67とは、容器101を透過した光の量のことである。血清111、分離剤112に対するLED光の透過光量と、血餅113に対するLED光の透過光量とを区別するためのしきい値を予めデータ記憶部19cにインストールしておく。 Here, the output 67 of the light receiving unit 22 is the amount of light transmitted through the container 101. A threshold value for distinguishing the transmitted light amount of the LED light with respect to the serum 111 and the separating agent 112 and the transmitted light amount of the LED light with respect to the blood clot 113 is installed in the data storage unit 19c in advance.
 制御部19aは、検知機構12を更に下に移動させ、受光部22が分離剤112と血餅113との境界面116に到達すると、LED光23が血餅113に遮られ透過光量がしいき値より小さくなり、出力67がOFFになる(63d)。この出力の切り替わりによって、分離剤112と血餅113との境界面116を検出する。 When the light receiving unit 22 reaches the boundary surface 116 between the separating agent 112 and the blood clot 113, the LED light 23 is blocked by the blood clot 113, and the amount of transmitted light continues. The output 67 is turned OFF (63d). By this output switching, the boundary surface 116 between the separating agent 112 and the blood clot 113 is detected.
 血餅と分離剤の境界面116が認識された後は、制御部19aは、照射部21の電源をOFFにする(63c)。 After the interface 116 between the clot and the separating agent is recognized, the control unit 19a turns off the power of the irradiation unit 21 (63c).
 制御部19aは、静電容量センサ31、照射部21がともにOFFの状態となると、次の検体の測定に備えて、元の位置である栓102の上部の位置に検知機構12を戻す。 When the electrostatic capacitance sensor 31 and the irradiation unit 21 are both in the OFF state, the control unit 19a returns the detection mechanism 12 to the upper position of the stopper 102, which is the original position, in preparation for the next specimen measurement.
 図6に戻って、信号量取得部19bは、静電容量センサ31と受光部22の信号量(両者まとめてセンサ信号と称す)を取得する。 Referring back to FIG. 6, the signal amount acquisition unit 19b acquires the signal amounts of the capacitance sensor 31 and the light receiving unit 22 (both are collectively referred to as sensor signals).
 データ記憶部19cは、信号量取得部19bによって取得した静電容量センサ31や受光部22の信号量、後述する解析演算部19dの各部で処理した情報を記憶する。 The data storage unit 19c stores the signal amount of the capacitance sensor 31 and the light receiving unit 22 acquired by the signal amount acquisition unit 19b, and information processed by each unit of the analysis calculation unit 19d described later.
 解析演算部19dは、容器情報特定部19d1、容量演算部19d2を有している。 The analysis calculation unit 19d includes a container information specifying unit 19d1 and a capacity calculation unit 19d2.
 容器情報特定部19d1は、投入モジュール201内に投入された容器101の種類、容器101の栓102の種類を特定する。
  具体的には、容器情報特定部19d1は、カメラ221によって撮像された、投入モジュール201に投入された容器101の撮影画像を画像処理することにより容器101の種別を認識する。認識の方法には、例えば、予め使用する容器を撮影したデータベースを備え、撮像した画像とマッチングを行う方法などがある。また、容器情報特定部19d1は、容器101の種類から、容器101に取り付けられた栓102の底の位置や容器101の径の情報を取得する。この得られた情報を制御用パソコン210に送信する。この情報はまた、生体試料チェックモジュール203a、ステージ15b、通信線18を経由して、生体試料容量測定機器1の解析演算部19dにも送信される。これらの情報のうち容器101の栓102の底の位置は、制御部19aにおける静電容量センサ31の電源64をONにする位置を決めるための情報として用いられる。また、容器101の径の情報は、生体試料容量測定機器1の測定で得られる血清111や全血117の高さ情報と併せて、容量演算部19d2における血清111や全血117の容量を算出する際に使用される。
The container information specifying unit 19d1 specifies the type of the container 101 put into the charging module 201 and the type of the stopper 102 of the container 101.
Specifically, the container information specifying unit 19d1 recognizes the type of the container 101 by performing image processing on the captured image of the container 101 that has been imaged by the camera 221 and that has been input to the input module 201. As a recognition method, for example, there is a method of providing a database in which a container to be used in advance is photographed and performing matching with a captured image. Further, the container information specifying unit 19d1 acquires information on the position of the bottom of the stopper 102 attached to the container 101 and the diameter of the container 101 from the type of the container 101. The obtained information is transmitted to the control personal computer 210. This information is also transmitted to the analysis calculation unit 19d of the biological sample volume measuring device 1 via the biological sample check module 203a, the stage 15b, and the communication line 18. Among these pieces of information, the position of the bottom of the stopper 102 of the container 101 is used as information for determining a position where the power source 64 of the capacitance sensor 31 is turned on in the control unit 19a. The diameter information of the container 101 is calculated together with the height information of the serum 111 and the whole blood 117 obtained by the measurement of the biological sample volume measuring device 1, and the volume of the serum 111 and the whole blood 117 is calculated in the volume calculation unit 19d2. Used when doing.
 容量演算部19d2は、容器情報特定部19d1によって特定された容器101の種類から容器101径および分離剤112の有無を特定するとともに、血餅113と分離剤112との境界面116を求める。その上で、この特定結果と、境界面116に関する情報と、静電容量センサ31で検出した容器101内の試料の上面114に関する情報とから容器101内の試料の容量を演算する。
  具体的には、容量演算部19d2は、まず、信号量取得部19bにおいて取得した静電容量センサ31の信号量(静電容量センサ31のOFFかONかの状態)から、検知機構12の高さ情報h1を求める。この高さ(h1)は、初期位置からモータ11の回転数に相当する移動距離を引くことによって算出する。また、受光部22の信号量(受光部22で検知する透過光の値が急減する値)から検知機構12の高さ情報h2を求め、受光部22で測定した透過光の量に基づき、容器101内における血餅113と分離剤112との境界面116を求める。この高さ(h2)は、初期位置からモータ11の回転数に相当する移動距離を引くことによって算出する。その後、h1-h2-分離剤112の高さhsの演算処理を実行することで、血清111の高さを算出する。なお、分離剤112の量は、容器101の種類によってほぼ一定の値であることが知られているため、固定値として予め解析演算部19dに記憶されている。そのため、容器情報特定部19d1において特定された容器情報から、容器101の径の情報と分離剤112の量の情報とから演算することで分離剤112の高さhsは求められる。その後、容器101の径に関する情報を用いることで、具体的な体積値として、血清111の容量を算出する。
The capacity calculation unit 19d2 specifies the diameter of the container 101 and the presence or absence of the separating agent 112 from the type of the container 101 specified by the container information specifying unit 19d1, and obtains the boundary surface 116 between the clot 113 and the separating agent 112. Then, the capacity of the sample in the container 101 is calculated from this identification result, information on the boundary surface 116, and information on the upper surface 114 of the sample in the container 101 detected by the capacitance sensor 31.
Specifically, the capacitance calculation unit 19d2 first determines the high level of the detection mechanism 12 from the signal amount of the capacitance sensor 31 (the state of whether the capacitance sensor 31 is OFF or ON) acquired by the signal amount acquisition unit 19b. Information h1 is obtained. This height (h1) is calculated by subtracting the movement distance corresponding to the rotation speed of the motor 11 from the initial position. Further, the height information h2 of the detection mechanism 12 is obtained from the signal amount of the light receiving unit 22 (the value at which the value of the transmitted light detected by the light receiving unit 22 rapidly decreases), and based on the amount of transmitted light measured by the light receiving unit 22, the container A boundary surface 116 between the clot 113 and the separating agent 112 in 101 is obtained. This height (h2) is calculated by subtracting the moving distance corresponding to the rotation speed of the motor 11 from the initial position. Thereafter, the height hs of the h1-h2-separating agent 112 is calculated to calculate the serum 111 height. Note that the amount of the separating agent 112 is known to be a substantially constant value depending on the type of the container 101, and therefore is stored in advance in the analysis calculation unit 19d as a fixed value. Therefore, the height hs of the separating agent 112 is obtained from the container information specified by the container information specifying unit 19d1 by calculating from the diameter information of the container 101 and the amount information of the separating agent 112. Thereafter, the volume of the serum 111 is calculated as a specific volume value by using information regarding the diameter of the container 101.
 また、機器1は、検体前処理システム200の他のモジュールや制御用パソコン210と物理的に通信するためのステージ15bを備えている。 The device 1 also includes a stage 15b for physically communicating with other modules of the sample pretreatment system 200 and the control personal computer 210.
 次に、検体の処理手順に沿って、測定順序を説明する。 Next, the measurement order will be described according to the sample processing procedure.
 ユーザは、最初に、血液の入った容器101を、投入モジュール201に投入する。そこでは、カメラ221により、容器101の種類を認識する。 First, the user inputs the container 101 containing blood into the input module 201. There, the camera 221 recognizes the type of the container 101.
 この後、血液の入った容器101は専用のホルダ4に架設されて搬送ライン2上を移動し、必要に応じて遠心分離モジュール202に搬送される。例えば血球カウンタのような項目に対応するのであれば遠心分離モジュール202を飛ばして遠心処理されずに通過させる。遠心分離処理を終えた容器を生体試料チェックモジュール203aに搬送して容量を計測する。計測された容量は制御用パソコン210で送信される。 After this, the container 101 containing the blood is installed on the dedicated holder 4, moves on the transport line 2, and is transported to the centrifuge module 202 as necessary. For example, if it corresponds to an item such as a blood cell counter, the centrifuge module 202 is skipped and allowed to pass through without being centrifuged. The container that has been subjected to the centrifugal separation process is transported to the biological sample check module 203a to measure the capacity. The measured capacity is transmitted by the control personal computer 210.
 この時点で、制御用パソコン210は小分けの計画(小分け数、小分け量等)を決めるプロセスを開始する。小分けのスケジュールは基本的には依頼されている測定項目によって決まるが、本実施形態においては更に容量を加味する。例えば、依頼のある項目のうち測定された容量で全ての分析が可能か、あるいは不可能だとした場合に分析可能な項目数はいくらか、などをパラメータとして適正な小分けをする。 At this point, the control personal computer 210 starts a process for determining a subdivision plan (number of subdivisions, subdivision amount, etc.). The subdivision schedule is basically determined by the requested measurement item, but in this embodiment, capacity is further taken into account. For example, when all the analysis is possible or not possible with the measured capacity among the requested items, an appropriate subdivision is made using as parameters the number of items that can be analyzed.
 生体試料チェックモジュール203aにおいて容量計測が終了した容器101を開栓モジュール204に運び、開栓処理を行う。先述のスケジュールに基づいた小分け用容器の準備をラベラ205で行い、続けて実際の小分けを分注モジュール206で実施する。その後は、用途に応じて、自動分析装置211への搬送や、閉栓モジュール207による閉栓処理を経て、分類モジュール208での分類あるいは収納モジュール209への収納を行う。 The container 101 for which the volume measurement has been completed in the biological sample check module 203a is carried to the opening module 204 and an opening process is performed. The preparation of the subdividing container based on the above-described schedule is performed by the labeler 205, and then the actual subdividing is performed by the dispensing module 206. After that, depending on the application, after being transported to the automatic analyzer 211 and subjected to a closing process by the closing module 207, classification by the classification module 208 or storage in the storage module 209 is performed.
 次に、生体試料チェックモジュール203aにおける生体試料容量測定機器1と関連する機構の動作について説明する。 Next, the operation of the mechanism related to the biological sample volume measuring device 1 in the biological sample check module 203a will be described.
 生体試料チェックモジュール203aに搬送された容器101は、バッファライン2bを通して測定ポジション7に搬送される。ホルダ4が到着すると、センサがホルダ4を検知し、制御用パソコン210にその情報を送信し、制御用パソコン210は処理開始指示信号を機器1の制御部19aに送信する。それと同時に、ストッパを稼働させ、測定中の間は容器101を測定ポジション7に停止させる。 The container 101 transported to the biological sample check module 203a is transported to the measurement position 7 through the buffer line 2b. When the holder 4 arrives, the sensor detects the holder 4 and transmits the information to the control personal computer 210, and the control personal computer 210 transmits a processing start instruction signal to the control unit 19 a of the device 1. At the same time, the stopper is operated, and the container 101 is stopped at the measurement position 7 during measurement.
 次いで、測定の詳細について、図9を参照して以下説明する。 Next, details of the measurement will be described below with reference to FIG.
 まず、容器101が、ホルダ4に載った状態で検知機構12の中心位置(測定ポジション7)に停止する。 First, the container 101 stops at the center position (measurement position 7) of the detection mechanism 12 while being placed on the holder 4.
 次いで、制御部19aは、容器情報特定部19d1により特定した容器101の情報、特に容器101の径に関する情報を基にしてモータ24の回転量を演算し、モータ24に対して出力する。この信号の入力を受けてモータ24は回転し、この回転運動によって回転棒25が回転して検知機構12(静電容量センサ31)が容器101に対して近づく(12b,31bの位置)、または遠ざかる(12a、31aの位置)ように移動し、検出実行位置に到達したらモータ24が停止し、回転棒25および検知機構12も停止する。 Next, the control unit 19 a calculates the rotation amount of the motor 24 based on the information on the container 101 specified by the container information specifying unit 19 d 1, particularly information on the diameter of the container 101, and outputs it to the motor 24. In response to the input of this signal, the motor 24 is rotated, and the rotating rod 25 is rotated by this rotational movement so that the detection mechanism 12 (capacitance sensor 31) approaches the container 101 ( positions 12b and 31b), or It moves away ( positions 12a and 31a), and when it reaches the detection execution position, the motor 24 stops and the rotating rod 25 and the detection mechanism 12 also stop.
 これらの動作の完了により、容器101に対する測定を開始する(ステップS41)。なお、検知機構12のステージからの高さは、予め製造段階でティーチングされる固定の位置(以後、初期位置と呼ぶ)とする。 Upon completion of these operations, measurement on the container 101 is started (step S41). Note that the height of the detection mechanism 12 from the stage is a fixed position (hereinafter referred to as an initial position) that is taught in advance in the manufacturing stage.
 制御部19aによりモータ11が稼働すると、回転棒17が矢印16の方向に回転して、検知機構12が矢印13aの方向に下降する(ステップS42)。 When the motor 11 is operated by the controller 19a, the rotating rod 17 rotates in the direction of the arrow 16 and the detection mechanism 12 descends in the direction of the arrow 13a (step S42).
 静電容量センサ31が栓102の底の位置まで到達すると、静電容量センサ31の電源をONに切り替える。この位置は、容器101の栓102の種類に依存するもので、予め容器情報特定部19d1により予め既知となっている。その後、常時通信線18を通して信号量取得部19bに送信しながら下降させ続け、静電容量センサ31の出力情報がONかOFFかを判定し続ける(ステップS43)。ONになるまでの間は下降を継続する。 When the capacitance sensor 31 reaches the bottom position of the stopper 102, the power supply of the capacitance sensor 31 is switched on. This position depends on the type of the stopper 102 of the container 101, and is known in advance by the container information specifying unit 19d1. Thereafter, the signal is continuously lowered while being transmitted to the signal amount acquiring unit 19b through the communication line 18, and it is continuously determined whether the output information of the capacitance sensor 31 is ON or OFF (step S43). The descent continues until it is turned ON.
 静電容量センサ31が血清上面114まで到達すると、静電容量センサ31が上面検知信号を出力する。この瞬間、血清111の上面を検知したとして、制御部19aは、通信線18を通して停止信号をモータ11に与え、検知機構12を瞬間的に停止させる(ステップS46)。この信号を受信したモータ11は停止し、これに連動して回転棒17および検知機構12が停止する。このとき、データ記憶部19cは、検知機構12の高さ情報(h1)を記録する(ステップS47)。 When the capacitance sensor 31 reaches the serum upper surface 114, the capacitance sensor 31 outputs an upper surface detection signal. At this moment, assuming that the upper surface of the serum 111 has been detected, the control unit 19a gives a stop signal to the motor 11 through the communication line 18 and instantaneously stops the detection mechanism 12 (step S46). The motor 11 that has received this signal stops, and the rotating rod 17 and the detection mechanism 12 stop in conjunction with this. At this time, the data storage unit 19c records the height information (h1) of the detection mechanism 12 (step S47).
 高さh1が記録された後、制御部19aは、次に、分離剤112と血餅113との境界面116の検知のため、通信線18を通して発光信号を照射部21に送るとともに、静電容量センサ31の電源をOFFにする信号を出力する。この信号を受信した静電容量センサ31は電源がOFFになるとともに、照射部21は電源がONとなりLED発光を開始する(ステップS48)。これと同時に、制御部19aは、通信線18を通して動作信号を再びモータ11に与え、この信号を受信したモータ11は回転を始め、これに連動して検知機構12が下降を再開する(ステップS49)。 After the height h1 is recorded, the control unit 19a then sends a light emission signal to the irradiation unit 21 through the communication line 18 to detect the boundary surface 116 between the separating agent 112 and the clot 113, and electrostatically A signal for turning off the power of the capacitance sensor 31 is output. The electrostatic capacity sensor 31 that has received this signal is turned off, and the irradiating unit 21 is turned on to start LED emission (step S48). At the same time, the control unit 19a again gives an operation signal to the motor 11 through the communication line 18, and the motor 11 that has received this signal starts to rotate, and the detection mechanism 12 resumes descent in conjunction with this (step S49). ).
 検知機構12を下降させながら、受光側である受光部22で透過光の値を測定してこの情報を、通信線18を介して信号量取得部19bに常時送信し、所定のしきい値以下であるか否かを監視する(ステップS50)。所定のしきい値より大きいときは、検知機構12の下降を続ける(ステップS50において、いいえの場合)。 While lowering the detection mechanism 12, the light receiving unit 22 on the light receiving side measures the value of the transmitted light and constantly transmits this information to the signal amount acquiring unit 19b via the communication line 18, and is below a predetermined threshold value. Is monitored (step S50). When it is larger than the predetermined threshold value, the detection mechanism 12 continues to descend (in the case of No in step S50).
 照射部21が境界面116に達すると、受光部22で検知する透過光の値が急減し、信号量取得部19bに予めインストールされたしきい値以下となる。この場合、制御部19aは、通信線18を通して停止信号をモータ11に与え、この信号を受信したモータ11は停止し、これに連動して回転棒17および検知機構12が停止する(ステップS53)。このとき、データ記憶部19cは、検知機構12の高さ情報(h2)を記録する(ステップS54)。 When the irradiation unit 21 reaches the boundary surface 116, the value of the transmitted light detected by the light receiving unit 22 rapidly decreases and becomes equal to or less than a threshold value installed in advance in the signal amount acquisition unit 19b. In this case, the control unit 19a gives a stop signal to the motor 11 through the communication line 18, and the motor 11 that has received this signal stops, and in conjunction with this, the rotating rod 17 and the detection mechanism 12 stop (step S53). . At this time, the data storage unit 19c records the height information (h2) of the detection mechanism 12 (step S54).
 高さh2が記録された後、制御部19aは、通信線18を通して停止信号を照射部21に送り、照射部21によるLED発光を停止させる。LED光源の寿命を縮めないための措置である。 After the height h <b> 2 is recorded, the control unit 19 a sends a stop signal to the irradiation unit 21 through the communication line 18 to stop the LED emission by the irradiation unit 21. This is a measure for not shortening the life of the LED light source.
 次いで、制御部19aは、次の容器101の測定に備えて検知機構12を初期位置に戻すよう制御する(ステップS55)。具体的には、通信線18を通して動作信号を再びモータ11に与える。この信号を受信したモータ11は回転を始め、連動して検知機構12が上昇を開始する。なお、検知機構12を上昇させる場合は下降の場合と逆方向にモータ11を稼働させるとよい。 Next, the control unit 19a controls the detection mechanism 12 to return to the initial position in preparation for the next measurement of the container 101 (step S55). Specifically, the operation signal is again given to the motor 11 through the communication line 18. Receiving this signal, the motor 11 starts rotating, and the detection mechanism 12 starts to rise in conjunction with the rotation. In addition, when raising the detection mechanism 12, it is good to operate the motor 11 in the reverse direction to the case of a fall.
 この動作の間に、解析演算部19dの容量演算部19d2は、ステップS47において記録した静電容量センサ31の状態(OFFかONか)の情報に基づく検知機構12の高さ情報(h1)と、ステップS54において記録した検知機構12の高さ情報(h2)との情報を用いて血清111の高さを算出する。次いで、容量演算部19d2は、容器情報特定部19d1において特定した容器101の径に関する情報と先に求めた血清111の高さの情報とを用いることで、具体的な体積値として、血清の容量を算出する。 During this operation, the capacitance calculation unit 19d2 of the analysis calculation unit 19d receives the height information (h1) of the detection mechanism 12 based on the information on the state (OFF or ON) of the capacitance sensor 31 recorded in step S47. Then, the height of the serum 111 is calculated using the information with the height information (h2) of the detection mechanism 12 recorded in step S54. Next, the volume calculation unit 19d2 uses the information regarding the diameter of the container 101 specified by the container information specifying unit 19d1 and the information about the height of the serum 111 obtained previously, so that the volume of the serum is obtained as a specific volume value. Is calculated.
 以上で、一つの容器101に対するデータの取得は終了する(ステップS56)。 This completes the acquisition of data for one container 101 (step S56).
 このように、本実施形態では、カメラ221で容器101を撮像して、容器情報特定部19d1によって容器101の種類や容器101の栓102の種類を特定する。そして、検知機構12を水平方向に移動させて静電容量センサ31による検出精度を高めた状態とする。その後に静電容量センサ31を下方に移動させ、特定した栓102の種類の情報から静電容量センサ31が栓102の底に差し掛かったタイミングを特定し、このタイミングでセンサの電源64をOFFからONにし、静電容量センサ31によって血清111の上面114を検出する。また、静電容量センサ31によって血清111の上面114を検出することに加えて、照射部21と受光部22とからなる光検出系を用いて、受光部22が取得する透過光量によって血餅113と分離剤112との境界面116を検知する。その上で、上面114と境界面116とから血清111の高さおよび容量を演算する。 Thus, in this embodiment, the container 101 is imaged by the camera 221, and the type of the container 101 and the type of the stopper 102 of the container 101 are specified by the container information specifying unit 19d1. Then, the detection mechanism 12 is moved in the horizontal direction so that the detection accuracy by the capacitance sensor 31 is increased. Thereafter, the capacitance sensor 31 is moved downward, and the timing at which the capacitance sensor 31 reaches the bottom of the plug 102 is specified from the information on the type of the specified plug 102. At this timing, the sensor power supply 64 is turned off. The upper surface 114 of the serum 111 is detected by the capacitance sensor 31. In addition to detecting the upper surface 114 of the serum 111 by the capacitance sensor 31, the blood clot 113 is detected by the transmitted light amount acquired by the light receiving unit 22 using a light detection system including the irradiation unit 21 and the light receiving unit 22. And the boundary surface 116 between the separation agent 112 and the separation agent 112 are detected. Then, the height and volume of the serum 111 are calculated from the upper surface 114 and the boundary surface 116.
 よって、自動分析装置に投入する検体の前処理を実施する装置において、容器101の形状や直径がバラバラであったり、容器101内がバーコードラベルで内部が見えない状態であったりと、容器101の形状や状態が一定でない場合でも、ユーザが予め意識をすることなく容器101を投入しても容器101内の検体における血清111の上面114や分離剤112と血餅113との境界面116を精度よく検知することができ、1度の走査のみで、測定対象物の高さ、ひいては容量を算出できるようになり、従来に比べて素早く容量に関する情報を取得することができる。従って、従来の目視確認の作業を低減することができ、ユーザのマニュアル作業の低減を図ることができるとともに、生体試料の容量に関する情報が得られることで、測定項目の優先順位づけが可能となり、処理順序の最適化が図ることができる。よって、患者の負担の軽減と処理結果の報告の遅延防止を達成できる検体検査自動化システムおよび試料のチェック方法が提供される。さらに、再採血の指示を必要に応じて迅速に出せるため、患者の負担の軽減と処理結果の報告の遅延防止に貢献する。これに付随して作業者の接触に伴う感染の可能性を低減することができる。 Therefore, in the apparatus that performs the pretreatment of the sample to be input to the automatic analyzer, the container 101 has a different shape and diameter, or the inside of the container 101 is in a state in which the inside is not visible with a barcode label. Even if the shape and state of the blood vessel are not constant, the upper surface 114 of the serum 111 and the boundary surface 116 between the separating agent 112 and the blood clot 113 in the specimen in the container 101 can be obtained even if the user puts the container 101 without consciousness in advance. It is possible to detect with high accuracy, and the height of the measurement object, and thus the capacity, can be calculated by only one scanning, and information on the capacity can be acquired more quickly than in the past. Therefore, the conventional visual confirmation work can be reduced, the manual work of the user can be reduced, and information on the volume of the biological sample can be obtained, so that prioritization of measurement items can be performed, The processing order can be optimized. Therefore, a specimen test automation system and a sample check method capable of reducing the burden on the patient and preventing the delay in reporting the processing result are provided. Furthermore, since instructions for blood collection can be promptly issued as necessary, it contributes to reducing the burden on patients and preventing delays in reporting processing results. Accompanying this, it is possible to reduce the possibility of infection accompanying the contact of the worker.
 更に、静電容量センサ31、照射部21および受光部22が、容器101内に収容された生体試料の幅に応じた間隔で配置されたことで、静電容量のセンサ31による検出が終了した後、すぐに境界面116が検出されるような状況となり、照射部21による走査時間を短縮でき、如いては処理能力の向上に繋がる。 Furthermore, the capacitance sensor 31, the irradiation unit 21, and the light receiving unit 22 are arranged at intervals according to the width of the biological sample accommodated in the container 101, so that the detection by the capacitance sensor 31 is completed. After that, the boundary surface 116 is immediately detected, and the scanning time by the irradiating unit 21 can be shortened, thereby improving the processing capability.
 なお、再検査依頼の場合や、ユーザによる判断を優先させる場合など、生体試料チェックモジュール203aにおける測定が不要な場合は、制御用パソコン210の指示等に従い、ホルダ4を追い越しライン2cに搬送することで測定をせずに処理することができる。 When measurement in the biological sample check module 203a is not required, such as when a retest is requested or when a user's judgment is prioritized, the holder 4 is transported to the overtaking line 2c according to an instruction from the control personal computer 210 or the like. Can be processed without measurement.
 また、静電容量センサ31や光検出系による検出時に、制御部19aはモータ24を稼働させずに検知機構12の水辺方向の移動を行わないようにしたが、容器101の形状(例えば逆円錐形状など)によっては、静電容量センサ31と容器101との距離を適切に保つようにモータ24を稼働させながら静電容量センサ31による上面114の検出を実行するよう制御することができる。 Further, at the time of detection by the capacitance sensor 31 or the light detection system, the control unit 19a does not move the detection mechanism 12 in the waterside direction without operating the motor 24, but the shape of the container 101 (for example, an inverted cone) Depending on the shape and the like, it is possible to control the detection of the upper surface 114 by the capacitance sensor 31 while operating the motor 24 so as to keep the distance between the capacitance sensor 31 and the container 101 appropriate.
 更に、照射部21におけるLED光の照射方向は、上述した方向と逆でもよい。 Furthermore, the irradiation direction of the LED light in the irradiation unit 21 may be opposite to the above-described direction.
 <第2の実施形態> 
 本発明の検体検査自動化システムおよび試料のチェック方法の第2の実施形態を図10を用いて説明する。
  図10は本発明の第2の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う構成の概略を示す図である。
<Second Embodiment>
A second embodiment of the specimen test automation system and sample check method of the present invention will be described with reference to FIG.
FIG. 10 is a diagram showing an outline of a configuration for measuring the volume of a biological sample in the sample test automation system according to the second embodiment of the present invention.
 図10に示すように、本実施形態に係る生体試料容量測定機器1では、異なる形状の容器101に対応するための構成として、静電容量センサ31の水平方向移動部の代わりに、長距離用の静電容量センサ33および短距離用の静電容量センサ34の2種類の静電容量センサを備えている。図示したように、一般に、長距離用の静電容量センサ33は、短距離用の静電容量センサ34と比して相対的に寸法も大きい。 As shown in FIG. 10, in the biological sample volume measuring device 1 according to the present embodiment, as a configuration for dealing with containers 101 having different shapes, instead of the horizontal direction moving unit of the capacitance sensor 31, for long distance use. There are two types of electrostatic capacity sensors 33 and short distance electrostatic capacity sensor 34. As shown in the drawing, generally, the long-distance capacitance sensor 33 is relatively larger in size than the short-distance capacitance sensor 34.
 また、本実施形態では、制御部19aは、容器情報特定部19d1において特定された容器101の径に応じて、長距離用の静電容量センサ33と短距離用の静電容量センサ34のいずれのセンサを使用するかを選択する。例えば、13mm径の容器であれば長距離用の静電容量センサ33を、16mm径の容器であれば短距離用の静電容量センサ34をそれぞれ使用するよう選択し、適切なセンサによって容器101の液面の検出を実行するよう制御する。なお、この際、容器101が、選択された方の静電容量センサの真下にくるように、容器101の停止位置(測定ポジション7)についても調整し、固定するよう制御する。 In the present embodiment, the control unit 19a selects either the long-distance capacitance sensor 33 or the short-distance capacitance sensor 34 according to the diameter of the container 101 specified by the container information specifying unit 19d1. Select whether to use the sensor. For example, if the container has a diameter of 13 mm, the long-distance electrostatic capacity sensor 33 is selected to be used, and if the container has a diameter of 16 mm, the short-distance electrostatic capacity sensor 34 is selected. The liquid level is controlled to be detected. At this time, the stop position (measurement position 7) of the container 101 is also adjusted and fixed so that the container 101 is directly below the selected capacitance sensor.
 本発明の検体検査自動化システムおよび試料のチェック方法の第2の実施形態のように容器101に応じてセンサを使い分けることにより、前述した検体検査自動化システムおよび試料のチェック方法の第1の実施形態とほぼ同様に、容器101の形状や状態が一定でない場合でも、測定精度を担保することが可能との効果が得られる。 As in the second embodiment of the sample test automation system and the sample check method of the present invention, the sensor is used depending on the container 101, so that the sample test automation system and the sample check method described above can be compared with the first embodiment. In substantially the same manner, even when the shape and state of the container 101 are not constant, an effect that the measurement accuracy can be ensured can be obtained.
 なお、備えられる静電容量センサの種類は2種類に限られず、異なる形状の容器101に細かに対応できるように3種類以上とすることも可能である。 It should be noted that the types of capacitance sensors provided are not limited to two types, and three or more types can be used so that the containers 101 having different shapes can be finely accommodated.
 <第3の実施形態> 
 本発明の検体検査自動化システムおよび試料のチェック方法の第3の実施形態を図11を用いて説明する。
  図11は本発明の第3の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う構成の概略を示す図である。
<Third Embodiment>
A third embodiment of the specimen test automation system and sample check method of the present invention will be described with reference to FIG.
FIG. 11 is a diagram showing an outline of a configuration for measuring the volume of a biological sample in a sample test automation system according to the third embodiment of the present invention.
 図11に示すように、本実施形態に係る生体試料容量測定機器1では、異なる形状の容器101に対応するための構成として、検知機構12の代わりに検知機構35を備えている。 As shown in FIG. 11, the biological sample volume measuring device 1 according to the present embodiment includes a detection mechanism 35 instead of the detection mechanism 12 as a configuration for dealing with containers 101 having different shapes.
 この検知機構35は、機器1を上面から見たときに箱状の形状となっており、この内側に2つの静電容量センサ38,39が互いに向かいあうように配置されている。図11において、検知機構35の内側に描かれた2つの円101a,101bは、それぞれ16mm径容器101aと13mm径容器101bの測定位置を表している。本実施形態では、図11の下側に配置された静電容量センサ38にて13mm径容器101bを、上側に配置された静電容量センサ39にて16mm径容器101aを、それぞれ測定するよう構成されている。 The detection mechanism 35 has a box shape when the device 1 is viewed from above, and the two capacitance sensors 38 and 39 are arranged inside each other so as to face each other. In FIG. 11, two circles 101a and 101b drawn inside the detection mechanism 35 represent measurement positions of the 16 mm diameter container 101a and the 13 mm diameter container 101b, respectively. In the present embodiment, the 13 mm diameter container 101b is measured by the electrostatic capacity sensor 38 disposed on the lower side of FIG. 11, and the 16 mm diameter container 101a is measured by the electrostatic capacity sensor 39 disposed on the upper side. Has been.
 また、本実施形態では、制御部19aは、容器情報特定部19d1において特定された容器101の径に応じて静電容量センサ38,39の配置を適切に調整することで、容器101の径によらずに同じ測定ポジション7で測定できるようにする。以下、図11を用いて具体的に説明する。 In the present embodiment, the control unit 19a appropriately adjusts the arrangement of the capacitance sensors 38 and 39 according to the diameter of the container 101 specified by the container information specifying unit 19d1, thereby adjusting the diameter of the container 101. Therefore, it is possible to measure at the same measurement position 7. This will be specifically described below with reference to FIG.
 まず、2つの静電容量センサ38,39間の距離をLとする。各静電容量センサに関して、有効な測定結果を得るための距離(以下、検出可能距離)をそれぞれD1,D2とする。また、説明の便宜上、一旦、13mm径容器101bの外縁の半径をr1、16mm径容器101aの外縁の半径をr2とする。また、静電容量センサ38の検知面を原点とする座標yを設定し、13mm径容器101bの中心点と16mm径容器101aの中心点をそれぞれy1,y2とする。 First, let L be the distance between the two capacitance sensors 38 and 39. For each capacitance sensor, the distances (hereinafter, detectable distances) for obtaining an effective measurement result are D1 and D2, respectively. For convenience of explanation, it is assumed that the radius of the outer edge of the 13 mm diameter container 101b is r1 and the radius of the outer edge of the 16 mm diameter container 101a is r2. Also, a coordinate y with the detection surface of the capacitance sensor 38 as the origin is set, and the center point of the 13 mm diameter container 101b and the center point of the 16 mm diameter container 101a are set as y1 and y2, respectively.
 13mm径容器101bについて、外縁が静電容量センサ38と物理的に干渉しないためには、y1は、
   r1<y1 …(条件1)
 を満たす必要がある。
In order for the outer edge of the 13 mm diameter container 101b not to physically interfere with the capacitance sensor 38, y1 is
r1 <y1 (Condition 1)
It is necessary to satisfy.
 また、静電容量センサ38で有効な測定をするには、
   y1<r1+D1 …(条件2)
 を満たす必要がある。
In order to perform effective measurement with the capacitance sensor 38,
y1 <r1 + D1 (Condition 2)
It is necessary to satisfy.
 16mm径容器101aについても同様に、静電容量センサ39と物理的に干渉せず、かつ有効な測定結果を得るためには、y2は、
   L-(r2+D2)<y2<L-r2・・・(条件3)
 を満たす必要ある。
Similarly, for the 16 mm diameter container 101a, in order to obtain an effective measurement result without physically interfering with the capacitance sensor 39, y2 is
L− (r2 + D2) <y2 <L−r2 (Condition 3)
It is necessary to satisfy.
 以上の条件をr1=6.5mm、r2=8.0mmとして解く。解は沢山存在するが、典型的な解として、
 (D1,D2,L)=(2.0,2.0,17.0)の場合、y1=y2=8.25mm …(1)
 (D1,D2,L)=(1.6,0.8,16.8)の場合、y1=y2=8.05mm …(2)
などがある。
The above conditions are solved with r1 = 6.5 mm and r2 = 8.0 mm. There are many solutions, but as a typical solution,
When (D1, D2, L) = (2.0, 2.0, 17.0), y1 = y2 = 8.25 mm (1)
If (D1, D2, L) = (1.6, 0.8, 16.8), y1 = y2 = 8.05 mm (2)
and so on.
 ここで、(1)については、D1,D2ともに2.0であるから、静電容量センサ38,39の両方に、2.0mm離れていても測定可能な長距離用センサを用いることを意味する。また、容器の中心点y1,y2に共通解が存在するが、このことは、13mm容器101bと16mm容器101aいずれも同一測定位置で測定できることを意味する。また、L=17.0より、両静電容量センサ38,39の中間点(中心線36参照)は座標8.5の地点であるのに対し、容器101の中心を通る中心線37は座標8.25の地点である。両者は一致せず、容器101に対して両静電容量センサ38,39が非対象に配置されているという点に特徴がある。なお、この解では、13mm径容器101bの外縁と下センサ38との距離d1は1.75、16mm径容器101aの外縁と上センサ39との距離d2は0.75で、両者それぞれ確かに検出可能距離内である。また、いずれの容器も静電容量センサ38,39と物理的に干渉しないことが分かる。 Here, for (1), since both D1 and D2 are 2.0, it means that a long-distance sensor that can be measured even at a distance of 2.0 mm is used for both capacitance sensors 38 and 39. To do. There is a common solution at the center points y1 and y2 of the container, which means that both the 13 mm container 101b and the 16 mm container 101a can be measured at the same measurement position. Further, from L = 17.0, the middle point (see the center line 36) of both the capacitance sensors 38 and 39 is the point of the coordinate 8.5, whereas the center line 37 passing through the center of the container 101 is the coordinate. It is the point of 8.25. Both are not in agreement, and both the capacitance sensors 38 and 39 are non-targeted with respect to the container 101. In this solution, the distance d1 between the outer edge of the 13 mm diameter container 101b and the lower sensor 38 is 1.75, and the distance d2 between the outer edge of the 16 mm diameter container 101a and the upper sensor 39 is 0.75. Within possible distance. It can also be seen that none of the containers physically interfere with the capacitance sensors 38 and 39.
 また、(2)については、D1=1.6より静電容量センサ38には相対的に長距離用の静電容量センサを、D2=0.8より静電容量センサ39には相対的に短距離用の静電容量センサを、それぞれ採用する。この場合も、y1,y2両者には共通解が存在するため、(1)と同様に、容器の径ごとに測定位置を変えることなく、13mm容器101bと16mm容器101aいずれも同一測定位置で測定することができる。また、L=16.8より両静電容量センサ38,39の中間点(中心線36参照)は座標8.4の地点であるのに対し、容器101の中心を通る中心線37は座標8.05の地点である。(1)と同様に、非対象に配置されているという点に特徴がある。なお、この解では、13mm径容器101bの外縁と静電容量センサ38との距離d1は1.55、16mm径容器101aの外縁と上センサ34との距離d2は0.75となり、両者それぞれ確かに検出可能距離内であることが分かる。また、いずれの容器もセンサ38,39と物理的に干渉しないことも分かる。 As for (2), a capacitance sensor for a relatively long distance is provided for the capacitance sensor 38 from D1 = 1.6, and a capacitance for the capacitance sensor 39 is provided for D2 = 0.8. Capacitance sensors for short distances are respectively adopted. Also in this case, since both y1 and y2 have a common solution, as in (1), both the 13mm container 101b and the 16mm container 101a are measured at the same measurement position without changing the measurement position for each container diameter. can do. Further, from L = 16.8, the middle point (see the center line 36) of both the capacitance sensors 38 and 39 is the point of the coordinate 8.4, while the center line 37 passing through the center of the container 101 is the coordinate 8 .05 point. Similar to (1), it is characterized in that it is arranged non-targeted. In this solution, the distance d1 between the outer edge of the 13 mm diameter container 101b and the capacitance sensor 38 is 1.55, and the distance d2 between the outer edge of the 16 mm diameter container 101a and the upper sensor 34 is 0.75. It can be seen that it is within the detectable distance. It can also be seen that none of the containers physically interfere with the sensors 38, 39.
 以上具体的に示すように、本発明の検体検査自動化システムおよび試料のチェック方法の第3の実施形態においても、前述した検体検査自動化システムおよび試料のチェック方法の第1,第2の実施形態とほぼ同様に、容器101の形状や状態が一定でない場合でも、静電容量センサを適切に配置するにより、容器101の径ごとに測定位置を変えることなく共通の測定位置にて測定精度を担保した状態で測定を実施することができる、との効果が得られる。 As specifically described above, the third embodiment of the specimen test automation system and the sample check method of the present invention also includes the first and second embodiments of the specimen test automation system and the sample check method described above. In a similar manner, even when the shape and state of the container 101 are not constant, the measurement accuracy is ensured at the common measurement position without changing the measurement position for each diameter of the container 101 by appropriately arranging the capacitance sensor. The effect that it can measure in a state is acquired.
 <第4の実施形態> 
 本発明の検体検査自動化システムおよびチェックモジュールならびに試料のチェック方法の第4の実施形態を図12を用いて説明する。
  第4の実施形態における検体検査自動化システムは、投入モジュールおよび生体試料チェックモジュール以外の構成は第1の実施形態と略同じであり、詳細は省略する。
  図12は本発明の第4の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。
<Fourth Embodiment>
A fourth embodiment of the specimen test automation system, check module, and sample check method of the present invention will be described with reference to FIG.
The specimen test automation system according to the fourth embodiment is substantially the same as the first embodiment except for the input module and the biological sample check module, and details thereof are omitted.
FIG. 12 is a diagram showing an outline of a module having a function of measuring the volume of a biological sample in the specimen test automation system according to the fourth embodiment of the present invention.
 図12に示すように、本発明の検体検査自動化システムの第4の実施形態は、投入モジュール201ではなく、生体試料チェックモジュール(チェックモジュール)203bがカメラ221bを備えている。 As shown in FIG. 12, in the fourth embodiment of the specimen test automation system according to the present invention, the biological sample check module (check module) 203b is provided with a camera 221b, not the input module 201.
 本実施形態の生体試料チェックモジュール203bを備えた検体検査自動化システムでは、容器101が生体試料チェックモジュール203b内に立ち寄ると、まずカメラ221bにて、容器101の形状を把握する。
  具体的には、まず、カメラ221の撮影により容器101の外径を撮像し、解析演算部19dの容器情報特定部19d1において容器101の種別を認識する。この認識の方法には、第1の実施形態と同様に、例えば、予め使用する容器を撮影したデータベースを備え、撮像した画像とマッチングを行う方法などがある。その後、容器情報特定部19d1において容器101の種類を認識することにより、容器の101の径、栓102の種類、栓102の底の位置を特定する。これらの情報は、静電容量センサ31の電源64をONにする位置や、血清111の容量を算出する際の情報として用いられる。これ以降の動作は、第1の実施形態と略同じである。
In the sample test automation system provided with the biological sample check module 203b of the present embodiment, when the container 101 stops in the biological sample check module 203b, the shape of the container 101 is first grasped by the camera 221b.
Specifically, first, the outer diameter of the container 101 is imaged by photographing with the camera 221, and the type of the container 101 is recognized in the container information specifying unit 19d1 of the analysis calculation unit 19d. As in the first embodiment, this recognition method includes, for example, a method in which a database in which a container to be used is captured is provided and matching is performed with the captured image. Thereafter, the container information specifying unit 19d1 recognizes the type of the container 101, thereby specifying the diameter of the container 101, the type of the stopper 102, and the position of the bottom of the stopper 102. These pieces of information are used as information for calculating the position at which the power supply 64 of the capacitance sensor 31 is turned on and the capacity of the serum 111. Subsequent operations are substantially the same as those in the first embodiment.
 本発明の検体検査自動化システムおよびチェックモジュールならびに試料のチェック方法の第4の実施形態においても、前述した検体検査自動化システムおよび試料のチェック方法の第1の実施形態とほぼ同様な効果が得られる。 In the fourth embodiment of the sample test automation system and check module and sample check method of the present invention, the same effects as those of the first embodiment of the sample test automation system and sample check method described above can be obtained.
 また、チェックモジュール単体で採血管内の試料の状態を把握することが可能であり、既存の検体前処理システムに追加するのに好適なモジュールとすることができる。 Also, the check module alone can grasp the state of the sample in the blood collection tube, and can be a module suitable for addition to an existing specimen pretreatment system.
 更に、本実施形態のようなチェックモジュールは、自動分析装置211の試薬保冷庫に保管されている試薬容器内の試薬の残量測定にも適用できる。
  試薬保冷庫に保管される試薬は、通常、遮光目的のため有色の容器に入れて運用されているため、残量の目視確認はできない。
  しかし、本実施形態のようなチェックモジュールを自動分析装置211の試薬保冷庫やその付近に備えていることで、試薬の容量の目視確認ができない状況でも、試薬容器内の試薬の残量のチェックが可能となる。
Furthermore, the check module as in the present embodiment can also be applied to the measurement of the remaining amount of reagent in the reagent container stored in the reagent cooler of the automatic analyzer 211.
Since the reagent stored in the reagent cooler is usually operated in a colored container for light shielding purposes, the remaining amount cannot be visually confirmed.
However, since the check module as in this embodiment is provided in the reagent cooler of the automatic analyzer 211 or in the vicinity thereof, the remaining amount of the reagent in the reagent container can be checked even in a situation where the reagent capacity cannot be visually confirmed. Is possible.
 <第5の実施形態> 
 本発明の検体検査自動化システムおよび試料のチェック方法の第5の実施形態を説明する。本発明の検体検査自動化システムおよび試料のチェック方法は、ホルダ4の代わりに、図13に示すようなラック72を使用する検体検査自動化システムや自動分析装置に対しても採用可能である。以下、5本の検体容器101を搬送するラック72を使用するシステムの例を用いて説明する。
  図13は本発明の第5の実施形態に係る検体検査自動化システムにおける生体試料の容量の測定を行う機能を備えたモジュールの概略を示す図である。
<Fifth Embodiment>
A fifth embodiment of the specimen test automation system and sample check method of the present invention will be described. The sample test automation system and the sample check method of the present invention can be applied to a sample test automation system and an automatic analyzer that use a rack 72 as shown in FIG. Hereinafter, an example of a system that uses a rack 72 that transports five sample containers 101 will be described.
FIG. 13 is a diagram showing an outline of a module having a function of measuring the volume of a biological sample in a sample test automation system according to the fifth embodiment of the present invention.
 ホルダ4と異なり、ラック72では、容器101の全体がラック72の孔に入っている。このため、生体試料容量測定機器1による容量計測のために、持上げ機構71を備えている。この持上げ機構71の各動作の制御は、制御部19aで行う。具体的には、持上げ機構71によって容器101を掴んだのち、容器101の底辺がラック72より高くなるまで矢印73方向に持上げ機構71を上昇させ、停止させる。その後、停止した状態において、第1の実施形態と同様に、生体試料容量測定機器1による容量計測を行う。 Unlike the holder 4, in the rack 72, the entire container 101 is in the hole of the rack 72. For this reason, a lifting mechanism 71 is provided for volume measurement by the biological sample volume measuring device 1. Control of each operation of the lifting mechanism 71 is performed by the control unit 19a. Specifically, after grasping the container 101 by the lifting mechanism 71, the lifting mechanism 71 is raised in the direction of the arrow 73 until the bottom side of the container 101 becomes higher than the rack 72 and stopped. Thereafter, in the stopped state, the volume measurement by the biological sample volume measuring device 1 is performed as in the first embodiment.
 本発明の検体検査自動化システムおよび試料のチェック方法の第5の実施形態においても、前述した検体検査自動化システムおよび試料のチェック方法の第1の実施形態とほぼ同様な効果が得られる。 In the fifth embodiment of the sample test automation system and the sample check method of the present invention, the same effects as those of the first embodiment of the sample test automation system and the sample check method described above can be obtained.
 <その他> 
 なお、本発明は上記の実施形態に限られず、種々の変形、応用が可能なものである。上述の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
<Others>
In addition, this invention is not restricted to said embodiment, A various deformation | transformation and application are possible. The above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
 例えば、上述の実施形態では、チェックの対象を遠心済みで3層に分離した検体を前提として説明したが、未遠心の血液にも本実施形態の検体検査自動化システムおよびチェックモジュールならびに試料のチェック方法は適用が可能である。
  この場合、上述した図4に示すように、全血117と下に沈んだ分離剤112の2層構造となり、血餅113が存在しない構造となる。このため、透過光量が低くならずh2が検出されない状況、あるいは血餅113を探して走査し続けてLED光23がホルダ4の背の高さにまで下降し、この背が透過を遮ることにより、ホルダ4の背を血餅113と誤検知し、より低い値のh2を検出する状況となる。
  これらに対応するために、h2に対するしきい値(例えば、h2min)を予め設けておき、h2<h2minとなった場合、あるいは、h2が見つからなかった場合、一律、未遠心検体とみなすよう制御部19a、信号量取得部19bおよび解析演算部19dを設定しておく。
  また、解析演算部19dの容量演算部19d2におけるデータ解析においては、h1-分離剤の高さ、を全血117の高さとする。そして容器情報特定部19d1において特定した容器101の径に関する情報を用いることで、具体的な体積値として、全血117の容量を算出する。
For example, in the above-described embodiment, the description has been made on the assumption that the sample to be checked has been centrifuged and separated into three layers. However, the sample test automation system, the check module, and the sample checking method of the present embodiment are also applied to uncentrifuged blood. Is applicable.
In this case, as shown in FIG. 4 described above, a two-layer structure of the whole blood 117 and the separating agent 112 that has sunk down is formed, and the blood clot 113 does not exist. For this reason, the amount of transmitted light does not decrease and h2 is not detected, or the blood clot 113 is continuously searched and scanned, and the LED light 23 descends to the height of the holder 4, and this back blocks the transmission. Then, the back of the holder 4 is erroneously detected as a blood clot 113, and a lower value of h2 is detected.
In order to cope with these, a threshold value for h2 (for example, h2min) is provided in advance, and if h2 <h2min, or if h2 is not found, the control unit uniformly considers the sample as uncentrifuged. 19a, signal amount acquisition unit 19b and analysis calculation unit 19d are set in advance.
In the data analysis in the volume calculation unit 19d2 of the analysis calculation unit 19d, the height of h1-separating agent is the height of the whole blood 117. And the capacity | capacitance of the whole blood 117 is calculated as a concrete volume value by using the information regarding the diameter of the container 101 specified in the container information specific | specification part 19d1.
 更に、分離剤の無い容器が混在した場合にも、本実施形態の検体検査自動化システムおよびチェックモジュールならびに試料のチェック方法は適用することができる。以下説明する。 Furthermore, the specimen test automation system, the check module, and the sample check method of the present embodiment can be applied even when containers without a separating agent coexist. This will be described below.
 容器101の種類には、分離剤の無いものが存在し、検体前処理システム200には、分離剤のある容器と無い容器とが混在した状態で搬送される。 Some types of containers 101 have no separation agent, and are transported to the specimen pretreatment system 200 in a state where a container with a separation agent and a container without a separation agent are mixed.
 分離剤の無い容器では、検体は、遠心分離済みの場合は血漿と血餅の2層構造、あるいは未遠心の場合は全血の1層となっている。 In a container without a separating agent, the specimen has a two-layer structure of plasma and blood clot when centrifuged, or one layer of whole blood when not centrifuged.
 そのため、遠心分離済みの場合は、静電容量センサ31で血漿の上面を検出してh1と求め、光検出系で血漿と血餅との境界を検出してh2を求める。
  未遠心の場合は、静電容量センサ31で全血の上面を検出してh1とするが、境界面が存在しないために光検出系による境界面検出は不可能である。
Therefore, in the case of centrifugation, the upper surface of the plasma is detected by the capacitance sensor 31 to obtain h1, and the boundary between the plasma and the clot is detected by the light detection system to obtain h2.
In the case of non-centrifugation, the upper surface of whole blood is detected by the capacitance sensor 31 and is set to h1, but since there is no boundary surface, boundary surface detection by the light detection system is impossible.
 しかし、投入モジュール201等のカメラ221や容器情報特定部19d1において、投入された容器101の種類は特定できる。また、分離剤の有無は容器の種類で決まっているため、種類が特定できれば分離剤の有無がわかる。 However, the type of the charged container 101 can be specified by the camera 221 such as the input module 201 or the container information specifying unit 19d1. Moreover, since the presence or absence of the separating agent is determined by the type of the container, the presence or absence of the separating agent can be known if the type can be specified.
 そこで、分離剤が無い容器と判明した場合は、分離剤の高さを0に置き換えた上で、遠心分離済みに対しては、h1-h2-分離剤の高さ(=0)、を算出する。また、未遠心に対しては、h1-分離剤の高さ(=0)、を算出する。こうすることにより、分離剤の有無に関わらず第1の実施形態と同様のアルゴリズムで対象物の高さを測定することが可能となる。 Therefore, if it is determined that the container does not have a separating agent, the height of the separating agent is replaced with 0, and then the height of h1-h2-separating agent (= 0) is calculated for the centrifuged product. To do. For uncentrifugated, the height of h1-separating agent (= 0) is calculated. By doing so, it becomes possible to measure the height of the object with the same algorithm as in the first embodiment regardless of the presence or absence of the separating agent.
 このように、容器情報の特定から、分離剤の有無を判別することで、分離剤の無い条件下でも、同様の測定方法で対応することが可能であり、分離剤のある容器と無い容器とが混在しても対応でき、非常に汎用性が高いシステムとなる。 Thus, by identifying the presence or absence of the separating agent from the specification of the container information, it is possible to cope with the same measurement method even under conditions without the separating agent. This system can be used even if both are mixed, and it becomes a very versatile system.
 また、制御部19aや信号量取得部19b、データ記憶部19c、解析演算部19d(容器情報特定部19d1、容量演算部19d2)が制御用パソコン210と別体の例を説明したが、これらは制御用パソコン210の内部に設けることができる。 Moreover, although the control part 19a, the signal amount acquisition part 19b, the data memory | storage part 19c, and the analysis calculating part 19d (container information specific part 19d1, capacity | capacitance calculating part 19d2) demonstrated the example separate from the personal computer 210 for control, It can be provided inside the control personal computer 210.
 また、静電容量センサ31によって上面114を検出することに加えて、光検出系を用いて境界面116を検知し、上面114と境界面116とから血清111の高さおよび容量を演算する対応について説明したが、光検出系による境界面116の検知を行わずに、上面114の情報から血清111の容量を求めてもよい。 Further, in addition to detecting the upper surface 114 by the capacitance sensor 31, the boundary surface 116 is detected using a light detection system, and the height and capacity of the serum 111 are calculated from the upper surface 114 and the boundary surface 116. However, without detecting the boundary surface 116 by the light detection system, the volume of the serum 111 may be obtained from the information on the upper surface 114.
 この場合、容器情報特定部19d1において、容器101内の分離剤112の有り無し、容器101の径に関する情報は特定できる。また、容器101に採取される血液量は容器101毎に大きな違いはなくほぼ同量であること、その血液量における固層(例えば血餅113の量、高さ)についてもある程度は把握することができる。従って、静電容量センサ31によって上面114を検出することによって、これらの情報を基にすることで容器101内の液量(例えば血清111の容量)をある程度の精度で把握することができる。 In this case, the container information specifying unit 19d1 can specify information regarding the presence or absence of the separating agent 112 in the container 101 and the diameter of the container 101. In addition, the blood volume collected in the container 101 is not substantially different for each container 101 and is almost the same, and the solid layer (for example, the amount and height of the blood clot 113) in the blood volume is grasped to some extent. Can do. Therefore, by detecting the upper surface 114 by the capacitance sensor 31, the amount of liquid in the container 101 (for example, the volume of the serum 111) can be grasped with a certain degree of accuracy based on these pieces of information.
 さらに、異なる形状の容器101に対応するための構成である異形状容器対応計測部は、第1の実施形態のような水平方向移動機構、第2および第3の実施形態のような複数の静電容量センサに限られず、静電容量センサ31の電流値(ゲイン)を信号量取得部19bや解析演算部19dにおいて制御することによって対応する手法も有効である。 Further, the irregularly shaped container corresponding measurement unit configured to accommodate differently shaped containers 101 includes a horizontal movement mechanism as in the first embodiment, and a plurality of static electricity as in the second and third embodiments. Not only the capacitance sensor but also a corresponding method by controlling the current value (gain) of the capacitance sensor 31 by the signal amount acquisition unit 19b or the analysis calculation unit 19d is also effective.
1…生体試料容量測定ユニット、
2…搬送ライン、
2a…搬出ライン、
2b…バッファライン、
2c…追い越しライン、
2d…主要ライン、
3…搬送方向、
4…ホルダ、
5…カメラ、
6…遮光版、
7…測定位置、
11…モータ、
12…検知機構、
12a,12b…検知機構の位置、
13a,13b…矢印(検知機構の稼働方向を示す矢印)、
14…背板、
15a…ステージ、
15b…ステージ、
17…回転棒、
18…通信線、
19a…制御部、
19b…信号量取得部、
19c…データ記憶部、
19d…解析演算部、
21…照射部、
22…受光部、
23…LED光、
24…モータ、
25…回転棒、
31…静電容量センサ、
33…長距離用静電容量センサ、
34…短距離用静電容量センサ、
35…検知機構、
36…中心線(検知機構の中心線)、
37…中心線(円の中心線)、
38…13mm径容器用静電容量センサ、
39…16mm径容器用静電容量センサ、
61…位置を表す軸、
62a,62b,62c,62d…OFFからONへの切替え、
63a,63b,63c,63d…ONからOFFへの切替え、
64…静電容量センサの電源の状態、
65…静電容量センサの出力、
66…LEDの電源の状態、
67…LEDの出力、
68…栓の底の位置、
71…持上げ機構、
72…ラック、
73…矢印、
101…容器(採血管)、
102…栓、
103…バーコード、
104…バーコードが側面に被覆された容器、
105…バーコードが全側面被覆された容器、
106…未遠心検体を収容した容器、
111…血清、
112…分離剤、
113…血餅、
114…血清上面、
115…血清と分離剤の境界面、
116…血餅と分離剤の境界面、
117…全血検体、
200…検体前処理システム、
201…投入モジュール、
202…遠心分離モジュール、
203a,203b…生体試料チェックモジュール、
204…開栓モジュール、
205…ラベラ、
206…分注モジュール、
207…閉栓モジュール、
208…分類モジュール、
209…収納モジュール、
210…制御用パソコン、
211…自動分析装置、
221…カメラ、
311…実線、
312…太線、
313…液面、
314…破線。
1 ... biological sample volume measuring unit,
2 ... Conveying line,
2a ... Unloading line,
2b ... buffer line,
2c ... Overtaking line,
2d ... Main line,
3 ... transport direction,
4 ... Holder,
5 ... Camera,
6 ... Shading plate,
7 ... Measurement position,
11 ... motor,
12 ... detection mechanism,
12a, 12b ... the position of the detection mechanism,
13a, 13b ... arrows (arrows indicating the operating direction of the detection mechanism),
14 ... backboard,
15a ... stage,
15b ... stage,
17 ... rotating rod,
18 ... communication line,
19a ... control unit,
19b ... Signal amount acquisition unit,
19c: Data storage unit,
19d ... analysis operation part,
21 ... Irradiation part,
22. Light receiving part,
23 ... LED light,
24 ... motor,
25 ... rotating rod,
31: Capacitance sensor,
33 ... Long-distance capacitance sensor,
34. Capacitance sensor for short distance,
35 ... detection mechanism,
36 ... center line (center line of detection mechanism),
37 ... Center line (circle center line),
38. Capacitance sensor for 13 mm diameter container,
39: Capacitance sensor for 16 mm diameter container,
61 ... axis representing the position,
62a, 62b, 62c, 62d ... switching from OFF to ON,
63a, 63b, 63c, 63d ... switching from ON to OFF,
64 ... The state of the power supply of the capacitance sensor,
65 ... the output of the capacitance sensor,
66 ... LED power supply status,
67 ... LED output,
68 ... position of the bottom of the stopper,
71 ... Lifting mechanism,
72 ... rack,
73 ... Arrow,
101 ... Container (blood collection tube)
102 ... stopper,
103 ... Barcode,
104 ... Container with barcode covered on its side surface,
105 ... Container with barcode covered on all sides,
106: Container containing uncentrifugated specimen,
111 ... serum,
112 ... separating agent,
113 ... Clot,
114 ... serum upper surface,
115 ... interface between serum and separating agent,
116 ... interface between clot and separating agent,
117 ... Whole blood sample,
200 ... Sample pretreatment system,
201 ... input module,
202 ... centrifuge module,
203a, 203b ... biological sample check module,
204 ... Opening module,
205 ... Labera,
206 ... dispensing module,
207 ... Capping module,
208 ... Classification module,
209 ... Storage module,
210 ... Control PC,
211 ... Automatic analyzer,
221 ... Camera,
311 ... Solid line,
312 ... thick line,
313: Liquid level,
314 ... Broken line.

Claims (10)

  1.  容器に収容された試料のチェックを行う検体検査自動化システムであって、
     この検体検査自動化システム内に投入された前記容器の種類、前記容器の栓種類を特定する特定部と、
     この特定部によって特定された前記容器の種類および前記容器の栓種類に応じて、前記容器内の試料の上面を非接触の静電容量方式によって検出する異形状容器対応計測部と、
     この異形状容器対応計測部を前記容器に対して上下動させる上下方向移動部と、
     前記特定部によって特定された前記栓種類に関する情報に応じて、前記上下方向移動部によって前記異形状容器対応計測部を前記容器に対して上下動させながら前記容器内の試料の上面を検出するよう制御する制御部とを備えた
     ことを特徴とする検体検査自動化システム。
    A specimen test automation system for checking a sample contained in a container,
    A type of the container put into the sample test automation system, a specifying unit for specifying the plug type of the container,
    In accordance with the type of the container specified by the specifying unit and the type of stopper of the container, the measurement unit corresponding to the irregularly shaped container that detects the upper surface of the sample in the container by a non-contact capacitance method,
    An up-down direction moving unit that moves the irregularly shaped container-compatible measuring unit up and down with respect to the container;
    The upper surface of the sample in the container is detected while moving the measuring unit corresponding to the irregularly shaped container up and down with respect to the container by the up and down direction moving unit according to information on the plug type specified by the specifying unit. A specimen test automation system characterized by comprising a control unit for controlling.
  2.  請求項1に記載の検体検査自動化システムにおいて、
     前記異形状容器対応計測部は、
     前記容器内の試料の上面を非接触の静電容量方式によって検出する静電容量センサと、
     この静電容量センサと前記容器との水平方向距離を調整する水平方向移動部とを有する
     ことを特徴とする検体検査自動化システム。
    The specimen test automation system according to claim 1,
    The irregularly shaped container-compatible measuring unit is
    A capacitance sensor for detecting the upper surface of the sample in the container by a non-contact capacitance method;
    A specimen test automation system comprising: a horizontal movement unit that adjusts a horizontal distance between the capacitance sensor and the container.
  3.  請求項1に記載の検体検査自動化システムにおいて、
     前記異形状容器対応計測部は、
     前記容器内の試料の上面を非接触の静電容量方式によって検出する第1静電容量センサと、
     この第1静電容量センサに比べて検出可能距離が短い第2静電容量センサとを有し、
     前記制御部は、前記特定部によって特定された前記容器の種類に基づいて、前記第1静電容量センサと前記第2静電容量センサとのいずれのセンサを用いるかを選択し、選択されたセンサによって前記容器内の試料の上面を検出するよう制御する
     ことを特徴とする検体検査自動化システム。
    The specimen test automation system according to claim 1,
    The irregularly shaped container-compatible measuring unit is
    A first capacitance sensor for detecting the upper surface of the sample in the container by a non-contact capacitance method;
    A second capacitance sensor having a shorter detectable distance than the first capacitance sensor;
    The control unit selects the selected one of the first capacitance sensor and the second capacitance sensor based on the type of the container specified by the specifying unit, and is selected. Control for detecting the upper surface of the sample in the container by means of a sensor.
  4.  請求項1に記載の検体検査自動化システムにおいて、
     前記異形状容器対応計測部は、
     前記容器内の試料の上面を非接触の静電容量方式によって検出する第3静電容量センサと、
     この第3静電容量センサに対して一定の間隔をあけて互いに向かい合って対向するように配置された、前記容器内の試料の上面を非接触の静電容量方式によって検出する第4静電容量センサとを有する
     ことを特徴とする検体検査自動化システム。
    The specimen test automation system according to claim 1,
    The irregularly shaped container-compatible measuring unit is
    A third capacitance sensor for detecting the upper surface of the sample in the container by a non-contact capacitance method;
    A fourth capacitance which is arranged so as to face and face each other with a certain distance from the third capacitance sensor and detects the upper surface of the sample in the container by a non-contact capacitance method. A specimen test automation system characterized by comprising a sensor.
  5.  請求項1に記載の検体検査自動化システムにおいて、
     前記特定部によって特定された容器種類に関する情報から前記容器径および分離剤の有無を特定して、この特定結果と前記異形状容器対応計測部で検出した前記容器内の試料の上面に関する情報とから前記容器内の試料の容量を演算する演算部を更に備えた
     ことを特徴とする検体検査自動化システム。
    The specimen test automation system according to claim 1,
    From the information on the container type specified by the specifying unit, the container diameter and the presence or absence of the separating agent are specified, and from this specifying result and information on the upper surface of the sample in the container detected by the irregularly shaped container corresponding measuring unit The specimen test automation system, further comprising a calculation unit that calculates the volume of the sample in the container.
  6.  請求項5に記載の検体検査自動化システムにおいて、
     前記容器の側面に対して光を照射する照射部と、
     前記容器を通過した透過光の量を測定する受光部とを更に備え、
     前記上下方向移動部は、前記照射部および前記受光部を、前記異形状容器対応計測部とともに前記容器に対して上下動させ、
     前記演算部は、前記受光部で測定した前記透過光の量に基づき、前記容器内の試料の固液分離面を求め、この求めた固液分離面と、前記容器径および分離剤の有無の特定結果と、前記異形状容器対応計測部で検出した前記容器内の試料の上面に関する情報とから前記容器内の試料の容量を演算する
     ことを特徴とする検体検査自動化システム。
    In the specimen test automation system according to claim 5,
    An irradiation unit for irradiating light to the side surface of the container;
    A light receiving unit that measures the amount of transmitted light that has passed through the container;
    The up-and-down direction moving unit moves the irradiation unit and the light-receiving unit up and down with respect to the container together with the irregular-shaped container corresponding measurement unit,
    The calculation unit obtains a solid-liquid separation surface of the sample in the container based on the amount of the transmitted light measured by the light-receiving unit, and determines the solid-liquid separation surface, the container diameter, and the presence / absence of a separating agent. The specimen test automation system, wherein the volume of the sample in the container is calculated from the specific result and information on the upper surface of the sample in the container detected by the irregularly shaped container corresponding measurement unit.
  7.  請求項6に記載の検体検査自動化システムにおいて、
     前記異形状容器対応計測部、前記照射部および前記受光部とが、前記容器内に収容された試料の長手方向の幅に応じた間隔で配置された
     ことを特徴とする検体検査自動化システム。
    In the specimen test automation system according to claim 6,
    The specimen test automation system, wherein the irregularly shaped container-corresponding measuring unit, the irradiating unit, and the light receiving unit are arranged at intervals according to the width in the longitudinal direction of the sample accommodated in the container.
  8.  請求項1に記載の検体検査自動化システムにおいて、
     前記容器の直径が13mmのときは、前記異形状容器対応計測部と前記容器との距離を1cmとし、
     前記容器の直径が16mmのときは、前記異形状容器対応計測部と前記容器との距離を1.5cmとする
     ことを特徴とする検体検査自動化システム。
    The specimen test automation system according to claim 1,
    When the diameter of the container is 13 mm, the distance between the container for measuring irregularly shaped containers and the container is 1 cm,
    When the diameter of the container is 16 mm, the distance between the container for measuring irregularly shaped containers and the container is 1.5 cm.
  9.  容器に収容された試料または試薬のチェックを行うチェックモジュールであって、
     このチェックモジュール内に搬送された前記容器の種類、前記容器の栓種類を特定する特定部と、
     この特定部によって特定された前記容器の種類および前記容器の栓種類に応じて、前記容器内の試料または試薬の上面を非接触の静電容量方式によって検出する異形状容器対応計測部と、
     この異形状容器対応計測部を前記容器に対して上下動させる上下方向移動部と、
     前記特定部によって特定された前記栓種類に関する情報に応じて、前記上下方向移動部によって前記異形状容器対応計測部を前記容器に対して上下動させながら前記容器内の試料または試薬の上面を検出するよう制御する制御部とを備えた
     ことを特徴とするチェックモジュール。
    A check module for checking a sample or a reagent contained in a container,
    A type of the container conveyed in the check module, a specific unit for specifying the type of the stopper of the container, and
    According to the type of the container specified by the specifying unit and the type of the stopper of the container, the measuring unit corresponding to the irregularly shaped container that detects the upper surface of the sample or the reagent in the container by a non-contact capacitance method,
    An up-down direction moving unit that moves the irregularly shaped container-compatible measuring unit up and down with respect to the container;
    The upper surface of the sample or reagent in the container is detected while moving the measuring unit corresponding to the irregularly shaped container up and down with respect to the container by the up and down direction moving unit according to the information on the plug type specified by the specifying unit. And a control unit that controls the check module.
  10.  容器に収容された試料のチェック方法であって、
     前記容器の種類を特定し、この特定された容器種類に関する情報から、前記容器の栓種類を特定する特定工程と、
     前記特定工程によって特定された前記栓種類に関する情報に応じて、非接触の静電容量方式の異形状容器対応計測部を前記容器に対して上下動させることで前記容器内の試料の上面を検出する検出工程とを具備する
     ことを特徴とする試料のチェック方法。
    A method for checking a sample contained in a container,
    Identifying the type of the container, from the information about the identified container type, a specific step of identifying the plug type of the container,
    The upper surface of the sample in the container is detected by moving a non-contact capacitance type irregularly shaped container-compatible measuring unit up and down relative to the container in accordance with the information related to the plug type specified in the specifying step. A method for checking a sample, comprising: a detecting step.
PCT/JP2015/057573 2014-04-17 2015-03-13 Specimen inspection automation system, check module, and sample check method WO2015159620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016513672A JP6516727B2 (en) 2014-04-17 2015-03-13 Sample test automation system and check module and sample check method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-085696 2014-04-17
JP2014085696 2014-04-17

Publications (1)

Publication Number Publication Date
WO2015159620A1 true WO2015159620A1 (en) 2015-10-22

Family

ID=54323835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057573 WO2015159620A1 (en) 2014-04-17 2015-03-13 Specimen inspection automation system, check module, and sample check method

Country Status (2)

Country Link
JP (1) JP6516727B2 (en)
WO (1) WO2015159620A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3553528A4 (en) * 2016-12-09 2020-07-08 Hitachi High-Tech Corporation Biological sample analysis device
CN112613139A (en) * 2020-12-14 2021-04-06 成都飞机工业(集团)有限责任公司 Method for automatically arranging physical and chemical samples
KR20210088663A (en) * 2018-11-08 2021-07-14 퍼킨엘머 헬스 사이언시즈, 아이엔씨. Method and apparatus for imaging buffy coat images
US11263433B2 (en) 2016-10-28 2022-03-01 Beckman Coulter, Inc. Substance preparation evaluation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218726A (en) * 1990-01-18 1992-08-10 E I Du Pont De Nemours & Co Capacitive liquid boundary surface sensor
JP2000266768A (en) * 1999-03-18 2000-09-29 Hitachi Ltd Automatic analyzer
JP2008046033A (en) * 2006-08-18 2008-02-28 Sysmex Corp Specimen analyzer
JP2010133925A (en) * 2008-10-31 2010-06-17 Sysmex Corp Specimen processing device
JP2010240510A (en) * 2009-04-01 2010-10-28 Panasonic Corp Dispenser and method of confirming residual quantity of liquid material
JP2014006094A (en) * 2012-06-22 2014-01-16 Hitachi High-Technologies Corp Detector and biological sample analyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001108506A (en) * 1999-10-13 2001-04-20 Aloka Co Ltd Layer boundary surface detecting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218726A (en) * 1990-01-18 1992-08-10 E I Du Pont De Nemours & Co Capacitive liquid boundary surface sensor
JP2000266768A (en) * 1999-03-18 2000-09-29 Hitachi Ltd Automatic analyzer
JP2008046033A (en) * 2006-08-18 2008-02-28 Sysmex Corp Specimen analyzer
JP2010133925A (en) * 2008-10-31 2010-06-17 Sysmex Corp Specimen processing device
JP2010240510A (en) * 2009-04-01 2010-10-28 Panasonic Corp Dispenser and method of confirming residual quantity of liquid material
JP2014006094A (en) * 2012-06-22 2014-01-16 Hitachi High-Technologies Corp Detector and biological sample analyzer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11263433B2 (en) 2016-10-28 2022-03-01 Beckman Coulter, Inc. Substance preparation evaluation system
EP3553528A4 (en) * 2016-12-09 2020-07-08 Hitachi High-Tech Corporation Biological sample analysis device
US11085913B2 (en) 2016-12-09 2021-08-10 Hitachi High-Tech Corporation Biological sample analyzer
KR20210088663A (en) * 2018-11-08 2021-07-14 퍼킨엘머 헬스 사이언시즈, 아이엔씨. Method and apparatus for imaging buffy coat images
KR102504240B1 (en) 2018-11-08 2023-02-27 퍼킨엘머 헬스 사이언시즈, 아이엔씨. Method and Apparatus for Buffy Coat Image Imaging
CN112613139A (en) * 2020-12-14 2021-04-06 成都飞机工业(集团)有限责任公司 Method for automatically arranging physical and chemical samples
CN112613139B (en) * 2020-12-14 2022-05-10 成都飞机工业(集团)有限责任公司 Method for automatically arranging physical and chemical samples

Also Published As

Publication number Publication date
JPWO2015159620A1 (en) 2017-04-13
JP6516727B2 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6470691B2 (en) Specimen automation system, volume check module, and biological sample check method
JP6143584B2 (en) Detector and biological sample analyzer
JP6510420B2 (en) Analyte test automation system, biological sample check module, and biological sample check method
JP5330313B2 (en) Biological sample analyzer
EP3259578B1 (en) Model-based methods and testing apparatus for classifying an interferent in specimens
JP5330317B2 (en) Biological sample analysis method and analyzer
WO2015159620A1 (en) Specimen inspection automation system, check module, and sample check method
KR20140091033A (en) Specimen container detection
JP6453564B2 (en) Detection device
JP5470295B2 (en) Biological sample analyzer and method
JP2012159318A (en) Analyzer
JP2014006094A (en) Detector and biological sample analyzer
US11061044B2 (en) Plug processing device and specimen test automation system including same
JP6522608B2 (en) Sample test automation system and sample check module
US20210213450A1 (en) Method and laboratory system to process a laboratory carrier based on a feature of a test liquid in the laboratory carrier
JP2017173064A (en) Automatic analyzer
JP6929467B2 (en) Liquid level detector
JP7171460B2 (en) Laboratory test device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15779405

Country of ref document: EP

Kind code of ref document: A1