WO2015156114A1 - Position sensor - Google Patents

Position sensor Download PDF

Info

Publication number
WO2015156114A1
WO2015156114A1 PCT/JP2015/058805 JP2015058805W WO2015156114A1 WO 2015156114 A1 WO2015156114 A1 WO 2015156114A1 JP 2015058805 W JP2015058805 W JP 2015058805W WO 2015156114 A1 WO2015156114 A1 WO 2015156114A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
cladding layer
tip
position sensor
light
Prior art date
Application number
PCT/JP2015/058805
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 清水
良真 吉岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015156114A1 publication Critical patent/WO2015156114A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to a position sensor that can be placed under a sheet on which a memo or the like is written and the memo or the like written on the sheet can be stored (stored) as digital data (electronic data).
  • an electronic notebook see, for example, Patent Document 1.
  • This is provided with a display for displaying a schedule, etc., and a memo or the like can be input to the display using a dedicated pen. That is, the display has a touch sensor (touch panel), and the tip of the dedicated pen is brought into contact with the display, and the dedicated pen is moved, so that the movement trajectory of the tip of the dedicated pen is recorded.
  • the information is input to the display.
  • the data is stored (stored) in the electronic notebook in a state where the information such as the inputted memo is superimposed on the information such as the schedule displayed on the display.
  • the notebook device includes a rectangular frame-shaped optical waveguide, and light is allowed to run in a lattice shape within the rectangular frame.
  • the notebook device includes a storage means, and can store the specified memo or the like as electronic data. That is, the notebook device can leave a memo or the like written on a sheet on the sheet, and can save (store) it as electronic data in the storage means.
  • the hand part in some cases, when the little finger of a hand holding a writing instrument such as a pen or the base part (the little finger ball) of the hand enters the square frame, the hand part also blocks the lattice-shaped light. Therefore, it may be determined that the memo is written or the like and stored (stored) in the storage unit. The stored (stored) data of the hand part is unnecessary.
  • the present invention has been made in view of such circumstances, and does not use light shielding as described above, but utilizes changes in light propagation of the core based on writing pressure by a writing instrument such as a pen applied to the optical waveguide. Therefore, it is not intended to be placed on paper as described above, but to be used under the paper.
  • the writing instrument An object of the present invention is to provide a position sensor in which unnecessary portions such as a little finger of the hand having a lip and a base portion thereof are not detected.
  • the position sensor of the present invention has a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores.
  • a sheet-like optical waveguide that is used under a paper to be written with a writing instrument and has a surface of the over clad layer as a contact surface with the paper, a light-emitting element connected to one end surface of the core, and the core A light-receiving element connected to the other end surface of the paper, a movement locus specifying means for specifying the movement locus of the tip of the writing instrument on the surface of the paper based on the amount of light propagation of the core changed by the movement, and the specified movement locus And a storage means for storing as data, wherein at least a part or all of the grid-like intersection formed by the plurality of linear cores intersect.
  • the deformation ratio of the cross section of the core in the pressing direction is smaller than the deformation ratios of the cross sections of the over clad layer and the under clad layer.
  • the “deformation rate” refers to the ratio of the amount of change of each thickness during pressing to the thickness of the core, over cladding layer and under cladding layer before pressing in the pressing direction.
  • the “movement” of the tip of the writing instrument includes a case where the movement distance is 0 (zero), and the “movement locus” in that case is a point.
  • a part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap.
  • the cross loss of light can be reduced.
  • the position sensor of the present invention includes a sheet-shaped optical waveguide in which the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the over cladding layer. Therefore, when the surface of the overcladding layer of the sheet-like optical waveguide is pressed, the deformation ratio of the cross section of the core in the pressing direction is smaller than the deformation ratio of the cross section of the overcladding layer and the undercladding layer, and the pressing direction The cross-sectional area of the core is maintained.
  • the detection level (light reception amount) of the light at the light receiving element is reduced in the core pressed at the tip of the pen tip or the like, and the detection level is not reduced in the core pressed at the hand portion having the writing instrument.
  • the position (coordinates) of the tip of the pen tip or the like can be detected by the movement trajectory specifying means from the decrease in the detection level of the light, and the part of the hand where the detection level does not decrease is not pressed It can be prevented from being detected.
  • part or all of the lattice-like intersection formed by the core is formed as a discontinuous intersection in a state in which at least one intersecting direction is divided by a gap, thereby reducing the light intersection loss. be able to.
  • the detection sensitivity of the position of the tip of the pen tip or the like can be increased.
  • the movement locus of the tip of the pen tip or the like information such as the written memo
  • information such as a memo written on a sheet can be left on the sheet, and can also be stored (stored) as electronic data in a storage unit.
  • FIG. 1 It is a top view showing typically one embodiment of a position sensor of the present invention. It is a side view which shows typically the use condition of the said position sensor.
  • (A) is an enlarged plan view schematically showing an intersection of lattice-shaped cores in the position sensor, and (b) is an enlarged schematic view of a cross section of a central portion of the position sensor. It is an expanded sectional view shown.
  • (A) is an enlarged plan view schematically showing a light path in a continuous intersection
  • (b) is an enlarged plan view schematically showing a light path in a discontinuous intersection.
  • (A) is sectional drawing which shows typically the state of the sheet-like optical waveguide of the said position sensor pressed through the paper by the writing implement
  • (b) is the said sheet pressed through the paper by the hand. It is sectional drawing which shows the state of a planar optical waveguide typically.
  • (A)-(e) is an enlarged plan view which shows typically the modification of the cross
  • FIG. 1 is a plan view showing an embodiment of the position sensor of the present invention.
  • the position sensor A of this embodiment includes a rectangular sheet-like optical waveguide W having a lattice-like core 2 and a light-emitting element 4 connected to one end face of the linear core 2 constituting the lattice-like core 2. And a light receiving element 5 connected to the other end face of the linear core 2, and a storage means such as a memory for recording (storing) the light emitting element 4, the light receiving element 5 and the input memo as electronic data (FIG. And a circuit board 6 on which a CPU (Central Processing Unit) (not shown) for controlling the position sensor A and a battery (not shown) for supplying electricity to them are mounted.
  • a CPU Central Processing Unit
  • the sheet-like optical waveguide W and the circuit board 6 are provided on the surface of a rigid plate 7 such as a resin plate or a metal plate.
  • the light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5.
  • the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2.
  • the number of cores 2 is omitted.
  • the arrow of FIG. 1 has shown the direction where light travels.
  • the position sensor A is used by laying under a sheet K on which a writing instrument 10 is written as shown in a side view in FIG. At this time, the surface of the over clad layer 3 (see FIGS. 5A and 5B) of the sheet-like optical waveguide W of the position sensor A is made to be a contact surface with the paper K.
  • An input of a memo or the like is performed by holding the writing instrument 10 in the hand 20 and writing the memo or the like on the surface of the paper K with the writing instrument 10.
  • the input area on the paper K is a portion corresponding to the lattice-shaped core 2 (see FIG. 1) of the sheet-like optical waveguide W of the position sensor A.
  • each of the intersecting portions of the lattice-like core 2 in the sheet-like optical waveguide W is divided by the gap G in all four intersecting directions as shown in a plan view in FIG. Is discontinuous.
  • the width d of the gap G exceeds 0 (zero) (if the gap G is formed) and is usually set to 20 ⁇ m or less.
  • the sheet-like optical waveguide W is covered with the sheet-like over-cladding layer 3 with the lattice-like core 2 supported by the sheet-like under-cladding layer 1 as shown in a cross-sectional view in FIG. It is formed in the state.
  • the gap G is formed of a material for forming the over clad layer 3.
  • the intersection is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 4 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions [upward in FIG. 4 (a)] is focused, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle on the wall surface is large [two points in FIG. (See chain line arrow). Such light transmission also occurs in a direction opposite to the above intersecting direction (downward in FIG. 4A). On the other hand, as shown in FIG. 4B, when the intersecting one direction [upward in FIG.
  • the elastic modulus of the core 2 is set larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3.
  • the detection level of light at the light receiving element 5 is lowered in the core 2 pressed by the tip 10a such as a pen tip, and the detection level is not lowered in the core 2 pressed by the hand 20 having the writing instrument 10.
  • the position (coordinates) of the tip 10a such as the pen tip can be detected from the decrease in the light detection level.
  • the portion of the hand 20 whose detection level does not decrease is the same as the state where it is not pressed, and thus is not detected.
  • the lattice-like intersection formed by the core 2 is formed as a discontinuous intersection, the light intersection loss is reduced.
  • the detection sensitivity of the position of the tip 10a such as the pen tip is high.
  • the CPU of the position sensor A incorporates a program (movement locus specifying means) for specifying the movement locus of the tip 10a such as the pen tip from the decrease in the light detection level at the light receiving element 5. That is, the position sensor A is a position sensor that detects the position of the tip (pen tip etc.) 10a of the writing instrument (pen etc.) 10 used for inputting information. Data indicating the movement locus of the tip 10a of the writing instrument 10 is recorded (saved) in the storage means such as a memory as electronic data.
  • the storage means such as a memory as electronic data.
  • the information such as the memo can be left on the paper K and stored as electronic data in a storage means such as a memory. (Remember). Therefore, even if the paper K on which information such as a memo is written is lost, the information such as the memo can be reproduced from the storage means. Conversely, even if the storage means is broken, the memo or the like can be reproduced. Information can be confirmed on the paper K.
  • the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under-cladding layer 1 and the elastic modulus of the over-cladding layer 3, so that the hand 20 holding the writing instrument 10 has a sheet-like shape. Even if the optical waveguide W is pressed, only the position of the tip 10a such as the pen tip can be detected and the portion of the hand 20 can be prevented from being detected as described above.
  • the portion of the sheet-like optical waveguide W that the tip 10a of the writing instrument 10 presses through the paper K is deformed as described above, so that the writing quality is good.
  • Information such as a memo stored (stored) in the storage means can be reproduced (displayed) using a reproduction terminal [personal computer (hereinafter referred to as “personal computer”), smartphone, tablet terminal, etc.]. It can also be stored in the playback terminal.
  • the reproduction terminal and the position sensor A are connected by a connection cable such as a micro USB cable, for example.
  • the storage (memory) of the storage means is performed in a versatile file format such as pdf, for example.
  • the under-cladding layer 1, the core 2 and the over-cladding layer 3 each have their own. Due to the restoring force, the original state (see FIG. 3B) is restored.
  • the submerged depth D of the core 2 into the under cladding layer 1 is preferably up to 2000 ⁇ m. If the sinking depth D exceeds 2000 ⁇ m, the under cladding layer 1, the core 2 and the over cladding layer 3 may not return to the original state, or the sheet-like optical waveguide W may be cracked.
  • the elastic modulus of the core 2 is preferably in the range of 1 GPa to 10 GPa, more preferably in the range of 2 GPa to 5 GPa. If the elastic modulus of the core 2 is less than 1 GPa, the shape of the tip 10a such as a pen tip may not hold the cross-sectional area of the core 2 due to the pressure of the tip 10a (the core 2 may be crushed), and the position of the tip 10a May not be detected properly. On the other hand, when the elastic modulus of the core 2 exceeds 10 GPa, the bending of the core 2 due to the pressure of the tip 10a may be a gentle bend without being a sharp bend along the tip 10a.
  • the dimensions of the core 2 are set, for example, within a range of thickness of 5 to 100 ⁇ m and a width of 1 to 300 ⁇ m.
  • the elastic modulus of the over clad layer 3 is preferably in the range of 0.1 MPa to less than 10 GPa, more preferably in the range of 1 MPa to less than 5 GPa. If the elastic modulus of the over clad layer 3 is less than 0.1 MPa, the core 2 may be protected because it is too soft and may be damaged by the pressure at the tip 10a due to the shape of the tip 10a such as a pen tip. Disappear. On the other hand, when the modulus of elasticity of the over clad layer 3 is 10 GPa or more, the core 2 is crushed and the position of the tip 10a may not be properly detected because the core 2 is crushed even by the pressure of the tip 10a or the hand 20 .
  • the thickness of the over clad layer 3 is set within a range of 1 to 200 ⁇ m, for example.
  • the elastic modulus of the under cladding layer 1 is preferably in the range of 0.1 MPa to 1 GPa, more preferably in the range of 1 MPa to 100 MPa. If the elastic modulus of the underclad layer 1 is less than 0.1 MPa, the undercladding layer 1 is too soft and may not be continuously performed after being pressed with the tip 10a such as a nib and not returned to its original state. On the other hand, when the elastic modulus of the under cladding layer 1 exceeds 1 GPa, the core 2 is crushed due to the pressure of the tip 10a or the hand 20 and the core 2 may be crushed and the position of the tip 10a may not be detected properly. Note that the thickness of the under-cladding layer 1 is set within a range of 20 to 2000 ⁇ m, for example.
  • Examples of the material for forming the core 2, the under cladding layer 1 and the over cladding layer 3 include photosensitive resin, thermosetting resin, and the like, and the sheet-like optical waveguide W is manufactured by a manufacturing method corresponding to the forming material. Can do.
  • the refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3.
  • the elastic modulus and refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
  • a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
  • an elastic layer such as a rubber layer may be provided on the back surface of the under cladding layer 1 (between the under cladding layer 1 and the rigid plate 7).
  • the elastic layer Using the elastic force, the weak restoring force is assisted, and after the pressing by the tip 10a of the writing instrument 10 is released, the original state can be restored.
  • an edge portion of the position sensor A so as to correspond to the position of an openable and ring-shaped binding tool binding a plurality of sheets K of the notebook so that the position sensor A can be used in the notebook.
  • a binding hole may be formed.
  • the said sheet-like optical waveguide W can be formed thinly, the said position sensor A can also be formed thinly, and the accommodation in a notebook is good.
  • the core 2 at the pressed portion by the tip 10a is not detected.
  • the maximum value ⁇ max of the refractive index difference ⁇ is expressed by the following equation (1). That is, if the refractive index difference ⁇ is larger than the maximum value ⁇ max, even if the tip 10a such as a pen tip is pressed, the amount of light leakage (scattering) is small, and the light detection level at the light receiving element 5 is sufficiently high. Since it does not decrease, it is difficult to distinguish between the position of the tip 10a such as the pen tip and the position of the hand 20.
  • the minimum value ⁇ min of the refractive index difference ⁇ is expressed by the following equation (2). That is, if the refractive index difference ⁇ is smaller than the minimum value ⁇ min, light leakage (scattering) occurs even in the pressed portion by the hand 20, and the position of the tip 10a such as the pen tip and the position of the hand 20 is discriminated. It becomes difficult.
  • the refractive index difference ⁇ is preferably set between the minimum value ⁇ min and the maximum value ⁇ max.
  • the radius of curvature R (unit: ⁇ m) of the tip 10a is in the range of 100 to 1000
  • the thickness T (unit: ⁇ m) of the core 2 is in the range of 10 to 100
  • the ratio A is 1 to 100. If it is within the range, the refractive index difference ⁇ is within the range of 1.0 ⁇ 10 ⁇ 3 to 7.95 ⁇ 10 ⁇ 2 .
  • the minimum value ⁇ min is set to 1.0 ⁇ 10 ⁇ 3 (constant).
  • the crossing portion of the lattice-like core 2 is a discontinuous crossing (see FIG. 3A) in which all four intersecting directions are discontinuous (see FIG. 3A). It may be an intersection.
  • FIG. 6 (a) only one intersecting direction may be divided by the gap G to be discontinuous, or as shown in FIGS. 6 (b) and 6 (c),
  • the two intersecting directions (FIG. 6 (b) is the two opposing directions
  • FIG. 6 (c) is the two adjacent directions) may be discontinuous, or as shown in FIG. 6 (d)
  • the three directions may be discontinuous.
  • the rigid plate 7 is provided to support the sheet-like optical waveguide W.
  • the rigid plate 7 may not be provided. In that case, the input is performed in a state where the sheet-like optical waveguide W of the position sensor A is placed on a hard flat table such as a table.
  • Component A 30 parts by weight of epoxy resin (Epogosei PT, Yokkaichi Gosei Co., Ltd.).
  • Component B 70 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
  • Component C 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
  • Component D 100 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries). By mixing these components A to D, an over clad layer forming material was prepared.
  • Component E 80 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
  • Component F 20 parts by weight of an epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YDCN700-10).
  • Component G 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
  • Component H 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
  • a core forming material was prepared by mixing these components E to H.
  • Component I 75 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
  • Component J 25 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1007).
  • Component K 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
  • Component L 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
  • An over clad layer was formed on the surface of the glass substrate by spin coating using the over clad layer forming material.
  • the over cladding layer had a thickness of 5 ⁇ m, an elastic modulus of 1.2 GPa, and a refractive index of 1.503.
  • a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material.
  • Each of the lattice-like intersections is a discontinuous intersection in which all four intersecting directions are separated by a gap and are discontinuous [see FIG. 3 (a)].
  • the width was 100 ⁇ m
  • the pitch was 600 ⁇ m
  • the elastic modulus was 3 GPa
  • the refractive index was 1.523.
  • an under clad layer was formed on the surface of the over clad layer by spin coating using the under clad layer forming material so as to cover the core.
  • the thickness of the under cladding layer was 200 ⁇ m, the elastic modulus was 3 MPa, and the refractive index was 1.503.
  • Component P 30 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
  • Component Q 70 parts by weight of epoxy resin (manufactured by DIC, EXA-4816).
  • Component R 4 weight part of photo-acid generators (made by ADEKA, SP170). The core forming material was prepared by mixing these components P to R.
  • Component S 40 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
  • Component T 60 weight part of epoxy resins (Daicel, 2021P).
  • Component U 4 parts by weight of a photoacid generator (ADEKA, SP170).
  • a light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of each of the sheet-like optical waveguides of the above examples and comparative examples, and a light receiving element (Hamamatsu Photonics, s10226) was connected, and a circuit equipped with the light emitting element, the light receiving element, a CPU for controlling the position sensor, a memory, and the like was provided, and each position sensor of the example and the comparative example was manufactured.
  • a light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of each of the sheet-like optical waveguides of the above examples and comparative examples, and a light receiving element (Hamamatsu Photonics, s10226) was connected, and a circuit equipped with the light emitting element, the light receiving element, a CPU for controlling the position sensor, a memory, and the like was provided, and each position sensor of the example and the comparative example was manufactured.
  • the position sensor was connected to a personal computer with a micro USB cable, and the data stored in the memory of the position sensor was displayed on the display of the personal computer.
  • the position sensor of the example only the characters written on the paper were displayed on the display.
  • the position sensor of the comparative example not only the characters written on the paper but also the part of the hand holding the ballpoint pen was displayed on the display.
  • the position sensor of the embodiment can detect only the information written on the paper and can not detect unnecessary information.
  • each of the intersecting portions of the lattice-like core is a discontinuous intersection (see FIGS. 6A to 6D) in which the intersecting directions 1 to 3 are discontinuous.
  • the result which shows was obtained.
  • a discontinuous intersection in which 1 to 4 intersecting directions are discontinuous see FIGS. 3A and 6A to 6D
  • a continuous intersection in which all four intersecting directions are continuous As shown in FIG. 6 (e)], a result showing a tendency similar to that in the above-described example was obtained even in a lattice shape having two or more types of intersections.
  • the position sensor of the present invention can be used as an electronic underlay for writing information such as a memo on paper and storing the information such as the memo as electronic data.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Provided is a position sensor such that when a memorandum or the like is written on paper by means of a writing implement such as a pen, unnecessary sections such as the little finger of the hand holding the writing implement or the base of said little finger are not detected. The position sensor (A) is used while laid beneath paper that is written to by the writing implement, and is provided with: a sheet-shaped optical waveguide (W) in which a lattice-shaped core (2) is sandwiched by a sheet-shaped under-cladding layer (1) and over-cladding layer (3); a light-emitting element (4) connected to one end surface of the core (2); a light-receiving element (5) connected to the other end surface of the core (2); and a storage means that records the input memorandum or the like as electronic data. The elastic modulus of the core (2) is set greater than the elastic modulus of the under-cladding layer (1) and the elastic modulus of the over-cladding layer (3). The intersection sections of the lattice-shaped core (2) are such that at least one direction of intersection is split by a gap, resulting in a discontinuous intersection.

Description

位置センサPosition sensor
 本発明は、メモ等を書き込む用紙の下に敷き、その用紙に書き込んだメモ等をデジタルデータ(電子データ)として保存(記憶)することができる位置センサに関するものである。 The present invention relates to a position sensor that can be placed under a sheet on which a memo or the like is written and the memo or the like written on the sheet can be stored (stored) as digital data (electronic data).
 例えば、電子手帳のように、メモや日程等をデジタル処理するものがある(例えば、特許文献1参照)。このものは、日程表等を表示するディスプレイを備えており、そのディスプレイに、専用ペンを用いてメモ等を入力することができるようになっている。すなわち、上記ディスプレイは、タッチセンサ付きのもの(タッチパネル)になっており、そのディスプレイに、上記専用ペンの先端を接触させ、その専用ペンを動かすことにより、その専用ペンの先端の移動軌跡がメモ等として、上記ディスプレイに入力されるようになっている。そして、上記ディスプレイに表示された日程表等の情報に、上記入力したメモ等の情報が重ね合わさった状態で、そのデータが上記電子手帳に保存(記憶)されるようになっている。 For example, there are those that digitally process notes, schedules, etc., such as an electronic notebook (see, for example, Patent Document 1). This is provided with a display for displaying a schedule, etc., and a memo or the like can be input to the display using a dedicated pen. That is, the display has a touch sensor (touch panel), and the tip of the dedicated pen is brought into contact with the display, and the dedicated pen is moved, so that the movement trajectory of the tip of the dedicated pen is recorded. For example, the information is input to the display. The data is stored (stored) in the electronic notebook in a state where the information such as the inputted memo is superimposed on the information such as the schedule displayed on the display.
特許第3746378号公報Japanese Patent No. 3746378
 しかしながら、情報の入力を、電子手帳にするのではなく、ペン等の筆記具で用紙に書き込むタイプの手帳にしたいという要望もある。 However, there is a demand for inputting information into a notebook that can be written on paper with a writing instrument such as a pen instead of an electronic notebook.
 そこで、本出願人は、メモ等を用紙に書き込むことができるとともに、そのメモ等を電子化して保存することができる手帳装置を提案し既に出願している(特開2012-160160号公報)。その手帳装置は、四角枠状の光導波路を備えており、その四角枠内に光を格子状に走らせるようになっている。そして、その四角枠状の光導波路を、筆記具で書き込むタイプの手帳に綴じられた用紙の上に載せ、その四角枠内から露呈した上記用紙の部分に筆記具でメモ等を書き込むと、上記格子状に走る光をペン先が遮光し、その遮光位置からペン先の位置が検知され、書き込んだメモ等を特定できるようになっている。また、上記手帳装置は、記憶手段を備えており、上記特定したメモ等を電子データとして記憶できるようになっている。すなわち、上記手帳装置は、用紙に書き込んだメモ等を、その用紙に残すことができるとともに、上記記憶手段に電子データとして保存(記憶)することができるようになっている。 Therefore, the present applicant has proposed and filed an application for a notebook device that can write a memo etc. on a sheet and can also store the memo etc. electronically (Japanese Patent Laid-Open No. 2012-160160). The notebook device includes a rectangular frame-shaped optical waveguide, and light is allowed to run in a lattice shape within the rectangular frame. Then, when the rectangular frame-shaped optical waveguide is placed on a sheet bound in a notebook of a type that is written with a writing instrument, and a memo or the like is written on the portion of the sheet that is exposed from within the rectangular frame, the lattice shape The pen tip shields the light that travels in the light, the position of the pen tip is detected from the light shielding position, and the written memo or the like can be specified. Further, the notebook device includes a storage means, and can store the specified memo or the like as electronic data. That is, the notebook device can leave a memo or the like written on a sheet on the sheet, and can save (store) it as electronic data in the storage means.
 しかしながら、上記手帳装置では、場合によって、ペン等の筆記具を持つ手の小指やその付け根部分(小指球)等が上記四角枠内に入ると、その手の部分も上記格子状の光を遮光するため、書き込んだメモ等であると判断され記憶手段に保存(記憶)されることがある。その手の部分の保存(記憶)データは、不要なものである。 However, in the above notebook device, in some cases, when the little finger of a hand holding a writing instrument such as a pen or the base part (the little finger ball) of the hand enters the square frame, the hand part also blocks the lattice-shaped light. Therefore, it may be determined that the memo is written or the like and stored (stored) in the storage unit. The stored (stored) data of the hand part is unnecessary.
 本発明は、このような事情に鑑みなされたもので、上記のような遮光を利用するものではなく、光導波路に加えられるペン等の筆記具による筆圧に基づくコアの光伝播の変化を利用するものであり、そのため、上記のように用紙の上に載せて使用するものではなく、用紙の下に敷いて使用するものであり、メモ等をペン等の筆記具で用紙に書き込む際に、その筆記具を持つ手の小指やその付け根部分等の不要部分が検知されないようになっている位置センサの提供をその目的とする。 The present invention has been made in view of such circumstances, and does not use light shielding as described above, but utilizes changes in light propagation of the core based on writing pressure by a writing instrument such as a pen applied to the optical waveguide. Therefore, it is not intended to be placed on paper as described above, but to be used under the paper. When writing memos on paper with a pen or other writing instrument, the writing instrument An object of the present invention is to provide a position sensor in which unnecessary portions such as a little finger of the hand having a lip and a base portion thereof are not detected.
 上記の目的を達成するため、本発明の位置センサは、格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有し、筆記具で書き込む用紙の下に敷いて使用され、上記オーバークラッド層の表面を上記用紙との接触面とするシート状光導波路と、上記コアの一端面に接続される発光素子と、上記コアの他端面に接続される受光素子と、上記用紙の表面における筆記具の先端の移動軌跡を、その移動により変化したコアの光伝播量によって特定する移動軌跡特定手段と、上記特定した移動軌跡を電子データとして記憶する記憶手段とを備えている位置センサであって、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記用紙の表面における上記筆記具の先端による押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっているという構成をとる。 In order to achieve the above object, the position sensor of the present invention has a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores. And a sheet-like optical waveguide that is used under a paper to be written with a writing instrument and has a surface of the over clad layer as a contact surface with the paper, a light-emitting element connected to one end surface of the core, and the core A light-receiving element connected to the other end surface of the paper, a movement locus specifying means for specifying the movement locus of the tip of the writing instrument on the surface of the paper based on the amount of light propagation of the core changed by the movement, and the specified movement locus And a storage means for storing as data, wherein at least a part or all of the grid-like intersection formed by the plurality of linear cores intersect. Formed in a discontinuous intersection in a state where one direction is divided by a gap, and the elastic modulus of the core is set larger than the elastic modulus of the under-cladding layer and the elastic modulus of the over-cladding layer, and the surface of the paper In the pressing state by the tip of the writing instrument, the deformation ratio of the cross section of the core in the pressing direction is smaller than the deformation ratios of the cross sections of the over clad layer and the under clad layer.
 なお、本発明において、「変形率」とは、押圧方向における、コア,オーバークラッド層およびアンダークラッド層の押圧前の各厚みに対する、押圧時の各厚みの変化量の割合をいう。また、筆記具の先端の「移動」には、移動距離が0(零)の場合を含み、その場合の「移動軌跡」は、点となる。 In the present invention, the “deformation rate” refers to the ratio of the amount of change of each thickness during pressing to the thickness of the core, over cladding layer and under cladding layer before pressing in the pressing direction. The “movement” of the tip of the writing instrument includes a case where the movement distance is 0 (zero), and the “movement locus” in that case is a point.
 そして、上記シート状光導波路において、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されていると、光の交差損失を低減させることができる。このような知見を本発明者らは得ている。 In the sheet-like optical waveguide, a part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap. The cross loss of light can be reduced. The present inventors have obtained such knowledge.
 本発明の位置センサは、コアの弾性率がアンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定されたシート状光導波路を備えている。そのため、そのシート状光導波路のオーバークラッド層の表面を押圧したときに、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなり、押圧方向のコアの断面積が保持される。そして、そのシート状光導波路のオーバークラッド層の表面に用紙を載せ、その用紙にメモ等をペン等の筆記具で書き込むと、その先端(ペン先等)による筆圧および筆記具を持つ手の部分による圧力が、用紙を介してオーバークラッド層に伝わり、オーバークラッド層の表面が押圧される。それにより、筆記具の先端による押圧部分では、コアの曲がり具合が筆記具の先端に沿った急なものとなり、コアからの光の漏れ(散乱)が発生し、筆記具を持つ手の部分による押圧部分では、コアの曲がり具合が手に沿った緩やかなものとなり、上記光の漏れ(散乱)が発生しないようにすることができる。そのため、ペン先等の先端で押圧されたコアでは、受光素子での光の検出レベル(受光量)が低下し、筆記具を持つ手の部分で押圧されたコアでは、その検出レベルが低下しないようにすることができる。そして、その光の検出レベルの低下から、移動軌跡特定手段により、ペン先等の先端の位置(座標)を検知することができ、その検出レベルが低下しない手の部分は、押圧されていない状態と同じになるため、検知されないようにすることができる。しかも、上記コアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されていることから、光の交差損失を低減させることができる。そのため、上記ペン先等の先端の位置の検知感度を高めることができる。その結果、ペン先等の先端の移動軌跡(書き込んだメモ等の情報)のみを検知し、記憶手段に記憶することができる。すなわち、用紙に書き込んだメモ等の情報は、その用紙に残すことができるとともに、記憶手段に電子データとして保存(記憶)することもできる。 The position sensor of the present invention includes a sheet-shaped optical waveguide in which the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the over cladding layer. Therefore, when the surface of the overcladding layer of the sheet-like optical waveguide is pressed, the deformation ratio of the cross section of the core in the pressing direction is smaller than the deformation ratio of the cross section of the overcladding layer and the undercladding layer, and the pressing direction The cross-sectional area of the core is maintained. Then, when a sheet is placed on the surface of the overcladding layer of the sheet-like optical waveguide and a memo is written on the sheet with a writing instrument such as a pen, the writing pressure by the tip (pen tip etc.) and the part of the hand holding the writing instrument The pressure is transmitted to the over clad layer through the paper, and the surface of the over clad layer is pressed. As a result, in the pressing part by the tip of the writing instrument, the bending of the core is abrupt along the tip of the writing instrument, light leakage (scattering) from the core occurs, and in the pressing part by the hand part holding the writing instrument The bending of the core becomes gentle along the hand, and the light leakage (scattering) can be prevented from occurring. For this reason, the detection level (light reception amount) of the light at the light receiving element is reduced in the core pressed at the tip of the pen tip or the like, and the detection level is not reduced in the core pressed at the hand portion having the writing instrument. Can be. And the position (coordinates) of the tip of the pen tip or the like can be detected by the movement trajectory specifying means from the decrease in the detection level of the light, and the part of the hand where the detection level does not decrease is not pressed It can be prevented from being detected. In addition, part or all of the lattice-like intersection formed by the core is formed as a discontinuous intersection in a state in which at least one intersecting direction is divided by a gap, thereby reducing the light intersection loss. be able to. Therefore, the detection sensitivity of the position of the tip of the pen tip or the like can be increased. As a result, only the movement locus of the tip of the pen tip or the like (information such as the written memo) can be detected and stored in the storage means. That is, information such as a memo written on a sheet can be left on the sheet, and can also be stored (stored) as electronic data in a storage unit.
本発明の位置センサの一実施の形態を模式的に示す平面図である。It is a top view showing typically one embodiment of a position sensor of the present invention. 上記位置センサの使用状態を模式的に示す側面図である。It is a side view which shows typically the use condition of the said position sensor. (a)は、上記位置センサにおける格子状のコアの交差部を拡大して模式的に示す拡大平面図であり、(b)は、上記位置センサの中央部の断面を拡大して模式的に示す拡大断面図である。(A) is an enlarged plan view schematically showing an intersection of lattice-shaped cores in the position sensor, and (b) is an enlarged schematic view of a cross section of a central portion of the position sensor. It is an expanded sectional view shown. (a)は、連続交差部における光の進路を模式的に示す拡大平面図であり、(b)は、不連続交差部における光の進路を模式的に示す拡大平面図である。(A) is an enlarged plan view schematically showing a light path in a continuous intersection, and (b) is an enlarged plan view schematically showing a light path in a discontinuous intersection. (a)は、筆記具により用紙を介して押圧された上記位置センサのシート状光導波路の状態を模式的に示す断面図であり、(b)は、手により用紙を介して押圧された上記シート状光導波路の状態を模式的に示す断面図である。(A) is sectional drawing which shows typically the state of the sheet-like optical waveguide of the said position sensor pressed through the paper by the writing implement, (b) is the said sheet pressed through the paper by the hand. It is sectional drawing which shows the state of a planar optical waveguide typically. (a)~(e)は、上記格子状のコアの交差部の変形例を模式的に示す拡大平面図である。(A)-(e) is an enlarged plan view which shows typically the modification of the cross | intersection part of the said grid | lattice-like core.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の位置センサの一実施の形態を示す平面図である。この実施の形態の位置センサAは、格子状のコア2を有する四角形のシート状光導波路Wと、上記格子状のコア2を構成する線状のコア2の一端面に接続される発光素子4と、上記線状のコア2の他端面に接続される受光素子5と、上記発光素子4および上記受光素子5ならびに入力したメモ等を電子データとして記録(保存)するメモリ等の記憶手段(図示せず),上記位置センサAを制御するCPU(中央処理装置)(図示せず)およびそれらに電気を供給する電池(図示せず)が搭載された回路基板6とを備えている。この実施の形態では、これらシート状光導波路Wおよび回路基板6が、樹脂板や金属板等の剛性板7の表面に設けられている。そして、上記発光素子4から発光された光は、上記コア2の中を通り、上記受光素子5で受光されるようになっている。なお、図1では、コア2を鎖線で示しており、鎖線の太さがコア2の太さを示している。また、図1では、コア2の数を略して図示している。そして、図1の矢印は、光の進む方向を示している。 FIG. 1 is a plan view showing an embodiment of the position sensor of the present invention. The position sensor A of this embodiment includes a rectangular sheet-like optical waveguide W having a lattice-like core 2 and a light-emitting element 4 connected to one end face of the linear core 2 constituting the lattice-like core 2. And a light receiving element 5 connected to the other end face of the linear core 2, and a storage means such as a memory for recording (storing) the light emitting element 4, the light receiving element 5 and the input memo as electronic data (FIG. And a circuit board 6 on which a CPU (Central Processing Unit) (not shown) for controlling the position sensor A and a battery (not shown) for supplying electricity to them are mounted. In this embodiment, the sheet-like optical waveguide W and the circuit board 6 are provided on the surface of a rigid plate 7 such as a resin plate or a metal plate. The light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5. In FIG. 1, the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2. In FIG. 1, the number of cores 2 is omitted. And the arrow of FIG. 1 has shown the direction where light travels.
 上記位置センサAは、図2に側面図で示すように、筆記具10でメモ等書き込む用紙Kの下に敷いて使用される。このとき、上記位置センサAのシート状光導波路Wのオーバークラッド層3〔図5(a),(b)参照〕の表面が、上記用紙Kとの接触面となるようにする。そして、メモ等の入力は、筆記具10を手20に持ち、その筆記具10で上記用紙Kの表面にメモ等を書くことにより行われる。その用紙Kにおける入力領域は、上記位置センサAのシート状光導波路Wの格子状のコア2(図1参照)に対応する部分となっている。 The position sensor A is used by laying under a sheet K on which a writing instrument 10 is written as shown in a side view in FIG. At this time, the surface of the over clad layer 3 (see FIGS. 5A and 5B) of the sheet-like optical waveguide W of the position sensor A is made to be a contact surface with the paper K. An input of a memo or the like is performed by holding the writing instrument 10 in the hand 20 and writing the memo or the like on the surface of the paper K with the writing instrument 10. The input area on the paper K is a portion corresponding to the lattice-shaped core 2 (see FIG. 1) of the sheet-like optical waveguide W of the position sensor A.
 この実施の形態では、上記シート状光導波路Wにおける格子状のコア2の各交差部は、図3(a)に平面図で示すように、交差する4方向の全てが、隙間Gにより分断され、不連続になっている。上記隙間Gの幅dは、0(零)を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。そして、上記シート状光導波路Wは、図3(b)に断面図で示すように、上記格子状のコア2がシート状のアンダークラッド層1で支持され、シート状のオーバークラッド層3で被覆された状態で形成されている。この実施の形態では、上記隙間Gは、オーバークラッド層3の形成材料で形成されている。 In this embodiment, each of the intersecting portions of the lattice-like core 2 in the sheet-like optical waveguide W is divided by the gap G in all four intersecting directions as shown in a plan view in FIG. Is discontinuous. The width d of the gap G exceeds 0 (zero) (if the gap G is formed) and is usually set to 20 μm or less. The sheet-like optical waveguide W is covered with the sheet-like over-cladding layer 3 with the lattice-like core 2 supported by the sheet-like under-cladding layer 1 as shown in a cross-sectional view in FIG. It is formed in the state. In this embodiment, the gap G is formed of a material for forming the over clad layer 3.
 このように、上記格子状のコア2において、交差部を不連続とすると、光の交差損失を低減させることができる。すなわち、図4(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図4(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面での反射角度が大きいことから、コア2を透過する〔図4(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図4(a)では下方向〕でも発生する。これに対し、図4(b)に示すように、交差する1方向〔図4(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図4(a)においてコア2を透過する光の一部は、上記界面での反射角度が小さくなることから、透過することなく、その界面で反射し、コア2を進み続ける〔図4(b)の二点鎖線の矢印参照〕。このような光の反射が、交差する上記と反対側の方向〔図4(b)では下方向〕でも発生する。このことから、先に述べたように、交差部を不連続とすると、光の交差損失を低減させることができるのである。 Thus, in the lattice-like core 2 described above, if the intersection is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 4 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions [upward in FIG. 4 (a)] is focused, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle on the wall surface is large [two points in FIG. (See chain line arrow). Such light transmission also occurs in a direction opposite to the above intersecting direction (downward in FIG. 4A). On the other hand, as shown in FIG. 4B, when the intersecting one direction [upward in FIG. 4B] is discontinuous by the gap G, the interface between the gap G and the core 2 is Part of the light that is formed and passes through the core 2 in FIG. 4 (a) has a smaller reflection angle at the interface, so that it is reflected at the interface without passing through and continues to travel through the core 2 [FIG. 4 (b), see the two-dot chain line arrow]. Such reflection of light also occurs in the direction opposite to the above intersecting direction (downward in FIG. 4B). For this reason, as described above, when the crossing portion is discontinuous, the light crossing loss can be reduced.
 また、上記シート状光導波路Wは、上記コア2の弾性率が、上記アンダークラッド層1の弾性率および上記オーバークラッド層3の弾性率よりも大きく設定されている。これにより、上記シート状光導波路Wの表面を押圧したときに、その押圧方向のコア2の断面の変形率が、オーバークラッド層3およびアンダークラッド層1の断面の変形率よりも小さくなるようになっている。 In the sheet-like optical waveguide W, the elastic modulus of the core 2 is set larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3. Thereby, when the surface of the said sheet-like optical waveguide W is pressed, the deformation rate of the cross section of the core 2 of the pressing direction becomes smaller than the deformation rate of the cross section of the over clad layer 3 and the under clad layer 1. It has become.
 すなわち、図5(a),(b)に断面図で示すように、上記用紙Kの表面に、手20に持ったペン等の筆記具10でメモ等の情報を書き込む等して入力すると、ペン先等の先端10aによる筆圧および筆記具10を持つ手20の小指やその付け根部分(小指球)等による圧力が、用紙Kを介してオーバークラッド層3に伝わり、オーバークラッド層3の表面が押圧される。それにより、ペン先等の先端10aによる押圧部分〔図5(a)参照〕も手20の部分による押圧部分〔図5(b)参照〕も、その押圧方向の断面では、弾性率の小さいオーバークラッド層3とアンダークラッド層1とがつぶれるように変形し、弾性率の大きいコア2は、断面積を保持したまま、ペン先等の先端10aや手20の部分に沿って、アンダークラッド層1に沈むように曲がる。 That is, as shown in the cross-sectional views of FIGS. 5A and 5B, when information such as a memo is written on the surface of the paper K with a writing tool 10 such as a pen held in the hand 20, and the like is input, The pressure of the tip 10a of the tip and the like, and the pressure of the little finger of the hand 20 having the writing instrument 10 and the base portion (the little finger ball) are transmitted to the over cladding layer 3 through the paper K, and the surface of the over cladding layer 3 is pressed. Is done. As a result, both the pressing portion by the tip 10a of the pen tip or the like (see FIG. 5A) and the pressing portion by the hand 20 portion (see FIG. 5B) have a small elastic modulus over the cross section in the pressing direction. The clad layer 3 and the under clad layer 1 are deformed so as to be crushed, and the core 2 having a large elastic modulus is maintained along the tip 10a such as the pen tip and the hand 20 while maintaining the cross-sectional area. Turn to sink.
 そして、ペン先等の先端10aによる押圧部分では、図5(a)に示すように、その先端10aが尖っていることから、コア2の曲がり具合が急なものとなり、コア2からの光の漏れ(散乱)が発生する〔図5(a)の二点鎖線の矢印参照〕。一方、筆記具10を持つ手20による押圧部分では、図5(b)に示すように、その手20が上記筆記具10の先端10aと比較してかなり大きくて丸くなっていることから、コア2の曲がり具合が緩やかなものとなり、上記光の漏れ(散乱)が発生しない(光はコア2内を漏れることなく進む)〔図5(b)の二点鎖線の矢印参照〕。そのため、ペン先等の先端10aで押圧されたコア2では、受光素子5での光の検出レベルが低下し、筆記具10を持つ手20で押圧されたコア2では、その検出レベルが低下しないようにすることができる。そして、その光の検出レベルの低下から、ペン先等の先端10aの位置(座標)を検知することができる。その検出レベルが低下しない手20の部分は、押圧されていない状態と同じであるため、検知されない。 And in the press part by front-end | tips 10a, such as a nib, as shown to Fig.5 (a), since the front-end | tip 10a is sharp, the bending condition of the core 2 becomes abrupt and the light from the core 2 is light. Leakage (scattering) occurs [see the two-dot chain arrow in FIG. 5A]. On the other hand, in the pressing portion by the hand 20 having the writing instrument 10, the hand 20 is considerably larger and rounder than the tip 10a of the writing instrument 10, as shown in FIG. The bending becomes gradual and the light leakage (scattering) does not occur (the light travels without leaking through the core 2) (see the two-dot chain arrow in FIG. 5B). For this reason, the detection level of light at the light receiving element 5 is lowered in the core 2 pressed by the tip 10a such as a pen tip, and the detection level is not lowered in the core 2 pressed by the hand 20 having the writing instrument 10. Can be. The position (coordinates) of the tip 10a such as the pen tip can be detected from the decrease in the light detection level. The portion of the hand 20 whose detection level does not decrease is the same as the state where it is not pressed, and thus is not detected.
 このとき、先に述べたように、上記コア2により形成される格子状の交差部は、不連続交差に形成されていることにより、光の交差損失が低減された状態になっていることから、上記ペン先等の先端10aの位置の検知感度が高くなっている。 At this time, as described above, since the lattice-like intersection formed by the core 2 is formed as a discontinuous intersection, the light intersection loss is reduced. The detection sensitivity of the position of the tip 10a such as the pen tip is high.
 そこで、上記位置センサAのCPUには、上記受光素子5での光の検出レベルの低下から、ペン先等の先端10aの移動軌跡を特定するプログラム(移動軌跡特定手段)が組み込まれている。すなわち、上記位置センサAは、情報の入力に用いる筆記具(ペン等)10の先端(ペン先等)10aの位置を検知する位置センサになっている。そして、上記筆記具10の先端10aの移動軌跡を示すデータは、電子データとしてメモリ等の上記記憶手段に記録(保存)される。 Therefore, the CPU of the position sensor A incorporates a program (movement locus specifying means) for specifying the movement locus of the tip 10a such as the pen tip from the decrease in the light detection level at the light receiving element 5. That is, the position sensor A is a position sensor that detects the position of the tip (pen tip etc.) 10a of the writing instrument (pen etc.) 10 used for inputting information. Data indicating the movement locus of the tip 10a of the writing instrument 10 is recorded (saved) in the storage means such as a memory as electronic data.
 このように、上記位置センサAを使用して用紙Kにメモ等の情報を書き込むと、そのメモ等の情報は、その用紙Kに残すことができるとともに、メモリ等の記憶手段に電子データとして保存(記憶)することもできる。そのため、メモ等の情報を書き込んだ用紙Kを失くしたとしても、上記記憶手段から上記メモ等の情報を再生することができ、逆に、上記記憶手段が壊れたとしても、そのメモ等の情報を上記用紙Kにより確認することができる。 As described above, when information such as a memo is written on the paper K using the position sensor A, the information such as the memo can be left on the paper K and stored as electronic data in a storage means such as a memory. (Remember). Therefore, even if the paper K on which information such as a memo is written is lost, the information such as the memo can be reproduced from the storage means. Conversely, even if the storage means is broken, the memo or the like can be reproduced. Information can be confirmed on the paper K.
 また、上記シート状光導波路Wにおいて、コア2の弾性率が、アンダークラッド層1の弾性率およびオーバークラッド層3の弾性率よりも大きく設定されているため、筆記具10を持つ手20がシート状光導波路Wを押圧しても、上記のように、ペン先等の先端10aの位置のみを検知し、手20の部分は検知されないようにすることができる。 In the sheet-like optical waveguide W, the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under-cladding layer 1 and the elastic modulus of the over-cladding layer 3, so that the hand 20 holding the writing instrument 10 has a sheet-like shape. Even if the optical waveguide W is pressed, only the position of the tip 10a such as the pen tip can be detected and the portion of the hand 20 can be prevented from being detected as described above.
 さらに、上記用紙Kへの入力時には、筆記具10の先端10aが用紙Kを介して押圧するシート状光導波路Wの部分が、上記のように変形するため、書き味が良好である。 Furthermore, at the time of input to the paper K, the portion of the sheet-like optical waveguide W that the tip 10a of the writing instrument 10 presses through the paper K is deformed as described above, so that the writing quality is good.
 そして、上記記憶手段に保存(記憶)されたメモ等の情報は、再生用端末〔パーソナルコンピュータ(以下「パソコン」という),スマートフォン,タブレット型端末等〕を利用して再生(表示)することができ、さらに、上記再生用端末に記憶させることもできる。この場合、上記再生用端末と上記位置センサAとは、例えば、マイクロUSBケーブル等の接続ケーブルで接続される。なお、上記記憶手段のメモリへの保存(記憶)は、例えば、pdf等の汎用性のあるファイル形式で行われる。 Information such as a memo stored (stored) in the storage means can be reproduced (displayed) using a reproduction terminal [personal computer (hereinafter referred to as “personal computer”), smartphone, tablet terminal, etc.]. It can also be stored in the playback terminal. In this case, the reproduction terminal and the position sensor A are connected by a connection cable such as a micro USB cable, for example. The storage (memory) of the storage means is performed in a versatile file format such as pdf, for example.
 なお、上記筆記具10の先端10aによる押圧が解除される(先端10aが移動したり書き込み等の入力が終了したりする)と、上記アンダークラッド層1,コア2およびオーバークラッド層3は、各自の復元力により、元の状態〔図3(b)参照〕に戻る。そして、上記コア2の、アンダークラッド層1への沈み込み深さDは、最大で2000μmまでとすることが好ましい。上記沈み込み深さDが2000μmを超えると、上記アンダークラッド層1,コア2およびオーバークラッド層3が元の状態に戻らなくなったり、シート状光導波路Wに割れが発生したりするおそれがある。 When the pressing by the tip 10a of the writing instrument 10 is released (the tip 10a moves or the input such as writing ends), the under-cladding layer 1, the core 2 and the over-cladding layer 3 each have their own. Due to the restoring force, the original state (see FIG. 3B) is restored. The submerged depth D of the core 2 into the under cladding layer 1 is preferably up to 2000 μm. If the sinking depth D exceeds 2000 μm, the under cladding layer 1, the core 2 and the over cladding layer 3 may not return to the original state, or the sheet-like optical waveguide W may be cracked.
 ここで、上記コア2,アンダークラッド層1およびオーバークラッド層3の弾性率等について、より詳しく説明する。 Here, the elastic modulus and the like of the core 2, the under cladding layer 1 and the over cladding layer 3 will be described in more detail.
 上記コア2の弾性率は、1GPa~10GPaの範囲内であることが好ましく、より好ましくは、2GPa~5GPaの範囲内である。コア2の弾性率が1GPaを下回ると、ペン先等の先端10aの形状により、その先端10aの圧力で、コア2の断面積が保持されない(コア2がつぶれる)場合があり、先端10aの位置を適正に検知できないおそれがある。一方、コア2の弾性率が10GPaを上回ると、先端10aの圧力によるコア2の曲がりが、その先端10aに沿った急な曲がりにならずに緩やかな曲がりになる場合がある。そのため、コア2からの光の漏れ(散乱)が発生せず、受光素子5での光の検出レベルが低下しなくなることから、先端10aの位置を適正に検知できないおそれがある。なお、コア2の寸法は、例えば、厚みが5~100μmの範囲内、幅が1~300μmの範囲内に設定される。 The elastic modulus of the core 2 is preferably in the range of 1 GPa to 10 GPa, more preferably in the range of 2 GPa to 5 GPa. If the elastic modulus of the core 2 is less than 1 GPa, the shape of the tip 10a such as a pen tip may not hold the cross-sectional area of the core 2 due to the pressure of the tip 10a (the core 2 may be crushed), and the position of the tip 10a May not be detected properly. On the other hand, when the elastic modulus of the core 2 exceeds 10 GPa, the bending of the core 2 due to the pressure of the tip 10a may be a gentle bend without being a sharp bend along the tip 10a. For this reason, light leakage (scattering) from the core 2 does not occur, and the light detection level at the light receiving element 5 does not decrease, so that the position of the tip 10a may not be detected properly. The dimensions of the core 2 are set, for example, within a range of thickness of 5 to 100 μm and a width of 1 to 300 μm.
 上記オーバークラッド層3の弾性率は、0.1MPa以上10GPa未満の範囲内であることが好ましく、より好ましくは、1MPa以上5GPa未満の範囲内である。オーバークラッド層3の弾性率が0.1MPaを下回ると、柔らかすぎて、ペン先等の先端10aの形状により、その先端10aの圧力で、破損する場合があり、コア2を保護することができなくなる。一方、オーバークラッド層3の弾性率が10GPa以上であると、先端10aや手20の圧力によっても、つぶれるように変形しなくなり、コア2がつぶれ、先端10aの位置を適正に検知できないおそれがある。なお、オーバークラッド層3の厚みは、例えば、1~200μmの範囲内に設定される。 The elastic modulus of the over clad layer 3 is preferably in the range of 0.1 MPa to less than 10 GPa, more preferably in the range of 1 MPa to less than 5 GPa. If the elastic modulus of the over clad layer 3 is less than 0.1 MPa, the core 2 may be protected because it is too soft and may be damaged by the pressure at the tip 10a due to the shape of the tip 10a such as a pen tip. Disappear. On the other hand, when the modulus of elasticity of the over clad layer 3 is 10 GPa or more, the core 2 is crushed and the position of the tip 10a may not be properly detected because the core 2 is crushed even by the pressure of the tip 10a or the hand 20 . The thickness of the over clad layer 3 is set within a range of 1 to 200 μm, for example.
 上記アンダークラッド層1の弾性率は、0.1MPa~1GPaの範囲内であることが好ましく、より好ましくは、1MPa~100MPaの範囲内である。アンダークラッド層1の弾性率が0.1MPaを下回ると、柔らかすぎて、ペン先等の先端10aで押圧した後、元の状態に戻らず、連続的に行えない場合がある。一方、アンダークラッド層1の弾性率が1GPaを上回ると、先端10aや手20の圧力によっても、つぶれるように変形しなくなり、コア2がつぶれ、先端10aの位置を適正に検知できないおそれがある。なお、アンダークラッド層1の厚みは、例えば、20~2000μmの範囲内に設定される。 The elastic modulus of the under cladding layer 1 is preferably in the range of 0.1 MPa to 1 GPa, more preferably in the range of 1 MPa to 100 MPa. If the elastic modulus of the underclad layer 1 is less than 0.1 MPa, the undercladding layer 1 is too soft and may not be continuously performed after being pressed with the tip 10a such as a nib and not returned to its original state. On the other hand, when the elastic modulus of the under cladding layer 1 exceeds 1 GPa, the core 2 is crushed due to the pressure of the tip 10a or the hand 20 and the core 2 may be crushed and the position of the tip 10a may not be detected properly. Note that the thickness of the under-cladding layer 1 is set within a range of 20 to 2000 μm, for example.
 上記コア2,アンダークラッド層1およびオーバークラッド層3の形成材料としては、感光性樹脂,熱硬化性樹脂等があげられ、その形成材料に応じた製法により、シート状光導波路Wを作製することができる。また、上記コア2の屈折率は、上記アンダークラッド層1およびオーバークラッド層3の屈折率よりも大きく設定されている。そして、上記弾性率および屈折率の調整は、例えば、各形成材料の種類の選択や組成比率を調整して行うことができる。なお、上記アンダークラッド層1として、ゴムシートを用い、そのゴムシート上にコア2を格子状に形成するようにしてもよい。 Examples of the material for forming the core 2, the under cladding layer 1 and the over cladding layer 3 include photosensitive resin, thermosetting resin, and the like, and the sheet-like optical waveguide W is manufactured by a manufacturing method corresponding to the forming material. Can do. The refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3. The elastic modulus and refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio. Note that a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
 また、上記アンダークラッド層1の裏面(アンダークラッド層1と剛性板7との間)に、ゴム層等の弾性層を設けてもよい。この場合、アンダークラッド層1,コア2およびオーバークラッド層3の復元力が弱くなったり、それらアンダークラッド層1等が元々復元力の弱い材料からなるものであったりしても、上記弾性層の弾性力を利用して、上記弱い復元力を補助し、筆記具10の先端10aによる押圧が解除された後、元の状態に戻すことができる。 Further, an elastic layer such as a rubber layer may be provided on the back surface of the under cladding layer 1 (between the under cladding layer 1 and the rigid plate 7). In this case, even if the restoring force of the under-cladding layer 1, the core 2 and the over-cladding layer 3 is weak, or the under-cladding layer 1 is originally made of a material having a weak restoring force, the elastic layer Using the elastic force, the weak restoring force is assisted, and after the pressing by the tip 10a of the writing instrument 10 is released, the original state can be restored.
 また、上記位置センサAを手帳で使用できるように、その手帳の、複数の用紙Kを綴じている開閉自在のリング状の綴じ具の位置に対応するように、上記位置センサAの端縁部に、綴じ孔を形成してもよい。そして、上記シート状光導波路Wは薄く形成することができるため、上記位置センサAも薄く形成することができ、手帳内への収まりがよい。 Further, an edge portion of the position sensor A so as to correspond to the position of an openable and ring-shaped binding tool binding a plurality of sheets K of the notebook so that the position sensor A can be used in the notebook. In addition, a binding hole may be formed. And since the said sheet-like optical waveguide W can be formed thinly, the said position sensor A can also be formed thinly, and the accommodation in a notebook is good.
 また、上記のように、ペン先等の先端10aの位置のみが検出され、ペン等の筆記具10を持つ手20が検知されないようにするためには、その先端10aによる押圧部分でのコア2の急な曲がりによる光の漏れ(散乱)量が重要である。そこで、例えば、ペン先等の先端10aの曲率半径R(単位:μm)と、コア2の厚みT(単位:μm)との比A(=R/T)を用い、コア2とアンダークラッド層1およびオーバークラッド層3との間の屈折率差Δを規定すると、その屈折率差Δの最大値Δmax は、下記の式(1)のようになる。すなわち、屈折率差Δがこの最大値Δmax よりも大きいと、ペン先等の先端10aで押圧しても、光の漏れ(散乱)量が少なく、受光素子5での光の検出レベルが充分に低下しないため、ペン先等の先端10aの位置と手20の位置との区別が困難になる。 Further, as described above, in order to detect only the position of the tip 10a such as the pen tip and not to detect the hand 20 having the writing instrument 10 such as a pen, the core 2 at the pressed portion by the tip 10a is not detected. The amount of light leakage (scattering) due to a sharp bend is important. Therefore, for example, a ratio A (= R / T) between the radius of curvature R (unit: μm) of the tip 10a of the pen tip or the like and the thickness T (unit: μm) of the core 2 is used, and the core 2 and the under cladding layer are used. When the refractive index difference Δ between 1 and the over cladding layer 3 is defined, the maximum value Δmax of the refractive index difference Δ is expressed by the following equation (1). That is, if the refractive index difference Δ is larger than the maximum value Δmax, even if the tip 10a such as a pen tip is pressed, the amount of light leakage (scattering) is small, and the light detection level at the light receiving element 5 is sufficiently high. Since it does not decrease, it is difficult to distinguish between the position of the tip 10a such as the pen tip and the position of the hand 20.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 一方、屈折率差Δの最小値Δmin は、下記の式(2)のようになる。すなわち、屈折率差Δがこの最小値Δmin よりも小さいと、手20による押圧部分でも、光の漏れ(散乱)が発生し、ペン先等の先端10aの位置と手20の位置との区別が困難になる。 On the other hand, the minimum value Δmin of the refractive index difference Δ is expressed by the following equation (2). That is, if the refractive index difference Δ is smaller than the minimum value Δmin, light leakage (scattering) occurs even in the pressed portion by the hand 20, and the position of the tip 10a such as the pen tip and the position of the hand 20 is discriminated. It becomes difficult.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そのため、上記屈折率差Δは、最小値Δmin と最大値Δmax との間に設定することが好ましい。ここで、例えば、上記先端10aの曲率半径R(単位:μm)を100~1000の範囲内、コア2の厚みT(単位:μm)を10~100の範囲内、比Aを1~100の範囲内とすると、屈折率差Δは、1.0×10-3~7.95×10-2の範囲内となる。なお、比Aが100を超える場合は、最小値Δmin を1.0×10-3(一定)とする。 Therefore, the refractive index difference Δ is preferably set between the minimum value Δmin and the maximum value Δmax. Here, for example, the radius of curvature R (unit: μm) of the tip 10a is in the range of 100 to 1000, the thickness T (unit: μm) of the core 2 is in the range of 10 to 100, and the ratio A is 1 to 100. If it is within the range, the refractive index difference Δ is within the range of 1.0 × 10 −3 to 7.95 × 10 −2 . When the ratio A exceeds 100, the minimum value Δmin is set to 1.0 × 10 −3 (constant).
 なお、上記実施の形態では、格子状のコア2の交差部を、交差する4方向の全てが不連続になっている不連続交差〔図3(a)参照〕としたが、他の不連続交差でもよい。例えば、図6(a)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよいし、図6(b),(c)に示すように、交差する2方向〔図6(b)は対向する2方向、図6(c)は隣り合う2方向〕が不連続になっているものでもよいし、図6(d)に示すように、交差する3方向が不連続になっているものでもよい。さらに、図3(a),図6(a)~(d)に示す上記不連続交差、および交差する4方向の全てが連続した連続交差〔図6(e)参照〕のうちの2種類以上の交差を備えた格子状としてもよい。 In the above embodiment, the crossing portion of the lattice-like core 2 is a discontinuous crossing (see FIG. 3A) in which all four intersecting directions are discontinuous (see FIG. 3A). It may be an intersection. For example, as shown in FIG. 6 (a), only one intersecting direction may be divided by the gap G to be discontinuous, or as shown in FIGS. 6 (b) and 6 (c), The two intersecting directions (FIG. 6 (b) is the two opposing directions, FIG. 6 (c) is the two adjacent directions) may be discontinuous, or as shown in FIG. 6 (d) The three directions may be discontinuous. Further, two or more kinds of the discontinuous intersection shown in FIG. 3 (a) and FIGS. 6 (a) to 6 (d) and a continuous intersection in which all four intersecting directions are continuous [see FIG. 6 (e)]. It is good also as the grid | lattice form provided with no intersection.
 また、上記実施の形態では、シート状光導波路Wを支持するために剛性板7を設けたが、その剛性板7を設けなくてもよい。その場合は、上記位置センサAのシート状光導波路Wをテーブル等の硬い平面台の上に載置する等した状態で、入力する。 In the above embodiment, the rigid plate 7 is provided to support the sheet-like optical waveguide W. However, the rigid plate 7 may not be provided. In that case, the input is performed in a state where the sheet-like optical waveguide W of the position sensor A is placed on a hard flat table such as a table.
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.
〔オーバークラッド層の形成材料〕
 成分A:エポキシ樹脂(四日市合成社製、エポゴーセーPT)30重量部。
 成分B:エポキシ樹脂(ダイセル社製、EHPE3150)70重量部。
 成分C:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
 成分D:乳酸エチル(和光純薬工業社製)100重量部。
 これら成分A~Dを混合することにより、オーバークラッド層の形成材料を調製した。
[Formation material of over clad layer]
Component A: 30 parts by weight of epoxy resin (Epogosei PT, Yokkaichi Gosei Co., Ltd.).
Component B: 70 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
Component C: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
Component D: 100 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
By mixing these components A to D, an over clad layer forming material was prepared.
〔コアの形成材料〕
 成分E:エポキシ樹脂(ダイセル社製、EHPE3150)80重量部。
 成分F:エポキシ樹脂(新日鉄化学社製、YDCN700-10)20重量部。
 成分G:光酸発生剤(ADEKA社製、SP170)1重量部。
 成分H:乳酸エチル(和光純薬工業社製)50重量部。
 これら成分E~Hを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component E: 80 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
Component F: 20 parts by weight of an epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YDCN700-10).
Component G: 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
Component H: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
A core forming material was prepared by mixing these components E to H.
〔アンダークラッド層の形成材料〕
 成分I:エポキシ樹脂(四日市合成社製、エポゴーセーPT)75重量部。
 成分J:エポキシ樹脂(三菱化学社製、JER1007)25重量部。
 成分K:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
 成分L:乳酸エチル(和光純薬工業社製)50重量部。
 これら成分I~Lを混合することにより、アンダークラッド層の形成材料を調製した。
[Formation material of under cladding layer]
Component I: 75 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component J: 25 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1007).
Component K: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
Component L: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
By mixing these components I to L, a material for forming the underclad layer was prepared.
〔シート状光導波路の作製〕
 ガラス製基材の表面に、上記オーバークラッド層の形成材料を用いて、スピンコート法により、オーバークラッド層を形成した。このオーバークラッド層の厚みは5μm、弾性率は1.2GPa、屈折率は1.503であった。
[Production of sheet-shaped optical waveguide]
An over clad layer was formed on the surface of the glass substrate by spin coating using the over clad layer forming material. The over cladding layer had a thickness of 5 μm, an elastic modulus of 1.2 GPa, and a refractive index of 1.503.
 ついで、上記オーバークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、格子状のコアを形成した。この格子状の各交差部は、交差する4方向の全てが隙間により分断され不連続になっている不連続交差とした〔図3(a)参照〕。の幅は100μm、ピッチは600μm、弾性率は3GPa、屈折率は1.523であった。 Next, a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material. Each of the lattice-like intersections is a discontinuous intersection in which all four intersecting directions are separated by a gap and are discontinuous [see FIG. 3 (a)]. The width was 100 μm, the pitch was 600 μm, the elastic modulus was 3 GPa, and the refractive index was 1.523.
 つぎに、上記コアを被覆するように、上記オーバークラッド層の表面に、上記アンダークラッド層の形成材料を用いて、スピンコート法により、アンダークラッド層を形成した。このアンダークラッド層の厚み(オーバークラッド層の表面からの厚み)は200μm、弾性率は3MPa、屈折率は1.503であった。 Next, an under clad layer was formed on the surface of the over clad layer by spin coating using the under clad layer forming material so as to cover the core. The thickness of the under cladding layer (thickness from the surface of the over cladding layer) was 200 μm, the elastic modulus was 3 MPa, and the refractive index was 1.503.
 そして、PET製基板(厚み1mm)の片面に、両面テープ(厚み25μm)を貼着したものを準備した。ついで、その両面テープのもう一方の粘着面を上記アンダークラッド層の表面に貼着し、その状態で、上記オーバークラッド層を上記ガラス製基材から剥離した。 And what stuck the double-sided tape (thickness 25 micrometers) on the single side | surface of the board | substrate (thickness 1mm) made from PET was prepared. Next, the other adhesive surface of the double-sided tape was attached to the surface of the under cladding layer, and in this state, the over cladding layer was peeled from the glass substrate.
〔比較例〕
〔オーバークラッド層の形成材料〕
 成分M:エポキシ樹脂(四日市合成社製、エポゴーセーPT)40重量部。
 成分N:エポキシ樹脂(ダイセル社製、2021P)60重量部。
 成分O:光酸発生剤(ADEKA社製、SP170)4重量部。
 これら成分M~Oを混合することにより、オーバークラッド層の形成材料を調製した。
[Comparative example]
[Formation material of over clad layer]
Component M: 40 parts by weight of epoxy resin (Epogosei PT, Yokkaichi Gosei Co., Ltd.).
Component N: 60 parts by weight of epoxy resin (Daicel, 2021P).
Component O: 4 weight part of photo-acid generators (made by ADEKA, SP170).
By mixing these components M to O, a material for forming the over clad layer was prepared.
〔コアの形成材料〕
 成分P:エポキシ樹脂(四日市合成社製、エポゴーセーPT)30重量部。
 成分Q:エポキシ樹脂(DIC社製、EXA-4816)70重量部。
 成分R:光酸発生剤(ADEKA社製、SP170)4重量部。
 これら成分P~Rを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component P: 30 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component Q: 70 parts by weight of epoxy resin (manufactured by DIC, EXA-4816).
Component R: 4 weight part of photo-acid generators (made by ADEKA, SP170).
The core forming material was prepared by mixing these components P to R.
〔アンダークラッド層の形成材料〕
 成分S:エポキシ樹脂(四日市合成社製、エポゴーセーPT)40重量部。
 成分T:エポキシ樹脂(ダイセル社製、2021P)60重量部。
 成分U:光酸発生剤(ADEKA社製、SP170)4重量部。
 これら成分S~Uを混合することにより、アンダークラッド層の形成材料を調製した。
[Formation material of under cladding layer]
Component S: 40 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component T: 60 weight part of epoxy resins (Daicel, 2021P).
Component U: 4 parts by weight of a photoacid generator (ADEKA, SP170).
By mixing these components S to U, a material for forming the under cladding layer was prepared.
〔シート状光導波路の作製〕
 上記実施例と同様にして、同寸法のシート状光導波路を作製した。ただし、弾性率は、オーバークラッド層が1GPa、コアが25MPa、アンダークラッド層が1GPaであった。また、屈折率は、オーバークラッド層が1.504、コアが1.532、アンダークラッド層が1.504であった。
[Production of sheet-shaped optical waveguide]
In the same manner as in the above example, a sheet-like optical waveguide having the same dimensions was produced. However, the elastic modulus was 1 GPa for the over clad layer, 25 MPa for the core, and 1 GPa for the under clad layer. The refractive index was 1.504 for the over clad layer, 1.532 for the core, and 1.504 for the under clad layer.
〔位置センサの作製〕
 上記実施例および比較例の各シート状光導波路のコアの一端面に、発光素子(Optowell社製、XH85-S0603-2s )を接続し、コアの他端面に、受光素子(浜松ホトニクス社製、s10226)を接続し、上記発光素子,上記受光素子,位置センサを制御するCPU,メモリ等を搭載した回路を設け、実施例および比較例の各位置センサを作製した。
[Production of position sensor]
A light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of each of the sheet-like optical waveguides of the above examples and comparative examples, and a light receiving element (Hamamatsu Photonics, s10226) was connected, and a circuit equipped with the light emitting element, the light receiving element, a CPU for controlling the position sensor, a memory, and the like was provided, and each position sensor of the example and the comparative example was manufactured.
〔位置センサの作動確認〕
 上記位置センサのシート状光導波路のオーバークラッド層の表面に、用紙を載せ、その用紙に、入力者がボールペン(ペン先の曲率半径350μm)を手に持ち、文字を書き込んだ。
[Operation check of position sensor]
A sheet was placed on the surface of the over clad layer of the sheet-shaped optical waveguide of the position sensor, and the input person held the ballpoint pen (the radius of curvature of the pen tip 350 μm) on the sheet and wrote characters.
 そして、上記位置センサをパソコンにマイクロUSBケーブルで接続し、上記位置センサのメモリに記憶させたデータを上記パソコンのディスプレイに表示させた。その結果、実施例の位置センサによるものは、用紙に書き込んだ文字のみが上記ディスプレイに表示された。それに対して、比較例の位置センサによるものは、用紙に書き込んだ文字だけでなく、ボールペンを持つ手の部分も、上記ディスプレイに表示された。 The position sensor was connected to a personal computer with a micro USB cable, and the data stored in the memory of the position sensor was displayed on the display of the personal computer. As a result, according to the position sensor of the example, only the characters written on the paper were displayed on the display. On the other hand, according to the position sensor of the comparative example, not only the characters written on the paper but also the part of the hand holding the ballpoint pen was displayed on the display.
 この結果から、実施例の位置センサは、用紙に書き込んだ情報のみを検知でき、不要な情報は検知しないようにできることがわかる。 From this result, it can be seen that the position sensor of the embodiment can detect only the information written on the paper and can not detect unnecessary information.
 また、格子状のコアの各交差部を、交差する1~3方向が不連続になっている不連続交差〔図6(a)~(d)参照〕としても、上記実施例と同様の傾向を示す結果が得られた。さらに、交差する1~4方向が不連続になっている不連続交差〔図3(a),図6(a)~(d)参照〕、および交差する4方向の全てが連続した連続交差〔図6(e)参照〕のうちの2種類以上の交差を備えた格子状としても、上記実施例と同様の傾向を示す結果が得られた。 In addition, the same tendency as in the above-described embodiment can be obtained even if each of the intersecting portions of the lattice-like core is a discontinuous intersection (see FIGS. 6A to 6D) in which the intersecting directions 1 to 3 are discontinuous. The result which shows was obtained. Furthermore, a discontinuous intersection in which 1 to 4 intersecting directions are discontinuous (see FIGS. 3A and 6A to 6D) and a continuous intersection in which all four intersecting directions are continuous [ As shown in FIG. 6 (e)], a result showing a tendency similar to that in the above-described example was obtained even in a lattice shape having two or more types of intersections.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の位置センサは、用紙にメモ等の情報を書き込むと同時に、そのメモ等の情報を電子データとして記憶する電子下敷きとして利用可能である。 The position sensor of the present invention can be used as an electronic underlay for writing information such as a memo on paper and storing the information such as the memo as electronic data.
 A 位置センサ
 W シート状光導波路
 1 アンダークラッド層
 2 コア
 3 オーバークラッド層
 4 発光素子
 5 受光素子
A position sensor W sheet-like optical waveguide 1 under clad layer 2 core 3 over clad layer 4 light emitting element 5 light receiving element

Claims (1)

  1.  格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有し、筆記具で書き込む用紙の下に敷いて使用され、上記オーバークラッド層の表面を上記用紙との接触面とするシート状光導波路と、
     上記コアの一端面に接続される発光素子と、
     上記コアの他端面に接続される受光素子と、
     上記用紙の表面における筆記具の先端の移動軌跡を、その移動により変化したコアの光伝播量によって特定する移動軌跡特定手段と、
     上記特定した移動軌跡を電子データとして記憶する記憶手段と
    を備えている位置センサであって、
     上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、
     上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記用紙の表面における上記筆記具の先端による押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっている
    ことを特徴とする位置センサ。
    It has a plurality of linear cores formed in a lattice shape, an under cladding layer that supports these cores, and an over cladding layer that covers the core, and is used by laying under a paper to be written with a writing instrument, A sheet-like optical waveguide having a surface of the over clad layer as a contact surface with the paper;
    A light emitting element connected to one end face of the core;
    A light receiving element connected to the other end surface of the core;
    A movement locus specifying means for specifying the movement locus of the tip of the writing instrument on the surface of the paper according to the amount of light propagation of the core changed by the movement;
    A position sensor comprising storage means for storing the identified movement locus as electronic data,
    A part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap,
    The elastic modulus of the core is set to be greater than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer, and in the pressing state by the tip of the writing instrument on the surface of the paper, the cross section of the core in the pressing direction A position sensor characterized in that a deformation rate is smaller than a deformation rate of a cross section of an over clad layer and an under clad layer.
PCT/JP2015/058805 2014-04-10 2015-03-24 Position sensor WO2015156114A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014081089A JP2015201137A (en) 2014-04-10 2014-04-10 position sensor
JP2014-081089 2014-04-10

Publications (1)

Publication Number Publication Date
WO2015156114A1 true WO2015156114A1 (en) 2015-10-15

Family

ID=54287692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058805 WO2015156114A1 (en) 2014-04-10 2015-03-24 Position sensor

Country Status (3)

Country Link
JP (1) JP2015201137A (en)
TW (1) TW201543313A (en)
WO (1) WO2015156114A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107804A (en) * 2003-09-30 2005-04-21 Japan Aviation Electronics Industry Ltd Optical waveguide type touch panel
JP2009300688A (en) * 2008-06-12 2009-12-24 Hitachi Chem Co Ltd Resin composition for forming cladding layer, resin film for forming cladding layer using the same, and optical waveguide and optical module using these
US20100097348A1 (en) * 2008-10-16 2010-04-22 Inha Industry Partnership Institute Touch screen tool
WO2012002222A1 (en) * 2010-06-30 2012-01-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Design for achieving low loss in intersecting region of optical waveguide
JP2013033444A (en) * 2011-07-04 2013-02-14 Nitto Denko Corp Underlay-board-equipped input device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005107804A (en) * 2003-09-30 2005-04-21 Japan Aviation Electronics Industry Ltd Optical waveguide type touch panel
JP2009300688A (en) * 2008-06-12 2009-12-24 Hitachi Chem Co Ltd Resin composition for forming cladding layer, resin film for forming cladding layer using the same, and optical waveguide and optical module using these
US20100097348A1 (en) * 2008-10-16 2010-04-22 Inha Industry Partnership Institute Touch screen tool
WO2012002222A1 (en) * 2010-06-30 2012-01-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Design for achieving low loss in intersecting region of optical waveguide
JP2013033444A (en) * 2011-07-04 2013-02-14 Nitto Denko Corp Underlay-board-equipped input device

Also Published As

Publication number Publication date
TW201543313A (en) 2015-11-16
JP2015201137A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP5513656B1 (en) Electronic underlay
JP6026346B2 (en) Position sensor
WO2014136508A1 (en) Information display system
JP2014197367A (en) Position sensor
JP5513654B1 (en) Electronic underlay with wireless transmission function
WO2014136483A1 (en) Information management system
WO2014181574A1 (en) Information display device
WO2015156114A1 (en) Position sensor
WO2015156111A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2015045571A1 (en) Input device
WO2015049908A1 (en) Input apparatus
WO2014196390A1 (en) Electronic underlay
WO2015156115A1 (en) Information processing system
WO2015156113A1 (en) Position sensor
WO2015045572A1 (en) Electronic underlay
WO2015170607A1 (en) Information display device
WO2015170606A1 (en) Information display system
WO2015045570A1 (en) Input device
WO2015156112A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2015033657A1 (en) Input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777319

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15777319

Country of ref document: EP

Kind code of ref document: A1