WO2015154389A1 - 光收发模块及其工作参数的配置方法及装置 - Google Patents

光收发模块及其工作参数的配置方法及装置 Download PDF

Info

Publication number
WO2015154389A1
WO2015154389A1 PCT/CN2014/087126 CN2014087126W WO2015154389A1 WO 2015154389 A1 WO2015154389 A1 WO 2015154389A1 CN 2014087126 W CN2014087126 W CN 2014087126W WO 2015154389 A1 WO2015154389 A1 WO 2015154389A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
transceiver module
electro
photoelectric conversion
Prior art date
Application number
PCT/CN2014/087126
Other languages
English (en)
French (fr)
Inventor
匡国华
朱松林
李明生
郭勇
付志明
印永嘉
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015154389A1 publication Critical patent/WO2015154389A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the present invention relates to the field of communications, and in particular to an optical transceiver module and a method and apparatus for configuring the operating parameters thereof.
  • Passive optical network technology has experienced many years of development, and currently presents a variety of technologies coexisting, with the passive optical network (Passive Optical Network, PON for short) access-led situation.
  • PtP point-to-point continuous mode
  • EPON Ethernet Passive Optical Network
  • PtMP point-to-multipoint burst mode
  • WDM Wavelength Division Multiplexing
  • an optical module is used as a carrier for transmission between unbounded optical network devices, and the transmitting end converts the electrical signal into an optical signal, and after transmitting through the optical fiber, the receiving end converts the optical signal into an electrical signal.
  • the optical module is usually composed of an optoelectronic device, a functional circuit, an optical interface, and the like, and the optoelectronic device includes two parts, a transmitting and receiving.
  • the transmitting part is: an electric signal inputting a certain code rate is driven by an internal driving chip to drive a semiconductor laser (LD) or a light emitting diode (LED) to emit a modulated light signal of a corresponding rate, and generally, an optical power automatic control circuit is provided therein. To keep the output optical signal power stable.
  • the receiving part is: the optical signal of a certain code rate is input into the optical module and then converted into an electrical signal by the photodetector, and the electrical signal of the corresponding code rate is outputted through the preamplifier.
  • the optical module includes a light receiving module, an optical transmitting module, an optical transceiver module, and an optical forwarding module.
  • the light receiving module is configured to receive an optical signal, perform photoelectric conversion on the optical signal, and convert the optical signal into an electrical signal.
  • the optical transmitting module is configured to send an optical signal, perform electrical and optical conversion on the electrical signal, and convert the electrical signal into an optical signal.
  • the optical transceiver module also referred to as an optical transceiver module, is used for photoelectric conversion and electro-optical conversion to receive and transmit optical signals and electrical signals.
  • the optical module in the related art can only work in a fixed working parameter.
  • Common working parameters include, work rate, Work mode, etc.
  • the optical module in the related art works in a fixed working parameter, and the working parameters required for the optical signal and electrical signal processing of different users are different. Therefore, the optical module in the related art cannot be compatible with multiple users at the same time.
  • the optical module is a single channel, that is, one optical module has only one photoelectric conversion channel or one electro-optical conversion unit.
  • a plurality of single-channel optical modules are stacked, that is, multiple single-channel optical modules are used at the same time, and multiple channels are composed of a single channel of multiple single-channel optical modules.
  • each single-channel optical module has a physical interface and multiple channels are composed of multiple single-channel optical modules, the number of physical interfaces is large.
  • the present invention provides an optical transceiver module and a method and a device for configuring the working parameters thereof to solve at least the above problems, because the optical transceiver module works in a fixed working parameter in the related art, and the optical transceiver module cannot be compatible with multiple users. .
  • an optical transceiver module includes: a controller, a photoelectric conversion unit including at least one photoelectric conversion channel, and an electro-optical conversion unit including at least one electro-optical conversion channel, wherein the controller, Connected to the photoelectric conversion unit and the electro-optic conversion unit, configured to configure operating parameters of the photoelectric conversion unit and the electro-optic conversion unit; the operating parameters include at least one of: working rate, number of channels, and operation a mode, wherein the working mode includes a continuous mode and a burst mode; the photoelectric switching unit is configured to perform photoelectric conversion according to the operating parameter; the electro-optical conversion unit is configured to perform electro-optical conversion according to the operating parameter .
  • the controller is configured to configure the working parameter in response to a command of the device where the optical transceiver module is located, where the command carries information of the working parameter.
  • each of the photoelectric conversion channels includes: a photodetector configured to convert an optical signal into a photocurrent; a transimpedance amplifier coupled to the photodetector and the controller to operate in the continuous mode Or the burst mode, configured to convert the photocurrent into a voltage signal according to the operating parameter; a limiting amplifier coupled to the transimpedance amplifier to operate in the continuous mode or the burst mode, It is set to perform a limiting amplification process on the voltage signal.
  • each of the photoelectric conversion channels further includes: an electric dispersion compensation unit located between the transimpedance amplifier and the limiting amplifier, operable in the continuous mode or the burst mode, set to be The voltage signal is subjected to electrical dispersion compensation; the limiting amplifier is further configured to perform limiting and amplification processing on the voltage signal after the electrical dispersion compensation.
  • each of the photoelectric conversion channels further includes: a data fan-out unit located between the transimpedance amplifier and the limiting amplifier, configured to split the voltage signal into a first path signal and a second a road signal, wherein the first path signal is a voltage signal of a point-to-multipoint burst mode, the second path signal is a voltage signal of a point-to-point continuous mode; the limiting amplifier, and the data fan-out unit Connected, configured to perform a limiting amplification process on the first path signal.
  • a data fan-out unit located between the transimpedance amplifier and the limiting amplifier, configured to split the voltage signal into a first path signal and a second a road signal, wherein the first path signal is a voltage signal of a point-to-multipoint burst mode, the second path signal is a voltage signal of a point-to-point continuous mode; the limiting amplifier, and the data fan-out unit Connected, configured to perform a limiting amplification process on the first path signal.
  • each of the electro-optical conversion channels includes: a laser driving unit connected to the controller, configured to convert an electrical signal into a current driving signal according to the operating parameter; and a laser to be coupled to the laser driving unit Connected, configured to convert the current drive signal into an optical signal.
  • each of the electro-optical conversion channels further comprises: a clock data recovery unit connected to the input end of the laser driving unit, having a bypass function, configured to perform clock recovery on the electrical signal of a predetermined rate.
  • a clock data recovery unit connected to the input end of the laser driving unit, having a bypass function, configured to perform clock recovery on the electrical signal of a predetermined rate.
  • the laser comprises at least one of: a Distributed Feed Back (DFB) laser, and an Electro-absorption Modulated Laser (EML).
  • DFB Distributed Feed Back
  • EML Electro-absorption Modulated Laser
  • a method for configuring an operating parameter of an optical transceiver module including: receiving a command of a device where the optical transceiver module is located, wherein the command carries information of a working parameter, and the working parameter At least one of the following: a working rate, a number of channels, and an operating mode, wherein the working mode includes a continuous mode and a burst mode; and the operating parameters of the optical transceiver module are configured according to the command.
  • a device for configuring an operating parameter of an optical transceiver module comprising: a receiving module, configured to receive a command of a device where the optical transceiver module is located, wherein the command carries information of the working parameter
  • the working parameter includes at least one of: a working rate, a number of channels, and an operating mode, wherein the working mode includes a continuous mode and a burst mode; and a configuration module configured to configure the optical transceiver module according to the command Working parameters.
  • the controller configures the working parameters of the optical transceiver module, so that the optical transceiver module can be compatible with different scenarios.
  • the problem of excessive physical ports caused by stacking of single-channel optical modules can be avoided.
  • FIG. 1 is a block diagram showing the structure of an optical transceiver module according to an embodiment of the present invention
  • FIG. 2 is a system architecture diagram of a passive optical network according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of an optical transceiver module according to an embodiment of the invention.
  • FIG. 4 is a block diagram showing the structure of a single-channel optical transceiver module according to an embodiment of the present invention.
  • FIG. 5 is a structural block diagram of another single-channel optical transceiver module according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a four-channel optical transceiver module according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for configuring an operating parameter of an optical transceiver module according to an embodiment of the present invention
  • FIG. 8 is a structural block diagram of an apparatus for configuring an optical transceiver module operating parameter according to an embodiment of the present invention.
  • the optical transceiver module includes: a controller 102, a photoelectric conversion unit 104 including at least one photoelectric conversion channel, and at least one electro-optical conversion channel.
  • the electro-optic conversion unit 106 wherein the controller 102 is connected to the photoelectric conversion unit 104 and the electro-optical conversion unit 106, and is configured to configure the operational parameters of the photoelectric conversion unit 104 and the electro-optic conversion unit 106; the photoelectric conversion unit 104 is configured to The operating parameters are photoelectrically converted; the electro-optical conversion unit 106 is configured to perform electro-optic conversion according to operating parameters.
  • the foregoing operating parameters may include, but are not limited to, at least one of the following: an operating rate, a number of channels, and an operating mode, wherein the working modes include, but are not limited to, a continuous mode and a burst mode.
  • the operating rates of the respective photoelectric conversion channels, the operation modes of the respective photoelectric conversion channels, the photoelectric conversion channels used for photoelectric conversion, and the number of photoelectric conversion channels used for photoelectric conversion may include, but are not limited to, at least one of the following: an operating rate, a number of channels, and an operating mode, wherein the working modes include, but are not limited to, a continuous mode and a burst mode.
  • the controller 102 is configured to configure an operating parameter in response to a command of the device where the optical transceiver module is located, where the command carries information of the working parameter.
  • each photoelectric conversion channel includes: a photodetector configured to convert an optical signal into a photocurrent; a transimpedance amplifier connected to the photodetector and the controller to operate in a continuous mode Or burst mode, set to convert the photocurrent into a voltage signal according to the operating parameters; the limiting amplifier is connected to the transimpedance amplifier and can operate in continuous mode or burst mode, and is set to limit and amplify the voltage signal.
  • each of the photoelectric conversion channels may further include: an electric dispersion compensation unit, located between the transimpedance amplifier and the limiting amplifier, operable in a continuous mode or the burst mode, and configured to be The voltage signal is subjected to electrical dispersion compensation; the limiting amplifier is further configured to perform limiting and amplification processing on the voltage signal after the electrical dispersion compensation.
  • each of the photoelectric conversion channels may further include: a data fan-out unit, located between the transimpedance amplifier and the limiting amplifier, configured to split the voltage signal into the first signal and the first The two-way signal, wherein the first signal is a voltage signal of a point-to-multipoint burst mode, and the second signal is a voltage signal of a point-to-point continuous mode; the limiting amplifier is connected with the data fan-out unit, and is set to be One signal is used for limiting amplification.
  • each of the electro-optical conversion channels may include: a laser driving unit connected to the controller, configured to convert the electrical signal into a current driving signal according to the operating parameter; and the laser is coupled to the laser driving unit Connected, set to convert the current drive signal into an optical signal.
  • each of the electro-optical conversion channels may further include: a clock data recovery unit connected to the input end of the laser driving unit, having a bypass function, configured to be the predetermined rate The electrical signal is clocked.
  • the laser comprises at least one of the following: a DFB laser, an EML laser.
  • the device where the optical transceiver module is located can be any device in the passive optical network, as long as the optical signal is received and transmitted.
  • the device may include an upper layer software system, and the upper layer software system may send the above command to the controller, and the controller configures the working parameters of the photoelectric conversion unit in response to the command.
  • the above configuration may be that the controller writes a command word in a register, and the photoelectric conversion unit reads the command word from the register when performing photoelectric conversion, thereby obtaining an operating parameter of the photoelectric conversion unit, and of course, the present invention
  • the embodiment is not limited to this.
  • optical transceiver module of the embodiment of the present invention will be described below with a few examples.
  • the configuration of the optical transceiver module is implemented by software. Therefore, in the embodiment of the present invention, the optical transceiver module page configured by software is referred to as a software-defined optical transceiver module.
  • the software-defined optical transceiver module may include: an electro-optical conversion unit, a photoelectric conversion unit, a microcontroller, an optical multiplexer, and an electrical interface.
  • the optical transceiver module can work in PtP or PtMP working mode through software configuration.
  • the electro-optical conversion unit is configured to convert the electrical signal of the optical transceiver module into an optical signal, and the receiving microcontroller can configure the electro-optical conversion unit to a different rate.
  • the electro-optic conversion unit may include one or more electro-optical conversion channels.
  • the lasers used in one or more channels of the electro-optic conversion unit include, but are not limited to, direct modulated lasers, externally modulated lasers.
  • the photoelectric conversion unit is configured to convert the optical signal of the optical transceiver module into an electrical signal, and is set to a different rate continuous mode and a burst mode by a microcontroller software definition.
  • the photoelectric conversion unit may include one or more photoelectric conversion channels, and the photodetectors used in one or more channels of the photoelectric conversion unit include, but are not limited to, a PIN type photodetector and an avalanche type APD photodetector.
  • the microcontroller is set to communicate with the upper software of the system and software defines the electro-optical conversion unit and the photoelectric conversion unit. It can be set to point-to-point WDM PON or TWMD PON point-to-multipoint operation mode, and different working speeds can also be set. The number of working channels of the module.
  • the optical multiplexer is configured to combine and receive the received uplink optical signal and the downlink optical signal output by the photoelectric conversion unit, and provide an optical interface, so that the optical transceiver module is connected to the service optical fiber.
  • the point-to-multipoint burst uplink receiving mode and the point-to-point continuous working mode switching are implemented through software definition; the working rate setting is implemented, and the working channel number setting is implemented. Different working modes are configured through the same port module to meet different user services, which effectively reduces equipment cost and development cost.
  • the software defines the working rate, point-to-multipoint and point-to-point working mode, and sets the compatible design of the number of working channels, effectively reducing the operator's system upgrade operation and maintenance costs.
  • the optical transceiver module can be flexibly applied to the system architecture as shown in FIG. 2 through software definition.
  • the TWDM PON or PtP WDM PON architecture can be configured at different rates through software definition.
  • FIG. 3 is a structural block diagram of an optical transceiver module according to an embodiment of the present invention. As shown in FIG. 3, a circuit or a plurality of electro-optical conversion units, a photoelectric conversion unit, a microcontroller, an optical multiplexer, and an electrical interface are included.
  • the electro-optical conversion unit is configured to convert the electrical signal of the optical transceiver module into an optical signal, and the receiving microcontroller can configure the electro-optical conversion unit to a different rate.
  • the electro-optic conversion unit may include one or more electro-optical conversion channels.
  • the lasers used in one or more channels of the electro-optic conversion unit include, but are not limited to, direct modulated lasers, externally modulated lasers.
  • the photoelectric conversion unit is configured to convert the optical signal of the optical transceiver module into an electrical signal, and is flexibly configured into a continuous mode and a burst mode by a microcontroller.
  • the photoelectric conversion unit may include one or more electro-optical conversion channels, and the photodetectors used in one or more channels of the electro-optical conversion unit include, but are not limited to, a PIN type photodetector and an avalanche type photodetector.
  • the microcontroller is configured to communicate with the system upper layer software and flexibly configure the electro-optical conversion unit and the photoelectric conversion unit, and can be configured as a point-to-point WDM PON and TWDM PON point-to-multipoint working mode, which can be configured to different working speeds, or Configure the number of working channels of the optical transceiver module.
  • the optical multiplexer is configured to combine and receive the received uplink optical signal and the downlink optical signal output by the photoelectric conversion unit, and provide an optical interface, so that the optical transceiver module is connected to the service optical fiber.
  • FIG. 4 is a block diagram showing the structure of a single-channel optical transceiver module according to an embodiment of the present invention.
  • the single channel optical transceiver module shown in FIG. 4 will be described below.
  • the microcontroller of the single-channel optical transceiver module receives the system software definition command and performs parameter configuration on the optical transceiver module. It includes setting the working speed and working mode.
  • the working mode includes the receiving continuous working mode or the burst working mode. And support the uplink 10Gbps rate for burst EDC electrical dispersion compensation.
  • the electro-optical conversion unit converts the electrical signal into an optical signal function after completing the microcontroller software command.
  • the 10G clock data recovery function block has a signal bypass function, and the receiving system end determines whether the rate is 10 Gbps through the electrical signal of the electrical interface. If yes, the signal is shaped by the clock data recovery function and then output to the 10G laser driving unit. If the signal rate is not 10 Gbps, the electrical signal bypasses the clock data recovery unit and directly sends the electrical signal to the laser drive unit.
  • the 10 Gbps laser driving unit receives the electrical signal of the clock data recovery unit and converts it into a current driving signal to realize current driving to the 10G EML laser.
  • the drive unit can choose to operate at any operating rate in the 0-10Gbps wideband mode.
  • the 10G EML laser converts the current drive signal of the laser drive unit into an optical signal. Since the preferred embodiment is a built-in thermoelectric refrigeration control chip (TEC) for the EML laser, the laser operates at a specific temperature and maintains wavelength stability.
  • TEC thermoelectric refrigeration control chip
  • the TEC control unit provides a current drive and control feedback unit for the built-in TEC chip of the EML laser unit to ensure stable TEC temperature and indirectly ensure stable laser wavelength.
  • the optical interface is configured to provide an optical signal connection channel between the optical transceiver module and the optical fiber.
  • the preferred embodiment uses a single-fiber bidirectional SC optical interface.
  • the WDM integrates the combining and splitting of the upstream optical signal and the downstream optical signal, couples the downlink laser transmitting signal to the optical interface, and outputs the optical signal received upstream to the photoelectric conversion unit.
  • the photoelectric conversion unit converts the upstream optical signal into an electrical signal, and sends the electrical signal to the electrical interface according to a software definition.
  • the photoelectric conversion unit includes photodetector, 0-10G burst TIA, RESET bleeder circuit, burst EDC, 1:2 data fanout unit, 0-10G continuous mode limiting amplifier (CM LA) and 2.5G/10G burst Mode Mode Limiting Amplifier (BM LA).
  • the photodetector converts the received upstream optical signal into photocurrent.
  • the preferred embodiment of the single-channel optical transceiver module adopts an avalanche photodiode (APD type photodetector) with a bandwidth greater than 8.5 GHz, and can support any working speed of 0-10 Gbps. It can also work in continuous and burst mode.
  • APD type photodetector avalanche photodiode
  • 0-10G burst transimpedance amplifier (BM TIA), which is set to receive the photocurrent signal output from the photodetector and convert it into a differential voltage signal output.
  • the sudden transimpedance amplifier adjusts the voltage signal after the photocurrent conversion by selecting the transimpedance gain.
  • the range meets the input requirements of the next-stage signal processing unit.
  • the 0-10G burst transimpedance amplifier GN7052 is selected to operate in a burst mode or a continuous mode, and the microcontroller can control the transimpedance amplifier.
  • the rate selection function can be configured as a low rate bandwidth mode and a high rate bandwidth mode.
  • RESET bleeder circuit optical transceiver module is configured as TWDM PON working mode, photoelectric conversion unit receives burst signal, RESET bleeder circuit receives notification signal of next group of burst data arrival (RESET control signal, system board Through the electrical interface input of the optical transceiver module, after the RESET bleeder circuit receives the control signal, the residual signal level at the input end of the burst limiting amplifier is cleaned in time to ensure accurate reception of the next set of burst data. Meet system burst timing requirements.
  • the RESET burst bleeder circuit of the preferred embodiment uses a high frequency analog switch. After receiving the control signal, the analog switch bypasses the TIA output to the reference level, and quickly processes the residual signal to ensure accurate reception of the next set of burst data. .
  • the burst electric dispersion compensation unit realizes the electric dispersion compensation of the differential voltage signal outputted by the TIA, and has a ripple effect due to the direct modulation of the laser, and generates dispersion after high-speed long-distance transmission, and the burst electric power in the embodiment of the present invention
  • the dispersion compensation unit can perform dispersion compensation on the uplink 10 Gbps signal, improve the receiving sensitivity performance of the optical transceiver module, and flexibly configure to different working rates.
  • the burst EDC has a signal bypass function.
  • the direct modulation laser has a small dispersion at a low rate (less than 10G), and the optical transceiver module is configured to operate in a low rate mode.
  • the burst EDC unit bypasses the signal and performs signal shaping only. Post output
  • the 1:2 data fan-out unit converts one differential input signal into two parallel signals for parallel output, one of which is set to connect 0-10G continuous limiting amplifier (CM LA) to realize point-to-point PtP electrical signal connection; One output is set to connect to the Burst Limiting Amplifier (BM LA) to achieve point-to-multipoint PtMP electrical signal connection with TWDM PON.
  • CM LA continuous limiting amplifier
  • BM LA Burst Limiting Amplifier
  • the 0-10G continuous limiting amplifier can support 0-10G working speed, limit-processing the point-to-point PtP receiving signal, output to the electrical interface of the optical transceiver module, and through the electrical interface and the system board.
  • Burst limiting amplifier which realizes TWDM PON point-to-multipoint PtMP working mode burst uplink receiving signal processing.
  • 2.5G uplink signal and 10G uplink signal in this working mode are time division multiplexing mode (TDM).
  • TDM time division multiplexing mode
  • 2.5G and 10G signals can be received in different time slots, and the signal is limited and amplified to be output to the optical transceiver module electrical interface, and connected to the system board through the electrical interface.
  • the system board separates 2.5G and 10G from different time slots.
  • Working rate signal is the rate of working rate signal.
  • the electrical connector realizes the connection of the optical transceiver module and the system board electrical signal.
  • FIG. 5 is a structural block diagram of another single-channel optical transceiver module according to an embodiment of the present invention.
  • a single-channel optical transceiver module as shown in FIG. 5 will be described below.
  • FIG. 5 it includes: a microcontroller, an optical interface, a wavelength division multiplexer, an electrical interface, and a multi-rate electro-optical conversion unit and a multi-rate photoelectric conversion unit.
  • the single-channel optical transceiver module receives the system configuration command, and configures the working speed for the electro-optical conversion unit and the photoelectric conversion unit.
  • the electro-optical conversion unit After the electro-optical conversion unit completes the configuration of the microcontroller, the electrical signal is converted into an optical signal function.
  • the electro-optic conversion unit includes a clock data recovery unit, a multi-rate laser drive unit, and a multi-rate laser.
  • the 10G clock data recovery function block has a signal bypass function, and the receiving system end determines whether the rate is 10 Gbps through the electrical signal of the electrical interface. If yes, the signal is shaped by the clock data recovery function and then output to the 10G laser driving unit. If the signal rate is not 10 Gbps, the electrical signal bypasses the clock data recovery unit and directly sends the electrical signal to the multi-rate laser drive unit.
  • the multi-rate (0-10 Gbps) laser driving unit receives the electrical signal of the clock data recovery unit and converts it into a current driving signal to drive the multi-rate laser (0-10 Gbps) laser. Output optical signal.
  • the laser driver unit can configure the bandwidth setting function to reduce the channel bandwidth at low signal rates, filter out high frequency noise, and optimize the optical signal quality of the optical transceiver module.
  • a multi-rate (0-10 Gbps) laser converts the current drive signal of the laser drive unit into an optical signal.
  • the optical interface is configured to provide an optical signal connection channel between the optical transceiver module and the optical fiber.
  • the preferred embodiment uses a single-fiber bidirectional SC optical interface.
  • the wavelength division multiplexer realizes combining and splitting of the uplink optical signal and the downlink optical signal, coupling the downlink laser transmission signal to the optical interface, and outputting the uplink received optical signal to the photoelectric conversion unit.
  • the photoelectric conversion unit converts the upstream optical signal into an electrical signal, and sends the electrical signal to the electrical interface according to a software configuration.
  • the photoelectric conversion unit includes a multi-rate photodetector, a multi-rate transimpedance amplifier, and a multi-rate limiting amplifier.
  • the multi-rate (0-10 Gbps) photodetector converts the received upstream optical signal into a photocurrent.
  • the preferred embodiment employs a 10 Gbps avalanche photodiode (APD type photodetector) that can support a 0-10 Gbps operating rate.
  • APD type photodetector avalanche photodiode
  • the multi-rate (0-10 Gbps) transimpedance amplifier converts the photodetector output photocurrent signal into a differential voltage signal output, and the transimpedance amplifier adjusts the range of the voltage signal after the photocurrent conversion by selecting the transimpedance gain to satisfy the next level.
  • transimpedance amplifiers can operate at any rate between 0-10 Gbps.
  • the selected transimpedance amplifier can be configured as a low rate bandwidth mode and a high rate bandwidth mode, and the optimal reception sensitivity is selected for different software defined signal operating rates.
  • the multi-rate (0-10 Gbps) limiting amplifier performs limiting current amplification on the analog differential voltage signal processed by the received transimpedance amplifier, and outputs the digital differential signal to the electrical interface of the optical transceiver module, and is connected to the system board through the electrical interface.
  • the electrical interface realizes the connection between the optical transceiver module and the system board electrical signal.
  • FIG. 6 is a structural block diagram of a four-channel optical transceiver module according to an embodiment of the present invention. As shown in FIG. 6, a four-channel photoelectric conversion unit, a four-channel electro-optical conversion unit, a WDM, a microcontroller, and an electrical connector are included.
  • the four-channel optical transceiver module can flexibly select one or two to four electro-optical conversion and photoelectric conversion channels through software configuration.
  • the point-to-point PtP or point-to-multipoint PtMP working mode can be separately configured for the loop conversion unit, and the working speed is configured.
  • the four-channel electro-optical conversion unit realizes the conversion of N (N belongs to 1-4) electrical signals into optical signals. It consists of four laser drive units and four lasers.
  • the laser drive drives the laser to output an optical signal and operate the laser at a specific temperature while maintaining wavelength stability.
  • the laser can choose different output wavelengths.
  • the electro-optical conversion unit can use a direct modulation laser or an external modulation laser.
  • the four-channel photoelectric conversion unit converts four optical signals into electrical signals, which can be flexibly configured by the software to work in one way or two to four channels. It consists of four photodetectors, four transimpedance amplifiers, four electric dispersion compensation units and four limiting amplifiers.
  • the photodetector receives the optical signals of different wavelengths of the optical multiplexing unit N (N belongs to 1-4), and converts the received N optical signals into photocurrent signals, and the photodetector can use the PIN photodetector.
  • Avalanche type (APD) photodetectors can be used and support 0-10 Gbps operating rates.
  • the four-way transimpedance amplifier is configured to receive the photocurrent signal outputted by the four photodetectors into a differential voltage signal output.
  • the four-channel transimpedance amplifier can be selected to operate in a point-to-multipoint burst mode. It can operate in continuous point-to-point PtP mode, and the microcontroller unit can configure the transimpedance amplifier rate, which can be configured in low-rate bandwidth mode and high-rate bandwidth mode.
  • the four-channel EDC electric dispersion compensation unit realizes the electric dispersion compensation of the differential voltage signal outputted by the transimpedance amplifier (TIA). Since the direct modulation laser has a ripple effect, the dispersion is generated after the high-speed long-distance transmission, and the design of the preferred embodiment is increased.
  • the EDC electric dispersion compensation unit can perform dispersion compensation for low-cost direct modulation of the upstream optical signal, improve the receiving sensitivity performance of the optical transceiver module, and can be flexibly configured to different working rates.
  • the four-way burst EDC electric dispersion compensation unit has a signal bypass function. If the received optical signal dispersion is small, the optical transceiver module can be configured to be in a bypass mode, and the transimpedance amplifier signal is directly output to the limiting amplifier unit.
  • the four-way limiting amplifier can be configured by software to point-to-point PtP working mode and point-to-multipoint burst mode, to limit the four-way electrical signal, output to the electrical interface of the optical transceiver module, and pass the electrical interface and system. Board connection.
  • WDM realizes the combining and splitting of four uplink optical signals and four downlink optical signals, and couples four different wavelength downstream optical signal signals to the optical interface, and simultaneously outputs four uplink optical signals of different wavelengths to the optical interface.
  • Photoelectric conversion unit realizes the combining and splitting of four uplink optical signals and four downlink optical signals, and couples four different wavelength downstream optical signal signals to the optical interface, and simultaneously outputs four uplink optical signals of different wavelengths to the optical interface.
  • the electrical connector realizes the connection of the optical transceiver module and the system board electrical signal.
  • the single channel supports the point-to-point PtP and the point-to-multipoint PtMP working mode multi-rate compatible optical transceiver module
  • the four-channel flexible configuration channel number optical transceiver module can realize point-to-multipoint continuous operation through software definition. Mode and point-to-multipoint burst mode switching; different working rate switching, and number of working channels. Configure different working states through the same port module to meet different user services, effectively reducing equipment cost and development cost.
  • the embodiment of the invention further provides a method for configuring the working parameters of the optical module.
  • FIG. 7 is a flowchart of a method for configuring an optical module operating parameter according to an embodiment of the present invention. As shown in FIG. 7, the method includes steps S702 to S704.
  • Step S702 Receive a command of a device where the optical transceiver module is located, where the command carries information of the working parameter.
  • Step S704 configuring an operating parameter of the optical transceiver module according to the above command.
  • the device where the optical transceiver module is located may be any device in the passive optical network, as long as the optical signal is processed.
  • the device may include an upper layer software system, and the upper layer software system may send the above command to the controller, and the controller responds to the command to configure the working parameters of the optical module.
  • the above configuration may be that the controller writes a command word in a register, and the optical transceiver module reads the command word from the register when performing photoelectric conversion, thereby obtaining an operating parameter of the optical transceiver module, and of course, the present invention
  • the embodiment is not limited to this.
  • the working parameter includes at least one of the following: an operating rate of each photoelectric conversion channel of the optical module, an operating mode of each photoelectric conversion channel of the optical module, a photoelectric conversion channel used for photoelectric conversion, and a photoelectric used in photoelectric conversion.
  • the number of conversion channels is not limited to: an operating rate of each photoelectric conversion channel of the optical module, an operating mode of each photoelectric conversion channel of the optical module, a photoelectric conversion channel used for photoelectric conversion, and a photoelectric used in photoelectric conversion.
  • the mode of operation may include a point-to-multipoint burst mode and a point-to-point continuous mode.
  • the photoelectric conversion channel used may be any one or more of the plurality of photoelectric conversion channels, and the number of the photoelectric conversion channels may be photoelectric conversion using how many photoelectric conversion channels are used.
  • the operating parameter includes at least one of the following: an operating rate of each of the electro-optical conversion channels of the optical module, an operating mode of each electro-optical conversion channel of the optical module, an electro-optical conversion channel used for electro-optical conversion, and an electro-optic used in electro-optical conversion.
  • the number of conversion channels is not limited to: an operating rate of each of the electro-optical conversion channels of the optical module, an operating mode of each electro-optical conversion channel of the optical module, an electro-optical conversion channel used for electro-optical conversion, and an electro-optic used in electro-optical conversion.
  • the mode of operation may include a point-to-multipoint burst mode and a point-to-point continuous mode.
  • the electro-optic conversion channel used may be any one or more of the plurality of electro-optical conversion channels, and the number of electro-optical conversion channels may be how many electro-optical conversion channels are used for electro-optical conversion.
  • the embodiment of the invention further provides a device for configuring the working parameters of the optical module.
  • FIG. 8 is a structural block diagram of an apparatus for configuring an optical transceiver module operating parameter according to an embodiment of the present invention.
  • the apparatus may include: a receiving module 802, configured to receive a command of a device where the optical transceiver module is located, where The command carries the information of the working parameter; the configuration module 804 is configured to configure the working parameters of the optical transceiver module according to the above command.
  • the device where the optical transceiver module is located may be any device in the passive optical network, as long as the optical signal is processed.
  • the device may include an upper layer software system, and the upper layer software system may send the above command to the controller, and the controller responds to the command to configure the working parameters of the optical module.
  • the above configuration may be that the controller writes a command word in a register, and the optical transceiver module reads the command word from the register when performing photoelectric conversion, thereby obtaining an operating parameter of the optical transceiver module, and of course, the present invention
  • the embodiment is not limited to this.
  • the working parameter includes at least one of the following: an operating rate of each photoelectric conversion channel of the optical transceiver module, an operating mode of each photoelectric conversion channel of the optical module, a photoelectric conversion channel used for photoelectric conversion, and a photoelectric conversion The number of photoelectric conversion channels.
  • the mode of operation may include a point-to-multipoint burst mode and a point-to-point continuous mode.
  • the photoelectric conversion channel used may be any one or more of the plurality of photoelectric conversion channels, and the number of the photoelectric conversion channels may be photoelectric conversion using how many photoelectric conversion channels are used.
  • the operating parameter includes at least one of the following: an operating rate of each of the electro-optical conversion channels of the optical module, an operating mode of each electro-optical conversion channel of the optical module, an electro-optical conversion channel used for electro-optical conversion, and an electro-optic used in electro-optical conversion.
  • the number of conversion channels is not limited to: an operating rate of each of the electro-optical conversion channels of the optical module, an operating mode of each electro-optical conversion channel of the optical module, an electro-optical conversion channel used for electro-optical conversion, and an electro-optic used in electro-optical conversion.
  • the mode of operation may include a point-to-multipoint burst mode and a point-to-point continuous mode.
  • the electro-optic conversion channel used may be any one or more of the plurality of electro-optical conversion channels, and the number of electro-optical conversion channels may be how many electro-optical conversion channels are used for electro-optical conversion.
  • the controller configures the working parameters of the optical module, so that the optical module can be compatible with different scenarios.
  • the problem of excessive physical ports caused by stacking of single-channel optical modules can be avoided.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the controller configures the working parameters of the optical transceiver module, so that the optical transceiver module can be compatible with different scenarios.
  • the problem of excessive physical ports caused by stacking of single-channel optical modules can be avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光收发模块及其工作参数的配置方法及装置,其中,光收发模块,包括:控制器、包括至少一路光电转换通道的光电转换单元和至少一路电光转换通道的电光转换单元,其中,控制器,与光电转换单元以及电光转换单元相连接,用于配置光电转换单元和电光转换单元的工作参数,工作参数包括以下至少之一:工作速率、通道数量和工作模式;光电换转单元,用于根据工作参数进行光信号转换为电电信号功能,电光转换单元用于根据工作参数进行电信号转换为光信号的功能。通过本发明,控制器配置光收发模块的工作参数,使得光模块可以兼容不同的场景。此外在无源光网络应用中,光线路终端可以兼容更多类型的光用户单元。

Description

光收发模块及其工作参数的配置方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种光收发模块及其工作参数的配置方法及装置。
背景技术
无源光网络技术经历多年的发展,目前呈现出多种技术并存,以无源光网络(Passive Optical Network,简称为PON)接入为主导的局面。
在一些特定应用场景,例如针对高端用户,采用点对点连续模式(PtP)技术。日本、韩国和中国部署以太无源光网络(Ethernet Passive Optical Network,简称为EPON)为主要光接入网,采用点对多点突发模式(PtMP)制式。欧州和美国的大运营商大多数选择千兆无源光网络(Gigabit Passive Optical Network,简称为GPON)技术。在少部分地区有波分复用(Wavelength Division Multiplexing,简称为WDM)PON的少量实验网。
在无源光网络中,光模块作为在无缘光网络设备之间传输的载体,发送端将电信号转换成光信号,通过光纤传输后,接收端再把光信号转换成电信号。
光模块通常由光电子器件、功能电路和光接口等组成,光电子器件包括发射和接收两部分。发射部分是:输入一定码率的电信号经内部驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,一般地,其内部带有光功率自动控制电路,使输出的光信号功率保持稳定。接收部分是:一定码率的光信号输入光模块后由光探测器转换为电信号,经前置放大器后输出相应码率的电信号。
按照功能分类,光模块包括光接收模块、光发送模块、光收发模块和光转发模块等。光接收模块,用于接收光信号,对光信号进行光电转换,将光信号转换成电信号。光发送模块,用于发送光信号,对电信号进行电光转换,将电信号转换成光信号。光收发模块,也称为光收发一体模块,用于进行光电转换和电光转换,以进行光信号和电信号的接收和发送。
相关技术中,光模块出厂后,由于其硬件结构确定,无法更改其工作参数,因此,相关技术中的光模块只能工作在固定的工作参数。常见的工作参数包括,工作速率、 工作模式等。相关技术中的光模块工作在固定工作参数,而不同用户的光信号和电信号处理所需的工作参数不尽相同,因此,相关技术中的光模块不能同时兼容多种用户。
此外,相关技术中,光模块为单通道,即一个光模块只有一个光电转换通道或一个电光转换单元。然而,随着光通信***容量的不断提升,需要同时使用多个通道处理光信号和电信号。为了实现多个通道处理光信号和电信号,相关技术中,将多个单通道光模块进行堆叠,即同时使用多个单通道光模块,由多个单通道光模块的单通道组成多通道。但是,由于每个单通道光模块都具有物理接口,由多个单通道光模块组成多通道时,造成物理接口数量多。
针对相关技术中由于光模块工作在固定工作参数,导致光收发模块无法兼容多种用户的问题,以及单通道光模块堆叠导致物理接口多的问题,目前尚未提出有效的解决方案。
发明内容
针对相关技术中由于光收发模块工作在固定工作参数,导致光收发模块无法兼容多种用户的问题,本发明提供了一种光收发模块及其工作参数的配置方法及装置,以至少解决上述问题。
根据本发明的一个实施例,提供了一种光收发模块,包括:控制器、包括至少一路光电转换通道的光电转换单元和包括至少一路电光转换通道的电光转换单元,其中,所述控制器,与所述光电转换单元和所述电光转换单元相连接,设置为配置所述光电转换单元和所述电光转换单元的工作参数;所述工作参数包括以下至少之一:工作速率、通道数量和工作模式,其中,所述工作模式包括连续模式和突发模式;所述光电换转单元,设置为根据所述工作参数进行光电转换;所述电光转换单元,设置为根据所述工作参数进行电光转换。
优选地,所述控制器,设置为响应所述光收发模块所在设备的命令,配置所述工作参数,其中,所述命令中携带有所述工作参数的信息。
优选地,各个所述光电转换通道,包括:光电探测器,设置为将光信号转换为光电流;跨阻放大器,与所述光电探测器和所述控制器相连,可工作在所述连续模式或所述突发模式,设置为根据所述工作参数将所述光电流转换成电压信号;限幅放大器,与所述跨阻放大器相连,可工作在所述连续模式或所述突发模式,设置为对所述电压信号进行限幅放大处理。
优选地,各个所述光电转换通道,还包括:电色散补偿单元,位于所述跨阻放大器和所述限幅放大器之间,可工作在所述连续模式或所述突发模式,设置为对所述电压信号进行电色散补偿;所述限幅放大器,还设置为对电色散补偿后的所述电压信号进行限幅放大处理。
优选地,各个所述光电转换通道,还包括:数据扇出单元,位于所述跨阻放大器与所述限幅放大器之间,设置为将所述电压信号拆分成第一路信号和第二路信号,其中,所述第一路信号为点对多点突发模式的电压信号,所述第二路信号为点对点连续模式的电压信号;所述限幅放大器,与所述数据扇出单元相连接,设置为对所述第一路信号进行限幅放大处理。
优选地,各路所述电光转换通道,包括:激光驱动单元,与所述控制器相连接,设置为根据所述工作参数将电信号转换成电流驱动信号;激光器,与所述激光驱动单元相连接,设置为将所述电流驱动信号转换成光信号。
优选地,各路所述电光转换通道,还包括:时钟数据恢复单元,与所述激光驱动单元的输入端相连接,具有旁路作用,设置为对预定速率的所述电信号进行时钟恢复。
优选地,所述激光器包括以下至少之一:分布反馈(Distributed Feed Back,简称为DFB)激光器、电吸收调制(Electro-absorption Modulated Laser,简称为EML)。
根据本发明的另一个实施例,提供了一种光收发模块工作参数的配置方法,包括:接收光收发模块所在设备的命令,其中,所述命令中携带有工作参数的信息,所述工作参数包括以下至少之一:工作速率、通道数量和工作模式,其中,所述工作模式包括连续模式和突发模式;根据所述命令配置所述光收发模块的工作参数。
根据本发明的再一个实施例,提供了一种光收发模块工作参数的配置装置,包括:接收模块,设置为接收光收发模块所在设备的命令,其中,所述命令中携带有工作参数的信息,所述工作参数包括以下至少之一:工作速率、通道数量和工作模式,其中,所述工作模式包括连续模式和突发模式;配置模块,设置为根据所述命令配置所述光收发模块的工作参数。
通过本发明,控制器配置光收发模块的工作参数,使得光收发模块可以兼容不同的场景。此外,在多通道的情况下,还可以避免单通道光模块堆叠时导致的物理端口过多的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的光收发模块的结构框图;
图2是根据本发明实施例的无源光网络的***架构图;
图3是根据本发明实施例的一种光收发模块的结构框图;
图4是根据本发明实施例的单通道光收发模块的结构框图;
图5是根据本发明实施例另一单通道光收发模块的结构框图;
图6是根据本发明实施例四通道光收发模块的结构框图;
图7是根据本发明实施例的光收发模块工作参数的配置方法的流程图;以及
图8是根据本发明实施例的光收发模块工作参数的配置装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
图1是根据本发明实施例的光收发模块的结构框图,如图1所示,该光收发模块包括:控制器102、包括至少一路光电转换通道的光电转换单元104和包括至少一路电光转换通道的电光转换单元106,其中,控制器102,与光电转换单元104和电光转换单元106相连接,设置为配置光电转换单元104和电光转换单元106的工作参数;光电换转单元104,设置为根据工作参数进行光电转换;电光转换单元106,设置为根据工作参数进行电光转换。
在本发明实施例中,上述工作参数可以包括但不限于以下至少之一:工作速率、通道数量和工作模式,其中,工作模式包括但不限于连续模式和突发模式。具体的,各个上述光电转换通道的工作速率、各个上述光电转换通道的工作模式、光电转换所使用的光电转换通道、光电转换所使用的光电转换通道的数量。
在本发明实施例的一个实施方式中,控制器102,设置为响应光收发模块所在设备的命令,配置工作参数,其中,命令中携带有工作参数的信息。
在本发明实施例的一个实施方式中,各个光电转换通道,包括:光电探测器,设置为将光信号转换为光电流;跨阻放大器,与光电探测器和控制器相连,可工作在连续模式或突发模式,设置为根据工作参数将光电流转换成电压信号;限幅放大器,与跨阻放大器相连,可工作在连续模式或突发模式,设置为对电压信号进行限幅放大处理。
在本发明实施例的一个实施方式中,各个光电转换通道还可以包括:电色散补偿单元,位于跨阻放大器和限幅放大器之间,可工作在连续模式或所述突发模式,设置为对电压信号进行电色散补偿;限幅放大器,还设置为对电色散补偿后的电压信号进行限幅放大处理。
在本发明实施例的一个实施方式中,各个光电转换通道还可以包括:数据扇出单元,位于跨阻放大器与限幅放大器之间,设置为将上述电压信号拆分成第一路信号和第二路信号,其中,第一路信号为点对多点突发模式的电压信号,第二路信号为点对点连续模式的电压信号;限幅放大器,与数据扇出单元相连接,设置为对第一路信号进行限幅放大处理。
在本发明实施例的一个实施方式中,各路电光转换通道可以包括:激光驱动单元,与控制器相连接,设置为根据工作参数将电信号转换成电流驱动信号;激光器,与激光驱动单元相连接,设置为将电流驱动信号转换成光信号。
在本发明实施例的一个实施方式中,各路所述电光转换通道还可以包括:时钟数据恢复单元,与激光驱动单元的输入端相连接,具有旁路作用,设置为对预定速率的所述电信号进行时钟恢复。
可选地,激光器包括以下至少之一:DFB激光器、EML激光器。
光收发模块所在的设备可以在无源光网络中的任何设备,只要进行光信号的接收及发送即可。该设备可以包括上层软件***,上层软件***可以向控制器发送上述命令,控制器响应该命令对光电转换单元的工作参数进行配置。
作为一个例子,上述的配置可以是控制器在寄存器中写入命令字,光电转换单元在进行光电转换时,从寄存器中读取该命令字,从而得到光电转换单元的工作参数,当然,本发明实施例并不限于此。
下面以几个例子对本发明实施例的光收发模块进行描述。
作为一个例子,在本发明实施例中,通过软件方式实现对光收发模块的配置。因此,在本发明实施例中,采用软件实现配置的光收发模块页称为软件定义光收发模块。
软件定义光收发模块可以包括:电光转换单元、光电转换单元、微控制器、光复用器和电接口。光收发模块可通过软件配置工作于PtP或PtMP工作模式。
其中,电光转换单元,设置为实现光收发模块电信号转换为光信号,并可接收微控制器对电光转换单元做软件配置为不同速率。电光转换单元可包含一路或多路电光转换通道。电光转换单元的一路或多路通道所使用激光器包含但不限于直接调制激光器、外调制激光器。
光电转换单元,设置为实现光收发模块光信号转换为电信号,并通过微控制器软件定义设置为不同速率连续模式和突发模式。光电转换单元可包含一路或多路光电转换通道,光电转换单元的一路或多路通道使用的光电探测器包含但不限于PIN型光电探测器和雪崩型APD光电探测器。
微控制器,设置为和***端上层软件通讯并对电光转换单元、光电转换单元进行软件定义,可设置为点对点WDM PON或TWMD PON点对多点工作模式,不同工作速率,也可设置光收发模块工作通道数量。
光复用器,设置为将接收到的上行光信号与光电转换单元输出的下行光信号的合波与分波并提供光接口,实现光收发模块与业务光纤连接。
在本发明实施例中,通过软件定义,实现点对多点突发上行接收模式和点对点连续工作模式切换;实现工作速率设置、实现工作通道数设置。通过同一端口模块配置不同工作模式,满足不同用户业务,有效降低设备造价和开发成本。通过软件定义工作速率、点对多点和点对点工作模式、设置工作通道数量的兼容设计,有效降低运营商的***升级运维成本。
如图2所示,通过软件定义,光收发模块可灵活应用于如2图所示***架构。通过软件定义可配置在不同速率下TWDM PON或PtP WDM PON架构。
图3是根据本发明实施例的一种光收发模块的结构框图,如图3所示,包含一路或多路电光转换单元、光电转换单元、微控制器、光复用器和电接口。
电光转换单元,设置为实现光收发模块电信号转换为光信号,并可接收微控制器对电光转换单元做软件配置为不同速率。电光转换单元可包含一路或多路电光转换通道。电光转换单元的一路或多路通道所使用激光器包含但不限于直接调制激光器、外调制激光器。
光电转换单元,设置为实现光收发模块光信号转换为电信号,并通过微控制器灵活配置为不同速率连续模式和突发模式。光电转换单元可包含一路或多路电光转换通道,电光转换单元的一路或多路通道使用的光电探测器包含但不限于PIN型光电探测器和雪崩型光电探测器。
微控制器,设置为和***端上层软件通讯并对电光转换单元、光电转换单元进行灵活配置,可配置为点对点WDM PON和TWDM PON点对多点工作模式,可配置为不同工作速率,也可配置光收发模块工作通道数量。
光复用器,设置为将接收到的上行光信号与光电转换单元输出的下行光信号的合波与分波并提供光接口,实现光收发模块与业务光纤连接。
图4是根据本发明实施例的单通道光收发模块的结构框图。下面对如图4所示的单通道光收发模块进行描述。
单通道光收发模块的微控制器在接收到***软件定义命令,对光收发模块进行参数配置。包括设置工作速率,以及工作模式,工作模式包括接收端连续工作模式或突发工作模式。且支持上行10Gbps速率进行突发EDC电色散补偿。
电光转换单元在完成微控制器软件命令后,实现电信号转换为光信号功能。10G时钟数据恢复功能块具有信号旁路功能,接收***端通过电接口电信号,判断速率是否为10Gbps,如是则信号通过时钟数据恢复功能对业务信号整形再输出至10G激光驱动单元。如非10Gbps信号速率,则电信号旁路时钟数据恢复单元,直接将电信号送至激光驱动单元。
10Gbps激光驱动单元,接收到时钟数据恢复单元的电信号并转换成为电流驱动信号,实现对10G EML激光器电流驱动。驱动单元可选择工作在0-10Gbps宽频模式任一工作速率。
10G EML激光器实现将激光驱动单元的电流驱动信号转换为光信号,由于本优选实施例为EML激光器内置热电制冷控制芯片(TEC),使激光器工作在特定温度且保持波长稳定度。
TEC控制单元为EML激光器单元内置TEC芯片提供电流驱动和控制反馈单元,保证TEC温度稳定,间接保证激光器波长稳定。
光接口,设置为提供光收发模块与光纤的光信号连接通道。本优选实施例采用单纤双向SC光接口。
WDM,实现上行光信号与下行光信号的合波与分波,将下行激光发射信号耦合至光接口,同时将上行接收到的光信号输出至光电转换单元。
光电转换单元实现上行光信号转换成电信号,并将电信号按照软件定义发送至电接口。光电转换单元包括光电探测器、0-10G突发TIA、RESET泄放电路、突发EDC、1:2数据扇出单元,0-10G连续模式限幅放大器(CM LA)和2.5G/10G突发模式限幅放大器(BM LA)。
光电探测器将接收到的上行光信号转化为光电流,本单通道光收发模块优选实施例采用大于8.5GHz带宽的雪崩光电二极管(APD型光电探测器),可支持0-10Gbps任一工作速率,也可工作在连续和突发模式。
0-10G突发跨阻放大器(BM TIA),设置为接收到光电探测器输出的光电流信号转化成差分电压信号输出,突发跨阻放大器通过选择跨阻增益调节光电流转化后的电压信号范围,满足下一级信号处理单元输入要求,本优选实施例中选择0-10G突发跨阻放大器GN7052,可工作在突发模式,也可工作在连续模式,微控制器可控制跨阻放大器速率选择功能,可配置为低速率带宽模式和高速率带宽模式。
RESET泄放电路,光收发模块如配置成为TWDM PON工作模式,光电转换单元接收的是突发信号,RESET泄放电路接受到下一组突发数据到来的通知信号(RESET控制信号,有***板通过光收发模块电接口输入),在RESET泄放电路收到该控制信号后,及时清理突发限幅放大器输入端的残留信号电平,以确保下一组突发数据的准确接收。满足***突发时序要求。本优选实施例的RESET突发泄放电路采用高频模拟开关,在接收到控制信号后模拟开关将TIA输出旁路至参考电平,快速处理残留信号,确保下一组突发数据的准确接收。
突发电色散补偿单元(EDC),实现TIA输出的差分电压信号做电色散补偿,由于直接调制激光器就有啁啾效应,在高速长距离传输后产生色散,本发明实施例中的突发电色散补偿单元,可对上行10Gbps信号进行色散补偿,提高光收发模块的接收灵敏度性能,灵活配置为不同工作速率。
突发EDC具有信号旁路功能,直接调制激光器在低速率下(小于10G)色散较小,光收发模块配置为低速率工作模式,则突发EDC单元对信号进行旁路处理,只进行信号整形后输出
1:2数据扇出单元,实现对1路差分输入信号转化为2路差分信号并行输出,其中一路输出设置为连接0-10G连续限幅放大器(CM LA),实现点对点PtP电信号连接;另外一路输出设置为连接突发限幅放大器(BM LA),实现与TWDM PON点对多点PtMP电信号连接。
0-10G连续限幅放大器(CM LA),可支持0-10G工作速率,对点对点PtP接收信号做限幅处理,输出至光收发模块的电接口,并通过电接口与***板。
突发限幅放大器(BM LA),实现TWDM PON点对多点PtMP工作模式突发上行接收信号处理,例如此工作模式下2.5G上行信号与10G上行信号是时分复用模式(TDM),在不同的时隙内可接收2.5G和10G信号,并对信号做限幅放大处理输出至光收发模块电接口,并通过电接口连接***板,由***板对不同时隙分离出2.5G和10G工作速率信号。
电连接器,实现光收发模块与***板电信号信号连接。
图5是根据本发明实施例另一单通道光收发模块的结构框图。下面对如图5所示的单通道光收发模块进行描述。
如图5所示,包括:微控制器、光接口、波分复用器、电接口以及多速率电光转换单元和多速率光电转换单元。
单通道光收发模块微控制器在接收到***配置命令,对电光转换单元、光电转换单元配置工作速率。
电光转换单元在完成微控制器配置后,实现电信号转换为光信号功能。电光转换单元包括时钟数据恢复单元、多速率激光驱动单元、多速率激光器。
10G时钟数据恢复功能块具有信号旁路功能,接收***端通过电接口电信号,判断速率是否为为10Gbps,如是则信号通过时钟数据恢复功能对业务信号整形再输出至10G激光驱动单元。如非10Gbps信号速率,则电信号旁路时钟数据恢复单元,直接将电信号送至多速率激光驱动单元。
多速率(0-10Gbps)激光驱动单元接收到时钟数据恢复单元的电信号并转换成为电流驱动信号,实现对多速率激光器(0-10Gbps)激光器驱动。输出光信号。激光驱动单元可配置带宽设置功能,在低信号速率下降低通道带宽,滤除高频噪声,优化光收发模块光信号质量。
多速率(0-10Gbps)激光器实现将激光驱动单元的电流驱动信号转换为光信号。
光接口,设置为提供光收发模块与光纤的光信号连接通道。本优选实施例采用单纤双向SC光接口。
波分复用器,实现上行光信号与下行光信号的合波与分波,将下行激光发射信号耦合至光接口,同时将上行接收到的光信号输出至光电转换单元。
光电转换单元实现上行光信号转换成电信号,并将电信号按照软件配置发送至电接口。光电转换单元包括多速率光电探测器、多速率跨阻放大器和多速率限幅放大器。
多速率(0-10Gbps)光电探测器将接收到的上行光信号转化为光电流,本优选实施例采用10Gbps雪崩光电二极管(APD型光电探测器),可支持0-10Gbps工作速率。
多速率(0-10Gbps)跨阻放大器,将接收到光电探测器输出光电流信号转化成差分电压信号输出,跨阻放大器通过选择跨阻增益调节光电流转化后的电压信号范围,满足下一级信号处理单元输入要求,跨阻放大器可工作在0-10Gbps之间的任一速率。本优选实施例中选择跨阻放大器可配置为低速率带宽模式和高速率带宽模式,对于不同的软件定义信号工作速率,选择最优接收灵敏度。
多速率(0-10Gbps)限幅放大器,对接收的跨阻放大器处理的模拟差分电压信号,做限幅放大处理输出数字差分信号并送至光收发模块电接口,并通过电接口连接***板。
电接口,实现光收发模块与***板电信号信号连接。
图6是根据本发明实施例四通道光收发模块的结构框图,如图6所示,包含四路光电转换单元、四路电光转换单元、WDM、微控制器和电连接器。
四通道光收发模块可通过软件配置灵活选择一路或二至四路电光转换和光电转换通道。同时对毎路转换单元可单独配置点对点PtP或点对多点PtMP工作模式,配置工作速率。
四通道电光转换单元在完成微控制器单元配置后,实现N路(N属于1-4)电信号转换为光信号功能。包含四路激光驱动单元和四路激光器。
激光驱动,对激光器进行驱动,使激光器输出光信号,并使激光器工作在特定温度且保持波长稳定度。激光器可以选择不同输出波长。WDM对激光器输出光信号进行波分复用,输出波分复用后的光信号。
电光转换单元可使用直接调制激光器、也可使用外调制激光器。
四通道光电转换单元实现四路光信号转换成电信号,可通过软件灵活配置为一路或二至四路通道工作。包含四路光电探测器、四路跨阻放大器、四路电色散补偿单元以及四路限幅放大器。
光电探测器在接收到光复用单元N路(N属于1-4)不同波长的光信号,并将将接收到N路光信号转换为光电流信号,光电探测器可使用PIN型光电探测器,可以使用雪崩型(APD)型光电探测器,并支持0-10Gbps工作速率。
四路跨阻放大器,设置为接收到四路光电探测器输出的光电流信号转化成差分电压信号输出,本优选实施例中四通道跨阻放大器可选择工作在点对多点突发模式,也可工作在连续点对点PtP模式,微控制器单元可对跨阻放大器速率进行配置,可配置为低速率带宽模式和高速率带宽模式。
四路EDC电色散补偿单元,实现跨阻放大器(TIA)输出的差分电压信号做电色散补偿,由于直接调制激光器就有啁啾效应,在高速长距离传输后产生色散,本优选实施例设计增加EDC电色散补偿单元,可对低成本直接调制上行光信号进行色散补偿,提高光收发模块的接收灵敏度性能,同时可灵活配置为不同工作速率。
四路突发EDC电色散补偿单元具有信号旁路功能,如果接受到的光信号色散较小,光收发模块可配置成旁路工作模式,跨阻放大器信号直接输出至限幅放大器单元。
四路限幅放大器,可通过软件配置为点对点PtP工作模式和点对多点突发工作模式,对四路电信号做限幅处理,输出至光收发模块的电接口,并通过电接口与***板连接。
WDM,实现四路上行光信号与四路下行光信号的合波与分波,将四路不同波长下行光信号信号耦合输出至光接口,同时将四路不同波长的上行光信号分波输出至光电转换单元。
电连接器,实现光收发模块与***板电信号信号连接。
在本发明实施例中,单通道支持点对点PtP和点对多点PtMP工作模式多速率兼容光收发模块,和四通道灵活配置通道数量的光收发模块,可通过软件定义实现点对多点连续工作模式和点对多点突发工作模式切换;不同工作速率切换、以及工作通道数配置。通过同一端口模块配置不同工作状态,满足不同用户业务,有效降低设备造价和开发成本。
本发明实施例还提供了一种光模块工作参数的配置方法。
图7是根据本发明实施例的光模块工作参数的配置方法的流程图,如图7所示,该方法包括步骤S702至步骤S704。
步骤S702,接收光收发模块所在设备的命令,其中,上述命令中携带有工作参数的信息。
步骤S704,根据上述命令配置上述光收发模块的工作参数。
光收发模块所在的设备可以是无源光网络中的任何设备,只要进行光信号的处理即可。该设备可以包括上层软件***,上层软件***可以向控制器发送上述命令,控制器响应该命令对光模块的工作参数进行配置。
作为一个例子,上述的配置可以是控制器在寄存器中写入命令字,光收发模块在进行光电转换时,从寄存器中读取该命令字,从而得到光收发模块的工作参数,当然,本发明实施例并不限于此。
可选地,上述工作参数包括以下至少之一:上述光模块各个光电转换通道的工作速率、上述光模块各个光电转换通道的工作模式、光电转换所使用的光电转换通道、光电转换所使用的光电转换通道的数量。
作为一个例子,工作模式可以包括点对多点突发模式和点对点连续模式。所使用的光电转换通道可以是多个光电转换通道中哪个或哪些位置上述光电转换通道,光电转换通道的数量可以是使用多少个光电转换通道进行光电转换。
可选地,上述工作参数包括以下至少之一:上述光模块各个电光转换通道的工作速率、上述光模块各个电光转换通道的工作模式、电光转换所使用的电光转换通道、电光转换所使用的电光转换通道的数量。
作为一个例子,工作模式可以包括点对多点突发模式和点对点连续模式。所使用的电光转换通道可以是多个电光转换通道中哪个或哪些位置上述电光转换通道,电光转换通道的数量可以是使用多少个电光转换通道进行电光转换。
本发明实施例还提供了一种光模块工作参数的配置装置。
图8是根据本发明实施例的光收发模块工作参数的配置装置的结构框图,如图8所示,该装置可以包括:接收模块802,设置为接收光收发模块所在设备的命令,其中,上述命令中携带有工作参数的信息;配置模块804,设置为根据上述命令配置上述光收发模块的工作参数。
光收发模块所在的设备可以是无源光网络中的任何设备,只要进行光信号的处理即可。该设备可以包括上层软件***,上层软件***可以向控制器发送上述命令,控制器响应该命令对光模块的工作参数进行配置。
作为一个例子,上述的配置可以是控制器在寄存器中写入命令字,光收发模块在进行光电转换时,从寄存器中读取该命令字,从而得到光收发模块的工作参数,当然,本发明实施例并不限于此。
可选地,上述工作参数包括以下至少之一:上述光收发模块各个光电转换通道的工作速率、上述光模块各个光电转换通道的工作模式、光电转换所使用的光电转换通道、光电转换所使用的光电转换通道的数量。
作为一个例子,工作模式可以包括点对多点突发模式和点对点连续模式。所使用的光电转换通道可以是多个光电转换通道中哪个或哪些位置上述光电转换通道,光电转换通道的数量可以是使用多少个光电转换通道进行光电转换。
可选地,上述工作参数包括以下至少之一:上述光模块各个电光转换通道的工作速率、上述光模块各个电光转换通道的工作模式、电光转换所使用的电光转换通道、电光转换所使用的电光转换通道的数量。
作为一个例子,工作模式可以包括点对多点突发模式和点对点连续模式。所使用的电光转换通道可以是多个电光转换通道中哪个或哪些位置上述电光转换通道,电光转换通道的数量可以是使用多少个电光转换通道进行电光转换。
从以上的描述中,可以看出,本发明实施例实现了如下技术效果:控制器配置光模块的工作参数,使得光模块可以兼容不同的场景。此外,在多通道的情况下,还可以避免单通道光模块堆叠时导致的物理端口过多的问题。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,控制器配置光收发模块的工作参数,使得光收发模块可以兼容不同的场景。此外,在多通道的情况下,还可以避免单通道光模块堆叠时导致的物理端口过多的问题。

Claims (10)

  1. 一种光收发模块,包括:控制器、包括至少一路光电转换通道的光电转换单元和包括至少一路电光转换通道的电光转换单元,其中,
    所述控制器,与所述光电转换单元和所述电光转换单元相连接,设置为配置所述光电转换单元和所述电光转换单元的工作参数;所述工作参数包括以下至少之一:工作速率、通道数量和工作模式,其中,所述工作模式包括连续模式和突发模式;
    所述光电换转单元,设置为根据所述工作参数进行光电转换;
    所述电光转换单元,设置为根据所述工作参数进行电光转换。
  2. 根据权利要求1所述的光收发模块,其中,所述控制器,设置为响应所述光收发模块所在设备的命令,配置所述工作参数,其中,所述命令中携带有所述工作参数的信息。
  3. 根据权利要求1所述的光收发模块,其中,各个所述光电转换通道,包括:
    光电探测器,设置为将光信号转换为光电流;
    跨阻放大器,与所述光电探测器和所述控制器相连,可工作在所述连续模式或所述突发模式,设置为根据所述工作参数将所述光电流转换成电压信号;
    限幅放大器,与所述跨阻放大器相连,可工作在所述连续模式或所述突发模式,设置为对所述电压信号进行限幅放大处理。
  4. 根据权利要求3所述的光收发模块,其中,
    各个所述光电转换通道,还包括:电色散补偿单元,位于所述跨阻放大器和所述限幅放大器之间,可工作在所述连续模式或所述突发模式,设置为对所述电压信号进行电色散补偿;
    所述限幅放大器,还设置为对电色散补偿后的所述电压信号进行限幅放大处理。
  5. 根据权利要求3或4所述的光收发模块,其中,
    各个所述光电转换通道,还包括:数据扇出单元,位于所述跨阻放大器与所述限幅放大器之间,设置为将所述电压信号拆分成第一路信号和第二路信号, 其中,所述第一路信号为点对多点突发模式的电压信号,所述第二路信号为点对点连续模式的电压信号;
    所述限幅放大器,与所述数据扇出单元相连接,设置为对所述第一路信号进行限幅放大处理。
  6. 根据权利要求1所述的光收发模块,其中,各路所述电光转换通道,包括:
    激光驱动单元,与所述控制器相连接,设置为根据所述工作参数将电信号转换成电流驱动信号;
    激光器,与所述激光驱动单元相连接,设置为将所述电流驱动信号转换成光信号。
  7. 根据权利要求6所述的光收发模块,其中,各路所述电光转换通道,还包括:
    时钟数据恢复单元,与所述激光驱动单元的输入端相连接,具有旁路作用,设置为对预定速率的所述电信号进行时钟恢复。
  8. 根据权利要求6所述的光收发模块,其中,所述激光器包括以下至少之一:分布反馈DFB激光器、电吸收调制激光器EML。
  9. 一种光收发模块工作参数的配置方法,包括:
    接收光收发模块所在设备的命令,其中,所述命令中携带有工作参数的信息,所述工作参数包括以下至少之一:工作速率、通道数量和工作模式,其中,所述工作模式包括连续模式和突发模式;
    根据所述命令配置所述光收发模块的工作参数。
  10. 一种光收发模块工作参数的配置装置,包括:
    接收模块,设置为接收光收发模块所在设备的命令,其中,所述命令中携带有工作参数的信息,所述工作参数包括以下至少之一:工作速率、通道数量和工作模式,其中,所述工作模式包括连续模式和突发模式;
    配置模块,设置为根据所述命令配置所述光收发模块的工作参数。
PCT/CN2014/087126 2014-07-04 2014-09-22 光收发模块及其工作参数的配置方法及装置 WO2015154389A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410318615.9 2014-07-04
CN201410318615.9A CN105323008B (zh) 2014-07-04 2014-07-04 光收发模块及其工作参数的配置方法及装置

Publications (1)

Publication Number Publication Date
WO2015154389A1 true WO2015154389A1 (zh) 2015-10-15

Family

ID=54287170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087126 WO2015154389A1 (zh) 2014-07-04 2014-09-22 光收发模块及其工作参数的配置方法及装置

Country Status (2)

Country Link
CN (1) CN105323008B (zh)
WO (1) WO2015154389A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149149A (zh) * 2019-05-14 2019-08-20 北京小鸟科技股份有限公司 用于kvm切换设备的通信模块及kvm切换设备、***
CN112763784A (zh) * 2020-12-20 2021-05-07 复旦大学 一种电流探测装置及方法
CN114374134A (zh) * 2022-01-28 2022-04-19 北京科技大学顺德研究生院 一种16倍频无锁相双激光源多波段稳频信号发生装置
CN114389693A (zh) * 2021-12-01 2022-04-22 武汉华中天经通视科技有限公司 一种空间光通信信号处理装置和方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106506066A (zh) * 2016-12-11 2017-03-15 广东海信宽带科技有限公司 一种无色密集波分复用接入网光线路终端光模块
CN106961308B (zh) * 2017-03-14 2023-09-12 武汉汉源光通信技术有限公司 光收发单元、光模块、光通信***及相关参数控制方法
CN107707468B (zh) * 2017-09-19 2021-05-07 新华三技术有限公司 一种链路状态维护方法以及装置
CN108833869B (zh) * 2018-07-27 2020-07-21 浙江传媒学院 一种用于有线电视网络上行通道的可切换突发光发射电路
CN109889272B (zh) * 2019-02-18 2022-02-15 东莞铭普光磁股份有限公司 一种光模块及其自动兼容低速率的方法以及***
CN110069289A (zh) * 2019-04-23 2019-07-30 深圳市友华通信技术有限公司 基于以太网无源光网络设备的数据存贮方法
CN110121122B (zh) * 2019-05-10 2022-04-19 南京牛芯微电子有限公司 一种光模块的控制方法和***
CN110348116B (zh) * 2019-07-09 2022-12-20 北京艾达方武器装备技术研究所 电路模块的工艺制造方法
CN112968732B (zh) * 2019-12-13 2022-07-29 海思光电子有限公司 光电信号转换器及网络交互设备
CN113726432B (zh) * 2021-08-30 2023-04-14 桂林电子科技大学 一种软件可定义的可见光自适应调制解调装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741417A (zh) * 2004-08-27 2006-03-01 华为技术有限公司 可构成多种移动通信设备的装置及其构成的移动通信设备
CN101069372A (zh) * 2004-07-02 2007-11-07 菲尼萨公司 在向主机报告之前对光收发器中数字诊断信息的过滤
CN101405971A (zh) * 2006-03-31 2009-04-08 古河电气工业株式会社 光传送***和光中继装置
CN101404509A (zh) * 2008-11-11 2009-04-08 桂林光比特科技有限公司 信号干扰对消器及信号干扰对消方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8639122B2 (en) * 2004-07-02 2014-01-28 Finisar Corporation Filtering digital diagnostics information in an optical transceiver prior to reporting to host

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101069372A (zh) * 2004-07-02 2007-11-07 菲尼萨公司 在向主机报告之前对光收发器中数字诊断信息的过滤
CN1741417A (zh) * 2004-08-27 2006-03-01 华为技术有限公司 可构成多种移动通信设备的装置及其构成的移动通信设备
CN101405971A (zh) * 2006-03-31 2009-04-08 古河电气工业株式会社 光传送***和光中继装置
CN101404509A (zh) * 2008-11-11 2009-04-08 桂林光比特科技有限公司 信号干扰对消器及信号干扰对消方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110149149A (zh) * 2019-05-14 2019-08-20 北京小鸟科技股份有限公司 用于kvm切换设备的通信模块及kvm切换设备、***
CN110149149B (zh) * 2019-05-14 2024-04-30 北京小鸟科技股份有限公司 用于kvm切换设备的通信模块及kvm切换设备、***
CN112763784A (zh) * 2020-12-20 2021-05-07 复旦大学 一种电流探测装置及方法
CN114389693A (zh) * 2021-12-01 2022-04-22 武汉华中天经通视科技有限公司 一种空间光通信信号处理装置和方法
CN114389693B (zh) * 2021-12-01 2023-12-22 武汉华中天经通视科技有限公司 一种空间光通信信号处理装置和方法
CN114374134A (zh) * 2022-01-28 2022-04-19 北京科技大学顺德研究生院 一种16倍频无锁相双激光源多波段稳频信号发生装置
CN114374134B (zh) * 2022-01-28 2024-04-02 北京科技大学顺德研究生院 一种16倍频无锁相双激光源多波段稳频信号发生装置

Also Published As

Publication number Publication date
CN105323008A (zh) 2016-02-10
CN105323008B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2015154389A1 (zh) 光收发模块及其工作参数的配置方法及装置
US20240146435A1 (en) Multiplex conversion for a passive optical network
US8238753B2 (en) Optical line terminal
US8543001B2 (en) Cascaded injection locking of fabry-perot laser for wave division multiplexing passive optical networks
CN109981175B (zh) 光模块及信号处理的方法
EP2652890A1 (en) Optical network communication system with optical line terminal transceiver and method of operation thereof
CN114647030B (zh) 一种用于pon olt***的硅基光电子的收发集成芯片
US20160248534A1 (en) Method for processing optical signal, optical module and optical line terminal
CN104348553A (zh) Cfp光收发模块
WO2017028803A1 (zh) Olt光收发一体模块、处理多种pon的方法及***
CN105635860A (zh) 一种用于epon/olt中的三网融合光路结构
JP2010166279A (ja) 光通信システムおよび光集線装置
KR101230590B1 (ko) 파장 가변 광송수신기
EP4047835A1 (en) Automatic wavelength setting system for optical communication device
EP4002728A1 (en) Optical communication device and method for setting wavelength thereof
WO2024027346A1 (zh) 一种放大信号的装置、接收光信号的装置和方法
JP5942751B2 (ja) Wdm/tdm−pon方式用の局側装置及び光通信ネットワークシステム
KR20220071925A (ko) 광 통신 장치 및 이의 파장 설정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889041

Country of ref document: EP

Kind code of ref document: A1