WO2015151661A1 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
WO2015151661A1
WO2015151661A1 PCT/JP2015/055463 JP2015055463W WO2015151661A1 WO 2015151661 A1 WO2015151661 A1 WO 2015151661A1 JP 2015055463 W JP2015055463 W JP 2015055463W WO 2015151661 A1 WO2015151661 A1 WO 2015151661A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
shock absorber
cylinder
piston
outer peripheral
Prior art date
Application number
PCT/JP2015/055463
Other languages
French (fr)
Japanese (ja)
Inventor
慎治 加藤
徹弥 田村
修平 細畑
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Publication of WO2015151661A1 publication Critical patent/WO2015151661A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3235Constructional features of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3214Constructional features of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/02Surface treatments
    • F16F2226/026Surface treatments low-friction

Definitions

  • the present invention relates to a shock absorber that generates a damping force by imparting resistance to a working fluid.
  • JP2006-349138A includes a cylinder filled with a gas as a working fluid, a piston that divides the cylinder into a rod side chamber and a piston side chamber, and a rod that is movably inserted into the cylinder via the piston.
  • a shock absorber is described.
  • the shock absorber is provided with a passage in which a predetermined amount of lubricating oil is sealed together with gas in the cylinder, and the lubricating oil is circulated between the sliding portion between the cylinder and the piston and the sliding portion between the rod and the bearing member.
  • the present invention aims to provide a shock absorber that is less susceptible to lateral loads.
  • a rod coupled to the piston and projecting outward from the cylinder; and a head that slidably supports the outer peripheral surface of the rod; and an amorphous carbon film on at least one of the inner peripheral surface of the cylinder and the outer peripheral portion of the piston Is formed.
  • FIG. 1 is a cross-sectional view of a shock absorber according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a shock absorber according to a second embodiment of the present invention.
  • a shock absorber 10 shown in FIG. 1 is incorporated in a suspension device (not shown) of a vehicle, and extends and contracts between a suspension member that supports a vehicle body and an axle.
  • the shock absorber 10 includes a cylindrical cylinder 11 filled with a working fluid, a piston 16 slidably accommodated in the cylinder 11, a rod 15 coupled to the piston 16, and a slidable rod 15. And an annular head 19 to be supported.
  • the inside of the cylinder 11 is divided into two fluid chambers of a rod side chamber 13 and a piston side chamber 14 by a piston 16.
  • the cylinder 11 includes a base end (lower end) 11B, and the base end (lower end) 11B is connected to the suspension member via the bracket 17.
  • the rod 15 includes a front end (upper end) 15T, and the front end (upper end) 15T is connected to the vehicle body.
  • the shock absorber 10 is not limited to the above configuration, and the cylinder 11 may be connected to the vehicle body and the rod 15 may be connected to the suspension member.
  • the shock absorber 10 uses a working oil as a working fluid, but a water-soluble alternative liquid or a liquid such as water may be used instead of the working oil.
  • the shock absorber 10 includes a damping force generating element that imparts resistance to the working fluid flowing through the shock absorber 10 during expansion and contraction operation.
  • the piston 16 is provided with an extension side damping valve 21 and a pressure side damping valve 22 that provide resistance to the flow of the working fluid flowing between the rod side chamber 13 and the piston side chamber 14 as damping force generating elements.
  • the compression side damping valve 22 When the shock absorber 10 is extended, the compression side damping valve 22 is closed and the extension side damping valve 21 is opened.
  • the extension side damping valve 21 imparts resistance to the flow of the working fluid flowing from the rod side chamber 13 to the piston side chamber 14, thereby generating an extension side damping force that suppresses the extension operation of the shock absorber 10, thereby suppressing vibration of the vehicle body.
  • the expansion side damping valve 21 When the shock absorber 10 is contracted, the expansion side damping valve 21 is closed and the compression side damping valve 22 is opened.
  • the compression side damping valve 22 imparts resistance to the flow of the working fluid flowing from the piston side chamber 14 to the rod side chamber 13, thereby generating a compression side damping force that suppresses the contraction operation of the shock absorber 10 and suppresses vibration of the vehicle body.
  • a through hole 18 is opened near the bottom of the cylinder 11, and the through hole 18 communicates with a reservoir chamber (not shown). As the shock absorber 10 expands and contracts, a volume of working fluid into which the rod 15 enters the cylinder 11 enters and exits the reservoir chamber through the through hole 18.
  • An annular head 19 is fixed to the tip opening 11C of the cylinder 11.
  • a bearing 27 and a seal ring 28 through which the rod 15 is inserted are provided on the inner periphery of the head 19.
  • the bearing 27 is formed of a low friction resin material such as PTFE (polytetrafluoroethylene), for example, and slidably supports the outer peripheral surface 15A of the rod 15.
  • PTFE polytetrafluoroethylene
  • the seal ring 28 is formed of an elastic resin material, and slidably contacts the outer peripheral surface 15A of the rod 15 without a gap, thereby sealing between the head 19 and the rod 15.
  • the piston 16 includes an annular piston main body 12 connected to the rod 15 and a piston ring 23 provided on the outer peripheral portion of the piston main body 12.
  • An annular outer circumferential groove 12B is formed on the outer circumferential surface 12A of the piston body 12, and a piston ring 23 is interposed in the outer circumferential groove 12B.
  • the piston ring 23 is formed of a low friction resin material such as PTFE.
  • the piston ring 23 slides on the inner peripheral surface 11 ⁇ / b> A of the cylinder 11 to support the piston body 12 with respect to the cylinder 11.
  • An amorphous carbon film (DLC film) 24 is formed in a range where the piston ring 23 slides on the inner peripheral surface 11A of the cylinder 11.
  • the amorphous carbon film 24 is composed of an amorphous structure mainly composed of carbon and not having a specific crystal structure, and has a smooth surface, high hardness, wear resistance, solid lubricity, thermal conductivity, chemical properties. Excellent stability.
  • the amorphous carbon film 24 can form a hydrogenated amorphous carbon film containing hydrogen using a hydrocarbon gas as a raw material by, for example, a plasma CVD method.
  • the plasma CVD method is a method in which a source gas is plasma-excited by a high frequency, microwave discharge or the like, and is grown in a crystalline or amorphous state on a workpiece by ionic bonds or radical species bonds.
  • An amorphous carbon film 24 having a small friction coefficient is formed on the inner peripheral surface 11A of the cylinder 11 and the piston ring 23 is formed of a low friction resin material such as PTFE, whereby the inner peripheral surface 11A and the piston ring 23 of the cylinder 11 are formed. The frictional force generated at the sliding part is kept small.
  • the amorphous carbon film 24 has a low coefficient of friction even when the lateral load against which the piston ring 23 is pressed increases, the frictional force generated in the sliding portion with the piston ring 23 can be kept small. Thereby, even if the lateral load acting on the shock absorber 10 is increased, the damping force of the shock absorber 10 is suppressed from being excessive, and the wear resistance of the cylinder 11 and the piston ring 23 is ensured.
  • the amorphous carbon film 24 may be formed on the inner peripheral surface 11 ⁇ / b> A of the cylinder 11, and the amorphous carbon film 25 may be formed on the outer peripheral surface 23 ⁇ / b> A of the piston ring 23 as the outer peripheral portion of the piston 16.
  • the amorphous carbon films 24 and 25 having a small friction coefficient slide on each other at the sliding portion between the inner peripheral surface 11A of the cylinder 11 and the outer peripheral surface 23A of the piston ring 23, thereby reducing the frictional force. It can be suppressed.
  • shock absorber 10 may be configured such that the amorphous carbon film 25 is formed only on the outer peripheral surface 23A of the piston ring 23 without forming the amorphous carbon film on the inner peripheral surface 11A of the cylinder 11.
  • the piston ring 23 is not limited to a structure formed of a low friction resin material such as PTFE, and may be formed of a metal material.
  • shock absorber 10 may be configured such that the piston ring 23 is eliminated and the outer peripheral surface 12A of the piston main body 12 slides on the inner peripheral surface 11A of the cylinder 11 as the outer peripheral portion of the piston 16.
  • the frictional force generated on the inner peripheral surface 11A of the cylinder 11 and the sliding portion of the piston 16 is sufficiently small. It can be suppressed.
  • the amorphous carbon film 24 may be formed on the inner peripheral surface 11A of the cylinder 11 and the amorphous carbon film 26 may be formed on the outer peripheral surface 12A of the piston main body 12 as the outer peripheral portion of the piston 16.
  • the sliding portion between the inner peripheral surface 11A of the cylinder 11 and the outer peripheral surface 12A of the piston main body 12 suppresses the frictional force small by the sliding of the amorphous carbon films 24 and 26 having a small friction coefficient. It is done.
  • shock absorber 10 may be configured such that an amorphous carbon film is formed on at least one of the outer peripheral surface 15A of the rod 15 and the inner peripheral surface 27A of the bearing 27 provided as the inner peripheral portion of the head 19.
  • the sliding force between the outer peripheral surface 15A of the rod 15 and the inner peripheral surface 27A of the bearing 27 is suppressed to a small frictional force by the amorphous carbon film having a small friction coefficient.
  • shock absorber 10 may be configured such that an amorphous carbon film is formed on at least one of the outer peripheral surface 15A of the rod 15 and the inner peripheral surface 19A of the head 19 provided as the inner peripheral portion of the head 19.
  • the sliding force between the outer peripheral surface 15A of the rod 15 and the inner peripheral surface 19A of the head 19 is suppressed to a small frictional force by the amorphous carbon film having a small friction coefficient.
  • an amorphous carbon film (24, 25, 26) is formed on at least one of the inner peripheral surface 11A of the cylinder 11 and the outer peripheral portion of the piston 16 that slide with each other. Therefore, the frictional force generated at the site where the inner peripheral surface 11 ⁇ / b> A of the cylinder 11 and the outer peripheral portion of the piston 16 slide with each other due to the lateral load acting on the shock absorber 10 is suppressed. Thereby, the shock absorber 10 can suppress the influence of the lateral load, obtain the desired damping force characteristics, and ensure the wear resistance.
  • the shock absorber 10 has friction generated on the inner peripheral surface 11A of the cylinder 11 and the sliding portion of the piston 16 by the smooth amorphous carbon film (24, 25, 26) even when a low-viscosity liquid is used as the working fluid. Force can be kept small. As a result, the shock absorber 10 can obtain the desired damping force characteristics and ensure wear resistance.
  • an amorphous carbon film is formed on at least one of the outer peripheral surface 15A of the rod 15 and the inner peripheral portion of the head 19 (the inner peripheral surface 27A of the bearing 27 and the inner peripheral surface 19A of the head 19). Therefore, in the sliding portion between the outer peripheral surface 15A of the rod 15 and the inner peripheral portion of the head 19, the frictional force is suppressed to be small by the amorphous carbon film having a small friction coefficient.
  • the friction coefficient of the amorphous carbon film is small, the frictional force generated at the portion where the inner peripheral surface of the cylinder and the outer peripheral portion of the piston slide due to the lateral load acting on the shock absorber is small. It can be suppressed. Thereby, it is possible to provide a shock absorber that is not easily affected by the lateral load.
  • a magnetorheological fluid whose fluidity is changed by the action of a magnetic field is used as a working fluid.
  • the magnetorheological fluid is a fluid in which fine particles such as iron-based metal having ferromagnetism are dispersed in a liquid such as oil, and the apparent viscosity changes depending on the strength of the magnetic field.
  • the shock absorber 50 is opened to both ends of the piston 56 as a damping force generating element, and the main flow path 53 and the bypass flow path 54 through which the working fluid flowing between the rod side chamber 13 and the piston side chamber 14 flows, and the main flow path 53.
  • an electromagnetic coil 55 for generating a magnetic field acting on the working fluid flowing through the.
  • the damping force generated by the shock absorber 50 is adjusted by changing the amount of current supplied to the electromagnetic coil 55 and changing the strength of the magnetic field acting on the magnetorheological fluid flowing through the main flow path 53. As the current supplied to the electromagnetic coil 55 increases, the strength of the magnetic field generated around the electromagnetic coil 55 increases, the fluidity of the magnetorheological fluid flowing through the main flow path 53 decreases, and the shock absorber 50 is generated. The damping force to be increased.
  • the magnetorheological fluid flowing through the bypass channel 54 is not easily affected by the magnetic field generated by the electromagnetic coil 55. Therefore, the magnetorheological fluid relieves pressure fluctuation caused by the flow resistance of the magnetorheological fluid when the current value of the electromagnetic coil 55 is adjusted.
  • the piston ring is eliminated, and the outer peripheral surface 52A of the piston main body 52 slides on the inner peripheral surface 11A of the cylinder 11.
  • the amorphous carbon film 24 having a high hardness By forming the amorphous carbon film 24 having a high hardness on the inner peripheral surface 11A of the cylinder 11, it is possible to prevent the inner peripheral surface 11A of the cylinder 11 from being worn by the ferromagnetic fine particles contained in the magnetorheological fluid.
  • an amorphous carbon film 57 may be formed on the outer peripheral surface 52A of the piston body 52.
  • the sliding portion between the inner peripheral surface 11A of the cylinder 11 and the outer peripheral surface 52A of the piston main body 52 is reduced in frictional force by the amorphous carbon films 24 and 57 sliding relative to each other. It is possible to suppress wear.
  • the shock absorber 50 in the second embodiment described above uses a magnetorheological fluid containing highly aggressive ferromagnetic fine particles in the liquid as the working fluid, but the amorphous carbon films 24 and 57 having high hardness are included in the cylinder 11.
  • the peripheral surface 11A and the outer peripheral surface 52A of the piston main body 52 are protected. Therefore, the shock absorber 50 can ensure wear resistance of the inner peripheral surface 11A and the outer peripheral surface 52A.
  • the friction coefficient of the amorphous carbon film is small, the frictional force generated at the portion where the inner peripheral surface of the cylinder and the outer peripheral portion of the piston slide due to the lateral load acting on the shock absorber can be suppressed to a small value. Thereby, it is possible to provide a shock absorber that is not easily affected by the lateral load.
  • the shock absorber of the present invention is not limited to a liquid that is used as a working fluid, but may be a gas that is used as a working fluid.
  • the shock absorber of the present invention is not limited to a shock absorber incorporated in a vehicle suspension device, but can be used for other machines and equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

Provided is a shock absorber (10) for generating damping force by applying resistance to operating fluid. The shock absorber (10) is provided with: a cylinder (11) filled with the operating fluid; a piston (16) having an outer peripheral section sliding on the inner peripheral surface of the cylinder (11); a rod (15) joined to the piston (16) and protruding outward from the cylinder (11); and a head (19) for supporting the outer peripheral surface of the rod (15) in a slidable manner. An amorphous carbon film (24, 25, 26) is formed on the inner peripheral surface of the cylinder (11) and/or the outer peripheral section of the piston (16).

Description

緩衝器Shock absorber
 本発明は、作動流体に抵抗を付与することによって減衰力が生じる緩衝器に関する。 The present invention relates to a shock absorber that generates a damping force by imparting resistance to a working fluid.
 JP2006-349138Aには、作動流体として気体が充填されるシリンダと、シリンダ内をロッド側室とピストン側室とに区画するピストンと、ピストンを介してシリンダ内に移動自在に挿入されるロッドと、を備える緩衝器が記載されている。 JP2006-349138A includes a cylinder filled with a gas as a working fluid, a piston that divides the cylinder into a rod side chamber and a piston side chamber, and a rod that is movably inserted into the cylinder via the piston. A shock absorber is described.
 上記緩衝器は、シリンダ内に気体と共に所定量の潤滑油が封入され、シリンダとピストンとの摺動部とロッドと軸受部材との摺動部との間で潤滑油を循環させる通路を備える。 The shock absorber is provided with a passage in which a predetermined amount of lubricating oil is sealed together with gas in the cylinder, and the lubricating oil is circulated between the sliding portion between the cylinder and the piston and the sliding portion between the rod and the bearing member.
 しかしながら、JP2006-349138Aに記載の緩衝器にあっては、緩衝器に働く横荷重によってシリンダの内周面とピストンの外周部とが摺動する部位に生じる摩擦力が大きくなるため、緩衝器に生じる減衰力が過大になるという問題があった。 However, in the shock absorber described in JP2006-349138A, a frictional force generated at a portion where the inner peripheral surface of the cylinder and the outer peripheral portion of the piston slide due to a lateral load acting on the shock absorber increases. There was a problem that the damping force generated was excessive.
 本発明は、横荷重の影響を受けにくい緩衝器を提供することを目的とする。 The present invention aims to provide a shock absorber that is less susceptible to lateral loads.
 本発明のある態様によれば、作動流体に抵抗を付与することによって減衰力が生じる緩衝器は、作動流体が充填されるシリンダと、シリンダの内周面に摺動する外周部を有するピストンと、ピストンに結合され、シリンダから外部に突出するロッドと、ロッドの外周面を摺動自在に支持するヘッドと、を備え、シリンダの内周面とピストンの外周部との少なくとも一方にアモルファス炭素膜が形成される。 According to an aspect of the present invention, a shock absorber that generates a damping force by imparting resistance to a working fluid includes a cylinder filled with the working fluid, and a piston having an outer peripheral portion that slides on the inner peripheral surface of the cylinder. A rod coupled to the piston and projecting outward from the cylinder; and a head that slidably supports the outer peripheral surface of the rod; and an amorphous carbon film on at least one of the inner peripheral surface of the cylinder and the outer peripheral portion of the piston Is formed.
図1は、本発明の第1実施形態に係る緩衝器の断面図である。FIG. 1 is a cross-sectional view of a shock absorber according to a first embodiment of the present invention. 図2は、本発明の第2実施形態に係る緩衝器の断面図である。FIG. 2 is a cross-sectional view of a shock absorber according to a second embodiment of the present invention.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 (第1実施形態)
 図1に示す緩衝器10は、車両のサスペンション装置(図示省略)に組み込まれ、車体と車軸を支持するサスペンション部材の間で伸縮作動する。
(First embodiment)
A shock absorber 10 shown in FIG. 1 is incorporated in a suspension device (not shown) of a vehicle, and extends and contracts between a suspension member that supports a vehicle body and an axle.
 緩衝器10は、作動流体が充填される筒状のシリンダ11と、シリンダ11内に摺動自在に収容されるピストン16と、ピストン16に結合されるロッド15と、ロッド15を摺動自在に支持する環状のヘッド19と、を備える。シリンダ11内は、ピストン16によってロッド側室13とピストン側室14との2つの流体室に区画される。 The shock absorber 10 includes a cylindrical cylinder 11 filled with a working fluid, a piston 16 slidably accommodated in the cylinder 11, a rod 15 coupled to the piston 16, and a slidable rod 15. And an annular head 19 to be supported. The inside of the cylinder 11 is divided into two fluid chambers of a rod side chamber 13 and a piston side chamber 14 by a piston 16.
 シリンダ11は基端部(下端部)11Bを含み、基端部(下端部)11Bがブラケット17を介してサスペンション部材に連結される。ロッド15は先端部(上端部)15Tを含み、先端部(上端部)15Tが車体に連結される。なお、緩衝器10は、上記構成に限られず、シリンダ11が車体に連結され、ロッド15がサスペンション部材に連結されてもよい。 The cylinder 11 includes a base end (lower end) 11B, and the base end (lower end) 11B is connected to the suspension member via the bracket 17. The rod 15 includes a front end (upper end) 15T, and the front end (upper end) 15T is connected to the vehicle body. The shock absorber 10 is not limited to the above configuration, and the cylinder 11 may be connected to the vehicle body and the rod 15 may be connected to the suspension member.
 緩衝器10は、作動流体として作動油を用いるが、作動油の代わりに例えば水溶性代替液または水等の液体を用いてもよい。 The shock absorber 10 uses a working oil as a working fluid, but a water-soluble alternative liquid or a liquid such as water may be used instead of the working oil.
 緩衝器10は、伸縮作動時にその内部を流れる作動流体に抵抗を付与する減衰力発生要素を備える。ピストン16には、減衰力発生要素として、ロッド側室13とピストン側室14との間で流れる作動流体の流れに抵抗を付与する伸側減衰弁21及び圧側減衰弁22が設けられる。 The shock absorber 10 includes a damping force generating element that imparts resistance to the working fluid flowing through the shock absorber 10 during expansion and contraction operation. The piston 16 is provided with an extension side damping valve 21 and a pressure side damping valve 22 that provide resistance to the flow of the working fluid flowing between the rod side chamber 13 and the piston side chamber 14 as damping force generating elements.
 緩衝器10の伸長作動時に、圧側減衰弁22が閉じ、伸側減衰弁21が開く。伸側減衰弁21がロッド側室13からピストン側室14に流れる作動流体の流れに抵抗を付与することにより、緩衝器10の伸長作動を抑える伸側減衰力が生じ、車体の振動が抑制される。 When the shock absorber 10 is extended, the compression side damping valve 22 is closed and the extension side damping valve 21 is opened. The extension side damping valve 21 imparts resistance to the flow of the working fluid flowing from the rod side chamber 13 to the piston side chamber 14, thereby generating an extension side damping force that suppresses the extension operation of the shock absorber 10, thereby suppressing vibration of the vehicle body.
 緩衝器10の収縮作動時に、伸側減衰弁21が閉じ、圧側減衰弁22が開く。圧側減衰弁22がピストン側室14からロッド側室13に流れる作動流体の流れに抵抗を付与することにより、緩衝器10の収縮作動を抑える圧側減衰力が生じ、車体の振動が抑制される。 When the shock absorber 10 is contracted, the expansion side damping valve 21 is closed and the compression side damping valve 22 is opened. The compression side damping valve 22 imparts resistance to the flow of the working fluid flowing from the piston side chamber 14 to the rod side chamber 13, thereby generating a compression side damping force that suppresses the contraction operation of the shock absorber 10 and suppresses vibration of the vehicle body.
 シリンダ11の底部付近には通孔18が開口され、通孔18はリザーバ室(図示省略)に連通される。緩衝器10が伸縮作動するのに伴って、シリンダ11内にロッド15が侵入する体積分の作動流体が通孔18を通じてリザーバ室に出入りする。 A through hole 18 is opened near the bottom of the cylinder 11, and the through hole 18 communicates with a reservoir chamber (not shown). As the shock absorber 10 expands and contracts, a volume of working fluid into which the rod 15 enters the cylinder 11 enters and exits the reservoir chamber through the through hole 18.
 シリンダ11の先端開口部11Cには、環状のヘッド19が固定される。ヘッド19の内周部には、ロッド15を挿通させるベアリング27及びシールリング28が設けられる。 An annular head 19 is fixed to the tip opening 11C of the cylinder 11. A bearing 27 and a seal ring 28 through which the rod 15 is inserted are provided on the inner periphery of the head 19.
 ベアリング27は、例えばPTFE(ポリテトラフルオロエチレン)等の低摩擦樹脂材によって形成され、ロッド15の外周面15Aを摺動自在に支持する。 The bearing 27 is formed of a low friction resin material such as PTFE (polytetrafluoroethylene), for example, and slidably supports the outer peripheral surface 15A of the rod 15.
 シールリング28は、弾性樹脂材によって形成され、ロッド15の外周面15Aに隙間無く摺接し、ヘッド19とロッド15の間を密封する。 The seal ring 28 is formed of an elastic resin material, and slidably contacts the outer peripheral surface 15A of the rod 15 without a gap, thereby sealing between the head 19 and the rod 15.
 ピストン16は、ロッド15に連結される円環状のピストン本体部12と、ピストン本体部12の外周部に設けられるピストンリング23と、を備える。ピストン本体部12の外周面12Aには環状の外周溝12Bが形成され、外周溝12Bにピストンリング23が介装される。 The piston 16 includes an annular piston main body 12 connected to the rod 15 and a piston ring 23 provided on the outer peripheral portion of the piston main body 12. An annular outer circumferential groove 12B is formed on the outer circumferential surface 12A of the piston body 12, and a piston ring 23 is interposed in the outer circumferential groove 12B.
 ピストンリング23は、例えばPTFE等の低摩擦樹脂材によって形成される。ピストンリング23は、シリンダ11の内周面11Aに摺動してピストン本体部12をシリンダ11に対して支持する。 The piston ring 23 is formed of a low friction resin material such as PTFE. The piston ring 23 slides on the inner peripheral surface 11 </ b> A of the cylinder 11 to support the piston body 12 with respect to the cylinder 11.
 シリンダ11の内周面11Aのうちピストンリング23が摺動する範囲には、アモルファス炭素膜(DLC膜)24が形成される。 An amorphous carbon film (DLC film) 24 is formed in a range where the piston ring 23 slides on the inner peripheral surface 11A of the cylinder 11.
 アモルファス炭素膜24は、炭素を主成分とし、特定の結晶構造を持たないアモルファス構造体からなり、その表面が滑らかであり、硬度が高く、耐摩耗性、固体潤滑性、熱伝導性、化学的安定性等に優れる。 The amorphous carbon film 24 is composed of an amorphous structure mainly composed of carbon and not having a specific crystal structure, and has a smooth surface, high hardness, wear resistance, solid lubricity, thermal conductivity, chemical properties. Excellent stability.
 アモルファス炭素膜24は、例えばプラズマCVD法によって炭化水素ガスを原料として水素を含有する水素化アモルファス炭素膜を形成することができる。プラズマCVD法は、高周波、マイクロ波等の放電により原料ガスをプラズマ励起させて、ワークにイオン結合やラジカル種の結合によって結晶または非晶質の状態で成長させる方法である。 The amorphous carbon film 24 can form a hydrogenated amorphous carbon film containing hydrogen using a hydrocarbon gas as a raw material by, for example, a plasma CVD method. The plasma CVD method is a method in which a source gas is plasma-excited by a high frequency, microwave discharge or the like, and is grown in a crystalline or amorphous state on a workpiece by ionic bonds or radical species bonds.
 車両の走行時に、サスペンション装置の作動によって緩衝器10が軸方向に伸縮作動する際、緩衝器10を曲げようとする横力が径方向に働く。緩衝器10では、横力によってシリンダ11の内周面11Aとピストンリング23との摺動部に摩擦力が生じるとともに、ロッド15の外周面15Aとベアリング27との摺動部に摩擦力が生じる。 When the shock absorber 10 expands and contracts in the axial direction by the operation of the suspension device while the vehicle is running, a lateral force that tries to bend the shock absorber 10 acts in the radial direction. In the shock absorber 10, a frictional force is generated in the sliding portion between the inner peripheral surface 11 </ b> A of the cylinder 11 and the piston ring 23 due to a lateral force, and a frictional force is generated in the sliding portion between the outer peripheral surface 15 </ b> A of the rod 15 and the bearing 27. .
 シリンダ11の内周面11Aに摩擦係数が小さいアモルファス炭素膜24が形成され、かつピストンリング23がPTFE等の低摩擦樹脂材によって形成されることにより、シリンダ11の内周面11Aとピストンリング23との摺動部に生じる摩擦力が小さく抑えられる。 An amorphous carbon film 24 having a small friction coefficient is formed on the inner peripheral surface 11A of the cylinder 11 and the piston ring 23 is formed of a low friction resin material such as PTFE, whereby the inner peripheral surface 11A and the piston ring 23 of the cylinder 11 are formed. The frictional force generated at the sliding part is kept small.
 アモルファス炭素膜24は、ピストンリング23が押し付けられる横荷重が大きくなっても、摩擦係数が低いため、ピストンリング23との摺動部に生じる摩擦力が小さく抑えられる。これにより、緩衝器10に働く横荷重が大きくなっても、緩衝器10の減衰力が過大になることが抑えられ、シリンダ11及びピストンリング23の耐摩耗性が確保される。 Since the amorphous carbon film 24 has a low coefficient of friction even when the lateral load against which the piston ring 23 is pressed increases, the frictional force generated in the sliding portion with the piston ring 23 can be kept small. Thereby, even if the lateral load acting on the shock absorber 10 is increased, the damping force of the shock absorber 10 is suppressed from being excessive, and the wear resistance of the cylinder 11 and the piston ring 23 is ensured.
 また、シリンダ11の内周面11Aにアモルファス炭素膜24が形成され、かつ、ピストン16の外周部としてピストンリング23の外周面23Aにアモルファス炭素膜25が形成されてもよい。この場合には、シリンダ11の内周面11Aとピストンリング23の外周面23Aとの摺動部において、摩擦係数が小さいアモルファス炭素膜24、25どうしが互いに摺動することにより、摩擦力が小さく抑えられる。 Further, the amorphous carbon film 24 may be formed on the inner peripheral surface 11 </ b> A of the cylinder 11, and the amorphous carbon film 25 may be formed on the outer peripheral surface 23 </ b> A of the piston ring 23 as the outer peripheral portion of the piston 16. In this case, the amorphous carbon films 24 and 25 having a small friction coefficient slide on each other at the sliding portion between the inner peripheral surface 11A of the cylinder 11 and the outer peripheral surface 23A of the piston ring 23, thereby reducing the frictional force. It can be suppressed.
 また、緩衝器10は、シリンダ11の内周面11Aにアモルファス炭素膜が形成されず、ピストンリング23の外周面23Aのみにアモルファス炭素膜25が形成される構成としてもよい。 Further, the shock absorber 10 may be configured such that the amorphous carbon film 25 is formed only on the outer peripheral surface 23A of the piston ring 23 without forming the amorphous carbon film on the inner peripheral surface 11A of the cylinder 11.
 この場合には、ピストンリング23の外周面23Aのみに摩擦係数が小さいアモルファス炭素膜25が形成されることにより、シリンダ11の内周面11Aとピストンリング23との摺動部に生じる摩擦力が小さく抑えられる。 In this case, by forming the amorphous carbon film 25 having a small friction coefficient only on the outer peripheral surface 23A of the piston ring 23, the frictional force generated at the sliding portion between the inner peripheral surface 11A of the cylinder 11 and the piston ring 23 is reduced. Can be kept small.
 ピストンリング23は、PTFE等の低摩擦樹脂材によって形成される構成に限らず、金属材によって形成される構成としてもよい。 The piston ring 23 is not limited to a structure formed of a low friction resin material such as PTFE, and may be formed of a metal material.
 また、緩衝器10は、ピストンリング23が廃止され、ピストン16の外周部としてピストン本体部12の外周面12Aがシリンダ11の内周面11Aに摺動する構成としてもよい。 Further, the shock absorber 10 may be configured such that the piston ring 23 is eliminated and the outer peripheral surface 12A of the piston main body 12 slides on the inner peripheral surface 11A of the cylinder 11 as the outer peripheral portion of the piston 16.
 この場合には、シリンダ11の内周面11Aに摩擦係数が小さいアモルファス炭素膜24が形成されることにより、シリンダ11の内周面11Aとピストン16の摺動部に生じる摩擦力が十分に小さく抑えられる。 In this case, by forming the amorphous carbon film 24 having a small friction coefficient on the inner peripheral surface 11A of the cylinder 11, the frictional force generated on the inner peripheral surface 11A of the cylinder 11 and the sliding portion of the piston 16 is sufficiently small. It can be suppressed.
 また、シリンダ11の内周面11Aにアモルファス炭素膜24が形成され、かつ、ピストン16の外周部としてのピストン本体部12の外周面12Aにアモルファス炭素膜26が形成される構成としてもよい。 Alternatively, the amorphous carbon film 24 may be formed on the inner peripheral surface 11A of the cylinder 11 and the amorphous carbon film 26 may be formed on the outer peripheral surface 12A of the piston main body 12 as the outer peripheral portion of the piston 16.
 この場合に、シリンダ11の内周面11Aとピストン本体部12の外周面12Aとの摺動部は、摩擦係数が小さいアモルファス炭素膜24、26が互いに摺動することにより、摩擦力が小さく抑えられる。 In this case, the sliding portion between the inner peripheral surface 11A of the cylinder 11 and the outer peripheral surface 12A of the piston main body 12 suppresses the frictional force small by the sliding of the amorphous carbon films 24 and 26 having a small friction coefficient. It is done.
 また、緩衝器10は、ロッド15の外周面15Aと、ヘッド19の内周部として設けられるベアリング27の内周面27Aと、の少なくとも一方にアモルファス炭素膜が形成される構成としてもよい。 Further, the shock absorber 10 may be configured such that an amorphous carbon film is formed on at least one of the outer peripheral surface 15A of the rod 15 and the inner peripheral surface 27A of the bearing 27 provided as the inner peripheral portion of the head 19.
 この場合に、ロッド15の外周面15Aとベアリング27の内周面27Aとの摺動部は、摩擦係数が小さいアモルファス炭素膜により摩擦力が小さく抑えられる。 In this case, the sliding force between the outer peripheral surface 15A of the rod 15 and the inner peripheral surface 27A of the bearing 27 is suppressed to a small frictional force by the amorphous carbon film having a small friction coefficient.
 また、緩衝器10は、ロッド15の外周面15Aと、ヘッド19の内周部として設けられるヘッド19の内周面19Aと、の少なくとも一方にアモルファス炭素膜が形成される構成としてもよい。 Further, the shock absorber 10 may be configured such that an amorphous carbon film is formed on at least one of the outer peripheral surface 15A of the rod 15 and the inner peripheral surface 19A of the head 19 provided as the inner peripheral portion of the head 19.
 この場合に、ロッド15の外周面15Aとヘッド19の内周面19Aとの摺動部は、摩擦係数が小さいアモルファス炭素膜により摩擦力が小さく抑えられる。 In this case, the sliding force between the outer peripheral surface 15A of the rod 15 and the inner peripheral surface 19A of the head 19 is suppressed to a small frictional force by the amorphous carbon film having a small friction coefficient.
 以上の第1実施形態における緩衝器10では、互いに摺動するシリンダ11の内周面11Aとピストン16の外周部との少なくとも一方にアモルファス炭素膜(24、25、26)が形成される。そのため、緩衝器10に働く横荷重によってシリンダ11の内周面11Aとピストン16の外周部とが互いに摺動する部位に生じる摩擦力が小さく抑えられる。これにより、緩衝器10は、横荷重の影響を抑え、所期の減衰力特性を得るとともに、耐摩耗性を確保することができる。 In the shock absorber 10 in the first embodiment described above, an amorphous carbon film (24, 25, 26) is formed on at least one of the inner peripheral surface 11A of the cylinder 11 and the outer peripheral portion of the piston 16 that slide with each other. Therefore, the frictional force generated at the site where the inner peripheral surface 11 </ b> A of the cylinder 11 and the outer peripheral portion of the piston 16 slide with each other due to the lateral load acting on the shock absorber 10 is suppressed. Thereby, the shock absorber 10 can suppress the influence of the lateral load, obtain the desired damping force characteristics, and ensure the wear resistance.
 緩衝器10は、作動流体として粘度の低い液体が用いられた場合にも、平滑なアモルファス炭素膜(24、25、26)によってシリンダ11の内周面11Aとピストン16の摺動部に生じる摩擦力を小さく抑えることができる。これにより、緩衝器10は、所期の減衰力特性を得るとともに、耐摩耗性を確保することができる。 The shock absorber 10 has friction generated on the inner peripheral surface 11A of the cylinder 11 and the sliding portion of the piston 16 by the smooth amorphous carbon film (24, 25, 26) even when a low-viscosity liquid is used as the working fluid. Force can be kept small. As a result, the shock absorber 10 can obtain the desired damping force characteristics and ensure wear resistance.
 また、緩衝器10では、ロッド15の外周面15Aとヘッド19の内周部(ベアリング27の内周面27A、ヘッド19の内周面19A)の少なくとも一方にアモルファス炭素膜が形成される。そのため、ロッド15の外周面15Aとヘッド19の内周部との摺動部においては、摩擦係数が小さいアモルファス炭素膜により摩擦力が小さく抑えられる。 In the shock absorber 10, an amorphous carbon film is formed on at least one of the outer peripheral surface 15A of the rod 15 and the inner peripheral portion of the head 19 (the inner peripheral surface 27A of the bearing 27 and the inner peripheral surface 19A of the head 19). Therefore, in the sliding portion between the outer peripheral surface 15A of the rod 15 and the inner peripheral portion of the head 19, the frictional force is suppressed to be small by the amorphous carbon film having a small friction coefficient.
 以上のように、本実施形態では、アモルファス炭素膜の摩擦係数が小さいことにより、緩衝器に働く横荷重によってシリンダの内周面とピストンの外周部とが摺動する部位に生じる摩擦力が小さく抑えられる。これにより、横荷重の影響を受けにくい緩衝器を提供することができる。 As described above, in this embodiment, since the friction coefficient of the amorphous carbon film is small, the frictional force generated at the portion where the inner peripheral surface of the cylinder and the outer peripheral portion of the piston slide due to the lateral load acting on the shock absorber is small. It can be suppressed. Thereby, it is possible to provide a shock absorber that is not easily affected by the lateral load.
 (第2実施形態)
 次に、図2を参照して、本発明の第2実施形態を説明する。以下では、上記第1実施形態と異なる点を中心に説明し、上記第1実施形態の緩衝器と同一の構成には同一の符号を付して説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. Below, it demonstrates centering on a different point from the said 1st Embodiment, the same code | symbol is attached | subjected to the structure same as the buffer of the said 1st Embodiment, and description is abbreviate | omitted.
 第2実施形態に係る緩衝器50では、作動流体として磁場の作用によって流動性が変化する磁気粘性流体が用いられる。磁気粘性流体は、油等の液体中に強磁性を有する例えば鉄系金属等の微粒子を分散させたものであり、磁場の強さによって見かけの粘性が変化する。 In the shock absorber 50 according to the second embodiment, a magnetorheological fluid whose fluidity is changed by the action of a magnetic field is used as a working fluid. The magnetorheological fluid is a fluid in which fine particles such as iron-based metal having ferromagnetism are dispersed in a liquid such as oil, and the apparent viscosity changes depending on the strength of the magnetic field.
 緩衝器50は、減衰力発生要素として、ピストン56の両端に開口してロッド側室13とピストン側室14との間で流れる作動流体が流れるメイン流路53及びバイパス流路54と、メイン流路53を流れる作動流体に作用する磁場を発生する電磁コイル55と、を備える。 The shock absorber 50 is opened to both ends of the piston 56 as a damping force generating element, and the main flow path 53 and the bypass flow path 54 through which the working fluid flowing between the rod side chamber 13 and the piston side chamber 14 flows, and the main flow path 53. And an electromagnetic coil 55 for generating a magnetic field acting on the working fluid flowing through the.
 緩衝器50が発生する減衰力は、電磁コイル55への通電量を変化させ、メイン流路53を流れる磁気粘性流体に作用する磁場の強さを変化させることによって調節される。電磁コイル55に供給される電流が大きくなるほど、電磁コイル55のまわりに発生する磁場の強さが大きくなり、メイン流路53を流れる磁気粘性流体の流動性が低下して、緩衝器50が発生する減衰力が大きくなる。 The damping force generated by the shock absorber 50 is adjusted by changing the amount of current supplied to the electromagnetic coil 55 and changing the strength of the magnetic field acting on the magnetorheological fluid flowing through the main flow path 53. As the current supplied to the electromagnetic coil 55 increases, the strength of the magnetic field generated around the electromagnetic coil 55 increases, the fluidity of the magnetorheological fluid flowing through the main flow path 53 decreases, and the shock absorber 50 is generated. The damping force to be increased.
 一方、バイパス流路54を流通する磁気粘性流体は、電磁コイル55によって発生する磁場の影響を受けにくい。そのため、磁気粘性流体は、電磁コイル55の電流値が調節されるときに磁気粘性流体の流動抵抗に起因して生じる圧力変動を緩和する。 On the other hand, the magnetorheological fluid flowing through the bypass channel 54 is not easily affected by the magnetic field generated by the electromagnetic coil 55. Therefore, the magnetorheological fluid relieves pressure fluctuation caused by the flow resistance of the magnetorheological fluid when the current value of the electromagnetic coil 55 is adjusted.
 緩衝器50では、ピストンリングが廃止され、ピストン本体52の外周面52Aがシリンダ11の内周面11Aに摺動する。 In the shock absorber 50, the piston ring is eliminated, and the outer peripheral surface 52A of the piston main body 52 slides on the inner peripheral surface 11A of the cylinder 11.
 シリンダ11の内周面11Aに硬度が高いアモルファス炭素膜24が形成されることにより、磁気粘性流体中に含まれる強磁性微粒子によってシリンダ11の内周面11Aが摩耗することが抑えられる。 By forming the amorphous carbon film 24 having a high hardness on the inner peripheral surface 11A of the cylinder 11, it is possible to prevent the inner peripheral surface 11A of the cylinder 11 from being worn by the ferromagnetic fine particles contained in the magnetorheological fluid.
 さらに、ピストン本体52の外周面52Aにアモルファス炭素膜57が形成される構成としてもよい。 Furthermore, an amorphous carbon film 57 may be formed on the outer peripheral surface 52A of the piston body 52.
 この場合に、シリンダ11の内周面11Aとピストン本体52の外周面52Aとの摺動部は、アモルファス炭素膜24、57が互いに摺動することにより、摩擦力が小さく抑えられ、強磁性微粒子によって摩耗することが抑えられる。 In this case, the sliding portion between the inner peripheral surface 11A of the cylinder 11 and the outer peripheral surface 52A of the piston main body 52 is reduced in frictional force by the amorphous carbon films 24 and 57 sliding relative to each other. It is possible to suppress wear.
 以上の第2実施形態における緩衝器50は、作動流体として液体中に攻撃性の高い強磁性微粒子を含む磁気粘性流体を用いているが、硬度の高いアモルファス炭素膜24、57がシリンダ11の内周面11Aとピストン本体52の外周面52Aとを保護する。そのため、緩衝器50は内周面11Aと外周面52Aの耐摩耗性を確保することができる。 The shock absorber 50 in the second embodiment described above uses a magnetorheological fluid containing highly aggressive ferromagnetic fine particles in the liquid as the working fluid, but the amorphous carbon films 24 and 57 having high hardness are included in the cylinder 11. The peripheral surface 11A and the outer peripheral surface 52A of the piston main body 52 are protected. Therefore, the shock absorber 50 can ensure wear resistance of the inner peripheral surface 11A and the outer peripheral surface 52A.
 本実施形態においても、アモルファス炭素膜の摩擦係数が小さいことにより、緩衝器に働く横荷重によってシリンダの内周面とピストンの外周部とが摺動する部位に生じる摩擦力が小さく抑えられる。これにより、横荷重の影響を受けにくい緩衝器を提供することができる。 Also in the present embodiment, since the friction coefficient of the amorphous carbon film is small, the frictional force generated at the portion where the inner peripheral surface of the cylinder and the outer peripheral portion of the piston slide due to the lateral load acting on the shock absorber can be suppressed to a small value. Thereby, it is possible to provide a shock absorber that is not easily affected by the lateral load.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 本発明の緩衝器は、作動流体として液体が用いられるものに限らず、作動流体として気体が用いられるものであってもよい。 The shock absorber of the present invention is not limited to a liquid that is used as a working fluid, but may be a gas that is used as a working fluid.
 本発明の緩衝器は、車両のサスペンション装置に組み込まれる緩衝器に限らず、他の機械、設備等に利用できる。 The shock absorber of the present invention is not limited to a shock absorber incorporated in a vehicle suspension device, but can be used for other machines and equipment.
 本願は2014年3月31日に日本国特許庁に出願された特願2014-72745に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2014-72745 filed with the Japan Patent Office on March 31, 2014, the entire contents of which are incorporated herein by reference.

Claims (3)

  1.  作動流体に抵抗を付与することによって減衰力が生じる緩衝器であって、
     作動流体が充填されるシリンダと、
     前記シリンダの内周面に摺動する外周部を有するピストンと、
     前記ピストンに結合され、前記シリンダから外部に突出するロッドと、
     前記ロッドの外周面を摺動自在に支持するヘッドと、を備え、
     前記シリンダの内周面と前記ピストンの外周部との少なくとも一方にアモルファス炭素膜が形成される緩衝器。
    A shock absorber in which a damping force is generated by applying resistance to the working fluid,
    A cylinder filled with working fluid;
    A piston having an outer peripheral portion that slides on the inner peripheral surface of the cylinder;
    A rod coupled to the piston and projecting outward from the cylinder;
    A head that slidably supports the outer peripheral surface of the rod;
    A shock absorber in which an amorphous carbon film is formed on at least one of the inner peripheral surface of the cylinder and the outer peripheral portion of the piston.
  2.  請求項1に記載の緩衝器であって、前記ロッドの外周面と前記ヘッドの内周部の少なくとも一方にアモルファス炭素膜が形成される緩衝器。 2. The shock absorber according to claim 1, wherein an amorphous carbon film is formed on at least one of an outer peripheral surface of the rod and an inner peripheral portion of the head.
  3.  請求項1に記載の緩衝器であって、作動流体として磁気粘性流体が用いられる緩衝器。 The shock absorber according to claim 1, wherein a magnetorheological fluid is used as a working fluid.
PCT/JP2015/055463 2014-03-31 2015-02-25 Shock absorber WO2015151661A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-072745 2014-03-31
JP2014072745A JP2015194218A (en) 2014-03-31 2014-03-31 Shock absorber

Publications (1)

Publication Number Publication Date
WO2015151661A1 true WO2015151661A1 (en) 2015-10-08

Family

ID=54239997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055463 WO2015151661A1 (en) 2014-03-31 2015-02-25 Shock absorber

Country Status (2)

Country Link
JP (1) JP2015194218A (en)
WO (1) WO2015151661A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800003310A1 (en) * 2018-03-06 2019-09-06 Athena S P A STRUCTURE OF HYDRAULIC SHOCK ABSORBER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194283A (en) * 2005-01-11 2006-07-27 Nissan Motor Co Ltd Axial force generating device
JP2008215487A (en) * 2007-03-05 2008-09-18 Honda Motor Co Ltd Damping force variable damper
JP2009216235A (en) * 2008-02-12 2009-09-24 Honda Motor Co Ltd Variable damping-force damper and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343632A (en) * 2002-03-20 2003-12-03 Showa Corp Hydraulic shock absorber for vehicle
JP2006194343A (en) * 2005-01-13 2006-07-27 Kayaba Ind Co Ltd Hydraulic shock absorber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194283A (en) * 2005-01-11 2006-07-27 Nissan Motor Co Ltd Axial force generating device
JP2008215487A (en) * 2007-03-05 2008-09-18 Honda Motor Co Ltd Damping force variable damper
JP2009216235A (en) * 2008-02-12 2009-09-24 Honda Motor Co Ltd Variable damping-force damper and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800003310A1 (en) * 2018-03-06 2019-09-06 Athena S P A STRUCTURE OF HYDRAULIC SHOCK ABSORBER

Also Published As

Publication number Publication date
JP2015194218A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
KR101506428B1 (en) Sealing device and damper with sealing device
US10309479B2 (en) Cylinder device
US9771999B2 (en) Mono-tube type hydraulic shock absorber
JP6503510B2 (en) Cylinder device and method of manufacturing the same
JP6114499B2 (en) Seal member and shock absorber
CN102359536B (en) A kind of No leakage is without the two-way controlled MR damper of seal ring
KR20180049041A (en) Magnetic viscous fluid buffer
WO2015151661A1 (en) Shock absorber
US20190145482A1 (en) Damper
JP2006220265A (en) Magnetorheological fluids device
JP2004251413A (en) Sealing device for reciprocation spindle
JP2008069858A (en) Magnetrheologcal fluid shock absorber
JP6499766B2 (en) Magnetorheological fluid composition and vibration damping device using the same
JPWO2017047682A1 (en) Magnetorheological fluid composition and vibration damping device using the same
JP2015197141A (en) Shock absorber
JP2006057767A (en) Mr fluid damper
JP2016023721A (en) Damper device
JP5483559B2 (en) Magnetorheological fluid flow type damper
JP2010223282A (en) Damper device
JP2019128031A (en) Cylinder device
JP2018173099A (en) Cylinder device
JPWO2018180363A1 (en) Cylinder device
JP2010019325A (en) Sealing device
JP2009228755A (en) Piston part structure
JP2007303581A (en) Magnetic viscous fluid shock absorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773184

Country of ref document: EP

Kind code of ref document: A1