WO2015155866A1 - Copper-containing wastewater treatment method and treatment device - Google Patents

Copper-containing wastewater treatment method and treatment device Download PDF

Info

Publication number
WO2015155866A1
WO2015155866A1 PCT/JP2014/060388 JP2014060388W WO2015155866A1 WO 2015155866 A1 WO2015155866 A1 WO 2015155866A1 JP 2014060388 W JP2014060388 W JP 2014060388W WO 2015155866 A1 WO2015155866 A1 WO 2015155866A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
containing wastewater
treated water
treatment
insolubilized product
Prior art date
Application number
PCT/JP2014/060388
Other languages
French (fr)
Japanese (ja)
Inventor
周平 伊澤
太郎 吉田
達也 堀之内
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201480077124.8A priority Critical patent/CN106103354B/en
Priority to PCT/JP2014/060388 priority patent/WO2015155866A1/en
Priority to KR1020167027079A priority patent/KR101918832B1/en
Priority to SG11201607850WA priority patent/SG11201607850WA/en
Publication of WO2015155866A1 publication Critical patent/WO2015155866A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment

Definitions

  • the present invention relates to a method and apparatus for treating a copper-containing wastewater containing an organic substance, a copper ion that forms a complex with the organic substance, a fluoride ion, a phosphate ion, and hydrogen peroxide.
  • the present invention relates to a treatment method and a treatment apparatus for copper-containing wastewater that can further reduce the fluorine and phosphorus concentrations and reduce the amount of chemicals and sludge generated for treatment.
  • K 2 HPO 4 , Na 2 HPO 4 , CaHPO 4 , BaHPO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 3 PO 4 and the like are used.
  • organic acid acetic acid, butanoic acid, citric acid, formic acid, gluconic acid, glycolic acid, malonic acid, oxalic acid and the like are used.
  • chelating agent nitrile triacetic acid, ethylenediaminetetraacetic acid, diethylenetrinitrile pentaacetic acid and the like are used.
  • heterocyclic aromatic compounds such as pyrrole, oxazole, imidazole, pyrazole and triazole, and heterocyclic aliphatic compounds such as piperazine and methylpiperazine are used (see Patent Documents 1 to 4).
  • copper etching wastewater containing hydrogen peroxide, fluoride ions, phosphate ions, and organic substances derived from these etching solutions is discharged. Further, the copper etching wastewater contains etched copper, and a part of this copper forms a complex with the chelating agent in the etching solution.
  • the present invention solves the above-mentioned conventional problems, in treating copper-containing wastewater containing an organic substance, copper ions that form a complex with the organic substance, fluoride ions, phosphate ions, and hydrogen peroxide, It is an object to provide a treatment method and a treatment apparatus for copper-containing wastewater that can further reduce the concentration of copper, fluorine, and phosphorus in treated water without excessively increasing the amount of chemicals used and the amount of generated sludge. To do.
  • the present inventors have found that a copper-containing wastewater containing an organic substance, copper ions that form a complex with the organic substance, fluoride ions, phosphate ions, and hydrogen peroxide.
  • the waste water is adjusted to pH 4 or more to decompose and remove hydrogen peroxide, and then the calcium compound and the magnesium compound are added and reacted at pH 9 to 13 to produce an insolubilized product. It has been found that treated water can be obtained stably by sufficiently separating copper, fluorine and phosphorus.
  • the process of solid-liquid separation of the insolubilized product is a two-stage process in which the magnesium compound is added and the solid-liquid separation of the insolubilized product is performed after the addition of the calcium compound and the solid-liquid separation of the insolubilized product. It was found that the increase can be suppressed and the production of magnesium hydroxide sludge having a high water content can be suppressed.
  • the present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
  • a method for treating copper-containing wastewater containing organic matter copper ions that form a complex with the organic matter, fluoride ions, phosphate ions, and hydrogen peroxide, the wastewater is adjusted to pH 4 or more.
  • a method for treating copper-containing wastewater comprising:
  • a calcium compound is added to the treated water of the first step, and an insolubilized product is generated by reacting at pH 6 to 10, and the insolubilized product is solid-liquid separated;
  • the calcium compound is added so as to be 20 to 2000 mg-Ca / L excess from the reaction equivalent of fluoride ions and phosphate ions in the treated water of the first step.
  • the second treatment means includes a step of adding a calcium compound to the treated water of the first treatment means and reacting at pH 6 to 10 to generate an insolubilized product, and solid-liquid separation of the insolubilized product.
  • the processing apparatus of a copper containing wastewater as described in any one of.
  • the calcium compound may be 20 to 2000 mg-Ca / L in excess of the reaction equivalent of fluoride ions and phosphate ions in the treated water of the first treatment means.
  • the copper-containing wastewater treatment apparatus according to any one of [6] to [8], wherein the copper-containing wastewater treatment apparatus is added.
  • the treatment apparatus for copper-containing wastewater according to any one of [6] to [9], further comprising nitrification / denitrification means for nitrifying and denitrifying the treated water of the second treatment means.
  • the present invention when treating copper-containing wastewater containing organic matter, copper ions forming a complex with the organic matter, fluoride ions, phosphate ions, and hydrogen peroxide, such as copper etching wastewater, without excessively increasing the amount of chemicals used for treatment and the amount of generated sludge, it is possible to stably obtain high-quality treated water with sufficiently reduced copper, fluorine, and phosphorus concentrations.
  • 1 to 3 are system diagrams showing an example of an embodiment of a copper-containing wastewater treatment apparatus of the present invention. 1 to 3, members having the same function are denoted by the same reference numerals.
  • a copper-containing waste water (hereinafter referred to as “raw water”) containing an organic substance, a copper ion that forms a complex with the organic substance, a fluoride ion, a phosphate ion, and hydrogen peroxide to be treated.
  • raw water a copper-containing waste water
  • the most commonly used is a copper etching waste solution for semiconductors and printed wiring boards, but is not limited to a copper etching waste solution, and includes organic substances such as CMP waste water and copper plating waste water, and complexes of the organic substances.
  • Any copper-containing wastewater containing copper ions, fluoride ions, phosphate ions, and hydrogen peroxide to be formed may be used.
  • the water quality of the copper etching waste liquid suitable as raw water is usually as follows. ⁇ Copper etching waste water quality of liquid crystal> pH: 1 to 3 TOC: 50-20,000mg / L Cu: 50 to 5,000 mg / L F: 5 to 2,000 mg / L P: 10 to 5,000 mg / L H 2 O 2 : 1,000 to 300,000 mg / L
  • first step hydrogen peroxide in the raw water is decomposed by adding an alkaline agent to the raw water and adjusting the pH to 4 or higher.
  • This first step is performed in the first reaction tank 1 of FIG. 1 and FIG. 2 as the first treatment means, and the raw water introduced into the first reaction tank 1 is made of an alkali agent such as sodium hydroxide (NaOH).
  • the pH is adjusted to 4 or more by addition, and hydrogen peroxide in the raw water is decomposed.
  • hydrogen peroxide proceeds by the reaction of the following formula (1). H 2 O 2 ⁇ H 2 O + 1 / 2O 2 (1)
  • the alkaline agent added to the raw water in the first step one or more of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ) and the like can be used.
  • the reaction pH is pH 4 or higher, preferably pH 6 to 13, more preferably pH 8 to 11. The higher the pH, the faster the decomposition rate of hydrogen peroxide and the more efficient the treatment.
  • the reaction pH is preferably in the above range from the viewpoint of reducing the amount of alkaline agent used and the safety of the working environment.
  • the reaction time in the first step is usually preferably about 0.25 to 10 hours. Therefore, it is preferable to design the first reaction tank 1 so that the HRT (retention time in the tank) is in the above range.
  • ⁇ Second step> The treated water of the first step, which decomposes and removes hydrogen peroxide in the raw water in the first step, then generates calcium insolubles and magnesium compounds in the second step and reacts at pH 9-13 to produce insolubilized products.
  • the insolubilized material is separated into solid and liquid to obtain treated water with reduced copper, fluorine and phosphorus.
  • copper ions not forming a complex can generate an insolubilized product by the reaction of the following formula (2) only by pH adjustment.
  • the copper ion “Cu 2+ ” and the chelating agent “L” form a stable complex as in the following formula (3), and the reaction of the above formula (2) Difficult to proceed.
  • magnesium “Mg 2+ ” forms a complex with chelating agent “L” as shown in the following formula (4).
  • Fluoride ions can be insolubilized by the reactions of the following formulas (7) and (8).
  • the following formula (7) is a reaction in which fluoride ions are removed by coprecipitation when magnesium hydroxide is precipitated. In order to remove high-concentration fluoride ions only by this reaction, a large amount of magnesium is used. A compound is required and inefficient. In the present invention, most of the fluoride ions are precipitated as calcium fluoride by the reaction of the following formula (8), and the remaining small amount of fluoride ions is removed by the following formula (7). Suppresses the increase in And the increase in the generation amount of magnesium hydroxide sludge can be suppressed by suppressing the increase in the usage-amount of a magnesium compound.
  • Phosphate ions can be insolubilized by the reactions of the following formulas (9) and (10).
  • most of the phosphate ions are precipitated as hydroxyapatite by the reaction of the following formula (10), and the remaining small amount of phosphate ions is removed by the following formula (9). Suppress the increase.
  • the increase in the generation amount of magnesium hydroxide sludge can be suppressed by suppressing the increase in the usage-amount of a magnesium compound.
  • magnesium hydroxide (Mg (OH) 2) can be used alone or in combination, such as magnesium chloride (MgCl 2).
  • MgCl 2 magnesium chloride
  • the calcium compound one or more of calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), calcium chloride (CaCl 2 ), and the like can be used.
  • reaction equivalents of fluoride ions and phosphate ions in the treated water of the process when no calcium compound is added as an alkaline agent in the first step, this reaction equivalent is the reaction equivalent of fluoride ions and phosphate ions in the raw water) 20) to 2000 mg-Ca / L excess, that is, 20 to 2000 mg-Ca / L excess as a calcium concentration rather than the sum of reaction equivalents in the above formulas (8) and (10).
  • an excess of 50 to 500 mg-Ca / L is preferable. If the excess amount is less than the above lower limit, the effect of suppressing the increase in the amount of magnesium compound used by adding the calcium compound cannot be sufficiently obtained, and even if the amount exceeds the above upper limit, the effect is saturated, Calcium compound usage is increased and disadvantageous.
  • the addition amount of the magnesium compound is such that copper, fluorine and phosphorus in the raw water can be sufficiently reduced by the reactions of the above formulas (5), (6), (7) and (9). Usually, it is preferably about 5 to 100 times (mol / mol) with respect to complex copper.
  • the pH of the reaction in the second step is 9 to 13, preferably 10 to 12. Accordingly, the pH is adjusted by adding an alkaline agent to the treated water in the first step as necessary.
  • an alkaline thing as a magnesium compound and a calcium compound, it can serve as an alkali agent.
  • the second step of adding a calcium compound and a magnesium compound to the treated water in the first step and reacting at pH 9 to 13 to produce an insolubilized product and separating the insolubilized product into a solid and liquid is a one-stage treatment. It may be performed in two steps. In the case where the second step is a two-stage treatment, a calcium ion is added to the treated water of the first step, and an insolubilized product is generated by reacting at pH 6 to 10, and the insolubilized product is solid-liquid separated.
  • a magnesium compound is added to the treated water (solid-liquid separation water) in the preceding step, and an insolubilized product is generated by reacting at pH 9-13, preferably pH 10-12, and the insolubilized product is solid-liquid separated. And do.
  • an insolubilized product is generated by adding a calcium compound to the treated water of the first step and reacting at a pH of 6 to 10 in the previous step, and the insolubilized product is separated into solid and liquid.
  • Treated water with reduced fluorine and phosphorus is obtained.
  • copper ions, fluoride ions, and phosphate ions can be insolubilized and the copper, fluorine, and phosphorus can be roughly removed by the reactions of the formulas (2), (8), and (10).
  • the addition amount of the calcium compound added in the preceding step when performing the two-step treatment is also equivalent to the reaction equivalent of fluoride ions and phosphate ions in the treated water in the first step (calcium as an alkali agent in the first step).
  • this reaction equivalent is equal to the reaction equivalent of fluoride ions and phosphate ions in the raw water.
  • More than 20 to 2000 mg / L, especially 50 to 500 mg / L as the calcium concentration. An excess is preferred.
  • the reaction pH in the previous step is preferably in the range of 6 to 10, preferably pH 6 to 7 when priority is given to removal of fluoride ions, and pH 8 to 10 when priority is given to removal of copper ions and phosphate ions. .
  • the pH may be adjusted by adding an acid such as sulfuric acid (H 2 SO 4 ) or hydrochloric acid (HCl) as necessary.
  • ferric chloride, polyiron, polyaluminum chloride (PAC), sulfuric acid band or the like may be used as an agglomeration aid.
  • polyaluminum chloride it is preferable to add about 20 to 500 mg / L of an aluminum compound such as a sulfuric acid band and perform the reaction at pH 6 to 7.
  • FIG. 1 shows a treatment apparatus that performs the second step in a single-stage treatment
  • treated water from the first reaction tank 1 is a calcium compound such as CaCl 2 and a magnesium compound such as MgCl 2 in the second reaction tank 2.
  • an alkali agent such as NaOH is added if necessary, and the reaction solution containing the insolubilized product produced is treated under the conditions of pH 9 to 13, preferably pH 10 to 12, and then fed to the agglomeration tank 3 to form a polymer.
  • the agglomeration treatment is performed by adding a flocculant, and the agglomerated water is solid-liquid separated in the settling tank 4 and the separated water is taken out as treated water.
  • the reaction time is usually preferably about 5 to 60 minutes. Therefore, it is preferable to design the HRT (residence time in the tank) of the second reaction tank 2 to be in the above range.
  • the polymer flocculant added in the flocculation tank 3 may be any of anionic, nonionic, and cationic, but anionic polymer flocculant is preferably used, and the amount added is about 1 to 30 mg / L. It is preferable that There are no particular restrictions on the treatment conditions of the settling tank 4, but the water flow LV is preferably about 1 to 5 m / h.
  • FIG. 2 shows a treatment apparatus that performs the second step in a two-stage process.
  • the treated water from the first reaction tank 1 is treated with acid such as H 2 SO 4 , CaCl 2, etc. in the 2-1 reaction tank 2A.
  • the reaction mixture containing the calcium compound and PAC and other agglomeration aids such as PAC and treated under the conditions of pH 6 to 10, preferably pH 6 to 7 or pH 8 to 10, and the insolubilized product thus produced is then added to the first agglomeration tank 3A.
  • the agglomeration treatment is performed by adding a polymer flocculant, and the agglomeration treatment water is solid-liquid separated in the first settling tank 4A.
  • the treated water (separated water) in the first settling tank 4A is then added with a magnesium compound such as MgCl 2 and an alkali agent such as NaOH as required in the 2-2 reaction tank 2B, and has a pH of 9 to 13, preferably
  • the reaction solution containing the insolubilized material that has been processed under the conditions of pH 10 to 12 is then fed to the second flocculation tank 3B, where it is flocculated by the addition of the polymer flocculant, and the flocculated water is the second settling tank 4B. And the separated water is taken out as treated water.
  • the reaction time in the first-stage process is usually preferably about 5 to 60 minutes, and accordingly, the HRT (residence time in the tank) of the 2-1 reaction tank 2A should be designed within the above range. Is preferred.
  • the polymer flocculant added in the first flocculating tank 3A may be any of anionic, nonionic, and cationic, but anionic polymer flocculants are preferably used, and the addition amount is 1 to 10 mg / kg. It is preferable to set it to about L.
  • the water flow LV is preferably about 1 to 5 m / h.
  • reaction time in the subsequent step is usually preferably about 5 to 60 minutes, and therefore, it is preferable to design the HRT (residence time in the tank) of the 2-2 reaction tank 2B within the above range.
  • the polymer flocculant added in the second flocculating tank 3B may be any of anionic, nonionic, and cationic, but an anionic polymer flocculant is preferably used, and the addition amount is 1 to 30 mg / It is preferable to set it to about L.
  • the water flow LV is preferably about 1 to 5 m / h.
  • Cu, F, and P in the treated water are 0.1 to 1 mg-Cu / L, 0.5 to 8 mg-F / L, and 0.1 to 1 mg-P, respectively. / L or so.
  • a pretreatment step of adding an aluminum compound to the raw water and reacting at pH 1 to 4 may be performed prior to the first step of adjusting the pH of the raw water and decomposing and removing hydrogen peroxide.
  • a pretreatment step is effective when borofluoride is contained in the raw water.
  • the borofluoride in the raw water is decomposed and borofluoride is obtained.
  • the derived fluorine can be removed in the second step.
  • borofluoride in raw water can be decomposed by the reaction of the following formula (11), and the generated aluminum fluoride can be insolubilized by the reaction of the following formula (12) in the second step.
  • the aluminum compound to be added in the pretreatment step one or more of aluminum chloride, polyaluminum chloride (PAC), sulfuric acid band and the like can be used.
  • the amount of the aluminum compound added may be equal to or more than the reaction equivalent of borofluoride in the raw water.
  • Al / F 1 to 20 mol / mol with respect to fluorine in the raw water is preferable.
  • the raw water is a copper etching waste liquid
  • the copper etching waste liquid is usually about 1 to 4 and thus pH adjustment is not necessary.
  • the pH exceeds 4 sulfuric acid (H 2 SO 4 )
  • H 2 SO 4 sulfuric acid
  • the reaction time in this pretreatment step is preferably about 0.5 to 5 hours.
  • FIG. 3 shows a treatment apparatus in which the pretreatment tank 5 for performing such a pretreatment step is provided in the treatment apparatus of FIG. 2, and an aluminum compound such as PAC is added to the raw water before the pH adjustment tank 1. And, if necessary, a pretreatment tank 5 for reacting with an acid such as H 2 SO 4 is provided, and the treated water in this pretreatment tank 5 is fed to the first reaction tank 1. Except for this, the configuration is the same as that of the processing apparatus of FIG.
  • such a pretreatment tank 5 can be similarly provided in the front stage of the first reaction tank 1.
  • the solid-liquid separation means is not limited to a precipitation tank, and a membrane separation device, a floating separation tank, or the like can also be used.
  • Example 1 Using raw water copper etching wastewater shown in Table 1 below, treatment was performed with the apparatus shown in FIG.
  • the polymer flocculant an anionic polymer flocculant “Cliff Rock PA331” manufactured by Kurita Kogyo Co., Ltd. was used.
  • Table 2 shows the treatment conditions for each tank.
  • Table 4 shows the quality of the treated water and the amount of sludge generated per liter of raw water.
  • the amount of CaCl 2 corresponding to the total reaction equivalent of fluoride ions and phosphate ions of raw water is 78 mg-Ca / L, and the addition of 400 mg-Ca / L is 322 mg-Ca / L relative to the reaction equivalent. Excessive amount.
  • Comparative Example 3 In Comparative Examples 1 and 2, a treatment for achieving a Cu concentration of 1 mg / L or less in treated water by adding only MgCl 2 without adding CaCl 2 was performed. Table 2 shows the treatment conditions for each tank. Table 4 shows the quality of the treated water and the amount of sludge generated per liter of raw water.
  • Example 3 Using the water-quality copper etching wastewater shown in Table 1 as raw water, treatment was performed with the apparatus shown in FIG.
  • the polymer flocculant an anionic polymer flocculant “Cliff Rock PA331” manufactured by Kurita Kogyo Co., Ltd. was used.
  • Table 3 shows the treatment conditions for each tank.
  • Table 4 shows the quality of the treated water and the amount of sludge generated per liter of raw water.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The present invention decomposes and removes hydrogen peroxide from copper-containing wastewater by adjusting the pH thereof to at least pH4, said copper-containing wastewater containing organic matter, fluoride ions, phosphate ions, hydrogen peroxide, and copper ions that form a complex with the organic matter. Thereafter, insoluble matter is produced by adding and reacting a calcium compound and a magnesium compound at pH9-13, and the insoluble matter is separated into a solid and a liquid. When treating the copper-containing wastewater which contains organic matter, fluoride ions, phosphate ions, hydrogen peroxide, and copper ions that form a complex with the organic matter, the present invention is capable of further reducing the copper, fluorine, and phosphate concentrations of the treated water and reducing the amount of a chemical used in the treatment and the amount of sludge generated.

Description

銅含有廃水の処理方法及び処理装置Method and apparatus for treating copper-containing wastewater
 本発明は、有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水を処理する方法及び装置に関し、処理水の銅、フッ素、リン濃度をより低減すると共に、処理に使用する薬品量及び発生汚泥量を低減することができる銅含有廃水の処理方法及び処理装置に関する。 The present invention relates to a method and apparatus for treating a copper-containing wastewater containing an organic substance, a copper ion that forms a complex with the organic substance, a fluoride ion, a phosphate ion, and hydrogen peroxide. The present invention relates to a treatment method and a treatment apparatus for copper-containing wastewater that can further reduce the fluorine and phosphorus concentrations and reduce the amount of chemicals and sludge generated for treatment.
 近年、半導体装置の基板としては、配線抵抗が低い銅を用いた銅配線基板が主流となってきている。シリコン基板上に銅配線を形成する工程においては、ウェットエッチングを行う。このエッチング液には、銅エッチング剤である過酸化水素と、エッチング速度調整などの目的でフッ素化合物、リン酸塩、有機酸、キレート剤、窒素化合物などが添加されている。フッ素化合物としては、HF、NaF、AlF、HBF、NHFなどが使用される。リン酸塩としては、KHPO、NaHPO、CaHPO、BaHPO、(NH)HPO、(NHPOなどが使用される。有機酸としては、酢酸、ブタン酸、クエン酸、ギ酸、グルコン酸、グリコール酸、マロン酸、シュウ酸などが使用される。キレート剤としては、ニトリルトリ酢酸、エチレンジアミン四酢酸、ジエチレントリニトリルペンタ酢酸などが使用される。窒素化合物としては、ピロール、オキサゾール、イミダゾール、ピラゾール、トリアゾールなどの複素環式芳香族化合物、ピペラジン、メチルピペラジンなどの複素環式脂肪族化合物などが使用される(特許文献1~4参照)。 In recent years, copper wiring boards using copper with low wiring resistance have become mainstream as substrates for semiconductor devices. In the step of forming the copper wiring on the silicon substrate, wet etching is performed. Hydrogen peroxide as a copper etchant and fluorine compounds, phosphates, organic acids, chelating agents, nitrogen compounds, and the like are added to this etchant for the purpose of adjusting the etching rate. As the fluorine compound, HF, NaF, AlF 3 , HBF 4 , NH 4 F, or the like is used. As the phosphate, K 2 HPO 4 , Na 2 HPO 4 , CaHPO 4 , BaHPO 4 , (NH 4 ) H 2 PO 4 , (NH 4 ) 3 PO 4 and the like are used. As the organic acid, acetic acid, butanoic acid, citric acid, formic acid, gluconic acid, glycolic acid, malonic acid, oxalic acid and the like are used. As the chelating agent, nitrile triacetic acid, ethylenediaminetetraacetic acid, diethylenetrinitrile pentaacetic acid and the like are used. As the nitrogen compound, heterocyclic aromatic compounds such as pyrrole, oxazole, imidazole, pyrazole and triazole, and heterocyclic aliphatic compounds such as piperazine and methylpiperazine are used (see Patent Documents 1 to 4).
 従って、銅配線を形成するウェットエッチング工程からは、これらのエッチング液由来の過酸化水素と、フッ化物イオンと、リン酸イオンと、有機物とを含む銅エッチング廃水が排出される。さらに、銅エッチング廃水中には、エッチングされた銅が含まれ、この銅の一部はエッチング液中のキレート剤と錯体を形成している。 Therefore, from the wet etching process for forming the copper wiring, copper etching wastewater containing hydrogen peroxide, fluoride ions, phosphate ions, and organic substances derived from these etching solutions is discharged. Further, the copper etching wastewater contains etched copper, and a part of this copper forms a complex with the chelating agent in the etching solution.
 従来、過酸化水素を含む銅エッチング廃水の処理方法としては、酸性廃水を中和することで過酸化水素を分解した後、凝集剤を添加することで銅を含む析出物を凝集及び分離除去する方法が提案されている(特許文献5、6参照)。 Conventionally, as a method for treating copper etching wastewater containing hydrogen peroxide, hydrogen peroxide is decomposed by neutralizing acidic wastewater, and then a coagulant is added to agglomerate and separate and remove copper-containing precipitates. A method has been proposed (see Patent Documents 5 and 6).
 また、重金属錯体を含む廃水の処理としては、マグネシウム化合物を添加し、pH9以上で固液分離することで重金属を除去する方法が提案されている(特許文献7、8参照)。 Also, as a treatment of wastewater containing a heavy metal complex, a method of removing a heavy metal by adding a magnesium compound and performing solid-liquid separation at pH 9 or higher has been proposed (see Patent Documents 7 and 8).
国際公開WO2013/077580号パンフレットInternational Publication WO2013 / 0777580 Pamphlet 特許第4448322号公報Japanese Patent No. 4448322 特許第4843637号公報Japanese Patent No. 4843637 特開2004-193620号公報JP 2004-193620 A 特開2011-20034号公報JP 2011-20034 A 特開2012-55825号公報JP 2012-55825 A 特公平1-28635号公報Japanese Patent Publication No. 1-28635 特開2003-293157号公報JP 2003-293157 A
 特許文献5の技術では、過酸化水素、及び錯体を形成していない銅は除去可能であるが、錯体を形成している銅は析出しないために除去することが出来ず、排水基準を満たすことができない。また、近年の銅エッチング廃水には、フッ化物イオン、リン酸イオンが含まれていることが多いが、本技術ではこれらを除去することができないため、銅と同様に排水基準を満たすことができない。 In the technique of Patent Document 5, hydrogen peroxide and copper that does not form a complex can be removed, but copper that forms a complex cannot be removed because it does not precipitate, and meets drainage standards. I can't. In addition, recent copper etching wastewater often contains fluoride ions and phosphate ions. However, since this technology cannot remove these ions, it cannot satisfy drainage standards as with copper. .
 また、特許文献7、8の技術では、錯体を形成している銅を排水基準以下まで処理しようとした場合、処理薬品であるマグネシウム化合物の使用量が多いために、処理コストが高騰するという問題や発生する汚泥量が多いという問題があった。また、マグネシウム化合物はフッ化物イオン、リン酸とも反応するため、廃水中にフッ化物イオン、リン酸イオンが含まれるとマグネシウム使用量がさらに多くなり、含水率の高い水酸化マグネシウムの汚泥発生量がより多くなるという問題があった。 Further, in the techniques of Patent Documents 7 and 8, when copper forming a complex is processed to a drainage standard or less, the amount of magnesium compound as a processing chemical is large, so that the processing cost increases. In addition, there was a problem that the amount of sludge generated was large. In addition, since magnesium compounds also react with fluoride ions and phosphoric acid, if fluoride ions and phosphate ions are contained in the wastewater, the amount of magnesium used will increase and the amount of magnesium hydroxide sludge generated will be high. There was a problem of becoming more.
 本発明は、上記従来の問題点を解決し、有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水の処理に当たり、処理に使用する薬品量及び発生汚泥量を過度に増量することなく、処理水の銅、フッ素、リン濃度をより低減することができる銅含有廃水の処理方法及び処理装置を提供することを課題とする。 The present invention solves the above-mentioned conventional problems, in treating copper-containing wastewater containing an organic substance, copper ions that form a complex with the organic substance, fluoride ions, phosphate ions, and hydrogen peroxide, It is an object to provide a treatment method and a treatment apparatus for copper-containing wastewater that can further reduce the concentration of copper, fluorine, and phosphorus in treated water without excessively increasing the amount of chemicals used and the amount of generated sludge. To do.
 本発明者らは上記課題を解決すべく鋭意検討した結果、有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水の処理に当たり、該廃水をpH4以上に調整して過酸化水素を分解除去した後、カルシウム化合物とマグネシウム化合物を添加してpH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離することで、銅、フッ素、リンを十分に低減した処理水を安定して得ることができることを見出した。また、カルシウム化合物をフッ化物イオン及びリン酸イオンの反応当量よりも過剰に添加することにより、更に、カルシウム化合物とマグネシウム化合物を添加してpH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する処理を、カルシウム化合物の添加及び不溶化物の固液分離後に、マグネシウム化合物の添加及び不溶化物の固液分離を行う2段階の処理とすることにより、マグネシウム化合物使用量の増加を抑制し、含水率の高い水酸化マグネシウム汚泥の生成を抑制できることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a copper-containing wastewater containing an organic substance, copper ions that form a complex with the organic substance, fluoride ions, phosphate ions, and hydrogen peroxide. In the treatment, the waste water is adjusted to pH 4 or more to decompose and remove hydrogen peroxide, and then the calcium compound and the magnesium compound are added and reacted at pH 9 to 13 to produce an insolubilized product. It has been found that treated water can be obtained stably by sufficiently separating copper, fluorine and phosphorus. Further, by adding the calcium compound in excess of the reaction equivalent of fluoride ion and phosphate ion, further adding calcium compound and magnesium compound and reacting at pH 9 to 13 to produce an insolubilized product, The process of solid-liquid separation of the insolubilized product is a two-stage process in which the magnesium compound is added and the solid-liquid separation of the insolubilized product is performed after the addition of the calcium compound and the solid-liquid separation of the insolubilized product. It was found that the increase can be suppressed and the production of magnesium hydroxide sludge having a high water content can be suppressed.
 本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。 The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
[1] 有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水を処理する方法において、該廃水をpH4以上に調整する第1工程と、該第1工程の処理水に、カルシウム化合物とマグネシウム化合物を添加し、pH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する第2工程とを有することを特徴とする銅含有廃水の処理方法。 [1] In a method for treating copper-containing wastewater containing organic matter, copper ions that form a complex with the organic matter, fluoride ions, phosphate ions, and hydrogen peroxide, the wastewater is adjusted to pH 4 or more. A first step and a second step of adding a calcium compound and a magnesium compound to the treated water of the first step and reacting them at pH 9 to 13 to produce an insolubilized product, and solid-liquid separation of the insolubilized product. A method for treating copper-containing wastewater, comprising:
[2] 前記第2工程は、前記第1工程の処理水にカルシウム化合物を添加し、pH6~10で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する前段工程と、該前段工程の処理水にマグネシウム化合物を添加し、pH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する後段工程とを有することを特徴とする[1]に記載の銅含有廃水の処理方法。 [2] In the second step, a calcium compound is added to the treated water of the first step, and an insolubilized product is generated by reacting at pH 6 to 10, and the insolubilized product is solid-liquid separated; The method according to [1], further comprising a subsequent step of adding a magnesium compound to the treated water of the preceding step and reacting at pH 9 to 13 to generate an insolubilized product and separating the insolubilized product into a solid-liquid separation. A method for treating copper-containing wastewater.
[3] 前記第1工程に先立ち、前記廃水にアルミニウム化合物を添加し、pH1~4で反応させる前処理工程を有することを特徴とする[1]又は[2]に記載の銅含有廃水の処理方法。 [3] Prior to the first step, the copper-containing wastewater treatment according to [1] or [2], further comprising a pretreatment step in which an aluminum compound is added to the wastewater and reacted at a pH of 1 to 4. Method.
[4] 前記第2工程において、前記カルシウム化合物を、前記第1工程の処理水中のフッ化物イオンとリン酸イオンの反応当量よりも20~2000mg-Ca/L過剰となるように添加することを特徴とする[1]乃至[3]のいずれかに記載の銅含有廃水の処理方法。 [4] In the second step, the calcium compound is added so as to be 20 to 2000 mg-Ca / L excess from the reaction equivalent of fluoride ions and phosphate ions in the treated water of the first step. The method for treating copper-containing wastewater according to any one of [1] to [3], which is characterized in that
[5] 前記第2工程の処理水を硝化及び脱窒処理する硝化脱窒工程を有することを特徴とする[1]乃至[4]のいずれかに記載の銅含有廃水の処理方法。 [5] The method for treating copper-containing wastewater according to any one of [1] to [4], further comprising a nitrification / denitrification step of nitrifying and denitrifying the treated water in the second step.
[6] 有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水を処理する装置において、該廃水をpH4以上に調整する第1の処理手段と、該第1の処理手段の処理水に、カルシウム化合物とマグネシウム化合物を添加し、pH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する第2の処理手段とを有することを特徴とする銅含有廃水の処理装置。 [6] In an apparatus for treating copper-containing wastewater containing organic matter, copper ions that form a complex with the organic matter, fluoride ions, phosphate ions, and hydrogen peroxide, the wastewater is adjusted to pH 4 or higher. First treatment means, a calcium compound and a magnesium compound are added to the treated water of the first treatment means and reacted at pH 9 to 13 to produce an insolubilized product, and the insolubilized product is solid-liquid separated. And a treatment apparatus for copper-containing wastewater.
[7] 前記第2の処理手段は、前記第1の処理手段の処理水にカルシウム化合物を添加し、pH6~10で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する前段手段と、該前段手段の処理水にマグネシウム化合物を添加し、pH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する後段手段とを有することを特徴とする[6]に記載の銅含有廃水の処理装置。 [7] The second treatment means includes a step of adding a calcium compound to the treated water of the first treatment means and reacting at pH 6 to 10 to generate an insolubilized product, and solid-liquid separation of the insolubilized product. And a latter-stage means for producing an insolubilized product by adding a magnesium compound to the treated water of the preceding-stage means and reacting at pH 9 to 13 to separate the insolubilized product into a solid-liquid separation [6] ]. The processing apparatus of a copper containing wastewater as described in any one of.
[8] 前記第1の処理手段の前段に、前記廃水にアルミニウム化合物を添加し、pH1~4で反応させる前処理手段を有することを特徴とする[6]又は[7]に記載の銅含有廃水の処理装置。 [8] The copper-containing material according to [6] or [7], further comprising a pretreatment unit that adds an aluminum compound to the waste water and reacts at a pH of 1 to 4 before the first treatment unit. Wastewater treatment equipment.
[9] 前記第2の処理手段において、前記カルシウム化合物を、前記第1の処理手段の処理水中のフッ化物イオンとリン酸イオンの反応当量よりも20~2000mg-Ca/L過剰となるように添加することを特徴とする[6]乃至[8]のいずれかに記載の銅含有廃水の処理装置。 [9] In the second treatment means, the calcium compound may be 20 to 2000 mg-Ca / L in excess of the reaction equivalent of fluoride ions and phosphate ions in the treated water of the first treatment means. The copper-containing wastewater treatment apparatus according to any one of [6] to [8], wherein the copper-containing wastewater treatment apparatus is added.
[10]
 前記第2の処理手段の処理水を硝化及び脱窒処理する硝化脱窒手段を有することを特徴とする[6]乃至[9]のいずれかに記載の銅含有廃水の処理装置。
[10]
The treatment apparatus for copper-containing wastewater according to any one of [6] to [9], further comprising nitrification / denitrification means for nitrifying and denitrifying the treated water of the second treatment means.
 本発明によれば、銅エッチング廃水等の、有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水を処理するに当たり、処理に使用する薬品量及び発生汚泥量を過度に増量することなく、銅、フッ素、リン濃度を十分に低減した高水質の処理水を安定に得ることができる。 According to the present invention, when treating copper-containing wastewater containing organic matter, copper ions forming a complex with the organic matter, fluoride ions, phosphate ions, and hydrogen peroxide, such as copper etching wastewater, Without excessively increasing the amount of chemicals used for treatment and the amount of generated sludge, it is possible to stably obtain high-quality treated water with sufficiently reduced copper, fluorine, and phosphorus concentrations.
本発明の銅含有廃水の処理装置の実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the processing apparatus of the copper containing wastewater of this invention. 本発明の銅含有廃水の処理装置の実施の形態の他の例を示す系統図である。It is a systematic diagram which shows the other example of embodiment of the processing apparatus of the copper containing wastewater of this invention. 本発明の銅含有廃水の処理装置の実施の形態の別の例を示す系統図である。It is a systematic diagram which shows another example of embodiment of the processing apparatus of the copper containing wastewater of this invention.
 以下に図面を参照して本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described below in detail with reference to the drawings.
 図1~3は、本発明の銅含有廃水の処理装置の実施の形態の一例を示す系統図である。図1~3において、同一機能を奏する部材には同一符号を付してある。 1 to 3 are system diagrams showing an example of an embodiment of a copper-containing wastewater treatment apparatus of the present invention. 1 to 3, members having the same function are denoted by the same reference numerals.
<原水>
 本発明において、処理対象となる、有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水(以下「原水」と称す場合がある。)としては、最も一般的には半導体やプリント配線基板の銅エッチング廃液が挙げられるが、何ら銅エッチング廃液に限らず、CMP廃水、銅メッキ廃水など、有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水であればよい。
<Raw water>
In the present invention, a copper-containing waste water (hereinafter referred to as “raw water”) containing an organic substance, a copper ion that forms a complex with the organic substance, a fluoride ion, a phosphate ion, and hydrogen peroxide to be treated. The most commonly used is a copper etching waste solution for semiconductors and printed wiring boards, but is not limited to a copper etching waste solution, and includes organic substances such as CMP waste water and copper plating waste water, and complexes of the organic substances. Any copper-containing wastewater containing copper ions, fluoride ions, phosphate ions, and hydrogen peroxide to be formed may be used.
 原水として好適な銅エッチング廃液の水質は通常以下の通りである。
<液晶の銅エッチング廃液水質>
  pH:1~3
  TOC:50~20,000mg/L
  Cu:50~5,000mg/L
  F:5~2,000mg/L
  P:10~5,000mg/L
  H:1,000~300,000mg/L
The water quality of the copper etching waste liquid suitable as raw water is usually as follows.
<Copper etching waste water quality of liquid crystal>
pH: 1 to 3
TOC: 50-20,000mg / L
Cu: 50 to 5,000 mg / L
F: 5 to 2,000 mg / L
P: 10 to 5,000 mg / L
H 2 O 2 : 1,000 to 300,000 mg / L
<第1工程>
 本発明に係る第1工程では、原水にアルカリ剤を添加してpH4以上に調整することで、原水中の過酸化水素の分解を行う。この第1工程は、第1処理手段である図1及び図2の第1反応槽1で行われ、第1反応槽1に導入された原水は、水酸化ナトリウム(NaOH)等のアルカリ剤の添加でpH4以上に調整され、原水中の過酸化水素の分解が行われる。ここで、過酸化水素は、下記式(1)の反応により進行する。
  H → HO + 1/2O       …(1)
<First step>
In the first step according to the present invention, hydrogen peroxide in the raw water is decomposed by adding an alkaline agent to the raw water and adjusting the pH to 4 or higher. This first step is performed in the first reaction tank 1 of FIG. 1 and FIG. 2 as the first treatment means, and the raw water introduced into the first reaction tank 1 is made of an alkali agent such as sodium hydroxide (NaOH). The pH is adjusted to 4 or more by addition, and hydrogen peroxide in the raw water is decomposed. Here, hydrogen peroxide proceeds by the reaction of the following formula (1).
H 2 O 2 → H 2 O + 1 / 2O 2 (1)
 原水をpH4以上に調整すると、廃水中に含まれる銅の一部が析出して銅を含むSSが発生する。このSS中に含まれる銅が、上記の過酸化水素分解反応の触媒として機能する。そのため、加熱などのエネルギーを使用することなく、pH調整のみで効率的に過酸化水素を分解除去することができる。 When the raw water is adjusted to pH 4 or more, a part of copper contained in the wastewater is precipitated and SS containing copper is generated. Copper contained in this SS functions as a catalyst for the above hydrogen peroxide decomposition reaction. Therefore, hydrogen peroxide can be efficiently decomposed and removed only by pH adjustment without using energy such as heating.
 第1工程で原水に添加するアルカリ剤としては、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH))などの1種又は2種以上を用いることができる。反応pHは、pH4以上、好ましくはpH6~13、さらに好ましくはpH8~11とする。pHは高いほど過酸化水素の分解速度が速く、効率的に処理することが可能であるが、アルカリ剤使用量の低減、作業環境の安全性の面から、反応pHは上記範囲が好ましい。
 また、pH調整により生成したSSが沈積することを防止するために、攪拌を行っても良い。攪拌は、攪拌機による機械攪拌や曝気によって実施することができる。
As the alkaline agent added to the raw water in the first step, one or more of sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ) and the like can be used. . The reaction pH is pH 4 or higher, preferably pH 6 to 13, more preferably pH 8 to 11. The higher the pH, the faster the decomposition rate of hydrogen peroxide and the more efficient the treatment. However, the reaction pH is preferably in the above range from the viewpoint of reducing the amount of alkaline agent used and the safety of the working environment.
Moreover, in order to prevent SS produced | generated by pH adjustment from depositing, you may stir. Stirring can be performed by mechanical stirring or aeration with a stirrer.
 第1工程の反応時間は通常0.25~10時間程度とすることが好ましく、従って、第1反応槽1のHRT(槽内滞留時間)が上記範囲となるように設計することが好ましい。 The reaction time in the first step is usually preferably about 0.25 to 10 hours. Therefore, it is preferable to design the first reaction tank 1 so that the HRT (retention time in the tank) is in the above range.
 なお、第1工程におけるアルカリ剤として、水酸化カルシウムを添加した場合は、そのpH条件によっては、次の第2工程における後述の式(8)、(10)の反応、または、曝気した場合、炭酸カルシウム析出反応も一部進行することになる。第1工程で式(8)、(10)の反応が起きても特に問題はないが、発生SS量が多いと沈積の問題があり、また、散気管へのスケール付着などの不具合があるため、第1工程ではアルカリ剤としてカルシウム化合物以外のアルカリ剤を添加することが好ましい。 In addition, when calcium hydroxide is added as an alkaline agent in the first step, depending on the pH conditions, the following formulas (8) and (10) in the next second step, or when aerated, A part of the calcium carbonate precipitation reaction also proceeds. There is no problem even if the reactions of formulas (8) and (10) occur in the first step, but if there is a large amount of generated SS, there is a problem of sedimentation, and there is a problem such as scale adhesion to the air diffuser. In the first step, it is preferable to add an alkaline agent other than the calcium compound as the alkaline agent.
<第2工程>
 第1工程で原水中の過酸化水素を分解除去した第1工程の処理水は、次いで、第2工程で、カルシウム化合物とマグネシウム化合物を添加し、pH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離することで、銅、フッ素、リンが低減した処理水を得る。
<Second step>
The treated water of the first step, which decomposes and removes hydrogen peroxide in the raw water in the first step, then generates calcium insolubles and magnesium compounds in the second step and reacts at pH 9-13 to produce insolubilized products. The insolubilized material is separated into solid and liquid to obtain treated water with reduced copper, fluorine and phosphorus.
 通常、錯体を形成していない銅イオンは、pH調整のみで下記式(2)の反応により不溶化物を生成することができる。
  Cu2+ + 2OH → Cu(OH)        …(2)
 しかし、原水中にキレート剤が含まれる場合、銅イオン「Cu2+」とキレート剤「L」は下記式(3)のように安定な錯体を形成しており、上記式(2)の反応が進みにくい。
  Cu2+ + L → CuL              …(3)
 一方、マグネシウム「Mg2+」もキレート剤「L」と下記式(4)のように錯体を形成する。
  Mg2+ + L → MgL              …(4)
 このため、マグネシウムの存在下でアルカリ性にすると、下記式(5)、(6)の反応が進み、錯体を形成した銅イオンを不溶化することができる。
  CuL + Mg2+ + 2OH 
         → Cu(OH) + MgL       …(5)
  MgL + 2OH → Mg(OH)         …(6)
Usually, copper ions not forming a complex can generate an insolubilized product by the reaction of the following formula (2) only by pH adjustment.
Cu 2+ + 2OH → Cu (OH) 2 (2)
However, when a chelating agent is contained in the raw water, the copper ion “Cu 2+ ” and the chelating agent “L” form a stable complex as in the following formula (3), and the reaction of the above formula (2) Difficult to proceed.
Cu 2+ + L → CuL (3)
On the other hand, magnesium “Mg 2+ ” forms a complex with chelating agent “L” as shown in the following formula (4).
Mg 2+ + L → MgL (4)
For this reason, if it makes it alkaline in presence of magnesium, reaction of following formula (5) and (6) will advance and the copper ion which formed the complex can be insolubilized.
CuL + Mg 2+ + 2OH
→ Cu (OH) 2 + MgL (5)
MgL + 2OH → Mg (OH) 2 (6)
 フッ化物イオンは、下記式(7)、(8)の反応によって不溶化することができる。下記式(7)は、水酸化マグネシウムが析出する際に、フッ化物イオンが共沈により除去される反応であるが、この反応のみで高濃度のフッ化物イオンを除去するためには多量のマグネシウム化合物が必要であり、非効率的である。本発明では、下記式(8)の反応により大部分のフッ化物イオンはフッ化カルシウムとして析出させ、残りの少量のフッ化物イオンを下記式(7)により除去することで、マグネシウム化合物の使用量の増加を抑制する。そして、マグネシウム化合物の使用量の増加の抑制により、水酸化マグネシウム汚泥の発生量の増加を抑制することができる。
  xF + Mg2+ + 2OH 
               → Mg(OH)・F    …(7)
  2F + Ca2+ → CaF             …(8)
Fluoride ions can be insolubilized by the reactions of the following formulas (7) and (8). The following formula (7) is a reaction in which fluoride ions are removed by coprecipitation when magnesium hydroxide is precipitated. In order to remove high-concentration fluoride ions only by this reaction, a large amount of magnesium is used. A compound is required and inefficient. In the present invention, most of the fluoride ions are precipitated as calcium fluoride by the reaction of the following formula (8), and the remaining small amount of fluoride ions is removed by the following formula (7). Suppresses the increase in And the increase in the generation amount of magnesium hydroxide sludge can be suppressed by suppressing the increase in the usage-amount of a magnesium compound.
xF + Mg 2+ + 2OH
→ Mg (OH) 2 · F x (7)
2F + Ca 2+ → CaF 2 (8)
 リン酸イオンは、下記式(9)、(10)の反応によって不溶化することができる。本発明では、下記式(10)の反応により大部分のリン酸イオンはヒドロキシアパタイトとして析出させ、残りの少量のリン酸イオンを下記式(9)により除去することで、マグネシウム化合物の使用量の増加を抑制する。そしてマグネシウム化合物の使用量の増加の抑制により、水酸化マグネシウム汚泥の発生量の増加を抑制することができる。
  2PO 3- + 3Mg2+ → Mg(PO    …(9)
  6PO 3- + 10Ca2+ + 2OH 
            → Ca10(PO(OH) …(10)
Phosphate ions can be insolubilized by the reactions of the following formulas (9) and (10). In the present invention, most of the phosphate ions are precipitated as hydroxyapatite by the reaction of the following formula (10), and the remaining small amount of phosphate ions is removed by the following formula (9). Suppress the increase. And the increase in the generation amount of magnesium hydroxide sludge can be suppressed by suppressing the increase in the usage-amount of a magnesium compound.
2PO 4 3− + 3Mg 2+ → Mg 3 (PO 4 ) 2 (9)
6PO 4 3- + 10Ca 2+ + 2OH
→ Ca 10 (PO 4 ) 6 (OH) 2 (10)
 ここで、マグネシウム化合物としては、水酸化マグネシウム(Mg(OH))、塩化マグネシウム(MgCl)などの1種又は2種以上を用いることができる。カルシウム化合物としては、水酸化カルシウム(Ca(OH))、炭酸カルシウム(CaCO)、塩化カルシウム(CaCl)などの1種又は2種以上を用いることができ、その添加量は、第1工程の処理水中のフッ化物イオンとリン酸イオンの反応当量(第1工程でアルカリ剤としてカルシウム化合物を添加しない場合は、この反応当量は、原水中のフッ化物イオンとリン酸イオンの反応当量と等しくなる。)よりも20~2000mg-Ca/L過剰となるような量、即ち、上記式(8)と式(10)における反応当量の合計よりもカルシウム濃度として20~2000mg-Ca/L過剰、特に50~500mg-Ca/L過剰とすることが好ましい。この過剰分の添加量が上記下限未満では、カルシウム化合物を添加することによるマグネシウム化合物の使用量の増加抑制効果を十分に得ることができず、上記上限より多くても、その効果が飽和し、カルシウム化合物使用量が徒に多くなり、不利である。 Examples of the magnesium compound, magnesium hydroxide (Mg (OH) 2), can be used alone or in combination, such as magnesium chloride (MgCl 2). As the calcium compound, one or more of calcium hydroxide (Ca (OH) 2 ), calcium carbonate (CaCO 3 ), calcium chloride (CaCl 2 ), and the like can be used. Reaction equivalents of fluoride ions and phosphate ions in the treated water of the process (when no calcium compound is added as an alkaline agent in the first step, this reaction equivalent is the reaction equivalent of fluoride ions and phosphate ions in the raw water) 20) to 2000 mg-Ca / L excess, that is, 20 to 2000 mg-Ca / L excess as a calcium concentration rather than the sum of reaction equivalents in the above formulas (8) and (10). In particular, an excess of 50 to 500 mg-Ca / L is preferable. If the excess amount is less than the above lower limit, the effect of suppressing the increase in the amount of magnesium compound used by adding the calcium compound cannot be sufficiently obtained, and even if the amount exceeds the above upper limit, the effect is saturated, Calcium compound usage is increased and disadvantageous.
 また、マグネシウム化合物の添加量は、上記の式(5)、(6)、(7)、(9)の反応で、原水中の銅、フッ素、リンを十分に低減することができる程であればよく、通常、錯体性の銅に対して、5~100倍(mol/mol)程度とすることが好ましい。 Further, the addition amount of the magnesium compound is such that copper, fluorine and phosphorus in the raw water can be sufficiently reduced by the reactions of the above formulas (5), (6), (7) and (9). Usually, it is preferably about 5 to 100 times (mol / mol) with respect to complex copper.
 また、第2工程における反応のpHは9~13、好ましくは10~12とする。従って、第1工程の処理水に必要に応じてアルカリ剤を添加してpH調整する。なお、マグネシウム化合物、カルシウム化合物としてアルカリ性のものを用いる場合、アルカリ剤を兼ねることができる。 Also, the pH of the reaction in the second step is 9 to 13, preferably 10 to 12. Accordingly, the pH is adjusted by adding an alkaline agent to the treated water in the first step as necessary. In addition, when using an alkaline thing as a magnesium compound and a calcium compound, it can serve as an alkali agent.
 本発明において、第1工程の処理水にカルシウム化合物とマグネシウム化合物を添加してpH9~13で反応させることにより不溶化物を生成させ、この不溶化物を固液分離する第2工程は、1段処理で行ってもよく、2段処理で行ってもよい。第2工程を2段処理とする場合は、第1工程の処理水にカルシウム化合物を添加し、pH6~10で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する前段工程と、この前段工程の処理水(固液分離水)にマグネシウム化合物を添加し、pH9~13、好ましくはpH10~12で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する後段工程とを行う。 In the present invention, the second step of adding a calcium compound and a magnesium compound to the treated water in the first step and reacting at pH 9 to 13 to produce an insolubilized product and separating the insolubilized product into a solid and liquid is a one-stage treatment. It may be performed in two steps. In the case where the second step is a two-stage treatment, a calcium ion is added to the treated water of the first step, and an insolubilized product is generated by reacting at pH 6 to 10, and the insolubilized product is solid-liquid separated. Then, a magnesium compound is added to the treated water (solid-liquid separation water) in the preceding step, and an insolubilized product is generated by reacting at pH 9-13, preferably pH 10-12, and the insolubilized product is solid-liquid separated. And do.
 2段処理を行う場合、前段工程で、第1工程の処理水にカルシウム化合物を添加し、pH6~10で反応させることにより不溶化物を生成させ、該不溶化物を固液分離することで、銅、フッ素、リンが低減した処理水を得る。
 この前段工程では、前記式(2)、(8)、(10)の反応により、銅イオン、フッ化物イオン、リン酸イオンを不溶化し、銅、フッ素、リンを粗取りすることができる。このような2段処理を行うことにより、後段工程で使用するマグネシウム化合物の使用量をさらに低減することができる。
When performing a two-stage treatment, an insolubilized product is generated by adding a calcium compound to the treated water of the first step and reacting at a pH of 6 to 10 in the previous step, and the insolubilized product is separated into solid and liquid. Treated water with reduced fluorine and phosphorus is obtained.
In the preceding step, copper ions, fluoride ions, and phosphate ions can be insolubilized and the copper, fluorine, and phosphorus can be roughly removed by the reactions of the formulas (2), (8), and (10). By performing such a two-stage process, the amount of magnesium compound used in the latter stage process can be further reduced.
 2段処理を行う場合の前段工程で添加するカルシウム化合物の添加量についても、前述の通り、第1工程の処理水中のフッ化物イオンとリン酸イオンの反応当量(第1工程でアルカリ剤としてカルシウム化合物を添加しない場合は、この反応当量は、原水中のフッ化物イオンとリン酸イオンの反応当量と等しくなる。)の合計よりもカルシウム濃度として20~2000mg/L過剰、特に50~500mg/L過剰とすることが好ましい。また、前段工程の反応pHは6~10の範囲において、フッ化物イオンの除去を優先する場合はpH6~7、銅イオン及びリン酸イオンの除去を優先する場合はpH8~10とすることが好ましい。従って、前段工程では必要に応じて、硫酸(HSO)、塩酸(HCl)等の酸を添加してpH調整する場合もある。 As described above, the addition amount of the calcium compound added in the preceding step when performing the two-step treatment is also equivalent to the reaction equivalent of fluoride ions and phosphate ions in the treated water in the first step (calcium as an alkali agent in the first step). When no compound is added, this reaction equivalent is equal to the reaction equivalent of fluoride ions and phosphate ions in the raw water.) More than 20 to 2000 mg / L, especially 50 to 500 mg / L as the calcium concentration. An excess is preferred. Further, the reaction pH in the previous step is preferably in the range of 6 to 10, preferably pH 6 to 7 when priority is given to removal of fluoride ions, and pH 8 to 10 when priority is given to removal of copper ions and phosphate ions. . Accordingly, in the previous step, the pH may be adjusted by adding an acid such as sulfuric acid (H 2 SO 4 ) or hydrochloric acid (HCl) as necessary.
 また、前段工程では、凝集助剤として、塩化第二鉄、ポリ鉄、ポリ塩化アルミニウム(PAC)、硫酸バンドなどを使用しても良く、特に、フッ素除去を優先する場合は、ポリ塩化アルミニウム、硫酸バンドなどのアルミニウム化合物を20~500mg/L程度添加し、pH6~7で反応を行うのが好ましい。 In the preceding step, ferric chloride, polyiron, polyaluminum chloride (PAC), sulfuric acid band or the like may be used as an agglomeration aid. In particular, when priority is given to fluorine removal, polyaluminum chloride, It is preferable to add about 20 to 500 mg / L of an aluminum compound such as a sulfuric acid band and perform the reaction at pH 6 to 7.
 図1は、第2工程を1段処理で行う処理装置を示し、第1反応槽1からの処理水は、第2反応槽2において、CaCl等のカルシウム化合物と、MgCl等のマグネシウム化合物と必要に応じてNaOH等のアルカリ剤が添加され、pH9~13、好ましくはpH10~12の条件で処理され、生成した不溶化物を含む反応液は、次いで凝集槽3に送給され、高分子凝集剤の添加で凝集処理され、凝集処理水は沈殿槽4で固液分離され、分離水が処理水として取り出される。 FIG. 1 shows a treatment apparatus that performs the second step in a single-stage treatment, and treated water from the first reaction tank 1 is a calcium compound such as CaCl 2 and a magnesium compound such as MgCl 2 in the second reaction tank 2. Then, an alkali agent such as NaOH is added if necessary, and the reaction solution containing the insolubilized product produced is treated under the conditions of pH 9 to 13, preferably pH 10 to 12, and then fed to the agglomeration tank 3 to form a polymer. The agglomeration treatment is performed by adding a flocculant, and the agglomerated water is solid-liquid separated in the settling tank 4 and the separated water is taken out as treated water.
 この1段処理において、反応時間は通常5~60分程度とすることが好ましく、従って第2反応槽2のHRT(槽内滞留時間)が上記範囲となるように設計することが好ましい。
 また、凝集槽3で添加する高分子凝集剤としてはアニオン系、ノニオン系、カチオン系のいずれでもよいが、アニオン系高分子凝集剤を用いることが好ましく、その添加量は1~30mg/L程度とすることが好ましい。
 沈殿槽4の処理条件には特に制限はないが、通水LVは1~5m/h程度が好ましい。
In this one-stage treatment, the reaction time is usually preferably about 5 to 60 minutes. Therefore, it is preferable to design the HRT (residence time in the tank) of the second reaction tank 2 to be in the above range.
The polymer flocculant added in the flocculation tank 3 may be any of anionic, nonionic, and cationic, but anionic polymer flocculant is preferably used, and the amount added is about 1 to 30 mg / L. It is preferable that
There are no particular restrictions on the treatment conditions of the settling tank 4, but the water flow LV is preferably about 1 to 5 m / h.
 図2は、第2工程を2段処理で行う処理装置を示し、第1反応槽1からの処理水は、第2-1反応槽2Aにおいて、HSO等の酸と、CaCl等のカルシウム化合物と、PAC等の凝集助剤が添加され、pH6~10、好ましくはpH6~7又はpH8~10の条件で処理され、生成した不溶化物を含む反応液は、次いで第1凝集槽3Aに送給され、高分子凝集剤の添加で凝集処理され、凝集処理水は第1沈殿槽4Aで固液分離される。第1沈殿槽4Aの処理水(分離水)は、次いで第2-2反応槽2Bにおいて、MgCl等のマグネシウム化合物と必要に応じてNaOH等のアルカリ剤が添加され、pH9~13、好ましくはpH10~12の条件で処理され、生成した不溶化物を含む反応液は、次いで第2凝集槽3Bに送給され、高分子凝集剤の添加で凝集処理され、凝集処理水は第2沈殿槽4Bで固液分離され、分離水が処理水として取り出される。 FIG. 2 shows a treatment apparatus that performs the second step in a two-stage process. The treated water from the first reaction tank 1 is treated with acid such as H 2 SO 4 , CaCl 2, etc. in the 2-1 reaction tank 2A. The reaction mixture containing the calcium compound and PAC and other agglomeration aids such as PAC and treated under the conditions of pH 6 to 10, preferably pH 6 to 7 or pH 8 to 10, and the insolubilized product thus produced is then added to the first agglomeration tank 3A. And the agglomeration treatment is performed by adding a polymer flocculant, and the agglomeration treatment water is solid-liquid separated in the first settling tank 4A. The treated water (separated water) in the first settling tank 4A is then added with a magnesium compound such as MgCl 2 and an alkali agent such as NaOH as required in the 2-2 reaction tank 2B, and has a pH of 9 to 13, preferably The reaction solution containing the insolubilized material that has been processed under the conditions of pH 10 to 12 is then fed to the second flocculation tank 3B, where it is flocculated by the addition of the polymer flocculant, and the flocculated water is the second settling tank 4B. And the separated water is taken out as treated water.
 この2段処理において、前段工程の反応時間は通常5~60分程度とすることが好ましく、従って第2-1反応槽2AのHRT(槽内滞留時間)が上記範囲となるように設計することが好ましい。
 また、第1凝集槽3Aで添加する高分子凝集剤としてはアニオン系、ノニオン系、カチオン系のいずれでもよいが、アニオン系高分子凝集剤を用いることが好ましく、その添加量は1~10mg/L程度とすることが好ましい。
 第1沈殿槽4Aの処理条件には特に制限はないが、通水LVは1~5m/h程度が好ましい。
In this two-stage treatment, the reaction time in the first-stage process is usually preferably about 5 to 60 minutes, and accordingly, the HRT (residence time in the tank) of the 2-1 reaction tank 2A should be designed within the above range. Is preferred.
The polymer flocculant added in the first flocculating tank 3A may be any of anionic, nonionic, and cationic, but anionic polymer flocculants are preferably used, and the addition amount is 1 to 10 mg / kg. It is preferable to set it to about L.
There are no particular restrictions on the treatment conditions of the first settling tank 4A, but the water flow LV is preferably about 1 to 5 m / h.
 また、後段工程の反応時間は、通常5~60分程度とすることが好ましく、従って第2-2反応槽2BのHRT(槽内滞留時間)が上記範囲となるように設計することが好ましい。
 また、第2凝集槽3Bで添加する高分子凝集剤としてはアニオン系、ノニオン系、カチオン系のいずれでもよいが、アニオン系高分子凝集剤を用いることが好ましく、その添加量は1~30mg/L程度とすることが好ましい。
 第2沈殿槽4Bの処理条件には特に制限はないが、通水LVは1~5m/h程度が好ましい。
Further, the reaction time in the subsequent step is usually preferably about 5 to 60 minutes, and therefore, it is preferable to design the HRT (residence time in the tank) of the 2-2 reaction tank 2B within the above range.
The polymer flocculant added in the second flocculating tank 3B may be any of anionic, nonionic, and cationic, but an anionic polymer flocculant is preferably used, and the addition amount is 1 to 30 mg / It is preferable to set it to about L.
There are no particular restrictions on the treatment conditions of the second sedimentation tank 4B, but the water flow LV is preferably about 1 to 5 m / h.
 このような第2工程を行うことにより、処理水中のCu、F、Pは、それぞれ、0.1~1mg-Cu/L、0.5~8mg-F/L、0.1~1mg-P/L程度に低減される。 By performing the second step, Cu, F, and P in the treated water are 0.1 to 1 mg-Cu / L, 0.5 to 8 mg-F / L, and 0.1 to 1 mg-P, respectively. / L or so.
<前処理工程>
 本発明においては、原水をpH調整して、過酸化水素の分解除去を行う第1工程に先立ち、原水にアルミニウム化合物を添加してpH1~4で反応させる前処理工程を行ってもよい。このような前処理工程は、原水中にホウフッ化物が含まれる場合に有効であり、原水にアルミニウム化合物を添加してpH1~4で反応させることにより、原水中のホウフッ化物を分解し、ホウフッ化物由来のフッ素を第2工程で除去することができる。
<Pretreatment process>
In the present invention, prior to the first step of adjusting the pH of the raw water and decomposing and removing hydrogen peroxide, a pretreatment step of adding an aluminum compound to the raw water and reacting at pH 1 to 4 may be performed. Such a pretreatment step is effective when borofluoride is contained in the raw water. By adding an aluminum compound to the raw water and reacting at pH 1 to 4, the borofluoride in the raw water is decomposed and borofluoride is obtained. The derived fluorine can be removed in the second step.
 この前処理工程では、原水中のホウフッ化物を下記式(11)の反応により分解し、更に、生成したフッ化アルミニウムを、第2工程で、下記式(12)の反応により不溶化することができる。
  3HBF + 2Al3+ + 9HO 
   → 2AlF 3- + 3HBO + 12H  …(11)
  2AlF 3- + 3Ca2+ + 3OH 
        → 3CaF + Al(OH)     …(12)
In this pretreatment step, borofluoride in raw water can be decomposed by the reaction of the following formula (11), and the generated aluminum fluoride can be insolubilized by the reaction of the following formula (12) in the second step. .
3HBF 4 + 2Al 3+ + 9H 2 O
→ 2AlF 6 3− + 3H 3 BO 3 + 12H + (11)
2AlF 6 3- + 3Ca 2+ + 3OH
→ 3CaF 2 + Al (OH) 3 (12)
 前処理工程で添加するアルミニウム化合物としては、塩化アルミニウム、ポリ塩化アルミニウム(PAC)、硫酸バンドなどの1種又は2種以上を用いることができる。
 アルミニウム化合物の添加量としては、原水中のホウフッ化物の反応当量以上であればよく、例えば、原水中のフッ素に対してAl/F=1~20mol/molとすることが好ましい。
 なお、原水が銅エッチング廃液である場合、銅エッチング廃液は通常1~4程度であるため特にpH調整の必要はないが、pHが4を超える場合には、適宜硫酸(HSO)、塩酸(HCl)等の酸を添加してpH1~4、特に1.5~2.5程度にpH調整することが好ましい。
 この前処理工程の反応時間は、0.5~5時間程度とすることが好ましい。
As the aluminum compound to be added in the pretreatment step, one or more of aluminum chloride, polyaluminum chloride (PAC), sulfuric acid band and the like can be used.
The amount of the aluminum compound added may be equal to or more than the reaction equivalent of borofluoride in the raw water. For example, Al / F = 1 to 20 mol / mol with respect to fluorine in the raw water is preferable.
Note that when the raw water is a copper etching waste liquid, the copper etching waste liquid is usually about 1 to 4 and thus pH adjustment is not necessary. However, when the pH exceeds 4, sulfuric acid (H 2 SO 4 ), It is preferable to adjust the pH to about 1 to 4, particularly about 1.5 to 2.5 by adding an acid such as hydrochloric acid (HCl).
The reaction time in this pretreatment step is preferably about 0.5 to 5 hours.
 図3は、図2の処理装置にこのような前処理工程を行うための前処理槽5を設けた処理装置を示すものであり、pH調整槽1の前段に、原水にPAC等のアルミニウム化合物を添加すると共に、必要に応じてHSO等の酸を添加して反応させる前処理槽5を設け、この前処理槽5の処理水を第1反応槽1に送給するようにしたこと以外は図2の処理装置と同様の構成とされている。 FIG. 3 shows a treatment apparatus in which the pretreatment tank 5 for performing such a pretreatment step is provided in the treatment apparatus of FIG. 2, and an aluminum compound such as PAC is added to the raw water before the pH adjustment tank 1. And, if necessary, a pretreatment tank 5 for reacting with an acid such as H 2 SO 4 is provided, and the treated water in this pretreatment tank 5 is fed to the first reaction tank 1. Except for this, the configuration is the same as that of the processing apparatus of FIG.
 図1に示す処理装置においても、同様に第1反応槽1の前段にこのような前処理槽5を設けることができる。 In the processing apparatus shown in FIG. 1, such a pretreatment tank 5 can be similarly provided in the front stage of the first reaction tank 1.
<その他の処理工程>
 本発明においては、前述の各処理工程同士の間、又は前段、又は後段に、前述の処理工程以外の工程を有していてもよい。
 例えば、原水が窒素化合物を含む場合には、第2工程の処理水を更に硝化及び脱窒処理する工程を設けてもよく、硝化脱窒工程を設けることにより、第2工程の処理水中に残留する窒素化合物を分解除去して処理水の水質をより一層高めることができる。
 また、本発明において、固液分離手段としては沈殿槽に限らず、膜分離装置や浮上分離槽などを用いることもできる。
<Other processing steps>
In this invention, you may have processes other than the above-mentioned process process between each process process mentioned above, or the front | former stage or a back | latter stage.
For example, when the raw water contains a nitrogen compound, a process for further nitrification and denitrification treatment of the treated water in the second step may be provided. By providing the nitrification denitrification step, it remains in the treated water of the second step. The quality of treated water can be further improved by decomposing and removing nitrogen compounds.
In the present invention, the solid-liquid separation means is not limited to a precipitation tank, and a membrane separation device, a floating separation tank, or the like can also be used.
 以下に本発明例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention and comparative examples.
[実施例1、2]
 原水として下記表1に示す水質の銅エッチング廃水を用い、図1に示す装置で処理を行った。なお、高分子凝集剤としては、栗田工業(株)製アニオン系高分子凝集剤「クリフロックPA331」を用いた。
 各槽の処理条件を表2に示す。また得られた処理水の水質と原水1L当たりの汚泥発生量を表4に示す。
[Examples 1 and 2]
Using raw water copper etching wastewater shown in Table 1 below, treatment was performed with the apparatus shown in FIG. As the polymer flocculant, an anionic polymer flocculant “Cliff Rock PA331” manufactured by Kurita Kogyo Co., Ltd. was used.
Table 2 shows the treatment conditions for each tank. Table 4 shows the quality of the treated water and the amount of sludge generated per liter of raw water.
 なお、原水のフッ化物イオンとリン酸イオンの反応当量の合計に対応するCaCl量は78mg-Ca/Lであり、400mg-Ca/Lの添加は、反応当量に対して322mg-Ca/L過剰量となる。 The amount of CaCl 2 corresponding to the total reaction equivalent of fluoride ions and phosphate ions of raw water is 78 mg-Ca / L, and the addition of 400 mg-Ca / L is 322 mg-Ca / L relative to the reaction equivalent. Excessive amount.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[比較例1、2]
 実施例1,2において、第2反応槽にCaClを添加しなかったこと以外はそれぞれ同様に処理を行った。
 各槽の処理条件を表2に示す。また得られた処理水の水質と原水1L当たりの汚泥発生量を表4に示す。
[Comparative Examples 1 and 2]
In Examples 1 and 2, the same treatment was performed except that CaCl 2 was not added to the second reaction tank.
Table 2 shows the treatment conditions for each tank. Table 4 shows the quality of the treated water and the amount of sludge generated per liter of raw water.
[比較例3]
 比較例1,2において、CaClを添加することなくMgClのみの添加で処理水のCu濃度1mg/L以下を達成する処理を行った。
 各槽の処理条件を表2に示す。また得られた処理水の水質と原水1L当たりの汚泥発生量を表4に示す。
[Comparative Example 3]
In Comparative Examples 1 and 2, a treatment for achieving a Cu concentration of 1 mg / L or less in treated water by adding only MgCl 2 without adding CaCl 2 was performed.
Table 2 shows the treatment conditions for each tank. Table 4 shows the quality of the treated water and the amount of sludge generated per liter of raw water.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例3、4]
 原水として前記表1に示す水質の銅エッチング廃水を用い、図2に示す装置で処理を行った。なお、高分子凝集剤としては、栗田工業(株)製アニオン系高分子凝集剤「クリフロックPA331」を用いた。
 各槽の処理条件を表3に示す。また得られた処理水の水質と原水1L当たりの汚泥発生量を表4に示す。
[Examples 3 and 4]
Using the water-quality copper etching wastewater shown in Table 1 as raw water, treatment was performed with the apparatus shown in FIG. As the polymer flocculant, an anionic polymer flocculant “Cliff Rock PA331” manufactured by Kurita Kogyo Co., Ltd. was used.
Table 3 shows the treatment conditions for each tank. Table 4 shows the quality of the treated water and the amount of sludge generated per liter of raw water.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、本発明によれば、有機物と錯体を形成する銅イオンを含む銅エッチング廃水に、さらにフッ化物イオンやリン酸イオンが含まれる場合も、マグネシウム化合物の添加量及びそれに由来する発生汚泥量を過度に増加することなく、処理水の銅、フッ素、リンをより低濃度まで処理可能であり、安定した水質を得ることができた。 As is apparent from Table 4, according to the present invention, the amount of magnesium compound added and the copper etching wastewater containing copper ions that form a complex with an organic substance, even when fluoride ions and phosphate ions are further contained Without excessively increasing the amount of generated sludge derived, it was possible to treat copper, fluorine and phosphorus in the treated water to a lower concentration, and a stable water quality could be obtained.
 1 第1反応槽
 2 第2反応槽
 2A 第2-1反応槽
 2B 第2-2反応槽
 3 凝集槽
 3A 第1凝集槽
 3B 第2凝集槽
 4 沈殿槽
 4A 第1沈殿槽
 4B 第2沈殿槽
 5 前処理槽
DESCRIPTION OF SYMBOLS 1 1st reaction tank 2 2nd reaction tank 2A 2-1 reaction tank 2B 2nd-2 reaction tank 3 Coagulation tank 3A 1st aggregation tank 3B 2nd aggregation tank 4 Sedimentation tank 4A 1st sedimentation tank 4B 2nd sedimentation tank 5 Pretreatment tank

Claims (10)

  1.  有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水を処理する方法において、
     該廃水をpH4以上に調整する第1工程と、
     該第1工程の処理水に、カルシウム化合物とマグネシウム化合物を添加し、pH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する第2工程とを有することを特徴とする銅含有廃水の処理方法。
    In a method for treating a copper-containing wastewater containing an organic substance, a copper ion that forms a complex with the organic substance, a fluoride ion, a phosphate ion, and hydrogen peroxide,
    A first step of adjusting the wastewater to pH 4 or higher;
    A second step of adding a calcium compound and a magnesium compound to the treated water of the first step and reacting at pH 9 to 13 to form an insolubilized product and separating the insolubilized product into a solid-liquid separation. To treat copper-containing wastewater.
  2.  前記第2工程は、前記第1工程の処理水にカルシウム化合物を添加し、pH6~10で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する前段工程と、
     該前段工程の処理水にマグネシウム化合物を添加し、pH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する後段工程とを有することを特徴とする請求項1に記載の銅含有廃水の処理方法。
    The second step includes adding a calcium compound to the treated water of the first step and generating an insolubilized product by reacting at a pH of 6 to 10, and solid-liquid separation of the insolubilized product,
    2. A subsequent step of adding a magnesium compound to the treated water of the preceding step and reacting at pH 9 to 13 to generate an insolubilized product, and separating the insolubilized product by solid-liquid separation. Treatment method for copper-containing wastewater.
  3.  前記第1工程に先立ち、前記廃水にアルミニウム化合物を添加し、pH1~4で反応させる前処理工程を有することを特徴とする請求項1又は2に記載の銅含有廃水の処理方法。 The method for treating copper-containing wastewater according to claim 1 or 2, further comprising a pretreatment step in which an aluminum compound is added to the wastewater and reacted at pH 1 to 4 prior to the first step.
  4.  前記第2工程において、前記カルシウム化合物を、前記第1工程の処理水中のフッ化物イオンとリン酸イオンの反応当量よりも20~2000mg-Ca/L過剰となるように添加することを特徴とする請求項1乃至3のいずれか1項に記載の銅含有廃水の処理方法。 In the second step, the calcium compound is added so that the reaction amount of fluoride ion and phosphate ion in the treated water in the first step is 20 to 2000 mg-Ca / L excess. The processing method of the copper containing wastewater of any one of Claims 1 thru | or 3.
  5.  前記第2工程の処理水を硝化及び脱窒処理する硝化脱窒工程を有することを特徴とする請求項1乃至4のいずれか1項に記載の銅含有廃水の処理方法。 The method for treating copper-containing wastewater according to any one of claims 1 to 4, further comprising a nitrification / denitrification step of nitrifying and denitrifying the treated water in the second step.
  6.  有機物と、該有機物と錯体を形成する銅イオンと、フッ化物イオンと、リン酸イオンと、過酸化水素とを含む銅含有廃水を処理する装置において、
     該廃水をpH4以上に調整する第1の処理手段と、
     該第1の処理手段の処理水に、カルシウム化合物とマグネシウム化合物を添加し、pH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する第2の処理手段とを有することを特徴とする銅含有廃水の処理装置。
    In an apparatus for treating a copper-containing wastewater containing an organic substance, a copper ion that forms a complex with the organic substance, a fluoride ion, a phosphate ion, and hydrogen peroxide,
    First treatment means for adjusting the wastewater to pH 4 or higher;
    And adding a calcium compound and a magnesium compound to the treated water of the first treatment means and reacting at pH 9 to 13 to produce an insolubilized product, and a second treating means for solid-liquid separation of the insolubilized product. An apparatus for treating copper-containing wastewater.
  7.  前記第2の処理手段は、前記第1の処理手段の処理水にカルシウム化合物を添加し、pH6~10で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する前段手段と、
     該前段手段の処理水にマグネシウム化合物を添加し、pH9~13で反応させることにより不溶化物を生成させ、該不溶化物を固液分離する後段手段とを有することを特徴とする請求項6に記載の銅含有廃水の処理装置。
    The second treatment means includes a pre-stage means for adding a calcium compound to the treated water of the first treatment means and reacting at pH 6 to 10 to generate an insolubilized product, and separating the insolubilized product into a solid-liquid separation;
    7. The method according to claim 6, further comprising: a latter-stage means for adding a magnesium compound to the treated water of the former-stage means and reacting at pH 9 to 13 to generate an insolubilized product, and separating the insolubilized product into a solid-liquid separation. Treatment equipment for copper-containing wastewater.
  8.  前記第1の処理手段の前段に、前記廃水にアルミニウム化合物を添加し、pH1~4で反応させる前処理手段を有することを特徴とする請求項6又は7に記載の銅含有廃水の処理装置。 The copper-containing wastewater treatment apparatus according to claim 6 or 7, further comprising pretreatment means for adding an aluminum compound to the wastewater and causing the reaction at a pH of 1 to 4 before the first treatment means.
  9.  前記第2の処理手段において、前記カルシウム化合物を、前記第1の処理手段の処理水中のフッ化物イオンとリン酸イオンの反応当量よりも20~2000mg-Ca/L過剰となるように添加することを特徴とする請求項6乃至8のいずれか1項に記載の銅含有廃水の処理装置。 In the second treatment means, the calcium compound is added so as to be in excess of 20 to 2000 mg-Ca / L than the reaction equivalent of fluoride ions and phosphate ions in the treated water of the first treatment means. The treatment apparatus for copper-containing wastewater according to any one of claims 6 to 8.
  10.  前記第2の処理手段の処理水を硝化及び脱窒処理する硝化脱窒手段を有することを特徴とする請求項6乃至9のいずれか1項に記載の銅含有廃水の処理装置。 The copper-containing wastewater treatment apparatus according to any one of claims 6 to 9, further comprising nitrification / denitrification means for nitrifying and denitrifying the treated water of the second treatment means.
PCT/JP2014/060388 2014-04-10 2014-04-10 Copper-containing wastewater treatment method and treatment device WO2015155866A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480077124.8A CN106103354B (en) 2014-04-10 2014-04-10 The processing method and processing unit of copper-containing wastewater
PCT/JP2014/060388 WO2015155866A1 (en) 2014-04-10 2014-04-10 Copper-containing wastewater treatment method and treatment device
KR1020167027079A KR101918832B1 (en) 2014-04-10 2014-04-10 Copper-containing wastewater treatment method and treatment device
SG11201607850WA SG11201607850WA (en) 2014-04-10 2014-04-10 Copper-containing wastewater treatment method and treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060388 WO2015155866A1 (en) 2014-04-10 2014-04-10 Copper-containing wastewater treatment method and treatment device

Publications (1)

Publication Number Publication Date
WO2015155866A1 true WO2015155866A1 (en) 2015-10-15

Family

ID=54287467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060388 WO2015155866A1 (en) 2014-04-10 2014-04-10 Copper-containing wastewater treatment method and treatment device

Country Status (4)

Country Link
KR (1) KR101918832B1 (en)
CN (1) CN106103354B (en)
SG (1) SG11201607850WA (en)
WO (1) WO2015155866A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105400956A (en) * 2015-10-29 2016-03-16 赣州腾远钴业有限公司 Treatment method for fluorine-containing and phosphorus-containing wastewater generated during recycling of lithium ion batteries
CN108723384A (en) * 2018-05-26 2018-11-02 烟台大学 A kind of preparation method of copper-containing wastewater recycling copper nanoparticle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202461A (en) * 1999-01-11 2000-07-25 Kurita Water Ind Ltd Treatment of heavy metal complex-containing waste liquid
JP2009001856A (en) * 2007-06-21 2009-01-08 Seiren Co Ltd Water treatment technique
JP2012055825A (en) * 2010-09-08 2012-03-22 Kurita Water Ind Ltd Method for treatment of copper etching waste liquid
JP2012106226A (en) * 2010-10-29 2012-06-07 Mitsubishi Materials Corp Method and apparatus for treating harmful substance-containing water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482461B2 (en) * 2010-05-31 2014-05-07 住友金属鉱山株式会社 Method for recovering copper from copper electrolysis waste liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202461A (en) * 1999-01-11 2000-07-25 Kurita Water Ind Ltd Treatment of heavy metal complex-containing waste liquid
JP2009001856A (en) * 2007-06-21 2009-01-08 Seiren Co Ltd Water treatment technique
JP2012055825A (en) * 2010-09-08 2012-03-22 Kurita Water Ind Ltd Method for treatment of copper etching waste liquid
JP2012106226A (en) * 2010-10-29 2012-06-07 Mitsubishi Materials Corp Method and apparatus for treating harmful substance-containing water

Also Published As

Publication number Publication date
KR101918832B1 (en) 2018-11-14
KR20160137561A (en) 2016-11-30
SG11201607850WA (en) 2016-11-29
CN106103354B (en) 2019-06-04
CN106103354A (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2015198438A1 (en) Method and device for treating fluoride-containing water
JP5692278B2 (en) Method and apparatus for treating fluoride-containing water
JP5628704B2 (en) Treatment method of electroless nickel plating waste liquid
WO2015155866A1 (en) Copper-containing wastewater treatment method and treatment device
JP4572812B2 (en) Fluorine-containing water treatment method
JP2007301456A (en) Treatment method and treatment apparatus of boron containing waste water
US10550026B2 (en) Method for treating ammonia-containing water
JP2006218354A (en) Method for treating fluorine-containing waste water
JP5720722B2 (en) Method and apparatus for treating water containing hardly biodegradable organic matter
CN105600977A (en) Treating method for waste water contaning fluoroboric acid produced in etch process
KR101285931B1 (en) Hybride map waste water treatment system
JP6467651B2 (en) Method for producing aluminum compound solution
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JP2010089051A (en) Method and apparatus for treating water containing phosphoric acid, nitric acid and organic acid
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4525601B2 (en) Treatment method for fluorine-containing wastewater
JP2598456B2 (en) Treatment method for phosphate-containing water
JP4631420B2 (en) Fluorine-containing water treatment method
JP2002346574A (en) Boron-containing water treatment method
JP7240577B2 (en) Method for treating etching wastewater containing copper ions and water-soluble organic substances
JP4525602B2 (en) Treatment method for fluorine-containing wastewater
JP2016163857A (en) Treatment method and treatment system for borofluoride-containing waste water
JPH10180266A (en) Treatment of waste liquid of electroless nickel plating
JP2001070951A (en) Method for treating phosphorus-containing water
JP2005305384A (en) Method and apparatus for treating fluorine-containing wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167027079

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP