WO2015154284A1 - 压缩机及具有该压缩机的制冷*** - Google Patents

压缩机及具有该压缩机的制冷*** Download PDF

Info

Publication number
WO2015154284A1
WO2015154284A1 PCT/CN2014/075095 CN2014075095W WO2015154284A1 WO 2015154284 A1 WO2015154284 A1 WO 2015154284A1 CN 2014075095 W CN2014075095 W CN 2014075095W WO 2015154284 A1 WO2015154284 A1 WO 2015154284A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression mechanism
crankshaft
exhaust
compressor
pipe
Prior art date
Application number
PCT/CN2014/075095
Other languages
English (en)
French (fr)
Inventor
方智祥
郭宏
杨泾涛
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to PCT/CN2014/075095 priority Critical patent/WO2015154284A1/zh
Publication of WO2015154284A1 publication Critical patent/WO2015154284A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to the field of compressors, and more particularly to a compressor for lying down and a refrigeration system having the same. Background technique
  • Horizontal compressors are more space-saving than vertical compressors because of the horizontal placement. Especially in some cases where the height is strictly limited, the advantages of horizontal compressors are more obvious, so there are heights in refrigerated trucks and freezers. In the limited field, horizontal compressors are widely used.
  • the present invention aims to solve at least one of the above technical problems in the prior art to some extent.
  • an object of the present invention is to provide a compressor which is disposed in a horizontal position and has a low back pressure environment inside the casing, and the high-temperature exhaust gas is directly discharged outside the casing through the exhaust pipe, and is not directly discharged into the casing. Therefore, the motor portion and the oil in the casing are not affected by the high temperature exhaust gas.
  • Another object of the present invention is to provide a refrigeration system having the above compressor.
  • the compressor is disposed in a horizontal position
  • the compressor includes: a housing; a compression mechanism, the compression mechanism is disposed in the housing, and the compression mechanism has a compression chamber therein.
  • a compression chamber for drawing refrigerant for compression from inside the casing and/or an intake pipe of the compressor;
  • a motor portion the motor portion is disposed in the casing, and the motor portion is configured to drive the a compression mechanism compresses a refrigerant sucked into the compression chamber;
  • an exhaust seal structure an exhaust chamber defined between the exhaust seal structure and the compression mechanism, the exhaust chamber being opposite to the interior of the housing Enclosed and used to collect exhaust gas compressed by the compression mechanism; and an exhaust pipe disposed to output the exhaust gas in the exhaust chamber to the outside of the casing.
  • the compressor is placed in a horizontal position, and the refrigerant compressed by the compression mechanism is not directly discharged into the interior of the casing, but is discharged into the exhaust chamber, and then passes through the exhaust pipe from the exhaust chamber.
  • the outside of the casing is discharged, so that the large environment inside the casing is low back pressure, the motor part is not affected by the high temperature exhaust gas, the service life of the motor part is increased, the energy efficiency and reliability of the compressor are improved, and the oil is not affected by the high temperature.
  • the effect of the exhaust gas increases the lubricating effect of the oil on components such as the compression mechanism.
  • the compressor according to an embodiment of the present invention may further have the following additional technical features:
  • the inner bottom of the compression mechanism is formed with a sliding slot
  • the sliding piece is movably disposed in the sliding slot
  • the sliding slot is disposed between the sliding slot and the exhaust cavity
  • the oil passage is connected, and the oil in the exhaust chamber can enter the sliding groove through the communication oil passage to lubricate the sliding piece.
  • an angle between a centerline of the vane groove and a base surface is ⁇ , the base surface being a plane defined by a central axis of the crankshaft and a lowest point of the compression mechanism , where ⁇ satisfies: 0 ct 60 ° .
  • the lubricating oil flowing from the communication oil passage into the sliding groove can be better entered into the sliding groove, thereby improving the lubricating effect on the sliding piece.
  • the ⁇ further satisfies: 0 ct 45 ° .
  • the centerline of the slider slot is in a vertical direction.
  • the exhaust seal structure is configured as an exhaust seal cover, and the exhaust seal cover is disposed on a side of the compression mechanism facing away from the motor portion, the communication oil passage is formed Inside the secondary bearing.
  • an oil and gas separation device for separating oil and gas from the exhaust pipe from the exhaust pipe outside the casing is provided in the exhaust chamber.
  • the refrigerant in the exhaust chamber needs to be separated from the exhaust pipe by the oil-gas separation function of the oil-gas separation device, thereby not only reducing the amount of oil contained in the exhaust gas, but also ensuring the inside of the casing. It has sufficient lubricating oil and can also increase the lubrication of the slide.
  • the compression mechanism is located at one side of the motor portion, a central through hole is formed in a crankshaft of the compression mechanism, and the center through hole penetrates the crankshaft in a longitudinal direction of the crankshaft An end surface of the first end and an end surface of the second end, wherein the first end of the crankshaft is provided with an oiling structure;
  • the compressor further includes: a negative pressure device disposed at a second end of the crankshaft or on a rotor of the motor portion and adjacent to a second end of the crankshaft.
  • the compression mechanism is located at one side of the motor portion, the first end of the crankshaft of the compression mechanism is open and the second end is closed to form a central blind hole in the crankshaft, An oiling structure is disposed on the first end of the crankshaft, and an oil outlet hole communicating with the central blind hole is disposed on a middle portion of the crankshaft between the compression mechanism and the rotor of the motor portion;
  • the compressor further includes: a negative pressure device disposed on the crankshaft or the rotor adjacent to the oil outlet.
  • the vacuum device includes a rotor fan, and the oiling structure includes an oil pipe.
  • the suction duct is one and disposed at an end of the housing that is further from the compression mechanism; or
  • the suction pipe is one and connected to a casing portion between the compression mechanism and the motor portion; or the suction pipe is one and directly connected to a cylinder of the compression mechanism; or
  • the suction pipe includes a first pipe section and a second pipe section, the first pipe section is disposed at an end of the casing farther from the compression mechanism, and the second pipe section is connected at the compression mechanism and a casing portion between the motor portions; the suction pipe includes a first pipe segment and a second pipe segment, the first pipe segment being disposed at an end of the casing farther from the compression mechanism, The second pipe section is directly connected to the cylinder of the compression mechanism.
  • a refrigeration system having a compressor as described above is proposed, the refrigeration system being a single cooling system or a heat pump system.
  • Figure 1 is a schematic illustration of a compressor in accordance with one embodiment of the present invention.
  • FIGS. 2 and 3 are cross-sectional views of a compressor at a cylinder in accordance with some embodiments of the present invention.
  • Figure 4 is a schematic illustration of a compressor in accordance with another embodiment of the present invention.
  • Figure 5 is a schematic illustration of a compressor in accordance with yet another embodiment of the present invention.
  • Figure 6 is a schematic illustration of a compressor in accordance with still another embodiment of the present invention.
  • Figure 7 is a schematic illustration of a compressor in accordance with still another embodiment of the present invention.
  • Figure 8 is a schematic illustration of a compressor in accordance with still another embodiment of the present invention.
  • Figure 9 is a schematic illustration of a compressor in accordance with still another embodiment of the present invention.
  • Figure 10 is a schematic illustration of a compressor in accordance with still another embodiment of the present invention.
  • Figure 11 is a schematic illustration of a compressor in accordance with still another embodiment of the present invention.
  • Figure 12 is a schematic illustration of a compressor in accordance with still another embodiment of the present invention.
  • Figure 13 is a schematic illustration of a refrigeration system in accordance with an embodiment of the present invention.
  • Compressor 100 outdoor heat exchanger 200, capillary tube 300, indoor heat exchanger 400;
  • Housing 1 main housing 1 1, end housing 12;
  • Compression mechanism 2 main bearing 21, cylinder 22, sub-bearing 23, connecting oil passage 231, crankshaft 24, piston 25, eccentric portion 251, central through hole 252, oil outlet 253, slide 26, slide groove 27, slippery Sheet spring 28 ;
  • Motor part 3 rotor 31, stator 32;
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first”, “second” may explicitly or implicitly include one or more of the features. Further, in the description of the present invention, the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise stated.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like should be understood broadly, and may be either a fixed connection or a detachable connection, unless otherwise explicitly stated and defined. , or integrated; can be mechanical connection, or electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • a compressor 100 according to an embodiment of the present invention which relates to a horizontal compressor 100, which can be applied to a refrigeration system such as a single cooling system or a heat pump system, will be described in detail below with reference to Figs.
  • the compressor 100 according to an embodiment of the present invention is placed horizontally.
  • the compressor 100 according to an embodiment of the present invention is a horizontal compressor 100
  • the horizontal compressor 100 has a crankshaft 24 as compared with a conventional vertical compressor.
  • the central axis may be horizontal or nearly horizontal, while the central axis of the crankshaft of the vertical compressor is vertical or approximately vertical.
  • a compressor 100 may include a housing 1, a compression mechanism 2, a motor portion 3, an exhaust seal structure 41, and the like.
  • the housing 1 can be of a split configuration.
  • the housing 1 can be generally divided into three parts, namely a main housing 11 portion and two end housing portions 12, the main housing.
  • the body 11 portion may be configured in a circular shape, the axial ends thereof being open, and the two end housings 12 may be respectively fixed at both ends of the main housing 11 portion, and the main housing 11 is closed, so that the main housing 11 portion And the two end casings 12 partially form a closed casing 1 structure, and the main casing 11 portion and the end casing 12 portion may be fixed by welding, but are not limited thereto.
  • the compression mechanism 2 is disposed inside the casing 1, and the compression mechanism 2 is a core member of the compressor 100 for compressing the refrigerant in the system.
  • the compression mechanism 2 may be a single cylinder structure or a multi-cylinder structure (e.g., a two cylinder).
  • the compression mechanism 2 is a single cylinder structure, and the compression mechanism 2 may include a main bearing 21, a cylinder 22, a sub-bearing 23, a crankshaft 24, and a piston. 25 and other components.
  • the main bearing 21 may be disposed at one side of the cylinder 22, the sub-bearing 23 may be disposed at the other side of the cylinder 22, and the main bearing 21, the cylinder 22, and the sub-bearing 23 may be fastened with a plurality of bolts.
  • the crankshaft 24 is provided with a main bearing 21, a cylinder 22 and a sub-bearing 23, and the crankshaft 24 is supported by a main bearing 21 and a sub-bearing 23, and an eccentric portion 251 is integrally formed on the crankshaft 24, and the piston 25 is sleeved on the eccentric portion 251. It can rotate with the crankshaft 24.
  • the inner bottom of the cylinder 22 may be formed with a vane slot 27, the tail of which is closed, i.e., the end of the vane slot 27 that is further from the center of the cylinder 22 and the casing
  • the internal environment of the body 1 is separated, for example, the tail of the slide groove 27 can be sealed by a sealing plate.
  • the slider 26 is movably disposed in the slider slot 27, and the slider 26 can be provided with a slider spring 28.
  • the slider 26 can ensure the tip end of the slider 26 under the elastic force of the slider spring 28 (ie, the slider) 26 is closer to the center of the cylinder 22 The end) can abut against the outer peripheral surface of the piston 25, thereby ensuring that the compressor 100 can operate normally.
  • the compression mechanism 2 has a compression chamber inside, and the piston 25 is located in the compression chamber for compressing the refrigerant sucked into the compression chamber.
  • the compression chamber can be sucked from the inside of the housing 1, and can also be directly sucked from the suction tube 43 for use.
  • the compressed refrigerant, or the compression chamber can simultaneously draw in from the inside of the casing 1 and the suction duct 43.
  • the refrigerant sucked into the compression chamber becomes a high temperature and high pressure refrigerant under the compression of the piston 25.
  • the exhaust valve is opened, so that the high temperature and high pressure refrigerant is discharged into the exhaust chamber. 45 inside.
  • the exhaust chamber 45 which may be defined by the compression mechanism 2 and the exhaust seal structure 41
  • the exhaust chamber 45 is defined by the sub-bearing 23 and the exhaust seal structure 41, and the exhaust chamber 45 is used for collection.
  • the exhaust gas compressed by the compression mechanism 2 and the exhaust chamber 45 are closed relative to the interior of the housing 1, i.e., the exhaust chamber 45 is independent of the internal environment of the housing 1.
  • the crankshaft 24 is driven by the motor portion 3, the motor portion 3 is disposed in the housing 1, the motor portion 3 may be located at one side of the compression mechanism 2, and the motor portion 3 may include the rotor 31 and the stator 32, the rotor 31 is rotatably disposed inside the stator 32, and the rotor 31 and the crankshaft 24 may be fixed by a shrink fitting method, but is not limited thereto.
  • the rotor 31 drives the crankshaft 24 to rotate about the central axis of the crankshaft 24, which in turn drives the piston 25 to rotate to compress the refrigerant sucked into the compression chamber.
  • the exhaust pipe 42 is disposed to discharge the exhaust gas in the exhaust chamber 45 to the outside of the casing 1.
  • the exhaust pipe 42 may be fixed to the casing 1, and the inner end of the exhaust pipe 42 may be inserted into the sub-bearing 23 to communicate with the exhaust chamber 45 and the outer end may protrude outside the casing 1, whereby the exhaust chamber 45
  • the high temperature and high pressure refrigerant inside can be directly discharged from the exhaust pipe 42 to the outside of the casing 1, and the high temperature exhaust gas does not directly enter the inside of the casing 1, so that the motor portion 3 is no longer affected by the high temperature exhaust gas, so that the motor portion 3 can be improved.
  • the compressor 100 according to the embodiment of the present invention is laid down, and the refrigerant compressed by the compression mechanism 2 is not directly discharged into the inside of the casing 1, but is discharged into the exhaust chamber 45, and then from the exhaust chamber 45.
  • the inside of the casing 1 is discharged through the exhaust pipe 42, so that the large environment inside the casing 1 is low back pressure, and the motor portion 3 is not affected by the high-temperature exhaust gas, thereby increasing the service life of the motor portion 3 and improving the compressor.
  • the energy efficiency and reliability of 100 while the oil is not affected by high temperature exhaust, thus increasing the lubrication effect of the oil on the compression mechanism 2 and other components.
  • the exhaust chamber 45 is for collecting exhaust gas. During the exhaust gas entering the exhaust chamber 45 and discharging through the exhaust pipe 42, a part of the oil is separated, and the separated oil can be located. At the bottom of the exhaust chamber 45, the output of this portion of the oil to the vane slot 27 can increase the lubrication effect on the vane 26.
  • a communication oil passage 231 is disposed between the vane groove 27 and the exhaust chamber 45, and the oil in the exhaust chamber 45 can enter the vane groove 27 through the communication oil passage 231 for lubrication.
  • the slider 26 improves the wear of the slider 26 and increases the life of the slider 26.
  • the center line of the slider groove 27 (L2 in FIGS. 2 and 3) and the base surface (the surface L1 in FIGS. 2 and 3)
  • the angle between the angles is ⁇ , ⁇ satisfies: 0 ct 60 °
  • the base surface is the central axis of the crankshaft 24 (01 in Figures 2 and 3, orthogonal to the paper direction in Figures 2 and 3)
  • the plane defined by the lowest point of the compression mechanism 2 (02 points in Figs. 2 and 3).
  • the base surface is a vertical plane that passes through the central axis of the crankshaft 24.
  • the lubricating oil flowing from the communication oil passage 231 to the vane groove 27 can be better entered into the vane groove 27, thereby improving the lubricating effect on the vane 26.
  • further satisfies: 0 ⁇ 45 ° .
  • the lubricating oil in the exhaust chamber 45 can more easily enter the sliding groove 27 through the connecting oil passage 231, and fill the sliding groove 27, thereby further improving the lubricating effect on the sliding piece 26 and reducing the wear of the sliding piece 26,
  • the compressor 100 is improved in energy efficiency.
  • the oil since the oil enters the system, it not only affects the cooling or heating efficiency of the system, but also reduces the oil in the casing 1, which causes the compression mechanism 2 to be insufficiently lubricated by the oil, thus reducing the exhaust from the exhaust.
  • the oil contained in the refrigerant discharged from the tube 42 is indispensable for improving the energy efficiency of the compressor 100 or for ensuring the lubrication of the compression mechanism 2, and if the oil contained in the refrigerant discharged from the exhaust pipe 42 can be reduced.
  • the amount of oil collected in the exhaust chamber 45 is correspondingly increased, which also provides more oil lubrication slides 26 into the vane slots 27.
  • an oil and gas separation device 44 may be disposed in the exhaust chamber 45 for performing oil and gas separation of the refrigerant discharged from the exhaust pipe 42 outside the casing 1.
  • the oil and gas separation device 44 may optionally include a filter mesh that may entirely cover the end of the exhaust pipe 42 that extends into the sub-bearing 23, but is not limited thereto.
  • the refrigerant in the exhaust chamber 45 needs to be separated from the exhaust pipe 42 by the oil-gas separation of the oil-gas separation device 44, thereby reducing the amount of oil contained in the exhaust gas. , to ensure that the casing 1 has sufficient lubricating oil, and at the same time increase the lubrication effect on the sliding piece 26.
  • the exhaust seal structure 41 is configured as an exhaust seal cover, and the exhaust seal cover may be provided on a side of the compression mechanism 2 facing away from the motor portion 3, for example, by bolt fastening, and the communication oil passage 231 may be formed.
  • the communication oil passage 231 may be located at the bottom of the sub-bearing 23.
  • the present invention is not limited thereto, and for example, the communication oil passage 231 may be simultaneously formed in the sub-bearing 23 and the cylinder 22.
  • the suction pipe 43 may be one, and the one suction pipe 43 is disposed on the end of the casing 1 far from the compression mechanism 2, thus participating in the system cycle.
  • the subsequent refrigerant can enter the inside of the casing 1 from the intake pipe 43, the refrigerant passes through the motor portion 3 and the refrigerant is supplied to the motor portion 3, and finally can be sucked into the compression chamber from the intake port 211 located in the main bearing 21.
  • the motor unit 3 since the temperature of the return air refrigerant is low, the motor unit 3 can be sufficiently cooled to prevent the temperature of the motor unit 3 from being excessively high and affecting normal operation.
  • the suction ducts 43 are one and are connected to the portion of the housing 1 between the compression mechanism 2 and the motor portion 3, as compared to Figures 1 and 4
  • the installation position of the suction duct 43 is changed in this embodiment, which communicates the space between the compression mechanism 2 and the motor portion 3, thus entering from the intake pipe 43
  • the refrigerant inside the casing 1 does not cool the motor or only cools a small portion of the motor portion 3 toward the compression mechanism 2, so that the setting can improve the suction efficiency.
  • the suction port 211 of the compression mechanism 2 in this embodiment may also be located on the main bearing 21.
  • the suction duct 43 may be one, and the one suction duct 43 may be directly connected to the cylinder 22 of the compression mechanism 2.
  • a narrow suction port can be formed in the cylinder 22, and the air suction pipe 43 can be inserted into and fixed into the air inlet of the cylinder 22 after passing through the casing 1, thereby directly supplying the return air to the compression chamber, thereby improving Inhalation efficiency.
  • the intake port 211 on the main bearing 21 in this embodiment can be eliminated as compared with the embodiment in Figs. 1, 4, 10 and 12.
  • the suction duct 43 may include a first pipe section 431 and a second pipe section 432, i.e., the suction pipe 43 has a two-stage structure.
  • the first pipe section 431 may be disposed at an end of the casing 1 farther from the compression mechanism 2, and the second pipe section 432 is connected to a portion of the casing 1 between the compression mechanism 2 and the motor portion 3.
  • the suction duct 43 integrates the suction duct 43 of the two embodiments shown in FIG. 1 (or FIG. 4) and FIG. 10 (or FIG. 12) described above.
  • the manner of setting such that the return air from the first pipe section 431 into the casing 1 can first cool the motor section 3, and then suck into the compression chamber by the suction port 211 located on the main bearing 21, and from the second pipe section 432.
  • the return air that has entered the casing 1 can be directly sucked into the compression chamber by the intake port 211 on the main bearing 21, thereby achieving both the intake efficiency and the cooling of the motor unit 3.
  • the suction duct 43 also includes a first pipe section 431 and a second pipe section 432, and the first pipe section 431 is disposed in the casing 1. On the farther end of the compression mechanism 2, the second pipe section 432 is directly connected to the cylinder 22 of the compression mechanism 2.
  • the intake port 211 may be further provided on the main bearing 21 and the intake port 211 may not be provided.
  • the return air from the first pipe segment 431 into the casing 1 may first cool the motor portion 3, and then The suction port 211 located on the main bearing 21 is sucked into the compression chamber, and the return air of the second pipe segment 432 can be directly sucked into the compression chamber through the suction port opened in the cylinder 22, similarly, the cylinder 22
  • the suction port may also be substantially conical, and this embodiment also achieves the suction efficiency and the cooling of the motor unit 3.
  • the suction of the compression chamber is entirely from the second pipe section 432, and the first pipe section 431 is disposed only for balancing the motor portion 3.
  • the internal pressure of the casing 1 is for preventing the high-pressure refrigerant from leaking into the casing 1 at the motor portion 3 of the compression mechanism 2, thereby causing the pressure in the portion of the closed space to rise indefinitely, so that the compressor 100 cannot work normally, and the first The pipe section 431 is disposed such that the leaked refrigerant can be discharged from the first pipe section 431 and can enter the second pipe section 432, and finally can be sucked in by the compression chamber.
  • the suction of the compression chamber of the compressor 100 may all come from the inside of the casing 1, or may be partially from the inside of the casing 1, and partially from the suction pipe 43 (the refrigerant does not pass through) The inside of the casing 1), or all from the suction duct 43 (the portion of the refrigerant does not pass through the inside of the casing 1).
  • the lubrication effect on the compression mechanism 2, particularly the slide 26, is related to the overall energy efficiency of the compressor 100. Since the crankshaft 24 of the horizontal compressor 100 is horizontally or nearly horizontally disposed, the crankshaft 24 is leaned on. One end of the proximal sub-bearing 23 (i.e., the sub-shaft section) cannot be directly inserted downward into the oil pool.
  • the compression mechanism 2 is located on one side (e.g., the left side) of the motor portion 3, and a central through hole 252 is formed in the crankshaft 24, and the center through hole 252 extends through the longitudinal direction of the crankshaft 24.
  • An end face of the first end of the crankshaft 24 e.g., the left end of Fig. 1, Fig. 4-12, i.e., the B1 end
  • an end face of the second end e.g., the right end of Fig. 1, Fig. 4-12, the B2 end
  • the first end of the crankshaft 24 is provided with an oiling structure 51.
  • the oiling structure 51 can suck the oil in the oil pool into the central through hole 252 of the crankshaft 24, and the crankshaft 24 corresponds to the piston 25, the main bearing 21 and the auxiliary bearing 23.
  • Radial oil holes may be provided at the same place, and the oil in the center through hole 252 may be ejected from the radial oil holes to lubricate the compression mechanism 2.
  • the compressor 100 may further include a negative pressure device 52, the negative pressure device 52 is disposed at the second end of the crankshaft 24, or the negative pressure device 52 may be provided.
  • the negative pressure device 52 On the rotor 31 of the motor portion 3 and adjacent to the second end of the crankshaft 24, the negative pressure device 52 can form a negative pressure when the compressor 100 is operated, thereby improving the oiling effect of the crankshaft 24 and increasing the lubricating effect on the compression mechanism 2.
  • the first end of the crankshaft 24 is open and the second end is closed to form a central blind bore in the crankshaft 24, similarly, the crankshaft 24
  • the first end of the first end is also provided with an oiling structure 51
  • the crankshaft 24 is further provided with an oil outlet hole 253, the oil outlet hole 253 is connected to the central blind hole, and the position of the oil outlet hole 253 can be located at the compression mechanism 2 and the rotor. 31 is on the middle portion of the crankshaft 24.
  • the negative pressure means 52 is provided on the crankshaft 24 or the rotor 31 adjacent to the oil outlet 253.
  • the negative pressure means 52 may be provided on the side of the rotor 31 facing the compressor structure 2. Thereby, the oiling effect of the crankshaft 24 can also be increased.
  • the negative pressure device 52 includes a rotor fan that can generate a negative pressure at the rotor fan when rotated, and the rotor fan and the crankshaft 24 or the rotor 31 can be fixed by screwing or welding.
  • the oiling structure 51 includes an oil pipe, and the upper end of the oil pipe communicates with a central through hole 252 or a center blind hole in the crankshaft 24, and the lower end of the oil pipe extends into the oil pool.
  • a refrigeration system including components such as an outdoor heat exchanger 200, a capillary tube 300, an indoor heat exchanger 400, and a compressor 100, and the compressor 100 may be any of the above.
  • the refrigeration system can be a single cooling system, ie having only a refrigeration function.
  • the refrigeration system may be a heat pump system, for example, by providing a four-way valve for cooling and heating functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机(100)及具有该压缩机(100)的制冷***。该压缩机(100)卧放设置且包括:壳体(1);压缩机构(2),压缩机构(2)设在壳体(1)内且具有压缩腔,压缩腔从壳体(1)内部和/或吸气管(43)吸入冷媒;电机部(3),电机部(3)设在壳体(1)内且用于驱动压缩机构(2);排气密封结构(41),排气密封结构(41)与压缩机构(2)之间限定出排气腔(45),排气腔(45)相对壳体(1)内部封闭且用于收集排气;排气管(42),排气管(42)设置成将排气腔(45)内的排气输出至壳体(1)外。

Description

压缩机及具有该压缩机的制冷***
技术领域
本发明涉及压缩机领域, 尤其是涉及一种卧放设置的压缩机及具有该压缩机的制冷 ***。 背景技术
卧式压缩机由于卧放设置, 因此比立式压缩机更加节省空间, 特别是在一些对使用 高度有严格限制的情况, 卧式压缩机的优势更加明显, 因此在冷藏车、 冷柜等有高度限 制的领域中, 卧式压缩机得到了广泛应用。
传统卧式压缩机的排气是直接排入到壳体内部的, 冷却完电机后从排气管排出, 但 是由于压缩后的排气温度较高, 因此对电机的冷却效果一般, 可能导致电机冷却不足, 造成电机老化、 冷冻机油劣化, 降低压缩机能效, 可靠性差。 发明内容
本发明旨在至少在一定程度上解决现有技术中的上述技术问题之一。
为此,本发明的一个目的在于提出一种压缩机,该压缩机卧放设置且壳体内部为低背压 环境, 高温排气直接通过排气管排出壳体外, 不直接排入壳体内, 从而壳体内的电机部和 机油不受高温排气影响。
本发明的另一个目的在于提出一种具有上述压缩机的制冷***。
根据本发明实施例的压缩机,所述压缩机卧放设置,所述压缩机包括:壳体;压缩机构, 所述压缩机构设在所述壳体内, 所述压缩机构内具有压缩腔, 所述压缩腔从所述壳体内部 和 /或所述压缩机的吸气管吸入用于压缩的冷媒; 电机部, 所述电机部设在所述壳体内, 所 述电机部用于驱动所述压缩机构对吸入到所述压缩腔内的冷媒进行压缩; 排气密封结构, 所述排气密封结构与所述压缩机构之间限定出排气腔, 所述排气腔相对所述壳体内部封闭 且用于收集经所述压缩机构压缩后的排气; 以及排气管, 所述排气管设置成将所述排气腔 内的所述排气输出至所述壳体外。
因此,根据本发明实施例的压缩机卧放布置,且经过压缩机构压缩的冷媒不直接排入到 壳体内部, 而是排入到排气腔内, 再从排气腔内通过排气管排出壳体外, 使得壳体内部的 大环境为低背压, 电机部不受高温排气的影响, 增加了电机部的使用寿命, 提高了压缩机 的能效和可靠性, 同时机油也不受高温排气的影响, 从而增加了机油对压缩机构等部件的 润滑效果。
另外, 根据本发明实施例的压缩机, 还可以具有如下附加技术特征:
根据本发明的一些实施例,所述压缩机构的内底部形成有滑片槽,滑片可移动地设在所 述滑片槽内, 所述滑片槽与所述排气腔之间设置有连通油道, 所述排气腔内的机油可通过 所述连通油道进入到所述滑片槽内以润滑所述滑片。 由此, 可以提高对滑片的润滑效果。 根据本发明的一些实施例,所述滑片槽的中心线与基面之间的夹角为 α,所述基面为所 述曲轴的中心轴线和所述压缩机构的最低点所限定的平面, 其中 α满足: 0 ct 60 ° 。
由此,从连通油道流入到滑片槽的润滑油可以更好地进入到滑片槽内,从而提高对滑片 的润滑效果。
根据本发明的一些实施例, 所述 α进一步满足: 0 ct 45 ° 。
根据本发明的一些实施例, 所述滑片槽的中心线沿竖直方向。
根据本发明的一些实施例,所述排气密封结构构造为排气密封盖,所述排气密封盖设在 所述压缩机构的背离所述电机部的一侧上, 所述连通油道形成在所述副轴承内。
根据本发明的一些实施例,所述排气腔内设置有用于对从所述排气管排出所述壳体外的 冷媒进行油气分离的油气分离装置。
通过设置诸如过滤网的油气分离装置,使得排气腔内的冷媒需先经过油气分离装置的油 气分离作用才能从排气管排出, 这样不仅减少了排气中所含的机油量, 保证壳体内具有充 足的润滑机油, 同时还能增加对滑片的润滑效果。
根据本发明的一些实施例,所述压缩机构位于所述电机部的一侧,所述压缩机构的曲轴 内形成有中心通孔, 所述中心通孔沿所述曲轴的纵向贯通所述曲轴的第一端的端面和第二 端的端面, 所述曲轴的第一端上设置有上油结构; 以及
所述压缩机还包括: 负压装置,所述负压装置设在所述曲轴的第二端处或设在所述电机 部的转子上且邻近所述曲轴的第二端。
根据本发明的一些实施例,所述压缩机构位于所述电机部的一侧,所述压缩机构的曲轴 的第一端敞开且第二端封闭以在所述曲轴内形成中心盲孔, 所述曲轴的第一端上设置有上 油结构, 所述曲轴的位于所述压缩机构与所述电机部的转子之间的中段部分上设置有与所 述中心盲孔连通的出油孔; 以及
所述压缩机还包括: 负压装置,所述负压装置设在所述曲轴或所述转子上且邻近所述出 油孔。
根据本发明的一些实施例, 所述负压装置包括转子风扇, 所述上油结构包括上油管。 根据本发明的一些实施例,所述吸气管为一个且设置在所述壳体的距离所述压缩机构较 远的一端上; 或者
所述吸气管为一个且连接在位于所述压缩机构与所述电机部之间的壳体部分上; 或者 所述吸气管为一个且直接与所述压缩机构的气缸相连; 或者
所述吸气管包括第一管段和第二管段,所述第一管段设置在所述壳体的距离所述压缩机 构较远的一端上, 所述第二管段连接在位于所述压缩机构与所述电机部之间的壳体部分上; 所述吸气管包括第一管段和第二管段,所述第一管段设置在所述壳体的距离所述压缩机 构较远的一端上, 所述第二管段直接与所述压缩机构的气缸相连。
根据本发明另一方面的实施例,提出了一种具有如上所述压缩机的制冷***,所述制冷 ***为单冷***或热泵***。 本发明的附加方面和优点将在下面的描述中部分给出, 部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。 附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1是根据本发明一个实施例的压缩机的示意图;
图 2和图 3是根据本发明一些实施例的压缩机在气缸处的剖视图;
图 4是根据本发明另一个实施例的压缩机的示意图;
图 5是根据本发明又一个实施例的压缩机的示意图;
图 6是根据本发明再一个实施例的压缩机的示意图;
图 7是根据本发明再一个实施例的压缩机的示意图;
图 8是根据本发明再一个实施例的压缩机的示意图;
图 9是根据本发明再一个实施例的压缩机的示意图;
图 10是根据本发明再一个实施例的压缩机的示意图;
图 11是根据本发明再一个实施例的压缩机的示意图;
图 12是根据本发明再一个实施例的压缩机的示意图;
图 13是根据本发明实施例的制冷***的示意图。
附图标记:
压缩机 100, 室外换热器 200, 毛细管 300, 室内换热器 400 ;
壳体 1, 主壳体 1 1, 端部壳体 12 ;
压缩机构 2, 主轴承 21, 气缸 22, 副轴承 23, 连通油道 231, 曲轴 24, 活塞 25, 偏心部 251, 中心通孔 252, 出油孔 253, 滑片 26, 滑片槽 27, 滑片弹簧 28 ;
电机部 3, 转子 31, 定子 32 ;
排气密封结构 41, 排气管 42, 吸气管 43, 第一管段 431, 第二管段 432, 油气分离 装置 44, 排气腔 45 ;
上油结构 51, 负压装置 52。 具体实施方式
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
在本发明的描述中, 需要理解的是, 术语"中心"、 "上"、 "下"、 "前"、 "后"、 "左" 、 "右" 、 "竖直" 、 "水平" 、 "顶" 、 "底" "内" 、 "外"等指示的方位 或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不能理解为对本发明的限制。
需要说明的是, 术语 "第一" 、 "第二 "仅用于描述目的, 而不能理解为指示或暗 示相对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二" 的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本发明的描述中, 除非另有说明, "多个" 的含义是至少两个, 例如两个, 三个等。
在本发明中, 除非另有明确的规定和限定, 术语"安装"、 "相连"、 "连接"、 "固定"等 术语应做广义理解, 例如, 可以是固定连接, 也可以是可拆卸连接, 或成一体; 可以是机 械连接, 也可以是电连接; 可以是直接相连, 也可以通过中间媒介间接相连, 可以是两个 元件内部的连通或两个元件的相互作用关系。 对于本领域的普通技术人员而言, 可以根据 具体情况理解上述术语在本发明中的具体含义。
下面参考图 1-图 13详细描述根据本发明实施例的压缩机 100, 该压缩机 100涉及一种 卧式压缩机 100, 可以应用于诸如单冷***或热泵***的制冷***中。
根据本发明实施例的压缩机 100 卧放设置, 换言之, 根据本发明实施例的压缩机 100 为卧式压缩机 100, 卧式压缩机 100相比于传统立式压缩机而言, 其曲轴 24的中心轴线可 以是水平或接近水平的, 而立式压缩机的曲轴的中心轴线是竖直或近似竖直的。
参照图 1所示, 根据本发明实施例的压缩机 100可以包括壳体 1、 压缩机构 2、 电机部 3和排气密封结构 41等。
参照图 1所示, 壳体 1可以采用分体式结构, 例如在一些实施例中, 壳体 1大体可以分 为三部分, 即主壳体 11部分和两个端部壳体 12部分, 主壳体 11部分可以构造为圆环形, 其轴向两端敞开, 两个端部壳体 12可以分别固定在主壳体 11部分的两端, 且封闭主壳体 11, 从而主壳体 11部分以及两个端部壳体 12部分构成一封闭的壳体 1结构, 主壳体 11部 分与端部壳体 12部分可以采用焊接的方式固定, 但不限于此。
如图 1、 图 4-图 12所示, 压缩机构 2设于壳体 1内部, 压缩机构 2是压缩机 100的核 心部件, 其用于对***内的冷媒进行压缩。 压缩机构 2可以是单缸结构或多缸结构 (例如, 双缸)。
结合图 1、 图 4-图 12所示, 在图中示出的实施例中, 压缩机构 2为单缸结构, 压缩机 构 2可以包括主轴承 21、 气缸 22、 副轴承 23、 曲轴 24、 活塞 25等部件。 主轴承 21可以 设置在气缸 22的一侧, 副轴承 23可以设置在气缸 22的另一侧, 主轴承 21、 气缸 22和副 轴承 23可以采用多个螺栓紧固。
曲轴 24穿设主轴承 21、 气缸 22和副轴承 23且曲轴 24由主轴承 21和副轴承 23进行 支承, 曲轴 24上可以一体地形成有偏心部 251, 活塞 25套设在偏心部 251上且可随着曲轴 24转动。 参照图 1且结合图 2-图 3, 气缸 22的内底部可以形成有滑片槽 27, 滑片槽 27的 尾部是封闭的, 即滑片槽 27的距离气缸 22中心较远的一端与壳体 1 内部环境隔开, 例如 可以通过密封板密封滑片槽 27的尾部。
滑片 26可移动地设在滑片槽 27内, 滑片 26的尾部可以设置滑片弹簧 28, 滑片 26在 滑片弹簧 28的弹力作用下可保证滑片 26的先端 (即, 滑片 26距离气缸 22中心较近的一 端) 可以抵靠在活塞 25的外周面上, 从而保证压缩机 100能够正常运行。
压缩机构 2内部具有压缩腔, 活塞 25位于压缩腔内用于对吸入到压缩腔内的冷媒进行 压缩, 压缩腔可以从壳体 1内部吸气, 当然也可以从吸气管 43直接吸入用于压缩的冷媒, 或者压缩腔可以同时从壳体 1内部以及吸气管 43进行吸气。 吸入到压缩腔内的冷媒在活塞 25 的压缩作用下变为高温高压冷媒, 当高温高压冷媒的压力达到排气阀的开启压力时, 排 气阀打开, 从而高温高压冷媒排入到排气腔 45内。
关于排气腔 45, 其可以是由压缩机构 2和排气密封结构 41共同限定出的, 例如排气腔 45由副轴承 23和排气密封结构 41共同限定出,排气腔 45用于收集经压缩机构 2压缩后的 排气且排气腔 45相对于壳体 1内部是封闭的, 即排气腔 45独立于壳体 1内部环境。
对于压缩机构 2, 其曲轴 24是由电机部 3驱动的, 电机部 3设在壳体 1内, 电机部 3 可以位于压缩机构 2的一侧, 电机部 3可以包括转子 31和定子 32, 转子 31可转动地设在 定子 32内侧, 转子 31与曲轴 24之间可以采用热装方式固定, 但不限于此。 转子 31带动 曲轴 24绕曲轴 24中心轴线旋转, 曲轴 24进而带动活塞 25转动从而对吸入到压缩腔内的 冷媒进行压缩。
结合图 1、 图 4-图 12所示, 排气管 42设置成将排气腔 45内的排气输出至壳体 1外。 例如, 排气管 42可以固定在壳体 1上, 排气管 42的内端可以***副轴承 23内从而连通排 气腔 45且外端可以伸出壳体 1外, 由此排气腔 45内的高温高压冷媒可直接从排气管 42排 出壳体 1外, 高温排气不直接进入到壳体 1内部, 从而电机部 3不再受到高温排气的影响, 这样可以提高电机部 3的使用寿命, 电机部 3和壳体 1内封装的机油 (例如, 图 1-图 12中 的 A代表机油) 温度都不至于达到较高的温度, 从而不仅可以提高机油对压缩机构 2的润 滑效果, 同时还能改善电机部 3的工作温度, 对压缩机 100能效的提高具有有利影响。
因此,根据本发明实施例的压缩机 100卧放布置,且经过压缩机构 2压缩的冷媒不直接 排入到壳体 1内部, 而是排入到排气腔 45内, 再从排气腔 45内通过排气管 42排出壳体 1 夕卜, 使得壳体 1 内部的大环境为低背压, 电机部 3不受高温排气的影响, 增加了电机部 3 的使用寿命, 提高了压缩机 100 的能效和可靠性, 同时机油也不受高温排气的影响, 从而 增加了机油对压缩机构 2等部件的润滑效果。
由压缩机 100的工作原理可知, 压缩机 100的排气中不可避免的会含有一定量的机油, 这部分机油如果进入到***内参与循环会影响***的制冷或制热效率,同时还降低了壳体 1 内的机油量, 严重时可能导致压缩机构 2润滑不足。 而排气腔 45是用于收集排气的, 排气 在进入到排气腔 45 内后至通过排气管 42排出期间, 会有一部分机油被分离出来, 这部分 被分离出的机油可以位于排气腔 45的底部, 将这部分机油输出给滑片槽 27可以增加对滑 片 26的润滑效果。
因此, 在一些实施例中, 滑片槽 27与排气腔 45之间设置有连通油道 231, 排气腔 45 内的机油可通过连通油道 231进入到滑片槽 27内, 用于润滑滑片 26, 改善滑片 26的磨损, 提高滑片 26的寿命。
进一步, 滑片槽 27的中心线(图 2和图 3中的 L2 )与基面(图 2和图 3中的面 L1 )之 间的夹角为 α, α满足: 0 ct 60 ° , 其中该基面为曲轴 24的中心轴线 (图 2和图 3中 的 01, 正交于图 2和图 3中的纸面方向) 与压缩机构 2的最低点 (图 2和图 3中的 02点) 所限定的平面。 例如, 若曲轴 24沿水平定向, 则该基面为通过曲轴 24的中心轴线的竖直 面。
由此,从连通油道 231流入到滑片槽 27的润滑油可以更好地进入到滑片槽 27内,从而 提高对滑片 26的润滑效果。
更进一步, α进一步满足: 0 α 45 ° 。 作为一种较优选的实施方式, 滑片槽 27的中 心线沿竖直方向 (即图 2和图 3中的中心线 L2在平面 L1内), 即滑片槽 27的长度沿竖直 定向, 也就是说, α =0。 这样, 排气腔 45内的润滑油通过连通油道 231后可以更方便地进 入到滑片槽 27内, 充满滑片槽 27, 进一步提高对滑片 26的润滑效果, 减少滑片 26磨损, 提高压缩机 100能效。
如上面分析可知, 由于机油进入到***内不仅会影响***的制冷或制热效率, 同时还会 减少壳体 1内的机油, 导致压缩机构 2得不到充足的机油来润滑, 因此减少从排气管 42排 出的冷媒所含的机油无论对提高压缩机 100的能效, 还是保证压缩机构 2的润滑来说都是 必不可少的, 并且如果能够减少从排气管 42排出的冷媒所含的机油量, 那么排气腔 45 内 收集的机油就会相应增多, 这样还能向滑片槽 27内提供更多的机油润滑滑片 26。
有鉴于此, 在一些实施例中, 排气腔 45内可以设有油气分离装置 44, 该油气分离装置 44用于对从排气管 42排出壳体 1外的冷媒进行油气分离。 例如, 可选地, 油气分离装置 44可以包括过滤网, 过滤网可以整个覆盖排气管 42伸入到副轴承 23内的一端上, 但不限 于此。
通过设置诸如过滤网的油气分离装置 44,使得排气腔 45内的冷媒需先经过油气分离装 置 44的油气分离作用才能从排气管 42排出, 这样不仅减少了排气中所含的机油量, 保证 壳体 1内具有充足的润滑机油, 同时还能增加对滑片 26的润滑效果。
在一些实施例中, 排气密封结构 41构造为排气密封盖, 排气密封盖可以设在压缩机构 2的背离电机部 3的一侧上, 例如采用螺栓紧固, 连通油道 231可以形成在副轴承 23内, 连通油道 231可以位于副轴承 23的底部。 但本发明并不限于此, 例如连通油道 231还可以 同时形成在副轴承 23和气缸 22内。
下面结合图 1、 图 4-图 12详述吸气管 43的具体设置方式。
在一些实施例中, 如图 1和图 4所示, 吸气管 43可以是一个, 且该一个吸气管 43设置 在壳体 1的距离压缩机构 2较远的一端上, 这样参与***循环后的冷媒可从吸气管 43进入 到壳体 1内部, 冷媒通过电机部 3并对电机部 3进行冷媒, 最后可从位于主轴承 21上的吸 气口 211吸入到压缩腔内。 该实施例中由于回气冷媒温度较低, 因此可以对电机部 3进行 充分冷却, 防止电机部 3温度过高而影响正常工作。
在另一些实施例中, 如图 10和图 12所示, 吸气管 43为一个且连接在位于压缩机构 2 与电机部 3之间的壳体 1部分上, 相比于图 1和图 4中的实施例, 该实施例中吸气管 43的 设置位置发生了变化, 其连通压缩机构 2与电机部 3之间的空间, 这样从吸气管 43进入到 壳体 1 内部的冷媒不会冷却电机或者只对电机部 3的朝向压缩机构 2处的一小部分进行冷 却, 这样设置可以提高吸气效率。 类似地, 该实施例中压缩机构 2的吸气口 211也可以位 于主轴承 21上。
在又一个实施例中, 吸气管 43 同样可为一个, 该一个吸气管 43直接可与压缩机构 2 的气缸 22相连。 换言之, 气缸 22上可以开设锥形的吸气口, 吸气管 43穿过壳体 1后可以 ***并固定在该气缸 22上的吸气口内,从而直接将回气供给至压缩腔内,提高了吸气效率。 相比于图 1、 图 4、 图 10和图 12中的实施例, 该实施例中主轴承 21上的吸气口 211可以 取消。
根据本发明的再一些实施例, 如图 5和图 7所示, 吸气管 43可以包括第一管段 431和 第二管段 432, 即吸气管 43为两段结构。 第一管段 431可以设置在壳体 1的距离压缩机构 2较远的一端上, 第二管段 432连接在位于压缩机构 2与电机部 3之间的壳体 1部分上。
换言之, 在该实施例中, 如图 5和图 7所示, 吸气管 43集成了上述图 1 (或者图 4)和 图 10 (或者图 12 ) 所示两个实施例中吸气管 43的设置方式, 这样从第一管段 431进入到 壳体 1内的回气可以先冷却电机部 3, 然后由位于主轴承 21上的吸气口 211吸入到压缩腔 内, 而从第二管段 432进入到壳体 1内的回气可以直接被主轴承 21上的吸气口 211吸入压 缩腔内, 这样兼顾了吸气效率以及对电机部 3的冷却。
根据本发明的再一些实施例, 如图 6和图 8、 图 9和图 11所示, 吸气管 43同样包括第 一管段 431和第二管段 432,第一管段 431设置在壳体 1的距离压缩机构 2的较远的一端上, 第二管段 432直接与压缩机构 2的气缸 22相连。
在该实施例中, 可以进一步分为主轴承 21上设置吸气口 211以及不设置吸气口 211两 类。 具体地, 如图 6和图 8所示, 对于主轴承 21上设置吸气口 211的形式而言, 从第一管 段 431进入到壳体 1内的回气可以先冷却电机部 3, 然后由位于主轴承 21上的吸气口 211 吸入到压缩腔内, 而第二管段 432的回气可以直接通过气缸 22上开设的吸气口被吸入到压 缩腔内, 类似地, 该气缸 22上的吸气口也可以是大体锥形, 该实施例同样兼顾了吸气效率 以及对电机部 3的冷却。
如图 9和图 11所示,对于主轴承 21上不设置吸气口 211的实施例,压缩腔的吸气全部 来自第二管段 432, 第一管段 431的设置只是为了平衡电机部 3处的壳体 1内部压力, 目的 是为了防止压缩机构 2发生高压冷媒泄漏到电机部 3处的壳体 1 内而导致该部分密闭空间 压力无限升高, 使压缩机 100无法正常工作, 通过该第一管段 431 的设置, 可以使得泄漏 出的冷媒能够从第一管段 431排出, 并可以进入到第二管段 432内, 最终可被压缩腔吸入。
简言之,根据本发明实施例的压缩机 100的压缩腔的吸气可以全部来自壳体 1内部, 当 然也可以部分来自壳体 1内部, 部分直接来自吸气管 43 (该部分冷媒不经过壳体 1内部), 或者全部来自吸气管 43 (该部分冷媒不经过壳体 1内部)。
下面结合图 1、 图 4-图 12详述压缩机构 2的上油部分。
对于卧式压缩机 100而言,对压缩机构 2特别是对滑片 26的润滑效果关系到压缩机 100 的整机能效。 由于卧式压缩机 100的曲轴 24是水平或接近水平设置的, 因此曲轴 24的靠 近副轴承 23的一端 (即, 副轴段部分) 无法直接向下***到油池中。
参见图 1、 图 7-图 10所示, 压缩机构 2位于电机部 3的一侧 (例如, 左侧), 曲轴 24 内形成有中心通孔 252, 该中心通孔 252沿曲轴 24的纵向贯通曲轴 24的第一端(例如, 图 1、 图 4-图 12中左端, 即 B1端) 的端面和第二端 (例如, 图 1、 图 4-图 12中右端, 即 B2 端) 的端面, 曲轴 24的第一端上设置有上油结构 51, 上油结构 51可以将油池中的机油吸 入到曲轴 24的中心通孔 252内, 曲轴 24对应活塞 25、 主轴承 21和副轴承 23等处可以设 置径向油孔, 中心通孔 252 内的机油可以从这些径向油孔中喷出从而对压缩机构 2进行润 滑。
为了提高上油效果, 如图 1、 图 7-图 10所示, 压缩机 100还可以包括负压装置 52, 负 压装置 52设置在曲轴 24的第二端处, 或者负压装置 52可以设在电机部 3的转子 31上且 邻近曲轴 24的第二端, 负压装置 52可以在压缩机 100运行时形成负压, 从而提高曲轴 24 的上油效果, 增加对压缩机构 2的润滑效果。
在另一个实施例中, 如图 4-图 6、 图 11-图 12所示, 曲轴 24的第一端敞开且第二端封 闭以在曲轴 24内形成中心盲孔, 类似地, 该曲轴 24的第一端上同样设置有上油结构 51, 并且曲轴 24上还设置有出油孔 253, 出油孔 253连通中心盲孔, 且出油孔 253开设的位置 可以在位于压缩机构 2与转子 31之间的曲轴 24的中段部分上。 该实施例中, 负压装置 52 设在曲轴 24或转子 31上且邻近出油孔 253,例如负压装置 52可以设在转子 31朝向压缩机 构 2的一侧上。 由此, 同样能够增加曲轴 24的上油效果。
在一些实施例中, 负压装置 52包括转子风扇, 转子风扇在旋转时可以在转子风扇处产 生负压, 转子风扇与曲轴 24或转子 31可以采用螺接或焊接方式固定。 上油结构 51包括上 油管, 上油管的上端连通曲轴 24内的中心通孔 252或中心盲孔, 上油管的下端伸入到油池 中。
下面结合图 13简单描述根据本发明实施例的制冷***。
根据本发明另一方面的实施例, 还提出了一种制冷***, 该制冷***包括室外换热器 200、 毛细管 300、 室内换热器 400和压缩机 100等部件, 压缩机 100可以是上述任意一项 技术方案中描述的压缩机 100。 该制冷***可以是单冷***, 即只具有制冷功能。 或者该制 冷***也可以是热泵***, 例如通过设置四通阀实现制冷以及制热功能。
在本说明书的描述中, 参考术语"一个实施例"、 "一些实施例"、 "示意性实施例"、 "示 例"、 "具体示例"、 或 "一些示例"等的描述意指结合该实施例或示例描述的具体特征、 结 构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说明书中, 对上述术语 的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具体特征、 结构、 材料或 者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本 发明的原理和宗旨的情况下可以对这些实施例进行多种变化、 修改、 替换和变型, 本发明 的范围由权利要求及其等同物限定。

Claims

权利要求书
1、 一种压缩机, 其特征在于, 所述压缩机卧放设置, 所述压缩机包括:
壳体;
压缩机构, 所述压缩机构设在所述壳体内, 所述压缩机构内具有压缩腔, 所述压缩腔 从所述壳体内部和 /或所述压缩机的吸气管吸入用于压缩的冷媒;
电机部, 所述电机部设在所述壳体内, 所述电机部用于驱动所述压缩机构对吸入到所 述压缩腔内的冷媒进行压缩;
排气密封结构, 所述排气密封结构与所述压缩机构之间限定出排气腔, 所述排气腔相 对所述壳体内部封闭且用于收集经所述压缩机构压缩后的排气; 以及
排气管, 所述排气管设置成将所述排气腔内的所述排气输出至所述壳体外。
2、根据权利要求 1所述的压缩机, 其特征在于,所述压缩机构的内底部形成有滑片槽, 滑片可移动地设在所述滑片槽内, 所述滑片槽与所述排气腔之间设置有连通油道, 所述排 气腔内的机油可通过所述连通油道进入到所述滑片槽内以润滑所述滑片。
3、 根据权利要求 2所述的压缩机, 其特征在于, 所述滑片槽的中心线与基面之间的夹 角为 α, 所述基面为所述曲轴的中心轴线和所述压缩机构的最低点所限定的平面, 其中 α 满足: 0 α 60 ° 。
4、 根据权利要求 3所述的压缩机, 其特征在于, 所述 α进一步满足: 0 ct 45 ° 。
5、 根据权利要求 4所述的压缩机, 其特征在于, 所述滑片槽的中心线沿竖直方向。
6、根据权利要求 2所述的压缩机, 其特征在于,所述排气密封结构构造为排气密封盖, 所述排气密封盖设在所述压缩机构的背离所述电机部的一侧上, 所述连通油道形成在所述 副轴承内。
7、 根据权利要求 2-6中任一项所述的压缩机, 其特征在于, 所述排气腔内设置有用于 对从所述排气管排出所述壳体外的冷媒进行油气分离的油气分离装置。
8、根据权利要求 1所述的压缩机, 其特征在于,所述压缩机构位于所述电机部的一侧, 所述压缩机构的曲轴内形成有中心通孔, 所述中心通孔沿所述曲轴的纵向贯通所述曲轴的 第一端的端面和第二端的端面, 所述曲轴的第一端上设置有上油结构; 以及
所述压缩机还包括: 负压装置, 所述负压装置设在所述曲轴的第二端处或设在所述电 机部的转子上且邻近所述曲轴的第二端。
9、根据权利要求 1所述的压缩机, 其特征在于,所述压缩机构位于所述电机部的一侧, 所述压缩机构的曲轴的第一端敞开且第二端封闭以在所述曲轴内形成中心盲孔, 所述曲轴 的第一端上设置有上油结构, 所述曲轴的位于所述压缩机构与所述电机部的转子之间的中 段部分上设置有与所述中心盲孔连通的出油孔; 以及
所述压缩机还包括: 负压装置, 所述负压装置设在所述曲轴或所述转子上且邻近所述 出油孔。
10、 根据权利要求 8或 9所述的压缩机, 其特征在于, 所述负压装置包括转子风扇, 所述上油结构包括上油管。
11、 根据权利要求 8或 9所述的压缩机, 其特征在于, 所述吸气管为一个且设置在所 述壳体的距离所述压缩机构较远的一端上; 或者
所述吸气管为一个且连接在位于所述压缩机构与所述电机部之间的壳体部分上; 或者 所述吸气管为一个且直接与所述压缩机构的气缸相连; 或者
所述吸气管包括第一管段和第二管段, 所述第一管段设置在所述壳体的距离所述压缩 机构较远的一端上, 所述第二管段连接在位于所述压缩机构与所述电机部之间的壳体部分 上; 或者
所述吸气管包括第一管段和第二管段, 所述第一管段设置在所述壳体的距离所述压缩 机构较远的一端上, 所述第二管段直接与所述压缩机构的气缸相连。
12、 一种制冷***, 其特征在于, 所述制冷***为单冷***或热泵***, 所述制冷系 统包括根据权利要求 1-11中任一项所述的压缩机。
PCT/CN2014/075095 2014-04-10 2014-04-10 压缩机及具有该压缩机的制冷*** WO2015154284A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075095 WO2015154284A1 (zh) 2014-04-10 2014-04-10 压缩机及具有该压缩机的制冷***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/075095 WO2015154284A1 (zh) 2014-04-10 2014-04-10 压缩机及具有该压缩机的制冷***

Publications (1)

Publication Number Publication Date
WO2015154284A1 true WO2015154284A1 (zh) 2015-10-15

Family

ID=54287123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/075095 WO2015154284A1 (zh) 2014-04-10 2014-04-10 压缩机及具有该压缩机的制冷***

Country Status (1)

Country Link
WO (1) WO2015154284A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107859624A (zh) * 2017-10-09 2018-03-30 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN109707625A (zh) * 2019-01-08 2019-05-03 深圳市新涛环境科技有限公司 一种高效柔性涡旋高温压缩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936756A (en) * 1987-09-08 1990-06-26 Sanden Corporation Hermetic scroll type compressor with refrigerant fluid flow through the drive shaft
JPH0544668A (ja) * 1991-08-12 1993-02-23 Mitsubishi Heavy Ind Ltd 密閉横置スクロール圧縮機の給油装置
GB2228537B (en) * 1989-02-28 1993-04-28 Toshiba Kk Horizontally installed scroll type compressor
JP2000104686A (ja) * 1998-09-30 2000-04-11 Sanyo Electric Co Ltd 横型スクロール圧縮機
CN1598321A (zh) * 2004-08-18 2005-03-23 乐金电子(天津)电器有限公司 卧式压缩机排气结构
CN203114623U (zh) * 2013-02-06 2013-08-07 广州万宝集团有限公司 一种卧式涡旋压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936756A (en) * 1987-09-08 1990-06-26 Sanden Corporation Hermetic scroll type compressor with refrigerant fluid flow through the drive shaft
GB2228537B (en) * 1989-02-28 1993-04-28 Toshiba Kk Horizontally installed scroll type compressor
JPH0544668A (ja) * 1991-08-12 1993-02-23 Mitsubishi Heavy Ind Ltd 密閉横置スクロール圧縮機の給油装置
JP2000104686A (ja) * 1998-09-30 2000-04-11 Sanyo Electric Co Ltd 横型スクロール圧縮機
CN1598321A (zh) * 2004-08-18 2005-03-23 乐金电子(天津)电器有限公司 卧式压缩机排气结构
CN203114623U (zh) * 2013-02-06 2013-08-07 广州万宝集团有限公司 一种卧式涡旋压缩机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107859624A (zh) * 2017-10-09 2018-03-30 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN109707625A (zh) * 2019-01-08 2019-05-03 深圳市新涛环境科技有限公司 一种高效柔性涡旋高温压缩机
CN109707625B (zh) * 2019-01-08 2024-04-05 深圳市新涛环境科技有限公司 一种高效柔性涡旋高温压缩机

Similar Documents

Publication Publication Date Title
CN103912493A (zh) 压缩机及具有该压缩机的制冷***
KR20090095378A (ko) 밀폐형 압축기
BR102013015051A2 (pt) Compressor de pá
WO2015154284A1 (zh) 压缩机及具有该压缩机的制冷***
JP5506953B2 (ja) 冷媒圧縮機
CN105952649A (zh) 压缩机
CN209414173U (zh) 泵体组件、压缩机和空调器
JP4048751B2 (ja) 気体圧縮機
KR101330332B1 (ko) 2단 스크류 압축식 냉동 장치
CN210484057U (zh) 卧式压缩机
CN106286306B (zh) 卧式滑片压缩机及空调
JP6445948B2 (ja) スクリュー圧縮機
CN103410736A (zh) 低背压旋转式压缩机及具有其的制冷设备
CN109882413B (zh) 旋转式压缩机及具有其的制冷***
JP2012036862A (ja) 密閉型圧縮機及び冷凍サイクル装置
CN110805556A (zh) 泵体组件、压缩机以及具有其的空调器
CN110848135B (zh) 卧式压缩机及热交换工作设备
CN110985385A (zh) 一种压缩机和空调器
CN111561448A (zh) 一种卧式涡旋压缩机
CN114294232B (zh) 一种降低排油率的油分离装置及旋转压缩机
CN217481540U (zh) 一种压缩机回油结构、压缩机和空调器
CN211314556U (zh) 上法兰组件及压缩机
CN216381862U (zh) 一种低背压单机双级压缩机及空调器
CN114109834B (zh) 压缩机导油组件和压缩机
CN220101537U (zh) 压缩机和制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889000

Country of ref document: EP

Kind code of ref document: A1